Mohamad Kaddoura, Guillaume Majeau-Bettez, Ben Amor, Christian Moreau et Manuele Margni
Article de revue (2022)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (574kB) |
Abstract
Energy improvements in the energy sector constitute a key strategy to mitigate climate change. These expected improvements increasingly depend on the development of materials with improved surface characteristics. To prospectively assess the large-scale benefits and trade-offs of such novel surface engineering (SE) technology deployments in the energy sector, an integrated modelling framework is proposed. This paper links an integrated assessment model (IAM) forecasting socio-economic changes in energy supply with life cycle assessment (LCA) models of targeted technology candidates. Different shared socio-economic pathway narratives are used with the MESSAGE IAM to forecast future energy supply scenarios. A dynamic vintage model is employed to model plants decommissioning and adoption rates of innovative SE. Potential benefits and impacts of SE are assessed through prospective LCA. The approach is used to estimate the prospective GHG emission reduction potential achieved by large-scale adoption of innovative SE technologies to improve the efficiency of four energy conversion technologies (coal power plants, gas turbines, wind turbines and solar panels) until 2100. Applying innovative SE technologies to the energy sector has the potential of reducing annual CO2-eq emissions by 1.8 Gt in 2050 and 3.4 Gt in 2100 in an optimistic socio-economic pathway scenario. This corresponds to 7% and 8.5% annual reduction in the energy sector in 2050 and 2100, respectively. The mitigation potential of applying innovative SE technologies highly depends on the energy technology, the socio-economic pathways, and the implementation of stringent GHG mitigation policies. Due to their high carbon intensity, fossil-based technologies showed a higher GHG mitigation potential compared to renewables. Besides, GHG emissions related to the SE processes are largely offset by the GHG savings of the energy conversion technologies where the innovative SE technologies are applied.
Mots clés
Energy systems; Efficiency improvement; Integrated assessment models; Thermal barrier coating; Hydrophobic coating
Sujet(s): | 1500 Génie de l'environnement > 1500 Génie de l'environnement |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: | CIRAIG - Centre international de référence sur le cycle de vie des produits, procédés et services |
Organismes subventionnaires: | CRSNG/NSERC - Green Surface Engineering for Advanced Manufacturing (GreenSEAM) Strategic Network |
URL de PolyPublie: | https://publications.polymtl.ca/10254/ |
Titre de la revue: | Sustainable Materials and Technologies (vol. 32) |
Maison d'édition: | Elsevier B.V. |
DOI: | 10.1016/j.susmat.2022.e00425 |
URL officielle: | https://doi.org/10.1016/j.susmat.2022.e00425 |
Date du dépôt: | 06 avr. 2022 16:55 |
Dernière modification: | 27 sept. 2024 12:39 |
Citer en APA 7: | Kaddoura, M., Majeau-Bettez, G., Amor, B., Moreau, C., & Margni, M. (2022). Investigating the role of surface engineering in mitigating greenhouse gas emissions of energy technologies: An outlook towards 2100. Sustainable Materials and Technologies, 32, e00425 (9 pages). https://doi.org/10.1016/j.susmat.2022.e00425 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions