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RÉSUMÉ

Le risque est omniprésent dans nos vies; il est impossible de l’ignorer. Nous pouvons soit
l’éviter ou l’affronter. Selon la situation, les deux approches peuvent avoir leur mérite. D’une
part, en évitant toujours le danger, nous accomplirons forcément bien peu. D’autre part, en le
bravant continuellement, nous courrons à notre perte. Nous choisissons donc le meilleur plan
d’action selon la gravité de la situation et selon notre tolérance au risque. Or, le risque n’est
pas uniquement présent dans notre quotidien, mais aussi dans des domaines d’applications
scientifiques. Plus particulièrement, on s’intéresse ici à sa présence dans le domaine de la
robotique en essaim, où des collectivités de robots doivent accomplir des missions dans des
environnements souvent périlleux. Sachant ce contexte, comment peut-on inculquer à ces
robots une politique de gestion de risque équilibrée afin de les rendre plus résilients?

La stratégie adoptée dans ce mémoire pour répondre à la question précédente est de créer une
politique de stockage distribué tenant compte du risque ainsi qu’une manière collaborative
d’explorer un environnement inconnu sans trop exposer les individus d’un essaim au danger.
Ce faisant, on vérifie la pertinence de la gestion de risque dans deux contextes d’intelligence
en essaim différents mais reliés. Le premier système développé dans ce mémoire, Risk Aware
Swarm Storage (RASS), se base sur le potentiel des robots à stocker de l’information sécuri-
tairement ainsi que sur un mécanisme de percolation des données vers un point central. La
seconde idée exposée est Distributed Online Risk Aware Explorer (DORA), qui optimise des
gradients locaux d’information et de risque pour explorer son environnement optimalement.

Afin d’évaluer chaque système conçu, deux phases sont nécessaires. D’abord, des expériences
sont réalisées en simulation pour vérifier conceptuellement les systèmes ainsi que leur capacité
d’être mis à l’échelle. Puis, des tests sont effectués en environnement physique (sur de vrais
robots) pour s’assurer de leur applicabilité en scénarios réels. Pour RASS ainsi que pour
DORA, les résultats montrent que tout comme avec les humains, une prise en considération
modérée du risque selon la situation engendre des résultats optimaux.

RASS et DORA proposent des pistes pour rendre des applications de robotique en essaim
plus résilientes. Conséquemment, ils pourront être adaptés et bonifiés pour des scénarios
plus diversifiés et complexes que ceux présentés dans les expériences réalisées ici, tel que des
scénarios de recherche et de sauvetage élaborés.
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ABSTRACT

Risk is omnipresent in our lives; it is quite simply impossible to ignore it. We may either avoid
or confront it. Depending on the situation, both approaches have their merit. On one hand,
by always avoiding danger, one will accomplish very little. On the other hand, constantly
defying it may lead to one’s ruin. Humans choose the best course of action based on the
gravity of the situation and on their personal risk tolerance. Yet risk is not only present
in our everyday lives, but also in scientific application domains. This is the case of swarm
robotics, in which groups of robots often accomplish missions in dangerous environments. So
how would it be possible to instill a risk management policy to these robots to make them
more resilient?

The strategy adopted in the thesis in order to answer the previous question is to create a
distributed storage policy which takes risk into account, as well as to create a collaborative
solution to explore an unknown environment without needlessly exposing robots to danger.
This way, the relevance of risk awareness is verified in two different but related swarm robotics
contexts, adding diversity and value to this work’s contribution. The first system described
in this thesis is Risk Aware Swarm Storage, which is based on robots’ potential to safely store
data. It also relies on gradient-based routing to achieve data percolation towards a central
point. The second idea explored in this thesis is Distributed Online Risk Aware Explorer,
which optimizes local information and risk gradients to explore an unknown environment.

Two evaluation phases are required for each developed system. First, simulations are per-
formed to verify the conceptual sanity of the designs as well as their scaling capacity. Second,
the systems are tested on physical robots to ensure they have real-world applicability. For
both RASS and DORA, results show that just like with human behavior, reasonably factoring
risk in decision processes often yields optimal results.

RASS and DORA offer ideas to make swarm robotics applications safer and more resilient.
Therefore, by adapting and possibly improving them where needed, they could be used in
diverse and complex situations which were not studied in this work, such as search and rescue
scenarios or cavern exploration.
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CHAPTER 1 INTRODUCTION

Swarm intelligence can be defined as a collective behavior in a group of agents aiming to
achieve objectives. Swarm intelligence algorithms have seen diverse applications for a few
decades [1], such as in the medical field [2, 3] and more recently in data mining [4]. On the
other hand, swarm robotics, a subset of swarm intelligence applied to robots, has seen few
real-world applications and has so far been mostly limited to laboratory research projects.
However, research in this field is accelerating, and techniques and use cases making swarm
robotics more useful are constantly appearing. Among the considerations brought forward
by ongoing research is robustness and resilience, which are crucial if industrial applications
are to be considered [5, 6]. This is where this work seeks to make an impact, by providing
ideas which will help swarm robotics move forward from laboratory experiments to real-world
applications by increasing swarm robustness.

It should be noted that both RASS and DORA, the systems presented in Ch. 3 and Ch. 4
respectively, are products of the research conducted for articles which are not yet published at
the moment of writing this thesis. Because of intellectual property reasons, the presentation
approaches used in each case differed. For RASS, the article was reused and slightly adapted
to add details and clarity. In DORA’s case, the article was summarized.

1.1 Definitions and Basic Concepts

In the following section, concepts central to this work and useful to its comprehension are
briefly explained to provide some context.

1.1.1 Swarm Intelligence

Swarm intelligence takes inspiration from biology and behaviors observed in nature. Of no-
table interest in this field are groups of animals in which emergent behaviors can be observed.
Bee, ant, and termite colonies are known to show self-organization and coordination prop-
erties. Many algorithms based (sometimes loosely) on those emergent behaviors have been
created and are the foundation of swarm intelligence. Notable examples include Ant Colony
Optimization [7], the Bees algorithm [8] and Artificial Bee Colony algorithm [9].

As is the case for insects, performance and robustness of these algorithms results from the
strength of numbers present in large swarms of agents. An important property of swarm
intelligence is that agents should not be aware of the existence of a larger system, so as to re-
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quire little coordination. Consequently, a criterion devised as part of these algorithms is that
all agent behaviors must be based on local interactions to avoid centralized control. Indeed,
such an outcome could result in bottlenecks or single point of failures being introduced. Re-
lying solely on local interactions often has the added benefit of making these solutions simple
and elegant.

1.1.2 Swarm Robotics

Swarm robotics emerged from the domain of swarm intelligence, from which algorithms are
adapted and applied to groups of robots. Not only do algorithms transpose from one field to
the other, but so do more general key principles. In both fields, solutions must be as decen-
tralized as possible (sometimes, a base station may be required for robots). Moreover, the
need for local interaction implies that robots must be able to communicate with one another
or to at least sense environmental information indicative of the others’ work. Exchange of
information, whatever the shape it assumes, is required.

The key difference with swarm intelligence is that the latter’s algorithms have been exten-
sively applied in many concrete applications, which is not yet the case of swarm robotics.
Simple tasks like pattern formation have been studied extensively [10–12], but do not trans-
late directly to real world applications. Also, because of the physical nature of robots, specific
challenges and limitations arise: storage and bandwidth restrictions, mechanical failures, etc.
all affect the designed systems.

1.1.3 Decentralized/Distributed

Having explained the distinction between swarm intelligence and swarm robotics, a clarifi-
cation regarding the definition of a distributed system as opposed to a decentralized one is
required.

Distributed systems imply multiple connected devices which interact to perform a common
set of tasks. This interaction may occur through various means and be coordinated by one
or more central devices. This would be the case for an Internet of Things (IoT) application
in which edge nodes collect data and forward it to local servers where it can be processed.

Decentralized systems also involve many connected devices which share a common goal.
However, they are not coordinated by a central authority; cooperation happens only between
peers. This is the case for BitTorrent, which relies on a peer-to-peer architecture in which
no centralized activity is involved [13].

A decentralized system is distributed by nature, but the opposite is not necessarily true.
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1.1.4 Scalability

Scalability can be defined as the ability of a system to adapt to changing amounts of work.
In the context of swarm robotics, these can fit in two categories. First, additional loads can
result from a changing (increasing) number of agents involved in the system, which necessarily
impacts its performance because of communication overhead, among other things. Second, a
change in burden may happen because of evolving tasks. In any case, both must be considered
when designing robust swarm applications.

1.1.5 Occupancy and Belief Maps

It is a common practice to split an environment in a grid composed of cells. Discretization
helps in several ways. First, it allows for easier addressing of areas of interest within it, often
making algorithms more intuitive. Second, it eliminates unnecessary computational costs by
giving control over how fine grained the description of the environment should be. These
cells, aside from being useful for positioning, can be used to store information about the state
of the environment. They can have any number of dimensions, and usually fall in two main
categories: occupancy and belief maps.

Occupancy maps use these cells to store binary values indicating whether something is present
or not at a given location. That element could be an obstacle, a source of danger, a target
and so on.

Belief maps are a generalization of occupancy maps: instead of storing binary values, cells
contain a number representing a probability. It indicates the confidence level, or the belief,
that the cell contains a given element. Of course, storing probabilities instead of binary
values implies more memory usage, but the trade-off is generally worth it as it opens up
possibilities for more designs.



4

1.2 Problem Elements

Problem elements can be thought of as requirements which need to be fulfilled by the current
research project. These fall within two main categories: functional and non-functional re-
quirements. The first are the perceivable characteristics of the system, those which could be
demanded by a client. They are system-specific. In the current work, they are the need for
good storage/routing performance for RASS, and a potent exploration strategy for DORA.
The second type of requirement, non-functional ones, are less system-specific and can be
applied to both designed items. They include low failure rates, local information usage,
tolerance to limited resources, and scalability.

1.2.1 Efficient Information Storage and Transmission

Broadly, the problem which much be solved here is to allow an extensible and efficient
storage. To do so, the decentralization assumption must be slightly relaxed by allowing
agents to offload some data to a base station, otherwise the total storage capacity would be
static and equal to the sum of the individual capacities. This consideration is realistic in the
context of swarm robotics, where the robots often need to contact a base station for other
reasons like recharging. To achieve this objective, three items are required.

1. The designed storage policy must allow data to be stored until it is ready to be moved.
Consequently, collective swarm storage must be allocated with care to avoid unnecessary
duplication which would reduce the storage and data acquisition capacities.

2. A simple decentralized routing policy is necessary, and it must not rely on the base
station, because robots cannot be assumed to maintain a stable connection with it.

3. The routing, besides transmitting data between peers, must also result in data perco-
lation towards the base station.

1.2.2 Efficient Exploration

Of course, a system which has for main objective to explore should do well at this task.
Thus, DORA has to obtain performances at least as good as state-of-the-art systems of
the same nature. This means that for the duration of the exploration experiments, DORA
should cover more unknown terrain than the benchmark solutions. This includes dealing with
terrains ridden with obstacles. Furthermore, the chosen strategy cannot rely on centralized
planning and coordination, meaning exploration efficiency has to emerge from peers.
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1.2.3 Avoiding Failures

Robustness has been studied in single-robot systems, where robots are designed to be as
reliable as possible though component redundancy [14] or through verified control systems
[15–17]. However, even with these precautions, robots can still fail. This is where the inherent
resilience of robot swarms becomes interesting, by allowing some individuals to fail while still
maintaining group collective functionality. It has been shown that multi-robot teams are
usually resilient to a reasonable number of robot failures [18–20]. Even though resilience
through numbers is good, swarm systems should aim to reduce individual failures as they
can create performance and material losses. Even worse, failure in an individual may cause
a propagation of failures through the group [5]. Resilience is a quality which goes further
than robustness. Indeed, systems designed with that quality in mind should accommodate
failures by allowing the swarm to perform its normal functions (albeit with a possible loss of
performance).

1.2.4 Using Local Information

The challenge with this requirement is twofold. First, because it is necessary to select which
information is relevant to transmit between peers. This ensures that no unnecessary com-
munication burden is present. It also serves as a way to keep the solution simple, making it
easier to integrate in other projects. Second, the means of transmission must be appropriately
selected to fit the needs of the solution, that is is must be simple to use and efficient.

1.2.5 Limited Resources

Some recently developed robots, like the Kilobot [21], were created with the first category of
scalability in mind. Indeed, their low unit price combined with their small form factor makes
the simultaneous use of hundreds or thousands of them possible (hence their name). This
capacity has been verified in tasks like self-assembly [22]. However, this comes with a trade-
off: they are severely limited in their individual capacity, which makes them susceptible to
increased workloads if the swarm size remains constant. The solution to this weakness would
be to use more powerful robots, but this obviously incurs higher and possibly unreasonable
financial costs. The dilemma is thus that robots are usually either small in size and capacity,
or are limited in numbers. Therefore, it is essential to conceive algorithms adapted for swarms
of resource-limited robots. These algorithms must be as simple and efficient as possible.
For example, [23] show how to perform distributed on-line learning with limited bandwidth.
Another added benefit of designing simple algorithms is that by reducing computational load,
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they reduce energy consumption, which mitigates the problem of limited energy availability
most robots face due to their use of batteries [24].

1.2.6 Verifying Scalability

Because scalability is such an important characteristic of swarm systems, it is important to
devise a strategy to verify the designs proposed in this work include it properly. Therefore,
this verification has to include two steps: an assertion of whether the solutions can work at
all with an increasing number of robots, and an evaluation of how this increase in number
helps the systems’ performance in their respective functional goals. In this regard, the use
of a physics-based simulator is absolutely necessary to ensure testing realism. However, the
robot-simulation gap states that while simulated agents can represent the general behavior
of robots, they cannot account for all variables which would be present in real-world testing,
thus possibly affecting result validity and accuracy [25]. That might lessen the value of the
conducted tests, particularly for swarms of robots [26]. A simulator reducing the impact of
this problem is desirable. Testing on physical robots also needs to be conducted to further
compound this issue.

1.3 Research Objectives

The broad objective pursued in this research is to introduce risk awareness into swarm
robotics. To do so in a significant way, RASS and DORA need to collectively address all
the problem elements previously presented. Some of the research objectives are common to
both. For instance, they must reduce the failure rate comparatively to their related state-
of-the-art applications. Moreover, they must show that this is achievable by relying solely
on local communication information processing. Additionally, they must be conceived with
both limited resources and scalability in mind. Some of the objectives are not shared. First,
RASS needs to perform well in terms of storage efficiency as well as data transmission speeds.
Second, DORA has to exhibit good exploration coverage.

For RASS, the specific objectives are the following:

1. Have a lower data corruption rate than competing algorithms;

2. Be entirely decentralized and rely on local information only;

3. Work well on resource-limited platforms;

4. Obtain a better storage efficiency in comparison to benchmark algorithms;
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5. Achieve similar transmission speeds compared to benchmark algorithms.

For DORA, the specific objectives are slightly different:

1. Have a lower robot failure rate than competing algorithms;

2. Be entirely decentralized and rely on local information only;

3. Work well on resource-limited platforms;

4. Achieve a better or similar terrain exploration coverage than benchmark algorithms.

This thesis therefore seeks to elaborate on how both algorithms comply with the set objec-
tives by detailing their implementation as well as by verifying that they respect the desired
properties through thorough experimentation.

1.4 Thesis Outline

This thesis is structured as follows. First, In Ch. 2, a detailed review of relevant scientific
advances is provided. It explores the following themes: distributed information sharing,
distributed storage, risk assessment, routing, swarm programming, and path planning and
exploration strategies. Second, in Ch. 3, RASS, a method of introducing risk awareness into
swarm storage is presented. This section contains a detailed explanation of the system as
well as experimental results derived from its implementation. Third, in Ch. 4, a second risk-
aware swarm system is presented in the form of DORA Explorer, a distributed algorithm
leveraging swarm collaboration to safely explore unknown environments. In this section, an
architectural description is given and is followed by experimental results. Fourth, in Ch. 5,
the work conducted in the context of this thesis is summarized. Finally, in Ch. 5.2, the
limitations of this thesis’ work are presented and followed by recommendations for future
research.
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CHAPTER 2 LITERATURE REVIEW

This chapter explores relevant state of the art literature related to the domain of this thesis.
This includes insights into the following topics: swarm robotics, decentralized storage, com-
munication and consensus, distributed storage, risk assessment in robot swarms, and path
planning and exploration strategies. Not all articles explored in this review were directly
used, but they certainly all provide good background information. The direct contribution
of those which were used for either RASS or DORA is explained in detail in their respective
chapters.

2.1 Swarm Robotics

There has been a growing interest for swarm robotics [24, 27], showing they have some po-
tential. A good starting point to explore literature relevant to this work is therefore the
overview of swarm robotics published by Dorigo et al. [6], which highlights the benefits and
challenges related to the field. A key insight is that individual robots sometimes might not be
able to perform tasks on their own, such as surveillance of large areas [28]. Another scenario
is time-sensitive applications like search and rescue, in which the increased speed provided
by parallel task execution might be crucial [29]. In these cases where multiple robots are
required, coordination through a central source might be considered a simpler solution, but
it has drawbacks and may be impossible to use at times. This is why decentralized swarm
control is often considered, but it too has challenges, like storage, communication and con-
sensus mechanisms [30]. The last problematic is out of the scope of this work, but the other
two deserve attention.

2.2 Decentralized Storage

To support collaboration within a swarm, efficient communication is necessary [31]. To that
end, relevant articles supporting distributed or decentralized ways of sharing data are pre-
sented here. One of the first accounts of decentralized data transmission in the context of
swarm intelligence was proposed in Ant Colony Optimization [32], in which agents leave
pheromone trails in their environment which can be interpreted by their peers. This mecha-
nism is a form of stigmergy.

Using the same concept to store data, the virtual stigmergy [33] is a distributed key-value
storage mechanism that allows a swarm of robots to efficiently share information at runtime,
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and effectively constitutes a shared memory space. It was designed to work with robots
with limited bandwidth, lossy communication mediums, and low processing capabilities. It
ensures full data replication across all of its storage nodes (i.e. the robots), meaning it
is particularly robust to failures. It also aims for eventual data consistency 1 to increase
data availability and access speed. Another advantage of virtual stigmergy is its inherent
integration with Buzz. SwarmMesh [35], another distributed key-value storage mechanism,
introduces the idea of storing data on the less vulnerable members of the swarm to increase
robustness. This is done by calculating keys by hashing the data needing to be stored and
then partitioning the keys based on the fitness (connectivity, available memory, etc.) of a
given robot to store information. Access to stored information is done through a custom
routing algorithm based on the keys. The system also allows for data replication to further
improve robustness. Its usefulness has been proven in situations where robot resources and
capabilities are limited [36]. Both virtual stigmergy and SwarmMesh are scalable to large
swarms of robots with dynamic connection topologies. However, their main limitation resides
mainly in the small size of the data that can be stored in the swarm. This is an issue if larger
quantities of data need to be shared. For example, storing pictures, videos or complex data
collected during a mission with these systems might not be feasible. This is because they
lack a mechanism to split data in chunks to reference and reconstruct stored files. SOUL [37]
addresses this by adapting existing peer-to-peer file sharing mechanisms (which are already
decentralized in nature and support large file sharing) to the context of robotic swarms. The
key principle in SOUL is that files are "split into a series of smaller chunks of data, referred
to as datagrams, spread throughout the swarm". This spreading is done through a bidding
process among the members of the swarm to determine which storage configuration will
minimize the cost of reconstructing data (i.e. retrieving it) from the distributed datagrams.
It might be necessary to use distributed storage mechanisms which are optimized for certain
metrics. In [38], a method for scenarios in which bandwidth is limited is suggested. In
situations where the location of the storage nodes is important, geographic hash tables can
be used [39–41]. For other constraints such as requirements for low energy usage, Cell Hash
Routing [42] may be considered as a starting point. It is well suited to networks with dynamic
topologies and varying densities. All the previously mentioned storage solutions are part of a
wider category of storage designs called Conflict-Free Replicated Data Types (CRDT), which
aim to provide fast data availability and eventual data consistency.

1Eventual consistency guarantees that if a given datum is not modified for a certain time, all accesses to
it should eventually become consistent [34].
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2.3 Routing

To transmit data efficiently between two devices which are not directly connected, a routing
strategy is necessary. That type of situation occurs in swarm robotics applications, where
robots are often spread over a terrain and do not form a fully connected topology. Finding
the best path between two points can be done with Dijkstra’s algorithm [43]. However, such
a method requires knowing the network topology in advance, and is quite computationally
expensive, in the order of Θ((|V | + |E|) log |V |) if V vertices and E edges are involved in
the network. It is a prohibitive cost, especially if it needs to be computed periodically in
dynamic topologies. Similarly, voting-based routing algorithms cannot be considered, as the
voting process might introduce significant delays.

For these reasons, it is worth considering algorithms designed specifically for swarm robotics
applications. By far one of the most prevalent approaches is to route data following a gradient
based on one metric [44, 45]. The most used metric, perhaps because of its simplicity and
efficiency, is the hop count between a source node and a target node. It is used notably in
[45–48] for routing in ad hoc networks and inWireless Sensor Network (WSN)s. Designs based
on classic swarm intelligence algorithms can be used to find optimal routes, such as [49–53],
but are more effective in static topologies, which makes their applications somewhat limited.
Methods inspired by epidemics were shown to be efficient for disseminating data [54,55]. For
data aggregation purposes, which is an application similar to the percolation RASS seeks to
achieve, the techniques in [51, 52, 56] were all shown to provide good results and could thus
serve as inspiration.

2.4 Risk Assessment

Many methods to detect failures have been proposed. Endogenous (from internal origin)
fault detection aims for robots to detect errors that occur to themselves. These include the
like of malfunction of a particular sensor or a disconnection from the ad hoc network to
which they are connected. Methods to this effect include those proposed by [57], which uses
Kalman Filters [58] to detect outliers in sensor behavior, as well as others based on Bayesian
networks [59] or particle filters [60]. Another algorithm inspired by fireflies allows exogenous
fault detection, that is sensing failures in other members of the swarm [61]. A more recent
exogenous (from external origin) anomaly detection solution was proposed in [62] and takes
inspiration from the immune system. Taken separately or even in a possible combination,
these fault detection have the potential to improve swarm resilience to failures. However,
reaching a state where robots malfunction or crash is simply undesirable.
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While some failures might be purely stochastic and unpredictable, some arise due to un-
necessary exposure to risk. Therefore, of particular importance to the research objective of
minimizing failures in the designed systems is the consideration of risk, which is directly cor-
related to breakdowns. Thus, strategies on how to assess the presence of danger and on how
to share this information among the members of the swarm are necessary for RASS and for
DORA. The definitions and categorizations of risk suggested in [63] are good starting points
for creating risk assertions. These categories are locale-dependent, action-dependent and
traverse-dependent. They respectively denote risk that does not depend on previous history
(states and actions of the robots), risk that depends on recent history and risk which is linked
to the whole history. An example of locale-dependent risk is given in [64], in which local ter-
rain elevation may pose a threat to aircrafts if they fly too close. Traverse-dependent risk
would be involved in situations where a cumulative effect is observed, like in prolonged expo-
sition to radiation. These definitions can be useful to model the effects of long term exposure
to danger. However, they definitions were created and used in the context of a formal path
planner which is too resource-demanding in this current context. Also, this planner assumes
prior knowledge of the environment’s state, meaning that risk is not discovered by the robots
themselves, but rather by a central operator. In SPIDER [65], agents are tasked with chain
formation in dangerous environments. They adopt shy or bold behaviors, which allows them
to adapt to varying levels of risk. This behavioral adaptability allows them to be resilient to
significant failures and member loss. It is also interesting to note that many risk types can
be combined through weighted sums to account for diverse scenarios [66]. Some association
may also be made between risk and reward, as some exposure to reasonable amounts of the
former may result in significant gains. For this reason, path planners described in [67, 68]
allocate a "risk budget" to their agents. In other words, a balance between risk and reward
can be used to guide robots through optimization, given that the risk tolerance of the system
is properly defined.

2.5 Exploration Strategies

One possible strategy for exploration is based on ant colony stigmergy, in which virtual
pheromones are used to dissuade robots from going to certain locations [69]. This mechanism
can be used to guide robots away from each other (also know as dispersal) or away from
uninteresting areas and therefore to steer exploration. However, the authors report its results
are limited in dense topology scenarios.

The second possible strategy for terrain coverage is path planning. The planners suggested
by [63, 70, 71] are based on a Markov Decision Process (MDP) and are risk-oriented. Their
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shortcoming in relation to this work’s objective are twofold. First, they assume at least a
partial knowledge of the global state of the environment is available. This is not a valid
assumption when exploring unknown environments, which is precisely what is defined in
DORA’s main functional requirement. Second, they are only applied to single-robot systems,
and therefore fall short of the problem elements this works seeks to resolve.

Addressing the last point, several terrain coverage maximization strategies which are dis-
tributed in nature have been proposed. Many distributed exploration strategies that max-
imize the amount of covered terrain have been proposed. Voronoi-based coverage control
techniques [72, 73] achieve interesting results, but are more useful when prior knowledge of
the environment exists. The same issue applies to methods using time-varying domains (i.e.
dynamic environments) [73,74]. A perhaps simpler form of exploration which offers optimal
terrain coverage (if not total, in the absence of failures), and consequently more suited to
DORA’s requirements, is FBE [75]. In this method, robots build a common knowledge of the
furthest state of exploration their environment, and seek to widen this frontier at every time
step, eventually resulting in full environment coverage. No prior knowledge is required by the
agents. Several FBE refinements have been developed: Particle Swarm Optimization [76] and
Wavefront Frontier Detector [77] are two of them. However, none of FBE-based strategies
take risk into account. Because of their good performance in terms of terrain coverage, they
could be used as benchmark solutions.

The system which is closest to DORA’s objectives is the multi-robot control algorithm pre-
sented in [78, 79], because it maximizes the information gain during exploration in the pres-
ence of unknown hazards. Yet, it is not perfectly aligned with all non-functional requirements
because it seeks an optimal exploration solution, which entails a computational complexity
greater than O(|V |2|V |) for every time step, where V is the set of robots. Using it would
require introducing several approximations to lower the computation load of the robots.

2.6 Swarm Programming and Simulation

Swarm programming focuses on four key properties: decentralized control, absence of leaders,
absence of predefined roles, and reliance on simple and local interactions. In this sense, it
differs greatly from conventional centralized cloud-based applications or even from centralized
sensor arrays which are common in IoT applications. Many programming paradigms for robot
swarms have their shortcomings to address the issue of coordinating swarms of robots. This
is the case for robot oriented programming, which is embodied by ROS, [80], because it
focuses on single-robot scenarios. Also, aggregate programming like Protelis [81] suffers from
offering little control over individual robot behavior. Granted, swarm robotics should avoid
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behavior specialization, but sometimes it might be necessary, for example when hierarchies are
needed or when location-specific tasks must be completed. For task-oriented programming
frameworks such as Voltron [82], the issue is that they allow little control over low-level
operations which might be required when operating robots.

Buzz [83], another programming language, addresses these issues and aims to meet the key
properties mentioned earlier, therefore enabling an easier approach to swarm programming.
Among other things, Buzz uses a custom virtual machine to run code in isolation of the
operating system. It is designed to be an extensible language with high-level primitives
facilitating robot interactions. A recently developed language, Koord [84], could also inspire
software testing mechanisms, as it is built around a strong formal method philosophy. This
means it allows swarms of robots to be programmed with verifiability in mind, that is each
part of the distributed algorithms should be tested in a modular way with fixed guarantees
in place.

Because validating various aspects of the proposed systems requires simulations, it is nec-
essary to use a simulator well suited to scenarios in which multiple agents are present. It
is also necessary to mitigate the previously mentioned robot-simulation gap. In this regard,
ARGoS [85] is particularly well suited, because it has the capacity to run agents on separate
threads, therefore improving simulation execution speed. This has the effect of making large
scale simulations accessible. Moreover, because ARGoS is a physics-based simulator, it allows
to take into account the effects of physical interactions between robots, their environment and
themselves. Furthermore, ARGoS integrates particularly well with Buzz, with the possibility
of directly using compiled Buzz scripts.

2.7 Grid Mapping

In the task of map building which is required for (or is the purpose of) robotic exploration
[86, 87], belief maps offer a simple and powerful tool. They show significant improvements
for exploration performance over occupancy maps because of their increased precision which
allows for more informed decisions [88]. Their use in robotic exploration is far from new
[89, 90]. In these, robots share sensor measurements and then build and update the belief
maps independently. The disadvantages of the three previous methods are that they are
limited to fixed grid sizes and are tested only with two robots, which make their application
limited. Recently, in [91], improvements for multi-robot grid mapping have been suggested.
In that article, the robots consider both the current and expected beliefs to collaborate.
However, there seems to be no usage of them for storing risk beliefs. These maps are well
suited to be stored in CRDTs, because cell locations can be used as keys and beliefs as values.
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CHAPTER 3 RISK-AWARE SWARM STORAGE

In robotics, data acquisition often plays a key part in unknown environment exploration. For
example, storing information about the topography of the explored terrain or the natural
dangers in the environment can inform the decision-making process of the robots. Therefore,
it is crucial to store these data safely and to make it available quickly to the operators
of the robotic system. In a decentralized system like a swarm of robots, this entails several
challenges. To address them, we propose RASS, a decentralized risk-aware swarm storage and
routing mechanism, which relies exclusively on local information sharing between neighbours
to establish storage and routing fitness. We test our system through thorough experiments
in a physics-based simulator and test its real-world applicability with physical experiments.
We obtain convincing reliability, routing speeds, and swarm storage capacity results.

3.1 Introduction

Using multi-robot systems for the exploration of unknown environments is very appealing.
Indeed, if robots do not overlap in their exploration task, the amount of terrain covered
increases proportionally with the number of robots in the system [92]. This can, for exam-
ple, be particularly useful for search and rescue scenarios [93] where the speed at which the
environment is covered is of critical importance. However, as the number of robots increases
so does the amount of data collected, which puts pressure on the data storage infrastructure.
Unfortunately, multi-robot systems usually suffer from unreliable connectivity [38], and di-
rectly sending the information to an external storage system (e.g., the cloud) may not always
be feasible. An alternative to overcome this issue is to use the swarm of robots as means
of distributed data storage. However, because the robots composing the swarm often have
very limited memory and storage capacities, saving large amounts of data across the swarm
can prove challenging. Furthermore, the robots in a swarm are not necessarily reliable [20]:
even in controlled environments, they are usually meant to be easily replaced. This issue is
aggravated when they must face situations that decrease their reliability, such as exposure
to dangerous environments like search and rescue scenarios, forest fire reckoning, or nuclear
inspection and cleanup. Therefore, giving the robots a way to eventually relay the infor-
mation they acquired during their mission to a control station for more permanent storage
is a definite advantage: it not only allows the information to be stored in a safe location
accessible by human operators, it also alleviates the memory usage of the robots and enables
continuous operation. Nonetheless, because in practice robots have a finite communication
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range, the information collected at the periphery of the swarm usually needs to be routed
through other robots before reaching a base station. Although forwarding the data through
the shortest path towards the base station enables prompt retrieval [31], in real-world scenar-
ios, this approach can be problematic for two reasons: first, such a path might not exist at
all, for example if the robots are in an area completely cut off from external communication
(e.g. a cave); second, if that path does exist, it might be too dangerous to use. For example,
a robot trying to relay information by going through a highly radioactive area might cause a
physical failure or data corruption. Furthermore, the base station cannot request the data,
as communication with the robots is never guaranteed. Instead, data must be autonomously
forwarded to the base station by the robots. For the same reason, and because of the overhead
it entails, it is not practical to use leaders to coordinate the storage and routing processes.
In addition, the system must take into account that the robots are constantly moving and
acquiring new data, meaning that storage and routing conditions are dynamic. These con-
straints motivate the need for a completely decentralized, risk-aware swarm storage system
that can safely and efficiently store data and route it towards a base station in a percolating
fashion whenever possible. In this paper, we make the following contributions to multi-robot
storage:

• A distributed, dynamic and risk-aware storage system

• A fully decentralized risk-aware routing algorithm

We name the combination of these two contributions RASS. The rest of the article is struc-
tured as follows: in section 3.2, we present related work and useful concepts upon which we
build RASS; in section 3.3 we present our system model; in section 3.4 and 3.5 we detail our
simulations and physical experiments along with their respective results; finally in section
3.6 we draw some conclusions.

3.2 Related Work and Background

3.2.1 Distributed Storage

A Distributed Hash Table (DHT) is a data structures specifically designed to partition data
across a network of storage nodes in a key-value format. These structures come with a set of
issues susceptible of hindering their performance, consistency and partial connectivity being
some of them [38]. The virtual stigmergy presented in [33] tackles the problem using CRDTs
and allowing decentralized robust information sharing for multi-robot systems. This virtual
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stigmergy is implemented directly into the Buzz programming language [83]. However, in
the virtual stigmergy, each node stores a full copy of the data (in an eventually consistent
way). This means it has full redundancy and no partitioning, thus offering good reliability
but poor storage capacity optimization.

A memory-efficient storage mechanism designed for multi-robot systems was proposed in
SwarmMesh [35]. It uses the available memory of an agent and its connectivity with its
peers to generate unique identifiers, which are the basis of its partitioning scheme and which
represent an agent’s fitness to store data. Storage of larger items (such as binary files) in
DHTs has been studied in [37], where an auction process is used to partition data. Other
partitioning systems have been proposed, such as Locality-aware Distributed Hash Tables [39]
which posits that routing data through nodes that are close in a network will reduce latency.
Therefore, they use information from the nodes’ Autonomous System Number (ASN)s to
partition data. Geographic Hash Tables [40], Cell Hash Routing [42] and [41] all use position-
based information in their partitioning systems, and the second specifically addresses DHT
implementation for ad-hoc networks of resource-constrained nodes.

These systems show various metrics that can be used to devise a partitioning system for a
DHT. However, none of them takes into account the effects of environmental dangers on
the reliability of the distributed storage system. RASS, our decentralized risk-aware storage
and routing mechanism, aims to address this issue by including a risk measurement in its
partitioning scheme.

3.2.2 Risk Assessment

Taking risk into account when designing autonomous systems is of high importance as ex-
cessive exposure to risk can lead to system failures. In an unknown environment, risks are
usually tied to a certain location. Information about these locations could therefore provide
increased situational awareness for robots to effectively perform a given mission. Belief maps
and occupancy maps provide this situational awareness by assigning values to cells of a dis-
cretized environment. Whereas occupancy maps define the presence or absence of a feature
(e.g. fire), belief maps assign probabilities to the cells of the discretized environment and
usually offer better performance [88]. Belief maps have been extensively used in the past for
robotic exploration [89–91].

A risk-aware exploration algorithm leveraging a belief map of the risk associated with the
environment has been recently proposed in [94]. In this work, robots combine efforts in
building a shared belief map of the environmental risks and use it to spatially avoid the
dangerous pitfalls of the environment. The belief map is used to provide risk awareness
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to an exploration algorithm which ultimately results in fewer robot failures. In RASS, we
seek to use similar shared risk awareness to establish a reliable distributed data storage and
routing mechanism, while improving its memory consumption by relying on more localized
information.

3.2.3 Routing

There exist many types of routing algorithms for wireless sensor networks. For example,
packets can be explicitly routed towards a known destination by forwarding messages towards
a neighbour which optimizes a given metric. One simple approach is to send messages through
the shortest path in terms of Euclidean distance. However, this assumes a complete knowledge
of the nodes’ Cartesian coordinates, which is far from realistic in swarm robotics. Indeed,
robots might be operating into GPS-denied environments, or they might not even be equipped
with GPS at all. A comparative study of metrics for multi-hop wireless networks shows that
hop-count performs the best in scenarios where nodes are mobile [44] because it is robust
in dynamic topologies [45], which is the case for RASS’s nodes. Notable implementations
using this metric are given in [46–48], which are respectively greedy, power-adaptive, and
grid-based routing algorithms. Routing algorithms have also been inspired by biology: some
are based on slime molds [49, 50] and others on ant colonies [51, 52]. However, the former
category has applications mostly in static topology networks, which makes it ill-suited to
our needs. The latter category specifically addresses data aggregation, which is particularly
relevant to our objective of percolating data towards a base station.

3.3 System Model

We consider a fully decentralized multi-robot system tasked with the exploration of a danger-
ous environment. The multi-robot system is denoted as the collection of agents ai ∈ A. We
assume the robots to have limited storage and communication capabilities. We also assume
the presence of an operator or base station who is interested in collecting the data generated
by the swarm. Note that this last assumption does not mean that our system is centralized:
it is reasonable to assume that the autonomous system has to produce some value (i.e. data)
for the humans deploying it, and the base station does not influence the decision-making
process of the swarm, but rather act as an information sink.

We consider the amount of data needed to be stored to be greater than the individual
storage capabilities of the robots. It is therefore impossible for the individual agents to store
a complete copy of the system’s data, but the data can be fully stored by the base station.



18

Also, we consider that the robots are only able to communicate if they are within a certain
communication radius R. As a result, if a message needs to be sent to a distant location (e.g.
to the base station), it might need to be routed through multiple nodes before reaching the
desired destination.

3.3.1 Risk Modelling

Radiation is known to cause performance loss and failures in robots [95, 96]. We therefore
adapt the risk modelling from [94], which is based on a set of independent point radiation
sources S with individual intensity Ij ∼ U(0, 1). Note that we use radiation as a model of
risk, but our method could be applied to other sources of danger: vertical air currents, high
temperature areas, etc.

Risk is assumed to be dynamic, meaning that the position of the point radiation sources
sj(t) ∈ E can vary across time. For example, radiation can spread to new areas if radioactive
particles are transported by wind. It is important to account for the dynamic nature of risk as
it gives the system the capability to adapt to changing environments. We achieve adaptability
by having each agent sense the radiation at every time step at its current position, which
creates a step-by-step estimate of the risk at each robot’s location, as shown in Fig. 3.1.

Figure 3.1 An example of risk values measured and held by robots at a given time step.
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The perceived intensity decays exponentially (with λ as a decay parameter) as the Euclidean
distance ρ(xi) between sj and xi increases. The total perceived radiation level by a robot ai
at position xi ∈ E is given by:

r(xi) = b+
∑

sj∈S

Isj

1 + λρ(xi)2 (3.1)

and is measured by an on-board sensor with Gaussian measurement noise b ∼ N (0, 0.05).
We posit the radiation’s effect on the system is to cause data corruption (which is one of its
possible effects [96]). Let the probability of the event of a datum d getting corrupted while
stored on robot ai due to an individual radiation source sj be P(ci = 1|sj) ∼ B(rsj

(xi)),
which follows a Bernoulli distribution. Because we assume that the sources of radiation
affect the robots (and thus the stored data) independently, the probability of a datum being
corrupted due to the combined effect of radiation sources also follows a Bernoulli distribution
given by:

P(ci = 1|S) ∼ B(r(xi)) = 1−
∏

sj∈S
1− P(ci = 1|sj) (3.2)

3.3.2 Distributed Risk-Aware Storage

Our risk-aware storage system is built upon three assumptions:

1. Because nodes exposed to a higher level of risk also have a higher failure probability,
they should be used less, thus maximizing overall storage reliability

2. Efficiently moving data away from the periphery of the swarm and towards the base
station will increase the storage capacity of the system and the persistence potential
of the data, because the base station usually has more storage and reliability than the
swarm

3. Percolating data from edge nodes to the base station should be done by choosing routes
devoid of risk to minimize data loss

From these assumptions, we derive RASS’ two principal mechanisms: the routing table and
the fitness-based percolation. We combine them to obtain a high-level algorithm described in
Alg. 1, in which N is the set of neighbours of a given agent. Because of the distributed nature
of the algorithm and because all robots execute the same code (except the base station), we
forego the indices notation to simplify the algorithms.
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Algorithm 1: RASS Execution Loop
while True do

update_routing_table()
update_fitness()

if not is_fit() and |N | > 0 then
evict_data()

end

store_measurements()
end

Routing Table

We assume that the swarm can be represented by a connected graph G with nodesA and edges
L respectively representing agents and their wireless communication links. In practice, this
connectivity cannot be maintained at all times, because of the quality of the links in L and
because of the movements of nodes A. However, this assumption can be mostly maintained
through mechanisms for connectivity maintenance [97] if necessary. Furthermore, the need
for this assumption can be relaxed because RASS does not need a constant link with the
base station; it can opportunistically move data towards it when possible, and store them
locally in the meantime.

Building a routing table with the aim of prioritizing higher capacity nodes is similar to the
Gateway Optimization [98] implemented in the Better Approach to Mobile Ad-hoc Network-
ing (B.A.T.M.A.N.) mesh networking protocol [99], where in our case the base station acts
as a gateway. Because peer communication is not the focus of this work, the routing table
held by each node only contains the minimal hop count between its neighbours and the base
station and can therefore be implemented with a hash table. Therefore, given the existence
of at least one (multi-hop) path between any node and the base station, we can establish
a routing table based on hop count. The process to construct and periodically update this
table involves exchanging messages between the base station and the nodes as suggested
by [100], as we implement in Alg. 2. The general idea is that the base station emits a 0
hop message periodically, and whenever a node receives such a message (either from the base
station or from another neighbour), it re-emits the message with an incremented count. Note
that a node will only emit the message based on the smallest hop count it received; these
counts are stored in the previously mentioned hash table. This percolation process from
the station to the nodes creates a hop count gradient. An example of such gradient can be
found in Fig. 3.2. Assuming a message can only be forwarded to an immediate neighbour
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within a given time step, the required time to build the routing table in a connected graph
is bounded by Ω(1) and O(|A|) as it takes at most |A| steps to send a message from the base
station to the furthest robot in a pathological topology (a line) and 1 step if the network
is fully connected. However, in more realistic scenarios such as tree networks or scale-free
topologies, building the table can be expected to take on average O(log|A|) steps because of
the network’s depth. We implement message forwarding through a gossip algorithm, which
allows local broadcasting between robots.

Algorithm 2: Building/Updating the Routing Table
routing_table←− listen_neighbor_hop_count()

if id = 0 then
min_hops←− 0

else
min_hops←− min(routing_table)

end

broadcast(min_hops + 1)

Figure 3.2 An example of minimal hop count towards the base station (bottom right) values
held by robots after building the routing table.
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Potential-Based Percolation

Our risk-aware storage system draws inspiration from SwarmMesh [35], in that each node
periodically assigns itself a potential φi based on its fitness to store data, given by:

φi =


1

αhi+βr(xi) if mi > 0
0 otherwise

(3.3)

where mi is the memory available on node i, ri is the risk associated with the current node’s
location (stored in the distributed belief map) and hi refers to the minimum hop count
required to reach the base station from i as specified in the routing table. Parameters α
and β are respectively the routing weights and risk weights, which allow adapting the policy
based on the relative importance of the routing time and the environmental risk with respect
to each other. Similarly to [35], a node which becomes unfit to store data will evict such
data by moving it into its routing queue. The condition for “unfitness” is simply:

Tφi < max
j∈N

φj (3.4)

where N and T are the set of i’s neighbours and the fitness threshold, respectively. The
latter’s purpose is to ensure that data is transferred only when the neighbours’ max fitness
is significantly higher than φi to avoid instability and overhead which would result from
frequent and inefficient transfers. This fitness policy causes data to naturally percolate along
the edges towards the base station because nodes with a higher potential are both closer
to it and located in safer areas. When necessary, data is evicted using a Least Recently
Used (LRU) policy and transmitted to the fittest neighbour.

3.4 Simulations

3.4.1 Experimental Setup

We ran extensive simulations in a physics-based simulator, ARGoS [85] with models of Khep-
era IV [101] robots to eliminate the effect of potential hardware issues on the conceptual
validity of our system and also to verify that it scales well to large swarm sizes. We executed
30 simulation runs with 100 robots for each type of experiment to reach results with low
uncertainty. We used a 20m x 20m arena and a communication radius R = 3m. Three
radiation sources are randomly distributed in the environment around the origin. The base
station is located in a corner of the arena and its storage capacity is assumed to be infinite.
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Figure 3.3 400m2 environment in the ARGoS simulator with 100 KheperaIV robots dis-
tributed in a grid-like pattern.

Figure 3.4 400m2 environment in the ARGoS simulator with 100 KheperaIV robots dis-
tributed in a scale-free pattern.
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Figure 3.5 400m2 environment in the ARGoS simulator with 100 KheperaIV robots in a
formation obtained through Lennard-Jones potential interactions.

Figure 3.6 400m2 environment in the ARGoS simulator with 100 KheperaIV robots in a
formation obtained through random walk motions.
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In order to replicate realistic operation scenarios, we chose to artificially introduce bandwidth
limitations. In all experiments, robots can only exchange up to 10 data items at every time
step. For the same reason, our simulated robots have a limited storage capacity of 50 data
items of at most 50 bytes each, as the data are simple items such as small tables or floating-
point numbers. This gives a total storage capacity of 2500kb per robot. Because the robots
can only exchange up to 20% of their stored data at a given time step, it amounts to a
bandwidth of 0.5kb/s. Data is generated by each robot at fixed out of phase intervals.

To evaluate the performance of our system in different scenarios, we tested it with static
topologies: a grid-like formation, and a scale-free network; as well as with dynamic topologies:
a formation obtained through Lennard-Jones potential interactions and a formation evolving
from random walk motions. Testing with static topologies allows us to verify applicability
with fixed wireless sensor networks relevant to IoT applications, while experiments with
dynamic topologies are more relevant for mobile robotics applications.

To setup RASS, we used values of α = 10 and beta = 1 in Eq. 3.3 because risk measurement
values are normalized between 0 and 1 while hop-count values are typically upper-bounded
to 10 (for 100 robots). Our first benchmark algorithm is to use a fitness policy based purely
on hop count, i.e. if required, data is sent only to neighbours closer to the base station. Our
second comparison baseline is to store data in a virtual stigmergy (a CRDT) [33]. Using the
virtual stigmergy practically ensures that no data can be lost due to corruption because it is
fully replicated across the system. The first metric we used in our performance evaluation is
the reliability R, expressed as:

R = ng − nl
ng

(3.5)

where ng and nl are respectively the amount of data generated and lost at every time step.
The second metric is the average data transfer speed, measured as the delay between the
creation of a given datum and its arrival by percolation to the base station. We excluded
results of this metric for the virtual stigmergy, as the stigmergy cannot include the concept
of a base station (since all nodes are peers), and stigmergy propagation speeds are detailed
in [33]. The third metric is the evolution of the system’s total storage capacity over time,
i.e. the amount of data stored by the agents and the base station combined.

3.4.2 Results

The results obtained in the 30 simulation runs for the static topologies (grid-like and scale-
free) as well as for the dynamic topologies (Lennard-Jones potential and random walk) are
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presented in groups for each metric (reliability, transmission speed and total storage capacity)
in the following pages.

Results show that RASS outperforms the hop-count algorithm in terms of reliability. For the
grid topology experiments, Fig. 3.7 shows that RASS was more than 1.5 times as reliable
as the closest benchmark. For the experiments using the scale-free topology (Fig. 3.8, the
results were much closer, but RASS performed the best. The reliability obtained for the
Lennard-Jones (Fig. 3.9) and the random topologies (Fig. 3.10 were similar, as they were on
average 1.4 times better than the best competitor. Because of the risk awareness component
included in its fitness policy as detailed in Eq. 3.3, robots do not always route the data
through the shortest path to the base station. RASS avoids the dangerous storage nodes of
the system when routing data which explains the higher reliability levels displayed in Fig.
3.7, Fig. 3.8, Fig. 3.9 and Fig. 3.10 . This is why, on average, RASS takes 54.89% more
time to route the data to the base station when compared to the hop-count algorithm. The
shortest path might not always be the safest one; RASS will take an alternate route if the
risk associated with the shortest one is too high. This happens whenever the risk element
in Eq. 3.3 is high enough to offset a possibly low value in the hop count term. On the
other hand, the hop-count algorithm always takes the shortest path towards the base station
regardless of the risk associated with it. This leads to a higher number of data losses due to
corruption and an overall lower reliability. The clear outlier for all topologies is the virtual
stigmergy, achieving very poor reliability figures. The reasons for this are explained further
because they are also reflected by another metric.

The hop count algorithm can yield faster transfer speeds for all topologies. As explained
in Sec. 3.4.1, transfer speed analysis for the virtual stigmergy was excluded. In the grid
topology (Fig. 3.11), the mean transmission time for the hop count algorithm half smaller
than RASS’s. The smaller amount of messages shown in the graph for the hop count method is
explained by its poor reliability, meaning fewer messages reached their destination. Fig. 3.12,
showing results for the scale-free topology, is where the results are closer: the distributions
are almost identical, except for a small tail end in RASS’s case Fig. The transfer speed
distributions for the Lennard-Jones and the random topologies are presented in 3.13 and
Fig. 3.14 respectively. They are quite similar: RASS has slower transfer speeds, but its
curve is in both cases has significant overlap with the one from the hop count algorithm.

The other studied metric was the evolution of the total storage capacity of the system over
time. As for the other metrics, the gap between RASS,the hop count algorithm and the
virtual stigmergy was most pronounced in the grid topology results presented in Fig. 3.15.
In this situation, RASS managed to store twice as much data as any of the benchmarks.
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Figure 3.7 RASS reliability (grid topology)
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Figure 3.8 RASS reliability (scale-free topology)
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Figure 3.9 RASS reliability (Lennard-Jones topology)
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Figure 3.10 RASS reliability (random topology)
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Figure 3.11 RASS transmission speed (grid topology)
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Figure 3.12 RASS transmission speed (scale-free topology)
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Figure 3.13 RASS transmission speed (Lennard-Jones topology)



34

Figure 3.14 RASS transmission speed (random topology)
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For the scale-free topology, the results were much closer as shown in Fig. 3.16, but the
risk-aware solution still performed the best. For the Lennard-Jones and random topologies,
RASS achieved a 45.2% and 60% improvement in system-wide storage capacity over the next
best compared method.

Table 3.1 Average transfer speed and average individual memory usage with different topolo-
gies.

Topology Algorithm Transfer speed (hops) Memory used (%)

Grid-like
RASS 11.45 1.35
Hop-Count 9.11 0.61
Stigmergy N.A. 100.00

Scale Free
RASS 11.44 1.95
Hop-Count 6.85 0.50
Stigmergy N.A. 100.00

Lennard-Jones
RASS 12.51 1.69
Hop-Count 7.32 0.51
Stigmergy N.A. 100.00

Random search
RASS 12.68 1.67
Hop-Count 7.76 0.57
Stigmergy N.A. 100.00

Looking at a summary of these results can help gain further understanding, and table 3.1
is useful to this end. For the virtual stigmergy, most of the data losses can be attributed
to the storage having reached its maximum capacity. Indeed, because of the fully replicated
nature of the stigmergy, the memory of the agents is quickly saturated. Table 3.1 shows that
on average, across the 500 steps of the simulations runs, the virtual stigmergy has 100% of
every individual robot memory used. This means that the nodes of the system are simply
full and cannot store data anymore. In comparison, RASS uses between 1% and 2% of the
local memories of the nodes, and hop-count is even lower at values around 0.5%. This full
redundancy prevents losing data from corruptions. However, it entails a very inefficient use
of the memory of the robots and ultimately leads to data losses due to insufficient memory
capacity. The result is an unchanging storage capacity over time and poor reliability as
shown in Fig. 3.7 for the virtual stigmergy strategy. The low values of local memory usage
shown in Table 3.1 for RASS and hop-count were obtained because the topologies used to
test the algorithms were usually well connected in accordance with the connected graph
assumption we made in 3.3.2. For the most part, multiple routes were connecting the nodes
to the base station and as a result, the collected data was routed towards the base station
instead of being kept locally. Such a result implies that the system, by maintaining a low
individual storage occupancy, allows the robots to adapt to situations in which they would
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Figure 3.15 RASS storage capacity (grid topology)
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Figure 3.16 RASS storage capacity (scale-free topology)
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Figure 3.17 RASS storage capacity (Lennard-Jones topology)
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Figure 3.18 RASS storage capacity (random topology)
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be temporarily stranded: if their storage were to be mostly full, they would not be able
to generate new data without promptly losing it. This storage buffer thus allows them to
continue their data collection while they are temporarily disconnected from the rest of the
swarm.

3.5 Physical experiments

3.5.1 Experimental setup

We evaluated RASS’ performance with the same metrics on physical robots to confirm the
real-world applicability of our system. We used 5 small drones, the CogniFlies [102], in a
controlled indoor environment. These drones use standard Raspberry Pi Zeros as their main
computer, meaning they have relatively low capabilities, and are therefore well suited to
verify our algorithm. We designed a static topology with one drone acting as a base station
and the 4 others acting as agents. The radiation source (red cone) in Fig. 3.19 is positioned
to make one of the paths more dangerous, allowing us to verify if data is routed in the longer
but safer path. The communication range is set to 1.5m, which is a realistic but restrictive
value for drones equipped with WiFi capabilities. The topology is illustrated in Fig. 3.20.
To control the topology, we kept the drones in fixed positions. To assess RASS’ performance,
we compared it with a hop-count algorithm over 3 runs.

3.5.2 Results

The reliability results of the physical experiments conducted on the drones are presented in
Fig. 3.21. They show that RASS outperforms the hop-count algorithm in terms of reliability
by a factor of almost 2. In other words, RASS lost much less data due to corruption issues.
This lead to overall greater swarm storage. The results obtained for the total storage capacity
of the swarm are shown in 3.22. They are somewhat less convincing, because they have a
higher variance. This could be mitigated by running more simulations. However, the trend is
clear: even by accounting for large variance, RASS outperforms the benchmark. In a realistic
interpretation of the data, RASS achieved a total storage capacity of nearly double that of
the hop count algorithm, which is coherent with the results obtained for the reliability.
Even if the topology used to assess the performance of our algorithm was simple and the
number of agents in the system was limited, the physical experiments confirm the real-world
applicability of RASS. Using only local interactions, it was able to choose safer paths for the
data to be routed through which resulted in fewer data corruptions.
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Figure 3.19 Physical disposition of the 3x3m environment with 5 drones and a radiation
source (red cone).
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Figure 3.20 A simplified graph description of the physical testing environment. The decaying
radiation source is represented by the concentric red circles. The base station, at the top of
the figure, is also a drone.
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Figure 3.21 Evolution of reliability over time on the the physical experiments
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Figure 3.22 Evolution of storage over time on the the physical experiments
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3.6 Conclusion

We presented RASS, a Risk-Aware Swarm Storage system in which a swarm of robots can
collectively store data on strategically chosen members. This choice is made without central
coordination and is purely based on local information shared between the robots. This
information is simply composed of risk measurements and topological distance from a robot
to a base station, and is used to determine a robot’s fitness to store data as well as to establish
the most reliable and fast route towards the base station.

We show in our experiments that RASS largely outperforms a hop-count based solution as
well as a virtual stigmergy in terms of reliability and total swarm storage capacity, while
only being slightly slower in terms of percolation speed compared to the hop-count-based
algorithm. RASS showed good scalability in physics-based experiments as it repeatedly
performed well with a large number of robots. It also performed well in experiments on
physical robots.

A possible improvement for the system could be to use a Kalman Filter [58] to eliminate
outliers in radiation measurement which can arise due to sensor imprecision. Also, while
RASS considered the risk to which robots are subjected, it would be interesting to study
the impact of how risk affects the communication links between them. More generally,
an interesting direction for future work could be to conduct experiments in more diverse
scenarios, for example in search and rescue applications where image storage and processing
is required, therefore increasing the system’s workload.
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CHAPTER 4 RISK-AWARE EXPLORATION

In this chapter, the article in which DORA was first described [94] is summarized. DORA
was created in the context of this thesis and is closely related to the theme of risk awareness
in swarm robotics. To avoid redundancy and to make this chapter more concise, the related
works and background necessary to understand this system are presented in Ch. 2. Figures
in this chapter are taken from the article with permission from the authors.

Because exploration of unknown environments is an important challenge in the field of
robotics, we wanted to show the benefits of taking risk awareness into account when devel-
oping solutions for this kind of challenge. We based our exploration strategy on distributed
belief maps. This way, swarm efficiency is leveraged because robots collaborate by sharing
useful information. The key idea behind DORA is to minimize risk exposure while maximiz-
ing exploration coverage, leading to more efficient exploration because of fewer risk-related
failures.

4.1 Introduction

Unknown environment exploration by robots has applications in numerous fields. For exam-
ple, search-and-rescue missions [103] and space missions [104] can both benefit from using
robots, as they often operate in environments inaccessible to humans. This inaccessibility
can stem from multiple causes, such as the remote nature of these places (space, other plan-
ets, oceanic depths), the impossibility for humans to reach them (caverns with too small
openings) or their dangerous nature (radioactive zones, forest fires, flooded areas). For all
of these, there is necessarily an associated risk factor, which means that robots sent to ex-
plore them will necessarily be exposed to some danger increasing the risk of failures. Robot
swarms mitigate the effects of individual failures [18–20] and improve overall terrain cover-
age performance [92]. However, even in robot teams, failures have negative effects on overall
performance, which is why we sought to reduce them as much as possible through DORA.

The motivation for creating a purely decentralized algorithm is to avoid the pitfalls related
to centralized systems, such as bottlenecks and single points of failures. The first can be
related to low capacity robots, or to noisy environments affecting communication efficiency or
causing memory corruption. The second is particularly important in the risky scenarios where
individual malfunctions are more likely and could cause system-wide failures. Consequently,
relying on locally shared information and onboard computation is necessary.
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As we found no existing decentralized risk-aware exploration algorithm, we sought to create
one.

4.2 System Model

The motivation for including risk awareness in a distributed exploration algorithm can be seen
in Figs. 4.2 and 4.3, where failures lead to decreasing performance over time. Conversely,
in Figs. 4.4 to 4.7, avoiding dangerous areas reduces failures and maintains exploration
efficiency. In order to design our system, we modelled the environment as a 2D grid (E ⊂ Z2)
in which agents ai ∈ A carry out their task. Several design considerations shaped DORA.
They are summarized here, and more details can be found in the referenced paper.

First, risk and failure probability had to be formally modelled. We chose to represent risk as
point radiation sources sj ∈ S with an exponentially decaying intensity Ij, but any other type
of danger could have been used with our system. The equations representing the radiation
perceived by a robot ai failing due to radiation in cell xi can be combined as:

r(xi) = b+
∑

sj∈S

Ij
1 + λρ2

j

(4.1)

Where ρj is the distance between ai and sj, λ is a decay constant and b is Gaussian noise.
The probability of failure necessarily increases where r(xi) is higher.

Second, we defined the objective of exploration as gaining information by visiting cells from
E. Logically, recently visited cells are unlikely to yield any information gain. Therefore,
priority is given to unvisited and less recently visited cells. Doing so requires saving the
last time of exploration of xi in a scalar field ε(xi) = tε. The probability of finding useful
information decreases exponentially for values of ε(xi) which are closer to the current time
step t.

Third, as way of storing these values, we use a CRDT: the virtual stigmergy from [33]. This
allows robots to exchange information whenever possible (thereby achieving a loose eventual
consistency) without relying on a central communication hub. Both r(xi) and ε(xi) are
stored in distributed belief maps. These are updated at every time step.

Fourth, we describe a position-based control law for the robots which minimize risk and
maximize information gain. These optimizations are described by local gradients of each
scalar field in a Moore neighborhood (see Fig. 4.1) around ai.

The risk gradient ∇r;i is given by:
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Figure 4.1 xi’s neighborhood. ni,0 = (−1, 1) is neighbor 0’s offset from xi.

∇r;i =
∑

nj∈ν
n̂i,j · (r(xi)− r(ni,j)) (4.2)

where n̂ is the unit form of n. The exploration gradient ∇ε;i is calculated in the same
manner. We combine these to obtain the control law:

xt+1
i = xt

i + (α∇r;i + β∇ε;i + γoi) (4.3)

where α, β, γ are parameters related to risk avoidance, exploration gain and obstacle avoid-
ance control. The latter is added from robustness and inspired from [105].

Finally, to ensure scalability, we made sure DORA’s computational and communication costs
remained low. They are represented by C(A, ν, E) and D(A, ν, E) where ν is the neighbor-
hood and they are both bounded by Θ(|ν|) because of the nature of the algorithm and of the
virtual stigmergy.

4.3 Experiments

We performed experiments both in simulations and on physical robots. In both cases, for
consistency, we used KheperaIV [101] robots, which are relatively small and equipped with
infrared sensors required for obstacle avoidance. It should be noted that they are capable
of wireless networking through the 802.11b/g WiFi protocol, making swarm communication
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Figure 4.2 Robots start exploring but are unable to sense environmental radiation. The only
driving force of the algorithm is exploring new cells.
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Figure 4.3 Robots fail because they do not discriminate between safe and dangerous cells.
Exploration is carried out by fewer robots. Exploration efficiency drastically decreases and
large areas of the environment remain uncovered.
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Figure 4.4 Robots start exploring a hazardous environment.
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Figure 4.5 A grid is formed. When a new cell from this grid is explored, the sensed radiation
is used to update the DBM.
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Figure 4.6 The cells have been mostly covered by the robots.
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Figure 4.7 Only cells believed to be too dangerous remain unexplored.
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possible. We compared our algorithm with two baselines: FBE and a random walk algorithm.
The metrics we used to evaluate our system’s performance were the number of active (not
failed) robots over time, the total number of cells explored over time, and the bandwidth
usage. Failures were triggered randomly based on (emulated) perceived radiation from (4.1).
Detailed motivation for parameter and metric choices can be found in the article.

The first step was to test DORA by doing simulations in ARGoS. To verify the effect of swarm
size on scalability, we ran our virtual experiments with varying swarm sizes (N = {10, 15, 20})
deployed randomly in a 20x20m environment with randomly positioned radiation sources and
obstacles. To be thorough, we performed 50 simulation runs with 300 time steps each for
each algorithm.

The second step was the physical experiments. We ran them on 5 robots with fewer time
steps (200) because of equipment and time constraints respectively. Robot positioning was
obtained through motion tracking performed with OptiTrack Motive [106]. The environment
consisted of a 2x2m arena split into a 10x10 cell grid.

4.4 Results

The following shows the average results obtained in the simulation runs as well as those from
physical experiment runs.

Figs. 4.8 to 4.11 show that DORA attains similar terrain coverage to FBE. Moreover, the
performance gap between the two reduces as N increases, showing good scalability from
DORA. Both algorithms outperform the random walk one by far. Interestingly, DORA
covered more cells than FBE in physical experiments. This is probably because the small
size of the arena presented a pathological case for FBE.

Where DORA truly shows its worth is in Figs. Figs. 4.12 to 4.15, in which the number
of active robots over time for each value of N is presented. Indeed, in every experiment
scenario, DORA experienced far fewer robot failures than both benchmark algorithms. As
for terrain coverage, DORA’s performance improves with respect to the other algorithms as
the number of robots involved increases. This further shows our algorithm’s scalability.

Intuition for how DORA results from Figs.4.8 to 4.11 and Figs. 4.12 to 4.15 are related can
be gained by observing Figs. 4.17 to 4.18. These three figures are examples of radiation belief
maps of the 20x20m environment for each exploration algorithm of one specific simulation.
Blank cells are unvisited areas, red stars are the point radiation sources and grey squares
are the randomly generated obstacles. Whereas FBE visited the areas around the radiation
sources (as can be seen by the cells with a high radiation level), DORA avoided them. This
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Figure 4.8 DORA cell exploration performance (N=10 robots)
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Figure 4.9 DORA cell exploration performance (N=15 robots)
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Figure 4.10 DORA cell exploration performance (N=20 robots)
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Figure 4.11 DORA cell exploration performance (N=5 physical robots)
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Figure 4.12 DORA survival performance (N=10 robots)
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Figure 4.13 DORA survival performance (N=15 robots)
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Figure 4.14 DORA survival performance (N=20 robots)
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Figure 4.15 DORA survival performance (N=5 physical robots)
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results in a slightly lower exploration coverage, but in a much lower failure rate.

In Fig. 4.19, we can see the amount of data exchanged by robots in the simulations con-
ducted with DORA and FBE. The takeaway is that DORA is outperformed by FBE for this
metric, and that communication costs are aligned with the theoretical values from 4.2. This
difference in bandwidth usage is explained by the fact that our implementation of FBE uses
one stigmergy, while DORA uses two. This metric was not calculated for the random walk
algorithm as it does not require any coordination nor communication. It was not measured
in physical experiments.
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Figure 4.16 Random walk heatmap
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Figure 4.17 FBE heatmap
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Figure 4.18 DORA heatmap
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Figure 4.19 Communication costs for DORA and FBE
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4.5 Conclusion

DORA Explorer is a lightweight risk-aware exploration algorithm. It minimizes the risk
to which robots expose themselves to allow them to maximize the amount of explored ter-
rain. By leveraging DBMs it outperforms non-coordinated solutions. Indeed, it succeeds in
considerably reducing the likeliness of robot failures while keeping similar ground coverage
performance compared to other solutions proposed in the literature. DORA also showed
good scalability thanks to its low communication costs. It also showed applicability to real
world scenarios through experiments with physical robots.

In future work, it could be interesting to modify DORA to allow time-varying risk-tolerance
thresholds. Additionally, this work assumed that the risk associated with the environment
can be measured by the robots’ sensors, which is not always the case. To account for this
issue, risk belief maps could be constructed using the previous failures of the agents to infer
the presence of danger.
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CHAPTER 5 CONCLUSION

The objective of the research conducted for this thesis was to design risk-aware algorithms to
improve the resiliency of swarm robotics systems. RASS and DORA are both meant to be
used as part of other systems, and thus to be stepping stones towards trustworthy industrial
applications.

5.1 Summary of Works

Through a thorough examination of the state-of-the art in the field of swarm robotics, this
work established the problems that needed to be solved by the design of novel risk-aware
systems. Some, like decentralized storage efficiency and swarm exploration performance,
were definitely application-specific. The rest were more generic and included failure resilience,
scalability and adaptability to limited resources. In all cases, these objectives were met and
confirmed by the results obtained through virtual and physical experiments. Knowing these
objectives were accomplished the impact of this work in the field of swarm robotics should be
highlighted. The main contribution is that because the systems are computationally simple,
efficient and aligned with swarm robotics paradigms, they can be easily used as a part of the
foundation of complex systems. For example, a distributed surveillance platform could use
DORA to cover its necessary ground and RASS to safely store its recorded feed. By providing
these risk-aware methods, this thesis can help to abstract away some of work from swarm
application developers. Furthermore, this thesis has shown that risk-aware methodologies
are not only compatible and capable of integration with existing state-of-the-art methods of
the domain, but can also improve these systems by making them more resilient.

5.2 Limitations

Because of the robot-simulation gap problem, further experiments would be beneficial. In-
deed, physical scalability, in both RASS and DORA, has not been extensively tested. This
is due to a limited number of robots available for each experiment. In RASS’s case, we
could only use 5 CogniFlies; for DORA, we only had access to 5 KheperaIV. Thus, conduct-
ing experiments with more robots could increase confidence in the results obtained for both
systems. The effects of varying parameter values in DORA were not studied; experiments
performed in this regard could lead to performance improvements. The experiments could
have benefited from the use of more varied benchmark algorithms. The effects of commu-
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nication issues on routing and exploration performance could have been studied in further
experiments with [107]. Another limitation of this work is that topologies with more than
one connected component were not considered. Yet, unless systems are designed to prevent
it, these situations might arise in swarm robotics applications were subgroups are likely to
wander and get disconnected from the rest of the swarm. Studying the effect of these dis-
connections could provide more insight. These limitations will be addressed in upcoming
improvements on the articles.

5.3 Future Research

Adapting solutions to heterogeneous swarms with different resistance to risk could prove an
interesting challenge and would show the adaptability of both RASS and DORA to more
diverse scenarios in which swarms could retain their group performance advantage derived
from heterogeneity [108]. Testing in more challenging environments (rugged terrain, terrains
with hidden lines of sights, dynamic risk conditions, etc.). Further improvements could be
integrated to the system, such as improvements to security by using techniques like sinkhole
detection proposed by [100] in the context of routing. Going forward, the most interesting
path for RASS and DORA would be to integrate them with larger systems to see what
benefits they can bring to complex swarm robotics applications.
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