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RESUME

Avec des solutions technologiques qui ne cessent de se développer, il devient difficile d’identifier
les bons outils pour les systemes d’information de santé. Chaque outil a ses propres avantages
et inconvénients, et nombre d’entre eux possedent plusieurs applications. De plus, les méth-
odes et méthodologies traditionnelles deviennent insuffisantes a mesure que nous évoluons
vers un traitement distribué et en temps réel, car la technologie mondiale évolue rapidement.
Le projet a été réalisé en collaboration avec la Clinique Médecine Urbaine du Quartier
Latin (CMU), clinique privée spécialisée dans le traitement des maladies transmissibles
et des dépendances. L’objectif de ce projet est de prototyper et valider des outils et des
procédés pour une plateforme de science des données adaptative et évolutive qui permettra
des analyses efficaces, flexibles et performantes, ainsi que la gestion des modeles d’analyse et
d’apprentissage automatique qui permettent une prise de décision basée sur la recherche.

Nous évaluons les outils, les méthodologies et d’autres facteurs utilisés pour créer une plate-
forme de « Big Data » en analysant les avantages et les inconvénients des solutions informa-
tiques matures, de la gestion et des composants de visualisation des plateformes d’analyse
pour les données de santé. Ensuite, nous proposons le développement d’un prototype exten-
sible d’Analytics Sandbox pour les données de santé. Nous nous concentrons sur ’évolutivité
et I'analyse d’un projet en utilisant de nouvelles technologies dans cette étude. Les infras-
tructures Cloud et les bases de données distribuées NoSQL sont utilisées pour stocker les
données. En outre, des outils tels que Apache Kafka, Spark, Storm, Zeppelin et Sqoop sont
utilisés pour faciliter I'ingestion, le transfert et I'analyse rapides des données, ce qui permet
d’obtenir des résultats aussi rapides et précis que possible. Enfin, nous menons quelques
expériences pour évaluer deux outils de streaming en termes de latence et d’utilisation des
ressources et de charge de travail de clustering K-means pour comparer le débit Hadoop et
Spark. Les résultats révelent que la latence dans Storm est minimale par rapport a Spark et
Trident. Trident a une utilisation minimale des ressources, méme si sa latence est maximale.
Les résultats de 'expérience de clustering K-means ont montré que Spark surpasse Hadoop
en termes de débit. En conséquence, il peut étre un candidat a des fins d’apprentissage

automatique.



vi

ABSTRACT

Identifying the right tools for Health Information Systems might be difficult with an ever-
increasing number of possibilities. The various tools have their benefits and downsides, and
many of them have many applications. Moreover, traditional methods and methodologies
have become obsolete as we transition toward distributed and real-time processing because
the world’s technology evolves fast. The goal of this project, which is being carried out in
collaboration with the Clinique Médecine Urbaine du Quartier Latin (CMU), a private clinic
specializing in the treatment of communicable diseases and addiction, is to prototype and val-
idate tools and processes for a modern, adaptive, and scalable data science platform that will
enable efficient, flexible, and performant analytics, as well as management of analytics and
machine learning models that allow for research-based decision making. We evaluate tools,
methodologies, and other factors used to build a big data platform by analyzing the benefits
and downsides of mature computing tools, management, and visualization components of
data analytics platforms for health data. Then, we propose the development of an extensible
prototype of an Analytics Sandbox for health data. Our focus is on the scalability and ana-
lytics part of the project by employing novel technologies in this study. This platform offers
a lightweight and isolated environment that ensures that the maximum available capacity is
used to carry out its operations and allows for more optimum hardware utilization. It also en-
ables autoscaling in both applications and infrastructure via real-time performance measures
such as memory and CPU consumption in response to peaks in demand. Furthermore, it will
automatically divide computing traffic evenly across the replicated containers in the cluster,
ensuring stable deployment. It is self-heal system, which means that it can recover itself
automatically in the event of a failure. This environment is fully customizable, and it can
include all of the tools required for analytics purposes. We used cloud infrastructures to build
the platform and NoSQL distributed databases to store data. In addition, tools including
Apache Kafka, Spark, Storm, Zeppelin, and Sqoop are used to facilitate fast data ingestion,
transfer, and analytics, resulting in as quick and accurate results as feasible. Finally, We ran
some experiments to evaluate three streaming tools in terms of latency and resource usage
and K-means clustering workload to compare Hadoop and Spark throughput. The results
revealed that the latency in Storm is the minimum in comparison with Spark and Trident.
Trident has the minimum use of resources, even though its latency is the maximum. The
results of the K-means clustering experiment showed that Spark outperforms Hadoop with

respect to throughput. Accordingly, it can be a candidate for machine learning purposes.
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CHAPTER 1 INTRODUCTION

In the digital era, huge volumes of data become available to decision-makers to be used in
data-rich environments. Big data refers to datasets that are not only large, but also diverse
and fast, making traditional procedures and tools ineffective. [1] Due to the increasing rise
of such data, solutions to handle and extract value and knowledge from these datasets must
be investigated. Health is among the most affected sectors in this digital world. Millions of
patient records or electronic health records (EHRs)[1] are now easily accessible by medical
professionals. This volume of accessible digitized data can bring a lot of opportunities like
analyzing the data for the practitioners along with challenges for engineers like choosing the
right solution to handle or benefit from that amount of data. [2]

These EHRs can be quickly shared, transferred, and studied, as well as analyzed securely, to
facilitate diagnosis and treatment. First and foremost, for certain health issues like conta-
gious diseases like HIV, easy, protected, and efficient access to records is available. Moreover,
decision-makers would be able to extract useful information from such a diverse and fre-
quently changing set of data, which would result in lowering healthcare costs, improving
quality of care, and decreasing waste and errors. [3] So, this prevention and treatment can be
crucial for infectious illnesses. Nowadays, Big data analytics in healthcare (BDAH) is used
in the health sector to provide such value by early decision making. [3] Thanks to the ability
of BDAH to analyze trends and commonalities across individuals, the doctors are able to
come up with improved treatments. [1] It can greatly accelerate research on epidemiology
and public health. Big Data technology aids in the collection and consolidation of massive
amounts of data from medical sources or EHR, as well as the processing and analysis of that
data in real time employing cloud computing, in order to gain a better understanding of the
data. As a result, it leads to improved decision making. [4, 5]

On the other hand, this availability of digitized data comes with various risks and challenges.
Firstly, the data that becomes available and needs to be stored and processed can be of great
volume and variety, which are challenges associated with Big Data and require appropriate
hardware and software infrastructure for storage and processing. In addition, health records
generally constitute data for which security, privacy and anonymity are of the highest im-
portance, especially when they need to be shared among medical professionals and become
accessible to researchers. Another challenge we may encounter in data storage or processing
can be performance and scalability. Accessibility, privacy [6], security, usability, implementa-
tion costs, transportability, interoperability, data cleaning and maintenance, standardisation

are all the issues that must be addressed simultaneously with modern solutions [7] to allow



the efficient storage and analytics of the data, its controlled and secure accessibility and to
enable, facilitate and accelerate relevant research.

Health data is used in the decision-making process in the healthcare industry, [1] [3] and
this data arrives in a variety of formats, including unstructured and complex data that re-
lational database management systems (RDBMS) are unable to handle effectively. Hence,
NoSQL databases which are the current and widespread solution and can be used to tackle
data volume and variety by using flexible models and storing data differently but more effi-
ciently. However, we must remember that choosing the appropriate technology for the type
and nature of data is always critical. In addition to big data technology, Cloud Computing
is a promising technology that can be used to provide on-demand data storage, processing,
and analysis. Due to the extreme confidentiality and sensitivity of medical data, the health
sector has always been cautious to use public infrastructures [8]. But the usage of cloud
infrastructure can greatly improve the scale of managing ever-increasing amounts of data,
significantly cut handling and maintenance costs, and boost collaboration and data sharing
amongst healthcare groups. We also need a distributed system on a cloud environment to
achieve efficient performance and address scalability difficulties.

Data science platforms including different aforementioned technologies built in the cloud
environment have a crucial role to play in resolving current and future concerns in the man-
agement of enormous amounts of data in healthcare by assisting in the processing of large
data quantities, sophisticated system modelling, and obtaining derivations from healthcare
data and simulations. As a result, in order to find an efficient solution for the health sector,
the need for a thorough review and evaluation of the current solutions and research studies
before proposing a solution was felt to be necessary. There is a plethora of solutions, but
there is a lack of integrated solutions in the form of data platforms, that include storage,
analytics, security and other tools that can facilitate the healthcare industry in handling
large volumes of data efficiently and in a cost-effective manner and also to guarantee scala-
bility. The data platforms that already exist lack a certain degree of flexibility. While they
may offer a plethora of popular tools, not all of them may be necessary for every type of
analytics or data study. Furthermore, these platforms may also lack particular automation
concerning the management of the tooling and its infrastructure. In our work, we propose a
flexible, personalized, and scalable health analytics infrastructure to address precisely these
challenges. In the end, the final analytics sandbox solution will be used to assist researchers
better in diagnosing the disease and proposing appropriate treatment options. As we al-
ready explained, Big data analytics (BDA) is appearing as a potential subject for extracting
meaningful information from massive data volumes and boosting decision-making effective-

ness. [7] This work mainly presents the benefits and components of big data analytics in the



healthcare (BDAH) industry and proposes an improved big data healthcare architecture that
processes and analyses healthcare data on a large scale in a cloud computing environment
benefiting from the state of the art technologies to achieve our goals. In collaboration with
the Clinique Médecine Urbaine du Quartier Latin (CMU), a private clinic specialising in the
treatment of communicable diseases and addiction in the Quartier Latin, the goal of project
is to prototype and validate tools and processes for a modern and adaptive data science
platform that will allow for efficient storage and secure access to patient records, flexible
and performant analytics, and management of analytics and machine learning models that
allow for record analysis for research purposes. We are convinced that new technologies,
such as NoSQL database systems and distributed analytics (such as Spark, Storm and kafka,
zeppelin), may considerably simplify clinic operations. The intended project is divided in
the following technical objectives: In Storage layer, the goal is to design and implement a
prototype for a back-end data system that will provide mechanisms for the efficient and ef-
fective ingestion of data (including cleaning and preprocessing) and its secure and reliable
storage. In the mangement layer, the goal is to design and implement a prototype for a
software system that will allow the interaction between analytics and the stored data with
the goal to optimize queries and analyses on parts of the data. However, in processing layer,
the objective is to design a prototype for an analytics platform that will enable the definition
of models and analytical tasks, their management and control of versions, also including a
well-designed user interface.

The contributions of this work are categorized into three sections; the first section is to rec-
ognize the state of the art technologies and architectures of data platforms for health sectors
by studying the relevant literature. The second and main contribution of this thesis is to pro-
pose and deploy a customizable on-demand analytics sandbox for health information using
big data open source technologies such as Spark, Storm, Zeppelin, and NoSQL technologies
such as MongoDB and Cassandra. In other words, this sandbox is which means we can pick
any and only the services that we need. Besides, It is lightweight and secure solution. In
fact, we only load the analytics tools and the data that we need to work on it. Thanks to
Kubernetes which provides a self-managed and scalable environment. It it provides a user-
friendly interface from where we can manage our projects and analytics workloads securely.
In the last section and as a part of designing the architecture, we designed and conducted
experiments to evaluate and compare the performance of some alternative tools for our plat-
form; Spark, Storm and Storm Trident for stream analytics and Spark and Hadoop using

HiBench for ML workloads (using K-means as a case study).



CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Understanding the state of the art and the state of practice architecture reflected by related
research works, is critical before proposing or designing a new one, as outlined in the previous
section. We reviewed relevant literature intending to determine how BDAH systems are
designed and what components and technologies are included in relevant architectures. A
second objective is to pinpoint any limitations or omissions in these architectures to guide
the focus of our platform. So that we can design new platform with required tools and extend

platforms based on what were missing on them.

To sum up, this literature review aims to address the following research questions (RQs):

« RQI1: “What are the key benefits expected from using integrated data science platforms
for health?”

o« RQ2: “What are the architectures and the components of a data science platform for
health?”

o RQ3: “Who are the users and stakeholders of the platform?”

e RQ4: “What methods researchers used to evaluate performance and effectiveness of

their proposed platforms for the healthcare industry?”

2.2 Set up of the Literature Review

Based on the study’s research questions, we searched for papers with keywords such as
data science platform, BDAH, NoSQL databases, Healthcare, health informatics, and data
mining, machine learning, decision making. The Engineering Village digital library [9] was
the primary source for the identified works. We focused on relatively recent works (after
2015) and excluded works that did not offer the implementation of a prototype or some

evaluation.

2.3 Related Work

Various papers have discussed big data applications and BDAH. Among all of those papers,

some papers propose frameworks or models, or techniques to deal with complex healthcare



requirements. This section will summarize chosen papers, how they validate their solutions
and discuss the papers in terms of the research questions.

Krishnan et al. [7] investigate a few applications of BDAH, as well as their results. In terms of
operations, the vast majority of patient data is made available on demand so that doctors can
assess how other remedies have fared around the world and use significant findings to assist
better decision-making and treatments. The collaboration of BDAH can result in improved
service delivery as well as significant cost reductions. Accessibility, usability, privacy, security,
transportability of data, implementation costs, interoperability, and standardisation are all

issues that must be given sufficient attention.

Benhlima et al. [10] provide an overview of big data and its application in healthcare. Tt
has been discovered that the use of big data platforms and tools is constantly assisting
in managing the healthcare industry’s accelerated growth of data. They are conducting an
empirical study to examine the role of big data in the healthcare sector. It has been evidenced

that remarkable work in the healthcare industry has been done using big data.

Galetsi et al. [2] did a structured evaluation of healthcare big data analytics due to the sig-
nificant increase of publications in the health sector. They emphasize on how big data tools
are used to generate organisation values/capabilities using the resource-based perspective
theory, and they examine the following through content analysis of the selected publications:
the classification of different types of big data in healthcare, the associated analytic tech-
niques, the value provided for stakeholders, and the platforms and tools for dealing with large
health data. They use a variety of real-world examples to demonstrate how improvements in
healthcare were made feasible. This gives practitioners, policymakers, and academics useful
information while also guiding them in the right possible directions for future research. The
study reveals the possible data types and analytics techniques and Big data analytics (BDA)
derived values. These data types are clinical patient data and sentiment data, administra-
tion and treatment costs data, pharmaceutical, R&D data. The techniques for data analytics
may include modeling, simulation , machine learning, visualization, data mining, statistics,
web mining, optimization, text mining, prediction analysis, social network analysis. Using
BDA can add values and capabilities to the industry such as better diagnosis for personalized
healthcare, automated decision algorithm, new business models and services, enhanced exper-
imentation, sharing of information, data transparency, Identification of at-risk populations,

segmentation of customized interventions, reducing costs, protecting privacy.

Chauhan et al. [11] highlight recent improvements in big data analytics in the context of
healthcare applications. The paper emphasises the rising importance of predictive data

analytics by focusing on patient quality care and providing multiple cases. In addition, a



framework with the focus of knowledge discovery is given, as well as a method for providing

considerable benefits to computing technology for excellent patient care diagnostics.

Akhtar et al. [5] introduced a platform using a combination of cutting-edge Big Data analytics
tools . They proposed the Intelligent Medical Platform (IMP) as a case study for integrating
multi-modal data. The focus of their platform was on machine learning solutions that can be
applied to a Big Data storage platform. To turn unstructured data into actionable knowledge
they employed different machine learning tools and platforms like Apache Mahout, Skytree,
Jaspersoft. To evaluate their system’s performance and scalability, they used performance

tests to validate scalability and also effectiveness of the system with stress testing.

Lin et al. [12] introduced a Big Data analytics solution that reduces the time it takes to
process queries in a Hadoop cluster. They adopt Apache Lucene (information retrieval li-
brary) and Hadoop in order to implement rapid medical record search for the Home-diagnosis
service. They offer a cloud-based architecture for establishing a self-care service called Home
diagnostic. A distributed Lucene-based search cluster, in particular, is intended to enable
parallel and scalable online medical record retrieval, data analysis, and confidentiality pro-
tection services. A Hadoop cluster is used for offline data storage as well as index building to
speed up medical record retrieval. They define two test scenarios to evaluate the performance

of their proposal.

Ta et al. [13] describe a universal lambda architecture for big data healthcare analytics
based on open source platforms such as Hadoop, Apache Storm, Kafka, and NoSQL Cas-
sandra. Stream computing with Kafka, Storm, and NoSQL Cassandra, combined with the
Hadoop-HBase system for batch computing, By providing batch and stream computing, an
expandable storage solution, and efficient query management, this proposed architecture can
facilitate healthcare analytics. This is relevant to ubiquitous health, detection of fraud,
pharmacological discoveries, health information systems, and computer-assisted treatment

in healthcare.

Johri et al. [14] proposed a Big Data architecture based on the Hadoop platform, Hive to serve
SQL queries and transform unstructured data to structured format, and the R programming
language to provide statistical findings and visualisations as an application to Big Data

potential in the healthcare domain.

Sheeran et al. [15] provided another architecture for big data in healthcare. Health Data
Sources, Big Data Technology, Big Data Analytics, and Applications are the four layers that
make up this framework. The Health Data Sources layer identifies the numerous sources
from which health-related data is derived. The next layer employs Big Data technology to

transfer these datasets into software capable of storing enormous amounts of data, paving the



way for data analytics (ex: Hadoop, Spark, NoSQI, Azure Cloud...). The Big Data Analytics
Layer is the third layer, and it contains the mechanisms for performing data analytics, such
as data warehousing, data mining, and machine learning. The fourth and final layer shows

how the end goals of analytics on Health Big Data are implemented.

Maheshwari et al. [16] discuss the implications of current breakthroughs in data analytics
and how they might be used in the healthcare industry, with a focus on prediction and visu-
alisation applications. They proposed a system which comprises of multiple tiers including
user, data, processing and model. This modular architecture add multiple functionalities
to the analytics. This platform is also able to interact with third party systems to transfer
data (import and export). In fact, this platform is able to receive data in various formats
and pre-process and clean data from any incorrect values, errors, missing vlaues. Once data
pre-processing is finished, the existing data with new data will be merged as a part of a

training set for a neural network.

Today’s widespread adoption of the Internet of Things (IoT), everything around us tends to
generate large amounts of data. The need to use cloud infrastructures to help us store this
generated data and its processing purposes is increasing. To deal with the issue of long-term
batch processing of huge volumes of stored data and real-time analysis introduced by the
increasing velocity at which data is generated especially from connected devices (IoT), Taher
et al. [17] propose a framework for real-time and batch BDAH based on IoT and the cloud.
They put the proposed solution into action using Amazon Web Services (AWS). Furthermore,
they use a Raspberry Pi as an IoT device to produce real-time data. Moreover, to validate the
solution and report abnormalities, they used a specific application called ECG monitoring.
Finally, they test the implementation’s performance in terms of response time by changing
the velocity and volume of the analyzed data. They also discuss how to provision cloud

resources to ensure processing performance in both long-term and real-time scenarios.

Ali et al. [18] proposed another Intelligent Medical Platform (IMP). This platform is a di-
alogue based medical decision-making solution that delivers medical coaching and recom-
mendation services, based on the methodology of incremental learning. The prototype has a
90% accuracy rate for knowledge acquisition, an 80% user satisfaction percentage for system
interaction, and a 95% accuracy rate for system integration with the legacy system.. IMP
addresses interactive dialoging, knowledge maintenance, and evidence support to enhance
users’ confidence. There are four key aspects of the methodology and architecture for the
proposed system: 1. knowledge extraction and engineering, 2. dialogue-based interaction, 3.

data acquisition, 4. adaptability of user interfaces and system interoperability.

Iyengar et al. [6] discussed important difficulties in cloud-based healthcare analytics systems.



They demonstrate a cloud-based healthcare application system in action. Their system
offers advanced privacy protection, which is critical for healthcare applications that deal
with sensitive information. At the same time, they enhance performance by performing
computations tasks on client systems and caching. They use blockchain to provide secure
HCLS (health care and life sciences). They mentioned that there is no cloud-based healthcare
data platform that leverages blockchain for the security, data management, or privacy of their
platform. However, this platform allows storing data with a variety of privacy requirements.
It can gather data from many different sources, including mobile devices such as cellular
phones. Users’ personal health care data can be collected via mobile devices. One important
feature they offer is the ability to perform processing on client devices. Mobile devices or
more powerful computers can serve as clients. The ability to process at the client-side allows

for the offloading of many computing tasks from the servers.

Mohindra et al. [19] unveiled a cloud platform for the healthcare and life sciences industry
sectors. First, they illustrate how data from Health data gateways (including medical records,
claims, lab data, genomics data, and medical images), external data sources, and knowledge
sources can be merged at cloud scale to accelerate the production of industry-changing in-
sights for better health outcomes. Then they define a cloud architecture and components
that allow these solutions and the compliance issues that are so important in healthcare.
This architecture includes conceptual components such as health data gateway, exogenous
data, visualization and analytics services, data services, health foundation services, and cloud
foundation services. Their proposed Health Cloud includes building blocks such as data ser-
vices, analytics services, cognitive services, and additional services. Each block has its group
of services. Their concentration was not tools but the process and mechanisms to create a

comprehensive platform.

Landset et al. [20] compare fault-tolerance methodologies, expandability, effectiveness, inter-
face language, and usability of various available processing paradigms as well as the engines
that execute them, including MapReduce, Spark, Flink, Storm, and H20. They next exam-
ine machine learning libraries and frameworks such as Mahout, MLIib, and SAMOA and
rank them according to speed, scalability, and coverage. Because no single toolset can gen-
uinely represent a one-size-fits-all approach, this paper seeks to make decision-making easier
by offering as much information as possible and quantifying the choices. In addition, They
discuss various future possibilities for toolkit-based learning throughout this work and recent

research in the field using these tools.

Kaur et al. [21] highlight the benefits and components of big data analytics in healthcare

(BDAH). They propose a big data healthcare architecture that processes and analyses massive



amounts of healthcare data in a cloud computing environment using Hadoop clusters. Instead
of using traditional software systems, healthcare applications are using cloud services for
processing of big data. They claim that cloud computing has overcome the majority of health-
care data challenges, such as standardisation of health-care record transmission, privacy, and
network security. They used Apache Flume and Sqoop to insert a heterogeneous data set
of Electronic Health Records (EHR) into the HDFS system. Hbase is used to store multi-
structured data. MongoDB is also used for sharding. In this platform Storm is used to
perform live streaming. MapReduce model and HIVE are used to examine the data, with
machine learning algorithms analysing similar patterns of data. At the end, they used Splunk

Hunk to generate reports. However, they did not evaluate their proposed platform.

Chrimes et al. [22] propose a BDAH platform. The framework was used as a solid evidence at
Vancouver Island Health Authority (VIHA) where it was used to test simulated patient data
from the main hospital system. Finally, they compared the performance of three interactive
data analytics solutions; Apache Zeppelin, Jupyter and Apache Drill, to determine which one
fits better using Spark for Analytics. Its performance was evaluated in a simulation with data
ingestion into the Hadoop file system using several applications of Apache Spark with Apache
Zeppelin and Jupyter web-based interfaces, as well as Apache Drill interfaces. The results
showed that it took approximately 2 hours to ingest one billion records using Apache Spark.
Spark/Zeppelin and Spark/Jupyter were outperformed by Apache Drill. It was, however,
limited to running more simplified queries and had very limited visualisations, resulting in
poor usability for healthcare. Zeppelin on Spark demonstrated user-friendly interactions for
health applications, but it lacked the flexibility of its interface tools and required additional
setup time before running queries. Jupyter on Spark provided high performance stacks not
only on HBDA platform, but also in tandem to run all queries concurrently with high usability

for a variety of reporting requirements by provider.

Visual exploration is common when analysing data where the relationships between variables
are not fully understood. However, this is a time-consuming and labor-intensive process,
and interesting trends may be missed. Ideally, we would like to concentrate on interesting
patterns and locations within the data, such as significant clusters and outliers. Rao et
al. [23] propose an open-source platform for interactive Big Data exploration that will be
useful in the healthcare industry. In this framework, they used a novel iterative k-means
clustering algorithm for identifying clusters in large datasets. This leads to faster visual
exploration of new datasets. They applied this algorithm to identify clusters of trends in
labour force participation over a 50-year period in order to present a unique perspective
by area of medical specialty. In comparison to internal medicine, specialties such as nurse

practitioners have seen a significant increase in the number of practitioners.
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Mande, et al. [24] mentioned that BDA in healthcare requires a more comprehensive model
than traditional data mining; it necessitates an integrated approach to validate novel tech-
nologies capable of containing the velocity, veracity, and volume capabilities required to
facilitate information innovation across all healthcare data types and domains. They build
a distributed platform using Hadoop and R to create an interactive distributed processing
environment with simulated patient data to extract side effects in patients by querying entire

clinical trial data.

For huge data processing, Marcue et al. [25] give an evaluation of Spark and Flink frameworks.
This paper suggested a technique for benchmarking iterative workloads (K-Means and Page
Rank) as well as batch workloads (WordCount, Grep, and TeraSort). They looked at four

key factors that influence scalability, resource utilization, and execution time.

The performance of Hadoop MapReduce and Spark programming paradigms in terms of
compute efficiency are compared by Khan et al. [26]. They use three workloads, such as
WordCount, Sort, and PageRank, to evaluate the two programming paradigms, each with
a different size of input dataset. Spark outperforms Hadoop MapReduce in every situation,
according to the results. As a result, we decided to focus on Spark technologies more than

Hadoop for the design of our sandbox analytics.

2.4 Discussion of Research Questions

2.4.1 A Generic Architecture for Big Data Computing in Healthcare Analytics

The paper [13] propose a data platform architecture by providing Batch and stream comput-
ing. Other papers using batch processing with Hadoop or Spark. However, The ecosystem’s
core architecture may be broken down into four layers: storage, processing, and management
and visualization. Whereas the study’s main focus is on processing layer and visualization
tools, it is crucial to comprehend the context in which they might be used in a framework
by considering the the entire ecosystem.. Figure 2.1 summarizes different components of a
big data platforms and technologies used for each components derived from the literature
review. Th visualization layer added to their proposed generic layer system based on other
studies. [22]

The data Visualization layer leverages Apache Zeppelin or similar tools to enable users to con-
nect to the semantic framework and create sophisticated visualization that can be arranged
on a surface to make reports or pinned to create dashboards shared around the organization.
Data processing frameworks responsible for processing and transforming the incoming data

make up the top two layers. The intermediate layer’s storage systems are in charge of storing
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Figure 2.1 Generic Components in Big Data Platform

data in a dispersed form. Resource management systems, which are in charge of scheduling
jobs and distributing resources, make up the lowest tier. Each layer’s components can usually
be swapped out for another on the same layer, affecting the stack’s functionality and perfor-
mance. Figure 2.1 illustrates the layers ecosystem. We will explain the core architecture of

the data platform in more depth in sections 3.4 and 3.5.

e Processing layer: The actual analysis takes place on the processing layer. It handles
processing including machine learning, data transformation and data query. This layer
comprises a variety of tools for machine learning and data analysis in addition to the
processing engines. This layer also provides data transfer and interaction tools. Data
integration solutions like Kafka, Sqoop, and Flume are examples of this. These pro-
cessing tools are categorized as:

Analytics Tools: The analytics components is divided into three category based on

their processing approach; Batch, Micro-Batch (near Real-time) and Real-time, are re-
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sponsible to do analytics in real time and in batch. The concept of real-time processing
is to process data as soon as it arrives (Storm). In contrast, batch processing entails
storing all received data until a certain amount is collected and then processing it as a
batch (Hadoop). The processing data in small groups ("batches") is known as micro-
batch processing (Spark).

Data Query Tools: Apache Drill and Hive are both SQL query engines which are
different. Apache Drill is a distributed query engine for large-scale datasets. [22]. Be-
sides, Apache Hive is used by Johri et al. [14] and Kaur et al [21]. Hive queries HDFS
by converting simple and complex SQL queries into Map Reduce (MR) jobs, and it
efficiently uses cluster resources to process historical data. [27]. On the other hand,
Drill [22] queries any type of structured and unstructured data sets stored on any file

system.

Data Ingestion Tools: This component is used to transfer large amounts of data
between Apache Hadoop and data stores in an efficient manner. Apache Sqoop is
used to relocate structured data. On the other hand, Apache Flume is used for
unstructured/semi-structured data. While Kaftka is a distributed publish-subscribe
messaging system built on HDFS. On the interface side, query engines like Hive is be-
ing used. [21]

Machine Learning Tools: There are machine learning tools working with each Ana-
lytics tools such as Mahout, MLib, SAMAO, Oryx, Skytree, H20, FlinkML. [20] Figure
2.2 also lists various tools and platforms available for machine learning and deep learn-

ing purposes.

Management layer: User interaction and high-level organisation tools are included
in the management layer. Scheduling, monitoring, coordination, and the user interface
are all examples of these. Many of the processing layer’s tools, including processing
engines such as Pig, Sqoop, Flume and Hive, are managed by Oozie which is a workflow
scheduler. It provides the order of operations as well as the collaborates between
them. to fulfill tasks in complex workflows that need several jobs and technologies.
It also makes it easier to schedule jobs that must run at regular intervals. Zookeeper
is a distributed system coordination and synchronisation service. It includes tools for
data and protocol coordination, as well as the ability to withstand temporary network
outages, which are prevalent in distributed systems. It offers Java and C APIs, as well
as Perl, Python, and REST client bindings. [27]

Resource Management Tool: YARN (“Yet Another Resource Negotiator”) [20] is
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the open source Hadoop distributed processing framework’s resource management and
job scheduling technology for Map reduce jobs. it is responsible for managing and
monitoring workloads.

Coordination Tools: ZooKeeper is a service for distributed system coordination and
synchronisation. It is a necessary tool for Apache storm, kafka, HBase and etc. As a

result, it used in all the papers using these technologies.

Workflow Scheduler: Ooziee is a workflow scheduler system that is used to manage
jobs. [20]

Search engine: Lin et al. [12] used the Lucene search engine to provide scalable

medical record retrieval

Visualization layer: This layer has a responsibility to collect, analyze, and visualize
data from various sources to carry out the appropriate monitoring through descriptive
and diagnostic analytics, predictive analytics tasks, and prescriptive analytics. Many
tools can be used to achieve this goal. Among all of them, we choose Apache Zeppelin,
which is an open-source tool. Moreover, It’s a Web-based notebook that supports SQL,
Scala, Python, R, and other programming languages providing data-driven, interactive

data analytics, and collaborative documents.

Data visualisation Tools: Chrimes et al. [22] used Apache zeppelin, Jupyter. Hue.
[20]Hue is a web interface that works with a variety of popular tool, including HBase and
HDEFS. It includes data visualisation tools and can be used to interact and communicate

with Hive, Pig, Sqoop, Zookeeper, and Oozie. [20]

Data Storage layer: This layer is at the bottom of the stack, and it contains the
HDFS. A variety of additional distributed data storage alternatives are available that
either execute on top of HDFS or operate independently. The HDFS is a file storage
system developed for a particular objective rather than a database; therefore, it lacks
features found in other data storage solutions. It is well-known for its adaptability and
fault tolerance, making it an excellent choice for past data that does not need to be
modified or viewed regularly. However, a few drawbacks could affect Hadoop users,
particularly those who need quick random reads or writes. Since HDF'S is based on
a write-once, read-many model, any modifications to a single data point necessitate
rewriting the entire file. As a result, many companies opt to incorporate one or more
storage systems into their architecture. They are collectively known as NoSQL (Not

simply SQL), and since they accept layered, semi-structured, and unstructured data,



14

non-relational databases, they can be helpful for machine learning tasks. Here are the
various types of NoSQL DB’s definition: [27]

1. key-value store: This is the most basic model among the others, and it is
implemented as a large hash table. Each data block is identified by a distinctive
key. Voldemort and Redis are two examples of databases based on this paradigm.

They are both quick and scalable.

2. Document stores: They are layered key-value stores, which means that a critical
point to a collection of key-value stores instead of a single value. CouchDB and

MongoDB are two examples.

3. Column-oriented: In this method, instead of the traditional row/column ar-
rangement, data is kept in columns. Column families are groups of columns.

Column-oriented data storage like HBase and Cassandra are two examples.

4. Graph-based models : Models based on graphs are designed to work with data
that may be depicted as a graph and utilized for activities like analysis of network.
With no tables or rows, they are more adaptable than other forms. Titan, Neo4lJ,

and OrientDB are just a few examples.

Data Storage Tools: To store data in a data platform, HDFS, a distributed file
storage system, can be used along with other databases types such as relational and
Non-relational ones. NoSQL databases can be used for for machine learning purposes
because they are able to handle nested, semi-structured, and unstructured data. In
studied papers, NoSQL databases (HBase, Cassandra, MongoDB) have been used.
Apache HBase is a non-relational database that is used to provide random, real-time
read /write access to Big Data. It hosts enormous tables on commodity hardware clus-
ters. Sheeran et al. [15] used Hbase to store results of batch processing with Hadoop.
Moreover, they used Cassandra to store the results of stream computing. Kaur et

al. [21] used MongoDB in their Hadoop framework.

2.4.2 Evaluation Methods

Each of those studies that propose an architecture used their own way to evaluate their
proposed platform. Maheshwari et al. [16] used simulation test to validate accuracy of their
machine learning research platform on patients. Chrimes et al. [22] used simulated per-
formance testing to validate visualization tools Spark/Zeppelin, Spark/Jupyter and Apache
Drill. Akhtar et al. [5] used stress testing to evaluate the scalability and effectiveness of

their proposed platform performance. Lin et al. [12] designed test cases of running examples
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with a medical record size of 14GB to test scalability and efficiency of their Lucene-based

distributed search cluster in medical record retrieval.

Marcu et al. [25] use a technique for benchmarking batch workloads (WordCount, Grep, and
TeraSort) along with iterative workloads (K-Means andPage Rank). They looked at four key
factors that influence scalability, resource utilization, and execution time. However, there

was no streaming benchmarking of the tools in any of the chosen paper.

Taher et al. [17] measure performance for two type of instances with different cluster sizes
and different volumes of training data size during model training (batch processing). They

also measure cost of using AWS system while performance testing.

2.4.3 The direct benefits of leveraging integrated data science platforms for
health

As we mentioned earlier, the goal of this study is to focus on the analytics section of data
platforms for health. So we are going to explain benefits of BDAH understood from the
literature review.

In general, The right application of BDAH can result in improved service delivery as well
as substantial cost reductions. BDAH simplify the process of storing and retrieving medical
data. In hospitals, BDAH incorporating accurate analysis of massive volumes of patient
data in accordance with knowledge of treatments can be carried out in order to minimise
significant healthcare expenditures and enhance outcomes. Using healthcare analytics in
conjunction with effective organisation, streamlining, and analysis of big data will result in
faster and accurate diagnosis, fewer preventable errors, and proper treatment, all of which
will benefit overall healthcare delivery. In the healthcare area, machine learning and big data
analytics are used for risk management, clinical decision support, serious illness diagnosis,
and precision medicine.

In overall, in the healthcare domain we can categorize analytics into four types: descriptive,
diagnostic, predictive, and prescriptive analytics. [10] A summary overview of any is provided
below.(Also shown in figure 2.1)

Descriptive analytics: It is a type of data analysis that is used to describe current situation
and event using summary statistics and visualizations, such as histograms, line charts and

pie charts.

Diagnostic Analysis: Its goal is to explain how some specific events happened and what
variables and factors caused them. Diagnostic analysis, for example, uses approaches like
clustering and decision trees to try to figure out why some patients are readmitted on a

regular basis.
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Predictive Analytics: It indicates one’s ability to forecast future events; it also aids in
the identification of trends and the estimation of probability for possible future events. Its
role can be illustrated by predicting whether or not a patient would develop complications.

Machine learning techniques are frequently used to create predictive models.

Prescriptive Analytics: Its purpose is to recommend appropriate behaviours that lead
to optimal decision-making. For example, if there is a high risk of a harmful side effect,
prescriptive analysis may advocate refusing a treatment. Methods used to undertake pre-
scriptive analytics include decision trees and Monte Carlo simulation. Figure 2.2 depicts the

stages of analytics in the healthcare area .
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Figure 2.2 Big Data Analytics types in Healthcare

The benefits from using an integrated a BDAH platforms are as follows

1. Better individualised therapy for Patients: Analytic solutions for better patient

diagnosis lead to more individualised therapeutic schemes or services for users. [2]

2. Automated algorithms to assist/replace professionals’ decision-making: An-
alytics can provide diagnostic and remedy/action recommendations using adaptive
rules/algorithms for quick categorization of symptoms/medical outcomes and pattern

matching. [2]

3. New solutions, and services and business models: BDAH allows enterprises
to develop innovative services and products. For example, develop new software for
data/image analysis, improve existing software, and create totally new business models

and ways of reaching out to patients. [7]
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4. Providing opportunities for experimenting, exposing variability, and im-
proving performance: Analytics facilitates the use of massive datasets for evaluating

"what-if" scenarios and assisting performance and decision-making. [7]

5. Medical data collaboration and coordination: To improve operational efficiency,
BDA can arrange the collection and sharing of information and data analysis across
stakeholders. [11]

6. Increasing data accountability: BDAH may collect/convert data in a consistent
format and handle it the same way every time, saving time, money, and effort while

retaining data clarity and quality. [4]

7. Assessing patient care-risk: BDAH improves health risk prediction and allows for

proactive patient care-risk management. [2]

8. Delivering better actions by segmenting populations: BDAH can uncover spe-
cific segmentation and tailor products and services to fit the demands of patients or

health professionals thanks to its advanced big data exploitation skills. [4]

9. Reducing costs while increasing quality: BDAH provides innovative, cost-effective
strategies to influence health determinants, with the aim of minimizing costs while

maintaining clinical outcomes. [4]

10. Protecting Patient privacy: BDAH can identify solutions to protect the privacy of

health-related data so that ethical values are upheld and individuals are respected. [6]

Different kinds of users of health information systems can benefit from a data science or
BDAH platform such as doctors, caregivers, clinicians, healthcare providers-suppliers, pol-
icymakers, payors' and patients. [2] [7] A Hospital Information System (HIS) or a data
science platform for health would have an impact on nearly every department in the health

system. [11]

2.5 Open Issues and Challenges

One of the challenges in a data science platform would be the data standardization and data
integration to prepare an integrated dataset [7]. Another challenge is the data platform’s
scalability; there was no novel solution that proposed a scalable data platform with various

scalability mechanisms for health data. Moreover, There are a lot of constantly evolving

Ipayors are insurance companies that pays for an administered medical service
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technologies available for building a data platform. So, the need for guidance that compares
them and categorizes them for those required to make this platform from scratch for secu-
rity reasons can be felt. Accessibility, confidentiality, security, usability, operational costs,
transportability, interoperability, and standardization are all issues that must be addressed
simultaneously. [7] We found that scalability and flexibility of platforms are largely under-
studied and underdeveloped which is where our work puts the focus on. A benchmarking
evaluation of streaming real-time processing tools is also something that was missing. Some
studies are available and compare the streaming tools; however, they did not use any evalu-

ation.
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CHAPTER 3 SANDBOX ANALYTICS - ARCHITECTURE,
IMPLEMENTATION, TECHNOLOGIES

The literature review in previous section has revealed the main components used in BDAH
platforms. Based on these components, our purpose in this chapter is to propose the architec-
ture of our platform and outline the technologies that we used to implement each component
and the architecture as a whole. According to our literature review, we also found that current

solutions have certain limitations with respect to scalability and resource management.

First and foremost, since recent wave of medical record digitalization imposes challenges
with respect to volume, variety and velocity in analytics and due to vast, diverse and highly
complex ecosystem of the healthcare systems, the main objective of this chapter is to create
a unique architecture that is not only scalable but also can process and store all EHRs fast
and reliably. Moreover, Security and privacy are also important aspects that must be taken
into account for health data which proves analytics in this industry must be done in isolation.
Furthermore, all the available data is not necessary for all analytics tasks. So our platform
should be able to isolate datasets in an efficient way. Last but not least, due to the plethora
of tools and components available for BDAH architecture, we observed that using all tools
in the platform can lead to a lack of flexibility which can be a burden to the usability and

the performance of the platform. Therefore, we need a customizable solution.

In our architecture, we will not impose any specific technologies and it is not needed to
implement all of them at once. In fact, it is not a ready-made solution. On the contrary,
our architecture is a flexible, customizable, lightweight, secure and scalable solution; the user
of this system can choose the tools they are interested in working with them. Furthermore,
thanks to Kubernetes [28], the analytics environment can be quickly launched on-demand.
We propose a containerized BDAH. This architecture can be deployed in any cloud environ-
ment (like AWS or OpenStack). This chapter will explain (a) how the sandbox architecture
looks, (b) what mature technologies are currently using in our architecture, (c) how to use
Kubernetes for customizing and starting an environment, and (d) how to achieve autoscaling

with Kubernetes.

3.1 Sandbox Architecture

In this section, we present a comprehensive architecture for improving big data computing in

healthcare by combining the benefits of micro-batch and stream computing. This architecture
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can handle a large-scale data set with minimal latency, as shown in Figure 3.1. This is the
basis on which we have built our sandbox environment and our Kubernetes cluster. Sandbox
architecture, is based on lambda architecture [29] that can be divided into two computing
layers: stream computing, which provides real-time computing through integrated Kafka
cluster, Storm cluster, and NoSQL Cassandra, and Micro-batch computing, which provide
computing in batches with Spark and stores it in MongoDB database. The serving section will

give a common interface for query management and analytics that will assist data analysis.
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Figure 3.1 BDAH Architecture

Benefiting from this architecture, We will be able to guarantee availability for volatile data.
We can store a small number of replicas and do incremental analyses on limited volumes
of data. In addition, we perform real-time data analysis (streaming). Moreover, We can
guarantee consistency for immutable data. We make data immutable by using the results
of real-time analytics. On these data, we do more difficult and expensive analyses (batch

processing). In this case, We value accuracy over performance.

An analytics sandbox, is an isolated environment that a user can create and destroy as
quickly, and it is does not affect other users of the system. Also, the state of the centralized
data is not affected or cause problems to other users. The environment is customized to
include all and only the tools that the analyst needs. This way, users are provided with a
lightweight environment that is not burdened by unnecessary tools. The Sandbox architecture

as it is illustrated in figure 3.1, is a containerized and orchestrated solution build on the
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top of Kubernetes cluster. The analytics sandbox solution comprises of the main following
components: (Section 3.7 explains all these tools in more details.)

- Apache Zeppelin as a user Interface

- Micro batch and batch processing using Spark

- Stream Processing using Storm

- Kafka messaging system for data integration and native stream management

- MongoDB or Cassandra to store results of analytics (Read-Write/ Write purposes)

...............................................................................................
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Figure 3.2 Real-time Analytics Sandbox components

Figure 3.2 illustrates Sandbox components. The sandbox is portable concerning the host
cloud environment, thanks to Kubernetes and container technology. This sandbox packages
big data applications and all their dependencies into Kubernetes containers which would be
usable in any other cloud or infrastructure without needing for reconfiguration or repackag-
ing. This ensures portability. Moreover, Using kubernetes technology provides opportunity
to create and deploy big data applications in a consistent and repeatable manner. This al-
leviate deployment of big data systems which are made up of numerous components, each
with its own set of dependencies and setup requirements. This will remove the difficulty

of mismatched library versions and component compatibility for Spark, Storm, MongoDB
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and other similar technologies. The most important aspect of each analytics Sandbox is
its scalability. As the resources demand increases, the cluster can respond quickly to peaks
in demand. During long-running analytics workloads, particularly significant resources are
required, yet utilization of analytics workloads can vary significantly. Dedicated clusters for
each deployment incur high expenses due to inefficient resource utilization. However, Sand-
box features a set of tools that enable both applications and the infrastructure on which
they are hosted to scale up or down based on usage, performance, and various factors. [30]
This scalability option conserves costs by scaling down when resources are not needed. Var-
ious scaling mechanisms is discussed later in this section. Instead of forcing users to create
multiple-segmented clusters, Kubernetes allows users to efficiently share resources so that
the same Kubernetes cluster can be used safely for multiple and even concurrent applica-
tions. This way of resource management increases utilization while avoiding dependency
conflicts and unrestricted resource competition. Namespaces and resource quotas in Kuber-
netes ensure that diverse workloads share resources fairly, while node selectors and roles can
be utilised to isolate resources and access as needed. This will guarantee better resource
Management. As a result, adopting an analytics sandbox can facilitate deployment, scala-
bility, and management of big data applications and resources flexibly and reliably. Some

benefits of using Kubernetes in our Sandbox would be:

1. Containerize all dependencies as well as applications, eliminates the frequent depen-

dency issues.

2. The Resource Quota and Namespaces features in Kubernetes provides more control

over how the applications can use and share system resources.

3. The applications are now portable across hybrid cloud configurations thanks to swap-

pable backend infrastructure.

4. The Kubernetes Role and ClusterRole capabilities allow users to specify fine-grained

resource permissions and organise them by API groups.

5. Container images can be tagged for version control, allowing for greater auditing and

the ability to rollback unsuccessful deployments.

6. The Kubernetes ecosystem is bursting at the seams with sophisticated open source
administration and monitoring add-ons. Some notable examples include Prometheus

for time-series data, Fluentd for log aggregation, and Grafana for data visualisation.

7. Helm [31] charts can be used to easily install, manage, and version control packages

and their dependencies during the setup process.
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3.1.1 User Interface and Zeppelin

Apache Zeppelin [32] is a notebook-based environment that allows users to code while looking
at their analyses results simultaneously. Zeppelin through web-based notebooks, make BDAH
more straightforward and engaging for healthcare practitioners and scientific researchers for
exploration, collaboration, and presentation. It supports numerous language backends and
Spark connectivity, handling a wide range of analytic jobs mixing languages within the note-
book. It also allows users to connect easily to any JDBC data sources such as Postgresql,
Mysql, MariaDB, Redshift, Apache Hive, and many more databases. Underneath is a com-
putational engine known as a kernel, which executes the code in each notebook. In addition,
notebooks can make researchers more productive by obscuring cumbersome configurations.

Besides, The notebook is easily convertible into a presentation style.

Zeppelin provides numerous interpreters [33] natively, such as Spark, JDBC, Hive, Cassan-
dra, HDFS, Hbase, etc. The Apache Zeppelin Interpreter is a backend for languages. For
instance, The Zeppelin Interpreter plug-in enables users to utilize a particular language and
data-processing-backend. Furthermore, the setting of the Zeppelin interpreter refers to the
configuration of any particular interpreter on the server. Every Interpreter is a member of
an InterpreterGroup. InterpreterGroup is a start or stop interpreter unit. Each interpreter
is linked to a specific group by default, but the group may comprise many interpreters. The
Spark interpreter group, for instance, does include Spark, SparkSQL, pySpark, and the de-
pendency loader. Thus, Zeppelin interpreters within the same group are technically execute
in the same JVM. Through Thrift!, the Interpreter communicates with the Zeppelin engine.

As an example, to code with Scala in Zeppelin, the programmer only need a Scala interpreter.

Zeppelin permits its users to create several notebooks, each of which comprises a series
of paragraphs. Analysts will build users processing in each paragraph utilizing Zeppelin’s
languages (SQL, Scala, Shell, Markdown, etc.). It also enables interactive visualization and
collaboration with ready-to-use data insights. It allows users to modify the paragraph size (to
align numerous paragraphs horizontally), add a header, write code, execute it, and display
the results in a table or graph on a web page. It also has a lot more features, such as
markdown and JavaScript support (Angular). So analysts can write code, hide it from other
analysts, and then build and distribute attractive reports. It also enables users to schedule
a job (through cron) to run at a predetermined interval. Finally, once the development is

complete, it allows users to switch to report mode and create real-time reports and graphs

!The Apache Thrift [34] platform integrates a software stack with a code generation engine to create
services that work quickly and smoothly across multiple languages for scalable cross-language service devel-
opment.
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and share them with other users over WebSockets.

In a nutshell, we can sum up Zeppelin as a single interface for all of BDAH requirements.

3.1.2 Batch Analytics

Batch processing [35] is the processing of a large volume of data all at once. The data for a day

can easily consist of millions of records and be kept in various ways such as files, records, etc.

Generally, the jobs are completed in nonstop, sequential order. Thus, batch data processing

is a highly efficient method of parallelized processing on data chunks that have been collected

over time.

There are some requirements for this type of processing include fault-tolerance,

horizontal scalability with increasing load, zero loss of data , and the capability to process

all past data or a part of it. [36] Here are some some advantages and disadvantages [37] of

using batch processing software:

1. Advantages:

Cost efficient: It handles large amounts of data at once, which reduce the costs.

Specific Task Processing Duration: Batch processing systems know how long

the job will take to end because it is queued.

Independent of any operating system: To input data into batch systems, no

special hardware or system support is required.

Less Stress on processor: Batch systems can work offline, putting less strain

on the processor.

Handing High Amount of Tasks: Batch systems can easily handle large

amounts of repetitive work.

Shared Batch Systems: Multiple users can share a batch system.

Short idle Time: The batch system has a very short idle time.

Offline Features for Scheduling Jobs: Batch processing jobs can be scheduled

to run in system idle time, such as at night or during a free period,

Hands-Off Approach: Using automatic job scheduling in a batch processing

system allows hands-oftf approach.

2. Disadvantages:

(a)

Training for Deployment: Batch processing systems, necessitate training of
what causes a batch to be triggered, how to program processing, and what notifi-

cations we expect.
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(b) Debugging: The complexity of batch systems make debugging difficult.

(c) Processing delay in case of Error: If a job takes too long, for instance, if an

error occurs, other jobs will be held up for an unknown period of time.

3.1.3 Batch Processing Key Technologies

- Apache Hadoop: It [38] is an open-source platform for storing and processing enormous
datasets in a distributed cluster environment. Hadoop allows applications to run on systems

with thousands of commodity nodes, handling hundreds of thousands of terabytes of data.

Hadoop can perform advanced processing and analytics on stored information. For example,
predictive analysis, data mining, machine learning (ML), and etc. Furthermore, it enables
for the division of large data processing in smaller tasks. The small tasks are carried out
simultaneously through an algorithm (e.g., MapReduce) and afterwards dispersed across a

Hadoop cluster. The Hadoop ecosystem is divided into four major components: [39]

« HDFS (Hadoop Distributed File System): A predominant data storage system
that handles large data sets on existing hardware. It also has a high data throughput

and fault tolerance.

« YARN (Yet Another Resource Negotiator): It is a cluster resource manager that

schedules tasks and assign resources to applications.

e Hadoop MapReduce: It divides large data processing tasks into smaller chunks,
distributes the smaller tasks throughout multiple nodes, and afterwards executes each
task.

« Hadoop Common (Hadoop Core): A collection of shared libraries and utilities on

which the other three modules rely.

The application is divided into fragments or blocks that can run on any cluster’s nodes. The
Hadoop architecture is composed of two types: HDFS, which is the Hadoop Distributed File
System and consists of the cluster’s Name node and Data nodes, and Map Reduce, which is
the Execution Engine and consists of the cluster’s Resource Manager and Node Managers.
Figure 3.3 depicts a multi-node Hadoop cluster in its entirety. When launching a Hadoop
cluster, the HDF'S layer launches first, followed by the Map-Reduce layer.

Whereas Apache Hadoop has emerged as one of the best framework for large-scale storage of
data and data processing based on the MapReduce model, it does have some significant lim-

itations such as significant disk usage, intercommunication potential is limited. inadequate
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Figure 3.3 Overview of multi-node Hadoop cluster

performance for in-memory computation, unsatisfactory online and iterative computing per-

formance. [306]

- Apache Spark: Apache Spark [36] is a framework that uses in-memory primitives to
perform fast distributed computing on Big Data. It is necessary to know the Spark ecosystem.
It is comprised of five main modules; however, we only explain modules that are related to

batch computing purposes. [39]

o Spark Core: The engine that arranges and distributes tasks as well as coordinates

input and output (I/O) processes.

« Machine Learning Library (MLIib): It includes a collection of scalable machine
learning algorithms and techniques which is used for feature-selection and constructing
ML pipelines. The primary API for MLIlib is DataFrames, that also offers consistency

within languages such as Java, Scala, and Python.

RDDs (Resilient Distributed Datasets) are parallel data structures that are immutable. They
can save intermediate results in the memory or disk for later use. RDDs are intended to
hold massive amounts of data that cannot be accommodated on a single machine; thus, the
data must be partitioned across multiple nodes. Spark partitions RDDs automatically and

distributes them across multiple nodes. In Spark, a partition is an atomic chunk of data



27

> Worker Node ‘
~—>» [Excutor Cache
Driver Program
Task Task
SparkContext <«€—>» Cluster Manager (—< B
Worker Node ‘
“—> | Excutor Cache
Task Task

Figure 3.4 Architecture of multi-node Spark cluster

stored on a cluster node. Partitions are the fundamental units of parallelism which can be
customized in order to optimize data placement. RDDs are a collection of these partitions.

RDD provides API for a variety of data transformations and materialization. [36]

In sum, Spark became an ideal tool for online and iterative processing (particularly for ML
algorithms) through loading data in memory which reduces the number of reads and write
operations and streamlines the learning process. [20] [36] Moreover, it does not have the
limitation of the map-reduce model, such as high disk consumption. The figure 3.4 shows

the architecture of multi-node spark cluster.

3.1.4 Stream Analytics

Stream computing is a data processing technology built to handle long-running processes.
Apart from batch processing, in which data is finite, which means bound by a start and
endpoint in a job, and the tasks end after processing, native streaming is designed to pro-
cess unbounded data in real-time continuously for long duration like weeks, months, etc. [40]
However, a streaming application is challenging to implement and maintain due to its con-
stant need to be up and running. Based on the preceding explanation, it is more evident

that there are two categories to divide and implement a Streaming platform. [40]

x Native Streaming: Native or real-time streaming, means that every incoming data

is handled right away, without having to wait for others. Storm is one example of this

type.

*x Micro-batching: Fast batching or near real-time is another term for it. It means that
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incoming records are batched together every few seconds and afterwards in a single
mini-batch data will be processed with a few pauses. Spark Streaming and Storm-

Trident are two examples.

There are two ways to process data in a stream, Stateless, and Stateful. In the stateless way
of data processing, Each incoming record is distinct from the others. There is no connection
between records; each one can be processed and saved independently. Stateless processing
includes operations such as map?, filter, join with static data, and so on. In a stateful
technique, on the other hand, the processing of an arriving record is dependent on the
results of previously processed records. As a result, we must keep track of interim data
when processing several records. During processing, every incoming record can read and
update this data. In Stateful Processing, this intermediary data is referred to as "State.'
E.g. StatefulProcessing includes operations such as aggregating the number of records per

distinct key, deduplicating records, and so on.

To fully comprehend the strengths and limits of any Streaming frameworks, There are a few

key aspects and concepts related to stream processing listed below [40]:

e Delivery Guarantees: It refers to the assurance that a specific incoming record in
the streaming engine will be processed regardless of the circumstances. It can have
approaches such as at-least-once (processed at least once even if there are errors), at-
most-once (may not be processed if there are problems), or Exactly-once (processed
exactly once even if there are failures). Exactly-once approach is desired, but it is

difficult to implement in distributed systems and comes with performance compromises.

e Fault Tolerance: In the event of errors such as node failures, network failures, the
framework should be capable of recovering and resuming data processing from where
it abandoned off. This is accomplished by periodically checkpointing® the status of

streaming to some storage devices.

o Status management: When stateful processing is required, the framework should
provide a mechanism for storing and updating state information (e.g., counts of each

distinct word viewed in records).

o Performance: This comprises latency (the time it takes to process a record), through-

put (the number of records processed per second), and scalability. Latency should be

2the map() is used to transform one object into other by applying a function.
3Checkpointing is a mechanism for storing the state of a computation task so that it can be retrieved and
continued at a later time.
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kept to a bare possible minimum, while throughput should be maximized. Getting

both at the same time is challenging.

o Advanced Features: In case of complexity in stream processing requirements, the sys-
tem may probably need functionalities such as Windowing?*, Watermarks®, and Event
Time Processing. we can mention processing records based on the time they were

generated (event time processing).

e Maturity: It is desirable from the perspective of adoption which means the framework
has already been validated and thoroughly proven at scale by giant organizations. On
StackOverflow or similar community, It provesthe likelihood of receiving good commu-

nity support and assistance. [41]

In summary, both strategies (Native Streaming and Micro-Batching) have their benefits and
drawbacks. Native streaming appears natural because each data is processed as soon as
received, and permit the framework to accomplish the lowest possible latency. However,
because each information must be tracked and checkpointed once processed, it is challenging
to provide fault tolerance without sacrificing throughput. State management is also simple
because there are long-lasting processes that can readily keep the optimum state. Micro-
batching, on the other hand, is different. Because it is effectively a batch, fault tolerance
comes free, and throughput is high because processing and checkpointing will be done in
a single shot to collect records. There will be some delay, however, and it will not appear
to be spontaneous streaming. As a result, maintaining effective state management will be
problematic. [40]

Spark and Storm are two mature and widely used stream processing tools (Table 3.1 [41]
summarizes various features of Spark and Storm). Hesse et al. [41] mentioned that these
tools both have high performance. Moreover, Storm has low latency compared to other
available tools. First, however, we need to validate this. Chapter 4 will evaluate Storm and

Spark in terms of latency and resource usage.

3.1.5 Stream Processing Key Technologies

Stream processing solutions, also recognised as data stream management systems (DSMS),
are built to manage data streams. There are a couple of leading technologies we could use in

our proposed platform. Only projects that fall into the category of open-source projects with

4Windowing is a method of dividing a data stream into mini-batches or finite streams to apply different
transformations.
5A watermark is a threshold that indicates when all of the data in a window is expected to arrive.
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Features Storm Spark
Scalability Yes Yes

High availability High High

Latency Very Low  High
Throughput Low High

Cluster Manager Zookeeper YARN, Mesos
Event Processing Engine Yes Yes

SQL Querying NO SparkSQL

Table 3.1 Feature Comparison of stream processing engines (Spark and Storm)

an active group of researchers and developers are considered in this study. In this section,

we explain the definition and why every one of these tools has been used.

- Apache Zookeeper: It [42] is a powerful solution for coordinating and managing dis-
tributed application configuration and state. ZooKeeper is used by several Apache projects,
including stream analytics tools such as Kafka and Storm, etc. Zookeeper is a centralized
service that provides configuration information, naming, parallelization, and group services
across large distributed systems clusters. The goal is to make these systems easier to man-
age by improving and ensuring change propagation. With Zookeeper, there is no need to
create synchronization services from scratch. Storing status type information in memory on
Zookeeper servers provides an architecture for cross-node synchronization for applications.
A Zookeeper server preserves a copy of the entire system’s state and saves it in local log files.
Multiple Zookeeper clusters can manage large big data applications clusters, with a master
server synchronizing the top-level servers. An application can use ZooKeeper to produce a
znode®; a file that stays in memory on the ZooKeeper servers. Any node in the cluster can
update the znode, and any node in the cluster can register to be alerted when the znode
changes.

- Apache Kafka: Apache Kafka [43] is a high-performance, scalable, and long-lasting
publish-subscribe messaging system. Kafka is designed for the delivery of streams. It pro-
vides resource isolation between devices or systems that produce and consume data. Kafka
is a popular centralized repository for streams, in which events are temporarily stored before
being routed anywhere in a data cluster for further processing and analysis. A single Kafka
broker can handle large numbers of megabytes of reads and writes per second from millions

of users. [44] The Kafka messaging system is used in our analytics sandbox to manage a

SEvery node in a ZooKeeper tree is refered to as a znode. Znodes keep data that include version numbers
for data changes, acl changes, and timestamps. [42]



31

typical big data gathering in healthcare. A producer sends EMR’s to a Kafka topic (messag-

) Pull message using exact same Topic name )

> Push message using particular Topic name ) / \

-)[ Consumer (Real Time) }
Producer /
Kafka Cluster N o ]
. q onsumer (Hadoop)
Producer —L
7; ; Kafka Broker — |-->[ Consumer (NoSQL) }
Producer N —
T__l_ > Kafka Broker _)[Consumer (Warehouse)}
roducer Il
L4 Kafka Broker —
) I _>[ Consumer (Others) ]
Producer ] X
\—j - J Consumer (NoSQL) ]
g

-/

Broker route the messages

Figure 3.5 Overview of Kafka messaging cluster

ing queue) in its most basic form. Topics are formed on a Kafka broker serving as a Kafka
server; Kafka brokers can additionally store messages If needed. Consumers then subscribe
to one or more Kafka topics to get messages pulled from the brokers. Offline consumers
consume messages and store them in HDFS or a NOSQL database for offline analysis. Real-
time consumers can ingest messages, store them in any NoSQL database such as MongoDB
or Cassandra, filter them in memory, and send alerts to associated groups. Brokers and
consumers, respectively, employ Zookeeper to obtain state information and track message

offsets. The procedure is depicted in Figure 3.5.

- Apache Storm: Apache Storm [45] is a distributed real-time computing system that
facilitates reliably processing unbounded streams of data. It also can be used with any
programming language. It’s built to be scalable, dependable, resilient, expandable, efficient,
and simple to install and maintain. Storm is now being used in Twitter [46] to do a variety

of essential computations at scale and in real-time.

Storm provides a set of generic primitives for real-time big data computing that use Topolo-
gies to process data. A Topology is a directed acyclic graph with vertices representing
computation components and edges representing the data flow process through computing.
The fundamental abstraction in the Storm data processing paradigm is the stream, which is
an endless series of Tuples flowing through topologies, as shown in Figure 3.7. A Tuple is

nothing more than a collection of named values (key-value pairs). Spouts and Bolts are two
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distinct types of vertices. Spouts are points in the Topology where data streams are inserted.
Spouts typically pull data from Kafka message queues. Bolts, on the other hand, process

incoming Tuples and pass them downstream, as seen in Figure 3.7.
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Figure 3.7 Storm Topology Architecture

Bolts are commonly used to filter tuples, perform functions, aggregations, joins, and other
processing actions. Similar to distributed computing methods, Storm clusters have a mas-
ter/slave paradigm. One master node (nimbus) and more worker nodes constitute a Storm
cluster (supervisors). In addition to the nimbus and supervisor nodes, Storm requires Apache
Zookeeper which acts as storm cluster manager and can include one or more nodes, as seen
in Figure 3.6. The master node that runs the Nimbus node, is in charge of distributing and
coordinating topology execution in Storm architecture. On each worker node, the Supervisor
executes. It accepts tasks from Nimbus and assigns them to upstream workers. Supervisors
communicate with Nimbus by exchanging a periodic heartbeat protocol and announcing the
Topologies that they are currently executing and any vacancies that may be available to
run other topologies. A Zookeeper cluster serves as the hub for all communication between

Nimbus and the Supervisors. The Nimbus and Supervisor daemons are built to be fail-fast
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and process self-destructs whenever any unprecedented scenario is occurred They are also
stateless because the state is stored in a Zookeeper or on a disc. Storm’s resiliency is based
on this architecture with all of their data stored in Zookeeper or on local storage. Even if
the Nimbus service is unavailable, the workers will continue to make progress. In addition, if
the workers fail, the supervisors reset them. Some advantages and disadvantages for Storm
listed below. [40]

1. Advantages:

(a) Very low latency, genuine streaming, stable and high throughput

(b) Ideal for simple streaming application cases
2. Disadvantages:

(a) There is no state management.

(b) There are no advanced capabilities such as event time processing, aggregation,

windowing, sessions, watermarks, or other complex features.

(c) At-least-once delivery guarantee.

- Storm Trident: Trident [47] is a higher-level micro-batching system built on top of Storm.
It streamlines the topology-building process and adds higher-level functions like windowing,
aggregations, and state management that Storm does not offer natively. In addition to
Storm’s at most once guarantee, Trident guarantees delivery exactly once. Trident has APIs

in Java, Clojure, and Scala.

- Apache Spark: Spark, an Apache top-level project, was formed at the University of
California and Berkeley. [48] It supports iterative computation and uses in-memory process-
ing to increase performance and resource usage. Spark framework has completely support
the Lambda Architecture (both Batch and Streaming implemented; Batch for correctness,
Streaming for Speed) [40]. Batch paradigm of Spark explained in section 3.1.3. In this sec-
tion, we explain streaming approach of Spark. Spark ecosystem components of streaming
are: [39]

o Spark SQL: This component of ecosystem gathers structured data information to

allow users to optimize structured data processing.

e Structured Streaming and Spark Streaming ": Both of these technologies enhance

the capabilities of stream processing. For a continuous stream, Spark streaming divides

"Structured Streaming is a scalable and fault-tolerant stream processing engine that is built on the Spark
SQL engine.
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data from multiple streaming sources in to the micro-batches. Structured streaming,

which is built based on Spark SQL, reduces latency while also simplyfying programming.

Spark streaming employs DStreams to process these data streams into the analytics engine,
whereas structured streaming utilizes DataFrames. [49] An RDD sequence represents each
DStream. As a result, DStream is nothing more than a collection of RDDs. DFrames, on the
other hand, are two-dimensional data structures. It is a distributed collection organized into
named columns. Moreover, Datasets are an extended version of the Dataframes API that
combines the advantages of RDDs and Datasets. Furthermore, it is a Dataframes extension

with additional features such as type-safety and an object-oriented interface. [50]

A more performant version of Spark streaming which is known as structured streaming,
includes many useful features such as custom memory management named ,watermarks,
event time processing support. [40] Furthermore, Spark still can not be considered a streaming
processing tool due to high latency compared to its competitors. The results of benchmarking
have also proven this in the Evaluation chapter (chapter 4). However, in its batch computing
paradigm, Spark is one of the best available tools. The following are some of the benefits
and drawbacks of Spark. [40]

1. Advantages:

(a) Supports Lambda architecture freely.

(b) High throughput, suitable for a wide range of applications when sub-latency is not

required.

()
(d) Higher-level APIs are simple to use.
)

(e

(f) Exactly-once

Due to the general micro-batch nature, there is built-in fault tolerance.

A large community with a focus on progress

2. Disadvantages:

(a) It’s not genuine streaming, and it’s not designed for low latency.

(b) There are far too many configuration variables to adjust. It’s challenging to get

it correctly.

3.1.6 NoSQL Support for Sandbox analytics

In this section, we will compare two NOSQL databases that are beneficial to use for the archi-

tecture and explain the benefits of each. Apache MongoDB and Cassandra are two popular
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databases that are used in our analytics sandbox. MongoDB is a cross-platform document-
oriented database application that is open source. The document data model of MongoDB
supports JSON format by default. Moreover, for developers, MongoDB’s query is straightfor-
ward to learn and apply. [51] It has built-in features, including automatic failover, the ability
to scale horizontally and to allocate data to a particular location. [52]. It’s a distributed
system with a single master that distributes many copies of the data via asynchronous repli-
cation for high availability. A MongoDB is a cluster of MongoDB nodes that share the same

data. This grouping is referred to as a replicaset in MongoDB documentation. [52]
There are two sorts of data-bearing members in a MongoDB cluster:
1. Primary Node: This is the master node, which receives all write requests.

2. Secondaries: To preserve an identical data set, the secondaries receive replicated data

from the primary.

ClientApplication
_Driver

Writes l l Reads

Primary Node

Replication l | Replication

Secondary Node Secondary Node

Figure 3.8 A MongoDB cluster

By default, all reads and writes are handled by the primary Node. A MongoDB client can
optionally transport some or all reads to secondary members. However, all messages must
be written to the primary. If the primary member fails, all writes are halted until one of the
secondary members is chosen as the new primary. According to the documentation provided
by MongoDB, this operation can take up to 12 seconds to complete. [53] A cluster can be
distributed across geographically separate data centers to boost availability. For example, a
MongoDB replicaset can have up to 50 members. The Replication process in the MongoDB

cluster is shown in the Figure 3.8.
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On the other hand, a Cassandra cluster is a collection of connected nodes in a peer-to-peer
"share nothing" distributed topology. There is no master node; each node can perform all
database operations and serve client requests. Data is partitioned among nodes using a hash
of its partitioning key that is consistent. Each node can have one or more partitions, and
each partition can contain one or more rows. A partition, on the other hand, can only reside
on one node. The replication factor determines the number of copies (replicas) that should
be created. The replicas are kept on separate nodes automatically. The coordinator is the
node that receives the first request from a client. The coordinator’s responsibility is to deliver
the request to the nodes with the data and then relay the results back to the coordinator. A

coordinator can be any node in the cluster.
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Figure 3.9 Cassandra cluster with coordinator

To choose a database system for analytics sandbox, the first essential factor that comes
into mind is the consistency of the data system. MongoDB is a very consistent system.
For example, any subsequent read will return the most recent value once a write process
is complete. Cassandra is an eventually consistent system by nature. The most recent
data gradually becomes available if no more modifications are made after completing the
writing process. It’s crucial to remember that MongoDB eventually becomes a consistent
system when read operations are performed on secondary members. This delay occurs due
to replication latency. The longer the delay, the more likely reads will return data that is
inconsistent. Furthermore, MongoDB and Cassandra both [54] have "tunable consistency."
to suit particular requirements. For example, each reads and writes transaction specifies how
many members or replicas are required to recognize a request to be fulfilled. This level is
referred to as reading concern or write concern in MongoDB. The consistency level of the

operation in Cassandra is the level of compliance. [55] The Figure 3.9 is shown Cassandra
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cluster with coordinator.

MongoDB and Cassandra achieve high availability by duplicating data in several places. The
greater the number of copies, the greater the availability. MongoDB classifies as a distributed
system that prioritizes consistency over availability using the CAP or PACELC [54] theorems,
whereas Cassandra classifies as a system that prioritizes availability. These classifications, on
the other hand, solely characterize the default behavior of both systems. For example, only if
all reads directly to the principal member can MongoDB stay highly consistent. Even when
reads are limited to the primary member, read and write concerns can cause inconsistency.
Cassandra can also be more consistent by adjusting consistency levels, as long as a loss of

availability and increased latency are acceptable trade-offs.

In a nutshell, both Cassandra and MongoDB databases have their own set of benefits and
drawbacks. We are that determine what factors in the database are of the highest signifi-
cance for us. In terms of high availability, Cassandra has the upper hand. We can write to
a cluster even if nodes fail because of the highly dispersed architecture. In many use cases,
Cassandra’s reputation for rapid write and read performance and distributing accurate lin-
ear scale performance in a masterless, scale-out design puts it ahead of its NoSQL database
competitors. MongoDB, on the other side, thrives at storing unstructured data. It offers
a schema-free architecture that allows for efficient caching and logging. Rapid caching and
logging operations are essential for real-time analytics and streaming systems. MongoDB is
also useful for query speed because it allows secondary indexes. Thus, if the scalability of
data activities is essential, Cassandra will be a better fit. Overall, Cassandra performs better
with massive data loads due to its ability to support several master nodes in a cluster. At
the same time, MongoDB is excellent for workloads involving large amounts of unstructured
data. As a result, they each have their advantages based on the data volumes and the imple-
mentation needs. MongoDB dramatically simplifies data architecture in an application in a
data platform that actuates "transactional, search, mobile, and real-time analytics workloads

on any cloud." [56]

3.2 CMU Use Cases

In the CMU case study, and to begin the analytics tasks and visualize it with the zeppelin,
we first needed to prepare a spark cluster in three nodes to handle analytics. We needed to
install Apache Zeppelin and configure it to connect it to Apache Hadoop, where we store the

dataset.
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%spark3

import org.apache.commons.io.IOUtils
import java.net.URL

import java.nio.charset.Charset

// SQLContext
val sqlContext= new org.apache.spark.sql.SQLContext(sc)

// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// read CMU clinic simple data
val CMUText = sc.textFile("hdfs://cmu-clinique.novalocal:9000/dataset_CMU.csv")

case class CMU(age: Integer, gender: String, city: String, marital_status: String, drnote: String)

// split each line, filter out header (starts with "age"), and map it into CMU case class
val CMUtable = CMUText.map(s => s.split(",")).filter(s => s(1) != "age").map(
s => CMU(s(1).toInt,
s(2),
s(3),
s(4),
s(35)

). toDF()

// convert to DataFrame and create temporal table
CMUtable.registerTempTable("CMUtable")

Figure 3.10 SparkScala Code Snippet

3.2.1 Data Visualization Using Apache Zeppelin

This section describe an example of how we can combine Zeppelin and Spark to run some
analytics. As we mentioned in the previous section, Apache Zeppelin is an interactive com-
putational environment. Besides, Apache Spark is an in-memory computational engine with
programming APIs that enable data analysts to run streaming, ML, or SQL workloads that
require rapid iterative access to datasets. With the aid of Zeppelin researchers will be al-
lowed to build applications to utilize Spark’s potential, draw conclusions and improve their

analytics workloads within a single, shared dataset in any data store such as HDF'S.

To run this simple example, first, we need Apache Zeppelin and a Spark cluster. Then, after
the setup of Spark interpreter, we will be able to use notebooks in Zeppelin to run Apache
Spark jobs and drawing conclusions from our dataset. We ingest our data from database
to HDF'S using Sqoop. Our SparkScala code with DataFrames and some filtering read data
from HDFS. (Figure 3.10) Then we visualized the results of the analytics using spark.SQL.

The approach we used in this section to analyze health data was descriptive analytics. Using
SQL codes we can visualize the results. For instance, we used SELECT * FROM CMUtable

where drnote like ’%VIH),’ to start some analytics. This analytics shows us that 64% of
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the HIV patients were masculine and only 36% were feminine. It also reveals that 63.09% of
male HIV patients were married while 36.91% of female HIV patients were married. (Figure
3.11)

Feminan: 36.91%

M VIH.Masculin 258.00

Masculin: 63.09%

@ VIH.Masculin VIH.Feminan Feminan @ Masculin

(a) HIV patients Gender percentage (b) HIV Patients Married percentage

Figure 3.11 Visualization Results

3.2.2 Stream Analytics using Storm, Kafka and MongoDB

This section will briefly explain how we used Apache Storm, Kafka, and MongoDB using

Java codes to create a Realtime Processing system.

To provide a quick overview of how the system works, we can say messages are sent to a
Kafka topic, which is then picked up by Storm via Kafka Spout and passed to a Bolt, parsing
and identifying the message type based on the header. Finally, the content of the message is

retrieved and transmitted to MongoDB bolt once the message type has been detected.

In this scenario, we will create two Bolts. The first referred to as the SinkType Bolt, functions
as a decision-maker. This node is in charge of determining the message type and routing it
to the relevant Bolt for persistence.

The main class that connects all of the spouts and bolts is topology. The spout and bolts are
linked, as shown in the diagram below. (Figure 3.12)). The Topology class uses SpoutBuilder
and BoltBuilder to create all of the spouts and bolts. The TopologyBuilder class connects
all of these spouts and bolts. In this scenario, our Storm topology is divided into three bolts:
-KafkaSpout Bolt: Kafka spout reads from the kafka topic.

-SinkType Bolt: This node will operate as the one that is decision-maker. It is able to
recognise message types and route the results to the proper Bolt to store.

-Mongodb Bolt: It is used for saving collections in MongoDB.

Firstly, each spout should specify which stream it will get its input from. In this example,

Kafka spout reads Kafka topics. So, KafkaSpout must understand how to connect to the
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Figure 3.12 A stream processing Architecture using Kafka-Storm-MongoDB

Kafka broker, the topic’s name from which it must read, the zookeeper root, and the consumer
group id. The spout uses the zookeeper root and group id to retain the offset information of
the till where it has read from the subject. In the event of a failure, the spout can utilize this
data to resume reading from the point where it stopped. This example will establish a Kafka

spout that will read messages from the incoming topic we built during the Kafka setup.

Moreover, SinkTypeBolt must always listen to the KatkaSpout. Then, It will emit the tuples
into the MongoDB stream. SinkTypeBolt makes use of two main methods, declareOutput-
Fields and execute. The declareOutputFields method is used to declare which output streams
will be emitted by this bolt and what fields will be assigned to each of the tuples that will
emit to those streams. In this example, we declare one output stream, and each stream will

have two fields, sinkType and content.

The Execute method performs some processing on a Tuple at the moment. The type of
the Tuple is determined by the execute method, which reads it. Following that, it calls the
collector to send the content to any of the streams. The execute method reads the tuple

and determines its type. Afterwards, It calls the collector to send the content to any of the
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streams. [57]

Finally, MongoDB Bolt creates a MongoClient instance with a hostname as well as a port,
followed by a MongoDatabase instance with the MongoClient and database name. The Tuple
input is transformed to an org.bson object. The method getMongoDocForInput returns a
document, which is then added to the collection by calling textttMongoDB.getCollection

(collection).insertOne(mongoDoc).

3.3 Implementation of Architecture

3.3.1 Installation and Configuration of Servers on cloud

OpenStack cloud computing platform is where we deploy our analytics sandbox. we needed
to create a highly reliable infrastructure. So, the best practice was to create cluster with at
least three nodes to guarantee high availability, load balancing. A cluster of at least three
servers is the best way to create a stable, reliable, and easy-to-manage cluster. [58] Each
node requires enough resources to execute all of the combined workloads, as well as some
overhead to keep the system up and running and allow for future scalability. This refers
to the total amount of CPU, RAM, and storage needed to run everything. To install three
instances in cloud infrastructure, we used the dashboard of Compute Canada (Arbutus) [59].
We chose the most compatible image (Ubuntu) from the images lists to work with these
big data technologies and Kubernetes. To provide maximum security for the servers, we
used SSH keypairs. Another subject we considered during the nodes’ creation was adding a
security group and managing its rules. For example, we keep open access to the ports that we
need to access from outside. In other words, we make it more secure by defining the Ingress
rule to a range of dedicated IPs (Remote IP prefix); this gives those users from those specific
IP ranges to access to applications through public IP and defines ports. Moreover, every
operating system may divide the hard drive into numerous pieces that operate independently
by creating disc partitions. We used disk partitioning to keep the data distinct from other

operating systems partitions. In this case, If system fails data will remain safe.

3.3.2 Deployment in cluster mode using Kubernetes

In order to familiarize ourselves with architecture, we need to understand kubernetes ar-
chitecture and main components. Applications in Kubernetes run within containers. A
Kubernetes pod is a collection of one or more containers in Kubernetes. Containers in a pod
share the same resources and can communicate using localhost or interprocess communication

mechanisms. The virtual network of the Kubernetes architecture is used to allow commu-
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nication between pods. [28] Kubernetes is using replicsets to ensure that a certain number
of pods are running in the system. Kubernetes deployments function as controllers for pods
and replicasets, allowing declarative updates to be made. Deployments are a collection of
several identical pods with no distinguishing characteristics. When a pod is established in
Kubernetes, the available computing resources can be assigned to the containers. Resource
requests and limits can be distinguished for the containers of a pod. The minimum value of
a specific compute resource that must be guaranteed to the pod is referred to as a request,
while the maximum utilization that the pod can utilize is a limit. CPU units and memory
were initially supported compute resources. Third-party extensions can be used to provide
additional custom resource metrics such as network or storage use. [28] To deploy our analyt-
ics sandbox for Real-Time data processing, we need a Kubernetes cluster with a minimum of
two workers to provide scalability and two node of masters to enable high availability for the
Kubernetes cluster. This configuration for stack guarantees scalability, fault tolerance, and
reliability. To address installation and configuration challenges in setting up a multi-node
cluster, we created an on-premises Kubernetes cluster using Rancher Kubernetes Engine
(RKE) [60] with four nodes; two as a master and the two other as workers. To start building
a cluster, we needed some pre-configuration on each node. To benefit from automation, all
the required configurations, such as creating a specific user on each node for deployment
purposes, enabling related kernel modules, disabling swap, and modifying systemctl entries,
and docker installation has been added to Ansible playbooks. Then, we needed to run these
Ansible playbooks (https://github.com/ghfaha/BDAH_Sandbox) to prepare all the cluster
nodes. The next step was to open firewall ports. Another fundamental configuration was to
enable SSH server system-wide TCP forwarding.

Furthermore, each master instance needed to install some CLI tools such as kubectl, RKE,
Helm. After installation of necessary CLI tools to work with multi-node Kubernetes, we
needed to create a YAML file for cluster configuration. Many configuration options can be
set. RKE provides an opportunity to generate default configuration files. The most crucial
configuration for cluster YAML files is the role of each node in the Cluster, the address of
each node, and network configuration. If all the configuration and pre-installation require-
ments for each cluster node are correctly configured, once you run the "rke up" command,
the Cluster will be running. The Cluster can be managed with kubectl commands.

Each container in Kubernetes can read and write to its isolated filesystem. However, any
data on that filesystem will be lost when the container restart. Kubernetes has volumes to
help with this. Volumes allow pods to write to a filesystem that exists for as long as the
pod does. Users can also use volumes to share data between containers in the same pod.

However, data in that volume will be lost when the pod restart. Kubernetes has persistent
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volumes to address this issue. In the Kubernetes cluster, persistent volumes are long-term
storage. Beyond containers, pods, and nodes, persistent volumes exist. A pod uses a per-
sistent volume claim to gain read and write access to a persistent volume. Firstly, we used
a Local Path Provisioner to resolve the problem that the container environment is not per-
sistent by default and create Persistent storage to store data. The Local Path Provisioner
enables Kubernetes users to use local storage in each node. The Local Path Provisioner will
automatically build a host Path-based persistent volume on the node based on the user’s
setup. It takes advantage of Kubernetes’ Local Persistent Volume capability; however, it is
much easier to use it than Kubernetes’ built-in local volume feature. It makes use of the
functionalities introduced by Kubernetes’ Local Persistent Volume feature, but it is a more
straightforward solution than Kubernetes’ built-in local volume feature. However, the Lo-
cal Volume Provisioner currently does not support dynamic provisioning for local volumes.
NF'S Server Provisioner is a solution that dynamically provides Kubernetes back-end storage
volumes. It is easy to set up shared storage that works practically anywhere. As a result,
NFS-provisioner is another dynamic provisioner solution for Kubernetes. It is essential to
consider any data stored on the dynamic volumes provisioned will not be persistent. We used

the NFS-provisioner solution for our applications. [61]

3.3.3 Management

Different factors can be considered when it comes to sandbox management, such as resource
management and monitoring and etc. Our BDAH platform can support multiple Sandboxes.
This is the main reason why we need management. We need to ensure that each sandbox gets
the resources it needs and not in the expense of the others. Along with management on a
per-sandbox basis, We also need management for the entire infrastructure. Different factors
can be considered when it comes to sandbox management, such as resource management and
monitoring of tasks. In our Sandbox, Kubernetes is responsible to manage the resources for

whole system.

For infrastructure management, there are tools available that are capable to work with ku-
bernetes based systems. Real-time monitoring system is one of them. Real-time monitoring
assists sandbox admin in accurately identifying the times an incident occurs, the report-
ing time, and the resolution time. As a result, health sectors can become more proactive
with their response methods and deal with recurring problems more efficiently by identifying
these times. In the case of Sandbox, the system’s admin can benefit from such a manage-
ment system to better estimate the amount of resource required to give to a cluster based

on the fluctuation in analytics workloads. In addition, this aids them in the auto-scaling
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configuration of the system. There are mature monitoring tools available such as NetData,
Prometheus. In addition, Grafana is a free and open-source lightweight dashboard appli-
cation running on Kubernetes. It can be integrated with various data sources, including
Prometheus, AWS CloudWatch, Stackdriver, etc.

3.3.4 Auto-scaling

Kubernetes is built to be scalable. It includes a set of tools for scaling a cluster up and
down in response to demand based on various other factors. [30] Kubernetes is also capable
of automating many management tasks, including provisioning and scaling. It will automate
processes that respond quickly to peaks in demand and conserve costs by scaling down when
resources are not needed. It can be used in conjunction with the cluster auto-scaler to allocate
only the resources required. The auto-scaling mechanism [62] in Kubernetes is made up of

two layers:

1. Pod-based scaling— supported by the Horizontal Pod Autoscaler (HPA) and the
newer version of autoscaler named Vertical Pod Autoscaler (VPA).
2. Node-based scaling— supported by the Cluster Autoscaler(CA).

HPA and VPA are two autoscalers that work on the application abstraction layer. Moreover,

the infrastructure layer is where CA works.

3.3.5 Kubernetes Scaling Mechanisms

1. Horizontal Pod Autoscaler (HPA):
A mechanism to add or remove pod replicas is needed when the level of application utiliza-
tion varies. The Horizontal Pod Autoscaler facilitates workload scaling automatically once
configured. HPA can be used for stateless applications as well as stateful workloads. HPA is
a control loop that the Kubernetes controller manager maintains. The HPA loop’s duration

is specified by a flag in the controller manager, which is set to 15 seconds by default.

The controller manager compares actual resource use to the metrics established for each HPA
at the end of each loop period. If specified, it gets these through the custom metrics API or
the resource metrics API that auto-scaling should be dependent on resources per pod (such

as CPU consumption).

Scaling is based on a single metric collected from the object, compared to the desired value

to give a utilization ratio. [62] Figure 3.13 shows HPA processes.

HPA uses the following metrics to calculate autoscaling:
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Figure 3.13 Horizontal Pod Autoscaler (HPA)

o In terms of resource metrics: A target utilization number or either a fixed target

for resource measurements can be set for resource metrics.

o In terms of custom metrics: Only raw numbers are supported for custom metrics,

and a target utilization can not be set.

o In terms of object metrics and external metrics: Scaling is based on a single
metric collected from the object, which is compared to the desired value to give a uti-

lization ratio.

Limitation:  There is also limitation for Horizontal Pod Autoscaler (HPA). while ex-
amining CPU or memory metrics, HPA can not be utilized with vertical pod autoscaling
(VPA). Furthermore, when using a Deployment, HPA cannot be configured on a ReplicaSet

or Replication Controller, only on the Deployment itself.

Two major best practices for utilizing HPA effectively are as follows: [62]

« Ensure that all pods have resource requests configured— HPA leverages CPU utilization
of pods running as a component of a Kubernetes controller when scaling decisions. This
is expressed as a proportion of individual pod resource requests. Use all resource request

values from all containers to confirm that the data is accurate.



46

o When possible, utilize custom metrics instead of external metrics; the external metrics
API poses a security concern because it allows access to a vast number of metrics.
Because it only holds users specific metrics, a bespoke metrics API poses less danger if

compromised.

o Use HPA in conjunction with Cluster Autoscaler to coordinate pod scalability with the
behavior of nodes in the cluster. When an application needs to scale up, for example,
the Cluster Autoscaler can add eligible nodes, and when the application needs to scale

down, it can turn off superfluous nodes to save resources.

2. Vertical Pod Autoscaling (VPA):

The Vertical Pod Autoscaler sets resource restrictions for containers based on real-time data.
The majority of containers stick to their initial demands rather than their upper limit re-
quests. Kubernetes’ default scheduler, as a result, overcommits a node’s memory and CPU
reservations. To deal with this, the VPA adjusts the number of requests made by pod con-

tainers to match the amount of memory and CPU resources available.

Some workloads may necessitate brief bursts of high consumption. By default, increasing
request limitations would waste resources and limit the number of nodes available to handle
those workloads. In some cases, HPA may assist, but in others, the application may not
enable load distribution over numerous instances. The recommender component of a VPA
setup calculates target values by monitoring resource usage. Its updater component evicts
pods that require resource limitations to be updated. Finally, using a mutating admission
webhook, the VPA admission controller overwrites the pod resource requests when they are
made. [62]

Limitation: There is also limitation for the Vertical Pod Autoscaling (VPA). Updating
operating pods in VPA is still in its early stages, and performance in large clusters has yet
to be determined. Second, VPA handles most out-of-memory events, but not all, and the
behavior of numerous VPA resources assigned to the same pod is unknown. Finally, while
changing pod resources, VPA recreates pods, maybe on a different node. As a result, all

containers that are now executing are restarted.

Here are two practices for using Vertical Pod Autoscaler effectively: [62]

o« HPA and VPA are incompatible. So, avoid using them in tandem—, so do not use
them together. Unless the HPA is configured to use either custom or external metrics,

do not use both for the same series of pods.
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e VPA should be utilized in conjunction with Cluster Autoscaler because VPA may oc-
casionally recommend resource request levels over available resources. This can put a
strain on resources, causing pods to go into a pending state. In response to awaiting

pods, the cluster autoscaler can alleviate this behavior by spinning up new nodes.

3. Cluster Autoscaler (CA): HPA scales the number of operational cluster pods,
while the cluster autoscaler modifies the number of cluster nodes. Cluster autoscaler looks
for unscheduled pods and attempts to condense pods that are only on a few nodes. It is

constantly looping over these two activities.

Unschedulable pods are caused by a lack of memory or CPU resources, or by the pod’s taint
tolerations (rules that restrict a pod from scheduling on a given node), affinity rules (rules
that encourage a pod to schedule on a specific node), or nodeSelector labels. If a cluster has
unschedulable pods, the autoscaler looks through managed node pools to see if adding a node

might help unblock the pod. It adds a node to the pool if the node pool may be expanded.

The autoscaler also monitors the nodes of a managed pool for possible pod rescheduling on
other cluster nodes. If any are found, it evicts them and deletes the node. When shifting

pods, the autoscaler considers pod priority as well as PodDisruptionBudgets.

The cluster autoscaler offers a 10-minute graceful termination period before forcing a node
termination while scaling down. This gives applications enough time to move the node’s pods

to another node.

The cluster autoscaler adjusts the size of a Kubernetes cluster by adding or removing nodes

due to the presence of pending pods and node utilization metrics.

When the utilization of a node drops under a particular limit set by the cluster manager,
it is removed from the cluster. The cluster autoscaler is an outstanding tool to enable the

elasticity and scalability of the underlying cluster when workloads demand change.

However, there is also the limitation of using it. Cluster autoscaler only works with a few
managed Kubernetes platforms; if used Kubernetes platform is not one of them, it is nec-
essary to install it. In addition, Local PersistentVolumes are not supported by the Cluster
Autoscaler. When using local SSDs, applications cannot scale up a size 0 node group for

pods that need ephemeral storage. Figure 3.14 shows CA processes.

Here are two basic strategies for using Cluster Autoscaler effectively: [62]

o Ascertain that the Cluster Autoscaler pod has sufficient resources by specifying a min-

imum of one CPU for resource requests to the cluster autoscaler pod. It’s vital to
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Figure 3.14 Cluster Autoscaler (CA)

make sure the cluster autoscaler pod’s running node has enough resources. The cluster

autoscaler may become unresponsive if this does not happen.

o Ensure that all pods have a defined resource request—the cluster autoscaler requires a
defined resource request to function properly. The reason is the cluster autoscaler takes
decisions based on pod status and individual node utilization, and it can be thrown off

if the computation is incorrect.

3.3.6 Scaling a Distributed Stream Processor in a Containerized Environment

Kubernetes has established itself as the de-facto platform for clustering containerized work-
loads. Individual distributed applications and services can be deployed and managed using
their native abstractions. On the other hand, streaming applications necessitate the simul-
taneous deployment of many components such as topics, storage, and application runtimes.
Furthermore, the expectations of end-users, mostly data scientists and data engineers, are to

have a system up and running 24 hours a day, even if system load is variable in time.

We are aware that Kubernetes will scale up as soon as the system needs to be scaled and we
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are aware of the benefits it can bring to data analytics. To satisfy end-user demand, We’d like
the number of nodes in a cluster and the number of pods in deployment to adjust dynamically

based on the workload. To test the autoscaling of streaming apps in Kubernetes, We used a
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Figure 3.15 Architecture of Spark Cluster in Kubernetes

scenario to put more loads on our app to monitor the behavior of Kubernetes. First, however,
it is essential to configure Kubernetes to scale in case of an increase in load. In this example,
we are using Horizontal Pod Autoscaler. Before that, we should make sure our deployment is
running. Then we will be able to configure autoscaling for each deployment with the number
of replicas of the Pods and the maximum CPU percentage to trigger autoscaling.

kubectl autoscale deployment spark-123456 -cpu-percent=50 -min=1 -max=10

To do so, We used the Hibench streaming benchmark tool to run the spark-terasort workload
on spark running in Kubernetes for about 30 min. The number of pods will increase when
the system CPU load reaches the amount we determine until we satisfy the spark need for the
load. We monitor the whole process using Netdata and kubectl commands until we terminate
the loads and the pods drop to the one pod as before. Figure 3.15 illustrates the architecture

of Spark cluster in kubernetes.

During the autoscaling process, We inspected the autoscaler’s present state by running:
kubectl get hpa, [28] which shows Horizontal pod autoscaling current status of each de-
ployment on the Kubernetes cluster and metrics such as TARGET (CPU utilization for
autoscaling.), MINPODS, MAXPODS, etc. To check the number of pods, we used kubectl
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get pods.

3.4 Multi-Tenancy in Sandbox

When various Analytics teams are communicating with their individual sandbox in our BDAH
platform, multi-tenancy must be considered. Most industries consider a multi-tenant plat-
form to operate their cloud-native apps because it permits them to manage better resources,
expenses, and operational efficiency while also reducing cloud waste. Users and/or work-
loads are referred to as "tenants" in a multi-tenant cluster. To minimize the damage that
a compromised or hostile tenant can cause to the cluster and other tenants, multi-tenant
cluster operators must segregate tenants from one another. Cluster resources must also be
distributed evenly among tenants. Consider the layers of resource isolation in Kubernetes
when planning a multi-tenant architecture: cluster, namespace, node, Pod, and container.
we should also think about the security implications of letting renters share various types of
resources. Scheduling pods from various tenants on the same node, for example, might de-
crease the number of machines required in the cluster. In either case, it is necessary to avoid
specific colocating workloads. To prevent an untrusted code from outside the organization

to execute on the same node as malicious insider containers, for example. [63]

3.4.1 Tenancy Models For Kubernetes

Operating a multi-tenant cluster has a wealth of advantages over managing several single-
tenant clusters such as; decrease in Management overhead, Reduced fragmentation of re-
sources, There is also no need to wait for a cluster to be created before bringing on new
tenants. Although Kubernetes cannot guarantee absolute tenant isolation, it does provide

characteristics that may be sufficient under usual scenarios. [63]

1. Namespaces as a Service: Tenants share a cluster in the namespaces-as-a-service
paradigm, and tenant workloads are limited to a set of Namespaces allotted to the
tenant. All tenants can use the cluster control plane resources like the API server and
scheduler, as well as worker node resources like CPU, memory, and so on. [64] Each

namespace must also include the following to isolate tenant workloads:

(a) Role bindings: Role bindings are used to restrict access to the namespace.

(b) Network policies: The goal of network policies is to keep network traffic from

passing amongst tenants.
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(c) Resource allocation: Quotas are used to restrict resource utilisation and ensure

that tenants are treated equally.

Tenants can’t generate or alter cluster-wide resources like ClusterRoles and Custom-

ResourceDefinitions (CRDs) under this paradigm because they share them.

By allowing users to create additional namespaces under a namespace and propagat-
ing resources within the namespace hierarchy, the Hierarchical Namespace Controller
(HNC) project makes it easier to manage namespace-based tenancy. This allows tenants
to create self-service namespaces without having cluster-wide permissions. The Multi-
Tenancy Benchmarks (MTB) project provides benchmarks as well as a command-line
utility that conducts many setup and runtime checks to determine whether tenant

namespaces are correctly segregated and security restrictions are in place.

. Clusters as a Service: Each tenant receives their own cluster when using the clusters-
as-a-service paradigm. This paradigm allows tenants to have distinct versions of cluster-
wide resources like CRDs, yet the Kubernetes control plane is fully isolated. Projects
like Cluster API (CAPI), which uses a management cluster to provision several workload
clusters, can be used to provision tenant clusters. A tenant is assigned to a workload
cluster, and tenants have complete authority over cluster resources. It’s worth noting
that in most companies, a central platform team is in charge of administration essential
add-on services like security and monitoring, as well as cluster lifecycle management
services like patching and updates. It’s possible that a tenant administrator won’t be

able to change the centrally managed services or other key cluster data. [64]

. Control planes as a Service: The tenant cluster may be a virtual cluster under
a variant of the clusters-as-a-service model, where each tenant has their own private
Kubernetes control plane but shares worker node resources. Users of a virtual clus-
ter observe no substantial differences between a virtual cluster and other Kubernetes
clusters, as they do with other forms of virtualization. Control Planes as a Service is
another term for this (CPaaS). This kind of virtual cluster shares worker node resources
as well as task state independent control plane components such as the scheduler. To
accommodate conflicts, other workload-aware control-plane components, such as the
API server, are constructed per-tenant, and additional components are employed to
synchronise and maintain state across the per-tenant control plane and the underlying
shared cluster resources. Users can control cluster-wide resources using this model.
This paradigm is implemented by the Virtual Cluster project, in which a supercluster

is shared by several virtual clusters. The Cluster API Nested project is developing
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this work to adhere to the CAPI architecture, allowing users to provision and manage

virtual clusters using familiar API resources. [64]

Using one or more of these models in our proposed data analytics stack can mainly guarantee
the reliability and integrity of analyses in data access. In a nutshell, namespaces as a service
tenancy concept promote resource efficiencies by allowing clusters to be shared. However,
because all tenants use the same cluster-wide resources, it necessitates suitable security mea-
sures and has constraints. The clusters address this constraint of namespaces as a service
model as a service tenancy paradigm but at the cost of higher management and resource
waste. For instance, in a cluster as a service model, one cluster cannot have access or in-
terfere with data or results from another cluster. Moreover, as another example, in control
planes as a service model, the tenant cluster owner will share worker node resources. The con-
trol planes as a service paradigm enable tenants to share Kubernetes cluster resources while
also managing their cluster-wide resources. Sharing worker node resources improves resource

efficiency, raising questions about cross-tenant security and isolation in shared clusters. [64]
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CHAPTER 4 EVALUATION

As described in the previous chapter, certain components of the proposed platform can be
implemented using various tools. In order to provide better insight and guide the users
to choose the best tool for their purposes we present a series of comparative experiments
where we compare the performance of certain alternatives (with respect to ML analyses
and streaming), so that the users can choose which tool fits best based on their anticipated
workloads and resource constraints. In fact, the section includes a comparison between Spark
and Storm on streaming analytics as well as a comparison between Spark and Hadoop on

ML workloads, using a big data benchmarking suite called HiBench [65].

4.1 Performance Evaluation Processes and Tools Used

To evaluate and characterize the popular analytics tools such as Hadoop, Spark, Storm, and

Storm trident in terms of latency (i.e., job running time), we used Hibench.

HiBench is a tool that can compare different big data frameworks in terms of latency, through-
put, and system resource usage. It includes various workloads such as Sort, WordCount,
TeraSort, Repartition, Sleep, SQL, PageRank, Nutch indexing, Bayes, Kmeans, NWeight,
and enhanced DFSIO for Hadoop, Spark, and streaming workloads. [65] However, since the
streaming section does not provide a report with system resource usage, we used another tool
called Netdata. Netdata is a real-time monitoring system that provides a complete result
of various resource usages during each workload process. In addition, the results can be

aggregated from all the nodes’ resource usage.

The benchmarking of Big Data systems can be split into three key elements or aspects, which
are usually carried out in order. The first stage is to generate workload input data. Following
the generation of the data, an analytic job is executed with the data as input. Finally, a
report is generated that includes several parameters such as latency, execution time, etc.

Figure 4.1 shows the process flow diagram for stream-based Benchmarking in HiBench.

The components of the streaming benchmark are as follows:

o Data Generation: The data generator intends to produce consistent data and transfer

it to the Kafka cluster. Therefore, when a record is created, it is given a timestamp.
o Kafka cluster: The data is saved to Kafka topics by each streaming workload.

o Stream processing tool in cluster mode: A Spark, Storm cluster could be used.
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Figure 4.1 Process flow diagram for stream based Benchmarking in HiBench

The streaming application gathers data from Kafka, processes it, and writes the results
back to another Kafka topic (Identification, Repartition, Wordcount, Fixwindow). A

timestamp is also assigned to each entry in the result.

e Metrics reader: It reads the result from Kafka and calculates the time difference

(Record out time - Record in time) before producing the report.

Software Requirement

| |

‘ OpenStack Flavor ‘ Centos 7 ‘

‘ Java JDK ‘ V1.8 ‘

‘ Maven ‘ 3.83 ‘ ‘ Hardware Configuration ‘

\ Python \ V2.7 \ | Openstack |

| Hadoop(cluster Mode) | V3.2.2 | | Instance Type | Nova |

‘ Hibench ‘ Vs ‘ ‘ Instance Numbers ‘ Three ‘

| Kafka(cluster Mode) | V0.8.2.2 | | Processor(VCPUs) | 40 |

| Zookeeper (cluster Mode) | V3.4.8 | ‘ Memory | 3*90GB |
V2.2.0 (Streami | Disk | L5TB |

Spark (cluster Mode) V3.(().3EIC\;El)mg)
| Storm (Cluster Mode) | 1.0.1 |

Table 4.1 Software and Hardware Specifications
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4.2 Hardware and software specification

The experiments were carried out on a Compute Canada OpenStack cluster. The cluster
is configured with one master and two slave nodes. As shown in the Table 4.1, the cluster
is equipped with a total of 40 VCPU cores and 1.5 TB of local storage across all nodes.
The hardware is capable of dealing with a variety of challenging situations in Spark and
MapReduce and Storm. We have used Netdata to monitor the selected workloads resource

usage in all the nodes and also in aggregation amount.

HiBench Advanced Configuration
Data scale profile
“tiny ", “small”, “large”, “huge®, “gigantic’, “bigdata’
hibench.default.map.parallelism | Mapper numbers in Map Reduce/Partition numbers in Spark
Reducer numbers in MRshuffle/
Partition numbers in Spark

hibench.scale.profile

hibench.default.shuffle.parallelism

hibench.yarn.executors.num Number executors in YARN mode
hibench.yarn.executors.cores Number executor cores in YARN mode
spark.executors.memory Executor memory, standalone or YARN mode
spark.driver.memory Driver memory, standalone or YARN mode
hibench.compress.profile Compression option “enable™ or “disable’
hibench.compress.codec.profile Compression codec, “snappy’, "lzo" or “default’

Table 4.2 HiBench Advanced Configuration

4.3 Tuning approach and parameters of Interests

There are advanced configuration options in HiBench that it is necessary to familiarize
oursleves with them before start benchmarking tools. These parameters have been shown
in Table 4.2. [66] Furthermore, it is also critical to tune parameters for big data computing
applications such as Hadoop, Spark and Storm before benchmarking. We need to understand
which parameters have a significant impact on system performance. The parameter configu-

ration must be investigated concerning workload, data size, and cluster architecture.
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Framework Related Configuration
e mapreduce.map.memory = 6 GB
¢ mapreduce.reduce.memory = 8 GB
Hadoop
¢ mapreduce.reduce.cpu.vcores = 4
e mapper.number = 12
o reducer.number = 8
configuration Large Huge Bigdata
e spark.driver.memory = 6 GB num of clusters 5 5 5
« spark.executor.memory = 8 GB dimensions 20 20 20
Spark « spark.executors.num = 2 num of samples 20000000 | 100000000 | 1200000000
« spark.executor.cores = 4 samples per inputfile | 4000000 | 20000000 | 4000000000
. . -
« spark.default.parallelism = 12 max 1t:rat10n b ° 10
10 10 10
e spark.sql.shuffle.partitions = 8
Table 4.3 Spark and Hadoop Configuration Table 4.4 K-means Tuning Parameters

These parameters are investigated for each experiment.

- Batch-ML Ezxperiment: We ran some experiments with Apache Hadoop and Apache
Spark, each with a different set of parameters. We chose the core MapReduce and Spark
parameter settings from resource utilization and shuffle groups for this experiment. Table
4.3 displays related configuration on the map-reduce and Spark categories, along with their

adjusted values. Furthermore, Table 4.4 illustrates the tuned parameters for each profile.

- Streaming Experiment: Before we begin to do benchmarking we required to do some
configuration in Hibench to make sure there is no bias within the results between the results

of spark and storm. Table 4.5 displays the tuned parameters on Storm and Spark.

Framework Related Configuration
e Executor Number = 2
e Map Parallesim =12

o Worker =8

« KafkaSpout= 12

Spark Streaming

Storm

Table 4.5 Streaming Frameworks Benchmarking Related parameters Configuration

4.4 Hadoop vs Spark

4.4.1 Functional comparison of Hadoop and Spark

Hadoop is a framework that employs the MapReduce (MR) model. In contrast, Spark is
a technology for fast cluster computation that amplify the MR model to handle a broader
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range of computations efficiently. [39]

In terms of performance,Hadoop’s MapReduce model reads and writes to disk, slowing pro-
cessing performance, whilst Spark decreases disk read/write cycles and stores intermediate

data in memory, resulting in quicker computing speed. [67]

From perspective of ease of use, Hadoop requires developers to program each operation,

whereas Spark uses RDD to make programming easier.

Because the Hadoop MR model only includes a batch engine, it relies on other engines for
other necessities. On the other hand, Spark can run batch processing, interactive queries,

ML, and stream processing in the same cluster. [67]

In terms of performance, Hadoop is a high-latency computing framework that lacks an inter-
active mode. whilst, Spark is a processing framework that can process the data interactively

and with low latency. [67]

Hadoop is built to manage faults and failures. The fact that it is resilient to faults, making
it an excellent fault-tolerant system, although RDD in Spark allows partition recovery on
failed nodes. [67]

To schedule complex flows, Hadoop requires an external job scheduler, such as Oozie, whereas

Spark uses in-memory computation and thus has its own flow scheduler.

In terms of cost efficiency, Hadoop is the less expensive option in terms of cost-efficiency,
whereas Spark needs a lot of memory to run tasks, increasing the cluster and thus the

cost. [67]

From the perspective of scalability, as data volume multiplies, Hadoop scales rapidly to meet
the demand through the HDFS. In turn, for large amounts of data, Spark depends on the
fault-tolerant HDF'S. [39]

In terms of security, Spark enhances security by using a shared secret or event logging, while
Hadoop employs a variety of authentication and access control techniques. Thus, although
Hadoop is more secure, Spark can incorporate it with Hadoop to achieve a satisfactory degree

of security. [39]

Because it includes MLIib, Spark is the outstanding platform in this category for better
machine learning support capability. Spark MLib performs iterative in-memory ML com-
putations. It also contains regression, classification, persistence, pipeline construction, and

evaluation techniques, among other things. [39]
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4.4.2 Batch-ML Experiment

In this section, we evaluate the K-means clustering algorithm performance using Hibench for
HadoopBench and SparkBench. This workload implements K-Means, which is a prominent
clustering algorithm for data mining and knowledge discovery. This benchmark accepts a
sample set as input, with each sample presented as a numerical D-dimensional vector. [68]
The centroid of each cluster is computed first in this workload by iteratively running the
Hadoop task until the number of iterations reaches the set limit. The clustering process
is then executed, which assigns each sample to one of the clusters. The workload input is
generated using a random data generator with a statistic distribution. For this benchmark,
GenKMeansDataset generates the input dataset based on uniform and Gaussian distribu-
tions. Zhan et al. [69] mentioned that throughout iteration, this process is CPU-bound, and
during clustering, it is I/O-bound.

Kmeans Clustering

140000000
120000000
100000000
80000000
60000000
40000000
20000000

0
Large Huge bigdata Large Huge bigdata

Hadoop Spark

Throughput(bytes/s)

Figure 4.2 Hadoop and Spark Kmeans-Clustering Workload throughput

The goal of running this workload is to compare K-means results between Hadoop and spark

in terms of throughput. We tried to compare the results by changing the three Hibench

Hibench.profile | Duration(s)

Large 702.089

Hadoop Huge 697.906
Big Data 1256.161

Large 30.703

Spark Huge 33.435
Big Data 40.985

Table 4.6 Hadoop and Spark Batch-ML Duration
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profiles, each with distinct parameters values. Table 4.5 illustrates the parameters values in
each performed profile. The results of benchmarking are shown in figure 4.2. The results
show spark outperforms Hadoop during all testing profiles. Table 4.6 illustrates the duration
of each HiBench profile for Hadoop and Spark.

4.5 Stream Analytics Storm vs Spark

4.5.1 Functional comparison of Storm, Spark and Trident

Storm supports actual stream processing by the core layer in its process model, while Spark
streaming acts mainly as a wrapper for Spark batch processing. From the perspective of
message delivery, Storm has a processing mode called "exactly once." It can also be used in
"at least once" and "at most once" processing modes. However, The "exact once" processing
mode is the mode that is enabled by Spark streaming. Trident is also use "exact once"

processing mode. [70]

Ackers! in Storm are aware of whether or not a record has been successfully processed. If
it does not succeed, try afterward. In Storm, there is no guarantee of state consistency. In
the event of a failure, Storm uses the acking mechanism to replay Tuples. The state may
be committed, but the worker may crash before acking the Tuples. The Tuples are replayed
in this situation, resulting in repeated state update. In addition, Checkpointing with the
streaming context is required in stateful streaming so that the state can be restored if nec-
essary. In Spark Streaming, checkpointing is used to provide fault tolerance. Essentially, the
intermediate values are saved in a storage system, preferably one that is fault-tolerant, such
as HDFS. As a result, state in spark is persisted in durable storage since Checkpoint is tied
with state storage per Batch. In Storm core, Bolts can save and retrieve the state of their
operations using abstractions. There is a default in-memory-based state implementation as
well as a Redis-backed state persistence approach. [71] In Spark streaming, the updateState-
ByKey API and in newer versions mapWithState API can be used to maintain and change
state. In Storm, KeyValueState uses. In addition, in Storm Trident, state constancy is guar-
anteed using persistentAggregate. Figure 4.3 illustrates fault-tolerant mechanism in Storm,

Spark and Trident. This is very important part since it affects lots of features.

Storm has a large number of primitives for performing tuple level processing at stream inter-
vals. Aggregations of messages in a stream are achievable using group by semantics. Storm
supports right join, left join, and inner join (default) throughout the stream. Besides, There

are different sorts of streaming operators in Spark streaming: stream transformation opera-

IStorm’s acker tracks completion of each tupletree with a checksum hash [45]
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Figure 4.3 Spark and Storm Fault-Tolerant Mechanism

tors and output operators. When we discuss over stream transformation operators, it means
to transfer one DStream into another. Output operators are those who write data to external

systems. [70]

Storm is built with fault tolerance as its core. If the process fails, the supervisor process will
immediately restart it. As ZooKeeper is in charge of managing the state. Spark Streaming
is also built to be fault-tolerant. Spark uses resource managers like Yarn, Mesos, or its Stan-
dalone Manager to restart workers.

From an operability standpoint, it is not easy to deploy/install Storm through numerous
tools and launches the cluster. Storm is controlled by the Zookeeper cluster, which handles
cluster coordination and stores cluster state and statistics. Storm daemons are also forced to
run in supervised mode rather than standalone mode. On the other other hand, Spark can
also manage by an application master in YARN mode, feeding a YARN spark cluster is not
difficult. However, in the sandbox, resource management is handled by Kubernetes instead
of YARN. [70]

Apart from that, every topology is accessible through Storm UI. This aids in high-level prob-
lem debugging and enables metric-based monitoring. The built-in metrics feature helps pro-
grams to emit any metrics at the framework level. Furthermore, external metrics/monitoring
systems can be easily incorporated with this. In addition, spark web UI displays statistics of

running receivers and accomplished tasks. In addition, observing the application’s execution
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information is also beneficial. Also, the following information in the Spark web UI is required

for batch size standardization:

Processing Time - This is the amount of time it takes to process each batch of data.
Scheduling Delay - This is the amount of time a batch sits in a queue waiting for preceding

batches to finish processing. [70]

Each worker process in Storm runs executors for a specific topology. At the worker process
level, mixing multiple topological jobs is not permitted. Despite this, topology-level runtime
isolation is supported. In addition, the Spark executor runs in a separate YARN container in
Spark streaming. As a result, Yarn provides JVM isolation. Because two distinct topologies
cannot run in the same JVM; Instead, YARN enables resource segregation at the container

level, allowing container restrictions to be arranged. [70]

Compositional and Declarative programming models are two types of programming models.
The compositional approach provides essential building parts such as sources and operators,
which must be connected to form the desired topology. In most cases, new components are
defined by implementing some form of interface. Operators in declarative API, on the other
hand, are defined as higher-level functions. It enables developers to write functional code
with abstract types and associated gizmos while the system automatically generates and
optimizes topology. Declarative APIs are also more likely to include complex features like
windowing and state management out of the box. Compositional API offers fully configurable
operators based on fundamental building blocks. It allows us to define and optimize topolo-
gies manually. Storm can be categorized into this type. In the Declarative API, higher-order
functions (map, filter, mapWithState...) are available as operators and logical plan optimiza-
tion. Spark Streaming and Trident are categorized in this type. [71]

Python and R are two common dynamically-typed languages used mainly by data scientists,

supported by spark streaming and Storm but not in Trident. [71]

There are four different run time models listed as below: [71]

1. Single Task on Single Process
2. Multi Tasks of Multi Applications on Single Process
3. Multi Tasks of Single application on Single Process:

« Single task on single thread which supported by Spark Streaming.

o Multi tasks on single thread which supported by Storm and Trident.
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Figure 4.4 Run Time Model of Storm and Spark

Figure 4.4 illustrates the run time models of execution for Spark and Storm. Table 4.7

summarizes spark and storm and trident framework characteristics. [72]

Table 4.7 Overall comparison of Spark, Storm and Trident

‘ Framework Characteristics ‘ Streaming Tools ‘
‘ ‘ Storm ‘ Spark ‘ Trident ‘
‘ Assurance ‘ At Least Once/ At Most Once ‘ Exactly Once ‘ Exactly Once ‘
‘ State-fullness ‘ Yes ‘ Yes ‘ Yes ‘
‘ Flow of Data ‘ DAG ‘ DAG ‘ DAG ‘
‘ Community ‘ Selective ‘ Wide ‘ Selective ‘
‘ Streaming Type ‘ Native Streaming ‘ Micro-Batching ‘ Micro-Batching ‘
| API | Compositional | Declarative | Declarative |
‘ Scaling ‘ Manual ‘ Auto ‘ Manual ‘
‘ Language ‘ Java, Clojure, Scala ‘ Scala, Java, Python ‘ Java, Clojure, Scala ‘
‘ Data Carrier ‘ Tuple Stream ‘ Dstream ‘ Tuple Batch ‘
‘ Maturity ‘ High ‘ High ‘ High ‘

4.5.2 Streaming Experiments

HiBench has a total of 29 workloads. Micro, ml (machine learning), sql, graph, websearch,
and streaming workloads. Among all, there are workloads specified only for Streaming Bench-

marks purposes which are classified into 4 groups: [65]

1. Identity (identity):
This workload goal is to read data from Kafka and rapidly start writing the output to Kafka;
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there is no complex business logic involved.

2. Repartition (streaming/repartition):

This workload gets data from Kafka and adjusts parallelism by dividing the data into more
or fewer partitions. It evaluates the effectiveness of data shuffle in streaming systems.

3. Stateful Wordcount (wordcount):

Every several seconds, this workload calculates the number of words received from Kafka.
This benchmarks the performance of stateful operators and the cost of Checkpointing and
Acking mechanisms in streaming platforms.

4. Fixwindow (fixwindow):

A window-based aggregation is performed by the workloads. It evaluates the performance of

streaming frameworks’ window operations.

Benchmarking related parameters configuration for streaming frameworks has been shown in
Table 4.5. This study has been done to compare and assess the performance and efficiency of
big data tools using the HiBench benchmark suite. This section only concentrates on Stream
processing tools benchmarking for streaming applications like Apache Spark, Storm, Trident.
We run all of the aforementioned workloads on the Spark, Storm, Trident five times each for
30 minutes. Latency results are plotted for all streaming workloads. Figure 4.5 illustrates
all the workloads results. Based on the results on Streaming Workload Results of boxplotR
figures, the latency of all types of workload for Storm was the lowest. Although, results of

latency for identity and wordcount workloads were more closer to spark.

To measure resource usage, we run Identity workload (with bigdata profile) on each framework
and for 30 minutes. After that, we used Netdata to monitor the sum of all three nodes’
resource utilization. In addition, to ensure there is no bias in results, we wait about 2 hours
between every test. Furthermore, we used this command to remove all system memory caches

and swap in between the tests.

$ su -c "echo 3 >'/proc/sys/vm/drop_caches' && swapoff -a && swapon -a &&

printf '\n¥%s\n' 'Ram-cache and Swap Cleared'" root

In terms of memory consumption, Spark consumes the most. However, Storm was also was
high memory consumer during its operation. However, it uses mainly cache memory (55.0
GB) and less used memory (20.7GB) compared to Spark. Section (b) of figure 4.6, 4.7 and

4.8 illustrates the consumption of memory respectively in Spark, Storm and Trident.

In terms of CPU usage, Storm was the one that consumes the most CPU during workload
running. (around 50% of the overall cluster’s CPU amount was busy during its operation)

In comparison, CPU usage in Storm Trident was the least, which makes it ideal for CPU-
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intensive stream computing tasks. Section (a) of figure 4.6, 4.7 and 4.8 shows the consumption

of CPU respectively in Spark, Storm and Trident.

Spark puts more load and stress on the system; however, this amount is less for Storm and a
lot less for Trident. Section (c) of figure 4.6, 4.7 and 4.8 illustrates the system load in Spark,
Storm and Trident.

In terms of disk I/O, Spark has only read operation from disk. Storm has more write
operation than read. Trident also only read from disk. Section (d) of figure 4.6, 4.7 and 4.8
depicts disk /O consumption respectively in Spark, Storm and Trident.

In terms of Network usage, Spark has the maximum network consumption while its processes.
Section (e) of figure 4.6, 4.7 and 4.8 illustrates the consumption of network respectively in
Spark, Storm and Trident.

Since Repartition workload can represent the efficiency of data shuffle in streaming frame-

works, results can prove the best ability of data shuffling in Spark.

Whereas Wordcount workload measure the performance of stateful operators, the low latency
of Storm between Spark and Storm proves that the cost of Checkpointing is more than Acking

fault-tolerance mechanism.

According to latency results for Fixwindow workload, we can conclude windowing in Storm

is faster than other frameworks.

In summary, Trident has the lowest resource usage between the three streaming tool such as
CPU, memory, network, etc. Furthermore, it has the highest latency between the other tools

in streaming workloads.
We can also summarize the results as a guide for the users listed as below:
o Spark has the best ability of data shuffling
e Cost of Checkpointing is more than Acking fault-tolerance mechanism.
o Windowing in Storm is faster than Spark
o Storm Trident is the ideal tool for CPU intensive stream computing tasks.
o Spark uses mostly cache memory while Storm uses memory during workload execution.
e The best tool in terms of memory usage is Storm trident.

» Spark has more write operation than read while Storm has mostly read operation while

processing data



e Spark uses the most network usage

e Storm and Storm trident put the least load and pressure on the system.
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Figure 4.7 Storm Streaming Workload Resource Usage
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CHAPTER 5 CONCLUSION

5.1 Summary

Our main contribution was to design a flexible, lightweight, customizable, and scalable ana-
lytics platform for health information systems. We proposed the Sandbox Architecture which
is based on popular open-source technologies and on Kubernetes to provide a reliable layer
for management and scalability. In addition, this deployment method makes an application
more portable, simplifies dependency packaging, and facilitates repeatable and reliable build

workflows.

This project also aimed to study big data tools and processes to choose the most efficient
ones for this platform. To achieve this goal, we study mature stream and batch processing

tools and the advantages and disadvantages of each.

In the last chapter, we used an HiBench benchmarking suite to validate Storm, Spark Stream-
ing and Storm Trident from latency and resource usage perspective. Moreover, Another eval-
uation experiment was conducted among Hadoop and Spark in order to compare throughput

results within three different profiles for Batch-ML purposes.

5.2 Limitations

There are also limitations for the research. There are other streaming tools available on the
market. For instance, both Flink and Samza are gaining traction, there is a need to see
some definitive values around their performance potential. Since the purpose of this study
was not to conduct an exhaustive study of the available tools, but simply to demonstrate
the application stream analytics on the domain of health. However, future works may be

necessary to identify the optimal platform for the domain.

Another limitation is the benchmarking suite’s implementation. While every effort was made
to code the experiments according to best practices, each framework has nuances and quirks
that can only be learned after a significant time. Looking through various framework-related
forums revealed this fact. Given the variety of configuration options available within each
framework, the scope of this study is relatively limited, with only some configurations tested.
It was beyond the scope of this study to attempt to execute any further than what had
already been done. Readers should be aware that this study and its findings only apply to

the configurations specified in Chapter 4. Storm, as an example, allows developers to specify
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the parallelism of individual spouts and bolts within a topology programmatically. This
reveals how users can get better results with these frameworks; Many hours may be spent

finetuning individual applications in production environments.

Lastly, the container environment in Kubernetes is not persistent by default. However, there
are solutions to resolve this issue for the applications deployed in Kubernetes that need
persistent storage to store data. These solutions need to be evaluated to see whether they
perform well in various workloads and fluctuation of demands. There are also lots of concepts
for better configuring and optimizing Kubernetes. This work only studies autoscaling and
multi-tenancy. The evaluation of autoscaling methods in terms of various workloads was not

also in the scope of this study.

5.3 Future Research

For the future research more studies for the other streaming application available on the
industry is needed. Also, benchmarking of stream and batch computing frameworks on
kubernetes can be a good practice to reveal how much resources is required for each workload

and each streaming application. These framework need to evaluate in various cloud providers
like Azure, AWS, OpenStack.

Another works can be also to compare performance between Storm Trident and Spark Struc-

ture Streaming.

The study on how to optimize setting up the application on kubernetes to reduce costs
of resource usage. How to optimize application pod sizes to avoid wasting capacity. For
instance, optimizing performance on spark to achieve best shuffle performance. Test various
kubernetes autoscaling methods and compare in terms of various workloads latency and

throughput, can be done.
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