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RÉSUMÉ 

Dans les dernières années, beaucoup d'efforts ont été investis par les différentes instances 

gouvernementales pour réduire l'impact environnemental associé au traitement des matières 

résiduelles, en misant principalement sur une amélioration du tri à la source. Ces efforts ont permis 

une réduction importante de la quantité de matières résiduelles enfouies chaque année, tout en 

contribuant également à une modification de la composition de ces matières. Par contre, malgré 

une amélioration continue du tri à la source par le citoyen, il est attendu qu'une quantité importante 

de matières résiduelles ayant un potentiel de valorisation élevé continue d’être enfouie chaque 

année, indiquant un besoin clair pour l'implémentation de solutions complémentaires. L'approche 

la plus souvent utilisée pour valoriser les ordures ménagères et réduire leur impact environnemental 

est le traitement mécano-biologique. Malgré son importance en Europe, le traitement mécano-

biologique demeure largement méconnu en Amérique du Nord, principalement dû à des essais peu 

fructueux par le passé. Ainsi, les premières usines construites ont fermé, étant incapables de 

produire des matières ayant une qualité satisfaisante en suffisamment grande quantité. Une des 

raisons expliquant ce problème est que ce type de procédé est généralement conçu à partir de 

méthodes semi-empiriques qui ne sont pas nécessairement représentatives de la situation 

représentée.  

Pour remédier à la situation, il est primordial d’être en mesure de prédire la composition et les 

principales propriétés physiques des matières produites par un traitement mécano-biologique. 

Ainsi, une modélisation rigoureuse de ce procédé est nécessaire afin de permettre de prendre en 

compte la variabilité de l’intrant et des différentes configurations possibles lors de la conception 

de ce type de procédé. Également, une meilleure compréhension des mécanismes physiques du 

procédé doit être atteinte. Pour ce faire, un nouvel outil de modélisation hybride et flexible est 

proposé dans cette thèse.  

Une analyse des données disponibles portant sur l’opération d’équipements de tri de matières 

résiduelles a montré que peu de données sont disponibles dans la littérature quant à l’efficacité de 

ces équipements, dû à la complexité de déterminer ces valeurs. Afin de remédier à cette 

problématique, une méthodologie basée sur un algorithme d’optimisation linéaire a été proposée 

permettant la résolution des bilans de masse de ce type de procédé. La méthodologie a été validée 

à partir de caractérisations effectuées pour une centre de tri de matières recyclables situé au Québec, 
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indiquant qu’il est possible de résoudre la sous-détermination du bilan de masse à partir de 

caractérisations appropriées et ciblées.   

L’analyse de la littérature a également permis d’identifier une grande variabilité des efficacités de 

séparation des différents équipements de tri selon les situations, menant à des lacunes lors de la 

prédiction de leurs rendements. Toutefois, pour la prédiction du rendement global d’un procédé de 

tri, l’importance de cette variabilité dépend de la famille de séparateur mécanique considérée. 

Ainsi, les séparateurs directs ciblant une propriété sont caractérisés par une sensibilité plus grande 

que les séparateurs indirects et les séparateurs directs ciblant un type de matière. Ce premier type 

de séparateur a une influence importante sur le calcul de la récupération de tous les produits d’un 

centre, faisant en sorte qu’une modélisation des mécanismes physiques est essentielle pour ce type 

de séparateur.  

La modélisation des mécanismes physiques d’un séparateur mécanique requiert toutefois une 

connaissance approfondie des propriétés physiques des matières résiduelles. Par contre, peu de 

données sont disponibles dans la littérature quant aux principales propriétés, soit la taille des 

particules, la densité et le facteur de forme. Également, aucune approche statistique n’est 

présentement privilégiée pour exprimer la taille des particules ou la densité, alors qu’aucune 

méthode quantitative n’a été utilisée dans la littérature pour exprimer le facteur de forme des 

matières résiduelles.  

Une première caractérisation de matières résiduelles mixtes a permis de montrer que la taille des 

particules des matières résiduelles peut adéquatement être représentée par une distribution de 

Rosin-Rammler. Également, il est possible de prédire la taille des particules d’un mélange de 

matières résiduelles comme la somme pondérée des tailles de particules de ses différentes fractions. 

Ceci permet donc de prédire cette propriété pour n’importe quel mélange de matières. La taille de 

particules de matières résiduelles mixtes est également représentée par deux modes, soit un pour 

les matières organiques et un pour les matières inorganiques. La taille de particules d’un mélange 

de matières peut donc être simplifiée par deux distributions de Rosin-Rammler lorsque la 

composition est inconnue.  

Une deuxième caractérisation effectuée sur des matières recyclables a permis de proposer une 

première méthode dans la littérature pour quantifier le facteur de forme, soit en utilisant la fraction 

de vide des objets. Ainsi, les objets ayant une taille en trois dimensions ont une fraction de vide 
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supérieure à 0,95, alors que les objets ayant plutôt une forme en deux dimensions ont plutôt une 

fraction de vide inférieure à 0,91. Cette caractérisation a également permis de déterminer des 

paramètres statistiques importants pour représenter la densité et la taille des particules de plusieurs 

catégories de matières résiduelles et de démontrer l’influence de ces propriétés sur l’efficacité de 

séparation des opérations de tri. 

Finalement, l’obtention de ces résultats a permis de développer un premier outil de modélisation 

prenant en compte les mécanismes physiques d’un procédé de tri mécanique de matières 

résiduelles. Le modèle développé se base sur une représentation rigoureuse des propriétés 

physiques des matières résiduelles et permet donc de prendre réellement en compte l’impact de la 

composition des matières entrantes sur l’efficacité de séparation du centre. Ainsi, la qualité des 

produits issus d’un centre de tri peut donc être prédite avec plus de confiance, menant à 

l’identification de pistes d’optimisation pour ces procédés. Cette modélisation permet également 

de prendre en compte l’impact de la configuration du centre et des principales conditions 

d’opération sur l’efficacité de tri des équipements.  

Cette thèse propose donc des pistes pour améliorer la compréhension du traitement mécano-

biologique et de ses produits. Ceci est d’ailleurs essentiel afin d’améliorer la qualité des produits 

et d’ainsi pouvoir atteindre de nouveaux débouchés pour les matières résiduelles. Ces améliorations 

pourraient s’avérer très importantes pour réduire les impacts environnementaux et sociaux associés 

au traitement des matières résiduelles, tout en permettant une meilleure valorisation des ressources.  
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ABSTRACT 

During the past few years, a lot of effort has been made by the governments to reduce the 

environmental impacts associated to waste management treatment. To do so, a key aspect was to 

improv source separation collections. These efforts lead to an important reduction of the amount 

of waste landfilled each year. However, despite these improvements, an important quantity of solid 

waste, that could otherwise be valorized, is still eliminated every year. This makes it necessary to 

develop new alternatives to recover these wastes. The most common approach used to valorize 

mixed municipal solid waste and reduce the environmental impact associated to their treatment is 

the mechanical-biological treatment. Even though this process is largely used in Europe, it is still 

largely unknown in North America due to unsuccessful previous trials. Many of the first examples 

of mechanical-biological treatment facilities have closed due to an insufficient performance, 

leading to a poor recovery and a poor purity of the different products. One of the reasons leading 

to this problematic is that these processes are often designed based on semi-empirical methods that 

are not necessarily representative of the situation for which they are implemented.  

To overcome this problematic, it is essential to adequately predict the composition and the physical 

properties of the products of mechanical-biological treatment processes. Therefore, a rigorous 

model is required to predict these parameters according to the input composition and the 

configuration of the facility. Also, a better understanding of the physical mechanisms occurring 

during the mechanical separation steps is needed. To do so, a new modeling tool is presented in 

this thesis. This modular tool is based on the integration of two modeling approaches that provide 

a high flexibility and a clear description of the sorting mechanisms.  

First, an analysis of the literature showed that few sorting efficiencies of the main mechanical 

sorting unit operations are currently available, due to the high complexity of calculating these data 

for a facility. To overcome this difficulty, a new methodology based on a optimization algorithm 

has been presented, allowing to solve the mass balance of this type of process. The methodology 

has also been validated based on waste characterizations realized in a material recovery facility of 

commingled recyclable materials located in the province of Quebec. This demonstrates that it is 

possible to solve the under-determination of the mass balance for this type of problem based on 

appropriate characterizations. 
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The literature review also allowed to identify a large variability among the available sorting 

efficiencies data according to the situation, leading to potential inconsistent yield predictions. 

However, in order to predict the global yield of a material recovery facility, the impact of the 

variability depends on the type of sorting separator. The variability of direct separators targeting a 

waste property was shown to have a larger influence on the yield than the variability of direct 

separators targeting a waste material and indirect separators. This larger variability makes it 

essential to consider the physical mechanisms of this type of separator while modeling material 

recovery facilities.  

To model the physical mechanisms of a sorting unit operations, a thorough understanding of the 

physical properties of the waste materials is required. The literature review however showed that 

there is little data available on the main waste properties, such as the particle size, the density and 

the shape factor. Additionally, particle size and density have been calculated in previous works 

based on many different approaches, leading to important inconsistencies. As for the shape factor, 

it has never been quantified for municipal solid waste.  

A first waste characterization of mixed municipal solid waste allowed to demonstrate that 

unprocessed waste particle size can adequately be predicted based on a Rosin-Rammler 

distribution. Also, the particle size distribution of a mix of solid waste can be predicted as the 

weighted sum of the particle size of its different fractions. This result makes it possible to predict 

the particle size distribution of any mix of solid waste. This characterization also showed that this 

property is defined by two distinct modes, one for the organic materials and one for the inorganic 

materials. The particle size distribution of a mix of solid waste can thus be simplified based on a 

bimodal distribution when the composition is unknown.  

A second characterization performed on source-separated recyclable materials allowed to present 

the first methodology to quantify the shape factor, which is based on the void fraction of the waste 

items. It was shown that three dimensional waste categories have a void fraction larger than 0.95 

while two dimensional waste categories have a void fraction smaller than 0.91. This second 

characterization also allowed to determine statistical parameters to model both the density and the 

particle size of several waste categories. The influence of these properties on the mechanical 

separation was also demonstrated.  
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Finally, based on the previous results, a new tool allowing to predict the material flows of a material 

recovery facility was developed. This tool allows to take into account the physical mechanisms of 

the main unit operations of the process. It is based on a rigorous modeling of the physical properties 

of the waste, and therefore allows to consider the influence of the sorting sequence and the main 

unit operations on the process outputs. This allows to increase the certainty on the results of the 

prediction of the quality of this type of facility, thus allowing to guide future improvements.  

This thesis presents new alternatives to improve the understanding related to mechanical-biological 

treatment and its products, leading to a better identification of potential markets. This is essential 

to reduce the environmental impact associated to municipal solid waste treatment and to increase 

resource recovery.  
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CHAPITRE 1 INTRODUCTION 

1.1 Mise en contexte 

Dans les dernières décennies, une prise de conscience graduelle s’est effectuée quant à l’impact 

important des ordures ménagères municipales sur notre environnement et nos sociétés. Un 

changement de perception par rapport aux ordures ménagères est également en cours, faisant en 

sorte que ces matières sont de moins en moins considérées comme un déchet à éliminer, mais plutôt 

comme une ressource potentielle à valoriser. Ces changements ont mené à plusieurs modifications 

importantes aux systèmes de gestion des matières résiduelles (GMR) permettant d’augmenter la 

circularité des matières.  

Ainsi, vers la fin des années 1980, le tri à la source et le recyclage des matières recyclables ont été 

implantés au Québec et se sont rapidement étendus à l’ensemble du territoire. Cette filière s’est 

beaucoup développée dans les années suivantes, menant à une automatisation importante des 

centres destinés au tri de ces matières recyclables et à une diversification des filières de recyclage. 

Selon les dernières données disponibles, la filière du recyclage permet d’acheminer 564 000 tonnes 

par année de matières recyclables vers un centre de tri, ce qui représente une récupération d’environ 

64% de ces matières générées par les citoyens (ÉEQ & RECYC-QUÉBEC, 2021).  

Plus récemment, le tri à la source des ordures ménagères a été étendu afin d’inclure une nouvelle 

voie de collecte ciblant les matières putrescibles. Par le fait même, plusieurs usines de traitement 

ont été construites ou sont en voie de l’être, menant à une réduction importante de la quantité de 

matières éliminées. Ainsi, pour la période 2015-2017, c’étaient 200 000 tonnes par année, soit 16% 

des matières putrescibles générées au Québec qui ont été détournées de l’enfouissement par des 

collectes de résidus verts, des collectes de résidus alimentaires ou des collectes mixtes (ÉEQ & 

RECYC-QUÉBEC, 2021). Ces quantités s’ajoutent à celles des autres voies de collecte à la source 

également implantées au Québec incluant le système de consigne, la collecte en écocentre, la 

collecte des matières encombrantes et certaines autres initiatives de récupération.  

Par contre, malgré l’importance de plus en plus grande de la séparation à la source des matières et 

un intérêt marqué pour la réduction à la source, des quantités importantes de matières résiduelles 

d’origine municipale sont encore éliminées chaque année au Québec. Parmi ces matières, plusieurs 

ont un potentiel intéressant de valorisation, et leur récupération pourrait permettre de non seulement 
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réduire les impacts environnementaux associés à l’élimination des ordures, mais également la 

création de nouveaux produits permettant de substituer des matières vierges. La Figure 1.1 présente 

une caractérisation des ordures ménagères pour le Québec pour les années 2015-2017 (ÉEQ & 

RECYC-QUÉBEC, 2021). À partir de cette figure, il est possible d’observer qu’aussi peu que 22% 

des matières présentement éliminées ne sont actuellement pas visées par une filière conventionnelle 

de recyclage. Une grande fraction de matière récupérable est donc perdue chaque année.  

 

Figure 1.1 Composition des ordures ménagères au Québec pour la période 2015-2017 

Afin de remédier à cette problématique, le traitement mécano-biologique (TMB) s’avère 

généralement être la solution privilégiée, car cette approche permet de séparer les différentes 

fractions de matières résiduelles et de les acheminer vers leurs filières de valorisation respectives. 

Ainsi, les différentes matières recyclables récupérées peuvent être envoyées vers les filières de 

recyclage conventionnelles, alors que les matières organiques et les matières combustibles peuvent 

être valorisées selon leur niveau de contamination. Les procédés de TMB permettent donc de 

s’inscrire dans le cadre de la hiérarchie des 3RV-E, tout en bénéficiant d’une structure flexible 

permettant de s’adapter aux différentes situations. Cette hiérarchie est issue de la Politique 

québécoise de gestion des matières résiduelles et permet de prioriser les approches de traitement, 

favorisant ainsi dans l’ordre la réduction à la source, la réutilisation, le recyclage et la valorisation 

avant l’élimination.  
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Le TMB est généralement utilisé comme option complémentaire aux collectes sélectives, mais peut 

également être utilisé comme remplacement à ces collectes dans certains cas, comme dans les 

milieux ruraux (Feil, Pretz, et al., 2016; Jansen et al., 2013). 

Au cours des années 1970, quelques tentatives ont été mises de l’avant pour séparer différentes 

fractions des ordures ménagères à partir de technologies communément utilisées dans l’industrie 

minière (Cimpan et al., 2015). Par contre, ce n’est qu’au début des années 1990, que les usines de 

TMB ont réellement fait leur apparition, principalement en Europe et aux États-Unis (Bilitewski et 

al., 2010; Cimpan et al., 2015). Depuis, ce type d’usine a évolué et prend de plus en plus de place 

comme alternative pour la valorisation des ordures ménagères dans le monde et comme méthode 

pour réduire les impacts environnementaux associés à la gestion des matières résiduelles.  

Par exemple, le Royaume-Uni compte présentement 22 centres de TMB permettant de traiter plus 

de 2,3 millions de tonnes d’ordures ménagères par année et une importante croissance est encore 

attendue dans les prochaines années (Cook et al., 2015). En France, 57 installations étaient en 

fonctionnement en 2015 (Beylot et al., 2015). Pour ce qui est du Québec, très peu d’installations 

de TMB ont vu le jour et n’ont généralement pas eu les succès escomptés.  

Comme son nom l’indique, le traitement mécano-biologique inclut une succession de séparateurs 

mécaniques et un procédé biologique. Le procédé biologique consiste généralement en une 

digestion aérobie ou anaérobie et peut soit être situé au début de la chaîne de traitement mécanique, 

permettant de favoriser la séparation et la production d’un combustible dérivé de déchets (CDD), 

ou à la fin de celle-ci, favorisant alors la stabilisation de la matière organique afin de réduire 

l’impact environnemental associé à son élimination (Bilitewski et al., 2010). Dans certains cas, 

généralement situé en Amérique du Nord, aucun procédé biologique n’est utilisé, permettant ainsi 

une réduction importante du temps de traitement, sans toutefois permettre la stabilisation de la 

matière organique. Ce type de centre est généralement défini par le terme « Dirty MRF » ou 

« mixed MSW MRF » (municipal solid waste material recovery facility) (Cimpan et al., 2015).  

Peu importe la configuration choisie, la séquence de traitement mécanique inclue généralement les 

mêmes types d’équipements avec un niveau de complexité variable, soit des tamiseurs, des 

séparateurs balistiques, des séparateurs par densité, des séparateurs de métaux, des trieurs optiques 

et du tri manuel (Di Lonardo et al., 2012; Rotter, 2011; Velis et al., 2010). L’ensemble de ces 

équipements a pour objectifs de séparer quatre principales fractions présentes dans les ordures, soit 
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un courant de matières recyclables relativement pur, un courant de matières combustibles, un 

courant de matières organiques partiellement biostabilisées et un courant de rejets destiné à 

l’élimination.  

La séparation des matières s’effectue en exploitant les différences de propriétés entre les matières 

à séparer. Plusieurs propriétés peuvent donc jouer un rôle, incluant la forme, la taille des particules, 

la densité, le comportement électromagnétique, les propriétés optiques et les propriétés élastiques 

(Velis et al., 2010). Cependant, comme les propriétés des différentes catégories d’ordures 

ménagères s’entrecroisent, le tri de ces matières se traduit généralement par une importante 

contamination de plusieurs des fractions produites. Ainsi, les produits d’une usine de TMB sont 

généralement beaucoup plus contaminés que ceux produits par des usines de tri de matières 

séparées à la source, et les rejets sont généralement plus importants (Christensen & Bilitewski, 

2010). En général, cette contamination plus importante restreint les débouchés des différentes 

fractions produites. De plus, la prédiction de la composition des différents produits est 

généralement difficile, puisqu’elle dépend fortement de la composition entrante et de la 

configuration de la chaîne de traitement (Caputo & Pelagagge, 2002; Di Lonardo et al., 2012; 

Pressley et al., 2015; Velis et al., 2012). 

Ainsi, les usines de TMB n’ont pas toujours atteint les objectifs visés. Selon les choix 

technologiques, les usines conventionnelles produisent environ 3% de métaux pour les marchés de 

recyclage, 30-45% de CDD pour une valorisation énergétique et 30-35% de matières organiques 

stabilisées dédiées à l’enfouissement (Bilitewski et al., 2010). Par contre, l’application d’un tel 

scénario au contexte québécois semble peu réaliste dû au contexte énergétique actuel, à la faible 

acceptabilité sociale de la valorisation énergétique et à la volonté de bannir l’enfouissement de la 

matière organique. Ainsi, afin de favoriser l’intégration de ce procédé dans un contexte québécois, 

et d’ainsi réduire l’enfouissement des ordures ménagères, des améliorations au procédé et 

l’identification de nouveaux débouchés doivent être envisagées.  

Plusieurs options de pré-traitement et de traitement des fractions issues d’un procédé de TMB 

pourraient être utilisées afin d’atteindre de nouveaux débouchés, tels que la carbonisation 

hydrothermale (Kim et al., 2012), la torréfaction (Białowiec et al., 2017), la pyrolyse (Adrados et 

al., 2012) et la gazéification (Vounatsos et al., 2016). Par exemple, la carbonisation hydrothermale 

(hydrothermal carbonization, HTC) pourrait s’avérer être un procédé particulièrement intéressant 
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pour augmenter la valeur de la fraction organique issue d’un TMB en vue d’une valorisation 

énergétique, puisque ce procédé permet d’augmenter la qualité de résidus de biomasse humide, 

tout en tolérant une certaine quantité de plastiques, de fibres, de métaux et de verre (Berge et al., 

2011; Lin et al., 2017b). 

Afin de favoriser l’intégration de ce type de procédés de traitement pour améliorer la valeur des 

produits d’une usine de TMB, il est toutefois nécessaire de s’assurer que la qualité des fractions 

séparées respecte certaines caractéristiques minimales, mais également que la configuration du 

TMB soit adaptée, afin de permettre de maximiser la récupération de l’ensemble des fractions selon 

ces critères de purification. Pour ce faire, une compréhension étendue du système doit être atteinte 

et peut être obtenue à partir d’une modélisation rigoureuse de la situation.   

 

1.2 Cadre de la thèse 

Cette thèse étudie la modélisation du traitement mécano-biologique pour la prédiction de la 

composition et les caractéristiques des fractions produites. Cette modélisation doit permettre 

d’analyser la qualité des produits afin de contribuer à l’atteinte de nouveaux débouchés pour les 

matières résiduelles mixtes n’étant présentement pas triées adéquatement par les citoyens. Les 

principaux aspects à considérer pour effectuer cette modélisation incluent les caractéristiques des 

différentes opérations unitaires du procédé et les principales propriétés physiques des matières 

résiduelles. Une nouvelle approche de modélisation basée sur l’agencement de modules 

indépendants est proposée et utilisée dans une étude de cas. Finalement, le procédé de carbonisation 

hydrothermale est brièvement étudié comme outil complémentaire au TMB pour l’atteinte de 

nouveaux débouchés pour la valorisation des ordures ménagères.  

 

1.3 Structure de la thèse 

Cette thèse est présentée sous la forme d’une thèse par article. Ainsi, une revue de la littérature 

permettant d’identifier la frontière des connaissances est d’abord présentée. Puis, la démarche 

générale de l’étude et le lien entre les sections suivantes sont décrits. Les cinq articles publiés ou 

soumis dans le cadre de ce projet de recherche sont ensuite présentés dans cinq chapitres distincts. 
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Une section supplémentaire sous la forme d’une étude de cas est ensuite présentée permettant 

d’intégrer tous les outils préalablement développés. Finalement, une discussion générale et une 

conclusion résument les principaux résultats obtenus et les perspectives associées.
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CHAPITRE 2 REVUE DE LA LITTÉRATURE 

La présente section trace la frontière des connaissances concernant l’utilisation du tri mécano-

biologique pour la séparation de matières résiduelles, incluant leur fonctionnement, leurs produits, 

leur représentation numérique et les défis auxquels ils font face.  

 

2.1 Fonctionnement du traitement mécano-biologique et applications futures 

Un TMB inclut une séquence d’équipements mécaniques et un procédé biologique permettant la 

séparation des différentes fractions de matières résiduelles et la stabilisation de la matière 

organique (Bilitewski et al., 2010; Cimpan et al., 2015). Le procédé biologique peut soit être situé 

au début du procédé, permettant ainsi de sécher la matière en vue d’améliorer l’efficacité du tri 

(type stabilisation), ou être situé à la fin du procédé, permettant ainsi une digestion de la matière 

organique en vue de son utilisation ou son élimination (type pré-traitement) (Bilitewski et al., 

2010). La Figure 2.1 permet de comparer ces deux situations à partir d’une configuration théorique 

pour ce type de procédé.   

 

Figure 2.1 Schéma théorique d’un procédé de TMB pour une configuration de type pré-traitement 

(a) et une configuration de type stabilisation (b) 

Dans les deux configurations présentées dans la Figure 2.1, une séquence d’équipements de tri 

mécanique similaire est présentée, puisque peu importe le type de TMB privilégié, les étapes de tri 
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mécanique sont généralement similaires. Cette configuration est également similaire aux MSW 

MRFs. La présente section présente une description du fonctionnement du TMB, ainsi qu’une 

description des principaux équipements utilisés, de leur fonctionnement et de leurs limites.  

2.1.1 Le tri mécanique 

Autant les procédés de tri mécanique de matières recyclables que les procédés de TMB sont 

caractérisés par un niveau de complexité et un niveau d’automatisation très variable d’une usine à 

l’autre (Chang & Pires, 2015). Cette grande variabilité des configurations se traduit également par 

une importante variation de l’efficacité globale de ces centres (Caputo & Pelagagge, 2002; Di 

Lonardo et al., 2012; Pressley et al., 2015). Cette variation des efficacités des centres se traduit 

également par une variation importante de leur impact environnemental (Montejo et al., 2013). 

Une chaîne de tri de matières résiduelles est généralement composée de 5 sections, soit le pré-

conditionnement, le conditionnement, la séparation, le raffinage et la manipulation des produits 

(Cimpan et al., 2016). L’étape de pré-conditionnement consiste à préparer la matière en vue de sa 

séparation subséquente et inclut une étape d’ouverture de sac, et dans certains cas une étape de 

broyage (Cimpan et al., 2016). Une étape de tri manuel est également généralement requise afin de 

retirer les matières encombrantes et dangereuses qui pourraient endommager la chaîne (Rotter et 

al., 2004; Vesilind et al., 2002). Ensuite, la séparation de la matière se fait durant les étapes de 

conditionnement, de séparation et de raffinage. Le conditionnement, qui utilise des opérations de 

tamisage, de classification et de séparation balistique, permet de préparer la matière pour sa 

séparation subséquente en concentrant les différentes fractions. La séparation et le raffinage, qui 

utilisent des équipements tels que des séparateurs magnétiques, des séparateurs par courant de 

Foucault, des trieurs optiques et du tri manuel, permettent de séparer les matières selon les produits 

voulus et de les purifier pour atteindre les requis nécessaires. Finalement, la manipulation des 

produits consiste principalement à les mettre en ballots pour la vente ou à effectuer un broyage et 

un briquetage des matières combustibles (Cimpan et al., 2016). Également, les séparateurs 

mécaniques peuvent être catégorisés en deux familles, soit les séparateurs indirects et les 

séparateurs directs. Les séparateurs directs permettent de séparer une matière en ciblant une 

propriété physique, alors que les séparateurs indirects utilisent une méthode indirecte, comme un 

jet d’air, pour séparer une matière identifiée par une propriété physique (Gundupalli et al., 2017).  
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La conception et l’opération de ce type d’usines sont souvent effectuées de façon semi-empirique 

puisque l’efficacité des principaux équipements de tri est souvent mal définie (Velis et al., 2013).  

Les différents équipements de tri communément utilisés pour la séparation mécanique des matières 

résiduelles sont décrits ci-dessous afin de présenter leur rôle pour la séparation des matières et leurs 

principales limites.   

2.1.1.1 Broyage 

Plusieurs équipements peuvent être utilisés pour effectuer le broyage de matières résiduelles, selon 

l’objectif visé et les matières ciblées (Bilitewski, 2010; Tchobanoglous et al., 1993). Une étape de 

réduction de taille est généralement utilisée dans un TMB afin de faciliter l’étape de bio-séchage 

de la matière organique en augmentant la surface d’échange (Velis et al., 2009). Le broyage peut 

aussi avoir comme objectif d’homogénéiser certaines propriétés en vue de la production d’un 

combustible dérivé de déchets (Rotter, 2011). Finalement, ce procédé a également été identifié 

comme une façon d’améliorer la séparation de certaines matières, par exemple en diminuant la 

densité des livres et catalogues de fibres, menant ainsi à une séparation plus facile de ces matières 

dans la fraction légère lors d’une classification à air ou d’une séparation balistique (Rotter et al., 

2004; Velis et al., 2013). L’utilisation d’une étape de broyage a par contre comme effet de libérer 

certains contaminants et d’en faciliter la répartition dans les différents produits (Di Lonardo et al., 

2012; Rotter et al., 2004; Velis et al., 2013). Une étape de broyage peut également mener à 

l’augmentation de la contamination des ballots de métaux en les comprimant, ce qui peut avoir 

comme effet de piéger certains matières dans les métaux (Cook et al., 2015). L’utilisation du 

broyage ne se solde donc pas toujours par une amélioration de l’efficacité du TMB. 

Lorsqu’une étape de broyage est utilisée, elle devrait idéalement se situer après une première étape 

de tamisage, afin d’effectuer une première séparation du verre et des autres matières inertes fines 

comme le sable et le gravier (Rotter et al., 2004). 

2.1.1.2 Tamisage 

Le tamisage représente une opération unitaire très importante dans un TMB et permet d’exploiter 

la différence des tailles de particules des matières pour en effectuer la séparation. Trois 

équipements sont généralement utilisés pour effectuer cette opération, soit le crible rotatif, le tamis 

vibrant et le séparateur à disque (Bilitewski et al., 2010; Tchobanoglous et al., 1993; Vesilind et 
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al., 2002). Le crible rotatif est l’équipement le plus polyvalent des trois et est donc le plus utilisé 

dans les centres de tri de matières résiduelles (Tchobanoglous et al., 1993; Velis et al., 2010). 

Le tamisage a généralement trois objectifs dans une chaîne de tri, soit d’effectuer une première 

séparation permettant de concentrer la matière en vue des prochaines étapes de séparation, de retirer 

les matières fines comme le verre et de récupérer la matière organique (Di Lonardo et al., 2012; 

Vesilind et al., 2002). Le tamisage peut également servir à séparer les fibres des autres matières en 

les concentrant dans la fraction grossière (Damgacioglu et al., 2020; Dubanowitz, 2000), et retirer 

les matières trop petites pour être récupérées par des trieurs optiques (Jansen et al., 2015). Ceci fait 

généralement en sorte que le tamisage concentre les plastiques dans les tailles mitoyennes (Jansen 

et al., 2015). Une étape de tamisage uniquement ne permet toutefois pas d’obtenir des matières de 

qualité suffisante les débouchés conventionnels faisant en sorte qu’une purification subséquente 

des différentes fractions produites est nécessaire (Damgacioglu et al., 2020).  

En permettant de retirer les fines et les matières organiques des autres matières résiduelles, l’étape 

de tamisage permet de concentrer les matières ayant un pouvoir calorifique élevé pour la production 

d’un CDD. Le tamisage est d’ailleurs considéré comme l’équipement le plus approprié parmi les 

équipements de tri mécaniques pour effectuer une concentration des matières ayant un pouvoir 

calorifique inférieur (PCI) élevé (Rotter et al., 2004). Cette concentration du PCI se traduit toutefois 

généralement par une concentration de certains contaminants, comme le chlore et certains métaux 

lourds (Rotter et al., 2004). 

La principale limite à l’utilisation de ce type d’équipement pour la séparation de matières 

résiduelles est le risque de colmatage des ouvertures par des matières humides, fibreuses et 

collantes (Bilitewski, 2010). Ce phénomène est amplifié dans un contexte nordique lorsque la 

température est proche du point de congélation (Ashkiki et al., 2019). Ceci a été démontré pour un 

crible rotatif situé à Edmonton où les conditions de dégel provoquent une agglomération des 

matières organiques dans les trous du crible rotatif, menant à un colmatage complet du crible sur 

une échelle de 2-3 heures, phénomène amplifié par un débit d’opération élevé (Ashkiki et al., 

2019). Ce phénomène a également été observé par les opérateurs du centre de tri de matières 

résiduelles mixtes de Valoris, au Québec, menant à la nécessité d’arrêter la chaîne de tri 

fréquemment pour effectuer son entretien.  
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2.1.1.3 Séparation balistique 

La séparation balistique permet d’exploiter la différence de forme, de taille et de fragilité entre les 

objets pour en effectuer la séparation (Bilitewski, 2010; Eule, 2013). Cette opération permet 

généralement de séparer les matières en 3 fractions, soit les matières de type 2D (c.-à-d.., films 

plastiques, papiers et cartons), les matières de type 3D (c.-à-d. plastiques, métaux, contenants 

multicouches) et une fraction fine. Cette séparation s’effectue à partir d’une rangée d’éléments 

vibrants et inclinés permettant d’entraîner les objets légers et plats vers le haut, alors que les objets 

lourds et en 3D déboulent vers le bas de l’équipement, et que les matières fines passent à travers 

les ouvertures (Bilitewski, 2010). Une séparation des matières fines n’est toutefois pas toujours 

présente selon la configuration de l’équipement.  

Lorsqu’utilisé dans un TMB, un séparateur balistique permet également de concentrer les matières 

combustibles dans la fraction 2D en retirant les principales matières inertes dans la fraction 3D et 

en retirant les matières organiques et les matières inertes de petite taille dans la fraction fine (Müller 

et al., 2003). La taille des ouvertures du séparateur peut généralement être ajustée afin d’optimiser 

l’opération de l’équipement selon la situation (Müller et al., 2003). 

Le séparateur balistique permet généralement d’obtenir un bon rendement, puisqu’il permet de 

retirer les fibres malgré un pourcentage d’humidité élevé (Rotter et al., 2004). Il est également 

considéré comme l’équipement (lorsque comparé au tamisage et à la classification à air) le plus 

performant pour diminuer la concentration de déchets dangereux et des autres contaminants de la 

fraction combustible (Rotter et al., 2004).  

2.1.1.4 Classification à air 

La classification à air permet d’exploiter la différence de densité, de taille et de forme des matières 

en vue de les séparer en une fraction légère et une fraction lourde (Jansen et al., 2015). La séparation 

dépend de la vitesse de l’air injecté et de la vitesse de chute de l’objet (Bilitewski, 2010). La fraction 

légère ainsi produite contient généralement des fibres, des plastiques légers, des métaux non-

ferreux et des matières fines (Tchobanoglous et al., 1993). Ainsi, ce procédé permet d’augmenter 

considérablement le PCI de la fraction récupérée, mais se traduit par un faible rendement (Rotter 

et al., 2004). En pratique, les fibres sont souvent faiblement récupérées dû à leur pourcentage 

d’humidité élevé, faisant en sorte que la fraction récupérée contient presque exclusivement des 

films plastiques, menant à une augmentation de la concentration des contaminants (Rotter et al., 
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2004). Lorsqu’elle est utilisée en fin de chaîne sur un courant de plastiques relativement pur, cette 

opération permet de séparer les films plastiques, qui ont une valeur faible, des contenants rigides, 

qui ont une valeur élevée (Jansen et al., 2015). 

La classification à air peut donc avoir plusieurs objectifs selon son emplacement dans la chaîne de 

tri. Son efficacité est fortement influencée par le débit d’air injecté, ce qui peut permettre de 

s’adapter à la situation. Également, la variation du débit d’air peut permettre d’obtenir un taux de 

récupération élevé avec une contamination élevée ou un taux de récupération plus faible avec une 

pureté plus élevée (Jansen et al., 2015). 

2.1.1.5 Séparation des métaux 

Deux types de séparateurs sont utilisés pour effectuer la séparation des métaux, soit le séparateur 

magnétique, permettant le retrait des métaux ferreux, et le séparateur par courant de Foucault, 

permettant le retrait des métaux non-ferreux. L’efficacité de ces équipements dépend 

principalement du type de matériel ciblé. Elle est également fonction de la taille des particules et 

de leur forme, puisque les matières plus petites ont un taux de capture moins élevé (Raymond, 

2017; Savage et al., 1984). En plus de produire un courant de métaux dédié au recyclage, 

l’utilisation de ces équipements dans un TMB permet de réduire la contamination en métaux lourds 

(principalement en cadmium et en plomb) des autres produits (Rotter et al., 2004). 

En général, l’efficacité de ces équipements est considérée comme très élevée, soit supérieure à 95% 

(Bilitewski, 2010; Tchobanoglous et al., 1993). La principale source de contamination vient de 

l’entraînement des matières légères lors de la récupération (Tchobanoglous et al., 1993). Toutefois, 

des efficacités plus faibles ont été rapportées dans la littérature, principalement pour les séparateurs 

par courant de Foucault, pour lesquels une efficacité généralement plus faible que pour les 

séparateurs magnétiques a été observée (Velis et al., 2010). Par exemple, Velis et al. (2013) ont 

montré dans leur analyse d’un TMB en opération que les métaux non-ferreux n’étaient pas 

adéquatement récupérés, menant à une contamination importante du CDD produit, ayant pour effet 

d’élever considérablement la fraction de cendres (Velis et al., 2013). Des résultats similaires ont 

été observés au centre de tri de Valoris au Québec, où le séparateur par courant de Foucault est 

caractérisé par une efficacité de séparation beaucoup plus faible que pour le séparateur magnétique. 

L’une des raisons pouvant expliquer la plus faible récupération des séparateurs par courant de 

Foucault est que l’aluminium dans les matières résiduelles est souvent mélangé avec d’autres 
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matières (Mastellone et al., 2017). Les métaux non-ferreux ont également des tailles de particules 

plus faibles que les métaux ferreux, ce qui pourrait également contribuer à expliquer la plus faible 

efficacité des séparateurs par courant de Foucault.  

2.1.1.6 Séparation optique 

Les séparateurs optiques permettent de séparer des matières résiduelles en deux étapes, soit en les 

identifiant à partir d’une méthode optique, puis en les séparant à partir d’un jet d’air. 

L’identification des matières peut se faire à partir de la couleur, par spectroscopie infrarouge, par 

rayons X ou par capteur UV (Bilitewski, 2010; Velis et al., 2010). Ils sont principalement utilisés 

dans les centres de tri de matières résiduelles en vue de séparer les différents plastiques. Ils peuvent 

par contre également servir pour la séparation de métaux, de verre et de fibres (Gundupalli et al., 

2017). Les séparateurs optiques par spectroscopie infrarouge sont de loin les plus utilisés pour la 

séparation des plastiques (Hopewell et al., 2009). Leur avantage vient du fait qu’ils permettent 

d’effectuer une classification des différents plastiques, permettant ainsi leur séparation (Gundupalli 

et al., 2017). 

Ces séparateurs sont reconnus pour avoir une efficacité théorique de séparation assez élevée pour 

certaines matières, soit 90% et plus (Velis et al., 2010). Par contre, les différents exemples dans la 

littérature montrent des résultats mitigés selon les matières. Ainsi, les séparateurs optiques ne 

permettent pas de récupérer les matières ayant des faibles tailles de particules (Jansen et al., 2015), 

ainsi que les plastiques noirs (Eriksen & Astrup, 2019; Ragaert et al., 2017). Également, les 

plastiques mélangés peuvent être mal triés selon l’angle du plastique sur le convoyeur, puisque le 

séparateur optique peut identifier le couvercle ou l’étiquette plutôt que le contenant (Eriksen & 

Astrup, 2019; Ragaert et al., 2017). Cette technologie est toutefois toujours en développement et il 

est attendu que son efficacité continue d’augmenter dans les prochaines années (Velis et al., 2010). 

Une autre raison pouvant expliquer les erreurs de tri des séparateurs optiques vient du fait qu’en 

vue d’identifier les matières à trier, celles-ci ne doivent pas être empilées, ce qui n’est pas toujours 

le cas. Également, le jet d’air utilisé n’est pas nécessairement suffisant pour propulser certaines 

matières selon leur densité.    

Dans un TMB, en plus de contribuer à la séparation des différentes fractions de matières 

résiduelles, les séparateurs optiques peuvent jouer un rôle important pour la réduction du chlore 

dans le CDD produit en ciblant directement le PVC (Pieber et al., 2012; Velis et al., 2013). 
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2.1.1.7 Tri manuel 

Malgré le fait que le tri manuel ne correspond pas à un équipement de tri mécanique en tant que 

tel, cette méthode de séparation est indispensable comme le démontre sa présence importante dans 

les centres de tri de matières résiduelles. L’intérêt du tri manuel vient du fait qu’il permet d’obtenir 

des puretés très élevées (Tchobanoglous et al., 1993). Le tri manuel requiert toutefois un faible 

débit d’opération et se traduit par des coûts d’opération élevés (Bilitewski, 2010). Le tri manuel 

doit donc être utilisé de façon limitée pour des applications précises.  

Le tri peut être positif (sélection d’objets visés) ou négatif (retrait des contaminants). Le tri positif 

permet d’obtenir un flux ayant une meilleure qualité, mais de plus faible débit qu’un tri négatif 

(Bilitewski, 2010). Dans le cadre d’un TMB, le tri manuel est généralement utilisé comme appoint 

afin de purifier certains flux nécessitant une qualité élevée (Cimpan et al., 2016). Il est également 

utilisé pour retirer des objets encombrants ou dangereux en début de chaîne pouvant provoquer des 

bris dans le reste du procédé (Cimpan et al., 2016; Rotter et al., 2004; Vesilind et al., 2002). 

Finalement, le tri manuel peut être particulièrement utile pour séparer les flux de plastiques par 

couleur (Ragaert et al., 2017).  

2.1.1.8 Autres méthodes de séparation 

D’autres approches peuvent être potentiellement utilisées pour effectuer la séparation de matières 

résiduelles, telles que des méthodes par flottation ou l’utilisation d’hydrocyclones (Bilitewski, 

2010; Tchobanoglous et al., 1993). Ces méthodes sont cependant très peu utilisées dans les TMB 

actuels et il a donc été décidé de les exclure de cette revue. 

Finalement, certaines approches de tri robotisé sont présentement mises de l’avant par certaines 

compagnies. Cependant, ces approches sont peu utilisées et toujours en développement. Ainsi, elles 

n’ont pas été inclues dans la revue.   

2.1.2 Le traitement biologique 

Comme mentionné précédemment, le procédé biologique d’un TMB peut soit se situé au début du 

procédé ou à la fin. Lorsqu’il est situé en début de chaîne, le procédé consiste généralement en une 

digestion aérobie, communément appelé bio-séchage, alors que lorsqu’il est situé en fin de chaîne, 

le procédé consiste soit en une digestion aérobie ou une digestion anaérobie (Bilitewski et al., 2010; 
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Velis et al., 2010). L’objectif principal du traitement biologique, peu importe ses caractéristiques 

et son positionnement dans le centre, est de réduire la dégradabilité des matières afin de réduire 

leur impact lors de leur enfouissement (Di Lonardo et al., 2012).  

Les trois principaux cas possibles sont décrits brièvement ci-dessous afin de présenter leur 

fonctionnement général. 

2.1.2.1 Bio-séchage 

Le bio-séchage consiste en une digestion aérobie partielle des matières résiduelles permettant 

d’effectuer un séchage partiel et une stabilisation de la matière organique contenue dans les 

matières résiduelles (Velis et al., 2009). Étant situé en début de chaîne, il permet également 

d’améliorer la séparation des matières, puisque les matières sèches sont plus facilement séparables 

(Christensen & Bilitewski, 2010; Velis et al., 2009). Par exemple, pour la séparation des fibres, 

une diminution de l’humidité et de la densité des matières permet de les récupérer plus facilement 

dans la fraction légère produite par un TMB (Velis et al., 2013). Également, le séchage permet de 

rendre la matière organique moins collante, menant à une meilleure pureté des fractions recyclables 

issues d’un TMB (Cook et al., 2015). 

Deux mécanismes principaux opèrent lors du bio-séchage, soit le séchage et la stabilisation de la 

matière organique. La dégradation aérobie de la matière entraîne une stabilisation de celle-ci, ainsi 

qu’un dégagement d’énergie menant au séchage de la matière (Velis et al., 2009). Un procédé de 

bio-séchage compte généralement un temps de résidence variant entre 7 et 15 jours et permet 

d’abaisser le pourcentage d’humidité sous la barre des 20% (Velis et al., 2009). 

Les deux principaux freins à l’utilisation du bio-séchage sont le temps de résidence élevé requis 

pour effectuer cette opération, nécessitant donc un volume d’opération important, et la 

consommation électrique élevée requise pour effectuer la ventilation (He et al., 2013). 

2.1.2.2 Digestion aérobie 

La digestion aérobie, ou compostage, utilisée dans les procédés de TMB fonctionnent généralement 

de la même façon que la digestion aérobie de matières organiques triées à la source. Cette digestion 

se fait généralement en deux étapes, soit une première phase de dégradation de 4-5 semaines, suivi 

d’une étape de maturation de 9-10 semaines (Bilitewski et al., 2010). La digestion aérobie dans un 
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TMB est généralement effectuée en milieu fermé avec différents types d’installation et de systèmes 

d’aération (Bilitewski et al., 2010; Montejo et al., 2010). 

Cette étape peut toutefois avoir différents niveaux de complexité selon les installations et peut 

éventuellement combiner des installations de bio-séchage dans certains cas. Par exemple, dans leur 

analyse d’un TMB en France, Bayard et al. (2010) rapportent que les matières passent par une étape 

de bio-séchage par aération forcée d’une durée de 2 jours avant d’effectuer une séparation 

granulométrique, puis les matières récupérées sont envoyées vers une étape de dégradation avec 

une aération forcée pendant 6 semaines, pour finalement être envoyées vers une étape de 

maturation de 15 semaines avec une aération passive.  

2.1.2.3 Digestion anaérobie 

La digestion anaérobie, ou biométhanisation, utilisée dans les procédés de TMB fonctionnent 

également de la même façon que la digestion anaérobie de matières organiques triées à la source. 

Cette approche pour traiter les résidus organiques produits par un TMB pourrait potentiellement 

permettre de produire une quantité d’énergie suffisante pour remplir les requis énergétiques du 

centre (Cesaro & Belgiorno, 2021; Di Lonardo et al., 2012). À l’échelle laboratoire, il a été montré 

que la digestion anaérobie de la fraction organique triée mécaniquement par un TMB pourrait 

permettre de produire une quantité de méthane équivalente à une digestion anaérobie de matières 

organiques triées à la source (Carchesio et al., 2020).  

La digestion peut se faire en milieu sec ou humide selon les choix de conception, avec un temps de 

rétention de 3-4 semaines (Bilitewski et al., 2010). Plusieurs usines opèrent toutefois avec des 

temps de résidence plus courts, soit d’environ 2 semaines (Montejo et al., 2010). 

Une étape de compostage peut être utilisée suite à la digestion anaérobie afin de réduire les odeurs 

et d’augmenter la stabilisation de la matière (Bilitewski et al., 2010; Montejo et al., 2010). D’autres 

approches permettant la stabilisation de la fraction liquide peuvent également être utilisées comme 

un séchage suite à une séparation liquide/solide. Certaines usines utilisent également les deux 

configurations en simultanées, en envoyant la fraction plus fine (<40 mm) en digestion anaérobie 

et la fraction moyenne (40-80 mm) en digestion aérobie, puisque la fraction fine est généralement 

moins contaminée et que la digestion anaérobie est reconnue comme étant plus sensible à la 

contamination (Bernat et al., 2021; Montejo et al., 2010). Pantini et al. (2015) ont d’ailleurs observé 
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une inhibition importante causée par une concentration élevée en acides gras et en ammoniac lors 

de l’étape de digestion anaérobie d’un TMB en Italie. 

2.1.3 Les produits du TMB et leurs applications 

Les produits issus d’un TMB sont généralement caractérisés par une contamination élevée due à la 

grande hétérogénéité de la composition de l’intrant et de ses propriétés (Cimpan et al., 2015; 

Damgacioglu et al., 2020; Ip et al., 2018; Mastellone et al., 2017; Velis et al., 2010). Plusieurs 

exemples de TMB rencontrant des problèmes importants quant à la qualité de leurs produits ont 

ainsi été rapportés pour plusieurs de ceux-ci, incluant la fraction organique stabilisée (Montejo et 

al., 2010), le CDD (Montejo et al., 2011) et les matières recyclables (Mastellone et al., 2017). Ces 

problèmes ne sont par contre pas spécifiques au tri des matières résiduelles mixtes, puisque des 

problèmes de contamination importants ont également été identifiés pour des usines traitant des 

matières recyclables triées à la source (Damgacioglu et al., 2020; Feil, Thoden Van Velzen, et al., 

2016). Les options disponibles pour la valorisation des produits varient donc selon la situation. 

L’identification d’un débouché pour un produit devrait donc s’appuyer sur des caractérisations 

fiables de celui-ci afin de s’assurer qu’il a une qualité suffisante (Di Lonardo et al., 2012). 

2.1.3.1 Qualité des produits 

Quatre fractions sont généralement séparées par un TMB, soit un ou plusieurs flux de matières 

recyclables, un flux de matières combustibles, un flux de matière organique et un flux de rejets.  

Matières recyclables : 

Les flux de matières recyclables récupérées par un procédé de TMB incluent généralement au 

moins les métaux ferreux et les métaux non-ferreux, et dans certaines usines plus automatisées, les 

principaux plastiques tels que le polytéréphtalate d'éthylène (PET), le polyéthylène haute densité 

(HDPE) et les plastiques mixtes. La qualité minimale à atteindre pour ces matières recyclables 

dépend généralement des marchés et peut donc varier en fonction du temps. Toutefois, il est 

possible de se référer aux normes de l’ISRI comme référence. Ces normes ne sont toutefois pas 

disponibles pour les métaux, tandis qu’aucune contamination de matières prohibées n’est 

généralement tolérée pour les matières plastiques (RECYC-QUÉBEC, 2020).   
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Les métaux récupérés comptent généralement pour 2-4% de la fraction massique des produits et 

sont destinés aux filières conventionnelles de recyclage (Bilitewski et al., 2010). Toutefois, les 

métaux récupérés peuvent faire face à une contamination importante (Cook et al., 2015; Mastellone 

et al., 2017). Cette contamination vient principalement des matières piégées dans ceux-ci et des 

déchets électroniques (Cook et al., 2015; Mastellone et al., 2017). L’ajout d’une étape de tri manuel 

et l’absence de procédé de réduction de taille pourraient cependant permettre d’atteindre des requis 

de qualité suffisants (Cook et al., 2015). Pour ce qui est des métaux non-ferreux, dû à leur faible 

concentration et au fait qu’ils sont souvent mélangés avec d’autres matières, il peut être difficile 

d’obtenir une bonne pureté et une bonne récupération de ces matières (Mastellone et al., 2017). Un 

tri manuel est donc souvent requis afin de s’assurer d’obtenir une qualité suffisante pour cette 

fraction.  

Pour ce qui est de la récupération des plastiques à partir d’un TMB, il a été montré qu’il est possible 

de récupérer des quantités de plastiques similaires, voir supérieures, par rapport à un système de tri 

à la source, si un pré-traitement important, incluant du bio-séchage, du tamisage et de la séparation 

balistique, est utilisé (Feil, Pretz, et al., 2016; Jansen et al., 2013). Par contre, la qualité et la 

récupération ne sont pas équivalentes pour tous les plastiques. Ainsi, des tests en industrie ont 

montré qu’il est généralement plus facile d’obtenir un ballot de PET de bonne qualité que pour le 

HDPE, les films plastiques et les plastiques mixtes (Jansen et al., 2013). Entre autres, il a été montré 

que les ballots de HDPE sont souvent contaminés par une quantité importante de plastiques mixtes 

(Damgacioglu et al., 2020; Jansen et al., 2013). Également, les ballots de plastiques mixtes, même 

pour un flux trié à la source, sont caractérisés par une faible qualité rendant leur recyclage en boucle 

fermée particulièrement difficile (Eriksen et al., 2019). Il peut donc être questionnable de produire 

des ballots de plastiques mixtes et de HDPE pour des filières de recyclage dans le contexte d’un 

TMB et d’autres voies de valorisation pourraient potentiellement être considérées. Ceci est d’autant 

plus important que les plastiques, tels que le HDPE et le LDPE, sont les matières contenues dans 

les matières résiduelles ayant généralement le PCI le plus élevé (Montejo et al., 2011). 

Une autre limite à la récupération des plastiques mixtes vient du fait que le plastique principalement 

inclus, soit le PP, est utilisé pour divers usages et a donc des formes très différentes selon les objets, 

rendant sa récupération difficile (Mastellone et al., 2017). Plus encore, la récupération des 

plastiques nécessite généralement des investissements importants en trieurs optiques et en trieurs 

manuels qui ne sont pas nécessairement récupérés complètement par la vente de ces plastiques 
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(Feil, Pretz, et al., 2016). Ces aspects doivent donc être considérés lors de la planification d’un 

TMB.  

Finalement, il est important de préciser que l’augmentation de la pureté des ballots ne se traduit 

pas nécessairement par une augmentation des revenus, puisque le fait de surpasser les standards de 

qualité ne se traduit pas par une augmentation du prix de vente (Ip et al., 2018). Ainsi, une qualité 

minimale des ballots doit être atteinte, mais ne doit généralement pas être dépassée, car cela se 

traduit par une augmentation de la quantité de rejets, et donc des coûts associés à leur traitement.  

Combustible dérivé de déchets : 

Les combustibles produits à partir de matières résiduelles peuvent généralement être classés en 

deux catégories, soit le combustible dérivé de déchet (CDD) et le combustible solide de 

récupération (CSR). Un CSR peut être défini comme un CDD qui répond à des critères de qualité 

minimaux (Rotter, 2011; Velis et al., 2010), généralement en lien avec le contenu énergétique et le 

contenu en contaminants. Dans le cadre de cette revue, aucune distinction majeure n’est faite. 

Ainsi, le terme CDD sera utilisé pour faire référence aux deux possibilités.  

Un combustible dérivé de déchets inclut généralement les matières sèches ayant un fort pouvoir 

calorifique, tel que le papier, le carton et les différents plastiques n’ayant pas été séparés pour les 

marchés de recyclage (Bilitewski et al., 2010; Di Lonardo et al., 2012). Il est produit en vue d’être 

valorisé comme combustible dans des fournaises industrielles, des fours de cimenterie ou des 

incinérateurs (Bilitewski et al., 2010; Gallardo et al., 2014). Une valorisation par pyrolyse ou par 

gazéification pourrait également être envisagée pour ce produit (Velis et al., 2010). Dans certains 

exemples industriels pour lesquels une configuration de TMB assez simple est privilégiée, la 

fraction combustible est toutefois simplement enfouie due à sa faible qualité (Gallardo et al., 2014; 

Montejo et al., 2011).  

Un CDD peut compter pour 30-60% de la fraction massique des produits selon la configuration de 

la chaîne et la composition entrante (Bilitewski et al., 2010). Tel que mentionné précédemment, la 

composition d’un CDD peut grandement varier d’un procédé à l’autre. Un exemple typique de 

composition est donné par (Montejo et al., 2011) pour une configuration simple de TMB qui 

rapportent une composition de 24% de matières biodégradables, 34% de papiers et de cartons, 25% 

de plastiques, 8% de textiles, 2% de contenants multicouches et 7% d’autres matières inertes. 
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Afin de produire un CDD de qualité suffisante, la séquence du TMB doit permettre de réaliser 

quatre objectifs principaux, soit le retrait de l’eau et des inertes, le retrait des composés corrosifs 

comme le chlore, l’aluminium et le zinc, la réduction de la quantité de substances volatiles et la 

réduction de la quantité de substances pouvant avoir un impact négatif sur l’environnement (Rotter, 

2011). La réalisation de ces quatre objectifs permet également d’augmenter le pouvoir calorifique 

des matières résiduelles. Les CDD ont un PCI environ deux fois plus grand que les matières mixtes 

alimentées au centre (Montejo et al., 2011).  

Les différents exemples dans la littérature montrent cependant que ces objectifs ne sont pas toujours 

atteints. Ainsi, le tri mécanique n’est généralement pas suffisant pour produire un CDD de qualité 

suffisante, puisqu’il se traduit souvent par une augmentation de la concentration de certains 

contaminants, tels que les métaux lourds et le chlore, dans le produit (Rotter et al., 2004). Un 

résultat similaire a été démontré par Velis et al. (2013) qui ont observé une légère concentration du 

chlore dans le CDD, puisque 73% et 79% du contenu énergétique et du contenu en chlore étaient 

respectivement récoltés dans le produit. Le fait de diminuer le contenu en chlore se solde 

généralement par une baisse du rendement énergétique, faisant en sorte qu’il est nécessaire de 

trouver un juste milieu (Velis et al., 2013). Également, certains objectifs affectent grandement le 

rendement du procédé. Par exemple, les papiers ont une concentration élevée en cendres, tout en 

ayant un PCI relativement élevé (Gallardo et al., 2014; Montejo et al., 2011). Leur retrait se traduit 

donc par une diminution du contenu en cendres, mais également par une diminution du rendement 

énergétique. Le contenu élevé en cendres peut d’ailleurs être un frein à la valorisation du CDD 

(Gallardo et al., 2014).  

Parmi tous les critères, le contenu en chlore est toutefois souvent vu comme la principale limite à 

prendre en compte pour la production d’un CDD dû aux impacts négatifs associés à sa combustion 

(European Committe for Standardisation, 2006; Rotter, 2011). Dans un contexte québécois, 

l’attractivité de ce type de produits peut également être limitée par une faible acceptabilité sociale 

associée à la valorisation énergétique des matières résiduelles et le contexte énergétique. En effet, 

la grande proportion d’énergie électrique incluse dans le mix énergétique québécois limite 

généralement l’intérêt pour la production d’énergie à partir de voies thermiques.  

Matières organiques : 
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La fraction organique issue du TMB compte pour environ 30-40% de la fraction massique des 

produits (Bilitewski et al., 2010). Actuellement, la fraction organique issue d’un TMB est 

principalement éliminée par enfouissement ou utilisée comme matériel de recouvrement, en raison 

d’un manque de débouchés intéressants pour valoriser cette fraction et de considérations 

législatives (Di Lonardo et al., 2012). Le manque de débouchés est directement causé par le fait 

que le tri mécanique n’est pas suffisant pour produire une fraction organique de bonne qualité pour 

une utilisation comme compost, dû à la présence d’une grande quantité de contaminants mal triés 

(Montejo et al., 2010). Ces contaminants incluent des fibres, des plastiques, du verre, du métal et 

des résidus domestiques dangereux (RDD) (Bernat et al., 2021; Montejo et al., 2010). La présence 

de RDD, souvent observée sous forme de batteries, peut mener à une contamination élevée en 

métaux lourds de cette fraction (Montejo et al., 2010). Une concentration plus élevée en métaux 

lourds que celle permise par les standards a d’ailleurs été observée à plusieurs reprises dans la 

littérature (Di Lonardo et al., 2012). Un exemple de composition pour cette fraction est celle 

rapportée par Montejo et al. (2010) qui rapportent une composition de 78% de matières 

biodégradables, 6% de papiers et de cartons, 6% de plastiques, 6% de verre et 4% d’autres 

contaminants. Cette contamination est toutefois fortement corrélée à la taille des ouvertures choisie 

pour effectuer la séparation granulométrique, puisque la contamination est plus importante pour 

des tailles plus élevées (Bernat et al., 2021).   

Également, plusieurs exemples dans la littérature ont montré que le traitement biologique effectué 

dans un TMB ne permettait pas toujours d’atteindre une stabilisation suffisante de la matière, 

menant à une production potentielle de méthane lors de l’enfouissement de cette fraction (Bayard 

et al., 2010; Carchesio et al., 2020; Di Lonardo et al., 2012; Pantini et al., 2015). En général, la 

qualité de la stabilisation effectuée varie grandement en fonction du temps, en raison de la variation 

importante de l’intrant (Trulli et al., 2018). 

Finalement, en vue de réellement réduire l’impact environnemental associé au traitement des 

ordures ménagères, le TMB doit être conçu de façon à ce que la grande majorité de la matière 

organique soit adéquatement récupérée dans la bonne fraction, afin de s’assurer qu’elles subissent 

un traitement biologique avant leur élimination (Bayard et al., 2010). Bayard et al. (2010) ont par 

exemple montré qu’une succession de deux cribles rotatifs ayant des tailles d’ouvertures de 

respectivement 7 cm et 5 cm résultaient en une perte importante des matières organiques dans la 

fraction grossière n’étant pas stabilisée.  
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En vue d’augmenter la circularité des matières, il est toutefois impératif de trouver des débouchés 

pour la fraction organique issue d’un TMB. Ces débouchés potentiels doivent cependant 

nécessairement passer par un traitement supplémentaire des matières.  

Matières encombrantes et rejets : 

Trois flux de rejets sont généralement produits par un procédé de TMB, soit les matières 

encombrantes séparées en début de chaîne, les matières fines et les matières inertes séparées en fin 

de chaîne. Ces rejets comptent généralement pour 5 à 10% des produits d’un TMB (Bilitewski et 

al., 2010). 

Autant les matières encombrantes collectées en début de procédé que les rejets de fin de ligne sont 

destinés à l’enfouissement. Pour ce qui est de la fraction fine, elle contient principalement du verre, 

du sable, de la céramique et des roches et est également souvent destinée à l’enfouissement. Cette 

fraction peut difficilement être purifiée par densité ou par une séparation optique, puisque ces 

équipements sont peu efficaces pour des faibles tailles de particules et ces matières ont des densités 

similaires (Cook et al., 2015). Cette fraction peut toutefois être utilisée comme agrégat suite à une 

stabilisation ou un séchage dû à sa faible concentration en matière organique (Cook et al., 2015).  

2.1.3.2 Mise en valeur des produits 

Face à la difficulté de trouver des débouchés conventionnels pour certaines des fractions produites 

par un TMB, des nouvelles approches doivent être considérées. Deux procédés thermiques 

pourraient s’avérer particulièrement intéressants pour augmenter la qualité de certaines fractions 

en vue d’un traitement subséquent, soit la carbonisation hydrothermale et la torréfaction.  

Une revue de la littérature a été réalisée spécifiquement sur l’utilisation de la carbonisation 

hydrothermale pour le traitement des matières résiduelles dans le contexte d’une collaboration avec 

un partenaire industriel, soit CanmetENERGY (Report to CanmetENERGY Ottawa under the 

Agreement on Scientific and Technological Cooperation between Canmet ENERGY Ottawa and 

Polytechnique Montreal (No. 2017-129 CM-COL DIR-POLY)). Un bref résumé de cette revue est 

présenté dans cette section.  

Carbonisation hydrothermale 

La carbonisation hydrothermale consiste en un traitement thermochimique de la biomasse dans un 

milieu aqueux saturé à température élevée (180-280°C) et à pression élevée pour un temps de 
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résidence variant de quelques minutes à plusieurs heures (Funke & Ziegler, 2010). Le procédé 

permet de produire un combustible solide stabilisé ayant des propriétés de combustion similaires à 

celles du lignite (Escala et al., 2013; Funke & Ziegler, 2010). 

La carbonisation hydrothermale est principalement caractérisée par des réactions d’hydrolyse, de 

déshydratation et de décarboxylation menant à une réduction du ratio H/C et du ratio O/C de 

l’intrant (Berge et al., 2011; Funke & Ziegler, 2010; Libra et al., 2011).  

Ce procédé pourrait s’avérer particulièrement intéressant pour accroître la qualité de la fraction 

organique produite par un TMB, car il permet de traiter de la matière humide et peut accepter 

différents types de matières (Funke & Ziegler, 2010). Ainsi, les papiers, les cartons et les textiles 

sont tous carbonisés pendant le traitement, alors que les plastiques, le verre et les métaux ne 

prennent généralement pas part aux réactions de carbonisation hydrothermale (Berge et al., 2011). 

Ainsi, le procédé de HTC permet de traiter la matière organique malgré un taux de contamination 

élevé. Également, certains contaminants, comme les métaux, peuvent être séparés mécaniquement 

suite à la réaction (Lokahita et al., 2017). 

Certains auteurs ont d’ailleurs rapporté l’intérêt d’utiliser la carbonisation hydrothermale pour 

valoriser des mélanges de matières résiduelles (Berge et al., 2011; Lin et al., 2017a; Peng et al., 

2017; Prawisudha et al., 2012; Triyono et al., 2019), du compost bio-stabilisé de faible qualité 

(Basso et al., 2015) et de la matière organique issue d’un TMB (Kim et al., 2012).  

Torréfaction 

La torréfaction consiste quant à elle en un traitement thermochimique dans un environnement inerte 

à pression atmosphérique et à des températures équivalentes (200-300°C) à celles de la 

carbonisation hydrothermale (Basu, 2013; Medic et al., 2012; Stępień & Białowiec, 2018). Ce 

procédé est généralement utilisé pour augmenter la qualité d’un mélange de biomasses en vue d’une 

valorisation thermique (Basu, 2013). 

Tout comme pour la carbonisation hydrothermale, la torréfaction est principalement caractérisée 

par des réactions de déshydratation et de décarboxylation, menant également à une réduction du 

ratio H/C et O/C de l’intrant (Libra et al., 2011; Woytiuk et al., 2017). La principale différence 

vient du fait que l’intrant se doit d’être sec (Kambo & Dutta, 2015). 



24 

 

Tout comme pour la carbonisation hydrothermale, ce procédé représente une avenue intéressante 

pour augmenter la qualité des produits d’un TMB. Ce procédé pourrait par exemple être utilisé 

pour augmenter la qualité du CDD produit. Plusieurs auteurs ont d’ailleurs appliqué ce procédé à 

un mélange de matières résiduelles triées mécaniquement en vue d’en augmenter la qualité 

(Białowiec et al., 2017; Edo et al., 2017; Stępień & Białowiec, 2018; Yuan et al., 2015). 

 

2.2 Modélisation du traitement mécano-biologique 

Malgré le fait que l’efficacité des opérations de tri mécanique est intrinsèquement liée aux 

phénomènes physiques s’y déroulant, la conception de ce type de procédé est régulièrement basée 

sur des méthodes semi-empiriques dues à un manque de données sur l’efficacité de ces opérations 

(Velis et al., 2013). Ces données sont en effet rarement disponibles dans la littérature, autant pour 

les efficacités globales des MRF que pour les différentes opérations unitaires (Cimpan et al., 2015). 

Les différentes méthodes communément utilisées pour modéliser un procédé de TMB sont 

présentées dans cette section, en plus d’une introduction sur la modélisation des systèmes de GMR 

en général.  

2.2.1 Modélisation générale des systèmes de gestion de matières résiduelles 

Plusieurs outils ont été utilisés dans la littérature pour modéliser un système de gestion de matières 

résiduelles, incluant principalement l’analyse de flux de matières et l’analyse de cycle de vie 

(Chang & Pires, 2015). Ces deux outils, ainsi que certains modèles spécifiques développés, sont 

présentés dans cette section.  

2.2.1.1 Analyse de flux de matière 

L’analyse de flux de matière (material flow analysis, MFA) est un outil d’aide à la décision se 

basant sur la loi de la conservation de la matière pour déterminer la variation des flux et des stocks 

d’un système complexe. Une MFA peut être réalisée autant au niveau des biens (marchandises 

ayant une valeur positive ou négative) que des substances (matière formée d’une unité uniforme, 

comme un élément ou une molécule chimique) (Brunner & Rechberger, 2016). Cet outil se base 

généralement sur des techniques de réconciliation de données et de propagation d’incertitudes pour 

résoudre les bilans de masse du système, permettant ainsi de calculer l’ensemble des coefficients 
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de transfert, des flux et des stocks. Un coefficient de transfert est un nombre entre 0 et 1, permettant 

de déterminer la répartition d’une matière dans les flux de sortie d’une opération unitaire en 

fonction des flux d’entrée (Brunner & Rechberger, 2016). Les coefficients de transfert, parfois 

également nommés coefficients de partition, sont généralement exprimés par la formule décrite par 

(Brunner & Rechberger, 2016) : 

 𝑇𝐶𝑗 =
𝑚out,𝑗

∑ 𝑚in,𝑖
𝑛𝐼
𝑖=1

 ∀𝑖 ∈ 𝑆𝐼  (2-1) 

où 𝑇𝐶𝑗 est le coefficient de transfert vers le flux j, 𝑚out,𝑗 est le débit de matière du flux j sortant du 

procédé, 𝑚in,𝑖 est le débit de matière i entrant au procédé et SI est l’ensemble de flux i entrant au 

procédé et de longueur nI.   

L’outil le plus utilisé dans la littérature pour réaliser une MFA est le logiciel STAN Cencic & 

Rechberger, 2008 ; Cencic, 2016). Il s’agit d’un logiciel gratuit permettant de réaliser une MFA, 

autant au niveau des biens que des substances, et se basant sur une minimisation des moindres 

carrées et sur des techniques de propagation d’incertitudes pour effectuer une réconciliation de 

données (Cencic, 2016). 

La MFA a été appliquée à plusieurs reprises pour la GMR, principalement pour représenter un 

système entier dans l’économie (Allesch & Brunner, 2015). Cet outil a également été appliqué dans 

une moindre mesure pour représenter une usine de traitement, tel qu’un incinérateur ou un 

gazéificateur (Allesch & Brunner, 2015). L’analyse de flux de matières a toutefois été peu utilisée 

pour analyser des centres de tri mécanique dans la littérature.  

2.2.1.2 Analyse de cycle de vie 

L’analyse de cycle de vie (ACV) est un outil d’aide à la décision permettant d’évaluer l’impact 

environnemental d’un produit ou d’un service sur l’ensemble de son cycle de vie. Elle est 

principalement utilisée pour effectuer la comparaison de l’impact environnemental de produits ou 

de services ayant une même fonction (Jolliet et al., 2010). Au cours des dernières années, l’ACV a 

grandement gagné en popularité pour la représentation de système de GMR puisqu’elle permet de 

comparer des options de traitement autant pour un produit spécifique, une matière générique ou un 

flux complexe (Ekvall et al., 2007). Des méthodologies ont d’ailleurs été développées pour faciliter 

l’application de l’ACV à la GMR (Clift et al., 2000; Laurent, Clavreul, et al., 2014). 
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L’ACV peut contribuer à améliorer les systèmes de GMR en contribuant à plusieurs niveaux. Par 

exemple, l’ACV peut permettre d’atteindre une meilleure compréhension d’un système, d’effectuer 

la comparaison de scénarios de traitement, de proposer des pistes d’amélioration à un système ou 

de faciliter le développement de nouvelles technologies  (Christensen et al., 2020). Cet outil a été 

appliqué de façon relativement équivalente aux différentes voies de traitement des matières 

résiduelles incluant la collecte, les procédés thermiques, les procédés biologiques et les procédés 

mécaniques, principalement dans le contexte de pays ayant des politiques de GMR développées 

(Laurent, Bakas, et al., 2014). 

La dépendance importante des résultats d’ACV à la situation pour laquelle elle est réalisée, incluant 

la composition des matières à traiter et la configuration spécifique du système de gestion, limite 

cependant la généralisation des résultats (Laurent, Bakas, et al., 2014). Ceci se traduit par une 

divergence importante des résultats des différentes études en lien avec la GMR (Laurent, Bakas, et 

al., 2014). Malgré ces différences, les résultats d’ACV de matières résiduelles concluent 

généralement sur le fait que le recyclage représente une meilleure alternative de traitement que 

l’incinération et l’enfouissement, puisque la création d’un produit à partir de matières recyclées est 

moins énergivore en termes de ressources qu’à partir de matières vierges (Björklund et al., 2010; 

Laurent, Bakas, et al., 2014). Ce bénéfice est toutefois fortement dépendant du débouché des 

matières recyclées (Björklund et al., 2010; Andreasi Bassi et al., 2017; Rigamonti et al., 2020). 

2.2.1.3 Autres modèles  

Plusieurs modèles combinant des notions d’ACV et de MFA ont été développés spécifiquement 

pour la GMR, menant au développement de bases de données en lien avec les procédés de 

traitement. Les principaux modèles développés incluent EPIC/CSR (Haight, 2004), MSW-DST 

(Thorneloe et al., 2007), SWOLF (Levis et al., 2013), EASETECH (Clavreul et al., 2014) et 

ORWARE (Eriksson et al., 2002). Parmi ces modèles, le plus commun est EASETCH, qui a été 

utilisé à plusieurs reprises par différents auteurs pour réaliser des ACV de systèmes de GMR. Les 

principales caractéristiques et différences de ces modèles ont été étudiées par le passé par différents 

auteurs (Blikra Vea et al., 2018; Gentil et al., 2010; Winkler & Bilitewski, 2007). 

L’utilisation de ces différents modèles peut toutefois mener à des résultats très variables dus aux 

différences entre les hypothèses posées (Blikra Vea et al., 2018; Gentil et al., 2010; Winkler & 

Bilitewski, 2007). Également, ces modèles sont généralement spécifiques à leur pays d’origine 
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(Gentil et al., 2010). Le développement de ce type de modèle demande un effort important autant 

au niveau de la création des inventaires de cycle de vie qu’au niveau du développement 

mathématique. Ainsi, plusieurs de ces modèles n’ont jamais été réellement terminés et n’ont donc 

pas été utilisés fréquemment dans la littérature. Finalement, dû à l’évolution rapide des techniques 

de modélisation en ACV, certains modèles développés il y a plus longtemps ne sont plus réellement 

applicables (Gentil et al., 2010). 

Une autre limitation importante pour ces modèles est que la prédiction des émissions et de la 

consommation énergétique des procédés doit généralement être redéfinie pour chaque cas d’étude 

puisqu’elle ne dépend pas d’une modélisation des interactions physiques et chimiques des procédés 

de traitement (Blikra Vea et al., 2018). Ceci limite ainsi la capacité de prédire les résultats de 

nouvelles configurations et de nouvelles options technologiques (Blikra Vea et al., 2018). 

Un outil d’aide à la décision, nommé MaRCOT, présentement développé au sein du Centre 

international de référence sur le cycle de vie des produits, procédés et services (CIRAIG) pourrait 

permettre de régler certaines des limites présentées précédemment pour la modélisation de système 

de GMR. Cet outil permet l’intégration de différentes méthodes de la MFA et de l’ACV, dans un 

cadre d’optimisation linéaire. Le modèle présenté dans cette thèse est d’ailleurs développé dans le 

cadre de cet outil d’aide à la décision et permettra à terme de combler le module de tri mécanique.  

2.2.2 Application de la MFA au tri mécanique 

Trois approches de MFA sont généralement utilisées pour étudier un centre de tri mécanique de 

matières résiduelles selon la stratégie privilégiée pour décrire la chaîne et les matières résiduelles.  

Dans le premier cas, il est possible de décrire la partition de différents biens ou des substances dans 

les différentes sorties d’un MRF pour un courant entrant sans considérer la séquence de tri. Cette 

approche est généralement utilisée pour modéliser l’intégration d’un procédé de tri de matières 

résiduelles dans un système de GMR global. Ainsi, la MFA peut permettre d’évaluer la possibilité 

d’intégrer de nouvelles unités à un système de GMR existant (Ardolino et al., 2017), d’évaluer 

l’efficacité d’un système de gestion selon certains scénarios (Arena & Di Gregorio, 2014; Eriksen 

et al., 2020; Eriksen & Astrup, 2019) ou de comparer l’efficacité de deux systèmes différents 

(Themelis & Todd, 2004). Cette approche de représentation peut également servir à prédire 

l’évolution des différentes propriétés physico-chimiques dans les sorties du procédé de tri 
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(Nasrullah et al., 2014, 2015). Cette approche pour représenter un MRF est donc intéressante pour 

prédire le comportement général de certains biens ou substances dans un procédé existant, mais ne 

permet toutefois pas de prendre en compte la configuration de la chaîne de traitement, ce qui limite 

grandement les capacités prédictives de la méthodologie.  

Le deuxième cas consiste à effectuer une MFA sur le niveau des substances en considérant les 

coefficients de transfert de chaque opération unitaire. Par exemple, Rotter et al. (2004) ont appliqué 

cette méthodologie pour suivre la concentration de différents contaminants dans une séquence de 

tri de matières résiduelles mixtes pour la production d’un CDD. Giani et al. (2016) ont comparé 

l’effet de différentes configurations de tri sur la récupération d’un CDD et ses principales propriétés 

physiques à partir de matières résiduelles mixtes. Cette approche permet donc de prendre en 

considération l’impact de la séquence de tri. Toutefois, comme cette approche ne considère que le 

niveau des substances, elle ne permet pas de prendre en considération la composition entrante des 

matières.  

Finalement, le dernier cas généralement utilisé consiste à combiner les deux premiers cas et d’ainsi 

représenter l’évolution des différentes catégories de matières pour chaque opération unitaire du 

procédé. Cette approche de modélisation peut ainsi être utilisée pour comparer l’efficacité de 

différentes chaînes de traitement pour un objectif ciblé (Caputo & Pelagagge, 2002), pour produire 

des inventaires de cycle de vie (Pressley et al., 2015), pour représenter l’évolution de certaines 

matières dans l’économie (Faraca & Astrup, 2019) ou pour identifier des stratégies d’optimisation 

d’un centre existant (Damgacioglu et al., 2020; Velis et al., 2013). 

Cependant, comme les MFA se concentrent généralement sur une chaîne de traitement existante, 

elles ont certaines limites lors de l’extrapolation pour une composition entrante ou une séquence 

différente (Kleinhans et al., 2021). Ceci est particulièrement problématique pour la modélisation 

d’un système de GMR dû à la grande hétérogénéité de la composition des matières entrantes (Velis 

et al., 2012). Également, comme cette approche de modélisation repose sur l’utilisation de 

coefficients de transfert, qui sont fixes et constants, elle ne permet pas de prendre en considération 

la relation entre l’efficacité des équipements et ses principales variables. Cette limite est toutefois 

intrinsèquement liée à l’utilisation de coefficients de transfert et n’est pas spécifique au tri 

mécanique.  
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2.2.3 Application de l’ACV au tri mécanique 

Plusieurs ACV ont été réalisées sur le TMB des matières résiduelles (Abeliotis et al., 2012; 

Ardolino et al., 2017; Beylot et al., 2015; Montejo et al., 2013). Ces analyses ont permis de 

démontrer que ce procédé peut jouer un rôle important pour la réduction des impacts 

environnementaux associés au traitement des matières résiduelles (Abeliotis et al., 2012). 

Cependant, les résultats sont caractérisés par une grande variabilité selon la configuration du centre 

à l’étude et des efficacités de séparation utilisées pour la modélisation des équipements (Montejo 

et al., 2013). Ainsi, les résultats dépendent fortement de l’efficacité de séparation des différents 

matériaux, ainsi que du potentiel de valorisation énergétique associé au CDD et potentiellement au 

biogaz lorsqu’une digestion anaérobie est réalisée (Abeliotis et al., 2012; Montejo et al., 2013). 

L’efficacité de séparation des matières recyclables et le rendement en biogaz d’une digestion 

anaérobie ont d’ailleurs été identifiés comme des facteurs cruciaux pour la modélisation d’un 

système de GMR par une ACV (Rigamonti et al., 2010). Au niveau de la valorisation énergétique 

du CDD, elle ne se traduit pas nécessairement pas des gains environnementaux et dépend 

principalement de la source d’énergie remplacée (Montejo et al., 2013). Son utilisation comme co-

combustible en cimenterie (Abeliotis et al., 2012) ou comme matière première dans une unité de 

gazéification (Ardolino et al., 2017) pourrait s’avérer être des options intéressantes d’un point de 

vue environnemental. 

Afin de maximiser les bénéfices environnementaux associés au TMB, une importante 

automatisation des équipements devrait être effectuée afin de permettre une séparation adéquate 

des matières recyclables, et une valorisation de la matière organique devrait être effectuée, par 

exemple à partir d’une digestion anaérobie (Montejo et al., 2013). Il faut toutefois préciser que 

cette conclusion dépend fortement du mix énergétique du pays dans lequel le procédé est implanté.  

Ainsi, les résultats bénéfiques montrés par les différentes ACV de TMB dépendent fortement de 

l’efficacité du procédé, mais également de l’atteinte de débouchés intéressants pour les différents 

produits, ce qui n’est pas toujours le cas (Abeliotis et al., 2012). Dans une ACV, cette capacité d’un 

produit à en remplacer un autre dans l’économie est modélisée à partir du potentiel de substitution. 

Vadenbo et al. (2017) ont présenté une approche permettant de calculer ce potentiel en se basant 

sur le potentiel de ressource valorisable, l’efficacité de récupération, la substituabilité du produit et 

la réponse du marché. Toutefois, les différents paramètres affectant ce facteur de substitution sont 
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souvent mal caractérisés dans la littérature et font face à un manque de transparence (Viau et al., 

2020). 

Plusieurs recherches ont été réalisées spécifiquement sur la recyclabilité des plastiques et leur 

potentiel de substituabilité dans l’économie comme produits secondaires (Demets et al., 2021; 

Eriksen et al., 2020; Eriksen & Astrup, 2019; Faraca & Astrup, 2019). Ainsi, la recyclabilité des 

plastiques dans l’économie dépend fortement de la qualité des ballots produits dans les centres de 

tri (Eriksen et al., 2019; Eriksen & Astrup, 2019) et des propriétés de ces plastiques (Demets et al., 

2021). Peu de recherches ont par contre été réalisées spécifiquement pour les plastiques issus d’un 

TMB, ainsi pour les autres matières recyclables. Plus d’études devraient donc être effectuées pour 

s’assurer que les différents produits peuvent adéquatement être réacheminés dans l’économie. 

Également, une autre limitation de l’utilisation de l’ACV pour la GMR est que cet outil repose 

généralement sur une modélisation linéaire de la situation, alors que plusieurs phénomènes en lien 

avec la GMR ont plutôt des comportements non-linéaires (Haupt et al., 2018). Finalement, la 

variation de la composition ou des propriétés des matières résiduelles n’est souvent pas prise en 

considération dans les analyses, puisque des données génériques ou des moyennes de composition 

sont généralement utilisées pour la modélisation des impacts (Bisinella et al., 2017). 

Ainsi, les impacts environnementaux associés à un TMB dépendent fortement de sa configuration, 

de la composition des matières entrantes et de la capacité réelle du système à produire des matières 

pouvant être adéquatement recyclées et/ou valorisées comme produits secondaires. Ces facteurs se 

doivent donc d’être adéquatement prédits à travers une modélisation rigoureuse des bilans de masse 

afin d’effectuer une analyse environnementale pertinente. Plus encore, la qualité des produits se 

doit d’être adéquatement prédite afin de s’assurer que les matières produites peuvent réellement 

être substituées dans l’économie.   

2.2.4 Modèles mécanistiques 

Les approches de modélisation présentées dans les sections précédentes se basent toutes sur 

l’utilisation de coefficients de transfert pour effectuer la représentation numérique des différents 

équipements de tri mécanique. Cependant, comme mentionné précédemment, les coefficients de 

transfert sont fixes et constants, et nécessitent donc d’être modifiés à chaque fois qu’une 

modification au système doit être apportée. Ceci demande donc une très bonne compréhension du 
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système à l’étude. Une autre approche également utilisée dans la littérature pour effectuer la 

modélisation des opérations de tri et permettant une meilleure flexibilité est l’utilisation de modèles 

mécanistiques. Cette approche de modélisation nécessite toutefois une connaissance approfondie 

des propriétés des matières, puisque ce sont ces propriétés qui sont ciblées par les équipements de 

tri.  

Quelques approches ont été tentées pour effectuer une modélisation physique des opérations de tri 

des matières résiduelles. Zwisele et al. (2007) ont développé un outil de simulation permettant de 

modéliser des opérations de tri en fonction de la composition et des propriétés des matières 

résiduelles. Leur première version inclut la modélisation d’une étape de broyage, de classification 

à air et d’une séparation mécanique. Toutefois, seules les deux premières étapes (broyage et 

classification à air) se basent sur les tailles de particules des matières, alors que la simulation du 

séparateur magnétique se fait par coefficients de transfert. Les calculs se basent sur une 

modélisation semi-empirique calibrée avec des données de terrain (Zwisele et al., 2007). Leur 

approche ne prend toutefois pas en compte la forme des matières et n’a pas été validée avec des 

données de terrain.  

De façon similaire, Beyer & Pretz (2004) ont développé un outil de simulation se basant sur une 

modélisation des mécanismes des équipements et sur les propriétés physiques des matières 

résiduelles, nommé SimuRec. La description des matières se fait à partir d’un vecteur de flux 

incluant 190 paramètres, tels que le contenu en eau, le contenu en cendres, la concentration des 

différents éléments chimiques et une description sommaire des tailles de particules (Beyer & Pretz, 

2004). L’outil de simulation, les hypothèses posées et la méthodologie pour modéliser les 

opérations unitaires ne sont toutefois pas présentés, menant à un manque de transparence important 

de ce modèle. Également, la taille des particules est exprimée de façon discrète en cinq intervalles 

uniquement, menant à une représentativité limitée de la méthode.  

Ainsi, malgré certains efforts pour simuler une chaîne de tri de matières résiduelles permettant de 

prendre en compte les mécanismes de séparation et les propriétés des matières, il n’y a 

présentement pas d’outil transparent et ayant été validé pour une chaîne de tri mécanique. 

Également, il semble que ces premiers efforts publiés n’ont pas été développés plus en détail depuis 

leur publication originelle.  
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En plus de ces deux approches, certains modèles ont également été développés pour représenter 

une opération unitaire spécifique. Le principal équipement de tri de matières résiduelles ayant été 

modélisé dans la littérature est le crible rotatif pour lequel plusieurs auteurs ont développé 

différentes approches ayant des niveaux de complexité différents (Alter et al., 1981; Glaub et al., 

1982; Savage et al., 1984; Stessel & Cole, 1996). L’ensemble de ces modèles se base sur le calcul 

de la probabilité de passage d’une particule à travers les ouvertures de l’équipement. Par contre, 

ces modèles n’ont pas réellement eu les résultats escomptés en partie à cause des hypothèses posées 

négligeant la variation de la composition et du débit des matières tout au long du cycle de séparation 

(Ashkiki et al., 2019). Une autre limitation de ces modèles vient du fait qu’ils ne s’appuient pas sur 

une caractérisation suffisamment robuste des tailles de particules des différentes catégories de 

matières entrantes au procédé (Alter et al., 1981).  

Pour ce qui est des autres équipements de tri généralement utilisés, il n’y avait pas d’exemple de 

modèle, en date de 2010, dans la littérature portant sur la séparation balistique des matières 

résiduelles (Velis et al., 2010). Depuis, il ne semble toujours pas y avoir eu de développement de 

ce type de modèle, possiblement dû à la difficulté de représenter le facteur de forme des matières. 

Pour ce qui est de la classification à air, certains modèles ont été développés pour représenter cet 

équipement, mais ceux-ci n’ont pas été développés pour des matières résiduelles et leur utilisation 

est donc difficilement extrapolable (Velis et al., 2010). Savage et al. (1984) ont développé un 

modèle basé sur le calcul d’un coefficient de traînée des matières selon le choix d’un facteur de 

forme qualitatif. Les résultats du modèle varient cependant de façon très importante selon le choix 

du facteur de forme et mènent donc à des résultats très variables et peu représentatifs.  

Pour ce qui est du tri des métaux et du tri optique, peu de modèles ont également été développés 

pour le traitement des matières résiduelles. Savage et al. (1984) ont développé un modèle pour le 

tri magnétique des matières, mais celui-ci ne permet pas de prendre en compte la contamination 

potentielle et est très sensible au choix de la hauteur de l’aimant.  

En plus de la prédiction des rendements des procédés, certains auteurs ont dérivé des équations 

pour prédire la consommation énergétique des équipements de tri. Ainsi, Tchobanoglous et al. 

(1993) ont rapporté plusieurs corrélations pour calculer les requis énergétiques de différents 

équipements de tri mécanique.  
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Certains modèles mécanistiques ont donc été développés pour la représentation du tri mécanique 

de matières résiduelles. Cependant, peu d’outils généraux intégrant ces modèles ont été développés 

et ceux-ci font face à un défi de transparence. En général, l’utilisation et le développement de ces 

modèles font face à quatre problèmes majeurs, soit : 1) il n’a pas été démontré dans la littérature 

que leur utilisation est bénéfique et dans quelle mesure; 2) ils nécessitent des caractérisations 

approfondies des propriétés physiques des matières résiduelles qui sont souvent manquantes ou 

incomplètes; 3) ils ont été sous-développés dû à leur complexité; 4) il n’existe pas d’outil de 

simulation transparent permettant leur intégration pour la représentation d’un centre de tri.  

2.2.5 Autres approches de modélisation 

Deux modèles ont été développés récemment spécifiquement pour la représentation de centres de 

tri mécanique de matières résiduelles (Ip et al., 2018; Kleinhans et al., 2021). Les deux se basent 

sur un modèle de flux de réseau développé à partir des travaux de Wolf (2011) et de Testa (2015). 

Cette approche de résolution se base sur la description de la séquence de tri comme un réseau et 

définit les opérations unitaires et leurs liens comme les nœuds et les arêtes du réseau. Les efficacités 

des opérations unitaires sont définies à partir de coefficients de transfert et le modèle est résolu à 

partir d’un système matriciel pour chaque matière (Ip et al., 2018; Kleinhans et al., 2021). Cette 

approche de modélisation permet de prendre en compte la composition entrante et la configuration 

du système. Elle permet également une résolution du système malgré la présence de recirculations. 

La principale différence entre les deux approches repose sur la méthode utilisée pour déterminer 

les coefficients de transfert. Ip et al. (2018) ont déterminé leurs coefficients de transfert à partir de 

caractérisations des entrées et des sorties d’une chaîne de tri existante, alors que Kleinhans et al. 

(2021) ont déterminé leurs coefficients principalement à partir de jugements d’experts. Également, 

le nombre de catégories de matières considérées est différent, puisque Ip et al. (2018) ont considéré 

une quinzaine de catégories, alors que Kleinhans et al. (2021) en ont considéré environ 120.  

Une approche similaire a été utilisée par Caputo & Pelagagge, (2002), basée sur une méthode 

matricielle développée par Diaz et al. (1982). Cette approche, malgré une résolution un peu 

différente, permet également de prendre en compte une variation de la composition entrante et de 

la chaîne de traitement, et repose aussi sur l’utilisation de coefficients de transfert.   

Malgré le fait que ces approches de modélisation permettent une plus grande flexibilité, une prise 

en compte de la composition et une prise en compte de la configuration de la chaîne, elles font face 
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aux mêmes limitations que celles soulevées dans la section 2.2.2 en lien avec l’utilisation de 

coefficients de transfert. Également, malgré le fait que ces approches permettent de modéliser 

différentes configurations de tri, elles ne permettent pas de prendre en compte l’effet de la 

configuration sur l’efficacité des différentes opérations de tri.  

2.2.6 Détermination de coefficients de transferts 

Comme vu dans les sections précédentes, les coefficients de transfert, aussi appelés coefficients de 

partition, sont largement utilisés pour exprimer l’efficacité de séparation des équipements de tri 

dans plusieurs approches de modélisation. Plusieurs approches peuvent être utilisées pour les 

déterminer, et celles-ci ne sont pas toutes équivalentes.  

Kleinhans et al. (2021) ont d’ailleurs soulevé qu’une des principales limites à la modélisation d’un 

centre de tri de matières résiduelles est d’obtenir des coefficients de transfert représentatif de la 

situation. Pour les déterminer, quatre méthodes sont généralement utilisées, soit à partir d’une 

caractérisation des entrées et des sorties, à partir de valeurs provenant de manufacturiers, à partir 

d’une estimation provenant d’un jugement d’expert ou à partir d’une modélisation des phénomènes 

physiques se déroulant dans les équipements (Ip et al., 2018; Kleinhans et al., 2021).  

Ces quatre approches sont comparées dans les sections suivantes. 

2.2.6.1 Estimation à partir d’une caractérisation des entrées et sorties 

Estimer des coefficients de transfert à partir de caractérisations permet d’obtenir une représentation 

moyenne des opérations pour la durée de temps pour laquelle les échantillons ont été collectés. Les 

résultats peuvent donc varier selon les conditions du centre lors de la prise des mesures, incluant 

les conditions d’opération, la composition entrante et d’autres facteurs externes (Ip et al., 2018; 

Kleinhans et al., 2021; Raymond, 2017). Raymond (2017) et Wolf (2011) ont d’ailleurs montré 

que l’efficacité des opérations de tri peut dépendre de la composition de l’intrant, des 

caractéristiques des matières résiduelles et de certaines conditions d’opération. Plusieurs 

échantillons devraient donc être pris à plusieurs moments afin de réduire l’impact de la variabilité. 

Plusieurs exemples de cette approche ont été identifiés dans la littérature. Ainsi, Rotter et al. (2004) 

et Damgacioglu et al. (2020) ont réalisé une MFA respectivement sur un centre de tri de matières 

résiduelles mixtes et un centre de tri de matières recyclables en vue d’étudier l’efficacité de la 



35 

 

chaîne pour assurer une bonne qualité des produits. Dans les deux cas, les efficacités de séparation 

de toutes les opérations unitaires ont été calculées à partir d’un bilan de masse sur le système et 

d’une caractérisation des produits. Leur approche est toutefois limitée par le fait que le bilan de 

masse doit obligatoirement être déterminé, soit qu’il doit y avoir autant d’informations connues 

que d’informations inconnues pour la résolution du bilan. Dans un centre de tri, ceci se caractérise 

par le fait qu’un flux ne peut pas prendre deux chemins pour arriver au même endroit (Figure 2.2A). 

Ceci est toutefois très rarement le cas dans les centres de tri réels, qui ont plus souvent une 

configuration similaire à celle montrée dans la Figure 2.2B.  

 

Figure 2.2 Configuration théorique pour un système A) déterminé B) sous-déterminé 

Ainsi, dans les cas où le centre de tri à l’étude représente un système sous-déterminé, des 

hypothèses doivent être posées et/ou des caractérisations supplémentaires doivent être réalisées 

pour permettre la résolution du bilan de masse. Par exemple, Velis et al. (2013) ont utilisé le logiciel 

STAN pour réaliser une MFA sur un centre de TMB en effectuant une réconciliation des données 

issues de différentes caractérisations. Dans ce cas, le flux d’entrée, six flux internes et six flux de 

sorties ont été caractérisés, puis les informations manquantes ont été estimées à partir d’hypothèses 

et de données issues de la littérature (Velis et al., 2013). Les hypothèses ne sont par contre pas 

toutes clairement énoncées. Également, des limitations en lien avec l’utilisation de STAN ont été 

soulignées dans ces travaux. 

Similairement, Jansen et al. (2015) ont caractérisé les entrées et les sorties de trois usines de tri de 

matières plastiques en Allemagne à partir de sept campagnes de caractérisation. Dans leur cas, afin 

de résoudre les points de mélange, ils ont estimé que la composition était la même pour tous les 

flux et ont estimé la répartition massique à partir de leurs connaissances du procédé (Jansen et al., 
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2015). Ainsi, pour la Figure 2.2B, ils auraient estimé le ratio massique entre les flux P2-U2 et P3-

U2, en plus d’assumer que leur composition est la même. Cette approche a l’avantage de permettre 

de résoudre facilement le bilan de masse, mais repose sur des simplifications importantes.   

Finalement, une autre approche utilisée est celle de Feil et al. (2017), qui ont proposé une 

méthodologie se basant uniquement sur une caractérisation des flux de sortie, dû à la complexité 

de caractériser des flux internes. Afin de résoudre le bilan de masse, ils proposent de résoudre le 

bilan par itération en partant de la fin et de poser des hypothèses lorsque des informations sont 

manquantes pour la résolution. Des hypothèses au cas par cas sont ainsi définies pour plusieurs 

opérations en fonction de leurs connaissances du procédé et des matières. Par exemple, ils ont 

estimé que 5% des emballages de carton étaient récupérés dans la fraction fine d’un séparateur à 

disque en estimant la taille des particules de ces emballages et ils ont estimé que les trieurs manuels 

récupéraient 100% des matières ciblées (Feil et al., 2017).  

Outre la variabilité des conditions d’opération et de la composition entrante lors de la prise 

d’échantillon, toutes ces approches font face à la difficulté de caractériser l’ensemble des flux du 

procédé, menant à une incapacité de résoudre le bilan de masse directement. Pour remédier à ce 

problème, plusieurs approches ont été proposées, toutes basées sur le fait de poser des hypothèses 

appropriées. Par contre, ces hypothèses ne sont pas toutes clairement énoncées. Également, il n’est 

pas clair si ces hypothèses se valent toutes. Également, aucune méthodologie claire n’a été proposée 

pour extrapoler les calculs à une autre situation similaire.  

2.2.6.2 Estimation à partir des efficacités des manufacturiers 

Les efficacités fournies par les manufacturiers sont peu utilisées, car elles incluent généralement 

uniquement les matières ciblées, négligeant ainsi la contamination. Également, ces efficacités ne 

sont pas nécessairement fiables. Kleinhans et al. (2021) rapportent que les efficacités de 

manufacturiers sont sous-estimées puisqu’elles doivent garantir un standard minimum. De leur 

côté, Ip et al. (2018) considèrent au contraire que les efficacités des manufacturiers représentent 

une situation idéale et sont donc surestimées. Cette conclusion est partagée par plusieurs opérateurs 

de centre rencontrés dans le cadre de ces travaux qui mentionnent que les efficacités promises par 

les manufacturiers ne sont souvent pas atteintes par les différents équipements de tri.  
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2.2.6.3 Estimation à partir de jugements d’experts : 

Une autre approche pour la détermination de coefficients de transfert est de les estimer à partir de 

discussions avec un groupe d’experts en se basant sur leurs connaissances en lien avec l’opération 

des équipements et des caractéristiques des matières.  

Ainsi, Caputo & Pelagagge (2002) ont estimé des coefficients de transfert pour différents 

équipements de tri, mais n’ont pas précisé quelle méthodologie avait été privilégiée pour y parvenir. 

Kleinhans et al. (2021) ont quant à eux déterminé les efficacités de tri en prenant en compte certains 

critères tels que les spécifications des équipements, les matières ciblées par celles-ci et les 

propriétés théoriques des matières, et en ayant plusieurs discussions itératives avec des experts 

dans le domaine. Finalement, Pressley et al. (2015) ont déterminé des efficacités pour différents 

équipements suite à des discussions avec des experts et à partir d’observations visuelles d’une 

chaîne de tri. 

Malgré son apparente simplicité, cette approche est toutefois hautement subjective, 

indépendamment du niveau de détails choisi pour la modélisation, et est souvent faite de façon très 

peu transparente.   

2.2.6.4 Détermination à partir des phénomènes physiques : 

La détermination de coefficients basés sur les forces physiques est souvent considérée comme 

difficilement réalisable dû à la grande variation des propriétés et au nombre important 

d’équipements à considérer (Kleinhans et al., 2021). Par contre, certains exemples sont tout de 

même disponibles dans la littérature.  

Ainsi, Faraca & Astrup (2019) ont effectué une MFA sur trois configurations de MRF pour la 

purification de plastiques. Dans ce cas, ils ont estimé les coefficients de transfert (soit 0, 0.5 ou 1) 

selon une description approfondie des matières résiduelles, incluant la couleur, le type de polymère 

et la présence de plusieurs polymères différents. Ainsi, une efficacité était choisie selon la capacité 

des différents équipements à différencier une matière selon ses caractéristiques. Cette approche 

nécessite toutefois une connaissance approfondie des matières et serait donc difficilement 

extrapolable pour un TMB complet. Également, le choix d’un coefficient de transfert dans un 

intervalle aussi restreint pourrait limiter grandement la représentativité de la modélisation. 

Finalement, cette approche, malgré une description plus importante des caractéristiques des 
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matières résiduelles, ressemble grandement à la méthode d’estimation par jugement d’expert, et est 

donc grandement subjective.  

À partir d’une approche un peu différente, Kleinhans et al. (2021) ont utilisé les tailles de particules 

des matières résiduelles pour estimer un coefficient de transfert pour leur séparation dans un 

séparateur à disque. Ils n’ont toutefois pas précisé comment le choix des coefficients a été effectué, 

ni comment les tailles de particules étaient décrites dans ce cas précis.  

Ainsi, malgré sa capacité prédictive potentiellement intéressante, cette approche a été très peu 

utilisée dans la littérature. Il est donc difficile de tirer des conclusions sur son efficacité réelle.  

2.2.7 Les limites actuelles de la représentation numérique 

Les principales limites en lien avec la représentation numérique du tri mécanique des matières 

résiduelles viennent principalement de l’utilisation de coefficients de transfert et de leur 

détermination, puisque comme présenté dans les sections précédentes, la très grande majorité des 

modèles reposent sur l’utilisation de ces coefficients.  Ainsi, les limites soulevées dans les sections 

2.2.2 et 2.2.5 quant à la difficulté de représenter les conditions réelles du tri s’appliquent. Les 

coefficients de transfert ne permettent généralement pas de s’adapter à une variation de la 

configuration d’un centre de tri, et dans certains cas à une variation de la composition entrante. 

Pourtant, plusieurs exemples ont montré que l’efficacité d’un équipement pouvait varier 

grandement selon la situation. Par exemple, Müller et al. (2003) ont montré que l’efficacité d’un 

séparateur balistique variait considérablement pour 5 compositions entrantes différentes, limitant 

grandement la capacité de prédire cette situation avec des coefficients fixes. Également, les 

modèles rapportés sont difficilement extrapolables, puisque leurs coefficients sont définis pour 

certaines matières dans certaines conditions, faisant en sorte que de nouveaux coefficients doivent 

toujours être définis pour de nouvelles situations. Plus encore, ces coefficients ne prennent pas en 

compte les propriétés physiques des matières, pourtant décrites comme essentielles pour expliquer 

le fonctionnement des équipements de tri mécanique.  

L’utilisation de modèles mécanistiques, tels que ceux présentés à la section 2.2.4 pourrait permettre 

de remédier à cette problématique, mais il n’a jamais été démontré que ces modèles pouvaient 

réellement être utilisés pour la représentation numérique de centres de tri mécanique.  
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Une autre problématique en lien avec les modèles présents dans la littérature est qu’ils font souvent 

face à un défi de transparence. L’origine des données et la méthodologie pour déterminer les 

efficacités de tri ne sont pas toujours rapportées de manière transparente. Une des raisons 

expliquant ce problème vient du fait que plusieurs centres font face à des enjeux de confidentialité.  

 

2.3 Propriétés physiques des matières résiduelles 

En vue d’effectuer une modélisation des mécanismes physiques des opérations de tri mécanique 

des matières résiduelles, une compréhension approfondie des propriétés physiques des matières 

résiduelles est essentielle puisque celles-ci ont une influence directe sur l’efficacité des 

équipements de tri (Diaz et al., 1982; Feil, Thoden Van Velzen, et al., 2016; Ip et al., 2018; Velis 

et al., 2010). Parmi ces propriétés, la taille des particules est souvent identifiée comme l’une des 

propriétés les plus importantes, puisqu’elle a une influence directe ou indirecte sur la majorité des 

équipements de tri (Velis et al., 2010). Par exemple, même si la taille des particules n’est pas 

directement ciblée par un séparateur magnétique, il a été montré que la récupération des métaux 

ferreux est moins efficace pour des objets de petite taille (Raymond, 2017; Savage et al., 1984). 

Les autres propriétés physiques des matières résiduelles généralement identifiées comme 

importantes pour les opérations de tri incluent la densité, le facteur de forme, les propriétés 

magnétiques et les propriétés optiques (Feil, Thoden Van Velzen, et al., 2016; Ip et al., 2018; Velis 

et al., 2010). 

Outre leur influence sur le rendement des opérations de tri, les propriétés physiques des matières 

résiduelles peuvent également influencer les stratégies d’échantillonnage (Feil, Thoden Van 

Velzen, et al., 2016) et les stratégies de collecte des matières résiduelles (Chang & Pires, 2015), en 

plus de s’influencer entre elles (p.ex., la taille des particules a une influence sur l’humidité) (Beyer 

& Pretz, 2004). Une connaissance approfondie des principales propriétés s’avère donc essentielle 

autant pour accroître la compréhension associée aux opérations de tri, que pour la gestion des 

matières résiduelles en général.  

Par contre, en raison de la grande hétérogénéité des matières résiduelles, ces propriétés sont 

caractérisées par une grande variabilité (Kleinhans et al., 2021; Lagerkvist et al., 2010; Velis et al., 

2010). Ainsi, elles ont généralement été peu étudiées par le passé menant à leur faible 
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représentation dans la littérature. Également, certaines limites ont été identifiées pour leur 

caractérisation. Ainsi, dû à la grande variabilité de la forme et la taille des matières résiduelles, il 

peut être difficile de mesurer la taille des particules des matières résiduelles (Velis et al., 2010; 

von Blottnitz et al., 2002). L’importante ductilité de certaines catégories de matières a également 

été identifiée comme un frein pour la mesure de propriétés physiques de celles-ci (von Blottnitz et 

al., 2002). 

2.3.1 Taille des particules 

La taille des particules d’objets hétérogènes est généralement représentée à partir d’une distribution 

de tailles de particules (particle size distribution, PSD) choisie selon le domaine d’application 

(Fieller et al., 1992). Pour représenter une PSD, le diamètre de tamisage est généralement utilisé, 

car il s’agit de la mesure la plus facile à effectuer (Merkus, 2009; Ruf, 1974). Dans le cas de 

matières résiduelles, il s’agit également de la mesure la plus adaptée, puisque plusieurs opérations 

de tamisage sont généralement utilisées pour en effectuer la séparation. 

La taille des particules de matières résiduelles est généralement concentrée entre 1-2 cm et 30-50 

cm (Stessel, 2012), ce qui représente une large plage d’application. Plusieurs distributions ont été 

utilisées pour représenter la taille de particules de matières résiduelles, incluant les distributions 

log-normale, normale, gamma, bêta et Rosin-Rammler (Alter et al., 1981; Ashkiki et al., 2019; 

Nakamura et al., 2006; Ruf, 1974). La distribution de Rosin-Rammler a été identifiée comme une 

méthode appropriée pour la représentation de matières résiduelles (Vesilind, 1980), principalement 

pour des matières résiduelles broyées (Savage & Trezek, 1980). Il s’agit d’ailleurs de la distribution 

recommandée pour représenter la taille de particules de RDF dans la norme ASTM E1037.  

Par contre, aucune étude n’a été réalisée dans la littérature permettant de conclure qu’une 

distribution est plus appropriée qu’une autre pour la représentation de matières résiduelles non 

traitées. Également, très peu de données de distribution sont disponibles pour représenter les 

différentes catégories de matières résiduelles. La source de données la plus complète provient de 

la thèse réalisée par Ruf (1974). Cette source est cependant relativement vieille et il est très 

probable que les matières aient suffisamment évolué pour que les distributions rapportées ne soient 

plus aussi valides.  
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2.3.2 Densité 

Deux types de densité sont généralement calculés pour représenter les matières résiduelles, soit la 

densité du matériel et la densité apparente (Lagerkvist et al., 2010). Dans ce dernier cas, la densité 

prend en compte le vide interne de l’objet ainsi que l’espace entre les objets lors de la prise de 

l’échantillon. La densité apparente est donc dépendante du niveau de compaction appliqué sur les 

matières lors de la prise de la mesure ou lors de la collecte, et de la contamination potentielle lors 

de la mesure (Feil, Thoden Van Velzen, et al., 2016; Tchobanoglous et al., 1993). La densité du 

matériel ne dépend quant à elle que du type de matière résiduelle. Pour la modélisation du tri des 

matières, la densité apparente est généralement la plus utile, car elle permet de prendre en compte 

la forme des objets.  

Certains auteurs ont rapporté des intervalles de valeurs typiques pour la densité apparente des 

matières résiduelles pour différentes catégories de matière (Tchobanoglous et al., 1993; US EPA, 

2016; Vesilind et al., 2002; WRAP, 2010). WRAP (2010) ont publié l’une des banques de données 

les plus complètes pour la densité apparente en présentant la valeur moyenne, l’écart-type, la plus 

grande valeur et l’intervalle de confiance pour plusieurs catégories de matières selon plusieurs 

méthodes de collecte. Par contre, cette caractérisation combine plusieurs méthodes différentes et 

plusieurs catégories de matières sont très agrégées, rendant la comparaison et l’utilisation de ces 

données difficiles. Ce problème est d’ailleurs généralisé puisque les données de densité provenant 

de la littérature sont caractérisées par une très faible uniformité (Tchobanoglous et al., 1993)  

Pour ce qui est de la densité du matériel, elle a été peu étudiée par le passé. Lagerkvist et al. (2010) 

ont rapporté une valeur pour certaines matières. Par contre, les catégories rapportées ne 

correspondent pas exactement aux catégories de matières résiduelles généralement étudiées, ce qui 

mène encore une fois à une problématique pour l’utilisation des données. Également, lorsque ces 

données sont rapportées, elles n’ont pas nécessairement été mesurées pour des matières résiduelles, 

mais plutôt pour des matières vierges. Ainsi, il y a un manque de données disponibles et utilisables, 

autant pour la densité apparente que la densité du matériel.  

2.3.3 Facteur de forme 

Malgré sa grande importance pour la prédiction du rendement de plusieurs opérations de tri telles 

que la séparation balistique et la classification à air, le facteur de forme a été très peu étudié dans 
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la littérature. La seule approche recensée pour caractériser cette propriété provient des travaux de 

Savage et al. (1984) qui ont classé la forme des principales catégories de matières résiduelles de 

manière qualitative en quatre familles, soit les objets en forme de long éclat, en forme plate, en 

forme de cylindre ou en forme de cube. Ils ont ensuite défini un coefficient de traîné pour chacune 

de ces familles en assumant une taille d’objet typique (Savage et al., 1984). Cette approche permet 

une première approximation de la forme des matières résiduelles, mais est limitée à un nombre 

restreint de familles d’objet et ne permet pas de quantifier directement la propriété. Une nouvelle 

méthode permettant de quantifier directement le facteur de forme des matières résiduelles devrait 

donc être développée pour remédier à ces limites.  

2.3.4 Autres propriétés 

Parmi les autres propriétés des matières résiduelles, l’humidité a une influence importante sur le 

fonctionnement de plusieurs procédés de conversion (Lagerkvist et al., 2010). L’humidité peut 

également influencer les caractérisations des matières résiduelles, puisqu’elle peut grandement 

affecter la masse d’un échantillon (Lagerkvist et al., 2010). Ceci peut être problématique sachant 

que l’humidité varie beaucoup selon plusieurs facteurs tels que la saison, la composition des 

matières et les conditions météorologiques lors de la collecte (Tchobanoglous et al., 1993). 

Finalement, l’humidité a une influence sur la séparation des matières dans un centre de tri, puisque 

les matières sèches sont plus facilement séparables (Christensen & Bilitewski, 2010). L’humidité 

a été étudiée à plusieurs reprises et est souvent exprimée comme valeur moyenne pour une 

catégorie donnée de matière.  

Les propriétés élastiques des matières résiduelles ont également été identifiées comme importantes 

puisqu’elles dictent le comportement des matières lors de leur broyage (Velis et al., 2010). Par 

contre, les connaissances actuelles portant sur le comportement des matières fragiles ne permettent 

pas de modéliser adéquatement les procédés de broyage (Velis et al., 2010). 

Finalement, les propriétés électromagnétiques et optiques des matières résiduelles sont également 

importantes pour les opérations de tri mécanique (Velis et al., 2013). Pour les propriétés 

électromagnétiques, il est souvent simplement considéré que tous les métaux sont captés par un 

séparateur, alors que les autres matières ne le sont pas. Pour ce qui est des propriétés optiques, elles 

ne sont généralement pas rapportées dans les études sur le tri mécanique. Par contre, certains 
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auteurs ont caractérisé la couleur des différents plastiques afin de déterminer la proportion des flux 

qui ne seraient pas détectés par un trieur optique (Eriksen & Astrup, 2019; Faraca & Astrup, 2019). 

 

2.4 Analyse critique de la littérature 

La revue de la littérature a montré que la représentation numérique du tri mécanique des matières 

résiduelles, que ce soit pour la prédiction des impacts environnementaux ou des flux de matières, 

se fait dans la grande majorité des cas à partir de coefficients de transfert. La détermination de ces 

coefficients se fait généralement à partir de quatre méthodes distinctes, soit à partir d’efficacités 

prédites par les manufacturiers, à partir d’estimations réalisées par des experts, à partir de 

caractérisations des entrées et des sorties d’un centre ou à partir d’une modélisation des 

phénomènes physiques. Alors que les deux premières approches font face à un défi de transparence 

et de confidentialité, la troisième approche fait face à des défis méthodologiques et la quatrième 

approche a été très peu utilisée par le passé dû à la grande variabilité des propriétés des matières 

résiduelles. Ces défis ont mené à une faible représentation de l’efficacité de tri des différentes 

opérations unitaires dans la littérature. En effet, peu d’informations sont disponibles sur le 

fonctionnement des opérations et peu de données sont disponibles quant à leur efficacité pour 

différents contextes. Globalement, la performance du tri mécanique des matières résiduelles doit 

donc être améliorée. Accroître la compréhension associée à la performance du tri mécanique est 

particulièrement important dû à la sous-performance des différents centres de tri par rapport aux 

cibles visées. Ceci se traduit par une contamination importante des principaux produits issus du tri 

mécanique des matières résiduelles, faisant en sorte que peu de débouchés viables sont disponibles 

pour ceux-ci.  

Les différents exemples dans la littérature s’étant attardés au calcul des efficacités de tri des 

matières résiduelles à partir d’usines existantes se basent sur des méthodologies de résolution 

différentes et sur des hypothèses souvent divergentes. Ainsi, il n’existe présentement pas de 

méthode systématique permettant de résoudre ce type de problème, menant à une disparité des 

solutions. En effet, ces différentes méthodologies peuvent mener à des résultats complètement 

différents selon les hypothèses posées, indiquant le besoin de développer une approche transparente 

et documentée permettant de résoudre ce type de problème.  
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Par contre, malgré l’importance des coefficients de transfert pour la représentation numérique des 

opérations de tri de matières résiduelles dans la littérature, la revue effectuée a également permis 

de montrer que ces coefficients sont limités dans leur capacité prédictive puisqu’ils ne permettent 

pas de prendre en compte la configuration de la chaîne de tri, les conditions d’opération des 

équipements et les propriétés physiques des matières. Pourtant, ces trois aspects ont été identifiés 

à plusieurs reprises comme des facteurs expliquant la variabilité importante de l’efficacité des 

centres de tri. Il faut donc s’attendre à ce que l’utilisation de ces coefficients de transfert mène à 

des limitations importantes pour la prédiction des flux de matières, et donc des impacts 

environnementaux associés. Toutefois, les limites associées à l’utilisation de ces coefficients dans 

ce contexte n’ont jamais été analysées dans la littérature. Également, leur variabilité et le contexte 

dans lequel ils sont déterminés n’ont pas été analysés en détail. Ainsi, il n’est pas possible de 

conclure sur l’applicabilité de ces coefficients pour la prédiction des caractéristiques des produits 

d’un TMB dans un contexte différent de celui pour lesquels ils ont été déterminés.    

Afin de remédier aux limites associées à l’utilisation de coefficients de transfert, une modélisation 

mécanistique des opérations unitaires pourrait être appropriée. Toutefois, ce type de modèle a été 

très peu développé pour la représentation du tri mécanique des matières résiduelles, en partie parce 

qu’il repose sur une description détaillée des propriétés physiques des matières résiduelles, telles 

que la taille des particules, la densité et le facteur de forme. Pourtant, la revue de la littérature a 

montré que ces trois propriétés ont été très peu analysées par le passé.  

Pour la taille des particules, malgré le fait que cette propriété ait été caractérisée à quelques reprises 

dans la littérature, aucune méthodologie n'est privilégiée pour la représentation de matières 

résiduelles non-traitées, menant à une disparité importante des méthodes. Également, il n’existe 

pas d’étude récente portant sur la détermination de distributions de tailles de particules pour les 

principales catégories de matières, menant à une incapacité de réellement prédire cette propriété. 

Pour ce qui est de la densité, elle a également été caractérisée à quelques reprises, mais elle a 

souvent été mesurée dans des conditions très variables. Ainsi, la densité est rarement rapportée 

pour des conditions similaires, faisant en sorte que les données sont peu utilisables dans un contexte 

de tri mécanique. Pour ce qui est du facteur de forme, il n’existe aucune méthode dans la littérature 

pour quantifier cette propriété. Ces différentes limitations dans la représentation des propriétés 

physiques font en sorte que la modélisation des phénomènes physiques des opérations de tri est 

fortement limitée. 
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Finalement, la revue de la littérature a montré qu’il n’existe présentement aucun outil prédictif 

transparent permettant de prédire les flux de matières résiduelles à partir de modèles mécanistiques 

et ayant été validé avec des données de terrain. Certains outils ont été développés dans des versions 

préliminaires, mais l’algorithme général de résolution n’est jamais présenté. Également, un manque 

de transparence important est observé puisque ce ne sont généralement pas toutes les opérations 

qui sont décrites et certains aspects ne sont pas fournis, ne permettant pas de recréer ces modèles. 

Finalement, aucun de ces modèles n’a été réellement validé avec des données de terrain dans un 

cadre récent, ne permettant pas de conclure à une réelle validité de cette approche comme 

remplacement à l’utilisation de coefficients de transfert.   
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CHAPITRE 3 OBJECTIFS ET MÉTHODOLOGIE GÉNÉRALE 

Cette section présente les objectifs découlant de la revue de la littérature effectuée, la méthodologie 

générale développée pour les atteindre et une description de l’organisation des résultats de la thèse.  

3.1 Objectifs du projet 

Pour donner suite à l’analyse critique de la littérature effectuée, l’objectif suivant a été défini : 

Développer un outil prédictif basé sur une modélisation du procédé et des matières 

résiduelles permettant une implantation réussie du traitement mécano-biologique dans un 

contexte québécois. 

Afin de répondre à cet objectif, il est possible de séparer cet objectif en cinq objectifs spécifiques 

en se basant sur la revue de la littérature effectuée. Ces cinq sous-objectifs sont les suivants : 

1. Développer une méthodologie permettant de calculer les efficacités de séparation des 

opérations de tri mécanique d’un centre existant à partir de caractérisations de certains flux 

de matières; 

2. Identifier les limites induites par l’utilisation de coefficients de transfert pour la 

modélisation des opérations de tri mécanique de matières résiduelles; 

3. Développer une approche permettant de modéliser les principales propriétés physiques des 

matières résiduelles à partir de caractérisations;  

4. Développer une approche de modélisation du traitement mécano-biologique des matières 

résiduelles se basant sur une intégration judicieuse de coefficients de transfert et de 

modèles mécanistiques; 

5. Déterminer l’impact de la configuration de la chaîne d’un procédé de traitement mécano-

biologique et des conditions d’opération des équipements de tri sur la qualité des produits 

et leurs débouchés. 

Comme il a été montré que les coefficients de transfert jouent un rôle important pour la 

modélisation du TMB, mais que les méthodes utilisées font généralement face à un manque de 

cohérence et de transparence, le premier objectif spécifique proposé permet de répondre à ces deux 
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problématiques en fournissant une nouvelle méthodologie permettant de résoudre ce type de 

problèmes. 

Ensuite, certaines limites théoriques à l’utilisation de coefficients de transfert pour effectuer la 

modélisation prédictive d’un procédé de TMB ont été identifiées dans la littérature, mais aucune 

démonstration réelle n’a été effectuée. Ainsi, le deuxième objectif spécifique vise à identifier plus 

clairement ces limites et à déterminer des balises pour leur application. 

Étant donné qu’une modélisation mécanistique de certaines opérations unitaires est privilégiée, il 

a été montré dans la revue de la littérature qu’une bonne compréhension des propriétés physiques 

des matières résiduelles est nécessaire, ce qui n’est présentement pas le cas. Ainsi, le troisième 

objectif spécifique vise à améliorer cette compréhension pour les principales propriétés influençant 

le tri mécanique des matières en proposant des méthodes quantitatives pour les représenter.  

Une fois que les limites associées à la modélisation par coefficients de transfert sont vérifiées, que 

les méthodes de modélisation à privilégier sont identifiées de façon judicieuse et que la 

modélisation des propriétés des matières est effectuée, il est possible de procéder au développement 

de l’outil de modélisation, ce qui correspond au quatrième objectif spécifique.  

Finalement, une fois l’outil développé, il peut être utilisé pour identifier les meilleures 

configurations permettant l’intégration réussie du TMB dans un contexte québécois à travers une 

étude de cas, ce qui correspond au cinquième objectif spécifique.  

3.2 Méthodologie générale 

La description de la méthodologie générale inclut trois sections distinctes. Tout d’abord, pour 

toutes les caractérisations réalisées et obtenues auprès des partenaires, l’information ciblée, le type 

de matières analysées et la provenance des matières sont décrits. Cette section inclut également 

une description de la méthodologie utilisée pour analyser la représentativité des échantillons. 

Ensuite, l’outil de simulation développé dans le cadre de ce projet est décrit afin de présenter le 

cadre de modélisation. Finalement, la méthodologie utilisée pour valider les résultats de 

modélisation est décrite.  



48 

 

3.2.1 Caractérisations des matières résiduelles 

Pour analyser le fonctionnement des équipements de tri, il est nécessaire d’obtenir des données de 

terrain fiables et représentatives. L’obtention de ces données passe inévitablement par la réalisation 

de caractérisations de différents flux de matières résiduelles. Toutefois, la réalisation de ces 

caractérisations requiert beaucoup de temps et de ressources. Il est donc nécessaire de restreindre 

le nombre de caractérisations réalisées et la quantité de matières collectées. Par contre, ces 

limitations ne doivent pas affecter la représentativité des échantillons collectés. Une méthode 

d’analyse est donc requise pour s’assurer que les caractérisations réalisées sont réellement 

représentatives de la situation. 

Dans le cadre de cette thèse, les caractérisations effectuées ont principalement porté sur la 

détermination des propriétés physiques des matières résiduelles, puisque la faible quantité de 

données disponibles dans la littérature a été identifiée comme une des principales limites à la 

modélisation du tri mécanique. Ainsi, durant ce projet de recherche, quatre caractérisations 

distinctes ont été réalisées, dont trois portant sur les propriétés physiques des matières résiduelles 

et une sur la composition des flux internes d’un centre de tri. Les résultats de deux caractérisations 

effectuées par des partenaires ont aussi été obtenus. La Figure 3.1 présente un schéma de 

l’information ciblée, le type de matières analysées et la provenance des matières pour les six 

caractérisations utilisées dans le cadre de ce projet.  

Les caractérisations C1 et C3 sont utilisées dans le cadre du Chapitre 6, la caractérisation C2 dans 

le Chapitre 7, les caractérisations C4 et C5 dans le Chapitre 4 et la caractérisation C6 dans le 

Chapitre 5 et dans le Chapitre 8. 
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Figure 3.1 Schématisation des caractérisations effectuées et obtenues dans le cadre de ce projet 

Au niveau de la représentativité des caractérisations, plusieurs normes provenant de différents pays 

et pour différents contextes ont été définies pour baliser les caractérisations de matières résiduelles. 

Ainsi, dans un contexte nord-américain, la norme ASTM D5231 décrit la méthodologie à 

privilégier pour la caractérisation de la composition de matières résiduelles mixtes. Cette norme 

propose une méthode pour déterminer la quantité de matières à collecter pour obtenir des 

échantillons représentatifs. L’approche se base sur la détermination de moyennes et d’écarts-types 

pour une matière cible. Malgré son utilité, cette norme ne donne pas d’indications pour la 

caractérisation des propriétés physiques des matières, telles que la densité et la taille des particules. 

Également, cette norme s’applique à des matières résiduelles collectées à la source pour une 

municipalité ou une région, et n’est donc pas directement applicable pour caractériser des flux de 

matières d’un centre de tri, dû à la différence d’hétérogénéité entre ces deux types de flux.  

Pour effectuer la caractérisation de la densité de matières résiduelles, la norme ASTM E1109 

indique qu’il est nécessaire de collecter des échantillons supérieurs à 250 kg pour des matières 

ayant une taille nominale supérieure à 90 mm. Cette norme peut être appliquée pour caractériser la 

densité d’un mélange de matières mixtes, mais est toutefois difficilement applicable pour 

caractériser la densité de différentes catégories de matières due à la nécessité de trier manuellement 
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ces catégories. En effet, trier plusieurs échantillons de matières résiduelles de plus de 250 kg 

représenterait un temps considérable.  

Pour effectuer la caractérisation de la taille de particules de matières résiduelles, il n’existe 

présentement pas de norme ASTM directement en lien avec la détermination de cette propriété 

pour des matières non traitées. La norme ASTM E1037 permet de caractériser cette propriété pour 

un CDD ayant subi une réduction de taille et un briquetage, et ne peut donc pas être utilisée pour 

des matières non traitées, due à une importante différence de taille de particules. Également, la 

norme ASTM D5519 peut généralement être appliquée pour des matières ayant un diamètre 

supérieur à 75 mm. Cette norme ne fournit toutefois pas de quantité claire à caractériser.  

Plusieurs normes européennes ont également été définies pour des applications similaires. 

Toutefois, comme pour les normes ASTM, ils ne permettent pas de déterminer une quantité de 

matières à échantillonner pour la densité ou la taille des particules de catégories de matières 

résiduelles non traitées.  

En l’absence de normes applicables, l’approche utilisée pour s’assurer d’obtenir des données 

représentatives lors de la caractérisation de propriétés physiques comporte trois étapes, soit de : 

1) effectuer une estimation de la quantité à échantillonner à partir d’exemples similaires dans 

la littérature; 

2) effectuer la caractérisation des matières résiduelles; 

3) analyser la représentativité des échantillons à partir d’une analyse statistique des sous-

ensembles d’échantillons. 

Afin d’effectuer l’analyse de la représentativité des échantillons, l’approche utilisée consiste à 

calculer s’il y a une différence statistique, à partir d’un test d’hypothèse, de la propriété pour 

différents sous-groupes d’échantillons (c.-à-d., un sous-groupe d’échantillon correspond au 

nombre d’échantillons considérés). La Figure 3.2 présente la méthodologie utilisée.  
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Figure 3.2 Schématisation de l'approche utilisée pour analyser la représentativité des échantillons 

Ainsi, à partir d’un test d’hypothèse, il est possible de déterminer le nombre d’échantillons minimal 

pour que les paramètres de la distribution cessent d’évoluer par rapport au sous-ensemble 

précédent.  

3.2.2 Description de l’outil de modélisation 

Comme mentionné dans la section 2.2.1.3, l’outil de modélisation développé dans ce projet, nommé 

VMR-sys (valorisation des matières résiduelles - système), s’inscrit dans un cadre plus large, soit 

le développement d’un outil d’optimisation permettant de combiner l’ACV et la MFA, nommé 

MaRCOT. Ces deux outils sont développés à partir du langage de programmation orientée objet 

Python.  

VMR-sys a été développé pour permettre d’effectuer un bilan de masse sur un système gestion de 

matières résiduelles en se basant sur une modélisation flexible des opérations. Dans le cadre de ce 

projet, les différentes opérations unitaires ont été développées sous forme de modules, incluant des 

équipements de tri mécanique et une unité de carbonisation hydrothermale. Ces modules sont 

développés de façon à être intégrés dans l’outil MaRCOT et doivent donc avoir un format 

spécifique.   

Malgré le fait que VMR-sys a été principalement utilisé pour représenter un procédé de tri 

mécanique de matières résiduelles, sa structure est assez flexible pour intégrer d’autres types de 

traitement. Par exemple, cet outil a été utilisé pour modéliser l’intégration d’un modèle 

mécanistique de digestion anaérobie, ADM1, dans une MFA d’un système de traitement des 

matières organiques triées à la source (Urtnowski-Morin et al., 2021). 
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L’outil inclut plusieurs classes représentant les principaux modules nécessaires à la résolution. 

Chaque classe comporte plusieurs attributs, soit les informations qui définissent la classe, et 

plusieurs méthodes, soit ses fonctions. Les différentes classes développées ont des liens de 

dépendance leur permettant ainsi de partager des informations. La Figure 3.3 présente les classes 

développées spécifiquement dans le cadre de ce projet. Les prochaines sections décrivent le 

fonctionnement de ces classes, ainsi que leurs attributs et leurs méthodes. Dans le cas présent, les 

attributs et méthodes de la classe Layers ne sont pas présentés, puisqu’ils ont été développés dans 

le cadre du développement de l’outil MaRCOT et ne sont pas tous nécessaires. Par contre, il est à 

noter que certains éléments de la classe Layers sont utilisés dans la modélisation, incluant les 

attributs et les méthodes permettant de définir les niveaux de masse d’un flux.  

 

Figure 3.3 Description de l’outil de modélisation pour la représentation numérique d’un TMB 

Dans la figure, chaque classe est représentée par un rectangle pour lequel son nom, ses attributs et 

ses méthodes sont présentés dans l’ordre. Lorsque le symbole + est utilisé, cet attribut ou cette 

méthode est disponible pour l’utilisateur, alors que lorsque le symbole – est utilisé, cet attribut ou 
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cette méthode est caché à l’utilisateur. Une flèche vide indique qu’une classe hérite des attributs et 

méthodes d’une autre classe (classe enfant et classe parent) et un losange vide indique que cette 

classe peut exister séparément tout en étant utilisée dans une autre classe.  

3.2.2.1 Classe MRF_Equipement 

Cette classe permet de définir les principaux attributs et méthodes utiles principalement pour la 

modélisation d’équipements de tri mécanique, mais également pour d’autres types de procédés.  

Les attributs incluent un dictionnaire de propriétés des matières résiduelles, le débit de matière 

entrant à un procédé et une définition des niveaux massiques sous la forme d’un objet Layers défini 

dans MaRCOT. Cette façon de définir les niveaux de masse d’un flux de matière permet d’exprimer 

la matière sous trois différents niveaux, soit la composition en biens (objets matériels), en éléments 

non-conservés (p.ex., une molécule chimique) et en éléments conservés (éléments chimiques). Ceci 

permet de donner une flexibilité importante lors de la description des matières. Pour ce qui est de 

l’attribut permettant de décrire les propriétés, il permet de prendre en compte la densité, la taille 

des particules, le facteur de forme et le PCI des matières. L’humidité est quant à elle définie sous 

la forme d’un élément non-conservé dans l’objet Layers. 

Au niveau des méthodes, elles incluent différentes fonctions utiles pour plusieurs classes et 

permettant principalement de mettre en forme et de manipuler les propriétés.  

3.2.2.2 Classe vmr_sys 

Cette classe permet de recenser les principaux attributs et méthodes permettant de résoudre le bilan 

de masse sur un système de gestion des matières résiduelles et représente donc le cœur de l’outil 

VMR-sys. 

Les attributs de cette classe englobent toutes les informations requises pour définir le système 

incluant une liste d’opérations unitaires (nodes), une liste des liens entre ces opérations unitaires 

(edges), une liste de la classe utilisée pour représenter chaque opération unitaire dans le modèle, 

les attributs des opérations unitaires et une description initiale des flux de matières entrants au 

procédé. Ainsi, cette classe peut aussi bien permettre de modéliser un centre de tri mécanique de 

matières résiduelles, que n’importe quel autre système, dans la mesure où les classes spécifiques 

aux procédés de traitement sont définies.  
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Plusieurs méthodes sont définies permettant d’effectuer l’importation des données, la mise en 

forme des données et la résolution du système. La méthode graph() permet également d’effectuer 

une représentation graphique du système et d’y inclure les débits de matières calculés. Une 

description de l’algorithme de résolution de la méthode solve() est présentée dans le Chapitre 8. 

3.2.2.3 Autres classes 

Quatre autres classes ont été définies, incluant deux modèles spécifiques de tri mécanique (crible 

rotatif et séparateur balistique), un modèle de carbonisation hydrothermale et un modèle général 

prenant en compte des coefficients de transfert. Ces quatre classes sont définies comme des classes 

enfants de la classe MRF_Equipement, malgré le fait que la carbonisation hydrothermale n’est pas 

un procédé de tri mécanique, car ils requièrent tous les attributs de la classe parent.  

Également, ces quatre classes ont sensiblement les mêmes attributs et les mêmes méthodes. Leurs 

attributs sont les variables prises en compte dans la modélisation spécifique à l’opération unitaire. 

Dans le cas de la classe partition_coefficient, le seul attribut correspond à un dictionnaire de 

coefficients permettant de décrire l’opération. Pour ce qui est des méthodes, ils incluent tous une 

méthode solve() permettant la résolution du système et dans certains cas une méthode efficiency() 

permettant de calculer l’efficacité de l’opération. Une description du fonctionnement de ces 

modules est présentée dans le Chapitre 8 pour le crible rotatif, le séparateur balistique et les 

équipements représentés par des coefficients de transfert, alors qu’une description du modèle de 

HTC est présentée dans le Chapitre 9. 

3.2.3 Validation des modèles développés 

Afin d’évaluer la performance d’un centre de tri mécanique et d’ainsi pouvoir valider les différents 

modèles développés, il est nécessaire de définir des critères clairs et précis. Ces critères sont 

nécessaires dû au nombre important de flux, de matières et de produits potentiels. Ainsi, il n’est 

pas possible de prendre en compte toutes ces informations pour la validation des modèles et des 

choix doivent être effectués.  

L’approche privilégiée au cours de ce projet pour évaluer la performance des centres est 

l’utilisation de deux critères principaux, soit la pureté et la récupération. Ces critères ont également 

été utilisés dans la littérature pour la validation de modèles de centre de tri mécanique (Ip et al., 

2018; Kleinhans et al., 2021). Les deux variables sont définies pour une matière ciblée dans un 
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produit donné. La pureté permet de donner une indication de la qualité du produit, alors que la 

récupération permet de quantifier la capacité du centre à orienter une matière vers le bon produit.  

Deux principales étapes de validation sont nécessaires dans le cadre du projet. Dans un premier 

temps, afin de valider la méthodologie développée dans le premier objectif spécifique et permettant 

de calculer des coefficients de transfert pour un centre existant, la caractérisation C5 (voir Figure 

3.1) sera utilisée. Ensuite, pour effectuer la validation de l’outil général développé dans le 

cinquième sous-objectif, la caractérisation C6 (voir Figure 3.1) sera utilisée. Dans les deux cas, il 

s’agit de caractérisations réalisées par des partenaires dans le but d’estimer la composition et la 

quantité de tous les produits du centre de tri.   

3.3 Organisation de la thèse 

Cinq objectifs spécifiques ont été définis dans le cadre de cette thèse. Les quatre premiers objectifs 

spécifiques ont mené à la rédaction d’articles scientifiques soumis dans des revues avec comité de 

révision, alors que le dernier a été approfondi dans une étude de cas non-publié. Ces cinq articles 

sont présentés dans leur version originale, puis l’étude de cas est présentée, suivie d’une discussion 

générale et d’une conclusion.  

Le premier article présente la méthodologie développée pour calculer les flux de matières et les 

efficacités des opérations d’un centre de tri mécanique de matières résiduelles. Cette méthodologie 

est appliquée à un centre de tri de matières recyclables situé dans la province de Québec et pour 

lequel plusieurs caractérisations des flux entrants, sortants et internes ont été réalisées.  

Le deuxième article compare les différents coefficients de transfert utilisés dans la littérature pour 

représenter les principaux équipements de tri mécanique communément utilisés sur la base de leur 

efficacité, la méthodologie utilisée pour les déterminer, les matières résiduelles considérées et la 

description des équipements. Ensuite, une analyse de sensibilité est réalisée afin d’identifier les 

principales limites à l’utilisation de ces coefficients et de conclure sur la stratégie à privilégier pour 

modéliser les différents équipements. 

Le troisième article analyse la taille de particules de matières résiduelles mixtes et propose une 

approche unique pour représenter cette propriété. Une description des tailles de particules de 

matières résiduelles est également effectuée et leurs caractéristiques sont identifiées. 
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Le quatrième article propose une nouvelle méthodologie pour quantifier le facteur de forme des 

matières résiduelles, soit à partir de la fraction de vide. Une caractérisation de la densité et des 

tailles de particules de matières recyclables est également effectuée. Une analyse de ces propriétés 

permet d’identifier des pistes pour favoriser la séparation des matières par du tri mécanique. 

Le cinquième et dernier article présente un outil de modélisation développé et intégrant des 

modèles mécanistiques et des modèles de coefficients de transfert pour la représentation d’un 

procédé de tri mécanique de matières résiduelles. Une validation est réalisée à partir de données de 

caractérisations obtenues pour un centre de tri de matières résiduelles mixtes dans un contexte 

québécois. Des analyses de scénarios sont également réalisées pour démontrer l’intérêt de cette 

approche de modélisation. 

L’étude de cas présente la performance de plusieurs scénarios d’un procédé de tri mécanique 

combiné à un procédé de carbonisation hydrothermale pour la valorisation des ordures ménagères. 

Les résultats des différents scénarios sont comparés aux normes de qualité disponibles dans la 

littérature. Ils sont également comparés entre eux à partir de quatre critères de performance. Ces 

critères permettent d’évaluer globalement la récupération et de la pureté des matières destinées aux 

filières de recyclage et aux filières de valorisation énergétique.  

La discussion générale présente un résumé du fil conducteur des différentes sections de la thèse et 

comment les différentes sections permettent de répondre aux principales limitations soulevées par 

la revue de la littérature et d’atteindre les objectifs de la thèse. Une brève description des principaux 

défis rencontrés lors de la réalisation du projet est également présentée.  

Finalement, la conclusion présente les principaux résultats et les retombées de cette thèse, ainsi que 

les limitations et les perspectives futures.      

Toutefois, afin de faciliter la compréhension de la lecture du présent document, il est pertinent de 

préciser que les articles n’ont pas été rédigés dans l’ordre présenté. Ainsi, les deux premiers articles 

réalisés portaient sur la détermination de tailles de particule des matières résiduelles (Chapitre 6) 

et l’identification des limites des coefficients de transfert (Chapitre 5). Une fois ces deux premiers 

articles réalisés, le développement de l’outil général a été commencé. Toutefois, il n’était pas 

possible à ce stade de valider l’outil, puisque le nombre de matières résiduelles pour lesquelles des 

propriétés physiques étaient définies était trop restreint. Ainsi, afin d’améliorer la modélisation, 

une nouvelle caractérisation a été réalisée afin d’agrandir la banque de données disponibles 
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(Chapitre 7). Finalement, dû à des contraintes externes au projet, les essais expérimentaux reliés à 

la carbonisation hydrothermale de matières résiduelles qui étaient initialement prévus ont été 

annulés. Il a donc été décidé de raffiner l’outil de modélisation. Pour ce faire, comme il a été 

identifié à plusieurs reprises que peu de données d’efficacités étaient disponibles dans la littérature, 

ce qui limite la capacité de modéliser les différentes opérations, il a été décidé d’améliorer les 

méthodes disponibles pour déterminer ces efficacités (Chapitre 4). Ces différentes étapes ont 

permis de terminer le développement de l’outil (Chapitre 8) et d’ainsi effectuer l’étude de cas 

(Chapitre 9). 



58 

CHAPITRE 4  ARTICLE 1 : A METHOD FOR ASSESSING THE 

PERFORMANCE OF SORTING UNIT OPERATIONS IN A MATERIAL 

RECOVERY FACILITY BASED ON WASTE CHARACTERIZATIONS 

Auteurs : Fabrice Tanguay-Rioux, Arianne Provost-Savard, Laurent Spreutels, Martin Héroux, 

Robert Legros 

Cet article a été soumis dans Journal of Cleaner Production en date du 19 octobre 2021. 

Abstract 

The determination of separation efficiencies of mechanical sorting equipment is essential to 

improve the performance of material recovery facilities (MRFs). However, it is a quite a challenge 

to obtain these efficiencies due to the high complexity of MRFs, which often comprise several 

recirculation streams. In this paper, a methodology to determine the equipment separation 

efficiencies of a complex MRF is described and applied to an actual sorting center located in the 

province of Quebec, Canada. Transfer coefficients for every unit operation and several material 

types, together with all material flows within the facility, have been determined for a complex MRF 

processing a stream of commingled recyclable materials. This work also provides a rare dataset of 

separation efficiencies for several mechanical sorting unit operations. The methodology is 

validated by comparing experimental data and model predictions for the recovery and the purity of 

all main output streams. The results are helpful to identify several avenues for process performance 

improvement, such as adding a magnetic separation at the beginning of the sorting sequence, or 

improving the separation of the 2D-type materials collected from the second ballistic separator by 

changing the operation conditions or adding a quality control step. Moreover, results also provide 

valuable information about recovery performance and material purity to help managers make 

proper decisions regarding process improvement.  Finally, a scenario analysis demonstrates that 

the performance of a second ballistic separator has an important impact on the sorting process 

global efficiency and that recirculating a fraction of the rejects output stream has a negligible 

impact on the global performance.   
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4.1 Introduction 

Mechanical separation plays a pivotal role in municipal solid waste (MSW) management systems, 

throughout its application in material recovery facilities (MRFs) and mechanical-biological 

treatments (MBTs). Despite its large-scale use, several authors have reported in recent years 

multiple challenges related to this type of unit operation for handling MSW.  

For example, Eule (2013) analyzed the sorting performance of three MRFs of comingled recyclable 

materials in the UK and observed important weaknesses related to the purity and the recovery of 

several waste materials. Damgacioglu et al. (2020) found similar results while studying MRFs of 

comingled recyclable materials in Florida, USA, where important issues regarding non-compliance 

with industry standards for several waste materials were observed. Even for less heterogeneous 

input streams, issues were reported as Feil et al. (2016) concluded to an important optimization 

potential of the recovery of beverage cartons in three lightweight packaging MRFs. These studies 

highlight the need to improve the knowledge about separation efficiencies of MSW mechanical 

separation units. Moreover, it has been shown in previous work that the separation efficiencies 

reported in the literature strongly vary according to the source of the data (Tanguay-Rioux et al., 

2021a), again highlighting the need for further work on this subject. 

It can be quite a challenge to determine the separation efficiencies of the different sorting 

equipment present in a MRF, due to its high complexity and to the presence of multiple 

recirculation streams. In this case, making appropriate assumptions can help to identify bottlenecks 

and guide future improvements (Feil et al., 2017). 

Another approach to guide the implementation of improvement measures is to simulate the MRF 

operations. To do so, it is necessary to determine the performance of the sorting equipment. This 

is generally done by calculating the MRF’s internal mass flows, thus allowing for the calculation 

of the separation efficiencies of every unit operation. Material flow analysis (MFA) is a powerful 

tool in this context, assuming that enough information is available on the process. MFA is a 

decision-support tool based on the mass conservation law that is used to track variations in flows 

and stocks for a complex system on the level of goods or substances (Brunner & Rechberger, 2016). 

This tool enables the calculation of transfer coefficients (TCs), which are numbers between 0 and 

1, that represent the partitioning of input material flows into output flows for a given unit operation 

(Brunner & Rechberger, 2016).  
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MFA has been applied often in the context of waste management, mainly to represent the waste 

management system as a part of the global economy (Allesch & Brunner, 2015). It has been applied 

also several times to model waste treatment plants, generally on both good and substance levels 

(Allesch & Brunner, 2015). However, it has seldom be applied to analyze specifically a MRF. 

Rotter et al. (2004) performed an MFA on a mechanical treatment sequence on the level of 

substances to determine how the operation affects the chemical characteristics of an RDF produced. 

More recently, Nasrullah et al. (2014) performed an MFA on the levels of goods and substances of 

a construction and demolition waste sorting facility, while Velis et al. (2013) performed a similar 

analysis for a MBT plant. In this latter case, to overcome the complexity of the plant, they used a 

combination of assumptions, literature data and characterizations to create initial estimates for 

every stream and then performed a data reconciliation and uncertainty propagation based on the 

MFA freeware STAN (Velis et al., 2013). Similarly, Jansen et al. (2015) solve the mass balance of 

MRFs following waste characterizations by making general assumptions on the internal flows 

composition and splits to calculate the unit operations efficiencies of the processes.  

However, in these previous studies, the actual MRFs had a limited number of unit operations and 

recirculating streams. Moreover, limitations in the use of STAN for this purpose were identified, 

requiring manual modifications (Velis et al., 2013), which raises the need for a more robust 

approach for larger systems. Also, no guidelines are provided to apply this type of resolution to a 

similar context.  

The objective of this study is to develop a general and systematic methodology allowing to perform 

a material flow analysis on a complex MRF in order to determine the transfer coefficients of the 

unit operations. This methodology is applied in a case study based on an actual MRF processing 

commingled recyclable materials. The results are validated by using the calculated transfer 

coefficients for the prediction of the MRF outputs. Results are also compared to performance data 

for similar unit operations found in the literature. Finally, scenario analyses are performed to 

identify process bottlenecks, as well as potential improvement solutions. 



61 

 

4.2 Materials and methods 

4.2.1 System description 

The studied MRF is located in the province of Quebec (Canada) and is designed to accept a 

commingled stream of recyclable materials. It has 26 unit operations, including disc screens (DS), 

ballistic separators (BS), optical sorters (OS), magnetic separators (MS), eddy-current separators 

(ECS), film separators (FS) and manual sorting stations. It also has 57 internal streams (edge 

between two unit operations or between a unit operation and an output stream), one input stream 

and 15 output streams. 

As for most MRFs, the first step of the process is a manual pre-sorting, followed by a separation 

of the corrugated cardboards based on the size. Then, the remaining wastes are sorted into 3 main 

groups, namely the 2D-type materials, the 3D-type materials and the fines based on a sequence of 

size sorting unit operations and ballistic separators. The fines fraction, mostly composed of glass, 

is then sent to a purification step that was not considered in this study. The 2D-type materials are 

purified with optical sorters and a film separator prior to baling. The 3D-type materials are also 

sorted in multiple fractions, namely PET, HDPE, mixed plastics, and multilayered packaging, 

based on optical separation and negative manual sorting. The complete sequence diagram is 

presented in Figure 4.1. However, some unit operations are aggregated due to confidentiality 

reasons (P17 and P18 on the diagram).  

Because the MRF contains several recirculation streams, the number of streams is much higher 

than the number of unit operations resulting in an under-determined mass balance. 
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Figure 4.1 Simplified configuration of the MRF 

4.2.2 Material flow analysis of a complex system 

The approach proposed to solve the mass balance of the previously described system, which is an 

under-determined problem, is described in this section. The approach is based on solving an 

optimization system and determining appropriate constraints to obtain an over-determination of the 

system. The mathematical algorithm could also be applied to determined or over-determined 

systems but would not require the determination of constraints. 



63 

 

4.2.2.1 Optimization system 

The objective function described by Friedlander (1961) to estimate a contingency table and 

commonly used for updating input-output matrices (Huang et al., 2008) is adapted to solve the 

system previously described. The following optimization system is solved: 

 𝑚𝑖𝑛∑∑(
𝑋𝑖,𝑗 − 𝑋𝑖,𝑗

0

𝑋𝑖,𝑗
0 )

2𝑛𝐽

𝑗=1

𝑛𝐼

𝑖=1

 (4-1) 

s.t. 

 𝑋𝑖,𝑗 ≥ 0  ∀𝑖 ∈ 𝑆𝐼 , ∀𝑗 ∈ 𝑆𝐽 (4-2) 

 𝑨𝑋 = 0 (4-3) 

Where Xi,j is the material flow vector (tons/yr) for every material i in the set of material SI and of 

length 𝑛𝐼 and every stream j in the set of streams SJ and of length 𝑛𝐽, 𝑋𝑖,𝑗
0  is an initial estimate 

vector for every combination of i and j and A is the mass balance matrix of shape 𝑛𝐼𝑛𝐾 × 𝑛𝐼𝑛𝐽 for 

all the unit operations k in the set of unit operations SK and of length 𝑛𝐾.  

Each element in the matrix A matches a material i in a stream j for a unit operation k. It takes the 

value +1 if it is an output stream, the value -1 if it is an input stream and the value 0 if the stream 

is not linked to the unit operation.  

This optimization system was selected since it allows to introduce two essential features for this 

type of system. First, the division by 𝑋𝑖,𝑗
0  makes it possible to add a weighting factor to the 

resolution according to the size of the mass flows. Second, the subtraction by 𝑋𝑖,𝑗
0  allows to 

introduce a penalty factor that limits the variation from the initial estimate, thus making it possible 

to limit deviations from the characterization results. 

4.2.2.2 Definition of constraints 

We define 5 types of constraints that can be used in the context of a sequence of sorting unit 

operations of solid waste to reduce the level of under-determination of the mass balance. For the 

first three constraints, ponderation factors are defined to relax the constraints according to the 
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confidence level of the practitioner towards their variability. These parameters must be estimated 

according to the situation.  

Flowrate constraints (type A): 

Flowrate constraints are defined for streams for which both the composition and total mass flow 

are known. This type of constraint can generally be calculated for input and output streams of the 

process following waste characterizations. Type A constraints are defined with the following 

equation in the optimization system: 

 𝑋̅𝑖,𝑗
∗ − 𝑓𝐴𝑈𝑖,𝑗 ≤ 𝑋𝑖,𝑗 ≤ 𝑋̅𝑖,𝑗

∗ + 𝑓𝐴𝑈𝑖,𝑗   ∀𝑖 ∈ 𝑆𝐼  , ∀𝑗 ∈ 𝑆𝐴 (4-4) 

where 𝑋̅𝑖,𝑗
∗  is the mean mass flow of the material i in the stream j, 𝑈𝑖,𝑗 is the uncertainty of the mass 

flow of the material i in the stream j, 𝑓𝐴 is the ponderation factor and SA is the set of streams for 

which type A constraints have been defined. Both the mean mass flow and the uncertainty for a 

given stream can be calculated through characterization work or can be estimated.  

If the uncertainty is estimated rather than calculated, it is not necessary to set a value for the 

ponderation factor since it would already be integrated in the uncertainty.  

Composition constraints (type B): 

Composition constraints are defined for streams for which composition is known, but not the mass 

flow. This type of constraint can generally be calculated for internal streams following a 

characterization. Type B constraints are defined with the following equation in the optimization 

problem: 

 𝑥̅𝑖,𝑗
∗ − 𝑓𝐵𝑢𝑖,𝑗 ≤

𝑋𝑖,𝑗

∑ 𝑋𝑖,𝑗
𝑛𝐼
𝑖=1

≤ 𝑥̅𝑖,𝑗
∗ + 𝑓𝐵𝑢𝑖,𝑗   ∀𝑖 ∈ 𝑆𝐼  , ∀𝑗 ∈ 𝑆𝐵 (4-5) 

where 𝑥̅𝑖,𝑗
∗  is the mean composition of the material i in the stream j,  𝑢𝑖,𝑗 the uncertainty of the 

composition of the material i in the stream j, 𝑓𝐵 is the ponderation factor and SB is the set of streams 

for which type B constraints have been defined. As for the type A, the composition and its 

uncertainty can be calculated through characterization work or can be estimated.  

Total flowrate constraints (type C): 
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Total flowrate constraints are defined for streams for which the mass flow is known but the 

composition is unknown. This type of constraint can be calculated by taking samples at different 

points of the process, on a specific conveyor section, and by measuring the time for this sample to 

cross the conveyor section when operating the MRF. This type of constraint, however, can only be 

applied to express the ratio between two streams in similar operating conditions, as MRF operation 

vary strongly and the extrapolation of the measured mass flow to determine a flow per year would 

be poorly representative. Type C constraints are defined with the following equation in the 

optimization system: 

 (1 − 𝑓𝐶)
𝑀𝑗1

𝑀𝑗2
≤ abs (

∑ 𝑋𝑖,𝑗1
𝑛𝐼
𝑖=1

∑ 𝑋𝑖,𝑗2
𝑛𝐼
𝑖=1

) ≤ (1 + 𝑓𝐶)
𝑀𝑗1

𝑀𝑗2
 ∀𝑖 ∈ 𝑆𝐼 , ∀ (𝑗1, 𝑗2) ∈ 𝑆𝐶 (4-6) 

where 𝑀𝑗1is the mass flow measured for the stream j1, 𝑀𝑗2 is the mass flow measured for a 

reference stream j2, 𝑓𝐶 is the ponderation factor and SC is the set of streams for which type C 

constraints have been defined.  

Unlike the ponderation factor defined for the type A and B, 𝑓𝐶 is not used to calibrate the 

uncertainty of a stream but is rather used to create an interval for the measured ratio.  

Separation efficiency constraints (type D): 

Separation efficiency constraints are defined for unit operations for which transfer coefficients can 

be independently estimated. These constraints are useful to add boundaries to an under-determined 

part of the system. Separation efficiency constraints should be defined as lower or upper boundaries 

rather than equality, to limit the solution without imposing it. They can be determined based on 

expert judgement, literature data or mechanistic modeling. Type D constraints are defined with the 

following equation in the optimization system: 

 𝑞𝑖,𝑗,𝑘,min ≤
𝑋𝑖,𝑗
out

∑ 𝑋𝑖,𝑗
in𝑛𝑖𝑛,𝑘

𝑗=1

≤ 𝑞𝑖,𝑗,𝑘,max ∀𝑖 ∈ 𝑆𝐼, ∀𝑗 ∈ 𝑆𝐷,𝑘 (4-7) 

where 𝑞𝑖,𝑗,𝑘,max is a theoretical upper boundary of the transfer coefficient of the material i in stream 

j exiting the unit operation k, 𝑞𝑖,𝑗,𝑘,min is a theoretical lower boundary, SD,k is the set of streams j 

for which type D constraints have been defined for a given unit operation k, 𝑋𝑖,𝑗
out is the mass flow 
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of the material i in the stream j exiting a unit operation k and 𝑋𝑖,𝑗
in is the mass flow of the stream j 

entering a unit operation k for every stream of the set Sin,k. 

Type D constraints can also be defined as equality constraints in the specific case for which the 

exact efficiency is known or to simplify the system. For example, these constraints can be used to 

neglect a given unit operation.  

Zero flow constraints (type E): 

Zero flow constraints are defined for streams for which material flows are negligible in comparison 

to other mass flows of the process. These approximations are realized by observations or 

discussions with the operator of the facility. These constraints can be expressed with the following 

equation:  

 𝑋𝑖,𝑗 = 0  ∀𝑖 ∈ 𝑆𝐼  , ∀𝑗 ∈ 𝑆𝐸  (4-8) 

where 𝑆𝐸 the set of streams j for which type E constraints have been defined. 

4.2.2.3 Definition of an initial vector 

The following 3-steps procedure is used to define an appropriate initial vector.  

1- Define expected transfer coefficients for every unit operation based on literature data or 

estimation from expert judgement. 

2- Solve the mass balance for the input stream of the process with the following equation 

based on the work of Testa (2015): 

 𝑋′ = (𝐼 − (𝑸)𝑇)−1𝛽 (4-9) 

where 𝑋′ is the vector of the mass flow entering every unit operation k in the set of unit 

operation SK for every material i in the set of material SI, I is the identity matrix, Q is the 

transfer coefficients matrix for every material i in stream j exiting unit operation k and 𝛽 is 

the vector of the process input of length 𝑛𝐼 × 𝑛𝐽. 𝛽 contains only 0, except for the stream 

entering the process. 

For unit operations with only one input stream, 𝑋′ is equal to X for the stream j entering the 

unit operation k. For unit operations with more than one input stream, X need to be 
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calculated from 𝑋′ since this last variable is the sum of all the input streams of the unit 

operations k. Therefore, it can be derived from the transfer coefficients.  

3- Replace the mass flow data calculated by the mean value calculated for every stream j in 

the set SA and recalculate the mass flow to match the mass composition for every stream j 

in the set SB.  

4.2.3 Application of the methodology to a real case study 

The methodology proposed in the previous section was applied to the MRF described in section 

4.2.1. The calculations were performed with Python. The optimization system described in section 

4.2.2.1 was solved with the module CVXPY (Agrawal et al., 2018; Diamond & Boyd, 2016). 

4.2.3.1 Specific constraints description 

For this case study, the 5 types of constraints described above were used.  

4.2.3.1.1 Waste sampling and characterization 

Two different waste characterizations were performed to provide valuable data for constraints 

calculation. In both cases, waste materials were sorted in 16 categories, namely newspapers, mixed 

papers, paperboards, old corrugated cardboards (OCC), multilayered packaging, PET, HDPE, 

mixed plastics, PS, plastic films, ferrous metals, non-ferrous metals, aluminium cans, glass, rejects 

and fines (< 6 mm). The rejects include mainly materials as non-recyclable plastics, non-targeted 

metals (kitchen housewares), kitchen towels, dirty papers, toys, textiles and other non-recyclable 

objects. 

First, 14 samples of 50 kg were collected for the input stream. Also, 3 to 11 samples of 25 kg were 

manually sorted for 13 out of the 15 output streams, for a total of 87 samples. These samples were 

collected directly by opening the output stream bales and taking sufficient wastes in the middle of 

the bale. For the 2 remaining output streams, one was characterized only once due to sampling 

difficulties, and one was estimated based on expert judgement. These characterizations allowed to 

define 16 type A constraints for each material category. They are identified in Figure 4.1 by indexes 

U0 to U15. 

Characterizations of internal streams were also performed. 11 internal streams (identified C1-C11 

in Figure 4.1) were characterized by sorting 3-5 samples of 1 to 17 kg. The mass collected per 
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sample was defined according to the stream’s total mass flow, hence larger samples were collected 

for more substantial mass flows. These samples were all taken directly from the conveyors on their 

entire width. This approach was selected to minimize sampling errors in comparison to sampling 

wastes gathered on the reception floor or in bales (Bessi et al. 2016; Petersen et al., 2005). These 

samples allowed to define 11 type B constraints for each material category. 

Finally, the time needed for a given sample to cross the conveyor was measured for 6 conveyors 

(C1, C2, C3, C8, C10, C11) to define 5 type C constraints.  

4.2.3.1.2 Fines separator maximal efficiency 

A type D constraint was defined for the first fines separator (P4 in Figure 4.1) of the process to 

reduce the uncertainty of this section of the process. To do so, the maximal theoretical efficiency 

of separation, expressed as a transfer coefficient, was calculated with the particle size distribution 

of each material based on previous work (Tanguay-Rioux et al., 2021b). Since this equipment is 

located directly after a disc screen of 12.7 cm and separate material smaller than 5.1 cm, the 

maximal separation efficiency was calculated with the following equation: 

 𝑞𝑖,𝑗,𝑘,𝑚𝑎𝑥 =
𝐹𝑖(5.1)

𝐹𝑖(12.7)
 (4-10) 

where Fi(x) is the cumulative distribution function of a material i for a particle size x (cm).  

4.2.3.1.3 Other hypotheses 

Following visual inspection and discussion with the operator of the MRF, the magnetic and the 

eddy-current separators used for the fines separation (P18), and the magnetic separator preceding 

the rejects baling (P23) were assumed to sort 50% of their targeted material and 0% of the other 

materials in the targeted output stream. This assumption is considered acceptable since most of the 

metals recovered in the facility comes from the 3D line. This corresponds to 3 type D constraints.  

Also, except for the pre-sorting step and the manual sorting of the non-ferrous metals, every other 

manual sorting step (i.e., cardboard and plastics purification) was considered to have a negligible 

impact on the global mass flows and were thus neglected. This assumption, based on observations, 

is considered acceptable since negative manual sorting generally recover small quantities of waste 
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and target only 1 or 2 waste categories. This hypothesis allowed to add 5 type E constraints to the 

system.  

Finally, the density separation on the glass line was neglected since an analysis of the light fraction 

showed a recovery of approximately 0.01 kg per 30 s, corresponding to 12 kg on a 12h-day and the 

bag aspirator was also neglected following discussions with the operator. These hypotheses 

allowed to add 2 type E constraints to the system for every material. 

4.2.3.2 Data analysis 

Waste characterization results are compositional data and other approaches need to be used than 

classical statistics to analyze them (Edjabou et al., 2017). The total variance described by 

Pawlowsky-Glahn et al. (2007) can be used to determine and compare the variability of the 

characterization results (Edjabou et al., 2017).  

However, this approach does not allow to calculate a measure of dispersion for the waste 

characterizations. Therefore, even though classical statistics are not considered fully applicable to 

compositional data, classical weighted standard deviations were still calculated to estimate the 

uncertainty required for type A and type B constraints with the following equation, due to lack of 

alternatives:  

 𝑢𝑖,𝑗 = √
∑ 𝑤𝑒(𝑥𝑖,𝑗,𝑒 − 𝑥̅𝑖,𝑗

∗ )
2𝑛𝑒

𝑒=1

𝑛𝑒 − 1
𝑛𝑒

∑ 𝑤𝑒
𝑛𝑒
𝑒=1

 ∀𝑖 ∈  𝑛𝐼 , ∀𝑗 ∈ 𝑆𝐴 ∪ 𝑆𝐵 (4-11) 

where ui,j is the uncertainty expressed as the standard deviation of the composition for the material 

i in the stream j, 𝑥𝑖,𝑗,𝑒 is the composition of the material i in the sample e, 𝑥̅𝑖,𝑗
∗  is the average 

composition of the material i for every sample e, we is the weight of the sample and ne is the number 

of samples.  

As for the mean composition of each waste characterization, it was calculated by adding the 

collected mass of each sample, therefore allowing the calculation of a weighted mean composition 

with the following equation: 
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 𝑥̅𝑖,𝑗
∗ =

∑ 𝑋𝑖,𝑗,𝑒
𝑛𝑒
𝑒=1

∑ ∑ 𝑋𝑖,𝑗,𝑒
𝑛𝑒
𝑒=1

𝑛𝐼
𝑖=1

  ∀𝑖 ∈  𝑛𝐼 , ∀𝑗 ∈ 𝑆𝐴 ∪ 𝑆𝐵 (4-12) 

where 𝑥̅𝑖,𝑗
∗ is the mean composition of the material i in the stream j and 𝑋𝑖,𝑗,𝑒 is the mass sampled 

for the material i in the stream j for the sample e.  

4.2.3.3 Definition of the initial vector 

The 3-steps procedure described in section 4.2.2.3 to define the initial vector was applied. In this 

case, the TCs of the magnetic separator, the eddy current separator and the four optical sorters were 

adapted from the work of Ip et al. (2018), while the TCs for both ballistic separators were estimated 

based on the work of Raymond (2017). For the 4 size separations, TCs were estimated based on 

the cumulative distribution function calculated from the Rosin-Rammler parameters determined in 

Tanguay-Rioux et al. (2021b). For the optical sorters targeting papers and cardboards, TCs of 0.7 

were estimated for paper and cardboard materials and TCs of 0.02 were assumed for other 

materials. Finally, for the film separators, a TC of 0.7 was estimated for the plastic films and TCs 

of 0.3 were estimated for the rejects.    

4.2.4 Calculation of transfer coefficients 

To reduce the impacts of the initial vector’s estimation on the results, a Monte Carlo analysis was 

performed by varying the initial transfer coefficients by creating 3 sets of TCs for the calculation 

of the initial vector: the TCs described in section 4.2.3.3, the TCs described in section 4.2.3.3 minus 

15% for the targeted outputs and the TCs described in section 4.2.3.3 plus 15% for the targeted 

outputs. Then, for 200 independent repetitions, the calculations were performed by randomly 

selecting one of the three available TCs for each unit operation and each material. To do so, a 

vector of 0, 1 or 2 of length 𝑛𝐾 × 𝑛𝐼 was randomly created with the module Random of Python 

with the seed corresponding to the iteration number. Then, by iterating through the matrix Q, the 

TC of every material was selected based on the random vector, a 0 for the set of TCs minus 15%, 

a 1 for the mean TCs and a 2 for the TCs plus 15%. 

The mean of the 200 iterations was then computed to define every stream of the process and transfer 

coefficients were calculated based on theses streams with the following equation: 
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 𝑞𝑖,𝑗,𝑘 =
𝑋𝑖,𝑗
out

∑ 𝑋𝑖,𝑗
in𝑛𝑖𝑛,𝑘

𝑗=1

 ∀𝑖 ∈ 𝑆𝐼, ∀𝑗 ∈ 𝑆𝐽, ∀𝑘 ∈ 𝑆𝐾  (4-13) 

where SK is the set of unit operations of the process.  

4.2.5 Model validation 

The results were validated by comparing performance indicators calculated for the results obtained 

with the model and the results of the characterization.  

4.2.5.1 Mass balance calculation 

The TCs calculated while solving the case study as described in section 4.2.3 were used with the 

input mass flow to calculate every material flow of every stream of the global process by mean of 

equation 4-9. This allowed to calculate a simulated output that can be compared to the 

characterization results.  

4.2.5.2 Performance indicators 

Two performance indicators were calculated to compare the characterization results and the results 

of the mass balance from section 4.2.5.1. First, the purity was calculated for every material i in 

every output stream j. 

 𝑝𝑖,𝑗 =
𝑋𝑖,𝑗

∑ 𝑋𝑖,𝑗
𝑛𝑆𝐼
𝑖=1

  ∀𝑖 ∈  𝑆𝐼, ∀𝑗 ∈  𝑆𝑂 (4-14) 

where 𝑝𝑖,𝑗  is the purity of the material i in the stream j and SO is the set of output streams.  

The recovery was also calculated for every material i in every output stream j. 

 𝑟𝑖,𝑗 =
𝑋𝑖,𝑗

𝑋𝑖,𝑖𝑛
  ∀𝑖 ∈  𝑆𝐼 , ∀𝑗 ∈  𝑆𝑂 (4-15) 

where 𝑟𝑖,𝑗 is the recovery of the material i in stream j and 𝑋𝑖,𝑖𝑛 is the mass flow of the material i in 

the process input. In the case for which there are multiple input streams, 𝑋𝑖,𝑖𝑛 corresponds to the 

summation of all these input streams.  
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4.3 Results and discussion 

4.3.1 Characterization results 

Input and output waste compositions, based on the characterization results for the input stream and 

for the sum of all output streams, are compared in Figure 4.2 to assess the potential discrepancies 

between the characterizations of waste streams entering and exiting the process. 

 

Figure 4.2 Waste composition of the input stream and of the sum of the output streams 

Results show a relatively good agreement of both characterization results for most of the waste 

materials, except for the glass and the fines categories. For most materials, it is therefore expected 

that the constraints on the input and output streams are compatible.  

However, the differences for the glass and the fines categories highlight the difficulties in 

separating these categories from each other during the characterization work. A significant portion 

of the glass was sorted into fines when characterizing the input. Moreover, the fine materials are 

often caught in other materials increasing the difficulty to characterize this waste component. This 

should thus be taken into consideration while dealing with these materials during the optimization 

process.  
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The total variance of every characterization sample was calculated and is presented in Figure 4.3.  

 

Figure 4.3 Comparison of the variation of the characterization results for the input/output streams 

and the internal streams 

As seen in Figure 4.3, a smaller dispersion of the total variance is observed for the input/output 

streams than for the internal streams. This was expected since larger waste quantities were collected 

for these streams, and they tend to be more homogeneous than the internal streams. However, a 

similar median is observed for both types of characterization, as well as a similar mean since a total 

variance of 42 is obtained for the internal streams and a value of 35 is obtained for the input/output 

streams.  Therefore, both characterization types have a similar tendency, but internal streams results 

should be used with more care. This should also be reflected in the choice of the ponderation factor 

for the determination of the constraints.   

4.3.2 Sensitivity analysis of the initial vector  

Since the solution of the optimization problem is directly related to the choice of the initial vector, 

two analyses were performed to measure the sensitivity of the results regarding this parameter and 

guide the resolution.  

To do the calculations, the following ponderation factors for equations 4-4, 4-5 and 4-6 were used: 

fA = 1.5, fB = 2.2, fC = 0.1. fC was fixed in order to obtain a variation of the ratio of the mass flow 

(type C constraints) smaller than 10%. As for fA and fB, they were fixed iteratively to obtain the 
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smaller value allowing to solve the optimization system. As seen in section 4.3.1, the dispersion of 

the total variance of the internal streams (type B constraints) was higher than the dispersion of the 

input/output streams (type A constraints). Therefore, it was chosen to fix a larger ponderation factor 

for fA than fB. This approach provides a larger confidence interval for the characterization of the 

internal streams, allowing to compensate for its greater uncertainty.  

4.3.2.1 Convergence of optimization system  

The mass flow vector resulting from the optimization was reused as an initial vector for 14 

iterations to study the convergence of the results for 3 datasets of initial TCs. The three datasets 

are: the one described in section 4.2.3.3 (Q1), the original dataset with a reduction of 15% of every 

TC for the targeted output (Q2) and the original dataset with an increase of 15% of every TC for 

the targeted output (Q3). For each iteration, the absolute sum of the differences of the mass flows 

between an iteration result and its previous one is presented in Figure 4.4.  

 

Figure 4.4 Analysis of the convergence of the modeling results for several iterations on the initial 

vector for three initial datasets 

Results from Figure 4.4 show that the variation of mass flows after each iteration strongly decreases 

after the 2nd and 3rd iterations and tend to stabilize at a near constant value for the last 11 iterations. 

As for the value of the objective function, it decreases rapidly after the 1st iteration to reach a near 

constant value. It is important to note that a value of 0 cannot be reached due to the need to avoid 

division by 0s.  
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An important aspect related to the optimization function is the attribution of composition values in 

the initial vector (step 3 of section 4.2.2.3), which provides a penalty when diverging from the 

measured characterization results. However, when using a previous iteration as the initial vector, 

this step is bypassed, leading to a gradual reduction of the effect of this penalty, bringing the results 

closer to the boundaries of the constraints than expected for some streams. The impacts of these 

iterations on the results are further discussed in section 4.3.3.  

4.3.2.2 Choice of the initial transfer coefficients 

The absolute sum of the differences of the mass flows for the two modified datasets (Q2 and Q3) 

in comparison to the mean dataset (Q1) varies from 67 000 – 93 000 tons/yr for the datasets Q1-

Q2 and from 115 000 – 122 000 tons/yr for the datasets Q1-Q3 according to the number of 

iterations realized. The difference decreases for the dataset Q2 with the number of iterations, while 

it stays the same for the dataset Q3, showing no global tendency.  

The absolute differences can be considered minor since they account for respectively 9% and 15% 

of the total mass balance of the process. Moreover, when comparing the TCs obtained for the 

datasets Q1 and Q2, only 40 TCs out of 256 had a difference larger than 0.05. When comparing 

the TCs obtained for the datasets Q1 and Q3, this amount decreases to 24 TCs out of 256. These 

results indicate that varying the initial vector of more or less 15% definitely has an impact on the 

results, but the differences are acceptable since they do not change the conclusions of the analysis 

as shown by the relatively small variations of the TCs calculated. This impact can however be 

further decreased by applying Monte Carlo analysis as described in section 4.2.4.  

4.3.3 Model validation 

Results in Figure 4.5 show that purity and recovery predictions using the calculated TCs are in 

good agreement with the characterization results. On average, there is an absolute difference of 

6.3% for the purity predictions and an absolute difference of 2.4% for the recovery predictions 

when no iterations are performed, while these number increase to respectively 7.7% and 2.7% when 

3 iterations are performed.  
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Figure 4.5 Model validation based on A) calculated purity and B) calculated recovery 

Results show very good recovery predictions, while larger differences were observed for the purity 

predictions for several output streams, namely those of aluminium cans, mixed plastics and HDPE. 

Differences are mainly due to the intrinsic variability of characterization measurements, and 

inevitably occur when there are contradictions between two or more characterization results in a 

section of the facility. However, theses differences are relatively limited. Globally, the validity of 

the prediction results confirm that the proposed methodology allows a proper estimation of TCs, 

which may then be used to simulate an MRF operation. Moreover, as discussed in section 4.3.2, a 

better prediction is obtained when no iteration is performed, since the penalty imposed by the 

objective function on the characterization results is not affected.  

4.3.4 Separation efficiency of the unit operations of the process 

TCs calculated by averaging the mass flows obtained for the 200 iterations are presented in Table 

4-1 for the main unit operations. For the results presented here, no iteration on the initial vector 

was performed since more coherent results are obtained in this case as seen in section 4.3.3 and 

since iterations decrease the impact of the penalty on the characterizations. 
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Table 4-1 Transfer coefficients obtained for the case study 

Unit index P2 (DS) P3 (DS) P4 (DS) P14 (DS) P6 (BS) P7 (BS) 
P8 (OS – 

Pap) 

P10 (OS 

– Pap) 
P9 (MS) 

P12 

(ECS) 
P11 (FS) 

P15 (OS – 

PET/Pap)1 

P17 (OS 

– 

HDPE)2 

P17 (OS 

– Mix)2 

P17 (OS 

– MP)2 

Output index3 
<24 

cm 

>24 

cm 

<13 

cm 

>13 

cm 

<5 

cm 

>5 

cm 

<5 

cm 

>5 

cm 

<13 

cm 

3D 2D 3D 2D T R T R T R T R T R Pap R PET T R T R T R 

Newspapers 0.965 0.035 0.21 0.79 0.013 0.987 0.001 0.999 0.009 0.113 0.878 0.016 0.984 0.821 0.179 0.883 0.117 0.007 0.993 0 1 0.071 0.929 0.997 0.003 0 0.047 0.953 0.275 0.725 0.452 0.548 

Mixed papers 0.982 0.018 0.355 0.645 0.071 0.929 0.032 0.968 0.033 0.146 0.821 0 1 0.873 0.127 0.946 0.054 0.002 0.998 0 1 0.214 0.786 0.889 0.101 0.01 0.001 0.999 0.044 0.956 0.025 0.975 

Paperboards 0.968 0.032 0.359 0.641 0.057 0.943 0.011 0.989 0.049 0.228 0.723 0.001 0.999 0.805 0.195 0.921 0.079 0.001 0.999 0.001 0.999 0.059 0.941 0.811 0.188 0.001 0 1 0.014 0.986 0.065 0.935 

Corrugated 

cardboards 
0.476 0.524 0.094 0.906 0 1 0.001 0.999 0.009 0.205 0.786 0.008 0.992 0.94 0.06 0.942 0.058 0 1 0 1 0.257 0.743 0.969 0.031 0 0.002 0.998 0.014 0.986 0.018 0.982 

Multilayered 

packaging 
1 0 0.667 0.333 0 1 0 1 0.204 0.536 0.26 0.407 0.593 0.001 0.999 0.604 0.396 0 1 0.001 0.999 0.004 0.996 0.016 0.975 0.009 0.001 0.999 0.002 0.998 0.969 0.031 

PET 1 0 0.386 0.614 0.012 0.988 0 1 0.054 0.908 0.038 0.327 0.673 0.041 0.959 0.524 0.476 0.002 0.998 0 1 0.05 0.95 0.007 0.054 0.939 0.003 0.997 0.165 0.835 0.004 0.996 

HDPE 0.967 0.033 0.05 0.95 0.05 0.95 0.006 0.994 0.02 0.915 0.065 0.428 0.572 0.552 0.448 0.998 0.002 0.001 0.999 0 1 0.5 0.5 0.02 0.955 0.025 0.855 0.145 0.011 0.989 0.013 0.987 

Mixed plastics 0.994 0.006 0.261 0.739 0.197 0.803 0.074 0.926 0.122 0.739 0.139 0.115 0.885 0.141 0.859 0.76 0.24 0.001 0.999 0.001 0.999 0.103 0.897 0.015 0.905 0.08 0.043 0.957 0.649 0.351 0.044 0.956 

PS 0.979 0.021 0.276 0.724 0.023 0.977 0.155 0.845 0.332 0.465 0.203 0.016 0.984 0.173 0.827 0.96 0.04 0.007 0.993 0.009 0.991 0.796 0.204 0.14 0.837 0.023 0.02 0.98 0.106 0.894 0.037 0.963 

Plastic films 0.958 0.042 0.541 0.459 0.01 0.99 0.031 0.969 0.055 0.268 0.677 0.008 0.992 0.294 0.706 0.664 0.336 0.041 0.959 0 1 0.682 0.318 0.052 0.886 0.062 0.069 0.931 0.032 0.968 0.025 0.975 

Ferrous 

metals 
1 0 0.495 0.505 0.002 0.998 0.102 0.898 0.127 0.865 0.008 0.878 0.122 0.012 0.988 0.621 0.379 0.94 0.06 0.001 0.999 0.009 0.991 0.123 0.867 0.01 0.001 0.999 0.038 0.962 0.001 0.999 

Non-ferrous 

metals 
1 0 0.999 0.001 0.117 0.883 0.543 0.457 0.179 0.179 0.642 0.621 0.379 0.784 0.216 0.961 0.039 0 1 0.999 0.001 0.885 0.115 - - - - - - - - - 

Aluminium 

cans 
1 0 0.448 0.552 0.001 0.999 0.001 0.999 0.309 0.688 0.003 0.966 0.034 0.172 0.828 0.445 0.555 0.027 0.973 0.55 0.45 0.808 0.192 0.515 0.463 0.022 0.035 0.965 0.092 0.908 0.002 0.998 

Glass 1 0 0.941 0.059 0.941 0.059 0.982 0.018 0.178 0.815 0.007 0.766 0.234 0.167 0.833 0.86 0.14 0 1 0 1 0.08 0.92 0.015 0.952 0.033 0.005 0.995 0.051 0.949 0.005 0.995 

Rejects 0.95 0.05 0.582 0.418 0.13 0.87 0.103 0.897 0.107 0.517 0.376 0.024 0.976 0.227 0.773 0.826 0.174 0.144 0.856 0.004 0.996 0.085 0.915 0.007 0.963 0.03 0.015 0.985 0.087 0.913 0.034 0.966 

Fines 1 0 0.981 0.019 0.838 0.162 0.876 0.124 0.059 0.924 0.017 0.983 0.017 0.314 0.686 0.049 0.951 0.003 0.997 0.02 0.98 0.164 0.836 0.269 0.499 0.232 0.013 0.987 0.974 0.026 0.014 0.986 

1The optical sorter targets the PET and the paper and cardboard materials in two different streams. 
2 Three optical sorters targeting the HDPE, the mixed plastics and the multilayer packaging are in the containers purification sequence (P17) 
3 T: Targeted output, R : Refused output, Pap: Paper and cardboard output, PET: PET output, 2D: 2D type material output, 3D: 3D type material output 
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4.3.5 Waste separation efficiency of the MRF 

As mentioned above, since the methodology has been validated, results may now be used to assess 

the performance of an MRF.  

4.3.5.1 Comparison with literature data 

Minimum and maximum separation efficiencies were reported for several mechanical sorting 

equipment in previous work (Tanguay-Rioux et al., 2021a). These identified boundaries are 

compared to the separation efficiencies calculated in this work in Figure 4.6 for several unit 

operations. Theses separation efficiencies correspond to the unit operation’s TC for its targeted 

material.  

 

Figure 4.6 Comparison of separation efficiencies with literature data 

For the eddy-current separator and the optical sorter of mixed plastics, results show a separation 

efficiency between the interval reported in literature. For the optical sorters of PET and HDPE, and 

the magnetic separator, somewhat greater separation efficiencies than those reported in the 

literature have been observed, probably because those reported from the literature were obtained 

for MRFs accepting MSW rather than source-separated recyclable materials, thus subject to a 

higher potential contamination. Finally, the opposite result was observed for the ballistic separator 
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with observed efficiencies even below the smallest reported values. Here, the separation efficiency 

of the first ballistic is reported since the second ballistic targets only materials smaller than 12.7 

cm, thus skewing the results in comparison to literature values. A possible reason explaining that 

the relatively poor recovery of paper and cardboard materials from the ballistic separator compared 

to literature values, as shown in Figure 4.6, is the fact that the present equipment was designed to 

recover materials smaller than 12.7 cm as fines. However, ballistic separators encountered in other 

facilities have often been reported to have a screen size around 4-5 cm (Eule, 2013; Müller et al., 

2003; Rotter et al., 2004). 

4.3.5.2 Separation sequence analysis 

Recovery of paper and cardboards materials 

The paper and cardboard materials are recovered into two streams, the OCC (old corrugated 

cardboards) output stream and the mixed paper stream. About 55% of the OCC is recovered in the 

OCC output stream with a purity of merely 85%, while about 85% of the other paper and 

paperboard materials are recovered in the mixed paper output stream with a purity smaller than 

60%. However, the purity of the latter stream increases to 75% when OCC is considered as a 

targeted material, and a global recovery of 95% is achieved for the 4 paper and cardboard categories 

used in this study for the characterization measurements. These results indicate a high recovery of 

paper and cardboard materials. However, considering that the maximum contamination generally 

accepted for these streams is 5% (RECYC-QUÉBEC, 2020), the source of the high contamination 

should be investigated. The composition of the main 3 streams (i.e., 2D-type materials from the 

first ballistic separation and optical sorting, 2D-type materials from the second ballistic separation 

and optical sorting, and optical sorting from the 3D-type material line) sent to the mixed paper 

output stream (U6) is presented in Figure 4.7.  
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Figure 4.7 Comparison of the waste composition of the three streams (separated from the first 

ballistic separation, separated from the second ballistic separation and separated from the 3D line) 

sent to the mixed paper output stream (U6) 

Results demonstrate that an important part of the contamination of the mixed paper bales comes 

from the imperfect separation occurring in the second ballistic separator and the subsequent optical 

sorter. Separation based on the shape of the wastes appears to be much less effective for smaller 

items (< 12.7 cm) than for larger items (> 12.7 cm). This is probably due to lesser differences in 

shape and density being observed for smaller items. 

Therefore, if the operator of the facility wishes to improve the quality of the mixed paper bales, a 

subsequent separation of the stream coming from the second ballistic separator should be 

envisioned to reduce the contamination by removing plastics and some rejects.  

Recovery of plastic materials 

The recovery of plastics could certainly be improved for almost all relevant output streams as it is 

between 31% and 75% for rigid plastics and is even lower for plastic films (11%). For the purity, 

results are relatively better, mainly for the PET and the HDPE bales. The main reason explaining 

the low recovery results is the poor efficiency of the ballistic separation sequence, leading to an 
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important loss of plastic materials to the paper and cardboard bales. Again, this poor separation 

efficiency is mainly observed for the second ballistic separator, indicating that the unrecovered 

plastic materials are mostly items smaller than 12.7 cm. The purification step proposed on the 2D-

type materials coming from this equipment should not only focus on purifying the stream, but also 

on recovering the plastics. The stream could therefore be returned to the process at the beginning 

of the 3D line following the metal separation or directly to the manual sorting stations according 

to the choice of technology. Due to their relatively high efficiency (Figure 4.6), a sequence of 3 

optical sorters targeting PET, HDPE and mixed plastics could be used. However, this addition 

would require important investments for the facility.  

Recovery of glass and metal materials 

A very good recovery of the glass material is observed in the facility. It is important to note that 

the fines separator located at the beginning of the 3D line is responsible for achieving this high 

recovery, as it allows to recover about 10% of the glass that would otherwise by lost. The addition 

of a fines separation on the 3D line is therefore recommended in processes that do not have one. 

The purity of the glass bale has not been studied furthermore since its purification sequence was 

not considered in this study.  

For metal materials, as explained before, most of the materials recovered comes from the 3D line. 

A relatively good purity is observed, but the recovery could be increased, mainly for the non-

ferrous metals and the aluminium cans. Again, an important source for this loss is the second 

ballistic separation. One way to overcome this problem could be to install a magnetic separator and 

an eddy-current separator prior to the ballistic separation sequence. This approach is used in a MRF 

accepting mixed MSW in the province of Quebec, where a magnetic separator is located before the 

ballistic separation sequence. This configuration leads to a very good efficiency of the magnetic 

separation (Tanguay-Rioux et al., 2021a). However, due to a lack of comparison results, it is not 

clear whether or not this approach could be applied for non-ferrous metals, since it is not clear if 

this would lead to a significant decrease of the separation efficiency of the eddy current separator. 

4.3.6 Scenario analyses 

Two scenario analyses are performed on the process to guide improvement strategies. To do so, 

the transfer coefficients previously calculated or the sorting sequence are slightly modified for 
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these 2 scenarios in order to predict the influence of those modifications on the global efficiency 

of the sorting process.  

4.3.6.1 Ballistic separation improvement  

Since the separation efficiency of the first ballistic separator was found to be rather low, and the 

second ballistic separator was identified as a high source of contamination of the mixed paper bales 

in previous sections, a further investigation of the impact of these unit operations on the global 

performance of the process was performed. First, the TCs for the paper and cardboards obtained 

for the first ballistic separator were increased to 0.95. This improvement in the unit operation 

efficiency led to a small increase of 1.5% in recovery for the mixed paper bales and to an average 

increase of 1% in purity for the other bales. Therefore, the improvement of the efficiency of the 

unit operation leads to an almost negligible improvement of the global efficiency of the process, 

probably because an optical separation targeting the paper materials lost to the 3D line allows to 

recover them. Focusing on this unit operation should therefore not be a priority to improve the 

process.  

On the other side, improving the efficiency of the second ballistic separation could lead to 

significant process improvements. While considering the same value of TC for the second ballistic 

separator as for the first one, results indicate a potential increase in recovery for the PET bale, the 

mixed paper bale and the multilayer packaging bale of respectively 14%, 10% and 12%, as well as 

a decrease in recovery for the mixed paper bale and the plastic film bale of respectively 1.1% and 

3%. In addition, this would decrease the purity for the PET, mixed plastics and multilayer 

packaging bales by 2-5%, while increasing the purity for the mixed paper and plastic films bales 

by 4-9%. With these results, the operator is now able to make an informed decision, based on 

rigorous information, regarding the desired quality of the bales. 

These results clearly demonstrate the benefits of the proposed methodology as a mean to identify 

process bottlenecks, simulate the MRF operation and target specific improvement strategies.  

4.3.6.2 Recirculation of the rejects output streams 

Since a large quantity of valuable wastes ends up in the reject output stream directed to landfill, 

the advantages of recirculating a fraction of this stream were investigated. Recirculation of an 

output stream was previously identified as a way to increase its purity (Kleinhans et al., 2021). 



83 

 

Moreover, the recirculation of the rejects output stream has been shown to improve the recovery 

of the materials of interest by about 9% in a similar application (Raymond, 2017). The impact of 

recirculating 25% and 50% of the rejects output stream on the purity and the recovery of the other 

materials was assessed. The main hypothesis of this simulation is that the addition of more 

materials entering the process does not affect the separation efficiency of the different unit 

operations. 

Results indicate very small variations for both the purity and the recovery, even for a recirculation 

of 50% of the reject stream. The recovery increases in average by about 1.3%, while the purity 

remains the same. This increase is more significant for mixed papers (5.5%), HDPE (4.7%), mixed 

plastics (2.7%) and multilayered packaging (2.4%), due to their higher concentration in the reject 

stream. However, these quantities are relatively small in comparison to the one observed by 

(Raymond, 2017). This difference is probably explained by the fact that in this case, an important 

fraction of the lost valuable materials ends up in other bales, making their recovery impossible only 

throughout a recirculation of the rejects output stream.  

4.3.7 Limitations of the model 

The model and its application to the case study is based on two main hypotheses related to the 

representativity of the data.  

First, it is assumed that the characterizations realized are representative of the operation of the 

facility. Several characterizations were carried out over a long period of time to limit the impact of 

the variability of the waste input on the results. However, since municipal solid wastes are strongly 

heterogeneous, this could affect the representativeness of the characterizations.   

Secondly, it is assumed that the efficiencies calculated are representative of the average operation 

of the facility. The operation of this type of facility varies according to many factors, such as the 

input stream, the season, mechanical breakdowns, and the targeted markets. To limit the impact of 

these variations on the results, characterization measurements in this study were performed only 

when the facility was operating under normal conditions. Therefore, no characterization was 

performed while the facility was operating with lower throughput, with a broken unit operation or 

any other factor potentially affecting the sorting efficiency.    
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4.4 Conclusion 

A methodology based on the resolution of an optimization system is proposed to solve the mass 

balance of a material recovery facility of municipal solid waste. The problem minimizes the 

differences between the material flows of a facility and an initial estimate. To do so, a methodology 

to define an initial estimate and several appropriate constraints is developed. The methodology is 

applied to a case study for a real MRF located in the province of Quebec (Canada). The approach 

allowed to calculate every material flow in the facility and the transfer coefficients for every waste 

material in every unit operation. It also provides a rare dataset for several mechanical sorting unit 

operations of solid waste.  

Separation efficiencies similar to those observed in the literature are reported for the main sorting 

unit operations of the process. However, challenges are identified regarding the purity and the 

recovery of several output streams. These issues are mainly related to the poor performance of the 

second ballistic separation of the process possibly explained by the fact that it mainly targets 

materials smaller than 12.7 cm. The process could be improved by the addition of new optical 

sorters as a complement for this second ballistic. This case study demonstrates how the 

methodology developed allows to identify bottlenecks of the process and guide future 

improvements. The second ballistic separator of the process was identified as an important source 

of contamination for the mixed papers bale and an improvement of the efficiency of this unit 

operation could clearly affect the global efficiency of the MRF. Finally, an analysis of the impact 

of recirculating a fraction of the reject stream indicates that only small improvements would be 

achieved even for a recirculation of 50%. 
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Abstract 

Material recovery facilities and mechanical biological treatments play an important role in current 

municipal solid waste systems, by providing a way to separate the different municipal solid waste 

fractions according to their main physical properties. However, the composition of their outputs 

streams is directly impacted by the composition of the input stream and by the sequence of unit 

operations considered, rending it particularly difficult to predict. Some authors have analyzed the 

sorting efficiency of the different unit operations commonly found in these processes and have 

derived partition coefficients. The main available coefficients were reviewed to identify the 

differences on both the methodological and numerical levels. Results showed large discrepancies 

for both cases amongst literature data but also with experimental data derived from an MRF plant 

located in Canada. A sensitivity analysis realized on a typical MRF plant showed the strong 

influence of the partition coefficient differences on the potential recovery of these plants. The 

trommel was identified as the unit operation having the largest impact on the modeling results. 

According to the sensitivity of the recovery of these kind of plants for each unit operation, a 

modeling approach is proposed for three groups of unit operations. 

5.1 Introduction 

Material recovery facilities (MRFs) and mechanical-biological treatments (MBTs) are often used 

by municipalities to process mixed municipal solid waste (MSW), in order to increase resource 

recovery, as complement or replacement to source-separated collections (Cimpan et al., 2015; 

Jansen et al., 2013). These facilities are used to increase the recovery of recyclable materials from 

mixed MSW and the quality of the materials destined for further biological or thermal treatment. 
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Therefore, these processes focus on separating recyclables, an organic waste fraction and a 

combustible fraction, often referred to as refuse derived fuel (RDF), using a sequence of unit 

operations such as air classification, ballistic separation, eddy current separation, magnetic 

separation, screening and size reduction (Di Lonardo et al., 2012; Rotter, 2011; Velis et al., 2010). 

Hand picking and optical sorting may also be used for more selective separation (Rotter, 2011). A 

typical MRF is composed of 5 sections: pre-conditioning, conditioning, sorting, refining and final 

product handling (Cimpan et al., 2016). The material separation is performed during conditioning, 

sorting and refining steps. The conditioning steps, that usually include operations as sieving, air 

classification and ballistic separation, prepare the materials for the subsequent downstream steps, 

while the sorting and refining steps, that include unit operations such as magnetic separation, eddy 

current separation, optical separation and hand picking, aim at separating the materials according 

to the desired output streams and their subsequent purification steps (Cimpan et al., 2016). Sorting 

unit operations may be classified in two groups, direct and indirect separators. Direct separators 

target physical properties, while indirect separators use an indirect method, (e.g. air jet), to separate 

an object identified based on its physical properties (Gundupalli et al., 2017).  

The global efficiency (quality of the recovered streams and global recovery) of these facilities for 

upgrading streams quality when mixed wastes are processed is generally low (Christensen and 

Bilitewski, 2010). Moreover, the composition of the output streams strongly varies since the input 

composition and the equipment configurations vary from one plant to another, having a direct 

impact on the process efficiency (Caputo and Pelagagge, 2002; Di Lonardo et al., 2012; Pressley 

et al., 2015; Velis et al., 2012), and thus on its environmental performance (Montejo et al., 2013). 

The calculation of the outputs compositions and quantities by mean of a mass balance is critical 

while designing this type of plant (Christensen and Bilitewski, 2010), and is generally done by 

mean of semiempirical methods due to a poor knowledge on the unit operations performance (Velis 

et al., 2013). Several approaches using partition coefficients have been used. A partition coefficient 

is generally defined as a ratio between 0 and 1 corresponding to the fraction of an input stream that 

ends up in a specific output stream.  

The first approach relies on the calculation of global partition coefficients for each outputs of a 

plant as a function of the input stream, usually based on existing plant performance data. It can be 

used to compare two plants to identify further improvements (Themelis and Todd, 2004),to 

compare the performance of a facility according to several scenarios (Arena and Di Gregorio, 2014) 
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and to evaluate the possibility of integrating other units to a facility (Ardolino et al., 2017). It may 

also be used to determine the material composition and the energy content of the facility outputs 

(Nasrullah et al., 2014) or the fate of some elements (Nasrullah et al., 2015). Even though this 

approach is useful for analyzing the global efficiency of a plant and provide an estimate of potential 

yields, it does not permit the analysis of different configurations within the facility since it does 

not provide sorting efficiency per sorting equipment. This approach is therefore limited in its 

predictive capability.  

Another approach is to determine partition coefficients for the total mass entering each unit 

operation in the MRF. This approach is generally used in material flow analysis and allows to track 

elemental concentration in the system. For example, Rotter et al. (2004) assessed the impact of the 

sorting equipment selection and sequence on the concentration in heavy metals and chlorine for 

the production of an RDF.  

Finally, some authors have analyzed the sorting efficiencies of unit operations in an MRF context 

for multiple waste materials and have derived partition coefficients for these sorting unit operations 

(Bilitewski, 2010; Caputo and Pelagagge, 2002; Combs, 2012; Diaz et al., 1982; Ip et al., 2018; 

Müller et al., 2003; Pressley et al., 2015; Savage et al., 1984; Velis et al., 2013). This approach 

allows for modeling the fate of various materials according to the MRF configuration and to 

consider multiple waste materials, thus being input specific. 

In the later case, the partition coefficients are generally calculated analytically or experimentally 

(Diaz et al., 1982). When no actual plant information is available, they may also be derived from 

expert judgement (Pressley et al., 2015). These coefficients are usually static and are restraint to 

specific waste composition and operating conditions. This makes it difficult to use these values to 

model different plants due to the important heterogeneity of MSW (Velis et al., 2012). Wolf (2011) 

and Raymond (2017) showed that the efficiency of some sorting unit operations is influenced by 

the input stream composition and the operating conditions of this equipment. For example, 

Raymond (2017) showed that the ferrous metal recovery of a magnet is influenced by the ferrous 

metal size, the ferrous metal concentration and the magnet height. More generally, almost every 

unit operation in material recovery facilities are influenced by particle size and material density 

(Diaz et al., 1982). 
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As for deriving partition coefficients analytically, some authors have developed mechanistic, or 

physical, models for some specific unit operations. These are based on a set of equations used to 

represent the physical phenomena occurring in a process. For example, models were developed to 

predict a trommel output based on the probability of passage of particles through the its screens 

(Alter et al., 1981; Glaub et al., 1982; Stessel and Cole, 1996). Other unit operations commonly 

used in MRFs have also been modeled with this approach, including air classifier and magnetic 

separator (Savage et al., 1984).  

Therefore, the objective of this study is to assess the limits of using published datasets of partition 

coefficients for modeling the sorting efficiency of mechanical unit operations commonly found in 

MRFs and MBTs. For simplification, the term MRF will be used to represent the mechanical 

separation steps of both facilities in the next sections. To do so, available partition coefficients 

issued from literature are compared to each other and to partition coefficients derived for an MRF 

plant located in Canada. This allows to identify the differences and similarities, both for their 

numerical values and their methodological description. A sensitivity analysis is also performed to 

identify the impact of selecting one partition coefficient dataset over another for MRF output 

streams prediction. Finally, future modeling needs are identified for multiple sorting unit 

operations. These results will help plants operators and planners to better model and understand 

the mechanical separation of solid waste, thereby improving the efficiency of current and future 

plants. 

5.2 Materials and methods 

This section presents the methodology used to assess the limits of partition coefficients for MRF 

modeling. First, the procedure used to select the unit operations that are compared is presented. 

Then, the analysis performed on partition coefficient datasets is described. The method used for 

developing new datasets based on an MRF plant located in Canada is demonstrated. Finally, the 

approach used to identify modeling needs for MRF, which is based on a sensitivity analysis, is 

presented.  

5.2.1 Process selection and analysis 

Datasets of partition coefficients used to define the sorting efficiency of various unit operations 

typically found in an MRF, were collected from literature. These datasets were retrieved through a 
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literature search in ScienceDirect and Engineering Village databases as well as Google Scholar. 

Different combinations of key words such as “solid waste”, “MSW”, “sort”, “separate”, “unit 

operation”, “equipment”, “material recovery facility”, “mechanical biological treatment” were 

used. Datasets selected were taken from research articles from scientific journals and books on 

MSW. In the case when duplicates were obtained, only one dataset from the original source was 

kept.  

The retrieved datasets had several formats according to their sources, ranging from one single value 

to multiple values. Each dataset represents one-unit operation and each data in the dataset 

represents the sorting efficiency of a certain material in a given output of the unit operation. The 

completeness of the dataset depends on the number of materials covered in the dataset.  

The data collection was limited to mechanical sorting unit operations, therefore excluding 

shredding and manual sorting, for which more than one different dataset was identified. The unit 

operations considered are: a trommel (TR), an air classifier (AC), a magnetic separator (MS), an 

eddy current separator (ECS), a disc screen (DS), a ballistic separator (BS) and four optical sorters 

(HDPE, PET, mixed plastics and glass) (OS-HDPE, OS-PET, OS-MP, OS-G). When the same 

dataset was obtained from different sources, it was retained once. For the optical sorter targeting 

mixed plastics, despite having only one dataset found in the literature, it was considered in the 

analysis since it was possible to obtain a supplementary dataset from a local MRF plant located in 

Canada (section 5.2.2). For every dataset, the source of the data (expert judgement, numerical 

simulation or experiments), the availability of complementary information (no information, 

information on operating conditions or information on the waste), the type of waste considered 

(MSW or source-separated recyclables), and the number of waste categories (e.g., paper, plastic, 

ferrous metal, food waste) considered were reviewed. The sorting efficiency of every unit operation 

for the main targeted waste categories was also analyzed to identify the differences occurring in 

the literature.  

5.2.2 Valoris MRF plant sorting efficiencies  

New partition coefficients were derived to be compared to those obtained from the literature. These 

coefficients are derived from a characterization of the different outputs of the Valoris MRF plant 

located in Bury (Canada) realized in 2017. This is done for five different sorting unit operations 

that are a trommel, a magnetic separator, an eddy current separator, an optical sorter targeting PET 
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and an optical sorter targeting mixed plastics. The characterization obtained from Valoris includes 

the waste composition of the 18 output streams of the MRF plant for 15 waste categories. The plant 

is designed to extract the different recyclable fractions and the organic fraction based on a sequence 

of sorting equipment shown in supplementary information (A1). 

To derive the partition coefficients, a least-square minimization is performed on the mass flows of 

the global process. An optimization problem is solved for every waste material independently. The 

problem minimizes the difference between predicted and actual output streams under constraints 

that all the flows are positive and the mass is conserved (for every unit operation and for the global 

process). The following optimization problem is solved: 

 

min(∑(∑𝐴𝑚,𝑓𝑋𝑓 − 𝑌𝑚
𝑓

)

2

𝑚

) 

𝑠. 𝑡.                     𝑋𝑓 > 0  ∀𝑓 

                               𝐶𝑢,𝑓𝑋𝑓 = 0 ∀𝑢 𝑒𝑡 ∀𝑓 

                              𝑋0 −∑𝑌𝑚
𝑚

= 0 

(5-1) 

where m, f and u are respectively the output streams, the flows and the unit operations. A is a matrix 

of 0 and 1 linking the flows to the output streams. A value of 0 means that a flow is not linked to 

an output stream and a value of 1 means that the flow is linked to an output stream. Xf is the vector 

of waste stream, Y is the output streams vector and C is the unit operation matrix consisting of 

values of -1 and 1 and includes every unit operation of the MRF. A value of -1 means that the flow 

enters the unit operation and a value of 1 means that the flow exits the unit operation. Finally, X0 

is the mass inflow of the process and is define in the third constraint to make sure that the input 

mass is equal to the output mass.  

The calculated flows allow to determine partition coefficients for each unit operation as 

 𝑞𝑎,𝑏 =
𝑋𝑎,𝑏
∑ 𝑋𝑖,𝑎𝑖

 (5-2) 
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where qa,b is the partition coefficient from node a to node b, Xa,b is the mass of the flow linking the 

node a and the node b and Xi,a are all the flows entering the node a.  

All the partition coefficients per material calculated for a unit operation compose the dataset 

representing this unit operation. In this case, quite complete datasets were assembled since 15 waste 

categories covering the main categories of MSW were analyzed.  

5.2.3 Simulation of a typical MRF and sensitivity analysis 

To investigate the impact of the datasets differences on the modeling results of an MRF, a 

sensitivity analysis was realized based on the simulation results of a typical MRF sequence. This 

sequence is defined based on an example from literature and the flows are calculated for a typical 

input composition and different combinations of sorting efficiencies identified in section 5.2.1 and 

5.2.2. The purity and the recovery of every output stream are used as criteria to measure the 

differences between the scenarios.   

5.2.3.1 Typical MRF plant block diagram 

The block diagram of an MBT plant in Germany described by Bilitewski et al. (2010) was adapted 

to be representative of a typical MRF plant and to include several sorting unit operations from those 

listed in section 5.2.1. The organic fraction treatment was not considered for the purpose of the 

analysis. The adapted block diagram (Figure 5.1) includes one waste input noted G1, ten unit 

operations noted P1 to P10 and 9 output streams noted M1 to M9. Of the ten unit operations 

considered, there are only 8 actual different unit operations, since two magnetic separators (P3 and 

P4) and two eddy-current separators (P5 and P6) are part of the overall process. For the output 

streams, there are 8 different recoverable streams (two ferrous metal streams, two non-ferrous 

metal streams, one organic stream, one RDF stream, one HDPE stream and one PET stream) and 

one reject stream.  
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Figure 5.1 Block diagram of the typical MRF plant used for simulation 

5.2.3.2 Mass balance simulation and sensitivity analysis 

Based on the MRF block diagram shown in Figure 5.1, every output stream and every flow 

compositions are calculated for an input of mixed MSW. A typical composition (see supplementary 

information A2) obtained from a characterization study carried out in the province of Quebec 

(Canada) in 2012 (RECYC-QUÉBEC, 2015), was considered as a representative mixed MSW 

stream. The mass balance was solved with solver developed in Python and mainly focused on 

solving the following equation based on the work of Ip et al. (2018): 

 𝑓𝑛 = (𝐼 − 𝑄
𝑇)−1𝑓in (5-3) 

where Q is the matrix of partition coefficient as defined in equation 5-2 for every unit operation, I 

is the identity matrix, fin is the vector of input flows to each unit operation and fn is the vector of 

output flows from each unit operation and n is the number of unit operations. 
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To build the matrix Q, the different datasets of partition coefficients are used for each unit 

operation. Therefore, there are as many different Q matrices as there are combinations of datasets 

of partition coefficients. To assess the sensitivity of the partition coefficients on the input and 

output flows of each unit operation, the mass balance was solved for every Q matrix available and 

the results were compared. For the processes occurring more than once in the plant (magnetic 

separator and eddy current separator), the same dataset was used for both unit operations for a 

given simulation. Therefore, partition coefficients were used to simulate the mass balance of a 

typical MRF, and then a sensitivity analysis was realized on these partition coefficients to assess 

the variation of the simulation results. 

5.2.3.3 Datasets adaptation 

As waste categories considered by each dataset from literature may differ from one to another, a 

procedure available in supplementary information (A3) was applied to adapt these datasets in order 

to proceed with identical categories in every case, thus allowing mass balance calculations. To do 

so, when the data was not available for one category, it was extrapolated from the most similar 

category. The categories considered in this study are the following: food waste, green residue, tree 

branches, wood, other organics, papers, cardboards, HDPE, PET, plastic films, other plastics, 

ferrous metals, non-ferrous metals, glass, rubber, textiles and other inorganics. These categories 

were selected to cover the main waste types found in MSW and to include all the categories usually 

recover in an MRF. Moreover, these categories, or similar ones, were often used in the retrieved 

raw datasets. 

For the ballistic separator, one dataset provided transfer coefficients only for the 2D output despite 

the fact that this sorting equipment usually has 3 outputs (3D, 2D and fines). Therefore, the balance 

of the materials was considered to be in the 3D output and that no material ends up in the fines 

output.  

5.2.3.4 MRF sorting efficiency 

The global efficiency of the resource recovery of the MRF is analyzed by means of two factors that 

are the purity and the recovery of every output streams of the plant (Vesilind et al., 2002). First, 

the purity is defined as 
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 𝑃𝑥1 =
𝑥1

𝑥1 + 𝑦1
 (5-4) 

where x1 is the mass of the targeted materials in a given output and y1 is the mass of the other 

materials in the same output.  

The recovery is defined as 

 𝑅𝑥1 =
𝑥1
𝑥0

 (5-5) 

where x1 is the mass of the targeted material in a given output and x0 is the mass of this material in 

the input.  

5.2.3.5 Comparison of the sensitivity analysis results 

To compare the simulation results obtained for the different matrices Q, indexes are calculated to 

aggregate results and allow for the comparison of different subsets. For example, a dispersion index 

(equation 5-6) may be calculated to compare the purity of an output stream obtained while the first 

dataset of the trommel is used (subset 1), the second dataset of the trommel is used (subset 2) and 

so on for every dataset available for the trommel.  

First, for every output stream (M1 to M9), a global dispersion index (GDI) for a subset s is defined 

as the mean of the Euclidean distances of every data point of a subset s to the center of gravity of 

all the subset points and is calculated as 

 𝐺𝐷𝐼𝑠 =
1

𝑁
∑√(𝑃𝑘 − 𝑃̅)2 + (𝑅𝑘 − 𝑅̅)2
𝑁

𝑘=1

 (5-6) 

where N is the number of dataset combinations, Pk is the purity of the subset s for a certain 

combination k and 𝑃̅ is the mean purity of the subset s for the N combinations and Rk and 𝑅̅ have 

similar definitions for the recovery.  

The GDI corresponds to the mean absolute deviation (MAD) when only one dimension is 

considered (either purity or recovery) and is calculated as 
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 𝑀𝐴𝐷𝑠 =
1

𝑁
∑𝑎𝑏𝑠(𝑞𝑘 − 𝑞̅)

𝑁

𝑘=1

 (5-7) 

where N is the number of dataset combinations, qk is the value of the factor P or R of the subset s 

for a certain combination k and 𝑞̅ is the mean of this factor for the N combinations.  

A relative dispersion index (RDI) is calculated as the ratio of the MAD of a subset to the MAD of 

all the data minus 1 

 𝑅𝐷𝐼𝑠 =
𝑀𝐴𝐷𝑠
𝑀𝐴𝐷𝑇

− 1 (5-8) 

where MADs is the dispersion index of a subset s and MADT is the total dispersion index for all 

the subset together. Therefore, a negative RDI shows a diminution of the dispersion of the data for 

the subset while a positive value shows an increase of the dispersion.  

All the previous indexes are used to calculate the dispersion of the data points relative to their 

center of gravity. Finally, a center of gravity displacement index (CDI) is introduced to determine 

whether the center of gravity of the data points changes for a certain subset s and is defined as 

 𝐶𝐷𝐼𝑠 = 𝑎𝑏𝑠(𝑞̅𝑠 − 𝑞̅) (5-9) 

where 𝑞̅𝑠 is the mean of the factor for the subset s and 𝑞̅ is the mean of the factor for all the subsets 

together.  

5.3 Results  

Several datasets available in literature representing MSW sorting unit operations were analyzed 

and compiled in terms of methodology and sorting efficiencies. New datasets were also obtained 

during the course of this work from the Valoris plant. All of these datasets were used to simulate 

the operation of a typical MRF and to calculate the recovery and the purity for different 

combinations of datasets.  
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5.3.1 Description of datasets retrieved in the literature 

Few datasets were found in the literature. A total of 33 datasets representing 10 different sorting 

unit operations from 9 publications were analyzed. The list of these unit operations and their 

respective number of datasets are presented in Table 5-1. The optical sorter for mixed plastics (OS-

MP) was retained in Table 5-1 even though only one dataset was found in the literature, since it 

was possible to derive another such dataset from the Valoris plant results (see Section 5.3.2)  

Table 5-1 Unit operations and their number of considered datasets (number in parenthesis 

indicates the number of datasets retrieved from the reference) 

Sorting unit operations 

Number of 

different 

datasets 

References 

Air classifier (AC) 4 1, 2, 4(2) 

Ballistic separator (BS) 3 2, 6, 8 

Disc screen (DS) 5 3(2), 7(3) 

Eddy current separator (ECS) 5 2, 3, 5, 7, 9 

Magnetic separator (MS) 4 3, 4, 5, 7 

Optical sorter – PET (OS-PET) 3 3, 5, 7 

Optical sorter – HDPE (OS-HDPE) 3 3, 5, 7 

Optical sorter – Glass (OS-G) 2 3, 7 

Optical sorter – Mixed plastics (OS-MP) 1 5 

Trommel (TR) 3 4(2), 7 
1. (Bilitewski, 2010) 

2. (Caputo and Pelagagge, 2002) 

3. (Combs, 2012) 

4. (Diaz et al., 1982) 

5. (Ip et al., 2018) 

6. (Müller et al., 2003) 

7. (Pressley et al., 2015) 

8. (Raymond, 2017 

9. (Savage et al., 1984) 

From these 33 datasets, 21 are derived from expert judgement, 9 from experimental data, 0 from 

modeling results and in 3 cases, the origin of the data is not specified. This confirms that no sorting 

efficiencies derived from modeling is available in the literature. Therefore, the majority of these 

reported efficiencies are constant and can not be adjusted according to the equipment operating 

conditions. However, the recovery of a material in most unit operations is a function of these 
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operating conditions. For example, the hole sizes of a trommel have a critical influence on the 

organic fraction recovery with this unit operation (Montejo et al., 2010). The datasets derived from 

experimental conditions generally provide precise partition coefficients for specific conditions, 

while the datasets derived from expert judgement are more general and only provide an order of 

magnitude.  

Also from these 33 datasets, 28 do not mention the operating conditions under which the partition 

coefficients were obtained, 4 reported information about the inputs and one described some 

physical characteristics of the equipment. Thus, in most cases, it was not possible to assess whether 

a dataset could be more appropriate than another for a particular situation. The fact that physical 

characteristics of the unit operations is almost never provided is surprising as they would have 

critical impacts on the materials recovery. For example, Müller et al. (2003) showed a large 

variability of recoveries for a ballistic separator for five different waste inputs.  

Of the 33 datasets, 26 were obtained for raw MSW and 7 for recyclables, showing that the current 

focus seems to be on MSW separation. As sorting efficiencies are very different for MSW and for 

recyclables, these two types of datasets can not be compared but can only serve to assess the order 

of magnitude of the separation efficiency.  

Finally, from the 33 datasets, 13 considered only one waste category, 3 considered between 2-to-5 

waste categories, 9 considered 6-to-10 waste categories and 8 considered 11-to-15 waste 

categories. Therefore, in 33% of the cases, only one waste category was considered. This is mainly 

observed for unit operations targeting specifically one waste category (i.e., OSs, MS and ECS). 

This causes a problem for MRF modeling as it is impossible to predict the contamination of the 

output streams. These results also show that the level of aggregation of the waste categories varies 

from one study to another. For example, for a trommel, Pressley et al. (2015) considered 5 different 

waste categories for organics materials (grass/leaves, branches, food waste, wood, other organics), 

while Diaz et al. (1982) considered only one category. These differences lead to difficulties while 

comparing coefficients from different sources. Also, they render modeling of an MRF plant based 

on literature partition coefficients complex and uncertain as the number of targeted materials per 

process could vary from one to another, hence forcing the practitioner to aggregate waste categories 

in different ways.  
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5.3.2 Description of unit operation datasets obtained from the Valoris plant 

As several recirculation streams are included in the Valoris MRF process and no information was 

available about the internal streams, it was not possible to assess the sorting efficiencies for all the 

unit operations. However, sorting efficiencies for 5 unit operations could be determined since in 

these cases, every output streams were known. These processes are: a TR, a MS, an ECS, an OS-

PET and an OS-MP. The obtained partition coefficients are presented in supplementary 

information (A4). Some operating conditions used by the plant are also presented in supplementary 

information (A5).  

5.3.3 Yields comparison  

Sorting efficiencies derived for MSW obtained from the different datasets for each unit operation 

are compared in order to emphasize the major differences between them and the implications for 

MRF plant modeling.  

Using the 9 unit operations for which more than one dataset based on MSW were available (the 

OS-G was excluded), minimum and maximum sorting efficiency values for the targeted waste 

category were noted and compared to the Valoris plant results when possible. In some cases, since 

different materials could be targeted depending on the process configuration and the operating 

objectives, the partition coefficients were reported for materials that could typically be targeted by 

these unit operations. Results are presented in Table 5-2 and are retrieved from the same sources 

than those identified in Table 5-1. 

Table 5-2 Comparison of the partition coefficients of different unit operations as a function of the 

targeted material 

Equipment 

Targeted 

material 

Minimum 

partition 

coefficient 

Maximum 

partition 

coefficient 

Valoris plant 

partition 

coefficient 

AC 

 

 

Papers 0.82 0.98 - 

Carboards 0.68 0.98 - 

Plastics 0.51 0.98 - 

BS 

 

Fibers 0.76 0.98 - 

Plastics 0.23 0.98 - 
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Plastic films 0.76 0.97 - 

DS Fibers 0.21 0.6 - 

ECS 
Non-ferrous 

metals 
0.64 0.9 0.55 

MS Ferrous metals 0.8 0.95 0.95 

OS - PET PET 0.83 0.93 0.67 

OS - HDPE HDPE 0.71 0.83 - 

OS - Mixed plastics Mixed plastics 0.74 0.74 0.35 

TR 
Organics 0.75 0.89 0.83 

Glass 0.41 0.8 1 

Results presented in Table 5-2 clearly reveal a large range in partition coefficients observed 

amongst the datasets, varying according to the chosen targeted material. This variation could lead 

to major differences while modeling a complete MRF plant.  

These results show that the narrowest ranges of partition coefficients from literature data are those 

for the optical sorters and the magnetic separator. For the trommel, the air classifier and the ballistic 

separator, the differences are depending on the targeted material. In some cases, large ranges are 

observed, while in others, the range sizes are similar to those observed for the optical sorters. As 

for the eddy-current separator and the disc screen, large ranges are also observed for the targeted 

materials.  

These differences may be explained by the fact that the trommel, the air classifier, the disc screen, 

the ballistic separator, the magnetic separator and the eddy current separator are direct separators, 

while the optical sorters are indirect separators (Gundupalli et al., 2017). Results from Table 5-2 

seems to indicate that indirect separators have less variability in reported values of partition 

coefficients and, hence, those could be used under all conditions, while direct separators show more 

variability in reported partition coefficients and, hence, they may be linked to unreported operating 

conditions. In addition, these conclusions do not include the contamination that could occur during 

indirect separation, nor the real impact of these differences on an MRF modeling.  

Regarding the results obtained from the Valoris plant, except for the trommel and the magnetic 

separator, lower recoveries than those obtained from the literature were found. However, as shown 

in the supplementary information (A4), a lower contamination was also obtained for these unit 

operations. This could indicate that this facility is operated with more demanding settings.  
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5.3.4 Simulation and sensitivity analysis for unit operations datasets 

comparison 

The previous section showed notable differences amongst the datasets partition coefficients but did 

not provide any insight on the impact of these differences on the prediction of an MRF outputs. 

Therefore, it is not yet clear if these differences would lead to diverging conclusions while 

modeling the operations of an MRF. To remedy to this, a sensitivity analysis was realized on the 

mass flows of a typical MRF calculated with a mass-balance solver described in section 5.2.3.  

Based on the typical MRF plant presented in section 5.2.3.1 and the different partition coefficients 

datasets, a total of 7680 different combinations were simulated. These combinations include the 

Valoris plant partition coefficients and every available literature dataset developed for MSW. The 

adapted numerical values of the partition coefficients and the references used are provided in 

supplementary information (A6). The calculated recovery and purity parameters for the nine output 

streams corresponding to the 7680 simulations are presented in Figure 5.2. 

 

Figure 5.2 MRF outputs recovery and purity for every dataset combinations 
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Most output streams target a specific material (e.g. PET), hence the recovery and the purity 

parameters correspond to this material. For the RDF output stream (M8), the materials that were 

considered as targeted were: plastics, papers, cardboards and plastic films. For the organic fraction 

output stream (M1), the target materials were: food waste, green residue, tree branches and other 

organic materials. Finally, for the rejects output stream (M9) the targeted materials were all the 

materials not targeted in any other stream. Results presented in Figure 5.2 show wide ranges for 

both the recovery and the purity parameters of the different output streams according to the datasets 

considered, showing that the choice of some partition coefficients over others can lead to major 

differences in yield prediction. These differences are observed for the six single material target 

outputs, but seems amplified for the prediction of the HDPE stream (M6), the PET stream (M7), 

the second ferrous metal stream (M4) and both the first (M3) and the second (M5) non-ferrous 

metal streams, also shown by their high GDI (between 0.38 and 0.44) calculated by mean of 

Equation 5-6 and presented in Figure 5.2. A smaller dispersion is observed for the first ferrous 

metal stream (M2) and the reject stream (M9) with respective value of the GDI of 0.21 and 0.26. 

Finally, similar values of GDI are obtained for the organic (M1) and the RDF (M5) streams with 

respective values of 0.11 and 0.14. This smaller dispersion is probably explained by the fact that 

more than one waste materials are targeted in these streams.  

Despite the significant dispersion of results obtained from the 7680 simulations, large fractions of 

them are concentrated in a few quite compact data clouds, showing that predictions are influenced 

by a limited number of unit operations. However, this also shows that both purity and recovery 

parameters are affected by more than one unit operation since the data is located in a higher number 

of point clouds than the number of different datasets available per process. For example, 

approximately 12 main data clouds are observed for the HDPE output stream (M6) simulation 

results while only two optical separator datasets are available, showing that the recovery of this 

fraction is also influenced by the upstream sorting equipment.  

To better understand the influence of the different sorting unit operations on the recovery and the 

purity of the output streams, both factors were analyzed in terms of their RDI (Eq. 5-8) and CDI 

(Eq. 5-9) for every stream as a function of the chosen datasets. Both parameters are calculated for 

the different subsets corresponding to the choice of a dataset for a specific unit operation. For 

example, 4 TR partition coefficients datasets are available, leading to 4 different subsets, and the 

simulation results obtained for each subset are compared to those obtained globally. The global 
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dispersion (indicated in the legend) and the center of gravity (indicated by an X on the Figure) of 

the organic output stream are shown for the global data in Figure 5.3a and are compared to the 

different subsets of TR in Figure 5.3b. Results indicate that the choice of the trommel dataset 

clearly impacts both these indexes, leading to the calculation of relative indexes (RDI and CDI) to 

quantify the differences between the global data and a subset.   

 

Figure 5.3 Comparison of the dispersion and the center of mass (indicated by an X on the figure) 

of the organic output stream for the global data (a) and for different subsets (b) according to the 

choice of the trommel dataset 

The RDI indicates the relative difference of the dispersion of the subset compared to the global 

data and the CDI indicates the displacement of the center of gravity of the subset compared to the 

global data. An RDI of 0 shows that the choice of a dataset does not impact the dispersion of the 

results, while a negative and a positive value respectively indicate a decrease and an increase of 

the dispersion. For the CDI, a value of 0 shows no displacement of the center of gravity, while a 

positive value indicates its displacement.  

5.3.4.1 Organic output stream 

The RDI and the CDI values for both the purity and the recovery for every subset of the organic 

output stream are presented in Figure 5.4. The subsets used for every unit operation are displayed 

on the figure to show their respective influence on the recovery of this output stream. In many cases 

(OS, BS, AC), the RDI and the CDI are both null as their respective unit operations are located 

after the output stream for this sequence and have no impact on the recovery of this stream.  

a) b)
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Figure 5.4 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity 

displacement of the purity (c) and the recovery (d) parameters of the organic output stream (M1) 

according to the chosen datasets 

Figure 5.4 also shows based on both the RDI and the CDI, that the main unit operation affecting 

both the purity and the recovery of this stream is the trommel, which is not surprising since this 

sorting equipment is the one generally targeting the organic fraction (Montejo et al., 2010). Also, 

it is seen that the MS and the ECS have an impact on both the recovery and the purity, but to a 

lesser extent. This indicates that the influence of the downstream equipment (i.e., equipment 

located after the one targeting the material) is small in comparison to the unit operation directly 

targeting it. As for the trommel, large differences in the simulation results are obtained according 

to the chosen TR dataset, mainly for the CDI for both recovery and purity parameters. This sorting 

equipment is therefore accountable for almost all the variability in the organic output stream 

prediction. 

a) b)

c) d)
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5.3.4.2 RDF output stream 

For the RDF output stream (M8), the same procedure as above was used, and results are presented 

in Figure 5.5. Even though the AC and the BS have an influence on the recovery and the purity 

parameters as expected, the largest variation is caused by the choice of the TR dataset. This 

causality is not obvious since the trommel does not directly target the RDF fraction as it is an 

upstream equipment (i.e., equipment located before the one targeting the material). The AC, the 

BS and the OS-MP, which are the 3 unit operations directly targeting the RDF materials, have a 

small impact on both the purity and the recovery parameters. 

 

Figure 5.5 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity 

displacement of the purity (c) and the recovery (d) parameters of the RDF output stream (M8) 

according to the chosen datasets 

Also, every other unit operation targeting materials that are not being recovered in the RDF stream 

have a negligible impact on the RDF output stream variability. Therefore, materials falsely sorted 

by these unit operations do not impact the global recovery of the RDF fraction, probably due to the 

smaller quantities of these fractions.  

a) b)

c) d)
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5.3.4.3 Optically separated output streams 

Similar results are obtained for both output streams separated by optical sorters (HDPE stream and 

PET stream). Only results for the PET stream (M7) is therefore presented here in Figure 5.6 while 

the results for the HDPE output stream (M6) are given in supplementary information (A7).  

 

Figure 5.6 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity 

displacement of the purity (c) and the recovery (d) parameters of the PET output stream (M7) 

according to the chosen datasets 

For these two streams, the three upstream unit operations (trommel, air classifier and ballistic 

separator) have an impact on both the recovery and the purity parameters of the output. However, 

this impact is more pronounced on the variability of the recovery parameter indicating that the 

datasets corresponding to these unit operations are quite different from one another in regard to the 

sorting efficiency of PET, resulting in much more dispersed recovery results. This is explained as 

in some cases for some AC and BS datasets, almost no recovery is obtained, while a recovery is 

obtained for others, leading to a large dispersion induced by the choice of these datasets. In these 

cases, no information was available specifically for the PET and a sorting efficiency was derived 

a) b)

c) d)
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from an overall plastic efficiency, indicating a need for improving the determination of sorting 

efficiencies related to certain waste materials and for the modeling of these unit operations.  

As for the dataset used for the optical sorter targeting the PET, its choice has a clear impact on both 

the dispersion and the center of gravity of the purity parameter (see Figure 5.6a and 5.6c), which 

was expected since no contamination was considered for one dataset, but has almost no impact on 

the recovery parameter (see Figure 5.6b and 5.6d). The same conclusion was observed for the 

HDPE output stream. This shows that for these output streams, recovery is not sensitive to the 

partition coefficient of the targeted material for the range of partition coefficients commonly seen 

in the literature.   

5.3.4.4 Ferrous and non-ferrous output streams 

For the ferrous output streams (M2 and M4), Figures 5.7 and 5.8 show that almost all the variability 

in recovery and purity parameters is explained by the TR and the MS datasets. The air classifier 

only shows a small impact for the first output (M2). All other unit operations have no impact as 

they are located downstream of the ferrous fraction separation.    

 

Figure 5.7 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity 

displacement of the purity (c) and the recovery (d) parameters of the first ferrous output stream 

(M2) according to the chosen datasets 

a) b)

c) d)
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For the magnetic separator, its dataset mainly impacts the purity and to a lesser extent the recovery, 

which is similar to what was observed for the optically sorted streams (PET and HDPE). This can 

be observed for both outputs M2 and M4 (see Figure 5.7a and 5.7b and Figure 5.8a and 5.8b). Once 

again, the trommel dataset has a large impact on the recovery of the ferrous fraction.  

 

Figure 5.8 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity 

displacement of the purity (c) and the recovery (d) parameters of the second ferrous output stream 

(M4) according to the chosen datasets 

For the non-ferrous output stream (M3 and M5), similar results than for the ferrous output streams 

are observed. Therefore, only the results of the first output stream (M3) are presented in Figure 5.9. 

The results for the second output stream are shown in supplementary information (A7). Similar to 

the ferrous outputs, the recovery is mostly influenced by the trommel dataset while the purity is 

mostly influenced by the ECS dataset. This is true for both outputs. However, the air classifier has 

a larger influence on these streams than the ferrous output streams, since the range of partition 

coefficients in the AC datasets is larger for the non-ferrous than for the ferrous materials. 

a) b)

c) d)
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Figure 5.9 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity 

displacement of the purity (c) and the recovery (d) parameters of the first non-ferrous output stream 

(M3) according to the chosen datasets 

The choice of the ECS datasets has a more prominent impact than the MS datasets, resulting in a 

larger displacement of the center of gravity of the purity parameter. This is probably due to the fact 

that the available datasets include a higher contamination for the ECS than for the MS, and a wider 

range of targeted material sorting efficiency. Also, as the fraction of non-ferrous metal in the input 

stream is generally small, the contamination is easily overpredicted.  

5.4 Discussion 

As mentioned earlier, very few data on mechanical sorting efficiencies are available in the literature 

and those existing focus on divergent waste categories making their comparison difficult. 

Moreover, it was shown that available data do not always include efficiencies for critical waste 

categories required for plant modeling. Research efforts should not only focus on providing new 

useful data but also cover more waste categories, while providing both operating conditions and 

feedstock composition since these are often lacking despite their strong influence on output stream 

compositions. 

a) b)

c) d)
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When comparing direct separators and indirect separators, the first observation was that the latter 

ones seem to have smaller efficiency variation (see section 5.3.3). Other differences between these 

two groups of equipment were also pointed out (see section 5.3.4). Indirect separators efficiencies 

were shown to have little impacts on the separation efficiency of the output streams not directly 

downstream from these separators, while the opposite was found for some direct separators (e.g. 

trommel, air classifier, ballistic separator), which were shown to greatly affect multiple output 

streams.  

It was proposed at this point to classify mechanical separators into three types based on their sorting 

mechanism and their influence on the MRF output composition (as reported in section 5.3.4); type 

1 being the direct separators targeting a waste material property and generally used in the 

conditioning section of an MRF, type 2 being the direct separators targeting one material and 

generally used in the sorting section of an MRF and type 3 being the indirect separators. 

Type 1 separators include trommels, air classifiers and ballistic separators and were shown to have 

an important impact on both recovery and purity parameters of most of the output streams of a 

typical MRF. This characteristic was even more pronounced for the trommel which was the most 

critical unit operation for both the organic and the RDF output streams. The trommel also had a 

great influence on all other outputs, particularly on their recovery. This importance is probably best 

explained by the fact that these unit operations are located in the conditioning part of the MRF and 

sort material based on their physical properties. The sorting efficiency of type 1 unit operations 

being directly correlated to waste properties, it could significantly vary from one situation to 

another according to the actual operating conditions of the equipment. The type 1 units should 

therefore not be simulated with partition coefficients but rather on the bases of mechanistic models 

capable of capturing the effects of waste material properties on sorting efficiency. These models 

should be of varying complexity according to the importance of the unit operation in the overall 

sorting process. 

For the type 3 units, which comprise mostly the OS, the use of available partition coefficients for 

the targeted material is probably sufficient for this application, since it was shown (see section 

5.3.4) that the recovery of the targeted material is not sensitive to the optical sorter dataset. In this 

case, the impact of the other unit operations is greater. However, a larger impact was observed with 

regard to the choice of the OS dataset on the purity of the output streams. Large variations were 
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observed, which is coherent since the partition coefficients for the non-targeted materials vary 

greatly. More work is needed to improve predictions of this contamination, by capturing the impact 

of one or two main parameters (e.g., materials concentration, mass flow) on the partition 

coefficients. For example, Wolf (2011) and by Raymond (2017) observed that the targeted material 

concentration could impact the contamination in the streams following some type 3 unit operations. 

The contamination could therefore be modeled as linear regression function of one or two critical 

operating parameters. It is proposed that sorting performance prediction of type 3 units should be 

based on partition coefficient for the targeted material and linear regression for the non-targeted 

materials. 

The type 2 units include eddy current separators and magnetic separators. As reported (see section 

5.3.4), similar results were obtained to those of the optical sorters. The impact of these unit 

operations on the downstream output streams is small. As for their own output streams, the impact 

is mainly on the purity and in a lesser extent on the recovery. Therefore, the same conclusions 

related to the need for modeling of the contamination as for the OS should be applied, which is to 

model the fate of contaminants based on linear regressions using operating parameters. As for the 

recovery, a larger impact is observed than for the OS indicating that the sorting efficiency of the 

targeted material should also be captured as a regression. Again, the main parameters affecting this 

yield should be investigated, but it is believed that the material concentration and the mass flow 

(linked with the bed volume) are critical. The type 2 units should be modeled based on linear 

regression for both the targeted and the non-targeted materials. 

The reported conclusions are based on simulation results that depend on both the MRF sequence 

and the feedstock composition. Different scenarios could have led to different results. Also, it is 

important to note that the approach used to combine datasets probably also affect the results. 

However, we feel confident that the conclusions are still valid in the context of different 

configurations since the simulation results were based on the global function of each unit operation.  

These conclusions, as well as the identified differences in partition coefficients from literature, can 

help the modeling and the analysis of MRF by practitioners. They could also help guide future 

research in the field by providing useful insights on the current limitations.  
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5.5 Conclusion 

The comparison of the partition coefficients of mechanical sorting unit operations commonly found 

in MRF showed that they are mainly derived from expert judgement or from specific experimental 

conditions, leading to static coefficients that can hardly be used for prediction. Moreover, these 

coefficients are derived for a variable number of waste categories, hindering their comparison. 

Their numerical values also greatly differ from one source to another, especially for direct 

separators. New partition coefficients were derived from an MRF plant located in Canada and 

coefficients usually lower than the ones found in literature were observed, showing the importance 

of external conditions on the unit operations recovery. These results indicate to practitioners the 

main limits of the partition coefficients for MRF modeling, and therefore better guide them in the 

selection of the coefficients for their own predictions. 

The impact of these variations on the global recovery of the mechanical sorting separation steps of 

an MRF was assessed by means of a global sensitivity analysis. Results showed that large 

differences on both recovery and purity for every predicted output stream are obtained according 

to the choice of the partition coefficients available in literature. Mainly, the trommel is the unit 

operation inducing the largest variation in the simulation results. Three main modeling approaches 

were defined according to the type of the sorting unit operation considered and should be used for 

predictive modeling of the mechanical sorting steps of MRF or MBT plants. Unit operations 

generally used in the conditioning step should be modeled based on mechanistic modeling 

reflecting the waste properties and the operating conditions; direct unit operations used in the 

sorting and the refining steps should be modeled based on linear regression for both the targeted 

and the non-targeted materials; indirect unit operations also used in the sorting and the refining 

steps should be modeled based on a mix of partition coefficient and linear regression.  

The uses of this modeling approach would allow to increase confidence in MRF outputs prediction, 

thus leading to the possibility of testing new solutions for enhancing products quality. It also helps 

practitioners overcome the identified limits of partition coefficients for the prediction of MRF 

outputs.   
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Abstract 

Several unit operations used in municipal solid waste (MSW) processing facilities are based on 

physical properties of the waste materials, such as particle size, density and shape. Reliable 

expressions describing particle size distribution of the different waste components present in MSW 

are not readily available in the context of process modeling. In this study, characterization data for 

household wastes and construction and demolition (C&D) wastes were analysed with the purpose 

of selecting the most representative PSD expression for these waste streams. The Rosin-Rammler 

distribution was identified over the log-normal and the gamma distributions as the best fitting PSD 

for the waste samples. This was demonstrated for both raw and processed waste samples. 

Parameters were derived and validated for every category of MSW materials considered in the 

characterization. A model for mixed household waste PSD was developed based on the summation 

of Rosin-Rammler expressions corresponding to each category of waste materials, as the 

composition was determined to be the main factor influencing particle size. A simplified model 

was also derived for mixed waste as a bimodal distribution since two main modes were observed 

in household waste, one for the “organic” fraction and one for the “inorganic” fraction.  

6.1 Introduction 

Many efforts have been spent in recent years in improving the efficiency of municipal solid waste 

(MSW) systems in order to move towards a more circular economy. To accompany this transition, 

many aspects need to be considered, including the efficiency of source-separated collections, the 

efficiency of material recovery facility (MRF), the valorization of residual wastes, the market for 

secondary products and more. Using a phenomenological approach in the development of waste 

treatment process models could be a good opportunity to evaluate the potential of novel treatment 
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alternatives or to optimize current plants. This modeling technique should reflect actual 

mechanisms and interactions occurring during the treatment processes (Blikra Vea et al., 2018). In 

this context, improved knowledge of the physical properties of MSW is needed, as those directly 

influence the yield and performance of the treatment processes (Diaz et al., 1982; Velis et al., 

2010).  

Among these properties, particle size is probably one of the most important to assess, since it 

directly impacts the performance of several processes, including sorting and size reduction 

operations (Diaz et al., 1982; von Blottnitz et al., 2002; Velis et al., 2010). For example, Caputo & 

Pelagagge (2002) modeled various sequences of a refuse derived fuel (RDF) production plant and 

compared the mass recovery and the lower heating value (LHV) of the products. They showed that 

adding a trommel and a shredder to a simple sequence leads to a net increase of the LHV of the 

resulting RDF and to a decrease in mass recovery (Caputo & Pelagagge, 2002). These types of 

equipment, which are mostly dependant on the particulate properties of the waste materials, are of 

major importance in MSW processing, such as in MRF plants. However, MSW are characterized 

by a large variability of shape and size, making it difficult to describe its particle size (von Blottnitz 

et al., 2002; Velis et al., 2010). Furthermore, the large variability of ductility of MSW particles has 

also been identified as problematic for predicting flow properties (von Blottnitz et al., 2002). These 

issues clearly reveal the need for more studies related to MSW granulometric properties.   

Particle sizes are mainly represented by mean of statistical distributions (e.g. normal, log-normal, 

gamma) generally chosen according to the field of the application, including mining, powder 

technology, etc. (Fieller et al., 1992). A dimension often used to represent a PSD is the sieve 

diameter, which corresponds to the largest dimension of the smallest surface of an object allowing 

it to pass through a sieve (Ruf, 1974; Merkus, 2009). Even though, the length of the object is not 

considered in this case, sieving diameter is generally used as it is simpler than measuring every 

dimension of the object.  

Winkler & Wilson (1973) have analysed the dimensions of individual items comprising 

approximately 900 kg of MSW. Alter et al., 1981 have then used those results to fit a log-normal 

distribution for MSW. Similarly, Ruf (1974) determined particle size distributions (PSD) for 

twelve categories of raw and shredded MSW based on their sieving diameters. He tested five 

different statistical distributions to fit hisdata, which are the normal, the log-normal, the beta, the 
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gamma and the uniform distributions (Ruf, 1974). In his study, Ruf did not conclude on the best 

distribution for raw MSW, but determined that shredded MSW are generally best fitted with a log-

normal distribution.  

More recently, Bessi et al. (2016) have calculated PSDs for different solid recovered fuels produced 

by a mechanical separation of MSW to assess their heterogeneity, but they did not fit any 

distribution to their data. Nakamura et al., 2006 have applied a gamma distribution to fit the particle 

size of mixed MSW and of combustion ashes. Ashkiki et al. (2019) have analysed the inputs and 

the outputs of a trommel using a Rosin-Rammler distribution. They have fitted this distribution for 

a compostable and a RDF fractions issued from a mix of MSW based on the sieving diameter. In 

this case, they observed a difference in the PSD of the compostable fraction for three different 

seasons (spring, winter and summer), but not for the combustible fraction. This difference was 

mainly explained by a bigger fraction of thatch and grass during the summer and the spring, 

responsible for a decrease in the particle sizes during these seasons (Ashkiki et al., 2019). The 

Rosin-Rammler distribution has also been identified to adequately fit the products of a size 

reduction process of MSW (Savage & Trezek, 1980). 

Due to the difficulty of assessing waste dimensions for the reasons mentioned earlier, an other 

possible approach is the use of a mass distribution (von Blottnitz et al., 2002). In this case, objects 

are described based on their weight instead of their size. Some authors have used a Rosin-Rammler 

distribution to fit this type of distribution (von Blottnitz et al., 2002; Nakhaei et al., 2018). 

However, this approach is less useful for mechanistic modeling of equipment process like a 

trommel or a shredder as mass distributions do not directly describe a physical property targeted 

by these processes.  

Therefore, no consensus seems to exist regarding the best approach to use in order to characterize 

MSW granulometric properties as many different statistical distributions were used in different 

contexts. Generally, PSDs are neither normal nor symmetric (Fieller et al., 1992; Merkus, 2009) 

and a unified model should be identified. Also, parameters influencing waste particle sizes were 

not clearly identified in previous studies. 

In this study, three different statistical functions were selected due to their potential to represent 

most accurately the PSDs of MSW, namely the log-normal distribution, which is a skewed 

deviation towards small particles from the normal distribution and has largely been applied for 
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fitting positively skewed distribution (Limpert et al., 2001); the Rosin-Rammler distribution, which 

was first developed for powdered coal (Rosin & Rammler, 1933) and is appropriate for 

distributions without upper size limit that are often associated with solid waste particles (von 

Blottnitz et al., 2002); and the gamma distribution, which is, like the Rosin-Rammler distribution, 

a simplification of the generalized gamma distribution (Lawless, 2002). However, a major 

difference is that the gamma approaches symmetry for large value of its shape parameter, which is 

not the case for the Rosin-Rammler (Wong & Chidambaram, 1985). These three distributions were 

selected for the analysis since they have previously been used by multiple authors for solid waste 

in literature. The normal distribution was not considered because it is not strictly positive. 

The objective of this study is the development of robust and unified expressions able to represent 

the PSD of MSW materials. Potential factors influencing these PSDs will be identified, modeled 

and validated. Once the best PSD expression has been selected, amongst a log-normal distribution, 

a Rosin-Rammler distribution and a gamma distribution, it will be fitted for several categories of 

MSW. PSD of mixed MSW fractions will then be reconstituted based on the individual PSD per 

category. This approach will be tested and validated using three datasets.  

6.2 Materials and methods 

This section presents the MSW characterization data used in this study; the statistical analysis that 

was done to interpret those data; the description of the expressions that were considered to fit the 

PSDs; the methodology used for developing both models; the goodness-of-fit tests performed to 

analyse the quality of the regressions. 

6.2.1 MSW particle size data  

Data obtained from two MSW characterization campaigns (unpublished data) and from one 

published dataset in literature (Barton & al., 1985) are used in this study. The first two datasets 

were collected as part of this study. The first dataset includes composition and PSD per waste 

category of MSW collected curbside (household wastes and source-separated organic wastes). It 

was used to fit a PSDs for every considered waste category.  

The second characterization dataset was for C&D wastes, which are collected in municipal 

ecocenters. These data were used to compare the results obtained with the previous dataset for 

different raw and processed (trommel screening) MSW categories.  
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Finally, a published dataset including particle size data for different household waste categories 

from the Doncaster RDF plant (Barton & al., 1985). This dataset was used solely to compare the 

results and validate the choice of the statistical distribution. 

6.2.1.1 Description of the household waste characterization 

This characterization was done within a collaborative project between the Centre de Recherche 

Industrielle du Québec (CRIQ), the City of Montreal (Qc, Canada) and the Chaire de Recherche 

sur la Valorisation des Matières Résiduelles (CRVMR). The household wastes and the source-

separated organic wastes generated during one week in four Montreal apartment buildings having 

different number of dwellings, were collected for sieving and characterization analysis. The district 

where the samples were collected is served by three waste collections (household wastes, source-

separated organic wastes and source-separated recyclables). Despite the presence of the two 

source-separated collections, an important fraction of recoverable wastes is still contained in the 

household waste streams. The same sampling procedure was applied once during the summer and 

once during the fall of 2016. A total of 216 kg and 237 kg were collected for the household wastes 

respectively for the summer and the fall, while respectively 118 kg and 96 kg were collected for 

the source-separated organic wastes.  

The samples were first hand-sorted in 15 categories, which are: animal derived food waste, 

vegetable food waste, green residue, other organics accepted in a source-separated collection 

(contaminated fiber), other organics not accepted in a source-separated collection (diaper, litter and 

sanitary products), paper and cardboard, plastics, other plastics, plastic bags, ferrous metal, non-

ferrous metal, glass, hazardous residual waste, wood and others. Once sorted, each fraction was 

hand-sieved in 5 intervals based on 4 sieve sizes of 2.54, 5.08, 7.62 and 10.16 cm. 

6.2.1.2 Description of the C&D waste characterization 

This characterization was done within a collaborative project between the National Research 

Council of Canada (NRC) and the CRVMR. Fine and coarse fractions of the rejects from a C&D 

waste sorting centre located in Ontario (Canada) were sampled for analysis. The fine fraction was 

first separated in eight samples of approximately 5 kg and was split in two fractions using a pilot 

trommel with a sieve size of 2 in. The unders and the overs thereby obtained were then hand-sieved 

in 6 intervals based on 5 sieve sizes of 1.27, 2.54, 3.81, 5.08 and 7.62 cm. The PSD of the total fine 
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fraction was deduced by summing the PSD of the unders and the overs obtained as output streams 

from the trommel operation.  

The coarse fraction was first hand-sorted in 13 categories: engineered wood, untreated wood, 

fiberglass insulation, pink & blue polystyrene insulation, polyisocyanurate insulation, white 

polystyrene insulation, gypsum, PVC, plastics, paper and carboard, shingles, other combustibles 

and other non-combustibles. Each fraction was then hand-sieved in 7 intervals based on 6 sieved 

sizes of 1.27, 2.54, 3.81, 5.08, 7.62 and 15.24 cm.   

6.2.2 Statistical analysis of PSD  

Hypothesis tests were done in order to validate the influence of two factors (the season and the 

collection type) on the PSD of MSW. For this purpose, a p-value was calculated based on Student’s 

T-Test (equation B.1 in supplementary information B1). A threshold value of 0.05 was used as it 

is a value commonly used in literature.  

6.2.3 Description of the selected PSD expressions 

The log-normal cumulative distribution function is defined as 

 𝐹𝐿𝑁(𝑥) =
1

2
+
1

2
erf (

ln(𝑥) − 𝜇

𝜎√2
) (6-1) 

where μ and σ are the parameters of the distribution and are respectively the mean and the standard 

deviation of ln(x). μ and σ are respectively a location and a scale parameter of ln(x), indicating the 

position and the dispersion of the distribution (Limpert et al., 2001).  

The Rosin-Rammler cumulative distribution function is defined as  

 𝐹𝑅𝑅(𝑥) = 1 − exp (− [
𝑥

𝑥0
]
𝑛

) (6-2) 

where x0 and n are the parameters of the distribution. In this case, x0 is often defined as the location 

parameter and n as the scale parameter. x0 is strictly positive and indicates the value of x for a 

cumulative fraction of 63.2% while n indicates the spread of the distribution (Alderliesten, 2013). 

The gamma cumulative distribution function is defined as 
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 𝐹𝐺𝐴(𝑥) =
𝛾(𝑘, 𝜆𝑥)

𝛤(𝑘)
 (6-3) 

where λ and k are the parameters of the distribution, 𝛤(𝑘) is the gamma function and 𝛾(𝑘, 𝜆𝑥) is 

the incomplete gamma function. In this case, λ is the scale parameter, indicating the dispersion of 

the distribution, while k is a shape parameter (Lawless, 2002). 

Therefore, all the PSD expressions considered may be expressed with two parameters, one of 

location and one of scale for the log-normal and the Rosin-Rammler distributions, and one of scale 

and one of shape for the gamma distribution. 

6.2.4 PSD model development 

Two PSD models are developed, one to represent the PSD of each category of MSW and one to 

represent the PSD of mixed MSW. The method used to develop these models is presented in this 

section. 

6.2.4.1 PSD model by MSW category 

First, a cumulative mass fraction of particles "smaller than" is calculated as a function of sieving 

diameters for every MSW category. For every calculated cumulative mass fraction, an 

unconstrained least-square minimization technique, implemented in Python with the function 

curve_fit of SciPy module, is performed allowing for the calculation of the parameters for the 

gamma and for the log-normal distributions. For the Rosin-Rammler distribution, a similar 

procedure was applied, but parameters were constrained to positive values only. 

6.2.4.2 PSD model for mixed MSW 

The second model should reflect the PSD of mixed MSW. Therefore, a multimodal distribution is 

developed by summing the unimodal PSD corresponding to each category comprising the mixed 

MSW.  
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6.2.5 Goodness-of-fit tests 

In order to compare the goodness-of-fit of the PSD regressions, two statistical tests were used. The 

residual sums of squares (RSS) and the Vn statistics, defined by Kuiper (1960) and used for particle 

size analysis by Fieller et al. (1992), were considered.  

A lower RSS shows a better goodness-of-fit between the PSD regression and the actual distribution 

data, while the Vn statistic is used to determine the maximum and the minimum differences between 

the regression expression and the empirical data and is derived from the Kolmogorov-Smirnov test.  

For this study, none of the tests that were performed considered the number of parameters of the 

distribution since it is the same for the three distributions and is therefore not influential.  

6.3 Results and discussion 

The representativeness of the characterization dataset used to fit the PSD expressions is first 

analysed to validate the proposed methodology. Then, the MSW PSD are analysed to assess the 

possibility of aggregating the data. A PSD expressions per waste category is proposed and validated 

with different MSW types. Finally, two models are proposed for mixed MSW.  

6.3.1 Particle size data description and representativeness 

The mode and the cumulative fraction smaller than 10.16 cm were determined for every MSW 

category (Table 6-1). These vary greatly by waste category as for some categories (generally 

organic derived wastes), almost all the particles are smaller than 10.16 cm, while for some others 

(e.g. inorganic wastes and recyclables), it is less than 50%. This shows that globally “inorganic” 

waste categories have PSDs with larger mean particle sizes than “organic” waste categories. The 

analysis of the mode shows similar results, with values between 2.54-5.08 cm for organic 

categories and between 7.62-10.16 cm or bigger than 10.16 cm for the inorganic categories. 

Therefore, there appears to be two main modes in mixed MSW PSD, indicating that it could be 

possible to express it as a bimodal distribution.  

To analyse the representativeness of the data, a threshold size was identified for each waste 

category in Table 6-1, corresponding to the sieve size for which about half of the sample mass was 

included in the fraction smaller than this threshold size (FSTTS). In some cases, as for the animal 
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derived food waste category, this FSTTS seems to be far from 50%, but this is explained by the 

fact that almost all the sample mass is concentrated in one interval.  

Table 6-1 Statistical description of particle sizes of the household waste categories 

Waste category Mode 

(cm) 

Fraction 

smaller than 

10.16 cm 

(%) 

FSTTS 

Threshold 

size 

(cm) 

Fraction 

(%) 

Animal derived food waste 2.54-5.08 97.9 5.08 88.3 

Vegetable food waste 2.54-5.08 87.9 5.08 55.3 

Green residue 0-2.54 100.0 2.54 61.1 

Other organic waste accepted 2.54-5.08 100.0 5.08 74.7 

Other organic waste not 

accepted 
0-2.54 100.0 2.54 67.2 

Paper and cardboard >10.16 41.4 2.54 41.4 

Plastics >10.16 55.6 10.16 55.6 

Other plastics > 10.16 44.6 10.16 44.6 

Plastic bags 7.62-10.16 70.9 7.62 35.5 

Non-ferrous metal 5.08-7.62 83.0 7.62 66.2 

Ferrous metal 5.08-7.62 75.5 7.62 47.9 

Glass 7.62-10.16 84.8 7.62 38.6 

Others >10.16 35.0 10.16 35.0 

Values of the FSTTS shown in Table 6-1 were calculated for each waste category with an 

increasing number of samples, from one up to eight samples. The variation of this parameter 

(FSTTS) as a function of increasing mass of samples for each waste category is presented in Figure 

6.1. In this case, a sample is defined as the waste collected for one building for one season. As 

these samples do not have the same mass, they were sorted in descending order. Then, the variation 

of the FSTTS between samples was calculated to conclude on the minimal mass required of MSW 

samples in order to ensure a representative particle size analysis. The percentage of variation of the 

calculated FSTTS is presented on the y-axis as a function of the sampled mass on the x-axis in 

Figure 6.1. 
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Figure 6.1 Percentage of variation in function of the mass of sample considered for a) “organic” 

waste categories and b) “inorganic” waste categories 

Results show that when the sampled mass reached 300 kg or more, the variation of the FSTTS 

greatly decreases for every waste category. Also, after adding additional mass to the sample to 

obtain a total mass above 400 kg, a variation smaller than 10% is observed for all the waste 

categories. This indicates that this quantity appears to be sufficient to ensure a representative PSD 

for each waste category. The data presented in the next sections met this criterion of minimal 

sampled mass, and, thus, are considered as representative for the given situation and geographical 

context.  

It should be noted that for the wood and the hazardous residue categories, the samples collected 

did not amount to a sufficient mass to perform statistical analysis on these categories. It is typical 

that these categories do not constitute significant fractions of collected household waste. Hence for 

these two categories, distribution parameters were calculated and are provided in the 

supplementary information section (B2) but are not considered in the analysis as their 

representativeness is not assured. They should therefore be used with care.  
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6.3.2 Parameters influencing PSD of MSW 

In order to model the PSD of MSW, both by category and for mixed MSW, it is necessary to assess 

the presence of external factors influencing the results. Two main factors were analysed by mean 

of a statistical hypothesis test to verify whether the results are influenced by them in this case: the 

season (summer and fall) and the type of collection (household wastes and source-separated 

organic wastes).  

6.3.2.1 Season 

A hypothesis test was deemed necessary to verify whether there is a difference in MSW particle 

sizes collected during both seasons. The null hypothesis of the equality of the means of the FSTTS 

was validated by mean of a comparison of the p-value with a threshold value of 0.05. This analysis 

was done on the household waste data only. 

A p-value of 0.6643 was obtained while comparing both seasons when all MSW are included, 

meaning that the hypothesis of equality of mean can not be rejected. Therefore, is it not possible to 

conclude to a statistical difference in particle sizes of the MSW collected for the two seasons. This 

observation differs with results presented in a recent study by Ashkiki et al. (2019) where they 

found differences in PSD of mixed MSW collected during winter, spring and summer. One main 

difference here, the seasons considered are not the same. Also, as in Ashkiki et al. (2019), some 

differences between the two seasons for PSD were observed, but their FSTTS were not 

significantly different. 

The same procedure was also applied for each waste category to determine whether the same 

conclusion may be reached. The hypothesis of equality of the means could not be rejected for 

almost all categories, the only exceptions being the green residue, the glass and possibly the other 

plastics. The obtained p-values are presented in supplementary information (B3). In the case of the 

other plastics, as the p-value is very close to the critical value, it seems better not to reject the null 

hypothesis. Therefore, it is not possible to conclude that the season have an impact on the particle 

size of most MSW categories except for the green residue and the glass. For the green residue, this 

is probably due to the fact that its generation vary greatly from one season to another. This is 

particularly true during the fall in Canada, as the fraction of leaves greatly increases. Smaller 

particles are therefore obtained than for the summer.  
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As for the glass category, the null hypothesis should also be rejected leading to the conclusion that 

the particle size is different in the fall and summer. This may be explained by the fact that only 10 

kg for the summer and 6 kg for the fall were sampled. Since the density of glass is high, it is 

possible that too few objects were considered for the analysis. Also, for one sample (corresponding 

to one building) out of four taken during the fall, no glass objects were found, which may have 

altered the analysis.  

These results allow the aggregation of the particle size data from both seasons since it was observed 

that no statistical differences were measured for every waste category and for the global MSW 

stream. 

6.3.2.2 Collection type 

For every waste category available in the household waste dataset, the same approach was used to 

measure potential differences in particle size for a certain category between the household wastes 

and the source-separated organic wastes. The null hypothesis of the equality of means was 

considered. In this case, only the waste categories targeted in a source-separated organic collect 

were considered. The obtained p-values are also presented in supplementary information (B3). 

Results show that it is impossible to conclude to a difference in the PSD of the targeted categories 

between the household wastes and source-separated organic wastes. Therefore, it seems likely that 

in terms of particle sizes for these categories, citizens tend to throw away similar type of materials 

in both collection types. This is not surprising as only the organic fractions were considered here, 

and these types of waste have small and quite uniform particle sizes.  

As for the season, these results allow the aggregation of the particle size data from both collection 

types since there were no statistical differences for every waste category. 

6.3.3 Model parameter identification for waste category PSD and goodness-of-

fit measurement 

Three PSD expressions are used to fit the PSD data for each MSW category, using the least-square 

minimization presented in section 6.2.4, while the goodness-of-fit tests presented in section 6.2.5 

are used to analyse the resulting expression. This procedure is applied to both datasets available 

for the household wastes (section 6.3.3.1). Then, the developed expressions are validated with other 

types of wastes, which are raw C&D wastes (6.3.3.2) and processed C&D wastes (section 6.3.3.3). 
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6.3.3.1 Household wastes 

The characterization results for the household wastes obtained by the CRIQ/City of 

Montreal/CRVMR was used to develop the model. As seen in section 6.3.2, in the context of the 

present study, MSW particle sizes were not influenced by the season and the collection type. As a 

result, all the data was aggregated in order to provide a more substantial waste sample for the 

analysis. Results of the goodness-of-fit tests and associated distribution parameters are presented 

in supplementary information section (B2). As the green residue and the glass categories are 

influenced by the season, mean and per season distribution parameters are also provided in 

supplementary information.   

For the wood category, a maximum particle size was fixed at 16 in based on observations, since 

incoherent results were obtained if no maximum boundary was fixed for the parameters 

identification. This shows that for this category, more screen sizes for the sieve analysis should 

have been used. 

In the case of the household wastes, the results obtained show that for the 13 categories considered 

for the comparison, the three distributions tend to fit well the measured PSDs. Also, it is possible 

to see that both tests (RSS and Vn) are always in accordance. They concluded in 5 cases to the 

predominance of the log-normal distribution, in 5 cases for the Rosin-Rammler distribution and in 

3 cases for the gamma distribution. 

The Doncaster RDF plant dataset (Barton & al., 1985) was used to verify if similar results could 

be obtained for the comparison of the PSD for the different categories. In this case, for the 10 waste 

categories considered, the Rosin-Rammler distribution was more accurate in 5 cases, the log-

normal distribution in 4 cases and the gamma distribution in only 1 case. 

At this point, we could exclude the use of the gamma distribution for modeling the PSD of MSW 

per categories. However, it is not possible to conclude between the Rosin-Rammler and the log-

normal distributions, as both seem to perform almost equally. 

6.3.3.2 C&D wastes 

For the C&D wastes, the same procedure as for the household wastes was applied to the 

characterization results produced by NRC/CRVMR. In this case, both tests were also always in 

accordance. The results of the goodness-of-fit tests and the distribution parameters are provided in 
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supplementary information section (B2). For this type of waste, the best distribution for fitting the 

different categories was the Rosin-Rammler distribution in 10 cases, the gamma distribution in 2 

cases and the log-normal distribution in only 1 case. Therefore, the Rosin-Rammler distribution 

seems to be able to better represent the PSD of the different C&D waste categories. 

6.3.3.3 Processed C&D wastes 

Finally, the same procedure was also performed for the overs and the unders outputs of the trommel 

for the 8 collected samples. For both goodness-of-fit tests, the mean and the standard deviation of 

the results were calculated for the 8 samples (Figure 6.2). Results indicate that for the two tests, 

both for the unders and the overs fractions, there is an advantage for the Rosin-Rammler 

distribution over the two others for fitting the experimental data.  

 

Figure 6.2  a) RSS results and b) Vn results for the processed C&D wastes 

6.3.3.4 Model description 

When considering only the household wastes, it is possible to exclude the gamma distribution from 

the list of potential expressions adequate for representing the PSD of the different MSW categories, 

but it is not possible to conclude on the best expression between the Rosin-Rammler and the log-

normal distributions. However, the Rosin-Rammler distribution is more accurate in regard to the 

data obtained from C&D wastes, both for the raw and the processed wastes. Being able to use a 

single PSD expression to describe all MSW categories might be beneficial for process modeling, 

as it would provide a simple manner to track the PSD of materials along a certain waste treatment 

sequence by using two parameters. Considering its efficiency in fitting actual PSDs of MSW 

categories, we propose that the Rosin-Rammler distribution should be used for modeling MSW 

granulometric properties. This way, it would be possible to represent both inputs and outputs of a 
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treatment process with the same form of expression, making calculations easier when many 

processes are considered. The Rosin-Rammler parameters obtained for the household waste are 

presented in Table 6-2. As mentioned before, “organic” wastes have smaller particles than 

“inorganic” wastes as can be seen with the location parameter.  

Table 6-2 Rosin-Rammler parameters obtained for the household waste 

Waste category 
Location parameter 

(x0) (cm) 
Scale parameter (n) 

Animal derived food waste 3.78 2.65 

Vegetable food waste 5.46 1.74 

Green residue 3.81 1.10 

Other organic waste accepted 4.75 3.94 

Other organic waste not accepted 2.46 1.10 

Paper and cardboard 11.40 3.24 

Plastics 11.02 2.49 

Other plastics 13.61 1.38 

Plastic bags 9.45 3.62 

Non-ferrous metal 7.87 3.14 

Ferrous metal 8.94 2.94 

Glass 8.74 4.70 

Hazardous residual waste 8.43 1.44 

Wood 23.03 2.80 

Others 15.24 2.16 

6.3.4 Models for a mix of household waste 

Two models are developed to represent the PSD of mixed MSW. The model is developed based 

solely on waste composition and a simplified version is proposed.   

6.3.4.1 Proposed model 

As seen in section 6.3.1 and 6.3.2, in the context of this study, the PSDs of waste are not influenced 

by the season or the collection type, but only by the waste composition. Therefore, the developed 

model is only based on the composition of the mixed MSW. The model proposed is defined as a 

multimodal distribution by 

 𝑓𝑀(𝑥) = ∑𝑚𝑗𝑓𝑅𝑅(𝑥, 𝑥0,𝑗, 𝑛𝑗)

𝑗∈𝐶

 (6-4) 
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where mj is the mass fraction of a waste category j, C is the aggregate of all the waste category j, 

x0,j is the location parameter of the Rosin-Rammler distribution of the waste category j, ni is the 

scale parameter of the Rosin-Rammler distribution of the waste category j and fRR is the probability 

density function of the Rosin-Rammler distribution described by equation 6-5.  

 𝑓 =
𝑛

𝑥0
(
𝑥

𝑥0
)
𝑛−1

𝑒𝑥𝑝 (− [
𝑥

𝑥0
]
𝑛

) (6-5) 

This model was validated with the household dataset presented in section 6.2.1 for the summer and 

the fall. Figure 6.3 shows a good agreement of fit for the calculated distributions and the 

experimental data both for the summer and the fall with respective values of R2 of 0.993 and 0.996, 

showing that it is possible to calculate the global PSD by summing all the specific PSDs of each 

MSW category. 

 

Figure 6.3 Comparison of calculated and experimental particle size of MSW for a) the cumulative 

mass fraction of the fall, b) the cumulative mass fraction of the summer, c) the probability density 

function of the fall, d) the probability density function of the summer 
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The same procedure was applied for the C&D wastes showing also a good agreement with a value 

of R2 of 0.976 (not shown). When the global PSDs are presented as a density probability function 

(Figure 6.3c and 6.3d), the the two modes observed in section 6.3.1 around 5 cm and 10 cm clearly 

appear. These modes indicate that it is probably possible to simplify the model to a bimodal 

distribution.  

The model was also applied to six compositions of MSW adapted from literature or from the 

datasets used in this study, in addition to a typical composition of source-separated organic wastes 

(this study) and a composition of source-separated recyclables (RECYC-QUÉBEC, 2015). The 

adapted compositions are presented in supplementary information section (B4). Household waste 

composition datas were adapted for different countries and contexts: Montreal, Canada (fall and 

summer data of this study), Japan (Christensen et al., 2011), Denmark (Edjabou et al., 2015), Spain 

(Montejo et al., 2011) and UK (Burnley et al., 2007). These compositions were used to calculate a 

PSD for each case with the multimodal model presented above. The calculated PSDs are presented 

in figure 6.4. 

 

Figure 6.4 Probability density function of various waste composition 

The visualization of these density distribution functions shows that it has a main peak between 2.54 

and 5.08 cm, corresponding to the “organic” fractions and another peak around 12.7 cm 

corresponding to the “inorganic” fraction. This was expected since both peaks correspond to the 

main modes observed for the data per category. These results indicate that it is probably possible 

to simplify the model to a bimodal distribution. 
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6.3.4.2 Simplified model 

The proposed multimodal model is very useful for determining the PSD of MSW. However, it is 

common that the exact composition of the waste is not known. A simplified version of the model 

is thus presented. As seen in section 6.3.1 and section 6.3.4.1, two main modes are present in MSW 

particle sizes, one for the “organic” fraction and one for the “inorganic” fraction. Therefore, the 

proposed simplified model is based on a bimodal distribution of these fractions.  

The simplified proposed model takes the form of equation 6-6.  

 𝑓MM(𝑥) = 𝑚org𝑓RR(𝑥, 𝑥0,org, 𝑛org) + 𝑚inorg𝑓RR(𝑥, 𝑥0,inorg, 𝑛inorg) (6-6) 

where morg is the “organic” mass fraction, minorg is the “inorganic” mass fraction and x0,org, x0,inorg, 

n0,org, n0,inorg are the respective Rosin-Rammler parameters for these two fractions. 

To determine these Rosin-Rammler parameters corresponding to the two fractions, the calculated 

PSDs used in Figure 6.4 were fitted to determine the four Rosin-Rammler parameters in equation 

6-6. The mean of the resulting parameters for the eight MSW compositions was calculated to 

determine the parameters of the simplified model. The following parameters were obtained:  x0,org 

= 4.55, x0,inorg = 11.23, n0,org = 1.75, n0,inorg = 2.46. When comparing both models, the simplified 

bimodal and the complete multimodal, a R2 value ranging from 0.920 to 0.983 for the eight 

compositions is obtained. Even though 6 of the compositions are for household wastes while the 

two others are for source-separated fractions, a very good agreement is obtained showing that it is 

possible to express the PSD of mixed MSW with a bimodal Rosin-Rammler distribution using the 

composition of “organic” and “inorganic” fractions.  

6.4 Conclusion 

The particle size of 15 different waste categories were characterized to provide distribution 

parameters. The characterization data were obtained during two characterization campaigns, one 

during the summer and one during the fall, for two different collection types in a Canadian context. 

The statistical analysis of the data showed that no differences were obtained in the PSD of the 

MSW for both seasons considered and for the collection type, allowing for the aggregation of the 

data.  
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A comparison of three PSD expressions for different types of MSW showed that the Rosin-

Rammler distribution is the most appropriate to fit MSW PSDs. Parameters for this distribution 

were determined for 13 MSW categories, allowing for the modeling of their respective PSD.  

A second model was developed to represent the PSD of mixed MSW, based on a multimodal 

distribution. A simplified version was also proposed based solely on the “organic” and “inorganic” 

fractions for cases where very little information is available on the composition of the waste. This 

was possible since MSW appeared to be well represented by two modes, one corresponding to the 

“organic” categories between 2.5-5 cm and one for the “inorganic” categories around 10 cm. 
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Abstract 

Mechanical sorting plays a pivotal role in current municipal solid waste management systems for 

resource recovery. However, material recovery facilities, generally face several challenges in 

meeting quality standards for multiple waste fractions. Improving these facilities requires a better 

understanding of municipal solid waste physical characteristics, since they are directly targeted by 

mechanical sorting unit operations. Three waste physical properties (bulk density, particle size and 

shape factor) were characterized for several recyclable materials. Narrow ranges of densities were 

observed for similar waste materials, while the particle size distributions were found to vary widely. 

Statistical parameters were determined for these two properties. A novel approach, based on the 

void fraction of a waste item, is proposed to quantify the shape factor. Potential applications of the 

characterization results for improving mechanical sorting are demonstrated through the analysis of 

the recovery of corrugated cardboards and multilayer cardboards in a material recovery facility.    

7.1 Introduction 

Mechanical sorting in material recovery facilities (MRF) and mechanical-biological treatment 

(MBT) facilities plays a pivotal role in current municipal solid waste (MSW) management systems 

(Cimpan et al., 2015). These facilities combine several mechanical unit operations under various 

configurations with different automation levels (Chang & Pires, 2015). However, due to the high 

heterogeneity of their feedstocks, these plants often face high contamination levels in their output 

streams (Cimpan et al., 2015; Damgacioglu et al., 2020; Ip et al., 2018; Velis et al., 2010). For 

example, while analyzing the mass balance of an MRF located in the USA, Damgacioglu et al. 

(2020) showed inefficiencies in the sorting unit operations leading to a high contamination of every 

output stream, resulting in non-compliance with quality standards. Similarly, the analysis of several 
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MBT plants by Montejo et al. (2010) showed that the use of a trommel to produce a compost-like 

product from MSW lead to a poor purification of the organic fraction, resulting in high 

concentrations of inorganic materials and suggesting the need for process improvement.  

These issues related to the quality of the materials recovered from mechanical sorting operations 

raise questions about the waste collection strategies. For example, the province of Quebec, Canada, 

is currently reviewing its waste deposit system to extend it to several waste materials for which 

sorting issues were observed. In addition to aluminium cans and some glass bottles, the province 

is planning to extend this system to all glass bottles, small PET bottles and, in a second step, to 

multilayer cardboards packaging. These additions could however affect the entire waste recycling 

system and in-depth analysis of the alternatives and impacts of this decision should be done to 

ensure that this solution is adequate. To do so, a thorough understanding of the separation 

mechanisms of these materials in a sorting facility must be achieved.   

However, this kind of facilities faces an important lack of analysis regarding the technological 

strategies and their efficiencies (Cimpan et al., 2015). MRFs are often designed based on 

semiempirical methods due to a lack of knowledge about the performance of the sorting unit 

operations (Velis et al., 2013). Process efficiencies of MRFs are rarely available in the literature 

(Cimpan et al., 2015). MSW treatment would however benefit from a better understanding of the 

operation of the different equipment used in the field (Velis et al., 2013).  

Even though this approach was not frequently used in the literature, future modeling techniques of 

MRF unit operations could include physical mechanisms occurring during the separation (Ip et al., 

2018). Beyer & Pretz (2004) identified the use of a process-based simulation linked to the waste 

characteristics as a way to optimize the operation of secondary material processing plants. This 

approach however requires a good knowledge of waste properties as sorting operations in such 

facilities are based on several of these, including particle shape, particle size, particle density, 

magnetic properties and optical properties (Beyer & Pretz, 2004; Feil et al., 2016; Ip et al., 2018; 

Kleinhans et al., 2021). Increasing the knowledge about waste physical properties could thus 

represent an interesting approach to model or estimate the sorting unit operations efficiency. For 

example, Kleinhans et al., (2021) used their knowledge about waste particle size distribution to 

estimate the efficiency of a disc screen. Therefore, the improvement of mechanical sorting of MSW 

requires a better understanding and description of the waste properties (Velis et al., 2010).  
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In addition to separation efficiencies, waste properties are important for several other applications. 

Waste particle size and bulk density are required for waste sampling to ensure the collection of a 

representative sample (Feil et al., 2016). Properties are also necessary to plan waste collection 

strategies (Chang & Pires, 2015). Finally, some properties may be related to others. For example, 

materials with smaller particle size have been shown to have higher moisture content, even for dry 

materials such as plastic films, due to a higher specific surface (Beyer & Pretz, 2004).  

Particle size is often identified as one of the most important property for waste mechanical sorting 

(Velis et al., 2010) as several equipment target this property in their operation. Particle size of 

MSW items is mainly concentrated in the 1-2 cm to 30-50 cm region and is generally expressed as 

a statistical distribution (Stessel, 2012). Many distributions have been used to fit raw MSW 

including the gamma, the log-normal and the Rosin-Rammler distributions (Ashkiki et al., 2019; 

Nakamura et al., 2006; Ruf, 1974). The Rosin-Rammler distribution seems to always be able to fit 

experimental data of solid waste particle size (Vesilind, 1980). Moreover, this distribution was 

identified in previous work as the most appropriate statistical distribution to fit MSW particle size 

distributions (PSDs) with recent data (Tanguay-Rioux et al., 2020). Parameters for several MSW 

feedstocks were calculated in this previous work, but only a few categories of recyclable materials 

were covered at the time, leaving room for improvement.  

As for the bulk density of waste materials, it may vary according to several factors such as the 

measurement method, the compression applied during collection and the degree of contamination 

(Feil et al., 2016). Some authors have reported typical ranges of bulk density for several MSW 

feedstocks (Tchobanoglous et al., 1993; Vesilind et al., 2002). WRAP (2010) presented the bulk 

density, the standard deviation, the lowest value, the highest value and the confidence interval for 

several MSW feedstocks. However, this characterization combined several different 

characterization methods, leading to inconsistencies during comparison and some waste categories 

were greatly aggregated.  

As for the shape factor of MSW items, it has been little studied even though it can greatly influence 

the sorting efficiency of the waste. Savage et al. (1984) classified MSW under 4 types of shape 

factor, which are flakes, splinters, cubes and cylinders. For every shape, they determined drag 

coefficients to relate the shape to an operating condition (Savage et al., 1984). However, this 

approach is limited to a restrictive number of shape factors and is subjective to the practitioner.  
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Few studies have addressed the particle size, the density and the shape factor of MSW. The present 

work aims at increasing knowledge regarding these waste properties and their influence on 

equipment sorting efficiencies. Furthermore, the representativeness of the data is discussed to guide 

further waste characterization. Finally, the characterization results are analyzed in regard to their 

influence on waste recovery from mechanical sorting operation, with an emphasis on multilayer 

cardboards and corrugated cardboards as case studies.  

7.2 Material and method 

7.2.1 Characterization of source-separated recyclable materials 

Sampling of MSW can be highly intensive work and several approaches have been used in recent 

years. Edjabou et al. (2015) proposed a complete sampling methodology to characterize MSW 

composition for a given geographical area. However, no sampling methodology has been 

developed specifically for determining PSD and density. Moreover, it is believed that the extensive 

sampling and sorting procedure carried out to determine waste composition could be simplified for 

characterization of waste properties, since they are less geographically dependent. For example, 

previous studies showed small variation in the bulk density measurements, even with relatively 

small sample size (WRAP, 2010). Bessi et al. (2016) collected samples from 1.2 kg to 48.8 kg to 

calculate the PSD of different refuse derived fuel (RDF) according to their estimated heterogeneity. 

For measuring the PSD of trommel outputs, Ashkiki et al. (2019) collected samples between 20 kg 

and 75 kg. For pure materials, heterogeneity should be even smaller, requiring smaller samples.  

The standard ASTM D5231 states as a guideline that samples of 90-136 kg should be taken to 

measure the waste composition of unprocessed municipal solid waste, with a number of samples 

calculated based on the Student’s t-test. To do so, the mean composition and the standard deviation 

for a chosen governing waste material are needed and typical values are provided. However, these 

values were determined several years ago and are not necessarily representative of the present 

situation (Sharma & McBean, 2007).  

In this case, since the studied feedstock includes only source-separated recyclable materials rather 

than unprocessed mixed MSW, it was decided to reduce the sample mass to 50 kg, since it was 

estimated that the input stream is more homogeneous and similar quantities were collected in the 

previous works mentioned above. As for the number of samples required, it should be determined 
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with representative mean and standard deviation. It was thus decided to fix a number of samples 

and to validate its representativeness once the characterization is done. To do so, the mean 

composition and the standard deviation are calculated, as well as a theoretical number of samples 

for a governing waste material (see section 7.3.1). Therefore, it was decided to collect 6 samples 

of about 50 kg of mixed recyclable waste. 

For the bulk density measurement, the standard ASTM E1109 recommends that samples larger 

than 250 kg should be collected for material having a maximal nominal size higher than 90 mm. 

This sample size was however deemed impractical due to the need to manually sort the waste into 

categories. Therefore, it was estimated that the number of samples identified previously is 

sufficient after validation using a rigorous data representativeness analysis (see section 7.2.2.1). 

As for the PSD, no ASTM standard referred specifically to MSW. The standard ASTM E1037 

refers to the calculation of PSD for RDF, while the standard ASTM D5519 is generally applicable 

for material larger than 75 mm. In the first case, samples of 1 kg are used, which is too small for 

several waste materials, while in the second case, no clear sample size is proposed. Therefore, as 

for the density, it was estimated that the number of samples identified previously is sufficient after 

validation using a rigorous data representativeness analysis (see section 7.2.2.1). 

7.2.1.1 Waste sampling 

The 6 samples of about 50 kg were collected and sorted over six different days between November 

2019 to February 2020. Wastes were collected with garbage trucks in which a certain level of 

compaction is done, leading to a slight modification of the shape of the waste items. The wastes 

were then discharged in piles in the reception area of a material recovery facility.  Waste samples 

were taken using a mechanical loader without further compaction. The work was realized in a 

material recovery facility of recyclable materials located in Montreal, Canada. The facility is 

designed to receive a single stream of comingled recyclables, including fibers, plastics, metals and 

glass.  

7.2.1.2 Waste sorting 

For every sample, the wastes were manually sorted in 14 categories, namely corrugated cardboards 

(CC), multilayer carboards (MC), flat carboards (FC), newspapers (N), mixed papers (MPa), 

broken glass (BG), unbroken glass (UG), PET, HDPE, plastic films (PF), mixed plastics (MPl), 
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ferrous metals (FM), non-ferrous metals (NM) and rejects (R). These categories have been chosen 

to match the characterizations performed by the operator of the plant, thereby facilitating 

information sharing. Also, these categories correspond to the main waste bales separated by the 

facility. Finally, the broken and unbroken glass were sorted separately since it is estimated that 

during the mechanical sorting step, the collected intact glass is most likely to be broken in smaller 

pieces. Therefore, for property analyses, the presence of unbroken glass in the sample would clearly 

skew both the PSD and density measurements.  

For this characterization, MCs cover both aseptic and gable top cartons, and is mainly composed 

of food and beverage cartons.  

 Each category was then manually sieved and weighted based on the following sieve sizes: 0.3175 

cm, 0.635 cm, 1.27 cm, 2.54 cm, 5.08 cm, 7.62 cm, 10.16 cm, 15.24 cm, 20.32 cm and 30.48 cm. 

Handmade square sieves were used and objects were sieved in order to measure their sieving 

diameter, which is a measure often used to represent PSD (Merkus, 2009). Then, all sieved 

fractions of a waste category were mixed, weighted and the bulk volume occupied by the wastes 

was measured without adding compaction. The bulk density calculated is therefore the loose 

density as received. Finally, pictures were taken to assess the shape of the objects. Based on the 

work of Savage et al. (1984), the shape that best represented a material was chosen amongst the 

following choices for comparison purposes: cube, cylinder, prism and flake.  

7.2.2 Data analysis 

Two main statistical analyses were performed on the characterization results. First, for both density 

and PSD results, a representativeness analysis was done to ensure that sufficient quantities of waste 

were collected. Then, statistical distribution functions were fitted to the sample data to determine 

statistical parameters in order to express the physical properties.  

7.2.2.1 Representativeness analysis  

To assess that enough waste was collected during the sampling procedure to determine both the 

density and the PSD, two distinct analyses were performed on the data.  



137 

 

For the density results, the interval of confidence was calculated based on the Student’s t-test with 

a confidence level of 90%. A theoretical minimal number of samples was also calculated to guide 

future bulk density characterization.   

For PSD results, the Kolmogorov-Smirnov test was applied to sub-samples (i.e., combinations of 

subsets of samples) to determine the minimal mass that needed to be characterized until the sub-

sample and the final PSDs were statistically equivalent. A threshold of 0.05 was chosen for the 

rejection of the null hypothesis of the equivalence of the PSDs.  

7.2.2.2 Determination of statistical distributions  

Density samples were assumed to follow a normal distribution. Experimental results obtained for 

the 14 waste categories were fitted to determine the mean and the standard deviation of the density 

samples for every category. This allows the calculation of a mean value as well as a reliable 

interval, useful for modeling purposes.  

For the particle size data, the quality of fit of three statistical distributions (gamma, log-normal and 

Rosin-Rammler) were compared by means of their residual sums of squares (RSS) to assess 

whether the Rosin-Rammler distribution provides the best fit for the waste PSD, as was found in a 

previous study (Tanguay-Rioux et al., 2020). Statistical parameters were then determined for the 

more appropriate statistical distribution to provide useful values for further analysis.   

7.2.2.3 Shape factor characterization 

To characterize further the shape factor of the waste items, the void fraction was calculated to 

provide an objective and quantifiable parameter. The void fraction of a waste item, which includes 

the void within the waste item itself (e.g., the empty space in a ferrous can) and the void between 

items in a packed layer, was calculated using the following equation: 

 𝑉𝑜𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1 −
𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (7-1) 

Between 10 to 15 objects were collected per waste category to assess the mean density and the 

standard deviation of the material. Two approaches were used to determine this density. For 

materials with a higher density than water (i.e. ferrous and non-ferrous metals, glass and PET), the 

following equation derived from Archimedes’ principle was used: 
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 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑤𝑎𝜌𝑤
𝑤𝑎 −𝑤𝑤

 (7-2) 

where wa is the weight of the object measured in air, ww is the weight of the object measured in 

water and ρw is the density of water. 

For materials with a lower density than water, waste items were cut in small pieces, weighted and 

their volume was measured with a graduated cylinder.  

To assure that a sufficient quantity of objects was tested, a confidence interval was calculated for 

the material density with a confidence level of 90% based on the Student’s t-test.  

7.3 Results and discussion 

Composition, density and particle size were determined for multiple waste categories commonly 

found in commingled recycling streams, based on the sampling and the sorting of 302 kg of source-

separated recyclable materials. A statistical analysis was performed on the density and the PSD 

measurements to assess the representativeness of the results as a function of the sample size. A 

shape factor was also determined based on the void fraction calculation for every recyclable 

material. The analysis of these properties aims at a better understanding of governing mechanisms 

related to waste sorting strategies.  

7.3.1 Composition of source-separated recyclable materials  

Sampled recyclable waste materials are composed of cardboards and papers (55.9 wt%), glass (15.2 

wt%), targeted plastics (13.5 wt%), metals (4.0 wt%) and rejects (11.4 wt%). The complete 

characterization is presented in supplementary information as well as the composition of source-

separated recyclable materials of the province of Quebec (Canada) (C1). As expected, metals are 

under-represented in the waste in comparison to the other categories, while fibers account for more 

than half of the waste. Of the latter fraction, corrugated cardboards account for the largest fraction 

(35%), while newspapers, mixed papers and flat cardboards all account for a similar quantity (18-

24%) and multilayer cardboards only account for 5% of the fibers sampled. Finally, an important 

fraction of the waste entering the facility is also found to be contamination represented by the 

rejects category and including several different objects (e.g., food wastes, non-recyclable plastics, 

dishes, toys, wood) leading to large variation of the properties of this reject waste fraction.  
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The composition results are similar to what was expected since the composition entering the facility 

is closed to the composition collected for the whole province for almost every waste category. The 

main differences are observed for the corrugated cardboards, which are over-represented, and the 

newspapers, which are under-represented.  

Based on the statistical analysis described in section 9.1 of the standard ASTM D5231 and both 

the mean compositions and the standard deviations presented in Table C1, a minimum number of 

samples of 5 was obtained while considering the corrugated cardboard as the governing waste 

material with an error of 0.2. This waste material was chosen as the governing one since it is the 

most represented material in the feedstock. Moreover, an error of 0.2 was deemed sufficient since 

the focus here is mainly on the characterization of the density and the PSD rather than the 

composition.  

7.3.2 Density analysis 

A statistical analysis is done on the density measurements to ensure that sufficient amounts of 

waste were collected and to provide guideline for future characterization procedure. The mean 

density and the standard deviation are also calculated to provide useful parameters.  

7.3.2.1 Density data representativeness  

The Student’s t-test results on the density measurements, presented in supplementary information 

(C2), provide a relative confidence interval smaller than 33% with a confidence level of 90% for 

every waste category characterized, apart from the rejects category. This indicates that it is possible 

to assume that the density is the interval [density*(1-0.33), density*(1+0.33)] for every waste 

category. However, for half of the categories, this confidence interval is smaller than 15%, 

indicating a fairly good confidence in the results. Larger than 15% confidence intervals are 

obtained for mixed papers, multilayer cardboards, unbroken glass, ferrous metals and plastic films 

indicating a probably larger diversity of objects for these categories or a smaller mass sampled. On 

the other side, small confidence intervals are observed for HDPE, PET, mixed plastics, flat 

cardboards, broken glass, newspapers and corrugated cardboards, showing that small confidence 

interval can be achieved without requiring large samples. 

Furthermore, the theoretical minimal amount of waste to sample to achieve a relative confidence 

interval smaller than 20% was calculated assuming that the variability is equivalent to the one 
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calculated in this study. Results (C2) show that between 2 kg and 70 kg are required according to 

the waste category. However, this amount is reduced to 26 kg when the mixed paper category is 

not considered, indicating once again that a relatively small amount of waste is needed for density 

characterization. For a similar composition than that reported in the previous section, between 400 

kg and 700 kg of mixed recyclable materials would be needed to obtain a confidence interval 

smaller than 20% for every waste category, except for the rejects. However, it is believed that 

reducing the average mass per sample could further decrease the total mass required to be sampled 

despite an increase of the number of samples. 

7.3.2.2 Density of source-separated recycling materials 

The bulk density and the coefficient of variation for each waste category are presented in Figure 

7.1. The data are also presented in supplementary information (C3). The density varies between 

23.6 and 587.9 kg m-3, while the coefficient of variation varies between 12% and 40%, with an 

average value of 22%. The density calculated is the bulk density, therefore including the internal 

void fraction of the objects as well as the space between objects.  

 

Figure 7.1 Mean density (A) and coefficient of variation (B) of several recyclable materials 

Results presented in Figure 7.1 clearly show the large difference in density between glass objects 

and the other materials. Moreover, a large difference is observed between broken and unbroken 

glass densities, emphasising the importance of taking the shape of the objects into account when 

reporting this property. On the opposite, plastics have the smallest densities, while fibers and metals 
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have in-between values. Results therefore demonstrate that similar waste materials have a similar 

density since not only the materials are similar, but their shape is also similar. The only exception 

is the multilayer cardboards category, which is generally reported as fiber materials, but has a 

density closer to plastics, mainly due to its shape. This aspect is further analyzed below.   

In contrast to the density, coefficient of variations (CV) is quite different within a certain waste 

type. As observed with the confidence interval, a higher heterogeneity is obtained for plastic films, 

unbroken glass, ferrous metals and the mixed papers. These high CV should therefore be 

considered when analyzing their fate throughout an MRF since this variability could affect their 

separation efficiency. Surprisingly, most of plastic categories have a small CV even though these 

materials take several different forms. This high heterogeneity should lead to higher variation of 

the shape factor and thus influence the density measurement, but this aspect does not seem to be 

crucial in this case.  

A comparison of the results for the bulk density with literature data was performed and is shown 

in Figure 7.2. Bulk densities reported from 6 different publications (Apotheker, 1991; 

Tchobanoglous et al., 1993; US EPA, 1991, 2016; Vesilind et al., 2002; WRAP, 2010) for several 

waste materials were compiled and the mean and standard deviation of these data were calculated. 

The confidence interval for each waste material was then calculated with a confidence level of 90% 

and are reported as the range of literature data in Figure 7.2. 

 

Figure 7.2 Comparison of the bulk density measurements with literature data 
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Results indicate that for most waste materials, the bulk density calculated is comprised in the 

interval reported from literature. For the newspapers and the corrugated cardboards, the value is 

however different than the ones reported in literature. This could possibly be explained by 

differences in operating variables as the moisture content and the compaction level. 

7.3.3 Particle size analysis 

The 14 recyclable materials categories previously identified were sieved in 11 interval sizes. To 

provide an overview of the particle sizes resulting from this characterization, the mode and the 

largest size observed for each waste category were identified and are presented in Figure 7.3.  

 

Figure 7.3 Mode (A) and largest screen size (B) for each waste category 

Most of particle size modes of recyclable materials fall in the 10.2-15.2 cm or the 15.2-20.3 cm 

intervals. The corrugated cardboard category is the only one having a larger mode, while both glass 

and metal categories have smaller modes.  

For more than half of the categories, objects with a sieving diameter larger than 20 cm were found 

indicating that recyclable materials can include relatively large objects. Glass appears to be the 

category having the smallest object as no object larger than 10.2 cm were detected. Multilayer 

cardboards also seem to have small homogeneous object since no object with a sieving diameter 

larger than 15.2 cm was detected.  
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7.3.3.1 Best statistical distribution for PSD of MSW 

As observed in previous work (Tanguay-Rioux et al., 2020), the Rosin-Rammler distribution was 

found to be the most appropriate for fitting MSW PSDs when compared to the gamma and the log-

normal distributions. For the 78 samples available, a smaller RSS was obtained in 47 cases with 

the Rosin-Rammler distribution, in 11 cases with the gamma distribution and in 20 cases with the 

log-normal distribution. These 78 samples include the results for the 6 initial samples that included 

13 waste categories out of the 14. The unbroken glass was not considered due to a lack of sufficient 

data to fit a PSD.  

7.3.3.2 PSD data representativeness  

To ensure that sufficient quantities of waste were collected for the analysis, a Kolmogorov-Smirnov 

test was performed. This test is generally used to assess the statistical equivalence of two 

continuous distributions. The null hypothesis of the equality of the distributions is rejected if the 

p-value calculated with the test is smaller than a threshold size, which was fixed at 0.05 in this 

case.  

The test was successively applied to different combinations of subsets of samples and compared to 

the PSD when all 6 samples are considered to assess if the PSD of the subset is equivalent to the 

global PSD. The following subsets were used: the first sample, the first two samples, the first three 

samples and so on. The complete results of the Kolmogorov-Smirnov test are presented in 

supplementary information (C4).  

Results indicate that for every waste category with the exception of the rejects, it is not possible to 

conclude that the PSD obtained with the first 5 samples and the PSD obtained with all 6 samples 

are significantly different. Therefore, the addition of the sixth sample did not influence the PSDs 

obtained, indicating that the sampled mass is sufficient in this study. Moreover, results show that 

taking 4 samples of 50 kg of mixed waste is sufficient for most of the categories, the only 

exceptions being the ferrous metals and the rejects. These latter cases are respectively characterized 

by a small number of objects collected and a high heterogeneity, explaining the need for a larger 

sample. Similar to the density characterization, it is therefore possible to characterize the PSD of 

the various categories of a commingled recycling stream with relatively small quantities of waste, 

in this case between 200 kg and 300 kg.  
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7.3.3.3 PSD analysis 

For the 13 waste categories for which it was possible to fit a PSD function, the Rosin-Rammler 

parameters were determined based on the total mass collected. Parameters are presented in Table 

7-1. The small fraction and the overflow fraction are also presented in Table 7-1.  

Table 7-1 Particle size of different categories of recyclables materials 

 Parameters of RR distribution Properties of the PSD  

Location 

parameter (x0) 

(cm) 

Scale 

parameter (n) 

Fines fraction 

(<1.3 cm) (%) 

Overflow 

fraction (>31.5 

cm) (%) 

Corrugated cardboards 26.9 3.53 0 21.2 

Multilayer cardboards 11.2 5.65 0 0 

Flat cardboards 15.6 2.46 0 1.6 

Newspapers 17.6 3.94 0 0 

Mixed papers 14.7 2.60 1.7 0 

Unbroken glass - - 36.5 0 

Broken glass 2.3 1.39 0 0 

PET 11.9 2.89 0 0 

HDPE 17.0 3.17 0 0 

Plastic films 15.7 2.79 0 1.3 

Mixed plastics 11.3 2.14 0.5 0 

Ferrous metals 10.2 5.49 0 0 

Non-ferrous metals 8.7 3.94 0 0 

Rejects 14.7 1.71 1.7 3.2 

The location parameter corresponds to the particle size at a cumulative fraction of 63.2% and the 

scale parameter indicates the shape of the distribution as shown in the following equation of the 

cumulative density function.  

 𝐹(𝑥) = 1 − exp (−(1 −
𝑥

𝑥0
)
𝑛

) (7-3) 

A preliminary analysis of the data shows that the corrugated cardboards and the broken glass 

categories have a location parameter significantly different than the other waste categories. 

Moreover, as observed previously, the metals categories seem to have smaller sieving diameters 

than fibers and plastics. As for plastics and fibers, no clear different tendencies are observed. 

Multilayer cardboards have smaller particle sizes than other fibers type, but also have a wider 

range. Moreover, flat cardboards, newspapers and mixed papers all seem to have similar PSD based 
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on the RR parameters. As for plastics, larger differences are observed amongst them as HDPE and 

plastic films have a significantly higher location parameter than PET and mixed plastics.  

Moreover, the only category having an important overflow fraction is the corrugated cardboard, 

while the only category having an important fraction of fines is the broken glass, highlighting again 

their differences with the other waste materials.   

To further investigate the similarities in the PSD of different waste categories, a Kolmogorov-

Smirnov test was performed. All two-by-two combinations of waste categories were tested to 

assess whether some of them were statistically equivalent. Results are presented in supplementary 

information (C5). 

Surprisingly, the null hypothesis of the PSD equivalence was rejected for only 6 waste categories 

out of 13, which are corrugated cardboards, mixed papers, broken glass, HDPE, non-ferrous metals 

and rejects. For all the other categories, it was not possible to conclude to a statistical difference of 

their PSD with at least one other waste category. Flat cardboards, newspapers and plastic films 

were all determined to have equivalent PSD. As for the other combinations for which it was not 

possible to reject the null hypothesis, they were PET-mixed papers, multilayer cardboards-ferrous 

metals and multilayer cardboards-PET. This finding is particularly interesting when it comes to 

waste sorting since it indicates that these combinations of recycling materials would theoretically 

have a very similar sorting efficiency in an equipment targeting the particle size.  

7.3.4 Shape factor analysis 

The mean density, the standard deviation and the confidence interval with a confidence level of 

90% of the raw materials calculated as described previously are presented in Table 7-2, while the 

number of objects measured per waste category is presented in supplementary information (C6). 

For the mixed plastics category, the density was measured for polypropylene, which was estimated 

to be the most present plastic in the category. In addition to the density of the material, the void 

fraction, calculated based on this material density and the bulk density, as well as the typical shape 

assumed for every waste category are also presented in Table 7-2.  

Confidence intervals reported in Table 7-2 are smaller than 8% for every waste category except for 

the flat cardboards. These small values demonstrate that the density of the waste materials is 
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relatively homogeneous and indicate that a sufficient number of objects was collected for this 

purpose.     

Table 7-2 Density and shape and void fraction of different categories of recyclables materials 

 Material density 

Typical shape 
Void 

fraction 

Mean 

density (kg 

m-3) 

Standard 

deviation 

(kg m-3) 

Confidence 

interval at 

90% (%) 

Corrugated cardboards 756 105 8.0 Flake 0.902 

Multilayer cardboards 822 46 3.3 Prism 0.953 

Flat cardboards 892 188 12.2 Flake 0.907 

Newspapers 1004 117 6.8 Flake 0.894 

Mixed papers 967 101 6.1 Flake 0.870 

Broken glass 2584 197 3.5 Cube 0.769 

Unbroken glass 2584 197 3.5 Cylinder 0.896 

PET 1339 78 2.8 Prism 0.978 

HDPE 971 30 1.7 Prism 0.965 

Plastic films 697 51 4.9 Flake 0.966 

Mixed plastics (PP) 873 41 2.4 Prism 0.960 

Ferrous metals 7030 525 3.7 Cylinder 0.987 

Non-ferrous metals 1957 290 7.7 Cylinder 0.978 

Rejects - - - - - 

The void fraction of recyclable materials is comprised between 0.769 and 0.987. A smaller value 

indicates that a waste category is composed of 2D-type objects, while a value closer to 1 indicates 

that the category is composed of 3D-types objects. Plastic and metal items clearly have higher void 

fraction (i.e., 0.96 – 0.978) than fibers (i.e., 0.870 – 0.904), which is expected since they are mainly 

containers, while fibers are mainly flakes. The only exception is observed for multilayer 

cardboards, which are generally considered as fibers but have a void fraction of 0.953, which 

classify them as 3D-type objects. Broken glass is characterized by a significantly smaller void 

fraction, since these particles are smaller and without internal void. This parameter can helps 

understand and quantify the shape of MSW and even helps to understand the fate of these materials 

in sorting unit operations targeting the shape.  
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7.3.5 Outcomes for material sorting 

In this section, an analysis of the influence of waste physical properties on mechanical sorting and 

how the results may be used for improving MRF operation, is presented. 

7.3.5.1 Source-separated recyclable materials separation in MRF 

The density and the particle size of different waste materials were generated for each material by 

using 100 random property data points following the distributions calculated in the previous 

sections. Results are presented in Figure 7.4 for mixed papers, mixed plastics, broken glass and 

ferrous metals.  

In single-stream MRFs, an equipment targeting particle size, such as a trommel screen or a star 

screen, is often used to initially separate fibers from containers (Cimpan et al., 2015). Results in 

Figure 7.4 clearly show that mixed papers and mixed plastics have similar PSDs, thus making them 

difficult to sort based on particle size. Size separation could therefore not be used solely for this 

objective. It can however remain useful as a conditioning step to increase the efficiency of a further 

separation based on another waste property (Cimpan et al., 2016). In this case, a separation based 

on the shape would be more effective since all fiber categories showed a void fraction smaller than 

0.91, indicating flake-type shapes, while the plastics showed a void fraction higher than 0.96, 

indicating 3D-type objects. Ballistic separations could thus be envisioned since they allow the 

separation of waste materials based on both their shape and their size (Eule, 2013). They have 

specifically been identified to successfully separate these types of materials at the beginning of 

mechanical sorting sequences (Eule, 2013; Mastellone et al., 2017).  
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Figure 7.4 Particle size and density random data points for mixed papers, mixed plastics, broken 

glass and ferrous metals 

Moreover, results in Figure 7.4 indicate that glass items could easily be removed from the other 

materials based on their particle size or density. This is not surprising since trommel screen has 

often been identified as a mean to remove glass from plastic and fiber materials (Ardolino et al., 

2017; Mastellone et al., 2017). Figure 7.4 shows that a suitable screen size to recover this fraction 

could be between 3.5 and 6 cm, which is similar to the 5 cm reported by Mastellone et al. (2017) 

for an MRF. However, it is also observed that some paper and plastic would also end up in the 

small fraction. This quantity can be estimated based on the Rosin-Rammler parameters previously 

calculated. Here, 6% of the mixed papers and 16% of the mixed plastics have a particle size smaller 

than 5 cm, indicating that further recovery methods for the “unders” fraction from the trommel 

could be considered. Therefore, the PSD provides a reliable way to estimate stream contamination, 

thus helping for further plant improvements.  

The same procedure was applied for plastics (Figure 7.5A) and fibers (Figure 7.5B). For plastic 

materials, no tendency indicating a potential separation based on their physical properties is 

observed. This was expected since plastics are mainly separated from each other based on optical 

techniques (Cimpan et al., 2015). 



149 

 

 

Figure 7.5 Comparison of particle size and density for A) plastics and B) fibers 

As for fiber materials, no clear tendency is observed. Dubanowitz (2000) reported that a trommel 

could be used in MRF to separate mixed papers from newspapers and corrugated cardboards. 

However, results from Figure 7.5B shows that mixed papers, newspapers and flat cardboards all 

have a similar PSD, making their separation difficult in a size sorting equipment. One reason 

possibly explaining this difference is that newspaper use has evolved since 2000 in Canada and 

their occurrence in MSW have strongly decreased. The proportion of newspapers type materials in 

the source-separated collection in the province of Quebec (Canada) decreased from 29% in 2007, 

of which 42% were flyers, (RECYC-QUÉBEC, 2007) to 19% in 2018, of which 64% were flyers 

(RECYC-QUÉBEC, 2020). This important increase of flyers, which are made of the same kind of 

material but are smaller than newspapers, could explain the difference observed. As for the 

separation of corrugated cardboards with a trommel, results indicate that this could probably be an 

effective approach due to their larger PSD. 

7.3.5.2 The case of multilayer cardboards 

Unpublished data from a highly mechanized recyclable sorting facility located in the province of 

Quebec, Canada, indicates that 71% of the multilayer cardboards entering the facility is correctly 

recovered and baled, with a purity of 73%. The remaining 29% of multilayer cardboards are mainly 

lost in the mixed papers bales and the rejects bales due to an inefficient sorting from the ballistic 

separators and the optical separator. As for bales of multilayer cardboards, the impurities are mostly 
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fibers and rejects. These data provide an interesting overview of the efficiency of a plant but should 

be used with care since they are not necessarily representative of other plants since they are 

influenced by several techno-economic factors. Figure 7.5B and Table 7-2 show that multilayer 

cardboards have similar PSDs as paper and cardboard categories, with a slightly smaller density 

and a higher void fraction. Due to the lack of mechanical operation available to easily exploit the 

difference in density, it seems unlikely that further significant improvement in recovery of 

multilayer cardboards is possible due to the similar particle sizes. Even though, higher collection 

rates were reported in Germany, the implementation of a deposit system would still be preferable 

in terms of recovery as collection rates between 80 and 99% could be achieved with this latter 

option (Zero Waste Europe, 2020).  Therefore, the use of a deposit system of these materials, as 

envisioned by the Quebec government, appears to be a good alternative to improve the recovery of 

this material if the current separation is considered insufficient.  

3.5.3 The case of corrugated cardboards 

Unpublished data from the same sorting facility in Quebec also indicate that only 55% of the 

corrugated cardboards entering the facility is recovered and baled, with a purity of 73%. The 

remaining cardboards are mostly lost in the mixed papers bales (32%) and the newspapers bales 

(9%) due to an inefficient sorting from the first steps of the process, which is mainly based on a 

size separation of 23.5 cm. As for the bales of corrugated cardboards, the impurities are mainly 

composed of rejects. Figure 7.5B clearly shows that corrugated cardboards have larger particle 

sizes than other fiber types, justifying this separation strategy. According to the Rosin-Rammler 

parameters calculated in the previous sections, about 56% of the corrugated cardboards are smaller 

than 23.5 cm, which correspond exactly to the quantity recovered based on this size in the facility. 

Therefore, the Rosin-Rammler parameters adequately predict the separation efficiency. As for 

increasing the recovery of this waste material, it could be possible to add a subsequent size 

separation a little smaller than 23.5 cm prior to baling the mixed papers. This way, the 

contamination from plastics and other rejects would not increase since these materials would be 

diverted. Moreover, the bale purities for corrugated cardboards could increase to 70% for a 20 cm 

separation and to 80% for a 17 cm separation.   
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7.4 Conclusion 

Density, particle size and shape factor of recyclable materials were determined following a 

characterization of the input of an MRF located in Canada treating commingled recyclable 

materials. A new procedure based on the void fraction calculation is proposed to characterize the 

shape factor of MSW, allowing for an objective quantification of this property. Density is assumed 

to follow a normal distribution, allowing for the calculation of its mean and standard deviation. 

PSDs are shown to be best fitted by a Rosin-Rammler distribution, allowing for the calculation of 

two parameters describing the waste materials. The results provide a rare dataset presenting the 

physical properties of MSW categories.  

Both density and particle size were shown to be relatively constant throughout the samples. 

Statistical methods were used to assess the representativeness of the presented results as well as to 

provide insight for future work. Waste quantities to sample were provided as an indication for 

future characterization of MSW properties.   

Even though these properties are determined in the Canadian context, making their extrapolation 

to other contexts uncertain, they provide a useful insight on the sorting efficiency of several 

mechanical unit operations of MRF. Results were used to explain and deepen the available 

knowledge on the mechanical sorting of recyclable materials, with an emphasis on the cases of 

multilayer cardboards and corrugated cardboards. It was shown that in order to improve the 

recovery of these materials, the recovery of multilayer cardboards should be done via a source-

separation deposit system, while the recovery of corrugated cardboards could be increased by 

adding a new size separation step.    
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Abstract 

Material recovery facilities (MFRs) play an important role in today’s waste management systems 

to maximize recycling efficiency for several waste materials. These facilities face multiple 

challenges related to the quality of their output streams, often due to a poor understanding of the 

mechanisms occurring within the sorting equipment. Improving modeling techniques of these unit 

operations appear to be a promising opportunity to mitigate these challenges. Mechanical sorting 

efficiency of municipal solid waste is often predicted from simple transfer coefficients, which are 

obtained for a specific set of operating conditions of the sorting equipment and sorting sequence 

configuration. When these transfer coefficients are used in situations that are different to those in 

which they were obtained, poor predictions can be expected. To overcome these limitations, a new 

predictive tool, based on the integration of mechanistic models and transfer coefficients, is 

presented. Mechanistic models are developed only for the most influential unit operations in a 

MRF, in order to predict their sorting efficiency based on the physical phenomena occurring. 

Integration of these models with the use of transfer coefficients for the other unit operations allows 

the entire predictive tool to remain as simple as possible while providing high prediction accuracy 

and flexibility.  The use of the tool is validated with a real case study of a material recovery facility 

processing mixed municipal solid waste in Canada. Results indicate a good prediction of the mass 

flows, the purity and the recovery of the facility. Moreover, a new modeling technique is proposed 

for the representation of a ballistic separator based on the shape factor of the waste items.  

8.1 Introduction 

Mechanical sorting of municipal solid waste (MSW) plays an important role in today’s waste 

management strategies. It is generally used in material recovery facilities (MRFs) or in mechanical-
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biological treatment (MBT) facilities to separate waste materials from source-separated recyclable 

streams or mixed MSW streams. Both approaches allow to recover recyclable materials that can 

be reintroduced into the economy as secondary materials.  

Even though life-cycle assessment (LCA) results on MSW strongly vary according to the studies, 

mechanical recycling is often considered as a more environmentally friendly pathway for handling 

materials such as plastics, paper and metals, than other options as incineration and landfilling 

(Björklund et al., 2010; Laurent et al., 2014).  

However, mechanical sorting of MSW for recycling purposes still faces several challenges. 

Materials recovered through mechanical sorting were often shown to contain a high level of 

contaminants due to the high heterogeneity of the feedstock (Cimpan et al., 2015; Damgacioglu et 

al., 2020; Ip et al., 2018; Mastellone et al., 2017; Velis et al., 2010). A good quality of output bales 

is however essential in order to achieve high recycling rates (Eriksen et al., 2019). In addition to 

quality issues, low recycling rates for several waste materials were often observed (Eriksen et al., 

2020). Therefore, improvements to the waste recycling systems must be implemented.  

To increase the resource recovery of waste materials, several approaches have been identified at 

different levels of the waste management system, including product design, source separation and 

treatment technologies. For example, reducing the proportion of black plastics in the economy, 

reducing the fraction of plastics composed of more than one polymer and performing a source-

separation of food packaging and non-food packaging could all lead to an increase in the recycling 

rates of plastic materials (Eriksen & Astrup, 2019). Improving extended producer responsibility 

(EPR) can also play an important role to increase the recycling rates by creating incentives for 

recycling (Andreasi Bassi et al., 2020). Finally, new treatment technologies may be implemented 

to the current system. For example, implementing chemical recycling over mechanical recycling 

could limit the degradation of plastic materials during the recycling process and limit the impact 

of feedstock contamination (Ragaert et al., 2017; Thiounn & Smith, 2020). However, the impacts 

of these modifications to the waste management system need to be evaluated using the most 

rigorous environmental impact assessment prior to be integrated into current treatment strategies.  

A key aspect while assessing the environmental impact of municipal solid waste recycling is the 

calculation of the substitution potential of a waste material in the economy as a secondary material 

(Andreasi Bassi et al., 2017; Rigamonti et al., 2020). This substitution potential is particularly 
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important for materials recovered in recycling loops as papers, glass and metals, since they are 

strongly affected by the quality of material streams circulated back into the economy (Andreasi 

Bassi et al., 2017). 

In the framework proposed by Vadenbo et al. (2017) to calculate the substitution potential of a 

material, the recovery efficiency plays an important role and is often calculated by a material flow 

analysis (Vadenbo et al., 2017). However, this parameter faces a lack of transparency as it is often 

not reported in LCA studies (Viau et al., 2020). For recycling, this recovery efficiency is expressed 

as a combination of the collection and the recycling processes (Vadenbo et al., 2017). Therefore, 

for materials processed by MRFs, both the recovery and the purity are crucial parameters to address 

the recovery efficiency of the facility and thus its environmental performance.  

This need to adequately predict both the recovery and the quality of the bales produced from sorting 

operations will only continue to gain importance with the growing influence of eco-design concepts 

and the interest in banning single-use plastics. It is therefore expected that new waste materials 

with new physical properties will integrate waste treatment loops and it will be crucial to 

adequately predict their recovery pathways.  

To do so, a rigorous modeling of the treatment facilities is required. Material flow analysis (MFA) 

is a decision-support tool that has been applied several times to model the mass balance of MSW 

systems (Allesch & Brunner, 2015). It has been used often in recent years to model specifically 

mechanical sorting processes (Caputo & Pelagagge, 2002; Damgacioglu et al., 2020; Giani et al., 

2016; Rotter et al., 2004; Velis et al., 2013). MFA is based on the use of transfer coefficients to 

predict the partitioning of a material in the output of a unit operation based on its inputs.   

However, most of the MFAs focusing on MRF do not allow for the variation of the input 

composition or the sorting sequence since they are often performed on existing plants with 

measured data (Kleinhans et al., 2021). Moreover, these types of studies focusing on transfer 

coefficients calculation for MRF face three main challenges, which are a high complexity of the 

studied facility, a strong influence of the input composition and the difficulty to obtain reliable 

transfer coefficients (Kleinhans et al., 2021). 

Two models for predicting the output products of a MRF based on the input stream and the sorting 

sequences have been developed recently by Ip et al. (2018) and Kleinhans et al. (2021). These two 

models use a similar mathematical algorithm to solve the mass balance of the process, which is 
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based on the work of Wolf (2011) and Testa (2015). In both cases, the unit operations are described 

based on transfer coefficients, calculated by input-output mass balances for Ip et al. (2018) and 

estimated based on expert judgement for Kleinhans et al. (2021). Along with expert judgement and 

input-output mass balances, transfer coefficients can also be calculated based on the physical 

phenomena occurring in the sorting equipment or based on performance indicators obtained from 

the manufacturers (Ip et al., 2018; Kleinhans et al., 2021).  

However, for some mechanical unit operations, the separation efficiency can vary significantly 

from one waste material to another (Jansen et al., 2015; Tanguay-Rioux et al., 2021a). Moreover, 

the separation efficiencies of mechanical sorting unit operations have been shown to vary according 

to several factors such as the input stream composition, the waste physical properties and the 

operating conditions (Raymond, 2017). Modeling sorting operations based only on transfer 

coefficients can thus lead to large inconsistencies since they do not generally consider the real 

operating conditions of the process (Tanguay-Rioux et al., 2021a). The use of models considering 

the mechanistic behaviour of the unit operations instead of fixed transfer coefficients could help 

overcome these limitations. It would also allow more reliable simulations of new treatment 

scenarios and technologies (Blikra Vea et al., 2018).  

However, it was found that this approach has been used seldomly in the past for an entire MRF, 

possibly due to the large variation of MSW physical properties and the high number of potential 

unit operations (Kleinhans et al., 2021). Still, previous work showed that it would not be necessary 

to model every unit operation of a sorting facility based on the physical phenomena since it should 

only be done for direct separators targeting waste properties (Tanguay-Rioux et al., 2021a), thus 

reducing considerably the modeling complexity.   

The objective of this study is to present a tool for MSW sorting process based on a mixed modeling 

approach, which relies on an integration of mechanistic modeling and transfer coefficients 

utilization. The approach is based on a rigorous description of the material flows, including a 

description of the main physical properties, and allows to consider the main operating conditions, 

the process sequence and the input waste composition and physical properties. The model is 

validated with a real case study on a material recovery facility of mixed MSW. Finally, the benefits 

of the method over the use of transfer coefficients are demonstrated by showing the effect of the 

process sequence and operating conditions on the different unit operation’s sorting efficiency.  
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8.2 Material and methods 

8.2.1 Model description  

A mathematical algorithm was developed to solve the mass balance of mechanical sorting 

processes. This algorithm sequentially calculates the outputs of every unit operation of the process. 

Each unit operation is defined as an independent module having its own mathematical model. 

These modules predict the output composition of the unit operation as well as potential 

modifications to the waste properties, for a given input composition and a module description. 

Every module and the general algorithm are built on Python as independent classes. The input 

information, as the unit operations considered, the process sequence, the input composition and the 

input properties, are provided with an Excel interface. A graphical representation of the model is 

provided in Figure 8.1.  

 

Figure 8.1 Graphical representation of the tool 

8.2.1.1 Model inputs 

Model inputs are provided with an Excel interface. Required information include: 

• The description of the input stream, including its mass flow, its composition and its physical 

properties; 

• The list of the process unit operations; 

• The list of the edges (link between two unit operations) of the process; 

• A description of the unit operations (further discussed in section 8.2.1.3 and 8.2.2). 
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8.2.1.2 Properties description 

The model is developed to track six properties for every stream, which are the bulk density, the 

shape factor, the particle size distribution (PSD), the moisture content, the lower heating value 

(LHV) and the elemental composition. Properties are all defined as independent variables 

associated to one waste material. They can be modified by a unit operation or remain unchanged if 

it does not influence them.   

8.2.1.3 Modules description 

Three types of modules are currently defined. Their mathematical algorithm is further discussed in 

section 8.2.2. They all include default values that can be modified by the user. The modules allow 

to calculate the mass flow, mass composition and waste properties of every output stream of the 

different unit operations according to its input stream description. They can consider as many input 

streams as necessary.   

8.2.1.4 Mathematical algorithm 

The mathematical algorithm is presented in Figure 8.2. First, user inputs are imported, including 

the process sequence, the descriptions of the unit operations and the input flows. Then, all the 

streams of the process are created and initialized with a null mass flow. At this stage, it is not 

necessary to define the flows properties since these will be automatically determined by the 

different unit operation calculations. Every unit operation is then solved independently to calculate 

the mass flow, the composition, and the physical properties of its output streams according to the 

type of unit operation defined by the user and its operating conditions. Once every unit operation 

is solved, the system mass balance is solved two other times by considering the results of the 

previous run as the new initial mass flows. These iterations are required since the algorithm solves 

the mass balance in the order in which the unit operations were defined. Therefore, for some unit 

operations, it is possible that some input streams are not yet calculated during the first iteration. 

Finally, the purity and the recovery are calculated for the main output streams for every targeted 

material.  
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Figure 8.2 General mathematical algorithm used to solve the mass balance 

8.2.1.5 Model outputs 

Model outputs are provided as Python objects, including dictionaries and DataFrame, and can be 

exported to Excel. They include the following information about every stream: 

• Mass flow; 

• Material composition and elemental composition; 

• Physical properties. 

8.2.2 Unit operation modules 

Two approaches are used to develop the unit operation modules, which are the use of mechanistic 

modeling and the use of transfer coefficients. In the current version of the model, two modules are 

developed based on the mechanistic modeling approach, one for a trommel and one for a ballistic 

separator. The other unit operations are solved based on a generic transfer coefficients module for 

which the specific values can be defined by the user. For both modeling approaches, the modules 
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predict the separation efficiency. In this case, the separation efficiency of a unit operation is defined 

as the fraction of material i in the inlet streams that ends up in a specific output stream. The choice 

of the output stream depends on the objective of the unit operation and can vary according to the 

situation. For example, the separation efficiency of a ballistic separator can be expressed towards 

the 2D or the 3D outputs, according to the separation objective.  

8.2.2.1 Ballistic separator module 

Ballistic separators partition waste materials in three output streams according to the waste 

properties. Those three output streams are for 2D-type, 3D-type and fines items. Their separation 

efficiency depends mainly on the shape factor and the particle size of the waste items (Eule, 2013). 

A partitioning model based on these two properties was developed for this unit operation.  

First, it is assumed that 100% of the items of each waste material that are smaller than the screen 

size of the ballistic separator is recovered in the fines fraction according to the following equation: 

 𝐸𝑖,𝑓𝑖𝑛𝑒𝑠 = 𝐹𝑖(𝑑𝑠) (8-1) 

where 𝐸𝑖,𝑓𝑖𝑛𝑒𝑠 is the separation efficiency of the material i in the fines output and 𝐹𝑖(𝑥) is the 

cumulative mass fraction of items of material i smaller than 𝑥 and 𝑑𝑠 is the screen size. Therefore, 

𝐹𝑖(𝑑𝑠) gives the mass fraction of items of waste material i that are smaller than the screen size 𝑑𝑠.  

Once the fines separation efficiency is calculated, the 2D/3D separation is calculated on the 

remaining fractions for every waste material. For this separation based on the shape of the 

materials, separation efficiencies for several waste materials obtained for a real situation in 

previous work were fitted according to the shape factor also determined in previous work for these 

waste materials (Tanguay-Rioux et al, 2021b). The fitting results are presented in section 8.3.1.1.  

Three main assumptions are considered. The first hypothesis is that the size separation is 100% 

effective. This seems appropriate since ballistic separators are often preceded by one or more size 

separations, leading to a small fraction of fines entering this step. The second hypothesis is that the 

shape factor of a given material item is not influenced by its size. The third hypothesis is that the 

2D/3D separation does not modify the waste properties. As a result, the PSD of these two output 

streams was assumed to be the same as the PSD of the input stream for a given waste material.  
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8.2.2.2 Trommel module 

The model used to predict the trommel separation efficiency is adapted from Alter (1983). The 

model is based on the calculation of the probability of passage of a particle through the sieves of 

the equipment according to its number of impingements. The methodology was modified to 

consider the passage of particles due to reflection, and introduced by Glaub et al. (1982). The 

probability of a particle to pass through an aperture of the screen is therefore expressed with the 

following equations: 

 𝑃 = 𝑄
(𝐷𝑎 − 𝐷𝑝 cos 𝜆0)

2

𝐷𝑎
2  (8-2) 

and 

 𝑃𝑛 = 1 − (1 − 𝑃)
𝑛 (8-3) 

where Pn is the probability of passage after n impingements, P is the probability of passage after 

one impingement, Q is the ratio of apertures to the total surface, also named the screen ratio, Da is 

the screen size, Dp is the particle size and cos 𝜆0 is the reflection parameter. The number of 

impingements is a function of the trommel length, radius and inclination.  

The complete methodology to calculate the number of impingements and the reflection parameter 

is described by Alter (1983) and Glaub et al. (1982). 

To apply equations 8-2 and 8-3 to every waste material over their PSD, and thus calculate the 

trommel recovery per material and the new PSD of the output streams, the PSD of the input stream 

is discretized in 200 increments. Then, the average particle size Da is calculated for every increment 

through the integration of the distribution and a probability of passage is calculated. This 

probability corresponds to the separation efficiency for that specific particle size. Then, all 

increments are aggregated according to their separation efficiency, hence yielding the composition 

of the outputs and their new PSDs.  The separation efficiency of the trommel for each material i, 

which is defined either as the fraction of material i in the inlet streams that ends up in the unders 

stream or the overs stream, is thus obtained. 

The main assumption of the model is that there are no interactions between the particles that would 

influence the probability of passing through the apertures of the trommel. 
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8.2.2.3 Other unit operations 

Transfer coefficients are retrieved from expert judgement, input-output characterizations or 

literature data. The separation efficiency is predicted using the transfer coefficients as: 

 𝐸𝑖,𝑗 = 𝑞𝑖,𝑗 (8-4) 

where 𝐸𝑖,𝑗 is the separation efficiency of the material i in the output stream j and 𝑞𝑖,𝑗 is the transfer 

coefficient of the material i in the output stream j. 

The output streams composition is calculated with the following equation: 

 𝐹𝑖,𝑗 = 𝑞𝑖,𝑗𝐹𝑖
𝑖𝑛 (8-5) 

It is assumed that this module does not modify the waste properties of the streams.  

8.2.3 Model validation 

The model is validated by comparing its predictions to a real material recovery facility.  

8.2.3.1 Case study description 

The MRF used as a case study is located in the province of Quebec, Canada. The facility is designed 

to handle mixed municipal solid waste. The region covered by the facility is already served by a 

collection of recyclable materials and a collection of organic materials. 

The process includes 2 ballistic separators, 2 trommels, one disc screen, one magnetic separator, 

one eddy current separator, several optical sorters and manual separation stations. The complete 

sequence of the process is shown in Figure 8.3. The process and the streams represented by dotted 

lines were excluded of the system boundaries. A more in-depth description of the system 

boundaries is presented in section 8.2.3.2.  
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Figure 8.3 Process sequence and system boundaries of the MRF used for the case study 

8.2.3.2 Unit operations modeling 

For both ballistic separators (P6. P7), no separation of the fines fraction is done in the MRF. 

Therefore, a screen size of 0 cm was imposed and only 2 output streams were considered. As for 

the size separation in the trommels (P2, P5) and the disc screen (P16), the only information known 

is their screen size, which are respectively 30.5 cm, 8.9 cm and 1.9 cm for the first trommel (P2), 

the second trommel (P5) and the disc screen (P16). It was decided to predict the disc screen 

separation efficiency using the same type of model as the one developed for a trommel, since they 

are both size separation operations. The disc screen model used a 1.9 cm screen size and a small 

“trommel” radius in order to generate a large number of impingements, which is more 

representative of the separation mechanism in a disc screen. The complete list of input parameters 

provided to the model to represent the three separation sizes are presented in Table 8-1.   
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Table 8-1 Model parameters for the 3 size separation unit operations 

 First trommel 

(P2) 

Second trommel 

(P5) 

Disc screen 

(P16) 

Screen size (cm) 30.5 8.9 1.9 

Length (m) 5 7 5 

Diameter (m) 2 2 0.5 

Screen ratio 0.2 0.4 0.4 

Inclination (°) 5 5 5 

For the other unit operations, they were all model based on the utilization of transfer coefficients. 

The separation efficiencies calculated in previous work (Tanguay-Rioux et al., 2021a) for the same 

MRF were used for the pre-sorting manual separation step using a mechanical shovel (P1), the 

magnetic separator (P4), the eddy-current separator (P10), the optical sorter targeting PET (P8) and 

the optical sorter targeting mixed plastics (P9). Since these coefficients were derived from the same 

MRF, they are representative of the facility. Finally, the manual sorting stations (P3, P11, P12, 

P15) and both the optical sorters (P13, P14) on the 2D output of both ballistic separators (P6, P7) 

were not modeled due to a lack of representative data on their separation efficiency. Therefore, the 

output streams of these unit operations were aggregated and represented by the final output streams 

still within the system boundary (AU1, AU2, AU3 and AU4). For example, the output streams U3, 

U5, U11, U12 and U14 were all aggregated and are represented by the internal stream for the overs 

leaving the trommel AU1.  

8.2.3.3 Input composition and physical properties 

The composition of the input stream (G1) was determined by making the sum of all the output 

streams (U1 to U16) according to their characterization. As for the physical properties, bulk 

density, shape factor and PSD, the measurements made in previous works were used. For some 

waste materials, data were missing since they were not characterized in these studies. In these 

cases, missing data were filled in with estimations and literature data. A complete list of the waste 

properties and the input composition used in this case study are provided in supplementary 

information (D1).  
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Since moisture content, LHV and elemental composition are not used in this case study, they were 

not reported for simplicity reasons. However, these could be tracked using typical expressions 

found in the literature if required. 

8.2.3.4 Performance indicator and validation 

Three performance indicators are used to assess the accuracy of the separation predictions.  

First, the total mass flow of the main output streams was considered as a performance indicator. 

The other two are the purity and the recovery, which are calculated using the following equations.  

 𝑝𝑖,𝑗 =
𝑋𝑖,𝑗

∑ 𝑋𝑖,𝑗
𝑛𝐼
𝑖=1

   (8-6) 

and 

 𝑟𝑖,𝑗 =
𝑋𝑖,𝑗

𝑋𝑖,𝑖𝑛
 (8-7) 

where 𝑝𝑖,𝑗  is the purity of the material i in the stream j, 𝑟𝑖,𝑗 is the recovery of the material i in the 

stream j, 𝑋𝑖,𝑗 is the mass flow of the material i in the stream j, 𝑋𝑖,𝑖𝑛is the mass flow of the material 

i in the input streams of the global process and nI is the number of waste materials. 

The purity is a measure of the quality of the output streams and indicates the ability of the system 

to adequately concentrate the correct waste material in a given stream. The recovery is a measure 

of the quantity of materials sorted in a given stream and indicates the ability of the system to 

adequately sort the materials in the right stream.   

The performance indicators were calculated for different points of the facility, including the output 

streams U1, U6, U9, U10 and U13, and the AU1 to AU4 streams representing the aggregated 

streams of unit operations P3, P11, P12 and P13.  These points were identified as part of the system 

boundaries since they are not dependant on manual sorting.   
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8.3 Results 

8.3.1 Unit operation modeling 

The performance of the trommel and the ballistic separator models in comparison to experimental 

data is presented in this section.  

8.3.1.1 Ballistic separator  

Separation efficiencies obtained in previous work for a commingled recyclable MRF were fitted 

by a sigmoid function according to the shape factor of several waste materials. In this case, the 

shape factor is defined as the void fraction (𝑣), according to previous results (Tanguay-Rioux et 

al, 2021b). The regression function takes the following form: 

 𝐸2𝐷(𝑣) =
𝐸𝑚𝑎𝑥

1 + exp(𝛽(𝑣 − 𝑣50))
 (8-8) 

𝐸2𝐷(𝑣) is the separation efficiency of the ballistic separation according to the void fraction 𝑣 of a 

waste material and 𝐸𝑚𝑎𝑥, 𝛽 and 𝑣50 are the parameters of the regression. 𝐸𝑚𝑎𝑥 represents the 

maximal separation efficiency, 𝛽 represents the slope of the curve and 𝑣50 represents the void 

fraction for which the separation efficiency is 50%. Raw data as well as the fitting results are shown 

in Figure 8.4.  

 

Figure 8.4 Experimental data and model results for ballistic separation 
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The results of the regression are presented in equation 8-9.  

 𝐸2𝐷(𝑣) =
0.823

1 + exp(149(𝑣 − 0.950))
  (8-9) 

Therefore, the maximal separation efficiency value is 0.823 and the 𝑣50 value is 0.950.  

Results in Figure 8.4 indicates that the sigmoid function can adequately be used to predict the 

separation efficiency for most waste materials. The fit agreement is very good, except for glass and 

plastic film items. The difficulty of predicting glass separation efficiency is explained by its 

significantly smaller void fraction than any other waste material items since, unlike the other waste 

materials, glass enters the facility in a broken form. Therefore, while void fraction above 0.95 

indicates 3D-type objects and void fraction around 0.9 indicates 2D-type objects. The four data 

points in Figure 8.4 with a high 𝐸2𝐷 represent paper and cardboard materials, while at the opposite 

end of the curve, data points with a small 𝐸2𝐷 represents plastic and metal containers. As for void 

fraction smaller than 0.85, it represents a significantly smaller void between waste items, indicative 

of small objects with low internal void, such as glass particles. Therefore, it is unlikely that these 

waste items would end up in the 2D-type outputs. In the model, for material items with a void 

fraction smaller than 0.85, a separation efficiency in the 2D-type output of 5% was imposed, which 

is estimated since the separation is rarely 100% efficient and it was shown in Figure 8.4 that these 

types of materials are mainly recovered in the 3D fraction. 

As for the plastic films, they are characterized by a low bulk density, which is not reflected by the 

void fraction measure, possibly due to a lower level of natural compaction during the 

measurements. Further waste characterizations should thus be considered for this material in order 

to improve its shape factor measurements.    

8.3.1.2 Trommel  

The trommel module was tested by comparing the simulation results with experimental data of the 

composition of the RDF-like fraction obtained from 10 MBT facilities and retrieved from Montejo 

et al. (2011). In this case, MBTs include a trommel (sieves size of 8-9 cm), manual sorting and 

metals separation. With the information provided in the study, it was possible to deduce a 

separation efficiency for the overs output stream for the trommel and to compare these results to 
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the predictions obtained with our trommel module using the same operating conditions. For this 

validation, only the materials for which a PSD was measured in our previous works were selected. 

Results are shown in Figure 8.5. 

 

Figure 8.5 Comparison between predicted and measured separation efficiency in the overs output 

of the trommel for different materials 

Results indicate that the trommel module gives a good prediction of the separation efficiency of 

the trommel for the main waste materials. The largest difference is obtained for the green residue 

category. This could probably be explained by the differences of context, since PSD were taken as 

those measured in a Canadian context, while the experimental results are obtained in a Spanish 

context. Globally, an average absolute difference of 6% is observed between predicted and 

measured trommel separation efficiencies. This average difference is reduced to 4.8% when the 

green residue category is neglected. This good agreement indicates that the model can adequately 

be used to predict the efficiency of a trommel for raw MSW. However, results also indicate, that a 

PSD measured in a similar context should be used for each feedstock material.  
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8.3.2 Model validation 

Based on the sorting sequence presented in Figure 8.3, it is assumed that the optical sorter 2 (P14) 

do not send any material to the 3D-line (P8) since the real efficiency of this unit was not directly 

measured and its estimation would be highly subjective. Moreover, discussions with the operator 

indicated that this optical sorter do not perform as expected. Therefore, for comparison purposes, 

we can expect that the mass flow at the sampling point P13 will be slightly overestimated. This can 

be seen in Figure 8.6A. Globally, the Figure 8.6A demonstrates a relatively good prediction of the 

mass flows for the main outputs. The biggest differences are observed for the output stream U6 

and the internal unit operations P12 and P13. The error occurring for the output stream U6 is 

explained by a difference between the description of the ferrous metal category for the 

characterization of the composition and for PSD analysis. For the PSD analysis, only ferrous 

recyclable materials were sorted in this category, therefore including solely cans and lids, while for 

the characterization of the composition of the input/output streams, the ferrous metal category 

included several other types of materials, such as kitchen items and other large objects. Therefore, 

it is expected that the PSD of the ferrous metals category would have both a larger location 

parameter and a larger scale parameter to reflect the presence of larger items and the larger 

dispersion of the particle size items. These differences mean that the model is not able to reflect 

the separation of the large ferrous items by the first trommel. As for the unit operation P12, an 

important difference is observed for the mass flows since it is the last unit operation of the process. 

Therefore, the prediction errors of all other unit operations accumulate for the prediction of the last 

unit operation. 

 

Figure 8.6 Results for the performance indicators, A) mass flows, B) purity, C) recovery 
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The results showed in Figure 8.6B and 8.6C, for the purity and the recovery, also demonstrate a 

good agreement between the modeling results and the characterization results for most streams. 

However, more accurate results are obtained for the purity with an average absolute difference of 

5.0%, than for the recovery for which an average absolute difference of 9.2% is obtained. This 

difference is however reduced to 7.4% if the fines output (U13) is not considered. As demonstrated 

by the results, the prediction of the fate of the fines material is difficult. This can be explained by 

the fact that they often can get trapped in other materials. Also, brittle materials are often broken 

in smaller pieces in certain mechanical sorting unit operations as ballistic separators, having for 

effect to create more fines along the process (Eule, 2013).  

Papers and cardboards materials are mainly recovered in the stream U2, which is represented in 

Figure 8.6 by the stream P13 and for which a poorer prediction of the purity and the recovery is 

observed. This is possibly explained by the moisture content affecting the efficiency of both the 

size separation and the ballistic separation, which is not reflected in the modeling. 

However, even though some aspects of the modeling results could be improved, a good prediction 

of the process efficiency is obtained for a relatively complex MRF processing mixed MSW based 

on their physical properties. This shows that the model can adequately be used to predict the output 

of a similar process. 

8.3.3 Influence of the operating parameters on the separation efficiency 

predictions 

To demonstrate the benefits of this modeling approach for MRF modeling, different scenario 

analyses were performed. The modeling approach allows to consider the impact of the operating 

conditions, the sorting sequence, the waste composition and the waste properties on the separation 

efficiency of the main mechanical unit operations.  

8.3.3.1 Operating conditions 

The operating conditions of the different unit operations have a large influence on the separation 

efficiency of the MRF. This is particularly important for mechanical sorting equipment targeting a 

waste property rather than a specific material (Tanguay-Rioux et al., 2021a). Therefore, the main 

operating conditions should be reflected through the unit operation modeling. For example, the 

screen size of trommels and other size separation unit operations strongly influence the separation 
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efficiency that can be achieved. To demonstrate this importance, the separation efficiency of 

several raw materials in the unders output was calculated for different screen size and is presented 

in Figure 8.7.  The other operating conditions were set as constant. 

 

Figure 8.7 Separation efficiency for the unders output stream of a trommel for several waste 

materials according to the screen size 

As expected, large variations of separation efficiencies are observed for every waste material 

considered. Moreover, the variability trend differs for different waste material, making it 

questionable to estimate adequate transfer coefficients for a given situation based solely on expert 

judgement or literature data for this unit operation.  

8.3.3.2 Sorting sequence 

An other important aspect having an influence on the separation efficiency of mechanical sorting 

unit operations is the process sequence since it indirectly modifies the waste properties. To 

demonstrate the importance of the sorting sequence and how the mixed modeling approach used 

in this work is able to capture its influence, a scenario analysis was performed to compare two 

situations.  For scenario A, the unders separated with a trommel having a screen size of 18 cm are 

subsequently separated with another trommel having a screen size of 9 cm. For scenario B, only 

the 9 cm trommel is used without prior separation. To compare the scenarios, the separation 

efficiency of several materials for the unders output stream of the 9 cm trommel is compared for 

both scenarios. Results are presented in Figure 8.8. 
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Figure 8.8 Comparison of the separation efficiency for the unders fraction of a trommel according 

to two scenarios, A) two trommels in series, B) only one trommel 

The differences between the scenarios strongly vary according to the waste material considered. 

For example, the separation efficiency of the cardboard materials increases by 290% in scenario B 

in comparison to scenario A, while it only increases by 0.22% for glass materials. Globally, an 

increase in the separation of the waste material for the unders fraction is observed for the scenario 

A since the first trommel allows to remove large materials, leading to a globally smaller PSD, and 

thus increasing the fraction of material recovered in the unders fraction by the second trommel.  

Even though these variations can be expected and can seem relatively small for certain waste 

materials, they do influence the final results and could potentially change the conclusions regarding 

the MRF performance. Moreover, this influence is not captured by conventional modeling 

techniques using only transfer coefficients. Therefore, the use of transfer coefficients only is not 

recommended to compare the efficiency of different sorting sequences.  

Here, the influence of the sorting sequence was demonstrated with a sequence of two size 

separations. However, similar results would be obtained for the recovery of the fines fraction from 

a ballistic separation if it is preceded by a size separation.  
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8.3.3.3 Feedstock composition and waste physical properties 

Results shown in section 8.3.3.1 and 8.3.3.2 demonstrated the influence of both the operating 

conditions and the sorting sequence on the separation efficiency of the mechanical sorting 

operations, since these sorting operations depend on the physical properties of the wastes. 

Therefore, both the physical properties and the waste composition would also directly influence 

the separation efficiency and should be considered in the modeling approach.  

8.4 Discussion 

The tool presented allows to take four main aspects into consideration while modeling MRF of 

MSW, which are the waste composition and physical properties, the operating conditions of the 

main unit operations and the process sequence. Since the tool is based on the use of independent 

modules, it is highly flexible, allowing to easily analyze several different scenarios. For example, 

the model can be adapted to reflect different waste composition, different waste characteristics and 

different sorting sequences. Assessing different scenarios can allow to compare the products 

quality to different standards and requirements according to the available markets.  

The mixed modeling approach used in this work allows to overcome limitations observed with 

other approaches found in the literature due to their inherent use of transfer coefficients, without 

adding needless complexity. Moreover, it allows to predict both composition and physical 

properties of waste. This represents an important aspect in order to measure the quality of the 

products in a circular economy context, and even help to calculate substitutability indicators of 

secondary materials. The flexibility of the tool also allows to easily add new waste materials in the 

inlet stream as well as new unit operations in a sorting process. This offers an opportunity to guide 

the conception of new products as it is possible to predict their recovery in an MRF according to 

their specific characteristics.  

Finally, even though the tool was developed to model mechanical sorting unit operations, it can 

include other type of treatment processes. For example, the tool was previously used to integrate a 

mechanistic model of an anaerobic digestion process into a more conventional MFA including pre-

treatment and post-treatment for handling source-separated organic materials (Urtnowski-Morin et 

al., 2021).  
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This new tool however faces some challenges that should be used to guide future works in order to 

improve its prediction capability. In the current state of the tool, the moisture content of the waste 

is not considered in the modeling of the separation efficiency of the unit operations. However, high 

moisture content is known to reduce the efficiency of many sieving equipment (Ashkiki et al., 

2019). It can also reduce the separation efficiency of paper materials in air classification (Rotter et 

al., 2004). This waste property could thus be included in future modeling development. For 

example, Ashkiki et al. (2019) modeled the clogging process of a trommel in a Canadian context. 

Moisture could also influence other waste properties such as the density.  

Another limitation is related to the description of the waste material physical properties. These are 

characterized for a waste material in a given context. They need to be estimated or calculated for 

waste categories different than the ones already defined or for different contexts. However, 

defining physical properties of solid waste is a long and resource-intensive process. More research 

should therefore focus on determining physical properties in different contexts for more waste 

materials to increase the global knowledge related to these.     

As mentioned before, the prediction of the fines materials fate is difficult due to the creation of 

new fines along the process. The process of fines creation along the treatment sequence could thus 

be investigated in future work in order to predict it.  

Finally, future works should focus on developing more mechanistic models of unit operations and 

improving the current ones in order to provide a wide range of modeling possibilities. Air 

classification and bio-drying should be prioritized, since they both play an important role in MBT 

and both have a direct correlation with waste physical properties. Also, more separation 

efficiencies, expressed as transfer coefficients, should be determined for all the mechanical sorting 

unit operations since few data are currently available in the literature leading to high uncertainties 

related to the real performance of many sorting equipment.  

8.5 Conclusion 

A mixed modeling tool based on the integration of mechanistic modeling and transfer coefficient 

utilization was developed to predict the performance of a sequence of mechanical sorting unit 

operations of MSW. This tool, which is based on a rigorous description of the waste characteristics, 

including its composition, its PSD and its shape factor, is used to predict the characteristics of every 
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output stream of a mechanical sorting process. The combination of the two modeling approaches 

captures the influence of operating conditions of certain sorting unit operations, while limiting the 

complexity of the model. Its flexible structure allows to easily model different scenarios applicable 

to various location contexts.  

Two mechanistic models are developed, for a trommel and a ballistic separator. The trommel 

module is adapted from the literature to take the PSD characteristics of the waste items into account. 

For the ballistic separator, a new modeling strategy is proposed. The separation efficiency is 

modeled based on a sigmoid function according to the void fraction of the waste materials.  

The tool was validated by comparing the prediction results to actual characterizations obtained for 

a MRF targeting mixed MSW in a Canadian context. Even though some differences are observed 

between predictions and actual results of the fate of some waste materials, the performance 

indicators showed overall good predictions of the output product streams. In comparison to other 

modeling tools available in the literature, this tool takes into account the operating conditions of 

some unit operations, the sequence of equipment in the process, the input composition, and the 

physical properties of the waste, leading to a better confidence in the predictions. It thus represents 

an interesting opportunity to improve resource recovery by linking the waste characteristics to their 

recovery in an MRF. This could lead to a better understanding of the quality and the recovery of 

the targeted materials in such facilities and therefore improve the assessment of environmental 

impacts associated to them.  
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CHAPITRE 9 INFLUENCE DE LA CONFIGURATION DE LA CHAÎNE 

DE TRI ET DES CONDITIONS D’OPÉRATIONS SUR LA QUALITÉ 

DU TRI DES MATIÈRES RÉSIDUELLES MIXTES 

9.1 Mise en contexte de l’étude de cas 

Une étude de cas a été réalisée à partir des outils développés et présentés dans les chapitres 

précédents. L’objectif de l’étude de cas est de démontrer l’intérêt de ces outils en étudiant l’impact 

de la séquence de tri et des conditions d’opération d’une usine de TMB sur la qualité des matières 

récupérées dans un contexte québécois.  

Puisque le bio-séchage n’a pas été modélisé dans le cadre de ce projet, la séquence modélisée inclut 

uniquement du tri mécanique. Il faut toutefois noter que dans un contexte québécois, la présence 

d’une étape de bio-séchage semble essentielle pour réduire l’humidité des matières à trier et ainsi 

limiter l’encrassement des différents équipements. Également, en raison de l’absence de débouchés 

permettant de valoriser adéquatement la matière organique, il a été considéré que la matière 

organique triée mécaniquement est traitée dans un procédé de carbonisation hydrothermale en vue 

de produire un CDD carbonisé. L’intégration du procédé de HTC dans la séquence de tri se fait à 

titre démonstratif et doit être considérée comme une des options pour améliorer la qualité de cette 

fraction. D’autres alternatives pourraient toutefois être privilégiées suite à d’autres analyses.  

Afin de comparer les scénarios entre eux, différents critères de performance ont été définis 

permettant de classer les résultats selon différents objectifs. Également, les scénarios ont été filtrés 

en fonction de leur performance par rapport à certains critères minimaux de qualité. Dû à l’absence 

de normes québécoises ou canadiennes, la qualité des CDD produits dans l’étude de cas a été 

comparée aux normes européennes (CEN/EN 15359) (European Committe for Standardisation, 

2006).  

9.2 Méthodologie utilisée pour la réalisation de l’étude de cas 

Pour la réalisation de l’étude de cas, différents scénarios ont été définis et résolus à partir de l’outil 

présenté au Chapitre 8. Un modèle de HTC a été ajouté à l’outil afin d’approfondir la réflexion sur 

la production d’un CDD carbonisé par un procédé de TMB. Différents critères ont également été 

définis afin d’analyser la performance des scénarios. 
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Pour cette analyse, la composition entrante utilisée correspond à la composition moyenne des 

matières résiduelles au Québec (ÉEQ & RECYC-QUÉBEC, 2021). Au niveau des propriétés 

physiques, les mêmes valeurs que celles définies dans le Chapitre 8 ont été utilisées. Finalement, 

pour la composition élémentaire, le PCI et le pourcentage d’humidité, les valeurs mesurées dans 

un contexte danois par Götze et al. (2016) ont été utilisées.  

9.2.1 Description des scénarios 

Différentes configurations potentielles d’une chaîne de traitement mécanique, ainsi que différentes 

conditions d’opération pouvant être utilisées pour le traitement de matières résiduelles dans un 

contexte québécois ont été identifiées. À partir d’une séquence de base, présentée dans la Figure 

9.1, et de plusieurs conditions d’opérations différentes, présentées dans le Tableau 9-1, 1200 

scénarios ont été définis en considérant toutes les combinaisons possibles de configuration.  

 

Figure 9.1 Scénario de base pour la modélisation du TMB 
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Les équipements pour lesquels des modifications sont effectuées sont les trois cribles rotatifs, les 

deux séparateurs balistiques et le séparateur optique de plastiques mixtes. En prenant, toutes les 

configurations possibles présentées dans le Tableau 9-1, un total de 1440 scénarios peuvent être 

créés. Par contre, certains de ces scénarios sont les mêmes ou ne sont pas possibles. Ainsi, 1200 

scénarios ont été jugés possibles et ont donc été conservés.  

Tableau 9-1 Description des conditions possibles pour l’étude de cas 

Crible 

rotatif 

grossier 

Crible 

rotatif 

médian 

Premier 

séparateur 

balistique 

Deuxième 

séparateur 

balistique 

Séparation 

plastiques 

mixtes 

Crible 

rotatif fin 

Non (0) 5,1 cm (1) Non (0) Non (0) Non (0) Non (0) 

20,3 cm (1) 7,6 cm (2) 0,5 cm (1) Oui (1) Vers CDD (1) 1 cm (1) 

25,4 cm (2) 8,9 cm (3) 4,5 cm (2)  Vers 

recyclage (2) 

2 cm (2) 

30,5 cm (3) 10,2 cm (4)    3 cm (3) 

 12,7 cm (5)     

Le nombre entre parenthèses dans le Tableau 9-1 permet de numéroter chaque condition afin de 

définir un indice de configuration comportant 6 chiffres pour chaque scénario. Par exemple, un 

scénario ayant un crible rotatif grossier de 30,5 cm, un crible rotatif médian de 7,6 cm, aucun 

séparateur balistique, une séparation des plastiques mixtes vers un marché de recyclage et un crible 

rotatif fin de 3 cm aurait l’indice de configuration suivant : 3-2-0-0-2-3. 

La configuration de base et les conditions d’opération à tester ont été définies à partir d’exemples 

provenant de la littérature.  

Pour les autres équipements que les séparateurs balistiques et les cribles rotatifs, les coefficients de 

transfert utilisés pour la validation du modèle (Chapitre 8) ont également été utilisés pour l’étude 

de cas.  
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9.2.2 Modèle de carbonisation hydrothermale 

Le modèle de carbonisation hydrothermale développé se base sur des données issues de la 

littérature. Le procédé produit trois fractions, soit un solide carbonisé, une phase liquide contenant 

des composés organiques dissous et une phase solide contenant principalement du CO2. L’approche 

de modélisation repose sur une estimation du rendement massique dans la phase solide et dans la 

phase gazeuse pour les principaux éléments chimiques, et l’estimation des caractéristiques du 

produit solide à partir de résultats expérimentaux en laboratoire.  

Le rendement massique dans la phase solide (η), le pouvoir calorifique supérieur (PCV), le contenu 

en carbone fixe (CF), le contenu en matières volatiles (MV), et le contenu en C, O, H et N sont 

tirés de la littérature pour des conditions d’opérations similaires, soit environ 250°C et 1h de temps 

de résidence, et différents types de matières résiduelles. Les données utilisées et les sources 

associées sont présentées dans le Tableau 9-2. Ces données permettent de calculer la quantité de 

solide carbonisé produit, ainsi que ses principales caractéristiques.  

Tableau 9-2 Hypothèses utilisées pour la modélisation du procédé de HTC 

 

η 
PCV 

(MJ/kg) 
MV CF 

C 

(%) 

O 

(%) 

H 

(%) 

N 

(%) 
Source 

Papiers et 

cartons 
0,341 23,9 0,528 0,200 76,7 17,1 6,1 0,1 

(Berge et al., 

2011) 

Déchets 

organiques 
0,456 29,1 0,534 0,300 76,9 11,3 6,6 5,2 

(Berge et al., 

2011) 

Résidus verts 
0,618 19,6 0,69 0,250 50,9 43,5 5,2 0,4 

(Sharma et al., 

2019) 

Bois 
0,59 23,5 0,63 0,36 62,2 32,7 5,1 0,0 

(Hwang et al., 

2012) 

Textiles 
0,72 20,89 0,737 0,258 57,0 38,5 4,3 0,2 

(Lin et al., 

2016) 

Plastiques Aucune dégradation et aucune interaction 

Autres 

inertes 
Aucune dégradation et aucune interaction 

Pour ce qui est de la répartition des autres éléments, il a été posé qu’ils se répartissent entre la phase 

solide et la phase liquide selon les données expérimentales obtenues par différentes sources 

(Danso-Boateng et al., 2015; Escala et al., 2013; Liu & Balasubramanian, 2014; Peng et al., 2017). 

Pour la fraction liquide, le modèle permet uniquement de calculer sa composition élémentaire à 



179 

 

partir d’un bilan de masse. Finalement, il a été posé que le gaz contient 95% de CO2 et 5% de CO 

avec un rendement massique de 8%, ce qui correspond à un rendement similaire à ceux observés 

dans la littérature. 

Malgré le fait que ce modèle repose sur plusieurs hypothèses importantes et n’a pas été validé 

expérimentalement, il peut être utilisé pour effectuer des prédictions générales en lien avec 

l’implantation d’un procédé de HTC dans un TMB. Ainsi, l’objectif est principalement de donner 

un ordre de grandeur pour certaines variables générales, comme le pouvoir calorifique du produit 

et le rendement massique. Il faut toutefois faire attention lors de l’interprétation des résultats.  

9.2.3 Critères de performance et analyse de qualité 

Afin de comparer les scénarios entre eux, deux approches sont utilisées. Tout d’abord, les scénarios 

sont filtrés en fonction de si leurs produits respectent certains standards de qualité. Ainsi, la qualité 

des fractions destinées à la valorisation énergétique est comparée aux principaux éléments de la 

norme sur les CSR définie par le comité européen de normalisation (European Committe for 

Standardisation, 2006). Cette norme a été utilisée puisqu’il n’y a présentement pas de normes 

équivalents au Québec et au Canada. Les principaux critères utilisés pour l’analyse sont présentés 

dans le Tableau 9-3 et permettent de classifier les CSR en 5 classes distinctes. Dans le cas présent, 

deux produits sont destinés à la valorisation énergétique, soit le flux de matières combustibles 

produit à partir de matières sèches et séparé par les séparateurs balistiques (U5) et le flux de 

matières organiques traités par carbonisation hydrothermale (U6). Pour le reste de l’étude, le 

premier sera identifié par le terme CDD sec et le deuxième par le terme CDD carbonisé.  

Tableau 9-3 Critères définis par le comité européen de standardisation pour classifier les CSR 

 Classes 

1 2 3 4 5 

Pouvoir calorifique 

inférieur 

MJ/kg sur 

base humide 
≥ 25 ≥ 20 ≥ 15 ≥ 10 ≥ 3 

Contenu en chlore % sur base 

sèche 
≤ 0,2 ≤ 0,6 ≤ 1,0 ≤ 1,5 ≤ 3,0 

Contenu en mercure mg/MJ sur 

base humide 
≤ 0,02 ≤ 0,06 ≤ 0,16 ≤ 0,30 ≤ 1,0 

Une fois les scénarios filtrés selon leur capacité à répondre à la norme mentionnée précédemment, 

ils ont été classés selon 4 critères de performance. 
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Le premier critère définit le rendement massique des produits destinés aux filières de recyclage 

(RMR) selon la formule suivante : 

 𝑅𝑀𝑅 = 
∑ 𝐹𝑗
𝑛𝑟𝑒𝑐
𝑗=1

𝐹𝑖𝑛
  ∀𝑗 ∈ 𝑆𝑟𝑒𝑐 (9-1) 

où Fj est la masse du flux de matière j, Fin est la masse du flux de matière entrant au procédé et Srec 

est l’ensemble de flux destinés aux marchés du recyclage de longueur nrec.. Dans le cas présent, les 

flux destinés aux marchés de recyclage incluent les métaux ferreux (U1), les métaux non-ferreux 

(U2), le PET (U3), le HDPE (U4), et dans certaines configurations, les plastiques mixtes.  

 Le deuxième critère définit le rendement énergétique des produits destinés aux filières de 

valorisation énergétique (RMV) selon la formule suivante :  

 𝑅𝑀𝑉 = 
∑ 𝐸𝑗
𝑛𝑣𝑎𝑙
𝑗=1

𝐸𝑖𝑛
  ∀𝑗 ∈ 𝑆𝑣𝑎𝑙 (9-2) 

où Ej est le contenu énergétique (MJ) contenu dans le flux de matière j, Ein est le contenu 

énergétique (MJ) du flux de matière entrant au procédé et Sval est l’ensemble de flux destinés à la 

valorisation énergétique de longueur nval. Dans le cas présent, les flux destinés à la valorisation 

énergétique incluent le CDD sec (U5) et le CDD carbonisé (U6). 

Le troisième critère définit un index représentant la pureté pondérée des flux de matières destinés 

aux marchés de recyclage (IPR) selon la formule suivante : 

 𝐼𝑃𝑅 =∑
𝐹𝑗

∑ 𝐹𝑗
𝑛𝑟𝑒𝑐
𝑗=1

𝐹𝑗,𝑐

𝐹𝑗

𝑛𝑟𝑒𝑐

𝑗=1
  ∀𝑗 ∈ 𝑆𝑟𝑒𝑐 (9-3) 

où 𝐹𝑗,𝑐 est la masse de la matière ciblée dans le flux j. Pour chaque marché de recyclage, la matière 

ciblée correspond à la matière principalement ciblée dans le ballot. La seule exception est le ballot 

de plastiques mixtes, pour lequel trois catégories de matières ont été considérées comme ciblées, 

soit le PET, le HDPE et les plastiques mixtes.  

Le quatrième critère définit un index représentant la pureté pondérée des flux de matières destinés 

à la valorisation énergétique (IPV) selon la formule suivante : 
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 𝐼𝑃𝑉 =∑
𝐹𝑗

∑ 𝐹𝑗
𝑛𝑣𝑎𝑙
𝑗=1

𝐹𝑗,𝑐

𝐹𝑗

𝑛𝑣𝑎𝑙

𝑗=1
  ∀𝑗 ∈ 𝑆𝑣𝑎𝑙 (9-4) 

Dans ce cas, les matières ciblées considérées pour une valorisation énergétique sont celles ayant 

un PCI supérieur à 12 MJ/kg sur une base humide. Il a été considéré qu’il n’est pas possible de 

séparer les matières n’ayant pas réagies durant l’étape de HTC du CDD carbonisé.  

9.3 Résultats et discussion 

La qualité des deux CDD produits par les différentes configurations de TMB est comparée à la 

norme identifiée, puis les scénarios permettant d’atteindre une qualité minimale sont comparés 

entre eux à partir des quatre critères de performance définis.  

9.3.1 Analyse de la qualité des produits 

Sur les 1200 scénarios analysés, aucun ne permet d’obtenir un produit combustible respectant les 

trois critères pour la classe 1, 2 ou 3 (Tableau 9-3) pour les deux CDD, tandis que 626 scénarios 

permettent d’obtenir une classe 4 pour les deux CDD. Les résultats obtenus pour les trois critères 

sont présentés dans la Figure 9.2 sous forme de diagramme à moustaches. Pour ces diagrammes, 

les trois lignes de la boîte représentent les trois quartiles, soit la valeur qui sépare les premiers 25%, 

50% et 75%. Les deux extrémités représentent les données minimales et maximales comprises dans 

l’intervalle correspondant à la valeur du quartile le plus proche plus ou moins 1.5 fois la différence 

entre le troisième quartile et le premier quartile. Finalement, les points à l’extérieur représentent 

les valeurs aberrantes.  

 

Figure 9.2 Diagramme à moustaches de la qualité des produits combustibles selon trois les critères, 

A) contenu en chlore, B) pouvoir calorifique inférieur et C) contenu en mercure 
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Parmi ces trois critères, le principal frein à l’atteinte d’une bonne qualité de CDD, autant pour le 

combustible sec que le combustible carbonisé, vient du faible PCI obtenu. Ceci a d’ailleurs été 

observé expérimentalement pour la production d’un CDD à partir de matières résiduelles (Bessi et 

al., 2016). En effet, une valeur de PCI inférieure à 15 MJ/kg est obtenue pour les deux combustibles 

dans tous les scénarios, ce qui est inférieur au critère pour atteindre la classe 3. Pour ce qui est du 

critère du contenu en chlore, les valeurs obtenues font en sorte que les deux produits sont 

principalement situés dans la classe 2, ou dans la classe 1 pour certains scénarios plus rares pour le 

CDD sec. Finalement, pour ce qui est du contenu en mercure, les résultats obtenus sont nettement 

plus petits que la limite inférieure pour atteindre la classe 1, faisant en sorte que tous les scénarios 

permettent d’obtenir un combustible respectant la classe 1. Toutefois, il est nécessaire de prendre 

ce dernier résultat avec prudence, puisque le mercure est présent en très faible quantité dans les 

ordures ménagères. Ainsi, il n’est pas toujours détecté dans les caractérisations réalisées. Il est donc 

possible qu’une caractérisation réelle mène à un contenu en mercure plus élevé. Toutefois, dans 

leur analyse de plusieurs échantillons de CDD produits par tri mécanique à partir de matières 

résiduelles, Bessi et al. (2016) ont montré que tous les échantillons respectaient le critère de classe 

1 pour le contenu en mercure, montrant que ce critère n’est généralement pas limitant.  

Comme le PCI se trouve à être un frein important pour atteindre une bonne qualité de CDD, ce 

paramètre a été étudié plus en détail pour les deux produits. Deux scénarios ont été comparés pour 

le CDD sec, soit lorsqu’aucune étape supplémentaire n’est effectuée (scénario 1A) ou lorsqu’un 

séchage est effectué permettant de retirer toute l’eau encore présente (scénario 1B). Pour le CDD 

carbonisé, quatre scénarios sont comparés, soit un traitement de la matière organique par une étape 

de HTC (scénario 2A), un traitement de la matière organique par une étape de HTC suivi d’une 

séparation parfaite de tous les composés inertes (scénario 2B), aucun traitement de la matière 

organique (scénario 2C) et un séchage de la matière organique uniquement (scénario 2D). Les 

résultats sont présentés dans la Figure 9.3. Dans cette figure, les lignes pointillées identifient les 

différentes classes pour le critère du PCI tel que présenté dans le Tableau 9-3. 
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Figure 9.3 Comparaison de scénarios pour la production d'un CDD  

Au niveau des scénarios 1A et 1B, un séchage du CDD permettrait d’obtenir un PCI supérieur à 15 

MJ/kg pour la plupart des configurations, ce qui permettrait d’atteindre un CDD de classe 3 pour 

ce critère. L’utilisation d’une étape de bio-séchage permettrait donc d’améliorer le PCI de la 

fraction. Toutefois, comme cette étape permet uniquement d’abaisser l’humidité des matières 

résiduelles à environ 20%, une autre étape de séchage serait possiblement nécessaire en vue 

d’atteindre 15 MJ/kg pour beaucoup de configurations modélisées.  

Au niveau des scénarios étudiés pour le CDD carbonisé, le scénario 2B se démarque clairement 

des autres scénarios en étant le seul permettant d’obtenir un CDD de classe 1-2. La possibilité de 

séparer les matières inertes du combustible carbonisé n’est toutefois pas garantie et devrait être 

étudiée plus en détail. Une certaine quantité des matières inertes pourrait par exemple être retirée 

en se basant sur une différence de tailles de particules ou par différence de densité. Ainsi, il serait 

possible d’obtenir un PCI entre le scénario 2A et le scénario 2B selon la capacité de séparation.   

Dans le cas où aucune séparation des matières inertes n’est possible, le procédé de HTC (2A) 

permet d’obtenir un PCI équivalent à un séchage complet des matières organiques (2D). Une 

analyse énergétique pourrait donc permettre de trancher parmi les deux approches pour déterminer 

laquelle aurait le meilleur rendement énergétique. L’avantage du scénario 2A par rapport au 

scénario 2D est toutefois qu’il permet également une diminution des concentrations de 

contaminants comme le chlore. Également, le scénario pour lequel aucun traitement n’est effectué 
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(2C), il est possible d’observer qu’un PCI significativement plus faible est obtenu que pour les 

autres et ne permet pas de produire un combustible intéressant pour une valorisation énergétique.  

9.3.2 Performance des scénarios 

En considérant les scénarios 1A et 2A (Figure 9.3) pour la production des CDD, les quatre critères 

de performance définis dans la section 9.2.3 ont été calculés pour toutes les configurations 

modélisées de TMB. Les critères sont comparés deux à deux dans la Figure 9.4 afin d’analyser les 

corrélations potentielles entre ceux-ci. Ainsi, le critère de récupération et le critère de pureté sont 

comparés pour les deux types de produits.  

 

Figure 9.4 Variation des critères deux à deux pour A) la pureté (IPR) et la récupération (RMR) des 

matières recyclables, B) la pureté (IPV) et la récupération (RMV) des matières combustibles, C) la 

récupération des matières combustibles (RMV) et la récupération des matières recyclables (RMR) 

et D) la pureté des matières combustibles (IPV) et la pureté des matières recyclables (IPR) 
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La Figure 9.4A et la Figure 9.4B montrent une corrélation inverse entre la pureté et la récupération 

des matières, autant au niveau des matières séparées pour les filières du recyclage (coefficient de 

corrélation de -0.23) que les matières séparées pour une valorisation énergétique (coefficient de 

corrélation de -0,63). Ceci indique très clairement qu’il n’est pas possible de maximiser ces deux 

paramètres en même temps. Ainsi, il est nécessaire de faire un compromis entre ces deux variables 

en fonction des objectifs du centre. Au niveau de la corrélation entre la récupération des matières 

recyclables et des matières combustibles (Figure 9.4C), les résultats semblent indiquer qu’une 

augmentation de l’un de ces critères permet également une augmentation de l’autre puisqu’une 

faible corrélation est observée (coefficient de corrélation de 0,35). Ainsi, augmenter la quantité de 

matières recyclables ne se traduit pas nécessairement par une diminution de la récupération des 

matières combustibles, ce qui est très intéressant pour assurer la viabilité de ce type de procédés. 

Une très faible corrélation est également observée pour la qualité des produits dédiés aux filières 

de recyclage et aux filières de valorisation énergétique (Figure 9.4D), puisqu’un coefficient de 

corrélation de 0,12 est obtenu, montrant que le lien entre ces variables est faible. Ainsi, améliorer 

la qualité d’un produit ne se traduit pas par une diminution de la pureté de l’autre.   

Les scénarios ont ensuite été filtrés afin de conserver uniquement les scénarios permettant de 

respecter le critère 2 pour le contenu en chlore et le critère 4 pour le PCI. Puis les scénarios ont été 

analysés afin de déterminer lesquels permettent d’obtenir la meilleure performance en fonction des 

critères considérés. Les cinq meilleures configurations pour les quatre critères sont présentées dans 

le Tableau 9-4. Dans certains cas, plusieurs configurations sont données pour une valeur unique 

d’un critère puisque ces configurations permettent d’obtenir exactement la même performance. 

Ceci arrive lorsqu’un équipement n’a pas d’influence sur un critère. Par exemple, le crible rotatif 

fin n’a pas d’influence sur la récupération des matières recyclables.  
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Tableau 9-4 Meilleures configurations de TMB selon le critère de performance considéré 

RMR RMV IPR IPV 

Configurations Valeurs Configurations Valeurs Configurations Valeurs Configurations Valeurs 

0-1-2-1-2-3 0,036 0-5-0-0-1-0 

0-5-0-0-0-0 

0,411 1-5-2-0-2-1 

1-5-2-0-2-2 

1-5-2-0-2-3 

1-5-2-0-2-0 

0,852 0-3-1-1-1-3 0,530 

0-2-1-1-2-2 

0-2-1-1-2-3 

0,035 0-5-0-0-1-1 

0-5-0-0-0-1 

0,404 1-5-1-0-2-1 

1-5-1-0-2-2 

1-5-1-0-2-3 

1-5-1-0-2-0 

0,850 0-3-2-1-1-3 0,529 

0-2-2-1-2-2 

0-2-2-1-2-3 

0,035 0-5-0-0-1-2 

0-5-0-0-0-2 

0,397 1-4-2-0-2-1 

1-4-2-0-2-2 

1-4-2-0-2-3 

0,850 0-4-1-1-1-3 0,529 

0-3-1-1-2-1 

0-3-1-1-2-2 

0-3-1-1-2-3 

0,034 0-5-0-0-1-3 

0-5-0-0-0-3 

0,389 1-3-2-0-2-1 

1-3-2-0-2-2 

1-3-2-0-2-3 

0,849 0-2-1-1-1-3 0,528 

0-3-2-1-2-1 

0-3-2-1-2-2 

0-3-2-1-2-3 

0,034 3-5-0-0-1-0 

3-5-0-0-0-0 

0,320 1-2-2-0-2-2 

1-2-2-0-2-3 

0,847 0-4-2-1-1-3 0,527 

Au niveau de la récupération des matières en vue de leur acheminement vers des filières de 

recyclage (RMR), il est tout d’abord possible de constater que même pour le scénario le plus 

performant, une quantité relativement faible de matières est récupérée, soit environ 3,5% de 

l’intrant. La valeur théorique maximale du RMR est de 5,4%, valeur qui pourrait théoriquement 

être atteinte si tous les équipements séparant des matières recyclables avaient une efficacité de 

100%. Cette faible récupération est attendue puisque la récupération de matières recyclables n’est 

généralement pas le principal objectif visé par un TMB. Une quantité de matières recyclables 

similaire est d’ailleurs obtenue pour le centre de tri de Valoris au Québec. Les cinq scénarios ont 

tous en commun qu’ils ne comprennent pas de crible rotatif grossier, ont deux séparateurs 

balistiques et acheminent les plastiques mixtes vers les marchés de recyclage. La principale 

différence se situe au niveau de la taille des ouvertures du crible rotatif médian. Plus la taille des 
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ouvertures est petite, plus la quantité de matières recyclables récupérée est importante puisqu’une 

quantité moins importante de ces matières est perdue dans le flux de matières organiques. Malgré 

une bonne récupération, on peut toutefois s’attendre à ce qu’une faible qualité de ces matières soit 

obtenue.  

Au niveau du critère de qualité des matières recyclables récupérées (IPR), des configurations très 

différentes sont d’ailleurs observées que pour le RMR. Ainsi, pour favoriser la qualité des matières 

recyclables, un crible rotatif grossier ayant la plus petite taille d’ouvertures et un crible rotatif 

médian ayant la plus large taille d’ouvertures devraient être utilisés. Comme pour le RMR, le 

premier séparateur balistique devrait être utilisé, les plastiques mixtes devraient être envoyés vers 

des filières de recyclage et le crible rotatif fin n’a pas d’influence. Ces tailles d’ouvertures pour les 

deux premiers cribles rotatifs permettent de retirer plusieurs contaminants de la ligne de contenants 

permettant ainsi d’obtenir de meilleures puretés, car plusieurs contaminants inertes ont une taille 

de particules élevée, mais se traduisent par une diminution importante de la récupération. Au niveau 

du deuxième séparateur balistique, son utilisation semble mener à une diminution de la qualité des 

matières recyclables, possiblement par une concentration de certaines matières incorrectement 

triées par les séparateurs optiques.  

Au niveau de la récupération de matières destinées à une filière de valorisation énergétique (RMV), 

tous les scénarios les plus performants ont en commun qu’ils n’ont pas de crible rotatif grossier, 

ont une large taille d’ouvertures pour le crible rotatif médian, n’ont pas de séparateur balistique. 

Ils ont cependant des tailles d’ouvertures variables au niveau du crible rotatif fin, puisque cet 

équipement permet principalement de retirer des matières inertes et n’a donc pas d’effet sur le 

rendement énergétique. Au niveau de la séparation des plastiques mixtes, le fait de ne pas avoir de 

séparation ou d’effectuer une séparation vers les filières de valorisation énergétique s’équivaut 

dans ces cinq configurations puisque lorsqu’il n’y a pas de séparateur balistique, toutes les matières 

n’ayant pas été récupérées de la ligne de contenant sont envoyées vers une valorisation énergétique. 

Ceci permet donc de favoriser la récupération, mais aux dépens de la qualité. Une large taille des 

ouvertures du crible rotatif médian est observée, car cela permet d’augmenter le PCI des matières 

organiques qui auraient autrement un contenu énergétique beaucoup plus faible. Ceci tend à 

démontrer que l’utilisation d’un procédé de HTC permet d’augmenter le rendement énergétique 

d’un TMB. 
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Finalement, au niveau de la pureté des matières destinées à la filière de la valorisation énergétique 

(IPV), la présence d’un crible rotatif grossier n’est pas nécessaire, mais les deux séparateurs 

balistiques doivent être présents, ainsi qu’un crible rotatif fin ayant la plus large taille d’ouvertures. 

Également, les plastiques mixtes doivent être acheminés vers la valorisation énergétique. Au niveau 

du crible rotatif médian, une taille d’ouvertures mitoyennes, soit entre 3 et 4 pouces est à privilégier. 

Ainsi, tel qu’attendu, une configuration complètement différente doit être utilisée pour produire 

des CDD de qualité que pour produire des quantités importantes de CDD.  

Ces résultats démontrent très clairement une opposition entre les configurations à privilégier pour 

atteindre une bonne récupération et une bonne pureté des différents produits d’une séquence de tri 

mécanique. Le Tableau 9-4 permet donc de privilégier certaines configurations de scénarios selon 

les différents critères, mais ne permet toutefois pas de choisir un scénario par rapport aux autres à 

partir d’un score unique. Pour ce faire, il est possible de pondérer les différents critères à partir de 

l’équation 9-1. Dans le cas présent, une pondération égale a été donnée à tous les facteurs. Il est 

toutefois possible de donner une pondération plus importante à un facteur, selon les objectifs 

spécifiques du centre.  

 𝐶𝐶 = 0.25
𝐶1,𝑐 − 𝐶1,𝑚𝑖𝑛
𝐶1,𝑚𝑎𝑥 − 𝐶1,𝑚𝑖𝑛

+ 0.25
𝐶2,𝑐 − 𝐶2,𝑚𝑖𝑛
𝐶2,𝑚𝑎𝑥 − 𝐶2,𝑚𝑖𝑛

+ 0.25
𝐶3,𝑐 − 𝐶3,𝑚𝑖𝑛
𝐶3,𝑚𝑎𝑥 − 𝐶3,𝑚𝑖𝑛

+ 0.25
𝐶4,𝑐 − 𝐶4,𝑚𝑖𝑛
𝐶4,𝑚𝑎𝑥 − 𝐶4,𝑚𝑖𝑛

  (9-5) 

où 𝐶𝐶 est le critère global pour la configuration c, 𝐶1,𝑐 est la valeur du premier critère, 𝐶1,𝑚𝑖𝑛 est la 

valeur minimale obtenue pour le premier critère et 𝐶1,𝑚𝑎𝑥 est la valeur maximale obtenue pour le 

premier critère. Cette équation permet donc d’obtenir une performance globale ayant une valeur 

entre 0 et 1. Les 10 configurations obtenant la valeur la plus élevée pour le critère global de 

performance et la valeur obtenue pour ce critère sont présentées dans le Tableau 9-5. 
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Tableau 9-5 Configuration des scénarios permettant d'obtenir les valeurs les plus élevées de Cc 

Rang Configuration Valeur de Cc 

1 0-2-2-0-2-3 0,621 

2 0-2-1-1-2-3 0,618 

3 0-3-2-0-2-3 0,618 

4 0-2-2-1-2-3 0,618 

5 0-2-1-0-2-3 0,617 

6 0-3-1-0-2-3 0,615 

7 0-1-2-1-2-3 0,615 

8 0-1-2-0-2-3 0,612 

9 0-3-1-1-2-3 0,611 

10 0-3-2-1-2-3 0,610 

En analysant ces résultats, certains aspects reviennent systématiquement dans toutes les 

configurations. Ainsi, pour effectuer un compromis entre les quatre critères, il n’est pas nécessaire 

d’avoir de crible rotatif grossier, le premier séparateur balistique doit être présent, les plastiques 

mixtes doivent être envoyés vers une filière de recyclage et il est nécessaire d’avoir un crible rotatif 

fin. Au niveau du crible rotatif médian, une taille d’ouvertures de 7.6 ou 8.9 cm est à privilégier. 

Pour ce qui est du deuxième séparateur balistique, sa nécessité dépend du scénario et son utilisation 

ne semble donc pas cruciale. Également, la taille des ouvertures du premier séparateur balistique 

ne semble avoir un impact important, probablement dû au fait que les quantités récupérées sont 

relativement faibles.  

Les résultats obtenus pour la taille des ouvertures de crible rotatif correspondent à ce qui est 

généralement observé dans la littérature, puisque des tailles d’ouverture de 8-9 cm ont souvent été 

rapportées (Montejo et al., 2010). Au niveau de la récupération des plastiques mixtes, même si le 

résultat de cette étude démontre qu’il serait préférable d’en effectuer la valorisation par recyclage, 

les deux alternatives devraient être étudiées à partir d’une analyse environnementale. Comme 

mentionné dans la revue de la littérature, cette fraction est généralement plus difficilement 

recyclable et est souvent caractérisée par une qualité moindre. Toutefois, la modélisation réalisée 

permet d’avoir des bases solides pour effectuer cette analyse. 
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9.4 Conclusions de l’étude de cas 

Cette étude de cas a permis de montrer que l’outil développé peut prédire la composition et les 

caractéristiques des différents produits issus d’un tri mécanique de matières résiduelles. Également, 

l’outil permet de modéliser l’impact d’intégrer un procédé de conversion thermique à une chaîne 

de tri mécanique. Ceci permet de facilement comparer plusieurs scénarios et configurations de 

systèmes pour la valorisation des matières résiduelles et peut faciliter la prise de décision selon la 

situation dans laquelle le système doit être implanté. Par exemple, la disponibilité d’énergie 

renouvelable et à faible émission de carbone dans un marché, les politiques gouvernementales et 

la présence de débouchés locaux pour les matières résiduelles peuvent toutes influencer 

considérablement la stratégie optimale de gestion, ainsi que la configuration privilégiée pour un 

TMB.  

Dans le cas présent, il a été montré que lors de l’implantation d’un procédé de TMB dans un 

contexte québécois, la valorisation énergétique des fractions combustibles semble indispensable 

malgré le profil énergétique actuel, puisque sans cette valorisation, le procédé ne permet de 

récupérer qu’au plus 3,5% des matières. Par contre, en regard des critères de qualité, il a été montré 

que l’atteinte d’un PCI élevé est le principal frein à la valorisation énergétique des matières 

résiduelles. Un séchage du CDD sec et une séparation des inertes du CDD carbonisé pourraient 

cependant considérablement améliorer la classe des CDD produits. 

Une comparaison de la performance des différents scénarios en regard de leur capacité à produire 

des CDD et des matières recyclables a montré qu’il est possible de combiner ces deux objectifs, 

puisqu’il n’y a pas de corrélation inverse entre ces deux objectifs autant au niveau de la qualité que 

de la récupération. Toutefois, l’atteinte d’une récupération élevée se fait nécessairement au profit 

d’une perte de pureté et vice versa. Ceci a d’ailleurs été observé pour les deux types de produits. 

Des compromis doivent donc être faits à partir d’un critère de comparaison unique, nécessitant 

toutefois une pondération des différents facteurs. Lorsque les 4 critères définis sont jugés égaux en 

termes d’importance, il est possible de maximiser la performance du TMB en utilisant une 

configuration requérant un crible rotatif médian d’environ 8 cm, un crible rotatif fin de 3 cm, un 

séparateur balistique et une séparation des plastiques mixtes pour l’acheminement vers des marchés 

de recyclage.  
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CHAPITRE 10 DISCUSSION GÉNÉRALE 

L’objectif principal de ce projet de recherche était de développer un outil prédictif permettant de 

représenter un procédé de TMB de matières résiduelles et pouvant capturer l’impact des 

mécanismes physiques et des propriétés des matières résiduelles. Cet objectif a principalement été 

atteint dans le Chapitre 8 alors que l’outil développé est présenté et dans le Chapitre 9, dans lequel 

il est utilisé dans une étude de cas. Toutefois, pour produire ces résultats, et ainsi répondre aux 

principales limitations identifiées dans la littérature quant à la modélisation du tri mécanique des 

matières résiduelles, plusieurs étapes ont dû être réalisées.  

Ainsi, afin d’améliorer la compréhension des mécanismes du tri mécanique des matières 

résiduelles, il a tout d’abord été montré qu’il est nécessaire d’obtenir plus d’informations sur les 

flux de matières et les efficacités de séparation des centres existants. Pour remédier à l’absence de 

méthodologie disponible dans la littérature pour réaliser ce type d’analyses, le Chapitre 4 présente 

une approche systématique permettant de déterminer les flux de matières d’un centre de tri 

mécanique en se basant sur la réalisation de caractérisations. Ce chapitre vient ainsi combler un 

vide dans la littérature, tout en permettant d’obtenir des efficacités de tri pour plusieurs 

équipements, données qui sont souvent très peu disponibles. L’obtention de ces données a 

d’ailleurs été essentielle au développement d’un modèle de séparateur balistique en fournissant des 

efficacités utiles pour la calibration du modèle.   

Le Chapitre 5 a ensuite permis d’identifier les limitations associées à la modélisation du tri 

mécanique des matières résiduelles à partir de coefficients de transfert et de brosser un portrait des 

données disponibles dans la littérature. Ce chapitre a également permis d’identifier des pistes pour 

améliorer la modélisation du tri mécanique, permettant ainsi d’établir les bases de l’outil. Comme 

il a été déterminé qu’une modélisation des mécanismes était nécessaire pour représenter les 

séparateurs directs ciblant une propriété, il a également été déterminé qu’une meilleure 

compréhension des propriétés physiques des matières résiduelles devait être atteinte, puisque la 

revue de la littérature a soulevé plusieurs limitations à ce niveau.  

Le Chapitre 6 et le Chapitre 7 ont ainsi permis de remédier à cette lacune en analysant trois 

principales propriétés physiques des matières résiduelles importantes pour le tri mécanique, soit la 

densité, le facteur de forme et la taille des particules. L’approche utilisée pour représenter le facteur 

de forme, soit la fraction de vide des matières, permet de quantifier pour une première fois cette 
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propriété dans le contexte des matières résiduelles, venant ainsi combler un vide important dans la 

littérature. Ceci a également mené à la modélisation du séparateur balistique et ouvre la porte à la 

modélisation de plusieurs autres équipements ciblant cette propriété. Au niveau de la représentation 

de la taille des particules des matières résiduelles, l’identification d’une distribution permettant de 

représenter l’ensemble des catégories de matière, soit la distribution de Rosin-Rammler, permet 

d’homogénéiser la modélisation de cette propriété dans la littérature. Ces chapitres ont donc 

contribué à l’amélioration de la modélisation des propriétés physiques dans la littérature et donc, 

fournis des bases solides pour la modélisation mécanistique des équipements de tri.  

Cette modélisation, présentée dans le Chapitre 8, permet de remédier aux principales limitations 

identifiées dans la littérature et dans le Chapitre 5 en lien avec la modélisation du tri mécanique, 

soit l’impossibilité de prendre en compte les propriétés physiques des matières, les conditions 

d’opération des équipements de tri et la séquence des opérations. De plus, il permet d’effectuer une 

intégration judicieuse de modèles mécanistiques et de coefficients de transfert selon les besoins 

spécifiques des opérations unitaires, permettant ainsi d’obtenir un niveau de détail élevé lorsque 

nécessaire sans ajouter un niveau de complexité trop important. L’outil présenté est le premier 

modèle de tri mécanique se basant sur une représentation des mécanismes des équipements pour 

lequel une validation avec des données de terrain a été effectuée. La validation effectuée, étant 

réalisée pour un centre de tri réel avec des données de terrain, permet de démontrer l’intérêt de 

l’ensemble de la méthodologie.  

Finalement, le modèle a été utilisé dans le Chapitre 9 pour analyser l’influence des conditions 

d’opération et de la séquence de tri sur l’efficacité d’un procédé de TMB auquel un procédé de 

carbonisation hydrothermale a été intégré à travers une analyse de scénarios. La flexibilité de l’outil 

développé répond à un besoin identifié en ayant la capacité de prédire l’efficacité de différentes 

configurations de tri pour différents flux de matières. Ainsi, le modèle peut être utilisé pour 

comparer des scénarios, déterminer les taux de recyclage d’un système, produire des inventaires 

de cycle de vie, analyser la récupération de nouveaux produits et prédire l’impact de l’ajout de 

nouvelles unités à un système existant. Cette capacité prédictive du modèle représente un atout 

indéniable dans le contexte actuel puisqu’il est attendu que les systèmes de gestion de matières 

résiduelles actuels évoluent dans les prochaines années devant l’émergence du concept d’éco-

conception, la progression de la collecte à la source, l’élargissement de la consigne et l’intérêt 

grandissant pour la réduction à la source.  
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Lors de la réalisation de ce projet, plusieurs défis importants ont été rencontrés. Ainsi, très peu de 

données sont disponibles dans la littérature en lien avec la modélisation du tri mécanique des 

matières résiduelles et les propriétés physiques de ces matières. Également, les données disponibles 

font souvent face à un manque de transparence et doivent être trouvées dans des sources moins 

conventionnelles. Par exemple, beaucoup d’informations en lien avec le tri mécanique des matières 

résiduelles ont été trouvées dans des rapports techniques plutôt que dans des articles scientifiques 

ou des livres, faisant en sorte que les données sont plus difficiles à obtenir et que leur qualité n’est 

pas assurée. Également, les données disponibles datent souvent de plusieurs années ce qui limite 

leur validité. Afin d’approfondir la modélisation du tri mécanique des matières résiduelles, il est 

donc essentiel d’obtenir la majorité des données à l’interne, puisque la littérature n’en contient pas 

suffisamment. 

Également, un autre défi important rencontré dans le cadre de ce projet est en lien avec les données 

réellement possibles d’obtenir dans un centre de tri mécanique. Ainsi, dans un centre de tri, il n’est 

pas possible de caractériser l’ensemble des convoyeurs. Le nombre de points qu’il est possible de 

réellement échantillonner est largement restreint, faisant en sorte qu’il n’est presque jamais 

possible de caractériser à la fois les matières entrantes et sortantes d’un équipement. Ceci limite 

grandement la possibilité de déterminer l’efficacité de différents équipements selon leurs 

conditions d’opération. Il est donc nécessaire de combler le manque de données disponibles par 

des caractérisations ciblées et des stratégies de résolution mathématique.  

Finalement, effectuer des caractérisations de propriétés physiques des matières, comme la taille 

des particules, prend un temps considérable. La réalisation de ce type de mesure doit donc être très 

bien ciblée et planifiée afin d’optimiser le temps de caractérisation et s’assurer que des données 

pertinentes et représentatives sont obtenues dans le projet. Par exemple, caractériser les tailles de 

particules d’une quinzaine de catégories de matières d’un échantillon de 50 kg de matières 

recyclables peut facilement prendre une journée de travail à une équipe de quatre trieurs.     
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CHAPITRE 11 CONCLUSION 

La conclusion inclut une synthèse des travaux réalisés durant ce projet, les principales limites 

identifiées et des recommandations en vue de travaux futurs. 

11.1 Synthèse des travaux 

Tout d’abord, la réalisation de ce projet de recherche a mené à l’amélioration de la représentation 

des propriétés physiques des matières résiduelles, variables qui sont essentielles à la modélisation 

des mécanismes du tri mécanique. Il a été montré que la taille des particules des matières résiduelles 

peut adéquatement être représentée par une distribution de Rosin-Rammler. Pour un mélange de 

matières résiduelles mixtes, la distribution des tailles de particules se traduit par deux modes, l’un 

pour les matières organiques et l’autre pour les matières inorganiques, démontrant l’intérêt 

d’utiliser cette propriété pour adéquatement séparer ces fractions. Une approche basée sur la 

fraction de vide a été proposée pour représenter le facteur de forme des matières résiduelles, 

permettant ainsi de quantifier pour une première fois cette propriété dans la littérature pour des 

matières résiduelles. Ceci permet également d’effectuer la modélisation d’équipements de tri 

ciblant cette propriété, comme les séparateurs balistiques. Le lien important entre les propriétés 

physiques des matières et la représentation numérique des opérations de tri a d’ailleurs été 

démontré à plusieurs reprises. 

Outre l’étude des propriétés, ce projet a également mené au développement d’une méthodologie 

permettant de calculer les efficacités de tri des différents équipements d’un centre de tri de matières 

résiduelles à partir d’un algorithme d’optimisation linéaire. Ceci permet d’homogénéiser les 

hypothèses posées et d’ainsi donner une plus grande transparence et une plus grande cohérence aux 

résultats obtenus. Ceci pourrait ainsi permettre de faciliter l’acquisition de ce type de données, 

menant à une meilleure compréhension globale de l’opération de centre de tri de matières 

résiduelles.  

Une analyse de la variabilité des efficacités de tri des opérations mécaniques des matières 

résiduelles a permis de catégoriser les principaux équipements en trois types selon l’approche à 

utiliser pour les modéliser, soit les séparateurs directs ciblant une propriété, les séparateurs directs 

ciblant une matière et les séparateurs indirects. De ces trois types, seuls les séparateurs directs 

ciblant une propriété requièrent d’être modélisés à partir d’une représentation des mécanismes 
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physiques puisqu’il a été montré qu’il est nécessaire de capturer l’effet des conditions opératoires 

sur l’efficacité de séparation pour ce type d’équipement.   

Finalement, un nouveau modèle intégrant une approche de modélisation mécanistique et par 

coefficients de transfert a été développé et validé. Ce modèle permet de prendre en considération 

les principales conditions d’opération des équipements de tri, la configuration des équipements et 

les propriétés physiques des matières entrantes. Ainsi, le modèle développé est le premier outil 

présenté dans la littérature ayant été validé permettant de prendre en compte ces trois aspects pour 

la représentation numérique du tri mécanique de matières résiduelles. Cet outil a une grande 

flexibilité permettant de facilement effectuer des analyses de scénarios.  

Une analyse réalisée a d’ailleurs permis de montrer que la production d’un combustible dérivé de 

déchets est essentielle pour permettre l’implantation d’un TMB dans un contexte québécois dû aux 

faibles taux de récupération des matières recyclables potentiellement atteignables, soit au mieux 

3,5%. Plus encore, une valorisation énergétique de la fraction organique devrait être envisagée 

puisque sa valorisation matérielle semble peu envisageable due à sa faible qualité. Ceci devrait 

toutefois se faire suite à une mise en valeur de cette fraction, par exemple à partir d’un séchage 

important ou l’utilisation d’un procédé thermochimique comme la carbonisation hydrothermale. 

Les résultats de cette analyse ont également montré qu’une augmentation de la récupération des 

matières se traduit inévitablement par une réduction de sa qualité, et cela autant pour les matières 

recyclables que les matières combustibles. Il est donc essentiel de faire un compromis entre ces 

deux variables lors de la conception de ce type de procédé. Finalement, les travaux ont permis 

d’identifier une configuration de TMB permettant de faire un compromis entre les différents 

critères de qualité. Celle-ci indique qu’une séparation de la fraction organique à partir d’une 

séparation granulométrique d’environ 8 cm suivie d’une purification avec une séparation 

granulométrique de 3 cm sont nécessaires. Également, l’utilisation d’au moins un séparateur 

balistique est requise pour assurer une qualité suffisante des fractions produites.  

L’ensemble de ces résultats témoigne que l’outil développé peut servir dans le contexte actuel de 

gestion des matières résiduelles pour favoriser une augmentation de la récupération des ressources. 

Cet outil peut également contribuer à mieux guider l’éco-conception des matières, la conception 

des centres de récupération et la planification globale des systèmes de gestion en fournissant des 

données d’analyses fiables.  
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11.2 Principales limitations et recommandations 

La qualité des prédictions de l’outil développé dépend fortement de la qualité de la représentation 

des caractéristiques des flux de matières. Ainsi, plus le nombre de catégories de matières considéré 

dans la modélisation est grand, plus les catégories sont homogènes, et donc plus la prédiction des 

caractéristiques est adéquate. Également, plus la qualité des caractérisations est grande, plus la 

qualité des prédictions est bonne. Toutefois, la prise en compte d’un plus grand nombre de 

catégories est limitée par la complexité engendrée par le besoin de déterminer des propriétés 

physiques pour toutes les nouvelles catégories. Ainsi, le nombre relativement restreint de catégories 

de matières résiduelles présentement considérées, principalement pour les catégories de matières 

inertes, devrait être augmenté dans des versions futures afin d’augmenter la qualité des prédictions.  

Également, les propriétés physiques sont déterminées à partir de caractérisation des matières. Par 

contre, à ce stade, l’analyse de la variation de ces propriétés en fonction de différents facteurs n’a 

pas été réalisée. Par exemple, les propriétés de certaines catégories de matières pourraient 

potentiellement varier en fonction de la saison, du niveau de compaction appliqué lors de la collecte 

et de l’humidité des matières. Les différentes propriétés peuvent donc potentiellement varier, ce 

qui n’a pas été considéré dans le cadre de ce projet. Une étude plus approfondie des sources de 

variation des propriétés physiques pourrait ainsi permettre d’augmenter la fiabilité des résultats.  

Cette dernière limitation est d’ailleurs reliée à une autre limitation précédemment identifiée quant 

à la prise en compte de l’humidité pour la modélisation des opérations de tri. Ainsi, dans la version 

actuelle, autant l’impact du taux d’humidité sur les autres propriétés que sur la réduction de 

l’efficacité des équipements n’ont pas été considérés. Approfondir le lien entre ces paramètres 

pourrait donc contribuer à améliorer la qualité de la prédiction. Ceci ouvre également la porte à 

une modélisation du bio-séchage, qui pourrait mener à une amélioration de la modélisation de la 

séquence. Plus globalement, la modélisation mécanistique proposée permet de représenter une 

opération idéale, ce qui n’est pas toujours le cas dans les centres de tri de matières résiduelles. 

Ainsi, l’encrassement a été négligé, malgré le fait que ceci peut jouer un rôle important dans la 

réduction de l’efficacité des équipements de tri. Cet aspect pourrait donc être modélisé à partir de 

relation empirique en fonction de différents paramètres comme la température extérieure, 

l’humidité et le débit d’opération.  
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Il est également à noter que les contraintes associées à la valorisation des matières résiduelles autres 

que la qualité des matières n’ont pas été prises en compte à ce stade. Toutefois, le recyclage et la 

valorisation de certaines fractions de matières résiduelles dépendent de plusieurs autres facteurs 

tels que des contraintes environnementales et sociales. Ainsi, l’acceptabilité sociale, la mitigation 

des nuisances et les impacts environnementaux associés à la valorisation d’un produit peuvent 

grandement affecter la recyclabilité réelle de ce produit. La prise en compte de ces aspects pourrait 

permettre de mieux refléter la situation réelle.  

Tous les résultats obtenus dans le cadre de ce projet l’ont été pour un contexte québécois. Toutefois, 

il serait possible d’utiliser ces résultats pour un contexte différent dans la mesure où les données 

brutes de propriétés physiques sont représentatives de la nouvelle situation à l’étude. Ainsi, la 

principale limite à l’extrapolation des résultats se situe au niveau de la représentativité de ces 

données pour d’autres contextes. Par exemple, il est possible que la composition des matières 

résiduelles, ou même la forme et la taille des objets, change selon les pays, les habitudes de 

consommation, les saisons, etc. Ainsi, pour permettre une utilisation de l’outil dans d’autres 

contextes, une investigation approfondie de cette représentativité devrait être réalisée. Toutefois, 

si un nombre de catégories de matières plus important était couvert dans une version future, il serait 

probablement plus facile d’extrapoler les résultats, puisque l’impact de la variation de la 

composition serait considérablement réduit.   

Finalement, en raison des contraintes externes au projet, le modèle de HTC n’a pas pu être validé 

expérimentalement. Ainsi, la fiabilité de ce modèle n’est pas garantie et devrait être investiguée 

plus en détail. Également, d’autres modèles, incluant autant des opérations de tri mécanique que 

des procédés thermochimiques, devraient être développés dans une prochaine version afin 

d’augmenter le nombre de modules disponibles, permettant ainsi d’analyser différentes 

configurations et différentes possibilités d’intégration de procédé dans la séquence de tri 

mécanique.  

11.3 Perspectives futures 

L’outil développé dans cette thèse permet de calculer les flux de matières et leurs principales 

caractéristiques pour un centre de tri mécanique de matières résiduelles. Les chapitres précédents 

ont montré les principales utilisations de l’outil et les principaux résultats pouvant en être tirés. 

Ceux-ci s’appliquent autant au niveau du tri des matières recyclables que du tri des matières 
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résiduelles mixtes à partir d’un TMB. Toutefois, l’outil peut également servir dans d’autres 

contextes pour améliorer la planification des systèmes de gestion. Par exemple, l’outil développé 

peut jouer un rôle pour améliorer la recyclabilité des nouvelles matières mises en marché sachant 

qu’un focus important est présentement mis sur la recyclabilité réelle des produits, autant au niveau 

de leur recyclage que de leur séparation. Ainsi, il est essentiel de s’assurer que les nouvelles 

matières vont pouvoir être réellement récupérées dans les centres afin d’en effectuer le recyclage. 

Ceci doit donc passer par une modélisation rigoureuse de la séparation de ces nouvelles matières.  

Également, il a été mentionné que certains questionnements ne peuvent pas être uniquement 

répondus avec l’outil développé. La planification en gestion des matières résiduelles dépend de 

plusieurs facteurs, qui ne sont pas exclusivement techniques, incluant des aspects énergétiques, 

environnementaux, sociaux et économiques. Ainsi, l’outil proposé doit servir de base pour guider 

ces analyses afin de s’assurer que les solutions choisies vont permettre d’obtenir des gains réels 

tout en s’intégrant adéquatement dans le contexte pour lequel elles sont proposées. Pour ce faire, 

l’outil développé peut servir pour calculer des inventaires de cycle de vie, menant à une description 

plus rigoureuse des flux de matières lors de l’analyse environnementale des produits. Une meilleure 

prédiction des émissions, des intrants et des différents produits peut ainsi être effectuée en utilisant 

l’approche de modélisation proposée dans cette thèse. 

Finalement, l’approfondissement des connaissances en lien avec les propriétés physiques des 

matières et des mécanismes de séparation mécanique pourrait permettre d’améliorer l’approche 

utilisée pour séparer les matières, ainsi que les équipements utilisés. Les résultats permettent de 

mieux cibler les mécanismes devant être exploités pour séparer certaines matières, ouvrant la voie 

au développement de nouvelles stratégies et de nouveaux équipements.  
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ANNEXE A  ANNEXE DE L’ARTICLE 2 

A1: Process block diagram  

 

Figure A1 Valoris MRF plant block diagram 
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A2: Input composition 

Table A1 MSW input composition adapted from (RECYC-QUÉBEC, 2015) 

Waste categories Fraction 

Ferrous metal 1.61% 

Non-ferrous metal 0.60% 

Glass 2.77% 

Plastics 3.02% 

HDPE 0.37% 

PET 0.63% 

Papers 3.14% 

Cardboards 4.76% 

Other inorganic materials 17.32% 

Other organic materials 18.52% 

Green residue 10.42% 

Food waste 25.69% 

Tree branches 1.99% 

Wood 2.02% 

Plastic films 3.18% 

Rubber 1.00% 

Textiles 2.94% 
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A3: Adaptation rules for obtaining the same waste categories: 

The rules should be followed in order and applied only if necessary. If the rule can not be applied 

due to a lack of data, go to the next rule. Rules should not be applied if there is already a raw data.  

1. Green residue is equal to food waste 

2. Food waste is equal to green residue 

3. Wood is equal to tree branches 

4. Tree branches is equal to wood 

5. Paper is equal to cardboard 

6. Cardboard is equal to paper 

7. Green residue, food waste, wood and tree branches are equal to other organics 

8. Plastic films, HDPE and PET are equal to plastics 

9. Papers, cardboards, HDPE, PET, plastic films, other plastics, ferrous metals, non-ferrous 

metals, glass, rubber, textiles are equal to other inorganics 

10. Other organics is equal to food waste 

11. Other inorganics is equal to rubber 
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A4: Valoris MRF partition coefficients 

Table A2 Partition coefficients derived for the Valoris MRF 

  MS ECS TR OS-PET OS-MP 

  

Ferrous 

output 

Non-

ferrous 

output 

Aluminium 

output 

Non-

aluminium 

output Unders Overs 

PET 

output 

Non-

PET 

output 

Plastic 

output 

Non-

plastic 

output 

Food waste 0.000 1.000 0.001 0.999 0.827 0.173 0.004 0.996 0.001 0.999 

Mixed 

paper 
0.000 1.000 0.011 0.989 0.307 0.693 0.010 0.990 0.005 0.995 

Flat 

cardboard 
0.012 0.988 0.004 0.996 0.189 0.811 0.008 0.992 0.002 0.998 

Multilayer 

cardboard 
0.000 1.000 0.001 0.999 0.598 0.402 0.001 0.999 0.001 0.999 

Ferrous 

metal 
0.945 0.055 0.000 1.000 0.502 0.498 0.000 1.000 0.000 1.000 

Non-

ferrous 

metal 

0.000 1.000 0.406 0.594 0.855 0.145 0.001 0.999 0.000 1.000 

Cans 0.000 1.000 0.727 0.273 0.941 0.059 0.000 1.000 0.001 0.999 

PET 0.000 1.000 0.000 1.000 0.579 0.421 0.667 0.333 0.061 0.939 

Mixed 

plastic 
0.000 1.000 0.000 1.000 0.544 0.456 0.005 0.995 0.345 0.655 

Rigid 

plastic 
- - - - 0.000 1.000 - - - - 

Plastic film 0.011 0.989 0.000 1.000 0.242 0.758 0.014 0.986 0.000 1.000 

Wood 0.000 1.000 0.000 1.000 0.063 0.937 0.001 0.999 0.000 1.000 

Fine 0.000 1.000 NaN NaN 1.000 0.000 NaN NaN NaN NaN 

Reject 0.004 0.996 0.001 0.999 0.497 0.503 0.003 0.997 0.001 0.999 
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A5. Valoris processes operating conditions  

Trommel: 

• Screen sizes: 12” 

• Length: 28 ft 

• Diameter: 10 ft 

Magnetic separator: 

• Targeted material concentration in the input: 3.5% 

Eddy current separator: 

• Targeted material concentration in the input: 4.4% 

Optical sorter – PET: 

• Targeted material concentration in the input: 4.4% 

Optical sorter – Mixed plastics: 

• Targeted material concentration in the input: 8.5% 
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A6: Adapted coefficients for the processes considered  

Some data were aggregated to correspond to similar categories. Data marked by * were adapted.  

Table A3 Adapted coefficients for the trommel 

 

Adapted from 

(Diaz et al., 1982) 

Adapted from 

(Diaz et al., 1982) 

Adapted from 

(Pressley et al., 

2015) 

Adapted from 

Valoris plant 

Overs Unders Overs Unders Overs Unders Overs Unders 

Ferrous metal 0.8 0.2 0.41 0.59 1 0 0.498 0.502 

Non-ferrous metal 0.8 0.2 0.37 0.63 1 0 0.12 0.88 

Glass 0.2 0.8 0.01 0.99 0.9 0.1 0 1* 

Plastics 0.9 0.1 0.62 0.38 0.95 0.05 0.588 0.412 

HDPE 0.9 0.1* 0.62 0.38* 0.95 0.05* 0.588 0.412* 

PET 0.9 0.1* 0.62 0.38* 0.95 0.05* 0.421 0.579 

Papers 0.85 0.15 0.69 0.31 1 0 0.693 0.307 

Cardboards 0.85 0.15 0.69 0.31 1 0 0.811 0.189 

Other inorganic materials 0.25 0.75 0.02 0.98 0.8 0.2 0.503 0.497 

Other organic materials 0.25 0.75 0.11 0.89 0.2 0.8 0.173 0.827* 

Green residue 0.25 0.75* 0.11 0.89* 0.15 0.85 0.173 0.827* 

Food waste 0.25 0.75* 0.11 0.89* 0.15 0.85 0.173 0.827 

Tree branches 0.25 0.75* 0.11 0.89* 0.9 0.1 0.937 0.063* 

Wood 0.25 0.75* 0.11 0.89* 0.95 0.05 0.937 0.063 

Plastic films 0.9 0.1* 0.62 0.38* 0.95 0.05 0.758 0.242 

Rubber 0.25 0.75* 0.02 0.98* 0.95 0.05 0.503 0.497* 

Textiles 0.25 0.75* 0.02 0.98* 0.95 0.05 0.503 0.497* 

Table A4 Adapted coefficients for the air classifier 

 

Adapted from 

(Bilitewski, 2010) 

Adapted from (Diaz 

et al., 1982) 

Adapted from (Diaz 

et al., 1982) 

Adapted from 

(Caputo & 

Pelagagge, 2002) 

Light  Heavy  Light  Heavy  Light  Heavy  Light  Heavy  

Ferrous metal 0.125 0.875 0.1 0.9 0.1 0.9 0.1 0.9 

Non-ferrous metal 0.385 0.615 0.5 0.5 0.5 0.5 0.8 0.2 

Glass 0.056 0.944 0.6 0.4 0.02 0.98 0.7 0.3 

Plastics 0.51 0.49 0.98 0.02 0.98 0.02 0.98 0.02 

HDPE 0.51 0.49* 0.98 0.02* 0.98 0.02* 0.98 0.02* 

PET 0.51 0.49* 0.98 0.02* 0.98 0.02* 0.98 0.02* 

Papers 0.82 0.18 0.98 0.02 0.98 0.02 0.98 0.02 

Cardboards 0.683 0.317 0.98 0.02 0.98 0.02 0.98 0.02 

Other inorganic materials 0.333 0.667* 0.2 0.8 0.15 0.85 0.2 0.8 

Other organic materials 0.443 0.557* 0.7 0.3 0.4 0.6 0.7 0.3 

Green residue 0.443 0.557* 0.7 0.3* 0.4 0.6* 0.7 0.3* 

Food waste 0.443 0.557 0.7 0.3* 0.4 0.6* 0.7 0.3* 

Tree branches 0.368 0.632* 0.7 0.3* 0.4 0.6* 0.7 0.3* 

Wood 0.368 0.632 0.7 0.3* 0.4 0.6* 0.7 0.3* 

Plastic films 0.94 0.06 0.98 0.02* 0.98 0.02* 0.98 0.02* 

Rubber 0.333 0.667 0.2 0.8* 0.15 0.85* 0.2 0.8* 

Textiles 0.783 0.217 0.2 0.8* 0.15 0.85* 0.2 0.8* 
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Table A5 Adapted coefficients for the magnetic separator 

 

Adapted from 

(Pressley et al., 2015) 

Adapted from (Ip et 

al., 2018) 

Adapted from (Diaz 

et al., 1982) 

Adapted from Valoris 

plant 

Magnetic  Other  Magnetic  Other  Magnetic  Other  Magnetic  Other  

Ferrous metal 0.88 0.12 0.951 0.049 0.8 0.2 0.945 0.055 

Non-ferrous metal 0 1 0.0007 0.9993 0 1 0 1 

Glass 0 1 0.0022 0.9978 0 1 0 1* 

Plastics 0 1 0.0031 0.9969 0.02 0.98 0 1 

HDPE 0 1 0.0031 0.9969 0.02 0.98* 0 1* 

PET 0 1 0.0031 0.9969 0.02 0.98* 0 1 

Papers 0 1 0.0007 0.9993 0.02 0.98 0 1 

Cardboards 0 1 0.0007 0.9993 0.02 0.98 0.012 0.988 

Other inorganic 

materials 0 1 0.0147 0.9853 0 1 0.004 0.996 

Other organic materials 0 1 0.0002 0.9998 0.05 0.95 0 1* 

Green residue 0 1 0.0002 0.9998* 0.05 0.95* 0 1* 

Food waste 0 1 0.0002 0.9998* 0.05 0.95* 0 1 

Tree branches 0 1 0.0002 0.9998* 0.05 0.95* 0 1* 

Wood 0 1 0.0002 0.9998* 0.05 0.95* 0 1 

Plastic films 0 1 0.0144 0.9856 0.02 0.98* 0.011 0.989 

Rubber 0 1 0.0147 0.9853* 0 1* 0.004 0.996* 

Textiles 0 1 0.0147 0.9853* 0 1* 0.004 0.996* 

Table A6 Adapted coefficients for the eddy current separator 

 

Adapted from 

(Savage et al., 

1984) 

Adapted from (Ip 

et al., 2018) 

Adapted from 

(Pressley et al., 

2015) 

Adapted from 

(Caputo & 

Pelagagge, 2002) 

Adapted from 

Valoris plant 

Alumin

ium Other 

Alumin

ium Other 

Alumin

ium Other 

Alumin

ium Other 

Alumin

ium Other 

Ferrous metal 1 0 0 1 0 1 0.8 0.2 0 1 

Non-ferrous metal 0.636 0.364 0.846 0.154 0.87 0.13 0.9 0.1 0.549 0.451 

Glass 0.083 0.917 0.762 0.239 0 1 0 1 0 1* 

Plastics 0.089 0.911 0.008 0.992 0 1 0.02 0.98 0 1 

HDPE 0.089 0.911* 0.008 0.992 0 1 0.02 0.98* 0 1* 

PET 0.089 0.911* 0.008 0.992 0 1 0.02 0.98* 0 1 

Papers 0.083 0.917* 0.000 1.000 0 1 0.02 0.98 0.011 0.989 

Cardboards 0.083 0.917* 0.000 1.000 0 1 0.02 0.98 0.004 0.996 

Other inorganic 

materials 0.083 0.917 0.004 0.996 0 1 0.05 0.95 0.001 0.999 

Other organic 

materials 0.083 0.917* 0.001 1.000 0 1 0.02 0.98 0.001 0.999* 

Green residue 0.083 0.917* 0.001 1.000* 0 1 0.02 0.98* 0.001 0.999* 

Food waste 0.083 0.917* 0.001 1.000* 0 1 0.02 0.98* 0.001 0.999 

Tree branches 0.083 0.917* 0.001 1.000* 0 1 0.02 0.98* 0 1* 

Wood 0.083 0.917* 0.001 1.000* 0 1 0.02 0.98* 0 1 

Plastic films 0.089 0.911* 0.001 0.999 0 1 0.02 0.98* 0 1 

Rubber 0.083 0.917* 0.004 0.996* 0 1 0.05 0.95* 0.001 0.999* 

Textiles 0.083 0.917* 0.004 0.996* 0 1 0.05 0.95* 0.001 0.999* 
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Table A7 Adapted coefficients for the ballistic separator 

 

Adapted from (Raymond. 

2017) 

Adapted from (Caputo & 

Pelagagge. 2002) 

Adapter from (Müller et al.. 

2003) 

Fines 2D 3D Fines 2D 3D Fines 2D 3D 

Ferrous metal 0.03 0.04 0.93 0 0.1 0.9 0.04 0.64 0.32* 

Non-ferrous metal 0.03 0.04 0.93 0 0.8 0.2 0.04 0.64 0.32* 

Glass 0.52 0.12 0.36 0 0.7 0.3 1.00 0.00 0.00 

Plastics 0.1 0.23 0.67* 0 0.98 0.02 0.05 0.79 0.16 

HDPE 0.1 0.23 0.67 0 0.98 0.02* 0.05 0.79 0.16* 

PET 0.1 0.2 0.7 0 0.98 0.02* 0.05 0.79 0.16* 

Papers 0 0.76 0.24 0 0.98 0.02 0.02 0.91 0.07* 

Cardboards 0 0.76 0.24 0 0.98 0.02 0.02 0.91 0.07* 

Other inorganic 

materials 0.5 0.25 0.25 0 0.2 0.8 0.16 0.79 0.05 

Other organic 

materials 0.5 0.25 0.25* 0 0.6 0.4 0.00 0.97 0.02 

Green residue 0.5 0.25 0.25* 0 0.6 0.4* 0.40 0.51 0.09* 

Food waste 0.5 0.25 0.25* 0 0.6 0.4* 0.40 0.51 0.09 

Tree branches 0 0 1* 0 0.6 0.4* 0.11 0.43 0.46* 

Wood 0 0 1* 0 0.6 0.4* 0.11 0.43 0.46 

Plastic films 0 0.76 0.24* 0 0.98 0.02* 0.01 0.97 0.01 

Rubber 0.5 0.25 0.25* 0 0.2 0.8* 0.00 0.85 0.15* 

Textiles 0.5 0.25 0.25* 0 0.2 0.8* 0.00 0.85 0.15 

 

Table A8 Adapted coefficients for the optical sorter targeting PET 

 

Adapted from (Pressley et 

al., 2015) 

Adapted from (Ip et al., 

2018) 

Adapted from Valoris 

plant 

PET Other PET Other PET Other 

Ferrous metal 0 1 0.3375 0.6625 0 1 

Non-ferrous metal 0 1 0.0474 0.9526 0.001 0.999 

Glass 0 1 0.0103 0.9897 0.003 0.997* 

Plastics 0 1 0.1074 0.8926 0.005 0.995 

HDPE 0 1 0.2066 0.7934 0.005 0.995* 

PET 0.83 0.17 0.9319 0.0681 0.667 0.333 

Papers 0 1 0.0485 0.9515 0.01 0.99 

Cardboards 0 1 0.0485 0.9515 0.008 0.992 

Other inorganic materials 0 1 0.3175 0.6825 0.003 0.997 

Other organic materials 0 1 0.0005 0.9995 0.004 0.996* 

Green residue 0 1 0.0005 0.9995* 0.004 0.996* 

Food waste 0 1 0.0005 0.9995* 0.004 0.996 

Tree branches 0 1 0.0005 0.9995* 0 1* 

Wood 0 1 0.0005 0.9995* 0 1 

Plastic films 0 1 0.1316 0.8684 0.014 0.986 

Rubber 0 1 0.3175 0.6825* 0.003 0.997* 

Textiles 0 1 0.3175 0.6825* 0.003 0.997* 
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Table A9 Adapted coefficients for the optical sorter targeting HDPE 

 

Adapted from (Pressley 

et al.. 2015) 

Adapted from (Ip et al.. 

2018) 

HDPE Other HDPE Other 

Ferrous metal 0 1 0 1 

Non-ferrous metal 0 1 0.0007 0.9993 

Glass 0 1 0.0028 0.9972 

Plastics 0 1 0.0093 0.9907 

HDPE 0.83 0.17 0.7129 0.2871 

PET 0 1 0.0032 0.9968 

Papers 0 1 0.0005 0.9995 

Cardboards 0 1 0.0005 0.9995 

Other inorganic materials 0 1 0.0028 0.9972 

Other organic materials 0 1 0 1 

Green residue 0 1 0 1* 

Food waste 0 1 0 1* 

Tree branches 0 1 0 1* 

Wood 0 1 0 1* 

Plastic films 0 1 0.0673 0.9327 

Rubber 0 1 0.0028 0.9972* 

Textiles 0 1 0.0028 0.9972* 

 

Table A10 Adapted coefficients for the optical sorter targeting mixed plastics 

 

Adapted from (Ip et al.. 

2018) 

Adapted from Valoris 

plant 

Plastics Other Plastics Other 

Ferrous metal 0.0017 0.9983 0 1 

Non-ferrous metal 0.021 0.979 0 1 

Glass 0.2181 0.7819 0.001 0.999* 

Plastics 0.7445 0.2555 0.345 0.655 

HDPE 0.0081 0.9919 0.345 0.655* 

PET 0.0049 0.9951 0.061 0.939 

Papers 0.0032 0.9968 0.005 0.995 

Cardboards 0.0032 0.9968 0.002 0.998 

Other inorganic materials 0.0373 0.9627 0.001 0.999 

Other organic materials 0.0006 0.9994 0.001 0.999* 

Green residue 0.0006 0.9994* 0.001 0.999* 

Food waste 0.0006 0.9994* 0.001 0.999 

Tree branches 0.0006 0.9994* 0 1* 

Wood 0.0006 0.9994* 0 1 

Plastic films 0.2179 0.7821 0 1 

Rubber 0.0373 0.9627* 0.001 0.999* 

Textiles 0.0373 0.9627* 0.001 0.999* 

*These data were adapted. 
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A7. HDPE and second non-ferrous output streams according to the chosen datasets 

 

Figure A2 Dispersion and center of gravity displacement for the purity and the recovery of the 

HDPE stream (M6) according to the chosen datasets 
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Figure A3 Dispersion and center of gravity displacement for the purity and the recovery of the 

second non-ferrous output stream (M5) according to the chosen datasets 
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ANNEXE B  ANNEXE DE L’ARTICLE 3 

B1. Equations used for the statistical analysis and the model development 

1) p-value calculation:  

 

𝑝 = 2𝑃

(

 
 
 

𝑇0 >
|

| 𝑥̅1 − 𝑥̅2

√
𝑠1
2
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2

𝑁2

|

|

)

 
 
 

 (B.1) 

where 𝑥̅ is the calculated mean diameter, s is the calculated standard deviation of the samples and 

N is the number of samples.  

2) Goodness-of-fit calculation: 

The residual sum of squares is given by 

 𝑅𝑆𝑆 =∑(𝐹𝑖(𝑥) − 𝐹𝑖(𝑥)̂)
2

𝑖

 (B.2) 

Where 𝐹(𝑥) is the actual cumulative distribution data and 𝐹(𝑥)̂ is the predicted cumulative 

distribution data for a given sieve diameter x. 

The Vn statistic test is defined as 

 𝑉𝑛 = 𝑠𝑢𝑝
𝑥
𝐷𝑛(𝑥) − 𝑖𝑛𝑓

𝑥
𝐷𝑛(𝑥) = 𝐷𝑛

+ + 𝐷𝑛
− (B.3) 

where 

 𝐷𝑛(𝑥) =  𝐹𝑖(𝑥)̂ − 𝐹𝑖(𝑥) (B.4) 
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B2. Fitting results 

1) Household wastes 

Table B1 Goodness-of-fit results and distribution parameters for household wastes 

Waste 

category 
Distribution type 

Location or 

shape parameter 

Scale 

parameter 
RSS Vn 

Animal 

derived food 

waste 

Log-normal 0.22 0.40 0.00127 0.0397 

Rosin-Rammler 1.49 2.65 0.00216 0.0456 

Gamma 6.05 4.53 0.00172 0.0437 

Vegetable 

food waste 

Log-normal 0.51 0.63 0.00086 0.0393 

Rosin-Rammler 2.15 1.74 0.00149 0.0454 

Gamma 2.68 1.38 0.00068 0.0362 

Green residue 

Log-normal 0.07 0.89 0.00748 0.1119 

Rosin-Rammler 1.50 1.10 0.00483 0.0924 

Gamma 1.18 0.80 0.00503 0.0951 

Other organic 

waste 

accepted 

Log-normal 0.48 0.34 0.00036 0.023 

Rosin-Rammler 1.87 3.94 0.00022 0.0156 

Gamma 9.63 5.64 0.00002 0.0058 

Other organic 

waste not 

accepted 

Log-normal -0.28 0.77 0.00069 0.0316 

Rosin-Rammler 0.97 1.10 0.00025 0.0183 

Gamma 1.20 1.27 0.00028 0.0192 

Paper and 

cardboard 

Log-normal 1.40 0.44 0.00083 0.0379 

Rosin-Rammler 4.49 3.24 0.00006 0.0106 

Gamma 6.28 1.48 0.00043 0.0271 

Plastics 

Log-normal 1.32 0.55 0.00032 0.0203 

Rosin-Rammler 4.34 2.49 0.00188 0.0532 

Gamma 4.23 1.04 0.00087 0.0346 

Other plastics 

Log-normal 1.43 1.01 0.00083 0.0392 

Rosin-Rammler 5.36 1.38 0.00216 0.0607 

Gamma 1.61 0.31 0.00183 0.0561 

Plastic bags 

Log-normal 1.19 0.34 0.00004 0.0079 

Rosin-Rammler 3.72 3.62 0.00185 0.0577 

Gamma 9.39 2.74 0.00028 0.0211 

Non ferrous 

metal 

Log-normal 0.99 0.35 0.00423 0.0843 

Rosin-Rammler 3.10 3.14 0.01145 0.1324 

Gamma 8.35 2.95 0.0061 0.1015 

Ferrous metal 

Log-normal 1.11 0.40 0.0042 0.0722 

Rosin-Rammler 3.52 2.94 0.00256 0.0665 

Gamma 6.59 2.04 0.00344 0.0675 

Glass 
Log-normal 1.14 0.24 0.00121 0.0388 

Rosin-Rammler 3.44 4.70 0.0006 0.0294 
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Gamma 17.68 5.54 0.00059 0.0245 

Hazardous 

residual waste 

Log-normal 0.91 0.81 0.01607 0.0546 

Rosin-Rammler 3.32 1.44 0.02578 0.0899 

Gamma 1.91 0.62 0.02291 0.0768 

Wood 

Log-normal 1.90 0.40 0.00282 0.0526 

Rosin-Rammler 9.07 2.80 0.00083 0.0283 

Gamma 6.09 0.80 0.0019 0.0427 

Others 

Log-normal 1.70 0.74 0.00152 0.0504 

Rosin-Rammler 6.00 2.16 0.00065 0.0331 

Gamma 2.86 0.48 0.00097 0.0403 

 

Table B2 Goodness-of-fit results and distribution parameters for the green residue and the glass 

per season 

Waste category 
Distribution 

type 

Location or shape 

parameter 

Scale 

parameter 
RSS Vn 

Green residue - 

Fall 

Log-normal -0.45 0.96 0.00826 0.1198 

Rosin-

Rammler 
0.87 0.88 0.00683 0.1100 

Gamma 0.75 0.82 0.00663 0.1089 

Green residue - 

Summer 

Log-normal 0.38 0.58 0.02944 0.2247 

Rosin-

Rammler 
1.89 1.95 0.01747 0.1700 

Gamma 3.03 1.79 0.02253 0.1984 

Glass - Fall 

Log-normal 1.07 0.26 0.00087 0.0327 

Rosin-

Rammler 
3.23 4.39 0.00233 0.0539 

Gamma 15.30 5.11 0.00177 0.0250 

Glass - Summer 

Log-normal 1.21 0.20 0.00214 0.0496 

Rosin-

Rammler 
3.64 5.48 0.00028 0.0182 

Gamma 24.01 7.05 0.00177 0.0471 
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2) C&D wastes 

Table B3 Goodness-of-fit results and distribution parameters for the C&D wastes 

Waste category Distribution type 
Location or 

shape parameter 
Scale parameter RSS Vn 

Engineered wood 

Log-normal 1.23 0.55 0.00442 0.067 

Rosin-Rammler 4.32 2.13 0.00023 0.0182 

Gamma 3.59 0.93 0.00112 0.0343 

Untreated wood 

Log-normal 0.92 0.46 0.00324 0.062 

Rosin-Rammler 2.93 2.78 0.00053 0.0298 

Gamma 5.31 1.97 0.00141 0.0467 

Fiberglass 

Insulation 

Log-normal 1.20 0.47 0.0423 0.2226 

Rosin-Rammler 4.01 2.53 0.01871 0.1555 

Gamma 4.55 1.25 0.03061 0.1973 

Pink & Blue 

Polystyrene 

Insulation 

Log-normal 0.82 0.38 0.00437 0.0807 

Rosin-Rammler 2.62 3.19 0.00043 0.0262 

Gamma 7.42 3.10 0.00253 0.0626 

Polyisocyanurate 

Insulation 

Log-normal 0.21 0.28 0.00382 0.0633 

Rosin-Rammler 1.39 3.94 0.00072 0.0248 

Gamma 12.46 9.76 0.00284 0.051 

White 

Polystyrene 

Insulation 

Log-normal 0.59 1.19 0.03685 0.2058 

Rosin-Rammler 2.82 0.96 0.01803 0.1552 

Gamma 0.89 0.31 0.01738 0.1497 

Gypsum 

Log-normal 0.94 0.62 0.01909 0.1261 

Rosin-Rammler 3.26 1.88 0.00466 0.065 

Gamma 2.77 0.93 0.00954 0.0974 

PVC 

Log-normal 0.67 0.63 0.01492 0.1426 

Rosin-Rammler 2.45 1.93 0.00891 0.118 

Gamma 2.86 1.27 0.01035 0.121 

Plastics 

Log-normal 1.02 0.71 0.00293 0.0681 

Rosin-Rammler 3.74 1.58 0.00946 0.1097 

Gamma 2.23 0.66 0.00598 0.0863 

Paper and 

Carboard 

Log-normal 0.97 0.55 0.00104 0.0303 

Rosin-Rammler 3.22 2.24 0.00145 0.0428 

Gamma 3.73 1.26 0.0001 0.0116 

Shingles 

Log-normal 1.09 0.41 0.0031 0.0687 

Rosin-Rammler 3.41 3.12 0.00044 0.0262 

Gamma 6.36 2.01 0.00108 0.0401 

Other 

combustibles 

Log-normal 1.23 0.31 0.00658 0.0726 

Rosin-Rammler 3.94 3.51 0.00078 0.0282 

Gamma 9.51 2.64 0.00413 0.0627 

Other non-

combustibles 

Log-normal 0.91 0.51 0.00753 0.0989 

Rosin-Rammler 2.97 2.42 0.00253 0.0694 

Gamma 4.18 1.53 0.00417 0.0825 
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B3. Student-test results 

1) Influence of the season 

Table B4 Student-test results for the equality of mean particle size hypothesis between two 

seasons 

Waste category p-value Rejection of 

the hypothesis 

Animal derived food waste 0.9012 Not rejected 

Vegetable food waste 0.1936 Not rejected 

Green residue 0.0051 Rejected 

Other organic waste accepted 0.3273 Not rejected 

Other organic waste not accepted  0.5486 Not rejected 

Paper and cardboard 0.1017 Not rejected 

Plastics 0.0790 Not rejected 

Other plastics 0.0488 Not rejected 

Plastic bags 0.1780 Not rejected 

Non-ferrous metal 0.5468 Not rejected 

Ferrous metal 0.6453 Not rejected 

Glass 0.0066 Rejected 

Others 0.8747 Not rejected 

 

2) Influence of the collection type 

Table B5 Hypothesis tests results for the collection type influence on particle size 

Waste category p-value Rejection of 

the hypothesis 

Animal derived food waste 0.8081  Not rejected 

Vegetable food waste 0.1059  Not rejected 

Other organic waste accepted 0.0588  Not rejected 
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B4. Mixed MSW compositions 

Table B6 Composition of various MSW 

 
This 

study 

(Fall) 

This 

study 

(Summer

) 

(Christen

sen et al., 

2011)* 

(Edjabou 

et al., 

2015)* 

(Montejo 

et al., 

2011)* 

(Burnley 

et al., 

2007)* 

Source-

separated 

inorganic

s* 

Source-

separated 

organics 

Animal 

derived 

food waste 

0.1025 0.1638 0.3614 0.081 0.2813 0.1755 0.009 0.350 

Vegetable 

food waste 
0.2751 0.1673 0 0.365 0.2813 0.1755 0.000 0.431 

Green 

residue 
0.0224 0.0055 0.0341 0.048 0.0184 0 0.000 0.017 

Other 

organic 

waste 

accepted 

0.0613 0.0522 0.012 0 0 0 0.002 0.075 

Other 

organic 

waste not 

accepted 

0.1112 0.1888 0.0753 0.086 0 0.036 0.005 0.014 

Paper and 

cardboard 
0.0864 0.0784 0.2149 0.144 0.138 0.236 0.611 0.055 

Plastics 0.0328 0.0308 0.1044 0.051 0.0777 0.102 0.071 0.005 

Other 

plastics 
0.016 0.0058 0.0251 0.005 0.029 0 0.020 0.036 

Plastic bags 0.0492 0.0524 0 0.098 0 0 0.017 0.001 

Non ferrous 

metal 
0.0045 0.0043 0 0 0.005 0.01 0.029 0 

Ferrous 

metal 
0.0165 0.007 0.0402 0.019 0.0246 0.036 0.010 0.001 

Glass 0.0292 0.0403 0.0572 0.021 0.0328 0.072 0.184 0.008 

Hazardous 

residual 

waste 

0.0087 0.0058 0 0.006 0 0.006 0.002 0 

Wood 0.0081 0.0331 0.0622 0.006 0.0133 0 0.003 0.003 

Others 0.176 0.1646 0.0131 0.07 0.0986 0.151 0.000 0.004 

* These characterizations were adapted to correspond to the waste categories considered in this 

study. 
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ANNEXE C  ANNEXE DE L’ARTICLE 4 

C1. Composition of the source-separated recyclable materials  

Table C1 Composition of the source-separated recyclable materials 

Waste category  Samples composition Average waste 

fraction for the 

Quebec province 

(Canada)1 

Mean weight 

fraction (%) 

Standard 

deviation (%) 

Corrugated cardboards 19.5 3,5% 12,7 

Multilayer cardboards 2.6 0,6% 2,5 

Flat cardboards 10.1 1,4% 8,6 

Newspapers 10.0 4,5% 19,2 

Mixed papers 13.6 6,4% 12,5 

Broken glass 8.9 3,0% 
19,0 

Unbroken glass 6.3 4,2% 

PET 4.0 0,8% 2,8 

HDPE 3.6 2,4% 2,1 

Plastic films 2.5 0,4% 2,8 

Mixed plastics 3.4 0,6% 3,3 

Ferrous metals 3.1 0,7% 2,9 

Non-ferrous metals 0.9 0,4% 0,6 

Rejects 11.4 0,2% 11,1 

1. RECYC-QUÉBEC. (2020). Caractérisation des matières sortantes des centres de tri 2018-2020 

(p. 17). https://www.recyc-quebec.gouv.qc.ca/haut-de-page/salle-de-presse/archives-presse/2020-

publication-caracterisation-matieres-sortantes-centres-de-tri-2018-2020 
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C2. Data representativeness for bulk density measurement  

Two different measurements were performed on the bulk density data to assess the 

representativeness of the samples. The confidence interval was calculated on the data and a 

theoretical sample size required to achieve a certain confidence was calculated for further 

characterizations. Both analyses are performed based on the Student’s t-test.  

For the waste categories that had large quantities of objects gathered during the sorting step, the 

initial six collected samples were further separated in smaller samples to facilitate the density 

measurements. As a result, between five and twelve samples were obtained per waste category for 

the density measurements, and thus for the statistical analysis.  

The confidence interval expressed as a percentage of the mean value was calculated based on the 

Student’s t-test using a confidence level of 90%. Results are presented in Table C2. Confidence 

intervals vary between 9.5% and 28% for the main waste categories.  

For the minimum theoretical mass to sample, the number of samples required to achieve a 

confidence interval smaller than 20% is calculated according to the sample size used during this 

study (sum of 50 kg for all the categories). The standard deviation and the mean bulk density were 

assumed to be constant. The minimum number of samples, the sample size and the total mass to 

collect for each waste material are presented in Table C2. Samples varying from 3 kg to 70 kg were 

calculated according to the waste material and its variability. 
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Table C2 Statistical analysis of the density measurements 

Waste category Actual confidence 

interval (%) 

obtained using the 

6 initial samples 

Theoretical sample size to collect to achieve a confidence 

interval smaller than 20% with a confidence level of 90% 

Average mass per 

sample (kg) 

Number of 

samples required 

Theoretical mass 

to sample (kg) 

Corrugated cardboards 13.8 4.9 5 24.5 

Multilayer cardboards 21.5 1.3 5 6.5 

Flat cardboards 11.6 4.3 2 8.6 

Newspapers 13.8 3.8 3 11.4 

Mixed papers 27.8 5.0 14 70.0 

Broken glass 10.7 4.4 2 8.8 

Unbroken glass 32.8 3.3 8 26.4 

PET 11.9 1.7 2 3.4 

HDPE 9.5 1.5 2 3.0 

Plastic films 21.3 1.1 6 6.6 

Mixed plastics 15.7 1.5 3 4.5 

Ferrous metals 28 1.5 8 12.0 

Non-ferrous metals 18.2 0.5 4 2.0 

Rejects 43.3 4.4 26 114.4 
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C3.  Bulk density and standard deviation measured for different categories of recyclable 

materials  

 

Table C3 Density measurements 

 Bulk density 

Mean (kg m-3) 
Standard deviation  

(kg m-3) 

Corrugated cardboards 75.0 17.5 

Multilayer cardboards 37.2 8.9 

Flat cardboards 81.6 8.8 

Newspapers 102.9 21.1 

Mixed papers 111.4 45.3 

Broken glass 587.9 69.7 

Unbroken glass 262.5 80.8 

PET 29.3 4.5 

HDPE 34.4 4.2 

Plastic films 23.6 6.5 

Mixed plastics 34.5 4.3 

Ferrous metals 88.5 27.5 

Non-ferrous metals 40.0 8.1 

Rejects 88.2 47.3 
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C4. Results of the Kolmogorov-Smirnov test for the representativeness of the particle size 

samples 

Results of the Kolmogorov-Smirnov test for the comparison of the PSD obtained with all 6 samples 

to PSD obtained with sub-samples. 5 sub-samples are tested according to the number of samples 

considered. An R in Table C4 means that the null hypothesis can be rejected, thus meaning that the 

PSD are different.   

Table C4 Results of the Kolmogorov-Smirnov test for the particle size samples 

 Sub-samples considered 

 Sample 1 Samples 1 

and 2 

Samples 1, 2 

and 3 

Samples 1, 2, 

3 and 4 

Samples 1, 2, 

3, 4 and 5 

Corrugated 

cardboards 

     

Multilayer 

cardboards 

     

Flat cardboards  R    

Newspapers R R    

Mixed papers   R   

Broken glass R     

PET      

HDPE      

Plastic films      

Mixed plastics  R R   

Ferrous metals R R R R  

Non-ferrous metals R R R   

Rejects  R R  R 
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C5. Results of the Kolmogorov-Smirnov test for the two-by-two comparisons of the PSDs 

Kolmogorov-Smirnov test for the two-by-two comparisons of the PSDs of the different waste 

materials. An NR in Table C5 means that the null hypothesis of the similitude of the PSDs can not 

be rejected, thus meaning that the PSD are similar. Recyclable materials in bold indicate that their 

PSD was not similar to any other PSD.  

Table C5 Kolmogorov-Smirnov test for the two-by-two comparisons 

 Corr

ugat

ed 

card

boar

ds 

Mult

ilaye

r 

card

boar

ds 

Flat 

card

boar

ds 

New

spap

ers 

Mix

ed 

pape

rs 

Bro

ken 

glas

s 

PET HD

PE 

Plast

ic 

film

s 

Mix

ed 

plast

ics 

Ferr

ous 

meta

ls 

Non

-

ferro

us 

meta

ls 

Reje

cts 

Corrugated 

cardboards 

NR             

Multilayer 

cardboards 

 NR            

Flat 

cardboards 

  NR           

Newspapers   NR NR          

Mixed 

papers 

    NR         

Broken 

glass 

     NR        

PET  NR     NR       

HDPE        NR      

Plastic films   NR NR     NR     

Mixed 

plastics 

      NR   NR    

Ferrous 

metals 

 NR         NR   

Non-ferrous 

metals 

           NR  

Rejects             NR 
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C6. Material density measurement 

Table C6 Number of objects analyzed, density and standard deviation measured for the materials 

density measurement.  

 Mean density  

(kg m-3) 

Standard deviation  

(kg m-3) 

Number of objects 

analyzed 

Corrugated cardboards 756 105 10 

Multilayer cardboards 822 46 10 

Flat cardboards 892 188 10 

Newspapers 1004 117 10 

Mixed papers 967 101 10 

Broken glass 2584 197 15 

Non-broken glass 2584 197 15 

PET 1339 78 14 

HDPE 971 30 11 

Plastic films 697 51 8 

Mixed plastics (PP) 873 41 12 

Ferrous metals 7030 525 13 

Non-ferrous metals 1957 291 12 
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C7. Original experimental data 

Table C7 Experimental data for the composition measurement for every sample 

 Mass sampled (kg) 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Corrugated 

cardboards 
9,00 10,97 9,41 10,90 10,38 8,16 

Multilayer 

cardboards 
1,78 1,55 0,79 0,92 1,36 1,56 

Flat cardboards 5,99 5,97 3,11 4,97 6,38 4,23 

Newspapers 9,50 6,75 4,94 2,15 4,42 2,58 

Mixed papers 6,61 8,46 3,82 12,19 5,56 4,28 

Broken glass 5,07 6,06 4,09 1,95 6,40 3,24 

Unbroken glass 2,78 2,47 3,26 1,04 7,59 1,99 

PET 2,76 1,61 2,04 2,13 1,92 1,69 

HDPE 1,34 1,13 1,54 1,13 1,83 3,90 

Plastic films 1,75 1,13 0,91 1,42 1,08 1,16 

Mixed plastics 1,95 2,06 1,68 1,22 1,74 1,76 

Ferrous metals 1,98 1,68 0,72 1,40 2,09 1,45 

Non-ferrous metals 0,73 0,30 0,16 0,69 0,62 0,3 

Rejects 9,82 2,82 2,49 5,44 3,29 10,48 
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Table C8 Experimental data for the bulk density measurement for every sample   

 Density (kg m-3) 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Corrugated 

cardboards 
59,8 84,4 86,5 45,9 75,2 98,4 

Multilayer 

cardboards 
34,8 55,8 29,0 30,7 38,4 34,2 

Flat cardboards 73,1 92,5 68,8 83,7 91,5 79,9 

Newspapers 114,1 91,0 141,3 98,1 100,1 72,7 

Mixed papers 78,7 83,0 71,8 202,9 130,7 101,3 

Broken glass 713,9 576,8 481,5 576,6 618,3 560,0 

Unbroken glass 179,5 - 260,9 383,5 316,4 172,1 

PET 31,0 35,2 28,6 32,3 28,2 20,6 

HDPE 34,3 29,1 32,6 39,8 39,9 30,6 

Plastic films 18,7 20,6 16,8 36,8 25,0 23,7 

Mixed plastics 34,1 40,5 32,2 29,0 40,1 31,3 

Ferrous metals 82,3 132,6 56,4 102,5 102,6 54,9 

Non-ferrous metals 44,6 45,1 28,8 40,0 51,3 30,4 

Rejects 74,1 56,2 45,9 107,3 61,1 184,6 
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Table C9 Experimental data for the particle size analysis for the sample 1 

  

Mass sampled by sieve size (kg) 

<1/8" <1/4" <1/2" <1" <2" <3" <4" <6" <8" <12" >12" 

Corrugated 

cardboards 
0 0 0 0 0,042 0,036 0,207 0,403 2,253 3,487 2,529 

Multilayer 

cardboards 
0 0 0 0 0,041 0,023 0,549 1,124 0 0 0 

Flat cardboards 0 0 0 0,002 0,226 0,611 0,964 2,435 0,695 1,023 0 

Newspapers 0 0 0 0,004 0,038 0,156 0,412 1,81 4,987 2,089 0 

Mixed papers 0 0 0 0,071 0,327 0,493 1,426 1,911 2,342 0 0 

Broken glass 0,37 0,527 1,215 1,785 0,881 0,26 0 0 0 0 0 

Unbroken glass 0 0 0 0 0 1,804 0,942 0 0 0 0 

PET 0 0 0 0 0,0305 0,513 0,512 1,052 0,649 0 0 

HDPE 0 0 0 0 0,1 0,134 0,055 0,423 0,355 0,266 0 

Plastic films 0 0 0 0,003 0,054 0,176 0,123 0,653 0,487 0,23 0 

Mixed plastics 0 0 0,003 0,068 0,243 0,416 0,384 0,772 0,063 0 0 

Ferrous metals 0 0 0 0 0,046 0,439 0,657 0,293 0,564 0 0 

Non-ferrous 

metals 
0 0 0 0 0 0,088 0,506 0,009 0,122 0 0 

Rejects 0 0 0,271 0,368 0,949 2,211 0,515 1,607 1,624 1,166 1,105 
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Table C10 Experimental data for the particle size analysis for the sample 2 

  

Mass sampled by sieve size (kg) 

<1/8" <1/4" <1/2" <1" <2" <3" <4" <6" <8" <12" >12" 

Corrugated 

cardboards 
    0,039 0,196 0,445 1,176 1,893 6,97 0,54 

Multilayer 

cardboards 
     0,274 0,716 0,5    

Flat cardboards    0,014 0,551 0,602 1,188 1,687 0,88 0,778  

Newspapers    0,009 0,058 0,123 0,564 2,376 3,526   

Mixed papers   0,498 0,173 0,577 0,674 1,131 3,346 1,895   

Broken glass 0,421 0,579 1,552 2,247 1,311       

Unbroken glass      1,516 0,953     

PET     0,012 0,535 0,278 0,639 0,295   

HDPE     0,015 0,076 0,153 0,209 0,24 0,37  

Plastic films    0,01 0,049 0,087 0,122 0,212 0,42 0,132  

Mixed plastics   0,028 0,096 0,224 0,585 0,421 0,488 0,044   

Ferrous metals    0,022 0,021 0,036 0,594 0,704 0,35   

Non-ferrous 

metals 
    0,008 0,007 0,227 0,045    

Rejects   0,051 0,118 0,612 0,508 0,884 0,545 0,03 0,095  

 

 

 

 

 

 

 

 

 

 



247 

 

 

Table C11 Experimental data for the particle size analysis for the sample 3 

  

Mass sampled by sieve size (kg) 

<1/8" <1/4" <1/2" <1" <2" <3" <4" <6" <8" <12" >12" 

Corrugated 

cardboards 
    0,052 0,046 0,178 0,375 2,124 5,509 0,984 

Multilayer 

cardboards 
    0,034 0,078 0,148 0,525    

Flat cardboards     0,076 0,259 0,382 0,865 0,988 0,58  

Newspapers    0,004 0,068 0,277 0,433 2,173 1,25 0,791  

Mixed papers   0,089 0,093 0,414 0,535 0,615 1,891 0,169   

Broken glass 0,235 0,161 1,036 1,301 0,951 0,438      

Unbroken glass      0,616 2,64     

PET      0,625 0,267 0,696 0,363   

HDPE     0,059 0,053 0,064 0,313 1,074   

Plastic films    0,009 0,045 0,146 0,138 0,386 0,178   

Mixed plastics   0,013 0,046 0,276 0,305 0,311 0,312 0,176 0,255  

Ferrous metals   0,021 0,002 0,052 0,148 0,232 0 0,258   

Non-ferrous 

metals 
    0,022 0,068 0 0,068    

Rejects   0,057 0,079 0,448 0,246 0,298 0,987 0,213 0,243  
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Table C12 Experimental data for the particle size analysis for the sample 4 

  

Mass sampled by sieve size (kg) 

<1/8" <1/4" <1/2" <1" <2" <3" <4" <6" <8" <12" >12" 

Corrugated 

cardboards 
   0,003 0,052 0,117 0,211 0,987 2,227 5,617 1,677 

Multilayer 

cardboards 
     0,11 0,264 0,457    

Flat cardboards    0,009 0,32 0,328 0,545 1,794 0,876 0,767 0,292 

Newspapers     0,004 0,018 0,1014 0,63 1,095 0,302  

Mixed papers    0,063 0,53 0,339 1,076 2,164 6,567 1,391  

Broken glass 0,06 0,157 0,494 0,7 0,183 0,06 0,432     

Unbroken glass       1,041     

PET      0,668 0,397 0,808 0,212   

HDPE     0,043 0,133 0,084 0,462 0,404   

Plastic films    0,002 0,022 0,087 0,189 0,723 0,315 0,108 0,099 

Mixed plastics   0,008 0,027 0,084 0,131 0,304 0,364 0,069 0,232  

Ferrous metals   0,005 0,002 0,005 0,2 1,035 0,128    

Non-ferrous 

metals 
   0,002 0,023 0,293 0,168 0,195    

Rejects   0,039 0,133 0,761 0,737 0,223 0,134 1,33 1,914  
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Table C13 Experimental data for the particle size analysis for the sample 5 

  

Mass sampled by sieve size (kg) 

<1/8" <1/4" <1/2" <1" <2" <3" <4" <6" <8" <12" >12" 

Corrugated 

cardboards 
    0,056 0,2 0,197 0,913 2,526 3,364 2,926 

Multilayer 

cardboards 
     0,196 0,328 0,766    

Flat cardboards     0,231 0,652 1,001 2,299 1,513 0,584  

Newspapers     0,039 0,166 0,369 1,738 0,558 1,426  

Mixed papers   0,109 0,075 0,481 0,946 0,552 1,302 1,976   

Broken glass 0,201 0,321 0,927 2,221 2,165 0,229 0,491     

Unbroken glass     0,142 5,245 2,199     

PET      0,697 0,478 0,715 0,05   

HDPE     0,039 0,396 0,324 0,079 0,679 0,21  

Plastic films     0,024 0,086 0,119 0,563 0,188 0,133  

Mixed plastics    0,062 0,186 0,342 0,346 0,427 0,373   

Ferrous metals     0,123 0,306 1,089 0,555    

Non-ferrous 

metals 
   0,007 0,138 0,401 0,041     

Rejects    0,133 0,541 0,669 0,19 0,554 1,255   
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Table C14 Experimental data for the particle size analysis for the sample 6 

  

Mass sampled by sieve size (kg) 

<1/8" <1/4" <1/2" <1" <2" <3" <4" <6" <8" <12" >12" 

Corrugated 

cardboards 
    0,008 0,042 0,18 0,468 1,035 2,562 3,799 

Multilayer 

cardboards 
    0,043 0,026 0,543 0,937    

Flat cardboards    0,024 0,304 0,336 0,282 1,35 1,143 0,73 0,195 

Newspapers     0,075 0,134 0,409 0,967 0,838 0,485  

Mixed papers    0,128 0,345 0,28 0,737 1,304 1,442   

Broken glass 0,194 0,234 1,059 0,75 0,344 0,199      

Unbroken glass       1,987     

PET     0,023 0,312 0,407 0,68 0,258   

HDPE    0,001 0,096 0,095 0,191 1,254 1,708 0,561  

Plastic films     0,058 0,148 0,159 0,176 0,339 0,281  

Mixed plastics    0,029 0,097 0,322 0,265 0,574 0,206 0,059  

Ferrous metals   0,017 0,003 0,07 0,131 0,62 0,596    

Non-ferrous 

metals 
   0,002 0,029 0,21 0,016 0,016    

Rejects   0,147 0,156 0,59 0,625 0,216 5,794 1,714 1,122  

 



251 

 

 

ANNEXE D  ANNEXE DE L’ARTICLE 5 

D1. Input composition of the case study and description of the waste properties 

Table D1 Waste composition and physical properties of the input stream for the case study 

 
Composition 

(%)a 

Shape 

factor 

Density 

(kg m-3) 

Rosin-Rammler 

parameters 

X0 (in) n 

Ferrous metal 4.0 0.987c 92.7c 4.01c 5.49 

Non-ferrous metal 0.8 0.978c 42.5c 3.41c 3.94 

Glass 2.3 0.769c 596.1c 0.90c 1.39 

Recyclable plastics 2.1 0.960c 35.0c 4.44c 2.14 

HDPE 0.7 0.965c 33.7c 6.70c 3.17 

PET 0.7 0.978c 29.5c 4.70c 2.89 

Non-recyclable 

plastics 
9.0 0.960c 35.0c 4.44c 2.14 

Papers 1.2 0.870c 125.4c 5.80c 2.60 

Newspapers 1.2 0.894c 106.7c 6.92c 3.94 

Flat cardboards 1.2 0.907c 82.9c 6.12c 2.46 

Corrugated cardboards 1.2 0.902c 74.2c 10.58c 3.53 

Tetrapack 0.4 0.953c 38.3c 4.41c 5.65 

Other inorganic 

materials 
22.2 0.800d 108.3d 6.00b 2.16 

Fines 9.8 0.769d 596.1d 0.10d 1.10 

Other organic 

materials 
3.4 0.870d 264.5d 1.87b 3.94 

Green residue 2.0 0.800d 135.0d 1.50b 1.10 

Food waste 19.7 0.950d 358.2d 1.79b 1.75 

Tree branches 0.0 0.800d 179.6d 9.07d 2.80 

Wood 3.4 0.800d 179.6d 9.07b 2.80 

Plastic films 1.8 0.966c 23.9c 6.17c 2.79 

Gravel 6.4 0.769d 200.9d 0.97d 1.10 

Textiles 3.9 0.900d 102.8d 6.00d 2.16 

RDD 0.6 0.769d 200.9d 3.32b 1.44 

Linear objects 1.8 0.800d 108.3d 12.00d 3.00 

a Characterization results 

b (Tanguay-Rioux et al., 2020) 

c (Tanguay-Rioux et al., 2021) 

d Estimation through literature or similar categories 

 

 


