POLYPUBLIE

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o3

Développement d'une approche de modélisation mixte pour la
représentation du traitement mécano-biologique

Fabrice Tanguay-Rioux

2021
Mémoire ou these / Dissertation or Thesis

Tanguay-Rioux, F. (2021). Développement d'une approche de modélisation mixte
pour la représentation du traitement mécano-biologique [Ph.D. thesis,

Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/9957/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/9957/

Directeurs de
recherche: Robert Legros, Martin Héroux, & Laurent Spreutels

Programme

Advisors:

*|Génie chimique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/9957/
https://publications.polymtl.ca/9957/

POLYTECHNIQUE MONTREAL

affiliée a I’Université de Montréal

Développement d'une approche de modélisation mixte pour la représentation

du traitement mécano-biologique

FABRICE TANGUAY-RIOUX

Département de génie chimique

Thése présentée en vue de I’obtention du diplome de Philosophiae Doctor
Geénie chimique

Décembre 2021

© Fabrice Tanguay-Rioux, 2021.



POLYTECHNIQUE MONTREAL

affiliée a I’Université de Montréal

Cette thése intitulée :

Développement d'une approche de modélisation mixte pour la représentation

du traitement mécano-biologique

présentée par Fabrice TANGUAY-RIOUX
en vue de 1’obtention du diplome de Philosophige Doctor

a été diment acceptée par le jury d’examen constitué de :

Jason Robert TAVARES, président

Robert LEGROS, membre et directeur de recherche
Martin HEROUX, membre et codirecteur de recherche
Laurent SPREUTELS, membre et codirecteur de recherche
Guillaume MAJEAU-BETTEZ, membre

Céline VANEECKHAUTE, membre externe



REMERCIEMENTS

J’aimerais tout d’abord remercier mon directeur de recherche, Robert Legros, pour m’avoir donné
I’opportunité de réaliser ce projet. Sa grande disponibilité et sa confiance m’ont permis de mener
a bien ce projet. Je tiens également a remercier mes codirecteurs de recherche, Laurent Spreutels
et Martin Héroux, pour leur support tout au long du projet et leurs nombreux commentaires
constructifs qui m’ont permis d’en apprendre plus sur le monde des matieres résiduelles et de

continuellement m’améliorer.

Je remercie les différents partenaires de la CRMVR pour leur support financier et pour I’aide
apportée dans les différentes phases du projet. Je tiens particulierement a remercier Maxime

Roberge, de la Ville de Montréal, pour son aide précieuse durant les caractérisations effectuées.

Je remercie mes nombreux collégues et amis qui ont passé par la CRVMR ou que j’ai cotoyés a
Polytechnique au cours des dernieres années. Je remercie particuliérement Mathieu qui m’a

généreusement accueilli dans son bureau pendant plusieurs années.

Je tiens également a remercier ceux et celles qui ont pris de leur temps pour m’aider dans mes
caractérisations de matieres résiduelles. Je suis conscient que ce n’est pas toujours 1’activité la plus
agréable a faire. Vous m’avez permis de sauver un temps fou. Je remercie particulierement Arianne

pour les nombreuses heures passées au centre de tri.

Finalement, je remercie mes amis, ma famille, et surtout Kyela, pour leur support tout au long de

mes études et durant la réalisation de ce projet.



RESUME

Dans les derniéres années, beaucoup d'efforts ont été investis par les différentes instances
gouvernementales pour réduire l'impact environnemental associé au traitement des matiéres
résiduelles, en misant principalement sur une amélioration du tri a la source. Ces efforts ont permis
une réduction importante de la quantité de matieres résiduelles enfouies chaque année, tout en
contribuant également a une modification de la composition de ces matieres. Par contre, malgré
une amélioration continue du tri a la source par le citoyen, il est attendu qu'une quantité importante
de matiéres résiduelles ayant un potentiel de valorisation élevé continue d’étre enfouie chaque
année, indiquant un besoin clair pour lI'implémentation de solutions complémentaires. L'approche
la plus souvent utilisée pour valoriser les ordures ménageéres et réduire leur impact environnemental
est le traitement mécano-biologique. Malgré son importance en Europe, le traitement mécano-
biologique demeure largement méconnu en Amérique du Nord, principalement d( a des essais peu
fructueux par le passé. Ainsi, les premieres usines construites ont fermé, étant incapables de
produire des matieres ayant une qualité satisfaisante en suffisamment grande quantité. Une des
raisons expliquant ce probléme est que ce type de procédé est généralement congu a partir de
méthodes semi-empiriques qui ne sont pas nécessairement représentatives de la situation

représentée.

Pour remédier a la situation, il est primordial d’étre en mesure de prédire la composition et les
principales propriétés physiques des matieres produites par un traitement mécano-biologique.
Ainsi, une modélisation rigoureuse de ce procedé est necessaire afin de permettre de prendre en
compte la variabilité de I’intrant et des différentes configurations possibles lors de la conception
de ce type de procédé. Egalement, une meilleure compréhension des mécanismes physiques du
procédé doit étre atteinte. Pour ce faire, un nouvel outil de modélisation hybride et flexible est

proposé dans cette these.

Une analyse des données disponibles portant sur 1’opération d’équipements de tri de matiéres
résiduelles a montré que peu de données sont disponibles dans la littérature quant a ’efficacité de
ces équipements, di a la complexité de déterminer ces valeurs. Afin de remédier a cette
problématique, une méthodologie basée sur un algorithme d’optimisation linéaire a été proposée
permettant la résolution des bilans de masse de ce type de procedé. La méthodologie a été validee
a partir de caractérisations effectuées pour une centre de tri de matieres recyclables situé au Québec,



indiquant qu’il est possible de résoudre la sous-détermination du bilan de masse a partir de

caractérisations appropriées et ciblées.

L’analyse de la littérature a également permis d’identifier une grande variabilité des efficacités de
séparation des différents équipements de tri selon les situations, menant a des lacunes lors de la
prediction de leurs rendements. Toutefois, pour la prédiction du rendement global d’un procédé de
tri, I’'importance de cette variabilité depend de la famille de séparateur mécanique considéreée.
Ainsi, les séparateurs directs ciblant une propriété sont caractérisés par une sensibilité plus grande
que les séparateurs indirects et les séparateurs directs ciblant un type de matiére. Ce premier type
de séparateur a une influence importante sur le calcul de la récupération de tous les produits d’un
centre, faisant en sorte qu’une modélisation des mécanismes physiques est essentielle pour ce type

de séparateur.

La modélisation des mécanismes physiques d’un séparateur meécanique requiert toutefois une
connaissance approfondie des propriétés physiques des matiéres résiduelles. Par contre, peu de
données sont disponibles dans la littérature quant aux principales propriétés, soit la taille des
particules, la densité et le facteur de forme. Egalement, aucune approche statistique n’est
présentement privilégiée pour exprimer la taille des particules ou la densité, alors qu’aucune
méthode quantitative n’a été utilisée dans la littérature pour exprimer le facteur de forme des

matiéres résiduelles.

Une premiére caractérisation de matieres résiduelles mixtes a permis de montrer que la taille des
particules des matiéres résiduelles peut adéquatement étre représentée par une distribution de
Rosin-Rammler. Egalement, il est possible de prédire la taille des particules d’un mélange de
matiéres résiduelles comme la somme pondérée des tailles de particules de ses différentes fractions.
Ceci permet donc de prédire cette propriété pour n’importe quel mélange de matiéres. La taille de
particules de matieres résiduelles mixtes est également representée par deux modes, soit un pour
les matiéres organiques et un pour les matieres inorganiques. La taille de particules d’un mélange
de matieres peut donc étre simplifiée par deux distributions de Rosin-Rammler lorsque la

composition est inconnue.

Une deuxiéme caractérisation effectuée sur des matiéres recyclables a permis de proposer une
premiére méthode dans la littérature pour quantifier le facteur de forme, soit en utilisant la fraction

de vide des objets. Ainsi, les objets ayant une taille en trois dimensions ont une fraction de vide
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supérieure a 0,95, alors que les objets ayant plutét une forme en deux dimensions ont plut6t une
fraction de vide inferieure a 0,91. Cette caractérisation a également permis de déterminer des
parametres statistiques importants pour représenter la densité et la taille des particules de plusieurs
catégories de matieres résiduelles et de démontrer I’influence de ces propriétés sur I’efficacité de

séparation des opérations de tri.

Finalement, 1’obtention de ces résultats a permis de développer un premier outil de modélisation
prenant en compte les mécanismes physiques d’un procédé de tri mécanique de matieres
résiduelles. Le modeéle développé se base sur une représentation rigoureuse des propriétés
physiques des matieres résiduelles et permet donc de prendre réellement en compte I’impact de la
composition des matiéres entrantes sur 1’efficacité de séparation du centre. Ainsi, la qualité des
produits issus d’un centre de tri peut donc étre prédite avec plus de confiance, menant a
I’identification de pistes d’optimisation pour ces procédés. Cette modélisation permet également
de prendre en compte I’'impact de la configuration du centre et des principales conditions

d’opération sur I’efficacité de tri des équipements.

Cette thése propose donc des pistes pour améliorer la compréhension du traitement mécano-
biologique et de ses produits. Ceci est d’ailleurs essentiel afin d’améliorer la qualité des produits
et d’ainsi pouvoir atteindre de nouveaux débouchés pour les matieres résiduelles. Ces améliorations
pourraient s’avérer trés importantes pour réduire les impacts environnementaux et sociaux associes

au traitement des matiéres résiduelles, tout en permettant une meilleure valorisation des ressources.
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ABSTRACT

During the past few years, a lot of effort has been made by the governments to reduce the
environmental impacts associated to waste management treatment. To do so, a key aspect was to
improv source separation collections. These efforts lead to an important reduction of the amount
of waste landfilled each year. However, despite these improvements, an important quantity of solid
waste, that could otherwise be valorized, is still eliminated every year. This makes it necessary to
develop new alternatives to recover these wastes. The most common approach used to valorize
mixed municipal solid waste and reduce the environmental impact associated to their treatment is
the mechanical-biological treatment. Even though this process is largely used in Europe, it is still
largely unknown in North America due to unsuccessful previous trials. Many of the first examples
of mechanical-biological treatment facilities have closed due to an insufficient performance,
leading to a poor recovery and a poor purity of the different products. One of the reasons leading
to this problematic is that these processes are often designed based on semi-empirical methods that

are not necessarily representative of the situation for which they are implemented.

To overcome this problematic, it is essential to adequately predict the composition and the physical
properties of the products of mechanical-biological treatment processes. Therefore, a rigorous
model is required to predict these parameters according to the input composition and the
configuration of the facility. Also, a better understanding of the physical mechanisms occurring
during the mechanical separation steps is needed. To do so, a new modeling tool is presented in
this thesis. This modular tool is based on the integration of two modeling approaches that provide

a high flexibility and a clear description of the sorting mechanisms.

First, an analysis of the literature showed that few sorting efficiencies of the main mechanical
sorting unit operations are currently available, due to the high complexity of calculating these data
for a facility. To overcome this difficulty, a new methodology based on a optimization algorithm
has been presented, allowing to solve the mass balance of this type of process. The methodology
has also been validated based on waste characterizations realized in a material recovery facility of
commingled recyclable materials located in the province of Quebec. This demonstrates that it is
possible to solve the under-determination of the mass balance for this type of problem based on

appropriate characterizations.
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The literature review also allowed to identify a large variability among the available sorting
efficiencies data according to the situation, leading to potential inconsistent yield predictions.
However, in order to predict the global yield of a material recovery facility, the impact of the
variability depends on the type of sorting separator. The variability of direct separators targeting a
waste property was shown to have a larger influence on the yield than the variability of direct
separators targeting a waste material and indirect separators. This larger variability makes it
essential to consider the physical mechanisms of this type of separator while modeling material

recovery facilities.

To model the physical mechanisms of a sorting unit operations, a thorough understanding of the
physical properties of the waste materials is required. The literature review however showed that
there is little data available on the main waste properties, such as the particle size, the density and
the shape factor. Additionally, particle size and density have been calculated in previous works
based on many different approaches, leading to important inconsistencies. As for the shape factor,

it has never been quantified for municipal solid waste.

A first waste characterization of mixed municipal solid waste allowed to demonstrate that
unprocessed waste particle size can adequately be predicted based on a Rosin-Rammler
distribution. Also, the particle size distribution of a mix of solid waste can be predicted as the
weighted sum of the particle size of its different fractions. This result makes it possible to predict
the particle size distribution of any mix of solid waste. This characterization also showed that this
property is defined by two distinct modes, one for the organic materials and one for the inorganic
materials. The particle size distribution of a mix of solid waste can thus be simplified based on a

bimodal distribution when the composition is unknown.

A second characterization performed on source-separated recyclable materials allowed to present
the first methodology to quantify the shape factor, which is based on the void fraction of the waste
items. It was shown that three dimensional waste categories have a void fraction larger than 0.95
while two dimensional waste categories have a void fraction smaller than 0.91. This second
characterization also allowed to determine statistical parameters to model both the density and the
particle size of several waste categories. The influence of these properties on the mechanical

separation was also demonstrated.



Finally, based on the previous results, a new tool allowing to predict the material flows of a material
recovery facility was developed. This tool allows to take into account the physical mechanisms of
the main unit operations of the process. It is based on a rigorous modeling of the physical properties
of the waste, and therefore allows to consider the influence of the sorting sequence and the main
unit operations on the process outputs. This allows to increase the certainty on the results of the

prediction of the quality of this type of facility, thus allowing to guide future improvements.

This thesis presents new alternatives to improve the understanding related to mechanical-biological
treatment and its products, leading to a better identification of potential markets. This is essential
to reduce the environmental impact associated to municipal solid waste treatment and to increase

resource recovery.
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CHAPITRE1 INTRODUCTION

1.1 Mise en contexte

Dans les dernieres décennies, une prise de conscience graduelle s’est effectuée quant a I’impact
important des ordures ménageres municipales sur notre environnement et nos sociétés. Un
changement de perception par rapport aux ordures ménagéres est également en cours, faisant en
sorte que ces matiéres sont de moins en moins considérées comme un déchet a éliminer, mais plut6t
comme une ressource potentielle a valoriser. Ces changements ont mené a plusieurs modifications
importantes aux systemes de gestion des matiéres résiduelles (GMR) permettant d’augmenter la

circularité des matieres.

Ainsi, vers la fin des années 1980, le tri a la source et le recyclage des matieres recyclables ont été
implantés au Québec et se sont rapidement étendus a 1’ensemble du territoire. Cette filiere s’est
beaucoup développée dans les années suivantes, menant a une automatisation importante des
centres destinés au tri de ces matiéres recyclables et a une diversification des filiéres de recyclage.
Selon les dernieres données disponibles, la filiere du recyclage permet d’acheminer 564 000 tonnes
par année de matiéres recyclables vers un centre de tri, ce qui représente une récupération d’environ
64% de ces matiéres générées par les citoyens (EEQ & RECYC-QUEBEC, 2021).

Plus récemment, le tri a la source des ordures ménageéres a été étendu afin d’inclure une nouvelle
voie de collecte ciblant les matiéres putrescibles. Par le fait méme, plusieurs usines de traitement
ont été construites ou sont en voie de 1’étre, menant & une réduction importante de la quantité de
matieres éliminées. Ainsi, pour la période 2015-2017, ¢’étaient 200 000 tonnes par année, soit 16%
des matieres putrescibles générées au Québec qui ont été détournées de 1’enfouissement par des
collectes de résidus verts, des collectes de résidus alimentaires ou des collectes mixtes (EEQ &
RECYC-QUEBEC, 2021). Ces quantités s’ajoutent a celles des autres voies de collecte & la source
également implantées au Québec incluant le systéme de consigne, la collecte en écocentre, la

collecte des matiéres encombrantes et certaines autres initiatives de récupération.

Par contre, malgré I’importance de plus en plus grande de la séparation a la source des matieres et
un intérét marqué pour la réduction a la source, des quantités importantes de matiéres résiduelles
d’origine municipale sont encore éliminées chaque année au Québec. Parmi ces matieres, plusieurs

ont un potentiel intéressant de valorisation, et leur récupération pourrait permettre de non seulement



réduire les impacts environnementaux associés a 1’élimination des ordures, mais également la
création de nouveaux produits permettant de substituer des matieres vierges. La Figure 1.1 présente
une caractérisation des ordures ménageéres pour le Québec pour les années 2015-2017 (EEQ &
RECYC-QUEBEC, 2021). A partir de cette figure, il est possible d’observer qu’aussi peu que 22%
des matieres présentement éliminées ne sont actuellement pas visées par une filiere conventionnelle

de recyclage. Une grande fraction de matiere récupérable est donc perdue chague année.

Plastique

Métal
Verre

Papier et carton

. . Imprimés
Matieres organiques

Matieres diverses

Liquides
Textiles
Résidus domestiques dangereux

Résidus de construction
rénovation et démolition

Encombrants

Figure 1.1 Composition des ordures menageres au Québec pour la période 2015-2017

Afin de remédier a cette problématique, le traitement mécano-biologique (TMB) s’aveére
généralement étre la solution privilégiée, car cette approche permet de séparer les différentes
fractions de matiéres résiduelles et de les acheminer vers leurs filieres de valorisation respectives.
Ainsi, les différentes matieres recyclables récupérées peuvent étre envoyees vers les filieres de
recyclage conventionnelles, alors que les matiéres organiques et les matieres combustibles peuvent
étre valorisées selon leur niveau de contamination. Les procédés de TMB permettent donc de
s’inscrire dans le cadre de la hiérarchie des 3RV-E, tout en bénéficiant d’une structure flexible
permettant de s’adapter aux différentes situations. Cette hiérarchie est issue de la Politique
québécoise de gestion des matieres residuelles et permet de prioriser les approches de traitement,
favorisant ainsi dans 1’ordre la réduction a la source, la réutilisation, le recyclage et la valorisation

avant 1’élimination.



Le TMB est généralement utilisé comme option complémentaire aux collectes sélectives, mais peut
également étre utilise comme remplacement a ces collectes dans certains cas, comme dans les

milieux ruraux (Feil, Pretz, et al., 2016; Jansen et al., 2013).

Au cours des années 1970, quelques tentatives ont été mises de I’avant pour séparer différentes
fractions des ordures ménageres a partir de technologies communément utilisées dans 1’industrie
miniére (Cimpan et al., 2015). Par contre, ce n’est qu’au début des années 1990, que les usines de
TMB ont réellement fait leur apparition, principalement en Europe et aux Etats-Unis (Bilitewski et
al., 2010; Cimpan et al., 2015). Depuis, ce type d’usine a évolué et prend de plus en plus de place
comme alternative pour la valorisation des ordures ménageres dans le monde et comme méthode

pour réduire les impacts environnementaux associés a la gestion des matieres résiduelles.

Par exemple, le Royaume-Uni compte présentement 22 centres de TMB permettant de traiter plus
de 2,3 millions de tonnes d’ordures ménagéres par année et une importante croissance est encore
attendue dans les prochaines années (Cook et al., 2015). En France, 57 installations étaient en
fonctionnement en 2015 (Beylot et al., 2015). Pour ce qui est du Québec, trés peu d’installations

de TMB ont vu le jour et n’ont généralement pas eu les succes escomptés.

Comme son nom I’indique, le traitement mécano-biologique inclut une succession de séparateurs
mécaniques et un procédé biologique. Le procédé biologique consiste généralement en une
digestion aérobie ou anaérobie et peut soit étre situé au début de la chaine de traitement mécanique,
permettant de favoriser la séparation et la production d’un combustible dérivé de déchets (CDD),
ou a la fin de celle-ci, favorisant alors la stabilisation de la matiere organique afin de réduire
I’impact environnemental associé a son élimination (Bilitewski et al., 2010). Dans certains cas,
généralement situé en Amérique du Nord, aucun procédé biologique n’est utilisé, permettant ainsi
une réduction importante du temps de traitement, sans toutefois permettre la stabilisation de la
matiére organique. Ce type de centre est généralement defini par le terme « Dirty MRF » ou

« mixed MSW MRF » (municipal solid waste material recovery facility) (Cimpan et al., 2015).

Peu importe la configuration choisie, la séquence de traitement mécanique inclue généralement les
mémes types d’équipements avec un niveau de complexité variable, soit des tamiseurs, des
séparateurs balistiques, des séparateurs par densite, des séparateurs de métaux, des trieurs optiques
et du tri manuel (Di Lonardo et al., 2012; Rotter, 2011; Velis et al., 2010). L’ensemble de ces

équipements a pour objectifs de séparer quatre principales fractions présentes dans les ordures, soit



un courant de matieres recyclables relativement pur, un courant de matieres combustibles, un
courant de matieres organiques partiellement biostabilisées et un courant de rejets destiné a
1’¢limination.

La séparation des matiéres s’effectue en exploitant les différences de propriétés entre les matieres
a séparer. Plusieurs propriétés peuvent donc jouer un role, incluant la forme, la taille des particules,
la densité, le comportement électromagnétique, les propriétés optiques et les propriétés élastiques
(Velis et al.,, 2010). Cependant, comme les propriétés des différentes catégories d’ordures
ménageres s’entrecroisent, le tri de ces matieres se traduit généralement par une importante
contamination de plusieurs des fractions produites. Ainsi, les produits d’une usine de TMB sont
généralement beaucoup plus contaminés que ceux produits par des usines de tri de matieres
séparées a la source, et les rejets sont généralement plus importants (Christensen & Bilitewski,
2010). En général, cette contamination plus importante restreint les débouches des différentes
fractions produites. De plus, la prédiction de la composition des différents produits est
généralement difficile, puisqu’elle dépend fortement de la composition entrante et de la
configuration de la chaine de traitement (Caputo & Pelagagge, 2002; Di Lonardo et al., 2012;
Pressley et al., 2015; Velis et al., 2012).

Ainsi, les usines de TMB n’ont pas toujours atteint les objectifs visés. Selon les choix
technologiques, les usines conventionnelles produisent environ 3% de métaux pour les marchés de
recyclage, 30-45% de CDD pour une valorisation énergétique et 30-35% de matieres organiques
stabilisées dédiées a I’enfouissement (Bilitewski et al., 2010). Par contre, I’application d’un tel
scénario au contexte québécois semble peu réaliste dii au contexte énergétique actuel, a la faible
acceptabilité sociale de la valorisation énergétique et a la volonté de bannir I’enfouissement de la
matiere organique. Ainsi, afin de favoriser I’intégration de ce procédé dans un contexte québécois,
et d’ainsi réduire I’enfouissement des ordures ménagéres, des améliorations au procédé et

I’identification de nouveaux débouchés doivent étre envisagées.

Plusieurs options de pré-traitement et de traitement des fractions issues d’un procédé de TMB
pourraient étre utilisées afin d’atteindre de nouveaux débouchés, tels que la carbonisation
hydrothermale (Kim et al., 2012), la torréfaction (Bialowiec et al., 2017), la pyrolyse (Adrados et
al., 2012) et la gazéification (VVounatsos et al., 2016). Par exemple, la carbonisation hydrothermale

(hydrothermal carbonization, HTC) pourrait s’avérer étre un procédé particulierement intéressant



pour augmenter la valeur de la fraction organique issue d’'un TMB en vue d’une valorisation
énergétique, puisque ce procédé permet d’augmenter la qualité de résidus de biomasse humide,
tout en tolérant une certaine quantité de plastiques, de fibres, de métaux et de verre (Berge et al.,
2011; Linetal., 2017b).

Afin de favoriser I’intégration de ce type de procédés de traitement pour améliorer la valeur des
produits d’une usine de TMB, il est toutefois nécessaire de s’assurer que la qualité des fractions
séparées respecte certaines caractéristiques minimales, mais également que la configuration du
TMB soit adaptée, afin de permettre de maximiser la récupération de 1I’ensemble des fractions selon
ces critéres de purification. Pour ce faire, une compréhension étendue du systéeme doit étre atteinte

et peut étre obtenue a partir d’une modélisation rigoureuse de la situation.

1.2 Cadre de la these

Cette thése étudie la modelisation du traitement mécano-biologique pour la prédiction de la
composition et les caractéristiques des fractions produites. Cette modélisation doit permettre
d’analyser la qualité des produits afin de contribuer a 1’atteinte de nouveaux débouchés pour les
matiéres residuelles mixtes n’étant présentement pas triées adéquatement par les citoyens. Les
principaux aspects a considérer pour effectuer cette modelisation incluent les caractéristiques des
différentes opérations unitaires du procédé et les principales propriétés physiques des matiéres
résiduelles. Une nouvelle approche de modélisation basée sur 1’agencement de modules
indépendants est proposée et utilisée dans une étude de cas. Finalement, le procéde de carbonisation
hydrothermale est brievement étudié comme outil complémentaire au TMB pour I’atteinte de

nouveaux débouchés pour la valorisation des ordures ménageres.

1.3 Structure de la thése

Cette thése est présentée sous la forme d’une thése par article. Ainsi, une revue de la littérature
permettant d’identifier la frontiére des connaissances est d’abord présentée. Puis, la démarche
générale de 1’¢tude et le lien entre les sections suivantes sont décrits. Les cing articles publiés ou

soumis dans le cadre de ce projet de recherche sont ensuite présentés dans cing chapitres distincts.



Une section supplémentaire sous la forme d’une étude de cas est ensuite présentée permettant
d’intégrer tous les outils préalablement développés. Finalement, une discussion générale et une

conclusion résument les principaux résultats obtenus et les perspectives associées.



CHAPITRE2 REVUE DE LA LITTERATURE

La présente section trace la frontiere des connaissances concernant I’utilisation du tri mécano-
biologique pour la séparation de matiéres résiduelles, incluant leur fonctionnement, leurs produits,

leur représentation numérique et les défis auxquels ils font face.

2.1 Fonctionnement du traitement mécano-biologique et applications futures

Un TMB inclut une séquence d’équipements mécaniques et un procédé biologique permettant la
séparation des différentes fractions de matiéres résiduelles et la stabilisation de la matiére
organique (Bilitewski et al., 2010; Cimpan et al., 2015). Le procedé biologique peut soit étre situé
au début du procédé, permettant ainsi de sécher la matiére en vue d’améliorer I’efficacité du tri
(type stabilisation), ou étre situé a la fin du procédé, permettant ainsi une digestion de la matiére
organique en vue de son utilisation ou son élimination (type pre-traitement) (Bilitewski et al.,
2010). La Figure 2.1 permet de comparer ces deux situations a partir d’une configuration théorique

pour ce type de procédé.
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Figure 2.1 Schéma théorique d’un procédé de TMB pour une configuration de type pré-traitement

(a) et une configuration de type stabilisation (b)

Dans les deux configurations présentées dans la Figure 2.1, une séquence d’équipements de tri

mécanique similaire est présentée, puisque peu importe le type de TMB privilégié, les étapes de tri



mécanique sont généralement similaires. Cette configuration est également similaire aux MSW
MRFs. La présente section présente une description du fonctionnement du TMB, ainsi qu’une

description des principaux équipements utilisés, de leur fonctionnement et de leurs limites.

2.1.1 Le tri mécanique

Autant les procédés de tri mécanique de matiéres recyclables que les procédés de TMB sont
caractérises par un niveau de complexité et un niveau d’automatisation trés variable d’une usine a
I’autre (Chang & Pires, 2015). Cette grande variabilité des configurations se traduit également par
une importante variation de I’efficacité globale de ces centres (Caputo & Pelagagge, 2002; Di
Lonardo et al., 2012; Pressley et al., 2015). Cette variation des efficacités des centres se traduit

également par une variation importante de leur impact environnemental (Montejo et al., 2013).

Une chaine de tri de matiéres résiduelles est généralement composée de 5 sections, soit le pré-
conditionnement, le conditionnement, la séparation, le raffinage et la manipulation des produits
(Cimpan et al., 2016). L’étape de pré-conditionnement consiste a préparer la matiére en vue de sa
séparation subséquente et inclut une étape d’ouverture de sac, et dans certains cas une étape de
broyage (Cimpan et al., 2016). Une étape de tri manuel est également généralement requise afin de
retirer les matiéres encombrantes et dangereuses qui pourraient endommager la chaine (Rotter et
al., 2004; Vesilind et al., 2002). Ensuite, la séparation de la matiére se fait durant les étapes de
conditionnement, de séparation et de raffinage. Le conditionnement, qui utilise des opérations de
tamisage, de classification et de séparation balistique, permet de préparer la matiere pour sa
séparation subséquente en concentrant les différentes fractions. La séparation et le raffinage, qui
utilisent des équipements tels que des séparateurs magnétiques, des séparateurs par courant de
Foucault, des trieurs optiques et du tri manuel, permettent de séparer les matiéres selon les produits
voulus et de les purifier pour atteindre les requis nécessaires. Finalement, la manipulation des
produits consiste principalement a les mettre en ballots pour la vente ou a effectuer un broyage et
un briquetage des matiéres combustibles (Cimpan et al., 2016). Egalement, les séparateurs
mécaniques peuvent étre catégorisés en deux familles, soit les séparateurs indirects et les
séparateurs directs. Les séparateurs directs permettent de séparer une matiere en ciblant une
propriété physique, alors que les séparateurs indirects utilisent une méthode indirecte, comme un

jet d’air, pour séparer une matiére identifiée par une propriété physique (Gundupalli et al., 2017).



La conception et I’opération de ce type d’usines sont souvent effectuées de fagon semi-empirique

puisque I’efficacité des principaux équipements de tri est souvent mal définie (Velis et al., 2013).

Les différents équipements de tri communément utilisés pour la séparation mécanique des matieres
résiduelles sont décrits ci-dessous afin de présenter leur rdle pour la séparation des matiéres et leurs

principales limites.

2.1.1.1 Broyage

Plusieurs équipements peuvent étre utilisés pour effectuer le broyage de matieres résiduelles, selon
I’objectif visé et les matieres ciblées (Bilitewski, 2010; Tchobanoglous et al., 1993). Une étape de
réduction de taille est généralement utilisée dans un TMB afin de faciliter 1’étape de bio-séchage
de la mati¢re organique en augmentant la surface d’échange (Velis et al., 2009). Le broyage peut
aussi avoir comme objectif d’homogénéiser certaines propriétés en vue de la production d’un
combustible derivé de déchets (Rotter, 2011). Finalement, ce procédé a également été identifié
comme une fagon d’améliorer la séparation de certaines matieres, par exemple en diminuant la
densité des livres et catalogues de fibres, menant ainsi a une séparation plus facile de ces matiéres
dans la fraction légere lors d’une classification a air ou d’une séparation balistique (Rotter et al.,
2004; Velis et al., 2013). L’utilisation d’une étape de broyage a par contre comme effet de libérer
certains contaminants et d’en faciliter la répartition dans les différents produits (Di Lonardo et al.,
2012; Rotter et al., 2004; Velis et al., 2013). Une étape de broyage peut également mener a
I’augmentation de la contamination des ballots de métaux en les comprimant, ce qui peut avoir
comme effet de piéger certains matieres dans les métaux (Cook et al., 2015). L’utilisation du

broyage ne se solde donc pas toujours par une amélioration de 1’efficacité du TMB.

Lorsqu’une étape de broyage est utilisée, elle devrait idéalement se situer aprés une premiére étape
de tamisage, afin d’effectuer une premicre séparation du verre et des autres maticres inertes fines

comme le sable et le gravier (Rotter et al., 2004).

2.1.1.2 Tamisage

Le tamisage représente une opération unitaire trés importante dans un TMB et permet d’exploiter
la différence des tailles de particules des matiéres pour en effectuer la séparation. Trois
équipements sont généralement utilisés pour effectuer cette opération, soit le crible rotatif, le tamis

vibrant et le séparateur a disque (Bilitewski et al., 2010; Tchobanoglous et al., 1993; Vesilind et
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al., 2002). Le crible rotatif est I’équipement le plus polyvalent des trois et est donc le plus utilisé

dans les centres de tri de matiéres résiduelles (Tchobanoglous et al., 1993; Velis et al., 2010).

Le tamisage a généralement trois objectifs dans une chaine de tri, soit d’effectuer une premiére
séparation permettant de concentrer la matiere en vue des prochaines étapes de séparation, de retirer
les matiéres fines comme le verre et de récupérer la matiére organique (Di Lonardo et al., 2012;
Vesilind et al., 2002). Le tamisage peut également servir a separer les fibres des autres matieres en
les concentrant dans la fraction grossiére (Damgacioglu et al., 2020; Dubanowitz, 2000), et retirer
les matieres trop petites pour étre récupérées par des trieurs optiques (Jansen et al., 2015). Ceci fait
généralement en sorte que le tamisage concentre les plastiques dans les tailles mitoyennes (Jansen
et al., 2015). Une étape de tamisage uniquement ne permet toutefois pas d’obtenir des matiéres de
qualité suffisante les debouchés conventionnels faisant en sorte qu’une purification subséquente

des différentes fractions produites est nécessaire (Damgacioglu et al., 2020).

En permettant de retirer les fines et les matiéres organiques des autres matieres résiduelles, 1’étape
de tamisage permet de concentrer les matieres ayant un pouvoir calorifique élevé pour la production
d’un CDD. Le tamisage est d’ailleurs considéré comme 1’équipement le plus approprié parmi les
équipements de tri mécaniques pour effectuer une concentration des matieres ayant un pouvoir
calorifique inférieur (PCI) élevé (Rotter etal., 2004). Cette concentration du PCI se traduit toutefois
généralement par une concentration de certains contaminants, comme le chlore et certains métaux
lourds (Rotter et al., 2004).

La principale limite a l’utilisation de ce type d’équipement pour la séparation de matieres
résiduelles est le risque de colmatage des ouvertures par des matieres humides, fibreuses et
collantes (Bilitewski, 2010). Ce phénomene est amplifié dans un contexte nordique lorsque la
température est proche du point de congélation (Ashkiki et al., 2019). Ceci a été démontré pour un
crible rotatif situé a Edmonton ou les conditions de dégel provoquent une agglomération des
matiéres organiques dans les trous du crible rotatif, menant a un colmatage complet du crible sur
une échelle de 2-3 heures, phénoméne amplifié par un débit d’opération élevé (Ashkiki et al.,
2019). Ce phénomeéne a également été observé par les opérateurs du centre de tri de matiéres
résiduelles mixtes de Valoris, au Québec, menant a la nécessité d’arréter la chaine de tri

fréquemment pour effectuer son entretien.
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2.1.1.3 Séparation balistique

La séparation balistique permet d’exploiter 1a différence de forme, de taille et de fragilité entre les
objets pour en effectuer la séparation (Bilitewski, 2010; Eule, 2013). Cette opération permet
généralement de séparer les matieres en 3 fractions, soit les matieres de type 2D (c.-a-d.., films
plastiques, papiers et cartons), les matiéres de type 3D (c.-a-d. plastiques, métaux, contenants
multicouches) et une fraction fine. Cette séparation s’effectue a partir d’une rangée d’éléments
vibrants et inclinés permettant d’entrainer les objets légers et plats vers le haut, alors que les objets
lourds et en 3D déboulent vers le bas de I’équipement, et que les matieres fines passent a travers
les ouvertures (Bilitewski, 2010). Une séparation des maticres fines n’est toutefois pas toujours

présente selon la configuration de 1’équipement.

Lorsqu’utilisé dans un TMB, un separateur balistique permet également de concentrer les matiéres
combustibles dans la fraction 2D en retirant les principales matiéres inertes dans la fraction 3D et
en retirant les matieres organiques et les matiéres inertes de petite taille dans la fraction fine (Mdller
et al., 2003). La taille des ouvertures du séparateur peut généralement étre ajustée afin d’optimiser

I’opération de I’équipement selon la situation (Mller et al., 2003).

Le séparateur balistique permet généralement d’obtenir un bon rendement, puisqu’il permet de
retirer les fibres malgré un pourcentage d’humidité élevé (Rotter et al., 2004). 1l est également
considéré comme 1’équipement (lorsque comparé au tamisage et a la classification a air) le plus
performant pour diminuer la concentration de déchets dangereux et des autres contaminants de la
fraction combustible (Rotter et al., 2004).

2.1.1.4 Classification a air

La classification a air permet d’exploiter la différence de densité, de taille et de forme des matiéres
en vue de les séparer en une fraction légere et une fraction lourde (Jansen et al., 2015). La séparation
dépend de la vitesse de I’air injecté et de la vitesse de chute de 1’objet (Bilitewski, 2010). La fraction
Iégere ainsi produite contient généralement des fibres, des plastiques légers, des métaux non-
ferreux et des matiéres fines (Tchobanoglous et al., 1993). Ainsi, ce procédé permet d’augmenter
considérablement le PCI de la fraction récupérée, mais se traduit par un faible rendement (Rotter
et al., 2004). En pratique, les fibres sont souvent faiblement récupérées da a leur pourcentage
d’humidité ¢€leve, faisant en sorte que la fraction récupérée contient presque exclusivement des

films plastiques, menant & une augmentation de la concentration des contaminants (Rotter et al.,
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2004). Lorsqu’elle est utilisée en fin de chaine sur un courant de plastiques relativement pur, cette
opération permet de separer les films plastiques, qui ont une valeur faible, des contenants rigides,

qui ont une valeur élevée (Jansen et al., 2015).

La classification a air peut donc avoir plusieurs objectifs selon son emplacement dans la chaine de
tri. Son efficacité est fortement influencée par le débit d’air injecté, ce qui peut permettre de
s’adapter a la situation. Egalement, la variation du débit d’air peut permettre d’obtenir un taux de
récupération élevé avec une contamination élevée ou un taux de récupération plus faible avec une

pureté plus élevée (Jansen et al., 2015).

2.1.1.5 Séparation des métaux

Deux types de séparateurs sont utilisés pour effectuer la séparation des métaux, soit le separateur
magnétique, permettant le retrait des métaux ferreux, et le séparateur par courant de Foucault,
permettant le retrait des métaux non-ferreux. L’efficacité de ces équipements dépend
principalement du type de matériel ciblé. Elle est également fonction de la taille des particules et
de leur forme, puisque les matieres plus petites ont un taux de capture moins élevé (Raymond,
2017; Savage et al., 1984). En plus de produire un courant de métaux dédié au recyclage,
I’utilisation de ces équipements dans un TMB permet de réduire la contamination en métaux lourds

(principalement en cadmium et en plomb) des autres produits (Rotter et al., 2004).

En général, I’efficacité de ces équipements est considérée comme tres élevée, Soit supérieure a 95%
(Bilitewski, 2010; Tchobanoglous et al., 1993). La principale source de contamination vient de
I’entrainement des matiéres légéres lors de la récupération (Tchobanoglous et al., 1993). Toutefois,
des efficacités plus faibles ont été rapportées dans la littérature, principalement pour les séparateurs
par courant de Foucault, pour lesquels une efficacité généralement plus faible que pour les
séparateurs magnétiques a été observée (Velis et al., 2010). Par exemple, Velis et al. (2013) ont
montré dans leur analyse d’un TMB en opération que les métaux non-ferreux n’étaient pas
adéquatement récupérés, menant & une contamination importante du CDD produit, ayant pour effet
d’¢lever considérablement la fraction de cendres (Velis et al., 2013). Des résultats similaires ont
été observés au centre de tri de Valoris au Québec, ou le séparateur par courant de Foucault est
caractérise par une efficacité de séparation beaucoup plus faible que pour le séparateur magnétique.
L’une des raisons pouvant expliquer la plus faible récupération des séparateurs par courant de

Foucault est que I’aluminium dans les matiéres résiduelles est souvent mélangé avec d’autres
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matieres (Mastellone et al., 2017). Les métaux non-ferreux ont également des tailles de particules
plus faibles que les métaux ferreux, ce qui pourrait également contribuer a expliquer la plus faible

efficacité des séparateurs par courant de Foucault.

2.1.1.6 Séparation optique

Les séparateurs optiques permettent de séparer des matiéres résiduelles en deux étapes, soit en les
identifiant a partir d’une méthode optique, puis en les séparant a partir d’un jet d’air.
L’identification des matieres peut se faire a partir de la couleur, par spectroscopie infrarouge, par
rayons X ou par capteur UV (Bilitewski, 2010; Velis et al., 2010). lls sont principalement utilises
dans les centres de tri de matieres résiduelles en vue de séparer les différents plastiques. Ils peuvent
par contre également servir pour la séparation de métaux, de verre et de fibres (Gundupalli et al.,
2017). Les séparateurs optiques par spectroscopie infrarouge sont de loin les plus utilisés pour la
séparation des plastiques (Hopewell et al., 2009). Leur avantage vient du fait qu’ils permettent
d’effectuer une classification des différents plastiques, permettant ainsi leur séparation (Gundupalli

etal., 2017).

Ces séparateurs sont reconnus pour avoir une efficacité théorique de séparation assez élevée pour
certaines matieres, soit 90% et plus (Velis et al., 2010). Par contre, les différents exemples dans la
littérature montrent des résultats mitigés selon les matiéres. Ainsi, les separateurs optiques ne
permettent pas de récupérer les matieres ayant des faibles tailles de particules (Jansen et al., 2015),
ainsi que les plastiques noirs (Eriksen & Astrup, 2019; Ragaert et al., 2017). Egalement, les
plastiques mélangés peuvent étre mal triés selon I’angle du plastique sur le convoyeur, puisque le
séparateur optique peut identifier le couvercle ou 1’étiquette plutét que le contenant (Eriksen &
Astrup, 2019; Ragaert et al., 2017). Cette technologie est toutefois toujours en développement et il
est attendu que son efficacité continue d’augmenter dans les prochaines années (Velis et al., 2010).
Une autre raison pouvant expliquer les erreurs de tri des séparateurs optiques vient du fait qu’en
vue d’identifier les maticres a trier, celles-ci ne doivent pas étre empilées, ce qui n’est pas toujours
le cas. Egalement, le jet d’air utilisé n’est pas nécessairement suffisant pour propulser certaines

matiéres selon leur densité.

Dans un TMB, en plus de contribuer a la séparation des différentes fractions de matiéres
résiduelles, les séparateurs optiques peuvent jouer un réle important pour la réduction du chlore
dans le CDD produit en ciblant directement le PVC (Pieber et al., 2012; Velis et al., 2013).
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2.1.1.7 Tri manuel

Malgré le fait que le tri manuel ne correspond pas a un equipement de tri mécanique en tant que
tel, cette méthode de séparation est indispensable comme le démontre sa présence importante dans
les centres de tri de matieres résiduelles. L’intérét du tri manuel vient du fait qu’il permet d’obtenir
des puretés trés élevées (Tchobanoglous et al., 1993). Le tri manuel requiert toutefois un faible
débit d’opération et se traduit par des cotits d’opération élevés (Bilitewski, 2010). Le tri manuel

doit donc étre utilisé de fagon limitée pour des applications précises.

Le tri peut étre positif (sélection d’objets visés) ou négatif (retrait des contaminants). Le tri positif
permet d’obtenir un flux ayant une meilleure qualité, mais de plus faible débit qu’un tri négatif
(Bilitewski, 2010). Dans le cadre d’un TMB, le tri manuel est généralement utilisé comme appoint
afin de purifier certains flux nécessitant une qualité élevée (Cimpan et al., 2016). Il est également
utilisé pour retirer des objets encombrants ou dangereux en début de chaine pouvant provoquer des
bris dans le reste du procédé (Cimpan et al., 2016; Rotter et al., 2004; Vesilind et al., 2002).
Finalement, le tri manuel peut étre particulierement utile pour séparer les flux de plastiques par
couleur (Ragaert et al., 2017).

2.1.1.8 Autres méthodes de séparation

D’autres approches peuvent étre potentiellement utilisées pour effectuer la séparation de matiéres
résiduelles, telles que des méthodes par flottation ou I’utilisation d’hydrocyclones (Bilitewski,
2010; Tchobanoglous et al., 1993). Ces méthodes sont cependant trés peu utilisées dans les TMB

actuels et il a donc été décidé de les exclure de cette revue.

Finalement, certaines approches de tri robotisé sont présentement mises de ’avant par certaines
compagnies. Cependant, ces approches sont peu utilisées et toujours en développement. Ainsi, elles

n’ont pas été inclues dans la revue.

2.1.2 Le traitement biologique

Comme mentionné précédemment, le procédé biologique d’un TMB peut soit se situé au début du
procédé ou a la fin. Lorsqu’il est situé en début de chaine, le procédé consiste généralement en une
digestion aerobie, communément appelé bio-séchage, alors que lorsqu’il est situé en fin de chaine,

le procédé consiste soit en une digestion aérobie ou une digestion anaérobie (Bilitewski et al., 2010;
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Velis et al., 2010). L’ objectif principal du traitement biologique, peu importe ses caractéristiques
et son positionnement dans le centre, est de réduire la dégradabilité des matieres afin de réduire

leur impact lors de leur enfouissement (Di Lonardo et al., 2012).

Les trois principaux cas possibles sont décrits brievement ci-dessous afin de présenter leur

fonctionnement général.

2.1.2.1 Bio-séchage

Le bio-séchage consiste en une digestion aérobie partielle des matiéres résiduelles permettant
d’effectuer un séchage partiel et une stabilisation de la matiére organique contenue dans les
matiéres résiduelles (Velis et al., 2009). Etant situé en début de chaine, il permet également
d’améliorer la séparation des matieres, puisque les matiéres séches sont plus facilement séparables
(Christensen & Bilitewski, 2010; Velis et al., 2009). Par exemple, pour la séparation des fibres,
une diminution de I’humidité et de la densité des matiéres permet de les récupérer plus facilement
dans la fraction légére produite par un TMB (Velis et al., 2013). Egalement, le séchage permet de
rendre la matiére organique moins collante, menant a une meilleure pureté des fractions recyclables
issues d’un TMB (Cook et al., 2015).

Deux mécanismes principaux opérent lors du bio-séchage, soit le séchage et la stabilisation de la
matiére organique. La dégradation aérobie de la matiére entraine une stabilisation de celle-ci, ainsi
qu’un dégagement d’énergie menant au séchage de la matieére (Velis et al., 2009). Un procédé de
bio-séchage compte généralement un temps de résidence variant entre 7 et 15 jours et permet

d’abaisser le pourcentage d’humidité sous la barre des 20% (Velis et al., 2009).

Les deux principaux freins a 1’utilisation du bio-séchage sont le temps de résidence élevé requis
pour effectuer cette opération, nécessitant donc un volume d’opération important, et la

consommation électrique élevee requise pour effectuer la ventilation (He et al., 2013).

2.1.2.2 Digestion aérobie

La digestion aérobie, ou compostage, utilisée dans les procédés de TMB fonctionnent généralement
de laméme fagon que la digestion aérobie de matieres organiques triées a la source. Cette digestion
se fait généralement en deux étapes, soit une premiére phase de dégradation de 4-5 semaines, suivi

d’une étape de maturation de 9-10 semaines (Bilitewski et al., 2010). La digestion aérobie dans un
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TMB est généralement effectuée en milieu fermé avec différents types d’installation et de systemes

d’aération (Bilitewski et al., 2010; Montejo et al., 2010).

Cette étape peut toutefois avoir différents niveaux de complexité selon les installations et peut
éventuellement combiner des installations de bio-séchage dans certains cas. Par exemple, dans leur
analyse d’un TMB en France, Bayard et al. (2010) rapportent que les matieres passent par une étape
de bio-séchage par aération forcée d’une durée de 2 jours avant d’effectuer une séparation
granulométrique, puis les matiéres récupérées sont envoyées vers une étape de dégradation avec
une aération forcée pendant 6 semaines, pour finalement étre envoyées vers une étape de

maturation de 15 semaines avec une aération passive.

2.1.2.3 Digestion anaérobie

La digestion anaérobie, ou biométhanisation, utilisée dans les procedés de TMB fonctionnent
également de la méme facgon que la digestion anaérobie de matiéres organiques triées a la source.
Cette approche pour traiter les résidus organiques produits par un TMB pourrait potentiellement
permettre de produire une quantité d’énergie suffisante pour remplir les requis énergétiques du
centre (Cesaro & Belgiorno, 2021; Di Lonardo et al., 2012). A I’échelle laboratoire, il a été montré
que la digestion anaérobie de la fraction organique triée mécaniquement par un TMB pourrait
permettre de produire une quantité de methane équivalente & une digestion anaérobie de matiéres

organiques triées a la source (Carchesio et al., 2020).

La digestion peut se faire en milieu sec ou humide selon les choix de conception, avec un temps de
rétention de 3-4 semaines (Bilitewski et al., 2010). Plusieurs usines operent toutefois avec des
temps de résidence plus courts, soit d’environ 2 semaines (Montejo et al., 2010).

Une étape de compostage peut étre utilisée suite a la digestion anaérobie afin de réduire les odeurs
et d’augmenter la stabilisation de la matiere (Bilitewski et al., 2010; Montejo et al., 2010). D’autres
approches permettant la stabilisation de la fraction liquide peuvent egalement étre utilisées comme
un séchage suite a une séparation liquide/solide. Certaines usines utilisent également les deux
configurations en simultanées, en envoyant la fraction plus fine (<40 mm) en digestion anaérobie
et la fraction moyenne (40-80 mm) en digestion aérobie, puisque la fraction fine est généralement
moins contaminée et que la digestion anaérobie est reconnue comme étant plus sensible a la

contamination (Bernat et al., 2021; Montejo et al., 2010). Pantini et al. (2015) ont d’ailleurs observé
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une inhibition importante causée par une concentration élevée en acides gras et en ammoniac lors

de I’étape de digestion anaérobie d’un TMB en Italie.

2.1.3 Les produits du TMB et leurs applications

Les produits issus d’un TMB sont généralement caractérisés par une contamination élevée due a la
grande hétérogénéité de la composition de I’intrant et de ses propriétés (Cimpan et al., 2015;
Damgacioglu et al., 2020; Ip et al., 2018; Mastellone et al., 2017; Velis et al., 2010). Plusieurs
exemples de TMB rencontrant des problémes importants quant a la qualité de leurs produits ont
ainsi été rapportés pour plusieurs de ceux-ci, incluant la fraction organique stabilisée (Montejo et
al., 2010), le CDD (Montejo et al., 2011) et les matieres recyclables (Mastellone et al., 2017). Ces
problémes ne sont par contre pas spécifiques au tri des matieres résiduelles mixtes, puisque des
problémes de contamination importants ont également été identifiés pour des usines traitant des
matieres recyclables triées a la source (Damgacioglu et al., 2020; Feil, Thoden Van Velzen, et al.,
2016). Les options disponibles pour la valorisation des produits varient donc selon la situation.
L’identification d’un débouché pour un produit devrait donc s’appuyer sur des caractérisations

fiables de celui-ci afin de s’assurer qu’il a une qualité suffisante (Di Lonardo et al., 2012).

2.1.3.1 Qualité des produits

Quatre fractions sont généralement séparees par un TMB, soit un ou plusieurs flux de matieres

recyclables, un flux de matieéres combustibles, un flux de matiére organique et un flux de rejets.
Matiéres recyclables :

Les flux de matieres recyclables récupérées par un procédé de TMB incluent généralement au
moins les métaux ferreux et les métaux non-ferreux, et dans certaines usines plus automatisées, les
principaux plastiques tels que le polytéréphtalate d'éthyléne (PET), le polyéthylene haute densité
(HDPE) et les plastiques mixtes. La qualité minimale a atteindre pour ces matieres recyclables
dépend généralement des marchés et peut donc varier en fonction du temps. Toutefois, il est
possible de se référer aux normes de I’ISRI comme référence. Ces normes ne sont toutefois pas
disponibles pour les métaux, tandis qu’aucune contamination de matiéres prohibées n’est

généralement tolérée pour les matiéres plastiques (RECYC-QUEBEC, 2020).
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Les métaux récupérés comptent généralement pour 2-4% de la fraction massique des produits et
sont destinés aux filieres conventionnelles de recyclage (Bilitewski et al., 2010). Toutefois, les
métaux récupérés peuvent faire face a une contamination importante (Cook et al., 2015; Mastellone
et al., 2017). Cette contamination vient principalement des matieres piégées dans ceux-ci et des
déchets électroniques (Cook et al., 2015; Mastellone et al., 2017). L’ajout d’une étape de tri manuel
et I’absence de procédé de réduction de taille pourraient cependant permettre d’atteindre des requis
de qualité suffisants (Cook et al., 2015). Pour ce qui est des métaux non-ferreux, di a leur faible
concentration et au fait qu’ils sont souvent mélangés avec d’autres matieres, il peut étre difficile
d’obtenir une bonne pureté et une bonne récupération de ces matieres (Mastellone et al., 2017). Un
tri manuel est donc souvent requis afin de s’assurer d’obtenir une qualité suffisante pour cette

fraction.

Pour ce qui est de la récupération des plastiques a partir d’un TMB, il a été montré qu’il est possible
de récupérer des quantités de plastiques similaires, voir supérieures, par rapport a un systeme de tri
a la source, si un pre-traitement important, incluant du bio-séchage, du tamisage et de la séparation
balistique, est utilisé (Feil, Pretz, et al., 2016; Jansen et al., 2013). Par contre, la qualité et la
récupération ne sont pas équivalentes pour tous les plastiques. Ainsi, des tests en industrie ont
montré qu’il est généralement plus facile d’obtenir un ballot de PET de bonne qualité que pour le
HDPE, les films plastiques et les plastiques mixtes (Jansen et al., 2013). Entre autres, il a été montré
que les ballots de HDPE sont souvent contaminés par une quantité importante de plastiques mixtes
(Damgacioglu et al., 2020; Jansen et al., 2013). Egalement, les ballots de plastiques mixtes, méme
pour un flux trié a la source, sont caractérisés par une faible qualité rendant leur recyclage en boucle
fermée particulierement difficile (Eriksen et al., 2019). Il peut donc étre questionnable de produire
des ballots de plastiques mixtes et de HDPE pour des filiéres de recyclage dans le contexte d’un
TMB et d’autres voies de valorisation pourraient potentiellement étre considérees. Ceci est d’autant
plus important que les plastiques, tels que le HDPE et le LDPE, sont les matiéres contenues dans

les matiéres résiduelles ayant généralement le PCI le plus élevé (Montejo et al., 2011).

Une autre limite a la récupération des plastiques mixtes vient du fait que le plastique principalement
inclus, soit le PP, est utilisé pour divers usages et a donc des formes trés différentes selon les objets,
rendant sa récupeération difficile (Mastellone et al., 2017). Plus encore, la récupération des
plastiques nécessite généralement des investissements importants en trieurs optiques et en trieurs

manuels qui ne sont pas nécessairement récupérés complétement par la vente de ces plastiques
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(Feil, Pretz, et al., 2016). Ces aspects doivent donc étre considérés lors de la planification d’un
TMB.

Finalement, il est important de préciser que 1’augmentation de la pureté des ballots ne se traduit
pas nécessairement par une augmentation des revenus, puisque le fait de surpasser les standards de
qualité ne se traduit pas par une augmentation du prix de vente (Ip et al., 2018). Ainsi, une qualité
minimale des ballots doit étre atteinte, mais ne doit généralement pas étre dépassee, car cela se

traduit par une augmentation de la quantité de rejets, et donc des codts associés a leur traitement.
Combustible dérivé de déchets :

Les combustibles produits a partir de matiéres résiduelles peuvent généralement étre classés en
deux catégories, soit le combustible dérive de déchet (CDD) et le combustible solide de
récupération (CSR). Un CSR peut étre défini comme un CDD qui répond a des critéres de qualité
minimaux (Rotter, 2011; Velis et al., 2010), généralement en lien avec le contenu énergétique et le
contenu en contaminants. Dans le cadre de cette revue, aucune distinction majeure n’est faite.

Ainsi, le terme CDD sera utilisé pour faire référence aux deux possibilités.

Un combustible dérive de déchets inclut genéralement les matieres seches ayant un fort pouvoir
calorifique, tel que le papier, le carton et les différents plastiques n’ayant pas été séparés pour les
marches de recyclage (Bilitewski et al., 2010; Di Lonardo et al., 2012). Il est produit en vue d’étre
valorisé comme combustible dans des fournaises industrielles, des fours de cimenterie ou des
incinérateurs (Bilitewski et al., 2010; Gallardo et al., 2014). Une valorisation par pyrolyse ou par
gazéification pourrait également étre envisagée pour ce produit (Velis et al., 2010). Dans certains
exemples industriels pour lesquels une configuration de TMB assez simple est privilégiée, la
fraction combustible est toutefois simplement enfouie due a sa faible qualité (Gallardo et al., 2014;
Montejo et al., 2011).

Un CDD peut compter pour 30-60% de la fraction massique des produits selon la configuration de
la chaine et la composition entrante (Bilitewski et al., 2010). Tel que mentionné précédemment, la
composition d’un CDD peut grandement varier d’un procédé a I’autre. Un exemple typique de
composition est donné par (Montejo et al., 2011) pour une configuration simple de TMB qui
rapportent une composition de 24% de matiéres biodégradables, 34% de papiers et de cartons, 25%

de plastiques, 8% de textiles, 2% de contenants multicouches et 7% d’autres maticres inertes.
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Afin de produire un CDD de qualité suffisante, la séquence du TMB doit permettre de réaliser
quatre objectifs principaux, soit le retrait de I’ecau et des inertes, le retrait des composés corrosifs
comme le chlore, I’aluminium et le zinc, la réduction de la quantité de substances volatiles et la
réduction de la quantité de substances pouvant avoir un impact négatif sur I’environnement (Rotter,
2011). La réalisation de ces quatre objectifs permet également d’augmenter le pouvoir calorifique
des matiéres résiduelles. Les CDD ont un PCI environ deux fois plus grand que les matieres mixtes

alimentées au centre (Montejo et al., 2011).

Les différents exemples dans la littérature montrent cependant que ces objectifs ne sont pas toujours
atteints. Ainsi, le tri mécanique n’est généralement pas suffisant pour produire un CDD de qualité
suffisante, puisqu’il se traduit souvent par une augmentation de la concentration de certains
contaminants, tels que les métaux lourds et le chlore, dans le produit (Rotter et al., 2004). Un
résultat similaire a été démontré par Velis et al. (2013) qui ont observé une légere concentration du
chlore dans le CDD, puisque 73% et 79% du contenu énergétique et du contenu en chlore étaient
respectivement récoltés dans le produit. Le fait de diminuer le contenu en chlore se solde
généralement par une baisse du rendement énergeétique, faisant en sorte qu’il est nécessaire de
trouver un juste milieu (Velis et al., 2013). Egalement, certains objectifs affectent grandement le
rendement du procédé. Par exemple, les papiers ont une concentration élevée en cendres, tout en
ayant un PCI relativement élevé (Gallardo et al., 2014; Montejo et al., 2011). Leur retrait se traduit
donc par une diminution du contenu en cendres, mais également par une diminution du rendement
énergétique. Le contenu élevé en cendres peut d’ailleurs étre un frein a la valorisation du CDD

(Gallardo et al., 2014).

Parmi tous les criteres, le contenu en chlore est toutefois souvent vu comme la principale limite a
prendre en compte pour la production d’un CDD dii aux impacts négatifs associés a sa combustion
(European Committe for Standardisation, 2006; Rotter, 2011). Dans un contexte québécois,
’attractivité de ce type de produits peut €également étre limitée par une faible acceptabilité sociale
associée a la valorisation énergétique des matiéres résiduelles et le contexte énergétique. En effet,
la grande proportion d’énergie électrique incluse dans le mix énergétique québécois limite

généralement I’intérét pour la production d’énergie a partir de voies thermiques.

Matiéres organiques :
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La fraction organique issue du TMB compte pour environ 30-40% de la fraction massique des
produits (Bilitewski et al., 2010). Actuellement, la fraction organique issue d’un TMB est
principalement éliminée par enfouissement ou utilisée comme matériel de recouvrement, en raison
d’un manque de débouchés intéressants pour valoriser cette fraction et de considérations
législatives (Di Lonardo et al., 2012). Le manque de débouchés est directement causé par le fait
que le tri mécanique n’est pas suffisant pour produire une fraction organique de bonne qualité pour
une utilisation comme compost, d0 a la présence d’une grande quantité de contaminants mal triés
(Montejo et al., 2010). Ces contaminants incluent des fibres, des plastiques, du verre, du métal et
des résidus domestiques dangereux (RDD) (Bernat et al., 2021; Montejo et al., 2010). La présence
de RDD, souvent observée sous forme de batteries, peut mener a une contamination élevée en
métaux lourds de cette fraction (Montejo et al., 2010). Une concentration plus élevée en métaux
lourds que celle permise par les standards a d’ailleurs €té observée a plusieurs reprises dans la
littérature (Di Lonardo et al., 2012). Un exemple de composition pour cette fraction est celle
rapportée par Montejo et al. (2010) qui rapportent une composition de 78% de matieres
biodégradables, 6% de papiers et de cartons, 6% de plastiques, 6% de verre et 4% d’autres
contaminants. Cette contamination est toutefois fortement corrélée a la taille des ouvertures choisie
pour effectuer la séparation granulométrique, puisque la contamination est plus importante pour

des tailles plus élevées (Bernat et al., 2021).

Egalement, plusieurs exemples dans la littérature ont montré que le traitement biologique effectué
dans un TMB ne permettait pas toujours d’atteindre une stabilisation suffisante de la matiére,
menant a une production potentielle de méthane lors de 1’enfouissement de cette fraction (Bayard
et al., 2010; Carchesio et al., 2020; Di Lonardo et al., 2012; Pantini et al., 2015). En général, la
qualité de la stabilisation effectuée varie grandement en fonction du temps, en raison de la variation

importante de I’intrant (Trulli et al., 2018).

Finalement, en vue de réellement réduire I’impact environnemental associé au traitement des
ordures ménageres, le TMB doit étre congu de fagon a ce que la grande majorité de la matiere
organique soit adéquatement récupérée dans la bonne fraction, afin de s’assurer qu’elles subissent
un traitement biologique avant leur élimination (Bayard et al., 2010). Bayard et al. (2010) ont par
exemple montré qu’une succession de deux cribles rotatifs ayant des tailles d’ouvertures de
respectivement 7 cm et 5 cm résultaient en une perte importante des matieres organiques dans la

fraction grossiere n’étant pas stabilisée.
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En vue d’augmenter la circularité des matiéres, il est toutefois impératif de trouver des débouchés
pour la fraction organique issue d’un TMB. Ces débouchés potenticls doivent cependant

nécessairement passer par un traitement supplémentaire des matiéres.
Matiéres encombrantes et rejets :

Trois flux de rejets sont généralement produits par un procédé de TMB, soit les matiéres
encombrantes séparées en début de chaine, les matiéres fines et les matieres inertes séparées en fin
de chaine. Ces rejets comptent généralement pour 5 a 10% des produits d’un TMB (Bilitewski et
al., 2010).

Autant les matiéres encombrantes collectées en début de procédé que les rejets de fin de ligne sont
destinés a I’enfouissement. Pour ce qui est de la fraction fine, elle contient principalement du verre,
du sable, de la céramique et des roches et est egalement souvent destinée a I’enfouissement. Cette
fraction peut difficilement étre purifiée par densité ou par une séparation optique, puisque ces
équipements sont peu efficaces pour des faibles tailles de particules et ces matiéres ont des densités
similaires (Cook et al., 2015). Cette fraction peut toutefois étre utilisée comme agrégat suite a une

stabilisation ou un séchage dd a sa faible concentration en matiere organique (Cook et al., 2015).

2.1.3.2 Mise en valeur des produits

Face a la difficulté de trouver des débouchés conventionnels pour certaines des fractions produites
par un TMB, des nouvelles approches doivent étre considérées. Deux procédés thermiques
pourraient s’avérer particuliérement intéressants pour augmenter la qualité de certaines fractions

en vue d’un traitement subséquent, soit la carbonisation hydrothermale et la torréfaction.

Une revue de la littérature a été réalisée spécifiquement sur I’utilisation de la carbonisation
hydrothermale pour le traitement des matiéres résiduelles dans le contexte d’une collaboration avec
un partenaire industriel, soit CanmetENERGY (Report to CanmetENERGY Ottawa under the
Agreement on Scientific and Technological Cooperation between Canmet ENERGY Ottawa and
Polytechnique Montreal (No. 2017-129 CM-COL DIR-POLY)). Un bref résumé de cette revue est

présenté dans cette section.
Carbonisation hydrothermale

La carbonisation hydrothermale consiste en un traitement thermochimique de la biomasse dans un

milieu aqueux saturé a température élevée (180-280°C) et a pression élevée pour un temps de
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résidence variant de quelques minutes a plusieurs heures (Funke & Ziegler, 2010). Le procédé
permet de produire un combustible solide stabilisé ayant des propriétés de combustion similaires a
celles du lignite (Escala et al., 2013; Funke & Ziegler, 2010).

La carbonisation hydrothermale est principalement caractérisée par des réactions d’hydrolyse, de
déshydratation et de décarboxylation menant a une réduction du ratio H/C et du ratio O/C de
I’intrant (Berge et al., 2011; Funke & Ziegler, 2010; Libra et al., 2011).

Ce procédé pourrait s’avérer particuliérement intéressant pour accroitre la qualité de la fraction
organique produite par un TMB, car il permet de traiter de la matiére humide et peut accepter
différents types de matieres (Funke & Ziegler, 2010). Ainsi, les papiers, les cartons et les textiles
sont tous carbonisés pendant le traitement, alors que les plastiques, le verre et les métaux ne
prennent généralement pas part aux réactions de carbonisation hydrothermale (Berge et al., 2011).
Ainsi, le procédé de HTC permet de traiter la matiere organique malgré un taux de contamination
élevé. Egalement, certains contaminants, comme les métaux, peuvent étre séparés mécaniquement

suite a la réaction (Lokahita et al., 2017).

Certains auteurs ont d’ailleurs rapporté 1’intérét d’utiliser la carbonisation hydrothermale pour
valoriser des mélanges de matiéres résiduelles (Berge et al., 2011; Lin et al., 2017a; Peng et al.,
2017; Prawisudha et al., 2012; Triyono et al., 2019), du compost bio-stabilisé de faible qualité
(Basso et al., 2015) et de la matiere organique issue d’un TMB (Kim et al., 2012).

Torréfaction

La torréfaction consiste quant a elle en un traitement thermochimique dans un environnement inerte
a pression atmosphérique et a des températures équivalentes (200-300°C) a celles de la
carbonisation hydrothermale (Basu, 2013; Medic et al., 2012; Stepien & Biatowiec, 2018). Ce
procédé est généralement utilisé pour augmenter la qualité d’un mélange de biomasses en vue d’une

valorisation thermique (Basu, 2013).

Tout comme pour la carbonisation hydrothermale, la torréfaction est principalement caractérisee
par des réactions de déshydratation et de décarboxylation, menant également a une réduction du
ratio H/C et O/C de I’intrant (Libra et al., 2011; Woytiuk et al., 2017). La principale différence
vient du fait que I’intrant se doit d’étre sec (Kambo & Dutta, 2015).
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Tout comme pour la carbonisation hydrothermale, ce procédé représente une avenue intéressante
pour augmenter la qualité des produits d’un TMB. Ce procédé pourrait par exemple étre utilisé
pour augmenter la qualité du CDD produit. Plusieurs auteurs ont d’ailleurs appliqué ce procédé a
un mélange de matiéres résiduelles triees mécaniquement en vue d’en augmenter la qualité
(Biatowiec et al., 2017; Edo et al., 2017; Stegpien & Biatowiec, 2018; Yuan et al., 2015).

2.2 Modélisation du traitement mécano-biologique

Malgré le fait que I’efficacité des opérations de tri mécanique est intrinséquement liée aux
phénoménes physiques s’y déroulant, la conception de ce type de procédé est régulierement basee
sur des méthodes semi-empiriques dues a un manque de données sur 1’efficacité de ces opérations
(Velis et al., 2013). Ces données sont en effet rarement disponibles dans la littérature, autant pour
les efficacités globales des MRF que pour les différentes opérations unitaires (Cimpan et al., 2015).
Les différentes méthodes communément utilisées pour modéliser un procédé de TMB sont
présentées dans cette section, en plus d’une introduction sur la modélisation des systéemes de GMR

en général.

2.2.1 Modélisation générale des systemes de gestion de matieres résiduelles

Plusieurs outils ont été utilisés dans la littérature pour modéliser un systeme de gestion de matieres
résiduelles, incluant principalement I’analyse de flux de mati¢res et ’analyse de cycle de vie
(Chang & Pires, 2015). Ces deux outils, ainsi que certains modéles spécifiques développés, sont

présentés dans cette section.

2.2.1.1 Analyse de flux de matiére

L’analyse de flux de matiére (material flow analysis, MFA) est un outil d’aide a la décision se
basant sur la loi de la conservation de la matiére pour déterminer la variation des flux et des stocks
d’un systéeme complexe. Une MFA peut étre réalisée autant au niveau des biens (marchandises
ayant une valeur positive ou négative) que des substances (matiére formée d’une unité uniforme,
comme un élément ou une molécule chimique) (Brunner & Rechberger, 2016). Cet outil se base
généralement sur des techniques de réconciliation de données et de propagation d’incertitudes pour

résoudre les bilans de masse du systéme, permettant ainsi de calculer ’ensemble des coefficients
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de transfert, des flux et des stocks. Un coefficient de transfert est un nombre entre 0 et 1, permettant
de déterminer la répartition d’une matiere dans les flux de sortie d’une opération unitaire en
fonction des flux d’entrée (Brunner & Rechberger, 2016). Les coefficients de transfert, parfois
également nommeés coefficients de partition, sont généralement exprimés par la formule décrite par
(Brunner & Rechberger, 2016) :

= — Vi €5 (2-1)

ou TC; est le coefficient de transfert vers le flux j, mq, ; est le débit de matiere du flux j sortant du
procedé, my, ; est le débit de matiére i entrant au procédé et S; est I’ensemble de flux i entrant au

procéde et de longueur n;.

L’outil le plus utilisé dans la littérature pour réaliser une MFA est le logiciel STAN Cencic &
Rechberger, 2008 ; Cencic, 2016). 11 s’agit d’un logiciel gratuit permettant de réaliser une MFA,
autant au niveau des biens que des substances, et se basant sur une minimisation des moindres
carrées et sur des techniques de propagation d’incertitudes pour effectuer une réconciliation de
données (Cencic, 2016).

La MFA a été appliquée a plusieurs reprises pour la GMR, principalement pour représenter un
systéme entier dans 1’économie (Allesch & Brunner, 2015). Cet outil a également été appliqué dans
une moindre mesure pour représenter une usine de traitement, tel qu’un incinérateur ou un
gazéificateur (Allesch & Brunner, 2015). L’analyse de flux de matiéres a toutefois été peu utilisee

pour analyser des centres de tri mécanique dans la littérature.

2.2.1.2 Analyse de cycle de vie

L’analyse de cycle de vie (ACV) est un outil d’aide a la décision permettant d’évaluer 1’impact
environnemental d’un produit ou d’un service sur I’ensemble de son cycle de vie. Elle est
principalement utilisée pour effectuer la comparaison de I’impact environnemental de produits ou
de services ayant une méme fonction (Jolliet et al., 2010). Au cours des derniéres années, I’ACV a
grandement gagné en popularité pour la représentation de systéme de GMR puisqu’elle permet de
comparer des options de traitement autant pour un produit spécifique, une matiére générique ou un
flux complexe (Ekvall et al., 2007). Des méthodologies ont d’ailleurs été développées pour faciliter
I’application de I’ACV ala GMR (Clift et al., 2000; Laurent, Clavreul, et al., 2014).
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L’ACV peut contribuer & améliorer les systemes de GMR en contribuant & plusieurs niveaux. Par
exemple, I’ACV peut permettre d’atteindre une meilleure compréhension d’un systéme, d’effectuer
la comparaison de scénarios de traitement, de proposer des pistes d’amélioration a un systéme ou
de faciliter le développement de nouvelles technologies (Christensen et al., 2020). Cet outil a été
appliqué de facon relativement équivalente aux différentes voies de traitement des matieres
résiduelles incluant la collecte, les procédés thermiques, les procédes biologiques et les procedés
mécaniques, principalement dans le contexte de pays ayant des politiques de GMR développées
(Laurent, Bakas, et al., 2014).

La dépendance importante des résultats d’ACV a la situation pour laquelle elle est réalisée, incluant
la composition des matieres a traiter et la configuration spécifique du systeme de gestion, limite
cependant la généralisation des résultats (Laurent, Bakas, et al., 2014). Ceci se traduit par une
divergence importante des résultats des différentes études en lien avec la GMR (Laurent, Bakas, et
al., 2014). Malgré ces différences, les résultats d’ACV de matieres résiduelles concluent
généralement sur le fait que le recyclage représente une meilleure alternative de traitement que
I’incinération et I’enfouissement, puisque la création d’un produit a partir de matiéres recyclées est
moins énergivore en termes de ressources qu’a partir de maticres vierges (Bjorklund et al., 2010;
Laurent, Bakas, et al., 2014). Ce bénéfice est toutefois fortement dépendant du débouché des

matieres recyclées (Bjorklund et al., 2010; Andreasi Bassi et al., 2017; Rigamonti et al., 2020).

2.2.1.3 Autres modeéles

Plusieurs modéles combinant des notions d’ACV et de MFA ont été développés spécifiquement
pour la GMR, menant au développement de bases de données en lien avec les procédes de
traitement. Les principaux modeéles développés incluent EPIC/CSR (Haight, 2004), MSW-DST
(Thorneloe et al., 2007), SWOLF (Levis et al., 2013), EASETECH (Clavreul et al., 2014) et
ORWARE (Eriksson et al., 2002). Parmi ces modeéles, le plus commun est EASETCH, qui a été
utilisé a plusieurs reprises par différents auteurs pour réaliser des ACV de systemes de GMR. Les
principales caractéristiques et différences de ces modeles ont été étudiées par le passé par différents
auteurs (Blikra Vea et al., 2018; Gentil et al., 2010; Winkler & Bilitewski, 2007).

L’utilisation de ces différents modéles peut toutefois mener a des résultats trés variables dus aux
différences entre les hypotheses posées (Blikra Vea et al., 2018; Gentil et al., 2010; Winkler &

Bilitewski, 2007). Egalement, ces modeéles sont généralement spécifiques a leur pays d’origine
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(Gentil et al., 2010). Le développement de ce type de modéle demande un effort important autant
au niveau de la création des inventaires de cycle de vie qu’au niveau du développement
mathématique. Ainsi, plusieurs de ces modé¢les n’ont jamais été réellement terminés et n’ont donc
pas été utilisés fréequemment dans la littérature. Finalement, dii a 1’évolution rapide des techniques
de modélisation en ACV, certains modeéles développés il y a plus longtemps ne sont plus réellement
applicables (Gentil et al., 2010).

Une autre limitation importante pour ces modeéles est que la prédiction des émissions et de la
consommation énergétique des procédes doit généralement étre redéfinie pour chaque cas d’étude
puisqu’elle ne dépend pas d’une modélisation des interactions physiques et chimiques des procédés
de traitement (Blikra Vea et al., 2018). Ceci limite ainsi la capacité de prédire les résultats de

nouvelles configurations et de nouvelles options technologiques (Blikra Vea et al., 2018).

Un outil d’aide a la décision, nommé MaRCOT, présentement développé au sein du Centre
international de référence sur le cycle de vie des produits, procédés et services (CIRAIG) pourrait
permettre de régler certaines des limites présentées précédemment pour la modélisation de systéme
de GMR. Cet outil permet I’intégration de différentes méthodes de la MFA et de I’ACV, dans un
cadre d’optimisation linéaire. Le modele présenté dans cette these est d’ailleurs développé dans le

cadre de cet outil d’aide a la décision et permettra a terme de combler le module de tri mécanique.

2.2.2 Application de la MFA au tri mécanique

Trois approches de MFA sont généralement utilisées pour étudier un centre de tri mécanique de

matieres résiduelles selon la stratégie privilégiée pour décrire la chaine et les matieres résiduelles.

Dans le premier cas, il est possible de décrire la partition de différents biens ou des substances dans
les différentes sorties d’'un MRF pour un courant entrant sans considérer la séquence de tri. Cette
approche est généralement utilisée pour modéliser I’intégration d’un procédé de tri de matieres
résiduelles dans un systéme de GMR global. Ainsi, la MFA peut permettre d’évaluer la possibilité
d’intégrer de nouvelles unités a un systéme de GMR existant (Ardolino et al., 2017), d’évaluer
I’efficacité d’un systéme de gestion selon certains scénarios (Arena & Di Gregorio, 2014; Eriksen
et al., 2020; Eriksen & Astrup, 2019) ou de comparer I’efficacité de deux systémes différents
(Themelis & Todd, 2004). Cette approche de représentation peut également servir a prédire

I’évolution des différentes propriétés physico-chimiques dans les sorties du procéde de tri
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(Nasrullah et al., 2014, 2015). Cette approche pour représenter un MRF est donc intéressante pour
prédire le comportement général de certains biens ou substances dans un procédé existant, mais ne
permet toutefois pas de prendre en compte la configuration de la chaine de traitement, ce qui limite

grandement les capacités prédictives de la méthodologie.

Le deuxiéme cas consiste a effectuer une MFA sur le niveau des substances en considérant les
coefficients de transfert de chaque opération unitaire. Par exemple, Rotter et al. (2004) ont appliqué
cette méthodologie pour suivre la concentration de différents contaminants dans une séquence de
tri de matiéres résiduelles mixtes pour la production d’un CDD. Giani et al. (2016) ont comparé
I’effet de différentes configurations de tri sur la récupération d’un CDD et ses principales propriétés
physiques a partir de matieres résiduelles mixtes. Cette approche permet donc de prendre en
considération I’impact de la séquence de tri. Toutefois, comme cette approche ne considére que le
niveau des substances, elle ne permet pas de prendre en considération la composition entrante des

matiéres.

Finalement, le dernier cas généralement utilisé consiste a combiner les deux premiers cas et d’ainsi
représenter 1’évolution des différentes catégories de matieres pour chaque opération unitaire du
procédé. Cette approche de modélisation peut ainsi étre utilisée pour comparer I’efficacité de
différentes chaines de traitement pour un objectif ciblé (Caputo & Pelagagge, 2002), pour produire
des inventaires de cycle de vie (Pressley et al., 2015), pour représenter 1’évolution de certaines
matiéres dans I’économie (Faraca & Astrup, 2019) ou pour identifier des stratégies d’optimisation

d’un centre existant (Damgacioglu et al., 2020; Velis et al., 2013).

Cependant, comme les MFA se concentrent généralement sur une chaine de traitement existante,
elles ont certaines limites lors de 1’extrapolation pour une composition entrante ou une sequence
différente (Kleinhans et al., 2021). Ceci est particulierement problématique pour la modélisation
d’un systéme de GMR d a la grande hétérogénéité de la composition des matiéres entrantes (Velis
et al., 2012). Egalement, comme cette approche de modélisation repose sur I’utilisation de
coefficients de transfert, qui sont fixes et constants, elle ne permet pas de prendre en considération
la relation entre 1’efficacité des équipements et ses principales variables. Cette limite est toutefois
intrinséquement liée a 1’utilisation de coefficients de transfert et n’est pas spécifique au tri

mécanique.
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2.2.3 Application de PACYV au tri mécanique

Plusieurs ACV ont été réalisées sur le TMB des matiéres résiduelles (Abeliotis et al., 2012;
Ardolino et al., 2017; Beylot et al., 2015; Montejo et al., 2013). Ces analyses ont permis de
démontrer que ce procédé peut jouer un r6le important pour la réduction des impacts
environnementaux associés au traitement des matieres résiduelles (Abeliotis et al., 2012).
Cependant, les résultats sont caractérisés par une grande variabilité selon la configuration du centre
a I’étude et des efficacités de séparation utilisées pour la modélisation des équipements (Montejo
et al., 2013). Ainsi, les résultats dépendent fortement de 1’efficacité de séparation des différents
matériaux, ainsi que du potentiel de valorisation énergétique associé au CDD et potentiellement au
biogaz lorsqu’une digestion anaérobie est réalisée (Abeliotis et al., 2012; Montejo et al., 2013).
L’efficacité de séparation des matiéres recyclables et le rendement en biogaz d’une digestion
anaérobie ont d’ailleurs été identifiés comme des facteurs cruciaux pour la modélisation d’un
systeme de GMR par une ACV (Rigamonti et al., 2010). Au niveau de la valorisation énergétique
du CDD, elle ne se traduit pas nécessairement pas des gains environnementaux et dépend
principalement de la source d’énergie remplacée (Montejo et al., 2013). Son utilisation comme co-
combustible en cimenterie (Abeliotis et al., 2012) ou comme matiere premiere dans une unité de
gazéification (Ardolino et al., 2017) pourrait s’avérer étre des options intéressantes d’un point de

vue environnemental.

Afin de maximiser les bénéfices environnementaux associés au TMB, une importante
automatisation des equipements devrait étre effectuée afin de permettre une séparation adéquate
des matiéres recyclables, et une valorisation de la matiére organique devrait étre effectuée, par
exemple a partir d’une digestion anaérobie (Montejo et al., 2013). Il faut toutefois préciser que

cette conclusion dépend fortement du mix énergétique du pays dans lequel le procédé est implanté.

Ainsi, les résultats bénefiques montrés par les différentes ACV de TMB dépendent fortement de
I’efficacité du procédé, mais également de 1’atteinte de débouchés intéressants pour les différents
produits, ce qui n’est pas toujours le cas (Abeliotis et al., 2012). Dans une ACV, cette capacité d’un
produit a en remplacer un autre dans 1I’économie est modélisée a partir du potentiel de substitution.
Vadenbo et al. (2017) ont présenté une approche permettant de calculer ce potentiel en se basant
sur le potentiel de ressource valorisable, I’efficacité de récupération, la substituabilité du produit et

la réponse du marche. Toutefois, les différents paramétres affectant ce facteur de substitution sont
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souvent mal caractérisés dans la littérature et font face a un mangue de transparence (Viau et al.,
2020).

Plusieurs recherches ont été réalisées spécifiquement sur la recyclabilité des plastiques et leur
potentiel de substituabilité dans 1’économie comme produits secondaires (Demets et al., 2021;
Eriksen et al., 2020; Eriksen & Astrup, 2019; Faraca & Astrup, 2019). Ainsi, la recyclabilité des
plastiques dans 1’économie dépend fortement de la qualité des ballots produits dans les centres de
tri (Eriksen et al., 2019; Eriksen & Astrup, 2019) et des propriétés de ces plastiques (Demets et al.,
2021). Peu de recherches ont par contre été réalisées spécifiquement pour les plastiques issus d’un
TMB, ainsi pour les autres matiéres recyclables. Plus d’études devraient donc étre effectuées pour

s’assurer que les différents produits peuvent adéquatement étre réacheminés dans I’économie.

Egalement, une autre limitation de 1’utilisation de ’ACV pour la GMR est que cet outil repose
généralement sur une modélisation linéaire de la situation, alors que plusieurs phénomenes en lien
avec la GMR ont plutdét des comportements non-linéaires (Haupt et al., 2018). Finalement, la
variation de la composition ou des propriétés des matieres résiduelles n’est souvent pas prise en
considération dans les analyses, puisque des données génériques ou des moyennes de composition

sont généralement utilisées pour la modelisation des impacts (Bisinella et al., 2017).

Ainsi, les impacts environnementaux associés a un TMB dépendent fortement de sa configuration,
de la composition des matiéres entrantes et de la capacité réelle du systéme a produire des matieres
pouvant étre adéquatement recyclées et/ou valorisées comme produits secondaires. Ces facteurs se
doivent donc d’étre adéquatement prédits a travers une modélisation rigoureuse des bilans de masse
afin d’effectuer une analyse environnementale pertinente. Plus encore, la qualité des produits se
doit d’étre adéquatement prédite afin de s’assurer que les matiéres produites peuvent réellement

étre substituées dans 1’économie.

2.2.4 Modeles mécanistiques

Les approches de modélisation présentées dans les sections précédentes se basent toutes sur
I’utilisation de coefficients de transfert pour effectuer la représentation numérique des différents
équipements de tri mécanique. Cependant, comme mentionné précédemment, les coefficients de
transfert sont fixes et constants, et nécessitent donc d’étre modifiés a chaque fois qu’une

modification au systéme doit étre apportée. Ceci demande donc une tres bonne comprehension du
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systeme a 1’étude. Une autre approche également utilisée dans la littérature pour effectuer la
modélisation des opérations de tri et permettant une meilleure flexibilité est 1’utilisation de modeles
mécanistiques. Cette approche de modélisation nécessite toutefois une connaissance approfondie
des propriétés des matieres, puisque ce sont ces propriétés qui sont ciblées par les équipements de

tri.

Quelques approches ont été tentées pour effectuer une modélisation physique des opeérations de tri
des matiéres résiduelles. Zwisele et al. (2007) ont développé un outil de simulation permettant de
modéliser des opérations de tri en fonction de la composition et des propriétés des matiéres
résiduelles. Leur premiére version inclut la modélisation d’une étape de broyage, de classification
a air et d’une séparation mécanique. Toutefois, seules les deux premieres étapes (broyage et
classification a air) se basent sur les tailles de particules des matieres, alors que la simulation du
séparateur magnétique se fait par coefficients de transfert. Les calculs se basent sur une
modélisation semi-empirique calibrée avec des données de terrain (Zwisele et al., 2007). Leur
approche ne prend toutefois pas en compte la forme des matiéres et n’a pas été validée avec des

données de terrain.

De facon similaire, Beyer & Pretz (2004) ont développé un outil de simulation se basant sur une
modélisation des mécanismes des équipements et sur les propriétés physiques des matieres
résiduelles, nommé SimuRec. La description des matiéres se fait a partir d’un vecteur de flux
incluant 190 parametres, tels que le contenu en eau, le contenu en cendres, la concentration des
différents éléments chimiques et une description sommaire des tailles de particules (Beyer & Pretz,
2004). L’outil de simulation, les hypotheses posées et la méthodologie pour modéliser les
opérations unitaires ne sont toutefois pas présentés, menant a un manque de transparence important
de ce modeéle. Egalement, la taille des particules est exprimée de facon discréte en cing intervalles

uniquement, menant a une représentativité limitée de la méthode.

Ainsi, malgré certains efforts pour simuler une chaine de tri de matiéres résiduelles permettant de
prendre en compte les mécanismes de séparation et les propriétés des maticres, il n’y a
présentement pas d’outil transparent et ayant été validé pour une chaine de tri mécanique.
Egalement, il semble que ces premiers efforts publiés n’ont pas été développés plus en détail depuis

leur publication originelle.
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En plus de ces deux approches, certains modeéles ont également été développés pour représenter
une opération unitaire spécifique. Le principal equipement de tri de matieres résiduelles ayant été
modélisé dans la littérature est le crible rotatif pour lequel plusieurs auteurs ont développé
différentes approches ayant des niveaux de complexité différents (Alter et al., 1981; Glaub et al.,
1982; Savage et al., 1984; Stessel & Cole, 1996). L’ensemble de ces modéeles se base sur le calcul
de la probabilité de passage d’une particule a travers les ouvertures de 1’équipement. Par contre,
ces modeles n’ont pas réellement eu les résultats escomptés en partie a cause des hypothéses posées
négligeant la variation de la composition et du debit des matiéres tout au long du cycle de séparation
(Ashkiki et al., 2019). Une autre limitation de ces mod¢les vient du fait qu’ils ne s’appuient pas sur
une caractérisation suffisamment robuste des tailles de particules des différentes catégories de

matieres entrantes au procédé (Alter et al., 1981).

Pour ce qui est des autres équipements de tri généralement utilisés, il n’y avait pas d’exemple de
modele, en date de 2010, dans la littérature portant sur la séparation balistique des matiéres
résiduelles (Velis et al., 2010). Depuis, il ne semble toujours pas y avoir eu de développement de
ce type de modele, possiblement dd a la difficulté de représenter le facteur de forme des matiéres.
Pour ce qui est de la classification a air, certains modeéles ont été développés pour représenter cet
équipement, mais ceux-ci n’ont pas été développés pour des matiéres résiduelles et leur utilisation
est donc difficilement extrapolable (Velis et al., 2010). Savage et al. (1984) ont développé un
modeéle basé sur le calcul d’un coefficient de trainée des matiéres selon le choix d’un facteur de
forme qualitatif. Les résultats du modele varient cependant de fagon trés importante selon le choix
du facteur de forme et menent donc a des résultats trés variables et peu représentatifs.

Pour ce qui est du tri des métaux et du tri optique, peu de modeles ont également été développés
pour le traitement des matiéres résiduelles. Savage et al. (1984) ont développé un modele pour le
tri magneétique des matiéres, mais celui-ci ne permet pas de prendre en compte la contamination

potentielle et est trés sensible au choix de la hauteur de I’aimant.

En plus de la prédiction des rendements des procédés, certains auteurs ont dérivé des équations
pour prédire la consommation énergétique des équipements de tri. Ainsi, Tchobanoglous et al.
(1993) ont rapporte plusieurs corrélations pour calculer les requis énergétiques de différents

équipements de tri mécanique.
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Certains modéles mécanistiques ont donc été développés pour la représentation du tri mécanique
de maticres résiduelles. Cependant, peu d’outils généraux intégrant ces modeéles ont été développés
et ceux-ci font face a un défi de transparence. En général, I’utilisation et le développement de ces
modeles font face a quatre problémes majeurs, soit : 1) il n’a pas été démontré dans la littérature
que leur utilisation est bénéfique et dans quelle mesure; 2) ils nécessitent des caractérisations
approfondies des propriétés physiques des matieres résiduelles qui sont souvent manquantes ou
incompletes; 3) ils ont été sous-développés di a leur complexité; 4) il n’existe pas d’outil de

simulation transparent permettant leur intégration pour la représentation d’un centre de tri.

2.2.5 Autres approches de modélisation

Deux modeles ont été développés réecemment spécifiquement pour la représentation de centres de
tri mecanique de matiéres résiduelles (Ip et al., 2018; Kleinhans et al., 2021). Les deux se basent
sur un modele de flux de réseau développé a partir des travaux de Wolf (2011) et de Testa (2015).
Cette approche de résolution se base sur la description de la séquence de tri comme un réseau et
définit les opérations unitaires et leurs liens comme les nceuds et les arétes du réseau. Les efficacités
des opérations unitaires sont définies a partir de coefficients de transfert et le modéle est résolu a
partir d’un systeme matriciel pour chaque matiere (Ip et al., 2018; Kleinhans et al., 2021). Cette
approche de modélisation permet de prendre en compte la composition entrante et la configuration
du systeme. Elle permet également une résolution du systéme malgré la présence de recirculations.
La principale différence entre les deux approches repose sur la méthode utilisée pour déterminer
les coefficients de transfert. Ip et al. (2018) ont détermineé leurs coefficients de transfert a partir de
caractérisations des entrées et des sorties d’une chaine de tri existante, alors que Kleinhans et al.
(2021) ont déterminé leurs coefficients principalement a partir de jugements d’experts. Egalement,
le nombre de catégories de matieres considérées est différent, puisque Ip et al. (2018) ont considéré

une quinzaine de catégories, alors que Kleinhans et al. (2021) en ont considéré environ 120.

Une approche similaire a été utilisée par Caputo & Pelagagge, (2002), basée sur une méthode
matricielle développée par Diaz et al. (1982). Cette approche, malgré une résolution un peu
différente, permet également de prendre en compte une variation de la composition entrante et de

la chaine de traitement, et repose aussi sur I’utilisation de coefficients de transfert.

Malgre le fait que ces approches de modélisation permettent une plus grande flexibilité, une prise
en compte de la composition et une prise en compte de la configuration de la chaine, elles font face
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aux mémes limitations que celles soulevées dans la section 2.2.2 en lien avec I’utilisation de
coefficients de transfert. Egalement, malgré le fait que ces approches permettent de modéliser
différentes configurations de tri, elles ne permettent pas de prendre en compte I’effet de la

configuration sur I’efficacité des différentes opérations de tri.

2.2.6 Détermination de coefficients de transferts

Comme vu dans les sections précédentes, les coefficients de transfert, aussi appelés coefficients de
partition, sont largement utilisés pour exprimer 1’efficacité de séparation des équipements de tri
dans plusieurs approches de modélisation. Plusieurs approches peuvent étre utilisées pour les

déterminer, et celles-ci ne sont pas toutes équivalentes.

Kleinhans et al. (2021) ont d’ailleurs soulevé qu’une des principales limites a la modélisation d’un
centre de tri de maticres résiduelles est d’obtenir des coefficients de transfert représentatif de la
situation. Pour les déterminer, quatre méthodes sont généralement utilisées, soit a partir d’une
caractérisation des entrées et des sorties, a partir de valeurs provenant de manufacturiers, a partir
d’une estimation provenant d’un jugement d’expert ou a partir d’une modélisation des phénomenes

physiques se déroulant dans les équipements (Ip et al., 2018; Kleinhans et al., 2021).

Ces quatre approches sont comparées dans les sections suivantes.

2.2.6.1 Estimation a partir d’une caractérisation des entrées et sorties

Estimer des coefficients de transfert & partir de caractérisations permet d’obtenir une représentation
moyenne des opérations pour la durée de temps pour laquelle les échantillons ont été collectés. Les
résultats peuvent donc varier selon les conditions du centre lors de la prise des mesures, incluant
les conditions d’opération, la composition entrante et d’autres facteurs externes (Ip et al., 2018;
Kleinhans et al., 2021; Raymond, 2017). Raymond (2017) et Wolf (2011) ont d’ailleurs montré
que D’efficacité des opérations de tri peut dépendre de la composition de D’intrant, des
caractéristiques des matiéres résiduelles et de certaines conditions d’opération. Plusieurs

échantillons devraient donc étre pris a plusieurs moments afin de réduire I’impact de la variabilité.

Plusieurs exemples de cette approche ont été identifiés dans la littérature. Ainsi, Rotter et al. (2004)
et Damgacioglu et al. (2020) ont réalisé une MFA respectivement sur un centre de tri de matieres

résiduelles mixtes et un centre de tri de mati¢res recyclables en vue d’étudier I’efficacité de la
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chaine pour assurer une bonne qualité des produits. Dans les deux cas, les efficacités de séparation
de toutes les opérations unitaires ont été calculées a partir d’un bilan de masse sur le systéme et
d’une caractérisation des produits. Leur approche est toutefois limitée par le fait que le bilan de
masse doit obligatoirement étre déterminé, soit qu’il doit y avoir autant d’informations connues
que d’informations inconnues pour la résolution du bilan. Dans un centre de tri, ceci se caractérise
par le fait qu’un flux ne peut pas prendre deux chemins pour arriver au méme endroit (Figure 2.2A).
Ceci est toutefois treés rarement le cas dans les centres de tri réels, qui ont plus souvent une

configuration similaire a celle montrée dans la Figure 2.2B.

A) l B) l
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Figure 2.2 Configuration théorique pour un systeme A) déterminé B) sous-déterminé

Ainsi, dans les cas ou le centre de tri a 1’étude représente un systéme sous-déterminé, des
hypothéses doivent étre posées et/ou des caractérisations supplémentaires doivent étre réalisées
pour permettre la résolution du bilan de masse. Par exemple, Velis et al. (2013) ont utilisé le logiciel
STAN pour realiser une MFA sur un centre de TMB en effectuant une réconciliation des données
issues de différentes caractérisations. Dans ce cas, le flux d’entrée, six flux internes et six flux de
sorties ont eté caractérisés, puis les informations manquantes ont été estimées a partir d’hypothéses
et de données issues de la littérature (Velis et al., 2013). Les hypothéses ne sont par contre pas
toutes clairement énoncées. Egalement, des limitations en lien avec I’utilisation de STAN ont été

soulignées dans ces travaux.

Similairement, Jansen et al. (2015) ont caractérisé les entrées et les sorties de trois usines de tri de
matiéres plastiques en Allemagne a partir de sept campagnes de caractérisation. Dans leur cas, afin
de résoudre les points de mélange, ils ont estimé que la composition était la méme pour tous les

flux et ont estime la répartition massique a partir de leurs connaissances du procédé (Jansen et al.,
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2015). Ainsi, pour la Figure 2.2B, ils auraient estimé le ratio massique entre les flux P2-U2 et P3-
U2, en plus d’assumer que leur composition est la méme. Cette approche a I’avantage de permettre

de résoudre facilement le bilan de masse, mais repose sur des simplifications importantes.

Finalement, une autre approche utilisée est celle de Feil et al. (2017), qui ont proposé une
méthodologie se basant uniquement sur une caractérisation des flux de sortie, dii a la complexité
de caracteériser des flux internes. Afin de résoudre le bilan de masse, ils proposent de résoudre le
bilan par itération en partant de la fin et de poser des hypotheses lorsque des informations sont
manquantes pour la résolution. Des hypotheses au cas par cas sont ainsi définies pour plusieurs
opérations en fonction de leurs connaissances du procédé et des matieres. Par exemple, ils ont
estimé que 5% des emballages de carton étaient récupérés dans la fraction fine d’un séparateur a
disque en estimant la taille des particules de ces emballages et ils ont estimé que les trieurs manuels

récupéraient 100% des matiéres ciblées (Feil et al., 2017).

Outre la variabilité des conditions d’opération et de la composition entrante lors de la prise
d’échantillon, toutes ces approches font face a la difficulté de caractériser I’ensemble des flux du
procédé, menant a une incapacité de résoudre le bilan de masse directement. Pour remédier a ce
probléme, plusieurs approches ont été proposées, toutes basées sur le fait de poser des hypotheses
appropriées. Par contre, ces hypothéses ne sont pas toutes clairement énoncées. Egalement, il n’est
pas clair si ces hypothéses se valent toutes. Egalement, aucune méthodologie claire n’a été proposée

pour extrapoler les calculs a une autre situation similaire.

2.2.6.2 Estimation a partir des efficacités des manufacturiers

Les efficacités fournies par les manufacturiers sont peu utilisées, car elles incluent généralement
uniquement les matiéres ciblées, négligeant ainsi la contamination. Egalement, ces efficacités ne
sont pas nécessairement fiables. Kleinhans et al. (2021) rapportent que les efficacités de
manufacturiers sont sous-estimeées puisqu’elles doivent garantir un standard minimum. De leur
coté, Ip et al. (2018) consideérent au contraire que les efficacités des manufacturiers représentent
une situation idéale et sont donc surestimées. Cette conclusion est partagée par plusieurs opérateurs
de centre rencontrés dans le cadre de ces travaux qui mentionnent que les efficacités promises par

les manufacturiers ne sont souvent pas atteintes par les différents équipements de tri.
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2.2.6.3 Estimation a partir de jugements d’experts :

Une autre approche pour la détermination de coefficients de transfert est de les estimer a partir de
discussions avec un groupe d’experts en se basant sur leurs connaissances en lien avec 1’opération

des équipements et des caractéristiques des matiéres.

Ainsi, Caputo & Pelagagge (2002) ont estimé des coefficients de transfert pour différents
équipements de tri, mais n’ont pas précisé quelle méthodologie avait été privilégiée pour y parvenir.
Kleinhans et al. (2021) ont quant & eux déterminé les efficacités de tri en prenant en compte certains
criteres tels que les spécifications des équipements, les matieres ciblées par celles-ci et les
propriétés théoriques des matieres, et en ayant plusieurs discussions itératives avec des experts
dans le domaine. Finalement, Pressley et al. (2015) ont déterminé des efficacités pour différents
équipements suite a des discussions avec des experts et a partir d’observations visuelles d’une

chaine de tri.

Malgré son apparente simplicité, cette approche est toutefois hautement subjective,
indépendamment du niveau de détails choisi pour la modélisation, et est souvent faite de facon tres

peu transparente.

2.2.6.4 Détermination a partir des phénomenes physiques :

La détermination de coefficients basés sur les forces physiques est souvent considérée comme
difficilement réalisable di a la grande variation des propriétés et au nombre important
d’équipements a considérer (Kleinhans et al., 2021). Par contre, certains exemples sont tout de

méme disponibles dans la littérature.

Ainsi, Faraca & Astrup (2019) ont effectué une MFA sur trois configurations de MRF pour la
purification de plastiques. Dans ce cas, ils ont estimé les coefficients de transfert (soit 0, 0.5 ou 1)
selon une description approfondie des matieres résiduelles, incluant la couleur, le type de polymeére
et la présence de plusieurs polymeres differents. Ainsi, une efficacité était choisie selon la capacité
des différents équipements a différencier une matiére selon ses caractéristiques. Cette approche
nécessite toutefois une connaissance approfondie des matiéres et serait donc difficilement
extrapolable pour un TMB complet. Egalement, le choix d’un coefficient de transfert dans un
intervalle aussi restreint pourrait limiter grandement la représentativité de la modélisation.

Finalement, cette approche, malgré une description plus importante des caractéristiques des
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maticres résiduelles, ressemble grandement a la méthode d’estimation par jugement d’expert, et est

donc grandement subjective.

A partir d’une approche un peu différente, Kleinhans et al. (2021) ont utilisé les tailles de particules
des matieres résiduelles pour estimer un coefficient de transfert pour leur séparation dans un
séparateur a disque. Ils n’ont toutefois pas précisé comment le choix des coefficients a été effectue,

ni comment les tailles de particules étaient décrites dans ce cas précis.

Ainsi, malgré sa capacité prédictive potentiellement intéressante, cette approche a été trés peu

utilisée dans la littérature. Il est donc difficile de tirer des conclusions sur son efficacité réelle.

2.2.7 Les limites actuelles de la représentation numérique

Les principales limites en lien avec la représentation numérique du tri mécanique des matieres
résiduelles viennent principalement de 1’utilisation de coefficients de transfert et de leur
détermination, puisque comme présenté dans les sections précédentes, la trés grande majorité des
modéles reposent sur I’utilisation de ces coefficients. Ainsi, les limites soulevées dans les sections
2.2.2 et 2.2.5 quant a la difficulté de représenter les conditions réelles du tri s’appliquent. Les
coefficients de transfert ne permettent genéralement pas de s’adapter a une variation de la
configuration d’un centre de tri, et dans certains cas a une variation de la composition entrante.
Pourtant, plusieurs exemples ont montré que 1’efficacité d’un équipement pouvait varier
grandement selon la situation. Par exemple, Miiller et al. (2003) ont montré que 1’efficacité d’un
séparateur balistique variait considérablement pour 5 compositions entrantes différentes, limitant
grandement la capacité de prédire cette situation avec des coefficients fixes. Egalement, les
modeles rapportés sont difficilement extrapolables, puisque leurs coefficients sont définis pour
certaines matieres dans certaines conditions, faisant en sorte que de nouveaux coefficients doivent
toujours étre définis pour de nouvelles situations. Plus encore, ces coefficients ne prennent pas en
compte les propriétés physiques des matiéres, pourtant décrites comme essentielles pour expliquer

le fonctionnement des équipements de tri mécanique.

L’utilisation de modéles mécanistiques, tels que ceux présentés a la section 2.2.4 pourrait permettre
de remédier a cette problématique, mais il n’a jamais été démontré que ces modéles pouvaient

réellement étre utilisés pour la représentation numérique de centres de tri mécanique.
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Une autre problématique en lien avec les modeles présents dans la littérature est qu’ils font souvent
face a un défi de transparence. L’origine des données et la méthodologie pour déterminer les
efficacités de tri ne sont pas toujours rapportées de maniere transparente. Une des raisons

expliquant ce probleme vient du fait que plusieurs centres font face a des enjeux de confidentialité.

2.3 Propriétes physiques des matiéres résiduelles

En vue d’effectuer une modélisation des mécanismes physiques des opérations de tri mécanique
des matiéres résiduelles, une compréhension approfondie des propriétés physiques des matiéres
résiduelles est essentielle puisque celles-ci ont une influence directe sur D’efficacité des
équipements de tri (Diaz et al., 1982; Feil, Thoden Van Velzen, et al., 2016; Ip et al., 2018; Velis
et al., 2010). Parmi ces propriétés, la taille des particules est souvent identifiée comme 1’une des
propriétés les plus importantes, puisqu’elle a une influence directe ou indirecte sur la majorité des
équipements de tri (Velis et al., 2010). Par exemple, méme si la taille des particules n’est pas
directement ciblée par un séparateur magnétique, il a été montré que la récupération des métaux
ferreux est moins efficace pour des objets de petite taille (Raymond, 2017; Savage et al., 1984).
Les autres propriétés physiques des matieres résiduelles genéralement identifiées comme
importantes pour les opérations de tri incluent la densité, le facteur de forme, les propriétés
magnétiques et les propriétés optiques (Feil, Thoden Van Velzen, et al., 2016; Ip et al., 2018; Velis
etal., 2010).

Outre leur influence sur le rendement des opérations de tri, les propriétés physiques des matieres
résiduelles peuvent également influencer les stratégies d’échantillonnage (Feil, Thoden Van
Velzen, et al., 2016) et les stratégies de collecte des matiéres résiduelles (Chang & Pires, 2015), en
plus de s’influencer entre elles (p.ex., la taille des particules a une influence sur I’humidité) (Beyer
& Pretz, 2004). Une connaissance approfondie des principales propriétés s’avere donc essentielle
autant pour accroitre la compréhension associée aux opérations de tri, que pour la gestion des

matieres résiduelles en général.

Par contre, en raison de la grande hétérogénéité des matiéres résiduelles, ces propriétés sont
caractérisées par une grande variabilité (Kleinhans et al., 2021; Lagerkvist et al., 2010; Velis et al.,

2010). Ainsi, elles ont généralement été peu etudiées par le passé menant a leur faible
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représentation dans la littérature. Egalement, certaines limites ont été identifiées pour leur
caractérisation. Ainsi, di a la grande variabilité de la forme et la taille des matieres résiduelles, il
peut étre difficile de mesurer la taille des particules des matieres résiduelles (Velis et al., 2010;
von Blottnitz et al., 2002). L’importante ductilité de certaines catégories de matiéres a également
été identifiée comme un frein pour la mesure de propriétés physiques de celles-ci (von Blottnitz et
al., 2002).

2.3.1 Taille des particules

La taille des particules d’objets hétérogénes est généralement représentée a partir d’ une distribution
de tailles de particules (particle size distribution, PSD) choisie selon le domaine d’application
(Fieller et al., 1992). Pour représenter une PSD, le diamétre de tamisage est généralement utilisé,
car il s’agit de la mesure la plus facile a effectuer (Merkus, 2009; Ruf, 1974). Dans le cas de
matiéres résiduelles, il s’agit également de la mesure la plus adaptée, puisque plusieurs opérations

de tamisage sont généralement utilisées pour en effectuer la séparation.

La taille des particules de matiéres résiduelles est généralement concentrée entre 1-2 cm et 30-50
cm (Stessel, 2012), ce qui représente une large plage d’application. Plusieurs distributions ont été
utilisées pour representer la taille de particules de matiéres résiduelles, incluant les distributions
log-normale, normale, gamma, béta et Rosin-Rammler (Alter et al., 1981; Ashkiki et al., 2019;
Nakamura et al., 2006; Ruf, 1974). La distribution de Rosin-Rammler a été identifiée comme une
méthode appropriée pour la représentation de matieres résiduelles (Vesilind, 1980), principalement
pour des matiéres résiduelles broyées (Savage & Trezek, 1980). Il s’agit d’ailleurs de la distribution

recommandée pour représenter la taille de particules de RDF dans la norme ASTM E1037.

Par contre, aucune étude n’a été réalisée dans la littérature permettant de conclure qu’une
distribution est plus appropriée qu’une autre pour la représentation de matieres résiduelles non
traitées. Egalement, trés peu de données de distribution sont disponibles pour représenter les
différentes catégories de matieres résiduelles. La source de données la plus compléte provient de
la these réalisée par Ruf (1974). Cette source est cependant relativement vieille et il est trés
probable que les matiéres aient suffisamment évolué pour que les distributions rapportées ne soient

plus aussi valides.
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2.3.2 Densité

Deux types de densité sont généralement calculés pour représenter les matieres résiduelles, soit la
densité du matériel et la densité apparente (Lagerkvist et al., 2010). Dans ce dernier cas, la densité
prend en compte le vide interne de 1’objet ainsi que 1’espace entre les objets lors de la prise de
I’échantillon. La densité apparente est donc dépendante du niveau de compaction appliqué sur les
matiéres lors de la prise de la mesure ou lors de la collecte, et de la contamination potentielle lors
de la mesure (Feil, Thoden Van Velzen, et al., 2016; Tchobanoglous et al., 1993). La densité du
matériel ne dépend quant a elle que du type de matiere résiduelle. Pour la modélisation du tri des
matiéres, la densité apparente est généralement la plus utile, car elle permet de prendre en compte

la forme des objets.

Certains auteurs ont rapporté des intervalles de valeurs typiques pour la densité apparente des
matieres résiduelles pour différentes catégories de matiére (Tchobanoglous et al., 1993; US EPA,
2016; Vesilind et al., 2002; WRAP, 2010). WRAP (2010) ont publié 1’une des banques de données
les plus compleétes pour la densité apparente en présentant la valeur moyenne, 1’écart-type, la plus
grande valeur et I’intervalle de confiance pour plusieurs catégories de matic¢res selon plusieurs
méthodes de collecte. Par contre, cette caractérisation combine plusieurs méthodes differentes et
plusieurs catégories de matiéeres sont tres agrégées, rendant la comparaison et 1’utilisation de ces
données difficiles. Ce probléme est d’ailleurs généralisé puisque les données de densité provenant

de la littérature sont caractérisées par une tres faible uniformité (Tchobanoglous et al., 1993)

Pour ce qui est de la densité du matériel, elle a été peu étudiée par le passé. Lagerkvist et al. (2010)
ont rapporté une valeur pour certaines matiéres. Par contre, les catégories rapportées ne
correspondent pas exactement aux catégories de matiéres résiduelles généralement étudiées, ce qui
méne encore une fois 4 une problématique pour I’utilisation des données. Egalement, lorsque ces
données sont rapportées, elles n’ont pas nécessairement été mesurées pour des matieres résiduelles,
mais plutdt pour des matiéres vierges. Ainsi, il y a un manque de données disponibles et utilisables,
autant pour la densité apparente que la densité du matériel.

2.3.3 Facteur de forme

Malgré sa grande importance pour la prédiction du rendement de plusieurs opérations de tri telles

que la séparation balistique et la classification a air, le facteur de forme a été tres peu étudié dans
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la littérature. La seule approche recensée pour caractériser cette propriété provient des travaux de
Savage et al. (1984) qui ont classé la forme des principales catégories de matieres residuelles de
maniére qualitative en quatre familles, soit les objets en forme de long éclat, en forme plate, en
forme de cylindre ou en forme de cube. Ils ont ensuite défini un coefficient de trainé pour chacune
de ces familles en assumant une taille d’objet typique (Savage et al., 1984). Cette approche permet
une premiere approximation de la forme des matiéres résiduelles, mais est limitée a un nombre
restreint de familles d’objet et ne permet pas de quantifier directement la propriété. Une nouvelle
méthode permettant de quantifier directement le facteur de forme des matiéres résiduelles devrait

donc étre développée pour remédier a ces limites.

2.3.4 Autres propriétés

Parmi les autres propriétés des matiéres résiduelles, I’humidité a une influence importante sur le
fonctionnement de plusieurs procédés de conversion (Lagerkvist et al., 2010). L’humidité peut
également influencer les caractérisations des matiéres résiduelles, puisqu’elle peut grandement
affecter la masse d’un échantillon (Lagerkvist et al., 2010). Ceci peut étre problématique sachant
que I’humidité varie beaucoup selon plusieurs facteurs tels que la saison, la composition des
matiéres et les conditions metéorologiques lors de la collecte (Tchobanoglous et al., 1993).
Finalement, I’humidité a une influence sur la séparation des matiéres dans un centre de tri, puisque
les matieres seches sont plus facilement séparables (Christensen & Bilitewski, 2010). L humidité
a été étudiée a plusieurs reprises et est souvent exprimée comme valeur moyenne pour une

catégorie donnée de matiéere.

Les propriétés élastiques des matiéres résiduelles ont également été identifiees comme importantes
puisqu’elles dictent le comportement des matiéres lors de leur broyage (Velis et al., 2010). Par
contre, les connaissances actuelles portant sur le comportement des matieres fragiles ne permettent

pas de modéliser adéquatement les procédes de broyage (Velis et al., 2010).

Finalement, les propriétés électromagnétiques et optiques des matieres résiduelles sont également
importantes pour les opérations de tri mécanique (Velis et al., 2013). Pour les propriétes
électromagnétiques, il est souvent simplement considéré que tous les métaux sont captés par un
séparateur, alors que les autres matiéres ne le sont pas. Pour ce qui est des propriétés optiques, elles

ne sont généralement pas rapportées dans les études sur le tri mécanique. Par contre, certains
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auteurs ont caractérisé la couleur des différents plastiques afin de déterminer la proportion des flux

qui ne seraient pas détectés par un trieur optique (Eriksen & Astrup, 2019; Faraca & Astrup, 2019).

2.4 Analyse critique de la littérature

La revue de la littérature a montré que la représentation numérique du tri mécanique des matiéres
résiduelles, que ce soit pour la prédiction des impacts environnementaux ou des flux de matiéres,
se fait dans la grande majorité des cas a partir de coefficients de transfert. La détermination de ces
coefficients se fait généralement a partir de quatre méthodes distinctes, soit a partir d’efficacités
prédites par les manufacturiers, a partir d’estimations réalisées par des experts, a partir de
caractérisations des entrées et des sorties d’un centre ou a partir d’une modélisation des
phénomenes physiques. Alors que les deux premiéres approches font face a un déefi de transparence
et de confidentialité, la troisieme approche fait face a des défis méthodologiques et la quatrieme
approche a été tres peu utilisée par le passé di a la grande variabilité des propriétés des matiéres
résiduelles. Ces défis ont mené a une faible représentation de I’efficacité de tri des différentes
opérations unitaires dans la littérature. En effet, peu d’informations sont disponibles sur le
fonctionnement des opérations et peu de données sont disponibles quant a leur efficacité pour
différents contextes. Globalement, la performance du tri mécanique des matiéres résiduelles doit
donc étre ameliorée. Accroitre la compréhension associée a la performance du tri mécanique est
particulierement important dd a la sous-performance des différents centres de tri par rapport aux
cibles visées. Ceci se traduit par une contamination importante des principaux produits issus du tri
mécanique des matiéres résiduelles, faisant en sorte que peu de débouchés viables sont disponibles

pour ceux-ci.

Les différents exemples dans la littérature s’étant attardés au calcul des efficacités de tri des
matieres résiduelles a partir d’usines eXistantes se basent sur des méthodologies de résolution
différentes et sur des hypotheses souvent divergentes. Ainsi, il n’existe présentement pas de
méthode systématique permettant de résoudre ce type de probleme, menant a une disparité des
solutions. En effet, ces différentes méthodologies peuvent mener a des résultats completement
différents selon les hypotheses posées, indiquant le besoin de développer une approche transparente

et documentee permettant de résoudre ce type de probleme.
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Par contre, malgré I’importance des coefficients de transfert pour la représentation numérique des
opérations de tri de matieres résiduelles dans la littérature, la revue effectuée a également permis
de montrer que ces coefficients sont limités dans leur capacité predictive puisqu’ils ne permettent
pas de prendre en compte la configuration de la chaine de tri, les conditions d’opération des
équipements et les propriétés physiques des matiéres. Pourtant, ces trois aspects ont été identifiés
a plusieurs reprises comme des facteurs expliquant la variabilité importante de ’efficacité des
centres de tri. Il faut donc s’attendre a ce que 1’utilisation de ces coefficients de transfert mene a
des limitations importantes pour la prédiction des flux de matiéres, et donc des impacts
environnementaux associés. Toutefois, les limites associées a I’utilisation de ces coefficients dans
ce contexte n’ont jamais été analysées dans la littérature. Egalement, leur variabilité et le contexte
dans lequel ils sont déterminés n’ont pas été analysés en détail. Ainsi, il n’est pas possible de
conclure sur ’applicabilité de ces coefficients pour la prédiction des caractéristiques des produits

d’un TMB dans un contexte différent de celui pour lesquels ils ont été déterminés.

Afin de remédier aux limites associées a I’utilisation de coefficients de transfert, une modélisation
mécanistique des opérations unitaires pourrait étre appropriée. Toutefois, ce type de modéle a été
tres peu développé pour la représentation du tri mécanique des matiéres résiduelles, en partie parce
qu’il repose sur une description détaillée des propriétés physiques des matiéres résiduelles, telles
que la taille des particules, la densité et le facteur de forme. Pourtant, la revue de la littérature a

montré que ces trois propriétés ont été tres peu analysées par le passe.

Pour la taille des particules, malgré le fait que cette propriété ait été caractérisée a quelques reprises
dans la littérature, aucune méthodologie n'est privilégiée pour la représentation de matieres
résiduelles non-traitées, menant a une disparité importante des méthodes. Egalement, il n’existe
pas d’étude récente portant sur la détermination de distributions de tailles de particules pour les
principales catégories de matiéres, menant a une incapacité de réellement prédire cette propriéte.
Pour ce qui est de la densité, elle a également été caractérisée a quelques reprises, mais elle a
souvent été mesurée dans des conditions trés variables. Ainsi, la densité est rarement rapportée
pour des conditions similaires, faisant en sorte que les données sont peu utilisables dans un contexte
de tri mécanique. Pour ce qui est du facteur de forme, il n’existe aucune méthode dans la littérature
pour quantifier cette propriété. Ces différentes limitations dans la représentation des propriétés
physiques font en sorte que la modélisation des phénomeénes physiques des opérations de tri est

fortement limitée.
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Finalement, la revue de la littérature a montré qu’il n’existe présentement aucun outil prédictif
transparent permettant de prédire les flux de matieres résiduelles a partir de modeles mécanistiques
et ayant été validé avec des données de terrain. Certains outils ont été développés dans des versions
préliminaires, mais I’algorithme général de résolution n’est jamais présenté. Egalement, un manque
de transparence important est observé puisque ce ne sont généralement pas toutes les opérations
qui sont décrites et certains aspects ne sont pas fournis, ne permettant pas de recréer ces modeéles.
Finalement, aucun de ces modeles n’a été réellement validé avec des données de terrain dans un
cadre récent, ne permettant pas de conclure a une réelle validité de cette approche comme

remplacement a I’utilisation de coefficients de transfert.
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CHAPITRE 3 OBJECTIFS ET METHODOLOGIE GENERALE

Cette section présente les objectifs découlant de la revue de la littérature effectuée, la méthodologie

générale développée pour les atteindre et une description de I’organisation des résultats de la these.

3.1 Ohbjectifs du projet

Pour donner suite & I’analyse critique de la littérature effectuée, 1’objectif suivant a été défini :

Développer un outil prédictif basé sur une modélisation du procédé et des matieres
résiduelles permettant une implantation réussie du traitement mécano-biologique dans un

contexte québécois.

Afin de répondre a cet objectif, il est possible de séparer cet objectif en cing objectifs spécifiques
en se basant sur la revue de la littérature effectuée. Ces cinq sous-objectifs sont les suivants :

1. Développer une methodologie permettant de calculer les efficacités de séparation des
opérations de tri mécanique d’un centre existant a partir de caractérisations de certains flux

de matieres;

2. ldentifier les limites induites par I1’utilisation de coefficients de transfert pour la

modélisation des opérations de tri mécanique de matiéres résiduelles;

3. Développer une approche permettant de modéliser les principales propriétés physiques des

matieres résiduelles a partir de caractérisations;

4. Développer une approche de modélisation du traitement mécano-biologique des matiéres
résiduelles se basant sur une intégration judicieuse de coefficients de transfert et de

modeles mécanistiques;

5. Déterminer I’'impact de la configuration de la chaine d’un procédé de traitement mécano-
biologique et des conditions d’opération des équipements de tri sur la qualité des produits

et leurs débouchés.

Comme il a été montré que les coefficients de transfert jouent un réle important pour la
modélisation du TMB, mais que les méthodes utilisées font généralement face a un manque de

cohérence et de transparence, le premier objectif spécifique proposé permet de répondre a ces deux



47

problématiques en fournissant une nouvelle méthodologie permettant de résoudre ce type de

problemes.

Ensuite, certaines limites théoriques a I’utilisation de coefficients de transfert pour effectuer la
modélisation prédictive d’un procédé de TMB ont été identifiées dans la littérature, mais aucune
démonstration réelle n’a été effectuée. Ainsi, le deuxiéme objectif spécifique vise a identifier plus

clairement ces limites et a déterminer des balises pour leur application.

Etant donné qu’une modélisation mécanistique de certaines opérations unitaires est privilégiée, il
a été montré dans la revue de la littérature qu’une bonne compréhension des propriétés physiques
des matiéres résiduelles est nécessaire, ce qui n’est présentement pas le cas. Ainsi, le troisiéme
objectif spécifique vise a améliorer cette compréhension pour les principales propriétes influencant

le tri mécanique des matiéres en proposant des méthodes quantitatives pour les représenter.

Une fois que les limites associées a la modélisation par coefficients de transfert sont vérifiées, que
les méthodes de modélisation a privilégier sont identifiées de facon judicieuse et que la
modélisation des propriétés des matieres est effectuée, il est possible de procéder au développement

de I’outil de modélisation, ce qui correspond au quatriéme objectif spécifique.

Finalement, une fois 1’outil développé, il peut étre utilis¢é pour identifier les meilleures
configurations permettant 1’intégration réussie du TMB dans un contexte québécois a travers une

étude de cas, ce qui correspond au cinquiéme objectif spécifique.

3.2 Meéthodologie générale

La description de la méthodologie génerale inclut trois sections distinctes. Tout d’abord, pour
toutes les caractérisations réalisées et obtenues aupres des partenaires, 1I’information ciblée, le type
de matieres analysées et la provenance des matiéres sont décrits. Cette section inclut également
une description de la méthodologie utilisée pour analyser la représentativité des échantillons.
Ensuite, 1’outil de simulation développé dans le cadre de ce projet est décrit afin de présenter le
cadre de modélisation. Finalement, la méthodologie utilisée pour valider les résultats de
modélisation est décrite.
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3.2.1 Caractérisations des matieres résiduelles

Pour analyser le fonctionnement des équipements de tri, il est nécessaire d’obtenir des données de
terrain fiables et représentatives. L’obtention de ces données passe inévitablement par la réalisation
de caractérisations de différents flux de matieres résiduelles. Toutefois, la réalisation de ces
caractérisations requiert beaucoup de temps et de ressources. Il est donc nécessaire de restreindre
le nombre de caractérisations réalisées et la quantité de matieres collectées. Par contre, ces
limitations ne doivent pas affecter la représentativité des échantillons collectés. Une méthode
d’analyse est donc requise pour s’assurer que les caractérisations réalisées sont réellement

représentatives de la situation.

Dans le cadre de cette these, les caractérisations effectuées ont principalement porté sur la
détermination des propriétés physiques des matieres residuelles, puisque la faible quantite de
données disponibles dans la littérature a eté identifiée comme une des principales limites a la
modélisation du tri mécanique. Ainsi, durant ce projet de recherche, quatre caractérisations
distinctes ont été réalisées, dont trois portant sur les propriétés physiques des matieres résiduelles
et une sur la composition des flux internes d’un centre de tri. Les résultats de deux caractérisations
effectuées par des partenaires ont aussi été obtenus. La Figure 3.1 présente un schéma de
I’information ciblée, le type de matiéres analysées et la provenance des matieres pour les six

caractérisations utilisées dans le cadre de ce projet.

Les caractérisations C1 et C3 sont utilisées dans le cadre du Chapitre 6, la caractérisation C2 dans
le Chapitre 7, les caractérisations C4 et C5 dans le Chapitre 4 et la caractérisation C6 dans le

Chapitre 5 et dans le Chapitre 8.



Caractérisations réalisées a |’interne Caractérisations réalisées

par des partenaires

Propriétés physiques Composition
Cl1 Cc4 Cs
Taille des particules Composition Composition
Matiéres résiduelles mixtes Flux internes d’un centre de tri Flux sortants d’un centre de tri
non-traitées de matiéres recyclables de matiéres recyclables
Montréal Montréal Montréal
C6

Taille des particules et densité
Matiéres recyclables non-traitées
Montréal

Composition

Flux sortants d’un centre de tri
de matiéres résiduelles mixtes
Sherbrooke

C3

Taille des particules

Résidus de construction et
démolition traités par crible rotatif
Ottawa

i
I
1
I
1
I
1
I
I
I
I
I
I
I
I
1
I
I
I
1 C2
I
1
I
I
I
I
I
1
I
1
1
I
I
1
I
I
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I
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Figure 3.1 Schématisation des caractérisations effectuées et obtenues dans le cadre de ce projet

Au niveau de la représentativité des caractérisations, plusieurs normes provenant de différents pays
et pour différents contextes ont été définies pour baliser les caractérisations de matiéres résiduelles.
Ainsi, dans un contexte nord-américain, la norme ASTM D5231 décrit la méthodologie a
privilégier pour la caractérisation de la composition de matieres résiduelles mixtes. Cette norme
propose une méthode pour déterminer la quantité de matiéres a collecter pour obtenir des
échantillons représentatifs. L’approche se base sur la détermination de moyennes et d’écarts-types
pour une matiere cible. Malgré son utilité, cette norme ne donne pas d’indications pour la
caractérisation des propriétés physiques des matiéres, telles que la densité et la taille des particules.
Egalement, cette norme s’applique a des matiéres résiduelles collectées a la source pour une
municipalité ou une région, et n’est donc pas directement applicable pour caractériser des flux de

matieres d’un centre de tri, di a la différence d’hétérogénéité entre ces deux types de flux.

Pour effectuer la caractérisation de la densité de matiéres résiduelles, la norme ASTM E1109
indique qu’il est nécessaire de collecter des échantillons supérieurs a 250 kg pour des maticres
ayant une taille nominale supérieure a 90 mm. Cette norme peut étre appliquée pour caractériser la
densité d’un mélange de matiéres mixtes, mais est toutefois difficilement applicable pour

caractériser la densité de différentes catégories de matiéres due a la nécessité de trier manuellement
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ces catégories. En effet, trier plusieurs échantillons de matiéres résiduelles de plus de 250 kg

représenterait un temps considérable.

Pour effectuer la caractérisation de la taille de particules de matiéres résiduelles, il n’existe
présentement pas de norme ASTM directement en lien avec la détermination de cette propriété
pour des matiéres non traitées. La norme ASTM E1037 permet de caractériser cette propriété pour
un CDD ayant subi une réduction de taille et un briquetage, et ne peut donc pas étre utilisée pour
des matiéres non traitées, due a une importante différence de taille de particules. Egalement, la
norme ASTM D5519 peut généralement étre appliquée pour des matiéres ayant un diameétre

supérieur a 75 mm. Cette norme ne fournit toutefois pas de quantité claire a caractériser.

Plusieurs normes européennes ont également été définies pour des applications similaires.
Toutefois, comme pour les normes ASTM, ils ne permettent pas de déterminer une quantité de
matieres a échantillonner pour la densité ou la taille des particules de catégories de matieres

résiduelles non traitées.

En P’absence de normes applicables, 1’approche utilisée pour s’assurer d’obtenir des données

représentatives lors de la caractérisation de propriétés physiques comporte trois étapes, soit de :

1) effectuer une estimation de la quantité a échantillonner a partir d’exemples similaires dans

la littérature;
2) effectuer la caractérisation des matieres résiduelles;

3) analyser la représentativité des échantillons a partir d’une analyse statistique des sous-

ensembles d’échantillons.

Afin d’effectuer I’analyse de la représentativité des échantillons, I’approche utilisée consiste a
calculer s’il y a une différence statistique, a partir d’un test d’hypothése, de la propriété pour
différents sous-groupes d’échantillons (c.-a-d., un sous-groupe d’échantillon correspond au

nombre d’échantillons considérés). La Figure 3.2 présente la méthodologie utilisée.
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Figure 3.2 Schématisation de I'approche utilisée pour analyser la représentativité des échantillons

Ainsi, a partir d’un test d’hypotheése, il est possible de déterminer le nombre d’échantillons minimal
pour que les parametres de la distribution cessent d’évoluer par rapport au sous-ensemble

précédent.

3.2.2 Description de I’outil de modélisation

Comme mentionné dans la section 2.2.1.3, I’outil de modélisation développé dans ce projet, nommeé
VMR-sys (valorisation des matieres résiduelles - systeme), s’inscrit dans un cadre plus large, soit
le développement d’un outil d’optimisation permettant de combiner I’ACV et la MFA, nommé
MaRCOT. Ces deux outils sont développés a partir du langage de programmation orientée objet
Python.

VMR-sys a été developpé pour permettre d’effectuer un bilan de masse sur un systéme gestion de
matieres résiduelles en se basant sur une modélisation flexible des opérations. Dans le cadre de ce
projet, les différentes opérations unitaires ont été développées sous forme de modules, incluant des
équipements de tri mécanique et une unité de carbonisation hydrothermale. Ces modules sont
développés de facon a étre intégrés dans 1’outil MaRCOT et doivent donc avoir un format

spécifique.

Malgré le fait que VMR-sys a été principalement utilisé pour représenter un procédé de tri
mécanique de matiéres résiduelles, sa structure est assez flexible pour intégrer d’autres types de
traitement. Par exemple, cet outil a été utilisé pour modéliser I’intégration d’un modele
mécanistique de digestion anaérobie, ADM1, dans une MFA d’un systéme de traitement des

matieres organiques triées a la source (Urtnowski-Morin et al., 2021).
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L’outil inclut plusieurs classes représentant les principaux modules nécessaires a la résolution.
Chaque classe comporte plusieurs attributs, soit les informations qui définissent la classe, et
plusieurs méthodes, soit ses fonctions. Les différentes classes développées ont des liens de
dépendance leur permettant ainsi de partager des informations. La Figure 3.3 présente les classes
développées spécifiguement dans le cadre de ce projet. Les prochaines sections décrivent le
fonctionnement de ces classes, ainsi que leurs attributs et leurs méthodes. Dans le cas présent, les
attributs et méthodes de la classe Layers ne sont pas présentés, puisqu’ils ont été développés dans
le cadre du développement de 1’outil MaRCOT et ne sont pas tous nécessaires. Par contre, il est a
noter que certains éléments de la classe Layers sont utilisés dans la modélisation, incluant les

attributs et les méthodes permettant de définir les niveaux de masse d’un flux.

Layers MRF_Equipement

o + flow_mass: DataFrame

+ lay:Layers
+ properties: dict

- apply_RR()
- dist_RR()

- dist_description() HTC
- calc_humidty()

- convert_to_valume()
+ describe_equipement()

- import_flow_description() 4

- integrate_by_section()
- sum_part_size()
- weighted_avg_std()

+ efficiency: DataFrame
+ gas_yield: float
+ BWR: float

[

vmr-sys

+ nodes: DataFrame

+ edges: DataFrame

+ initial_goods: DataFrame
+ initial_subst: DataFrame
+ initial_cons: DataFrame
+ initial_prop: dict

+ process_attributes: dict
+ process_class: dict

- import_vmr2_inputs()
- init_flows()

- edges_list()

- create_inputs()

- create_properties()

- check_mass_balance()
+ solve_system()

+ graph()

- find_df_differences()
- find_index()

- sum_part_size()

il

trommel

T

+gas compo: DataFrame

+ solve()
+ description ()

]

+ screen_ratio: float
+ screen_size: float
+ radius: float

+ length: float

+ beta: float

+ ang_velocity: float
+ rev_per_min; float

ballistic_separator

sorting_coefficient

+ a: float
+ b: float
+c : float
+ screen_size: float

+ coefficient: dict

+ solve()

+ efficiency()
+ description()
- calc_prob())

+ solve()
+ efficiency()
+ description()

+ solve()
+ description()

Figure 3.3 Description de 1’outil de modélisation pour la représentation numérique d’un TMB

Dans la figure, chaque classe est représentée par un rectangle pour lequel son nom, ses attributs et
ses méthodes sont présentés dans I’ordre. Lorsque le symbole + est utilisé, cet attribut ou cette

méthode est disponible pour I’utilisateur, alors que lorsque le symbole — est utilisé, cet attribut ou
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cette méthode est caché a I’utilisateur. Une fleche vide indique qu’une classe hérite des attributs et
méthodes d’une autre classe (classe enfant et classe parent) et un losange vide indique que cette

classe peut exister séparément tout en étant utilisée dans une autre classe.

3.2.2.1 Classe MRF_Equipement

Cette classe permet de définir les principaux attributs et méthodes utiles principalement pour la

modélisation d’équipements de tri mécanique, mais également pour d’autres types de procédés.

Les attributs incluent un dictionnaire de propriétés des matiéres résiduelles, le débit de matiere
entrant & un procédé et une définition des niveaux massiques sous la forme d’un objet Layers défini
dans MaRCOT. Cette fagon de définir les niveaux de masse d’un flux de matiére permet d’exprimer
la matiére sous trois différents niveaux, soit la composition en biens (objets matériels), en éléments
non-conserves (p.ex., une molécule chimique) et en éléments conservés (éléments chimiques). Ceci
permet de donner une flexibilité importante lors de la description des matiéres. Pour ce qui est de
I’attribut permettant de décrire les propriétés, il permet de prendre en compte la densité, la taille
des particules, le facteur de forme et le PCI des matieres. L’humidité est quant a elle définie sous

la forme d’un élément non-conservé dans 1’objet Layers.

Au niveau des méthodes, elles incluent différentes fonctions utiles pour plusieurs classes et

permettant principalement de mettre en forme et de manipuler les propriétés.

3.2.2.2 Classe vmr_sys

Cette classe permet de recenser les principaux attributs et méthodes permettant de résoudre le bilan
de masse sur un systéme de gestion des maticres résiduelles et représente donc le ceeur de 1’outil
VMR-sys.

Les attributs de cette classe englobent toutes les informations requises pour définir le systeme
incluant une liste d’opérations unitaires (nodes), une liste des liens entre ces opérations unitaires
(edges), une liste de la classe utilisée pour représenter chaque opération unitaire dans le modele,
les attributs des opérations unitaires et une description initiale des flux de matiéres entrants au
procédé. Ainsi, cette classe peut aussi bien permettre de modéliser un centre de tri mécanique de
maticres résiduelles, que n’importe quel autre systéme, dans la mesure ou les classes spécifiques

aux procédés de traitement sont définies.
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Plusieurs méthodes sont définies permettant d’effectuer 1’importation des données, la mise en
forme des données et la résolution du systeme. La méthode graph() permet également d’effectuer
une représentation graphique du systéme et d’y inclure les débits de matiéres calculés. Une

description de 1’algorithme de résolution de la méthode solve() est présentée dans le Chapitre 8.

3.2.2.3 Autres classes

Quatre autres classes ont été définies, incluant deux modéles spécifiques de tri mécanique (crible
rotatif et séparateur balistique), un modele de carbonisation hydrothermale et un modéle général
prenant en compte des coefficients de transfert. Ces quatre classes sont définies comme des classes
enfants de la classe MRF_Equipement, malgré le fait que la carbonisation hydrothermale n’est pas

un procédé de tri mécanique, car ils requierent tous les attributs de la classe parent.

Egalement, ces quatre classes ont sensiblement les mémes attributs et les mémes méthodes. Leurs
attributs sont les variables prises en compte dans la modélisation spécifique a 1’opération unitaire.
Dans le cas de la classe partition_coefficient, le seul attribut correspond & un dictionnaire de
coefficients permettant de décrire 1’opération. Pour ce qui est des méthodes, ils incluent tous une
méthode solve() permettant la résolution du systéme et dans certains cas une méthode efficiency()
permettant de calculer I’efficacité de ’opération. Une description du fonctionnement de ces
modules est présentée dans le Chapitre 8 pour le crible rotatif, le séparateur balistique et les
équipements representés par des coefficients de transfert, alors qu’une description du modéle de

HTC est présentée dans le Chapitre 9.

3.2.3 Validation des modeles développés

Afin d’évaluer la performance d’un centre de tri mécanique et d’ainsi pouvoir valider les différents
modeles développés, il est nécessaire de définir des criteres clairs et précis. Ces criteres sont
nécessaires dii au nombre important de flux, de matieres et de produits potentiels. Ainsi, il n’est
pas possible de prendre en compte toutes ces informations pour la validation des modeles et des

choix doivent étre effectués.

L’approche privilégiée au cours de ce projet pour évaluer la performance des centres est
I’utilisation de deux criteres principaux, soit la pureté et la récupération. Ces criteres ont également
été utilisés dans la littérature pour la validation de modéles de centre de tri mécanique (Ip et al.,

2018; Kleinhans et al., 2021). Les deux variables sont definies pour une matiére ciblée dans un
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produit donné. La pureté permet de donner une indication de la qualité du produit, alors que la

récupération permet de quantifier la capacité du centre a orienter une matiére vers le bon produit.

Deux principales étapes de validation sont nécessaires dans le cadre du projet. Dans un premier
temps, afin de valider la méthodologie développée dans le premier objectif spécifique et permettant
de calculer des coefficients de transfert pour un centre existant, la caractérisation C5 (voir Figure
3.1) sera utilisée. Ensuite, pour effectuer la validation de 1’outil général développé dans le
cinquiéme sous-objectif, la caractérisation C6 (voir Figure 3.1) sera utilisée. Dans les deux cas, il
s’agit de caractérisations réalisées par des partenaires dans le but d’estimer la composition et la

quantité de tous les produits du centre de tri.

3.3 Organisation de la thése

Cinq objectifs spécifiques ont éte définis dans le cadre de cette thése. Les quatre premiers objectifs
specifiques ont mené a la rédaction d’articles scientifiques soumis dans des revues avec comité de
révision, alors que le dernier a été approfondi dans une étude de cas non-publié. Ces cing articles
sont présentés dans leur version originale, puis 1’étude de cas est présentée, suivie d’une discussion

générale et d’une conclusion.

Le premier article présente la méthodologie déeveloppée pour calculer les flux de matieres et les
efficacités des opérations d’un centre de tri mécanique de matiéres résiduelles. Cette méthodologie
est appliquée a un centre de tri de matiéres recyclables situé dans la province de Québec et pour

lequel plusieurs caractérisations des flux entrants, sortants et internes ont été réalisees.

Le deuxieme article compare les différents coefficients de transfert utilisés dans la littérature pour
représenter les principaux équipements de tri mécanique communément utilisés sur la base de leur
efficacité, la méthodologie utilisée pour les déterminer, les matiéres résiduelles considérées et la
description des équipements. Ensuite, une analyse de sensibilité est réalisée afin d’identifier les
principales limites a 1’utilisation de ces coefficients et de conclure sur la stratégie a privilégier pour

modéliser les différents équipements.

Le troisieme article analyse la taille de particules de matiéres résiduelles mixtes et propose une
approche unique pour représenter cette propriété. Une description des tailles de particules de

matieres résiduelles est également effectuée et leurs caractéristiques sont identifiées.



56

Le quatrieme article propose une nouvelle méthodologie pour quantifier le facteur de forme des
matieres résiduelles, soit a partir de la fraction de vide. Une caractérisation de la densité et des
tailles de particules de matiéres recyclables est également effectuée. Une analyse de ces propriétés

permet d’identifier des pistes pour favoriser la séparation des matiéres par du tri mécanique.

Le cinquiéme et dernier article présente un outil de modélisation développé et intégrant des
modeéles mécanistiques et des modéles de coefficients de transfert pour la représentation d’un
procédé de tri mécanique de matieres résiduelles. Une validation est réalisée a partir de données de
caractérisations obtenues pour un centre de tri de matiéres résiduelles mixtes dans un contexte
quebécois. Des analyses de scénarios sont également réalisées pour démontrer 1’intérét de cette

approche de modélisation.

L’étude de cas présente la performance de plusieurs scénarios d’un procédé de tri mécanique
combiné & un procédé de carbonisation hydrothermale pour la valorisation des ordures ménageres.
Les résultats des différents scénarios sont comparés aux normes de qualité disponibles dans la
littérature. Ils sont également comparés entre eux a partir de quatre critéres de performance. Ces
critéres permettent d’évaluer globalement la récupération et de la pureté des matieres destinées aux

filieres de recyclage et aux filieres de valorisation énergétique.

La discussion générale présente un résumé du fil conducteur des différentes sections de la these et
comment les différentes sections permettent de répondre aux principales limitations soulevées par
larevue de la littérature et d’atteindre les objectifs de la thése. Une breve description des principaux

défis rencontrés lors de la réalisation du projet est également présentée.

Finalement, la conclusion présente les principaux résultats et les retombées de cette these, ainsi que

les limitations et les perspectives futures.

Toutefois, afin de faciliter la compréhension de la lecture du présent document, il est pertinent de
préciser que les articles n’ont pas été rédigés dans 1’ordre présenté. Ainsi, les deux premiers articles
réalisés portaient sur la détermination de tailles de particule des matiéres résiduelles (Chapitre 6)
et ’identification des limites des coefficients de transfert (Chapitre 5). Une fois ces deux premiers
articles réalisés, le développement de ’outil général a ét¢ commencé. Toutefois, il n’était pas
possible a ce stade de valider I’outil, puisque le nombre de matieres résiduelles pour lesquelles des
propriétés physiques ¢étaient définies était trop restreint. Ainsi, afin d’améliorer la modélisation,

une nouvelle caractérisation a été réalisée afin d’agrandir la banque de données disponibles
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(Chapitre 7). Finalement, d( a des contraintes externes au projet, les essais expérimentaux reliés a
la carbonisation hydrothermale de matieres résiduelles qui étaient initialement prévus ont été
annulés. 11 a donc été décidé de raffiner 1’outil de modélisation. Pour ce faire, comme il a été
identifié a plusieurs reprises que peu de données d’efficacités étaient disponibles dans la littérature,
ce qui limite la capacité de modéliser les différentes opérations, il a été décidé d’améliorer les
méthodes disponibles pour déterminer ces efficacités (Chapitre 4). Ces differentes étapes ont
permis de terminer le développement de I’outil (Chapitre 8) et d’ainsi effectuer 1’étude de cas
(Chapitre 9).



58

CHAPITRE 4 ARTICLE 1 : AMETHOD FOR ASSESSING THE
PERFORMANCE OF SORTING UNIT OPERATIONS IN A MATERIAL
RECOVERY FACILITY BASED ON WASTE CHARACTERIZATIONS

Auteurs : Fabrice Tanguay-Rioux, Arianne Provost-Savard, Laurent Spreutels, Martin Héroux,
Robert Legros

Cet article a été soumis dans Journal of Cleaner Production en date du 19 octobre 2021.
Abstract

The determination of separation efficiencies of mechanical sorting equipment is essential to
improve the performance of material recovery facilities (MRFs). However, it is a quite a challenge
to obtain these efficiencies due to the high complexity of MRFs, which often comprise several
recirculation streams. In this paper, a methodology to determine the equipment separation
efficiencies of a complex MRF is described and applied to an actual sorting center located in the
province of Quebec, Canada. Transfer coefficients for every unit operation and several material
types, together with all material flows within the facility, have been determined for a complex MRF
processing a stream of commingled recyclable materials. This work also provides a rare dataset of
separation efficiencies for several mechanical sorting unit operations. The methodology is
validated by comparing experimental data and model predictions for the recovery and the purity of
all main output streams. The results are helpful to identify several avenues for process performance
improvement, such as adding a magnetic separation at the beginning of the sorting sequence, or
improving the separation of the 2D-type materials collected from the second ballistic separator by
changing the operation conditions or adding a quality control step. Moreover, results also provide
valuable information about recovery performance and material purity to help managers make
proper decisions regarding process improvement. Finally, a scenario analysis demonstrates that
the performance of a second ballistic separator has an important impact on the sorting process
global efficiency and that recirculating a fraction of the rejects output stream has a negligible

impact on the global performance.
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4.1 Introduction

Mechanical separation plays a pivotal role in municipal solid waste (MSW) management systems,
throughout its application in material recovery facilities (MRFs) and mechanical-biological
treatments (MBTSs). Despite its large-scale use, several authors have reported in recent years

multiple challenges related to this type of unit operation for handling MSW.

For example, Eule (2013) analyzed the sorting performance of three MRFs of comingled recyclable
materials in the UK and observed important weaknesses related to the purity and the recovery of
several waste materials. Damgacioglu et al. (2020) found similar results while studying MRFs of
comingled recyclable materials in Florida, USA, where important issues regarding non-compliance
with industry standards for several waste materials were observed. Even for less heterogeneous
input streams, issues were reported as Feil et al. (2016) concluded to an important optimization
potential of the recovery of beverage cartons in three lightweight packaging MRFs. These studies
highlight the need to improve the knowledge about separation efficiencies of MSW mechanical
separation units. Moreover, it has been shown in previous work that the separation efficiencies
reported in the literature strongly vary according to the source of the data (Tanguay-Rioux et al.,

2021a), again highlighting the need for further work on this subject.

It can be quite a challenge to determine the separation efficiencies of the different sorting
equipment present in a MRF, due to its high complexity and to the presence of multiple
recirculation streams. In this case, making appropriate assumptions can help to identify bottlenecks

and guide future improvements (Feil et al., 2017).

Another approach to guide the implementation of improvement measures is to simulate the MRF
operations. To do so, it is necessary to determine the performance of the sorting equipment. This
is generally done by calculating the MRF’s internal mass flows, thus allowing for the calculation
of the separation efficiencies of every unit operation. Material flow analysis (MFA) is a powerful
tool in this context, assuming that enough information is available on the process. MFA is a
decision-support tool based on the mass conservation law that is used to track variations in flows
and stocks for a complex system on the level of goods or substances (Brunner & Rechberger, 2016).
This tool enables the calculation of transfer coefficients (TCs), which are numbers between 0 and
1, that represent the partitioning of input material flows into output flows for a given unit operation
(Brunner & Rechberger, 2016).



60

MFA has been applied often in the context of waste management, mainly to represent the waste
management system as a part of the global economy (Allesch & Brunner, 2015). It has been applied
also several times to model waste treatment plants, generally on both good and substance levels
(Allesch & Brunner, 2015). However, it has seldom be applied to analyze specifically a MRF.
Rotter et al. (2004) performed an MFA on a mechanical treatment sequence on the level of
substances to determine how the operation affects the chemical characteristics of an RDF produced.
More recently, Nasrullah et al. (2014) performed an MFA on the levels of goods and substances of
a construction and demolition waste sorting facility, while Velis et al. (2013) performed a similar
analysis for a MBT plant. In this latter case, to overcome the complexity of the plant, they used a
combination of assumptions, literature data and characterizations to create initial estimates for
every stream and then performed a data reconciliation and uncertainty propagation based on the
MFA freeware STAN (Velis et al., 2013). Similarly, Jansen et al. (2015) solve the mass balance of
MRFs following waste characterizations by making general assumptions on the internal flows

composition and splits to calculate the unit operations efficiencies of the processes.

However, in these previous studies, the actual MRFs had a limited number of unit operations and
recirculating streams. Moreover, limitations in the use of STAN for this purpose were identified,
requiring manual modifications (Velis et al., 2013), which raises the need for a more robust
approach for larger systems. Also, no guidelines are provided to apply this type of resolution to a

similar context.

The objective of this study is to develop a general and systematic methodology allowing to perform
a material flow analysis on a complex MRF in order to determine the transfer coefficients of the
unit operations. This methodology is applied in a case study based on an actual MRF processing
commingled recyclable materials. The results are validated by using the calculated transfer
coefficients for the prediction of the MRF outputs. Results are also compared to performance data
for similar unit operations found in the literature. Finally, scenario analyses are performed to

identify process bottlenecks, as well as potential improvement solutions.
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4.2 Materials and methods

4.2.1 System description

The studied MRF is located in the province of Quebec (Canada) and is designed to accept a
commingled stream of recyclable materials. It has 26 unit operations, including disc screens (DS),
ballistic separators (BS), optical sorters (OS), magnetic separators (MS), eddy-current separators
(ECS), film separators (FS) and manual sorting stations. It also has 57 internal streams (edge
between two unit operations or between a unit operation and an output stream), one input stream

and 15 output streams.

As for most MRFs, the first step of the process is a manual pre-sorting, followed by a separation
of the corrugated cardboards based on the size. Then, the remaining wastes are sorted into 3 main
groups, namely the 2D-type materials, the 3D-type materials and the fines based on a sequence of
size sorting unit operations and ballistic separators. The fines fraction, mostly composed of glass,
is then sent to a purification step that was not considered in this study. The 2D-type materials are
purified with optical sorters and a film separator prior to baling. The 3D-type materials are also
sorted in multiple fractions, namely PET, HDPE, mixed plastics, and multilayered packaging,
based on optical separation and negative manual sorting. The complete sequence diagram is
presented in Figure 4.1. However, some unit operations are aggregated due to confidentiality
reasons (P17 and P18 on the diagram).

Because the MRF contains several recirculation streams, the number of streams is much higher

than the number of unit operations resulting in an under-determined mass balance.
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Figure 4.1 Simplified configuration of the MRF

4.2.2 Material flow analysis of a complex system

The approach proposed to solve the mass balance of the previously described system, which is an
under-determined problem, is described in this section. The approach is based on solving an
optimization system and determining appropriate constraints to obtain an over-determination of the
system. The mathematical algorithm could also be applied to determined or over-determined

systems but would not require the determination of constraints.
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4.2.2.1 Optimization system

The objective function described by Friedlander (1961) to estimate a contingency table and
commonly used for updating input-output matrices (Huang et al., 2008) is adapted to solve the

system previously described. The following optimization system is solved:

ny ny 2
. Xij — Xpj

mmzz — (4-1)

X0,

i=1 j=1 LJ

S.t.

Xij=0VieS,VjeS, (4-2)
AX =0 (4-3)

Where Xjj is the material flow vector (tons/yr) for every material i in the set of material S; and of
length n; and every stream j in the set of streams S; and of length n;, X?; is an initial estimate
vector for every combination of i and j and A is the mass balance matrix of shape n;n, x n;n, for

all the unit operations k in the set of unit operations Sk and of length ny.

Each element in the matrix A matches a material i in a stream j for a unit operation k. It takes the
value +1 if it is an output stream, the value -1 if it is an input stream and the value O if the stream

is not linked to the unit operation.

This optimization system was selected since it allows to introduce two essential features for this
type of system. First, the division by ij makes it possible to add a weighting factor to the
resolution according to the size of the mass flows. Second, the subtraction by Xl-‘?j allows to

introduce a penalty factor that limits the variation from the initial estimate, thus making it possible

to limit deviations from the characterization results.

4.2.2.2 Definition of constraints

We define 5 types of constraints that can be used in the context of a sequence of sorting unit
operations of solid waste to reduce the level of under-determination of the mass balance. For the

first three constraints, ponderation factors are defined to relax the constraints according to the
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confidence level of the practitioner towards their variability. These parameters must be estimated

according to the situation.
Flowrate constraints (type A):

Flowrate constraints are defined for streams for which both the composition and total mass flow
are known. This type of constraint can generally be calculated for input and output streams of the
process following waste characterizations. Type A constraints are defined with the following

equation in the optimization system:
X —faUpj <X <X+ faU;; VIES ,VJES, (4-4)

where X} ; 1s the mean mass flow of the material i in the stream j, U; ; is the uncertainty of the mass
flow of the material i in the stream j, f,4 is the ponderation factor and Sa is the set of streams for
which type A constraints have been defined. Both the mean mass flow and the uncertainty for a

given stream can be calculated through characterization work or can be estimated.

If the uncertainty is estimated rather than calculated, it is not necessary to set a value for the

ponderation factor since it would already be integrated in the uncertainty.
Composition constraints (type B):

Composition constraints are defined for streams for which composition is known, but not the mass
flow. This type of constraint can generally be calculated for internal streams following a
characterization. Type B constraints are defined with the following equation in the optimization
problem:

s Xij . . .

xi,j—fBui,j S—nl Sxi,j+f3ui’j Vi ESI,V] ESB (4-5)
Yty Xij

where X;; is the mean composition of the material i in the stream j, w; ; the uncertainty of the

composition of the material i in the stream j, f is the ponderation factor and Sg is the set of streams
for which type B constraints have been defined. As for the type A, the composition and its

uncertainty can be calculated through characterization work or can be estimated.

Total flowrate constraints (type C):
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Total flowrate constraints are defined for streams for which the mass flow is known but the
composition is unknown. This type of constraint can be calculated by taking samples at different
points of the process, on a specific conveyor section, and by measuring the time for this sample to
cross the conveyor section when operating the MRF. This type of constraint, however, can only be
applied to express the ratio between two streams in similar operating conditions, as MRF operation
vary strongly and the extrapolation of the measured mass flow to determine a flow per year would
be poorly representative. Type C constraints are defined with the following equation in the

optimization system:

M
(1- fc)—]1 < abs

n
(Ziilxi,ﬂ
sz

<+ M vies viLiDes. (46
Z?=I1Xi,j2> ( fC)M- nV (j1,j2) € Sc (4-6)

j2

where M;,is the mass flow measured for the stream j1, M;, is the mass flow measured for a

reference stream j2, f is the ponderation factor and Sc is the set of streams for which type C

constraints have been defined.

Unlike the ponderation factor defined for the type A and B, f- is not used to calibrate the

uncertainty of a stream but is rather used to create an interval for the measured ratio.
Separation efficiency constraints (type D):

Separation efficiency constraints are defined for unit operations for which transfer coefficients can
be independently estimated. These constraints are useful to add boundaries to an under-determined
part of the system. Separation efficiency constraints should be defined as lower or upper boundaries
rather than equality, to limit the solution without imposing it. They can be determined based on
expert judgement, literature data or mechanistic modeling. Type D constraints are defined with the

following equation in the optimization system:

out
Xij

Qi,j k,min = —Znin'k

Xin < qi,j,k,max Vie SI» Vj € SD,k (4'7)
j=1 “ij

where q; j ., max 1S @ theoretical upper boundary of the transfer coefficient of the material i in stream
J exiting the unit operation K, q; j x min is @ theoretical lower boundary, Sp is the set of streams j

for which type D constraints have been defined for a given unit operation k, X{f]‘-‘t is the mass flow
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of the material i in the stream j exiting a unit operation k and Xl”} is the mass flow of the stream j

entering a unit operation k for every stream of the set Sinx.

Type D constraints can also be defined as equality constraints in the specific case for which the
exact efficiency is known or to simplify the system. For example, these constraints can be used to

neglect a given unit operation.
Zero flow constraints (type E):

Zero flow constraints are defined for streams for which material flows are negligible in comparison
to other mass flows of the process. These approximations are realized by observations or
discussions with the operator of the facility. These constraints can be expressed with the following

equation:
Xi,j =0 Vie S[ ,V] S SE (4'8)
where Sg the set of streams j for which type E constraints have been defined.

4.2.2.3 Definition of an initial vector
The following 3-steps procedure is used to define an appropriate initial vector.

1- Define expected transfer coefficients for every unit operation based on literature data or

estimation from expert judgement.

2- Solve the mass balance for the input stream of the process with the following equation
based on the work of Testa (2015):

X =0U-@NH™'p (4-9)

where X' is the vector of the mass flow entering every unit operation k in the set of unit
operation Sk for every material i in the set of material S;, | is the identity matrix, Q is the
transfer coefficients matrix for every material i in stream j exiting unit operation k and £ is

the vector of the process input of length n; X n;.  contains only 0, except for the stream

entering the process.

For unit operations with only one input stream, X is equal to X for the stream j entering the

unit operation k. For unit operations with more than one input stream, X need to be
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calculated from X' since this last variable is the sum of all the input streams of the unit

operations k. Therefore, it can be derived from the transfer coefficients.

3- Replace the mass flow data calculated by the mean value calculated for every stream j in
the set Sa and recalculate the mass flow to match the mass composition for every stream j

in the set Sg.

4.2.3 Application of the methodology to a real case study

The methodology proposed in the previous section was applied to the MRF described in section
4.2.1. The calculations were performed with Python. The optimization system described in section
4.2.2.1 was solved with the module CVXPY (Agrawal et al., 2018; Diamond & Boyd, 2016).

4.2.3.1 Specific constraints description

For this case study, the 5 types of constraints described above were used.

4.2.3.1.1 Waste sampling and characterization

Two different waste characterizations were performed to provide valuable data for constraints
calculation. In both cases, waste materials were sorted in 16 categories, namely newspapers, mixed
papers, paperboards, old corrugated cardboards (OCC), multilayered packaging, PET, HDPE,
mixed plastics, PS, plastic films, ferrous metals, non-ferrous metals, aluminium cans, glass, rejects
and fines (< 6 mm). The rejects include mainly materials as non-recyclable plastics, non-targeted
metals (kitchen housewares), kitchen towels, dirty papers, toys, textiles and other non-recyclable

objects.

First, 14 samples of 50 kg were collected for the input stream. Also, 3 to 11 samples of 25 kg were
manually sorted for 13 out of the 15 output streams, for a total of 87 samples. These samples were
collected directly by opening the output stream bales and taking sufficient wastes in the middle of
the bale. For the 2 remaining output streams, one was characterized only once due to sampling
difficulties, and one was estimated based on expert judgement. These characterizations allowed to
define 16 type A constraints for each material category. They are identified in Figure 4.1 by indexes
U0 to U15.

Characterizations of internal streams were also performed. 11 internal streams (identified C1-C11

in Figure 4.1) were characterized by sorting 3-5 samples of 1 to 17 kg. The mass collected per
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sample was defined according to the stream’s total mass flow, hence larger samples were collected
for more substantial mass flows. These samples were all taken directly from the conveyors on their
entire width. This approach was selected to minimize sampling errors in comparison to sampling
wastes gathered on the reception floor or in bales (Bessi et al. 2016; Petersen et al., 2005). These

samples allowed to define 11 type B constraints for each material category.

Finally, the time needed for a given sample to cross the conveyor was measured for 6 conveyors
(C1, C2, C3, C8, C10, C11) to define 5 type C constraints.

4.2.3.1.2 Fines separator maximal efficiency

A type D constraint was defined for the first fines separator (P4 in Figure 4.1) of the process to
reduce the uncertainty of this section of the process. To do so, the maximal theoretical efficiency
of separation, expressed as a transfer coefficient, was calculated with the particle size distribution
of each material based on previous work (Tanguay-Rioux et al., 2021b). Since this equipment is
located directly after a disc screen of 12.7 cm and separate material smaller than 5.1 cm, the

maximal separation efficiency was calculated with the following equation:

R0

qi,j,kmax = Fi(12-7) (4'10)

where Fi(x) is the cumulative distribution function of a material i for a particle size x (cm).

4.2.3.1.3 Other hypotheses

Following visual inspection and discussion with the operator of the MRF, the magnetic and the
eddy-current separators used for the fines separation (P18), and the magnetic separator preceding
the rejects baling (P23) were assumed to sort 50% of their targeted material and 0% of the other
materials in the targeted output stream. This assumption is considered acceptable since most of the

metals recovered in the facility comes from the 3D line. This corresponds to 3 type D constraints.

Also, except for the pre-sorting step and the manual sorting of the non-ferrous metals, every other
manual sorting step (i.e., cardboard and plastics purification) was considered to have a negligible
impact on the global mass flows and were thus neglected. This assumption, based on observations,

is considered acceptable since negative manual sorting generally recover small quantities of waste
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and target only 1 or 2 waste categories. This hypothesis allowed to add 5 type E constraints to the

system.

Finally, the density separation on the glass line was neglected since an analysis of the light fraction
showed a recovery of approximately 0.01 kg per 30 s, corresponding to 12 kg on a 12h-day and the
bag aspirator was also neglected following discussions with the operator. These hypotheses

allowed to add 2 type E constraints to the system for every material.

4.2.3.2 Data analysis

Waste characterization results are compositional data and other approaches need to be used than
classical statistics to analyze them (Edjabou et al., 2017). The total variance described by
Pawlowsky-Glahn et al. (2007) can be used to determine and compare the variability of the

characterization results (Edjabou et al., 2017).

However, this approach does not allow to calculate a measure of dispersion for the waste
characterizations. Therefore, even though classical statistics are not considered fully applicable to
compositional data, classical weighted standard deviations were still calculated to estimate the
uncertainty required for type A and type B constraints with the following equation, due to lack of

alternatives:

2
Yl wo(xiio— X5
ui,j = e—‘; e(ll.];e l,]) Vi € TI,I,Vj ESA USB (4_11)
- n
ene_zeilwe

where u;; is the uncertainty expressed as the standard deviation of the composition for the material

*

I in the stream j, x; ;. is the composition of the material i in the sample e, i; ;

is the average

composition of the material i for every sample e, we is the weight of the sample and ne is the number
of samples.

As for the mean composition of each waste characterization, it was calculated by adding the
collected mass of each sample, therefore allowing the calculation of a weighted mean composition

with the following equation:
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X;: =
v Z:l=11 2221)(1',1'.6

Vi € n;,Vj €5,U Sp (4-12)

where x; ;is the mean composition of the material i in the stream j and X; ; . is the mass sampled

for the material i in the stream j for the sample e.

4.2.3.3 Definition of the initial vector

The 3-steps procedure described in section 4.2.2.3 to define the initial vector was applied. In this
case, the TCs of the magnetic separator, the eddy current separator and the four optical sorters were
adapted from the work of Ip et al. (2018), while the TCs for both ballistic separators were estimated
based on the work of Raymond (2017). For the 4 size separations, TCs were estimated based on
the cumulative distribution function calculated from the Rosin-Rammler parameters determined in
Tanguay-Rioux et al. (2021b). For the optical sorters targeting papers and cardboards, TCs of 0.7
were estimated for paper and cardboard materials and TCs of 0.02 were assumed for other
materials. Finally, for the film separators, a TC of 0.7 was estimated for the plastic films and TCs

of 0.3 were estimated for the rejects.

4.2.4 Calculation of transfer coefficients

To reduce the impacts of the initial vector’s estimation on the results, a Monte Carlo analysis was
performed by varying the initial transfer coefficients by creating 3 sets of TCs for the calculation
of the initial vector: the TCs described in section 4.2.3.3, the TCs described in section 4.2.3.3 minus
15% for the targeted outputs and the TCs described in section 4.2.3.3 plus 15% for the targeted
outputs. Then, for 200 independent repetitions, the calculations were performed by randomly
selecting one of the three available TCs for each unit operation and each material. To do so, a
vector of 0, 1 or 2 of length ng X n; was randomly created with the module Random of Python
with the seed corresponding to the iteration number. Then, by iterating through the matrix Q, the
TC of every material was selected based on the random vector, a 0 for the set of TCs minus 15%,
a 1 for the mean TCs and a 2 for the TCs plus 15%.

The mean of the 200 iterations was then computed to define every stream of the process and transfer

coefficients were calculated based on theses streams with the following equation:
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out
Xij
Nink in
X0 X

Qijk = Vi€ S, Vj €S, Vk € Sk (4-13)

where Sk is the set of unit operations of the process.

4.2.5 Model validation

The results were validated by comparing performance indicators calculated for the results obtained
with the model and the results of the characterization.
4.25.1 Mass balance calculation

The TCs calculated while solving the case study as described in section 4.2.3 were used with the
input mass flow to calculate every material flow of every stream of the global process by mean of
equation 4-9. This allowed to calculate a simulated output that can be compared to the
characterization results.

4.25.2 Performance indicators

Two performance indicators were calculated to compare the characterization results and the results
of the mass balance from section 4.2.5.1. First, the purity was calculated for every material i in

every output stream j.

=ms o Vi € 5,V] €5 (4-14)

where p; ; is the purity of the material i in the stream j and So is the set of output streams.

The recovery was also calculated for every material i in every output stream j.

Xij . .
T = Vie S,Vj €Sy (4-15)
Xiin
where r; ; is the recovery of the material i in stream j and X; ;,, is the mass flow of the material i in
the process input. In the case for which there are multiple input streams, X; ;,, corresponds to the

summation of all these input streams.
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4.3 Results and discussion

4.3.1 Characterization results

Input and output waste compositions, based on the characterization results for the input stream and
for the sum of all output streams, are compared in Figure 4.2 to assess the potential discrepancies

between the characterizations of waste streams entering and exiting the process.
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Figure 4.2 Waste composition of the input stream and of the sum of the output streams

Results show a relatively good agreement of both characterization results for most of the waste
materials, except for the glass and the fines categories. For most materials, it is therefore expected

that the constraints on the input and output streams are compatible.

However, the differences for the glass and the fines categories highlight the difficulties in
separating these categories from each other during the characterization work. A significant portion
of the glass was sorted into fines when characterizing the input. Moreover, the fine materials are
often caught in other materials increasing the difficulty to characterize this waste component. This
should thus be taken into consideration while dealing with these materials during the optimization

process.
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The total variance of every characterization sample was calculated and is presented in Figure 4.3.
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Figure 4.3 Comparison of the variation of the characterization results for the input/output streams

and the internal streams

As seen in Figure 4.3, a smaller dispersion of the total variance is observed for the input/output
streams than for the internal streams. This was expected since larger waste quantities were collected
for these streams, and they tend to be more homogeneous than the internal streams. However, a
similar median is observed for both types of characterization, as well as a similar mean since a total
variance of 42 is obtained for the internal streams and a value of 35 is obtained for the input/output
streams. Therefore, both characterization types have a similar tendency, but internal streams results
should be used with more care. This should also be reflected in the choice of the ponderation factor

for the determination of the constraints.

4.3.2 Sensitivity analysis of the initial vector

Since the solution of the optimization problem is directly related to the choice of the initial vector,
two analyses were performed to measure the sensitivity of the results regarding this parameter and

guide the resolution.

To do the calculations, the following ponderation factors for equations 4-4, 4-5 and 4-6 were used:
fa= 15, fs = 2.2, fc = 0.1. fc was fixed in order to obtain a variation of the ratio of the mass flow

(type C constraints) smaller than 10%. As for fa and fg, they were fixed iteratively to obtain the
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smaller value allowing to solve the optimization system. As seen in section 4.3.1, the dispersion of
the total variance of the internal streams (type B constraints) was higher than the dispersion of the
input/output streams (type A constraints). Therefore, it was chosen to fix a larger ponderation factor
for fa than fs. This approach provides a larger confidence interval for the characterization of the

internal streams, allowing to compensate for its greater uncertainty.

4.3.2.1 Convergence of optimization system

The mass flow vector resulting from the optimization was reused as an initial vector for 14
iterations to study the convergence of the results for 3 datasets of initial TCs. The three datasets
are: the one described in section 4.2.3.3 (Q1), the original dataset with a reduction of 15% of every
TC for the targeted output (Q2) and the original dataset with an increase of 15% of every TC for
the targeted output (Q3). For each iteration, the absolute sum of the differences of the mass flows

between an iteration result and its previous one is presented in Figure 4.4.
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Figure 4.4 Analysis of the convergence of the modeling results for several iterations on the initial
vector for three initial datasets

Results from Figure 4.4 show that the variation of mass flows after each iteration strongly decreases
after the 2" and 3" iterations and tend to stabilize at a near constant value for the last 11 iterations.
As for the value of the objective function, it decreases rapidly after the 1% iteration to reach a near
constant value. It is important to note that a value of O cannot be reached due to the need to avoid
division by Os.
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An important aspect related to the optimization function is the attribution of composition values in
the initial vector (step 3 of section 4.2.2.3), which provides a penalty when diverging from the
measured characterization results. However, when using a previous iteration as the initial vector,
this step is bypassed, leading to a gradual reduction of the effect of this penalty, bringing the results
closer to the boundaries of the constraints than expected for some streams. The impacts of these

iterations on the results are further discussed in section 4.3.3.

4.3.2.2 Choice of the initial transfer coefficients

The absolute sum of the differences of the mass flows for the two modified datasets (Q2 and Q3)
in comparison to the mean dataset (Q1) varies from 67 000 — 93 000 tons/yr for the datasets Q1-
Q2 and from 115000 — 122 000 tons/yr for the datasets Q1-Q3 according to the number of
iterations realized. The difference decreases for the dataset Q2 with the number of iterations, while

it stays the same for the dataset Q3, showing no global tendency.

The absolute differences can be considered minor since they account for respectively 9% and 15%
of the total mass balance of the process. Moreover, when comparing the TCs obtained for the
datasets Q1 and Q2, only 40 TCs out of 256 had a difference larger than 0.05. When comparing
the TCs obtained for the datasets Q1 and Q3, this amount decreases to 24 TCs out of 256. These
results indicate that varying the initial vector of more or less 15% definitely has an impact on the
results, but the differences are acceptable since they do not change the conclusions of the analysis
as shown by the relatively small variations of the TCs calculated. This impact can however be

further decreased by applying Monte Carlo analysis as described in section 4.2.4.

4.3.3 Model validation

Results in Figure 4.5 show that purity and recovery predictions using the calculated TCs are in
good agreement with the characterization results. On average, there is an absolute difference of
6.3% for the purity predictions and an absolute difference of 2.4% for the recovery predictions
when no iterations are performed, while these number increase to respectively 7.7% and 2.7% when
3 iterations are performed.
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Figure 4.5 Model validation based on A) calculated purity and B) calculated recovery

Results show very good recovery predictions, while larger differences were observed for the purity
predictions for several output streams, namely those of aluminium cans, mixed plastics and HDPE.
Differences are mainly due to the intrinsic variability of characterization measurements, and
inevitably occur when there are contradictions between two or more characterization results in a
section of the facility. However, theses differences are relatively limited. Globally, the validity of
the prediction results confirm that the proposed methodology allows a proper estimation of TCs,
which may then be used to simulate an MRF operation. Moreover, as discussed in section 4.3.2, a
better prediction is obtained when no iteration is performed, since the penalty imposed by the

objective function on the characterization results is not affected.

4.3.4 Separation efficiency of the unit operations of the process

TCs calculated by averaging the mass flows obtained for the 200 iterations are presented in Table
4-1 for the main unit operations. For the results presented here, no iteration on the initial vector
was performed since more coherent results are obtained in this case as seen in section 4.3.3 and

since iterations decrease the impact of the penalty on the characterizations.



Table 4-1 Transfer coefficients obtained for the case study

77

P17 (OS
. P8 (OS- | P10 (OS P12 P15 (OS - P17 (OS | P17 (OS
Unitindex | P2(DS) | Pa@s) | PaDs) | P1aDs)| Pe@s) | P7(es) | P8 ©S | pg (ms) P11 (FS) (OS— - (O (O
Pap) — Pap) (ECS) PET/Pap) , | —Mix) - MP)
HDPE)
. o | <2 |>24 | <13 >13) <5 | >5 | <5 | > | <13 |3 | 2D (3D | 2D | T | R T | R T R T R T R |Pap | R |PET| T R T | R T | R
Outputindex®* | cm | cm | cm [ em | cm | em | cm | em | cm
NeWSpape rs 0.965 | 0.035 0.21 0.79 0.013 | 0.987 | 0.001 | 0.999 | 0.009 | 0.113 | 0.878 | 0.016 | 0.984 | 0.821 | 0.179 | 0.883 | 0.117 | 0.007 | 0.993 0 1 0.071 | 0.929 | 0.997 | 0.003 0 0.047 | 0.953 | 0.275 | 0.725 | 0.452 | 0.548
Mixed papers 0.982 | 0.018 | 0.355 | 0.645 | 0.071 | 0.929 | 0.032 | 0.968 | 0.033 | 0.146 | 0.821 0 1 0.873 | 0.127 | 0.946 | 0.054 | 0.002 | 0.998 0 1 0.214 | 0.786 | 0.889 | 0.101 0.01 0.001 | 0.999 | 0.044 | 0.956 | 0.025 | 0.975
Paperboards 0.968 | 0.032 | 0.359 | 0.641 | 0.057 | 0.943 | 0.011 | 0.989 | 0.049 | 0.228 | 0.723 | 0.001 | 0.999 | 0.805 | 0.195 | 0.921 | 0.079 | 0.001 | 0.999 | 0.001 | 0.999 | 0.059 | 0.941 | 0.811 | 0.188 | 0.001 0 1 0.014 | 0.986 | 0.065 | 0.935
Corrugated 0.476 | 0.524 | 0.094 | 0.906 0 1 0.001 | 0.999 | 0.009 | 0.205 | 0.786 | 0.008 | 0.992 0.94 0.06 0.942 | 0.058 0 1 0 1 0.257 | 0.743 | 0.969 | 0.031 0 0.002 | 0.998 | 0.014 | 0.986 | 0.018 | 0.982
cardboards
Multilayered
. 1 0 0.667 | 0.333 0 1 0 1 0.204 | 0.536 0.26 0.407 | 0.593 | 0.001 | 0.999 | 0.604 | 0.396 0 1 0.001 | 0.999 | 0.004 | 0.996 | 0.016 | 0.975 | 0.009 | 0.001 | 0.999 | 0.002 | 0.998 | 0.969 | 0.031
packaging
PET 1 0 0.386 0.614 0.012 0.988 0 1 0.054 0.908 0.038 0.327 0.673 0.041 0.959 0.524 0.476 0.002 0.998 0 1 0.05 0.95 0.007 0.054 0.939 0.003 0.997 0.165 0.835 0.004 0.996
HDPE 0.967 | 0.033 0.05 0.95 0.05 0.95 0.006 | 0.994 0.02 0.915 | 0.065 | 0.428 | 0572 | 0.552 | 0.448 | 0.998 | 0.002 | 0.001 | 0.999 0 1 0.5 0.5 0.02 0.955 | 0.025 | 0.855 | 0.145 | 0.011 | 0.989 | 0.013 | 0.987
Mixed plastics 0.994 | 0.006 | 0.261 | 0.739 | 0.197 | 0.803 | 0.074 | 0.926 | 0.122 | 0.739 | 0.139 | 0.115 | 0.885 | 0.141 | 0.859 0.76 0.24 0.001 | 0.999 | 0.001 | 0.999 | 0.103 | 0.897 | 0.015 | 0.905 0.08 0.043 | 0.957 | 0.649 | 0.351 | 0.044 | 0.956
PS 0979 | 0.021 | 0.276 | 0.724 | 0.023 | 0.977 | 0.155 | 0.845 | 0.332 | 0.465 | 0.203 | 0.016 | 0.984 | 0.173 | 0.827 0.96 0.04 0.007 | 0.993 | 0.009 | 0.991 [ 0.796 | 0.204 0.14 0.837 | 0.023 0.02 0.98 0.106 | 0.894 | 0.037 | 0.963
Plastic films | 0958 | 0042 | 0541 | 0459 | 001 | 099 | 0031 | 0.969 | 0.055 | 0.268 | 0.677 | 0.008 | 0.992 | 0.294 | 0.706 | 0.664 | 0.336 | 0.041 | 0.959 0 1 0.682 | 0.318 | 0.052 | 0.886 | 0.062 | 0.069 | 0.931 | 0.032 | 0.968 | 0.025 | 0.975
Ferrous
t | 1 0 0.495 | 0505 | 0.002 | 0.998 | 0.102 | 0.898 | 0.127 | 0.865 | 0.008 | 0.878 | 0.122 | 0.012 | 0.988 | 0.621 | 0.379 0.94 0.06 0.001 | 0.999 | 0.009 | 0.991 | 0.123 | 0.867 0.01 0.001 | 0.999 | 0.038 | 0.962 | 0.001 | 0.999
metals
Non-ferrous
1 0 0.999 | 0.001 | 0.117 | 0.883 | 0.543 | 0.457 | 0.179 | 0.179 | 0.642 | 0.621 | 0.379 | 0.784 | 0.216 | 0.961 | 0.039 0 1 0.999 | 0.001 | 0.885 | 0.115 - - - -
metals
Aluminium
cans 1 0 0.448 | 0552 | 0.001 [ 0.999 [ 0.001 | 0.999 | 0.309 | 0.688 | 0.003 | 0.966 | 0.034 | 0.172 | 0.828 | 0.445 | 0.555 | 0.027 | 0.973 0.55 0.45 0.808 | 0.192 | 0515 | 0.463 | 0.022 | 0.035 | 0.965 | 0.092 | 0.908 | 0.002 | 0.998
Glass 1 0 0.941 | 0.059 | 0.941 | 0.059 | 0.982 | 0.018 | 0.178 | 0.815 | 0.007 | 0.766 | 0.234 | 0.167 | 0.833 0.86 0.14 0 1 0 1 0.08 0.92 0.015 | 0.952 | 0.033 | 0.005 | 0.995 | 0.051 | 0.949 | 0.005 | 0.995
RejeCtS 0.95 0.05 0.582 | 0418 0.13 0.87 0.103 | 0.897 | 0.107 | 0.517 | 0.376 | 0.024 | 0.976 | 0.227 | 0.773 | 0.826 | 0.174 | 0.144 | 0.856 | 0.004 | 0.996 | 0.085 | 0.915 | 0.007 | 0.963 0.03 0.015 | 0.985 | 0.087 | 0.913 | 0.034 | 0.966
Fines 1 0 0.981 | 0.019 | 0.838 | 0.162 | 0.876 | 0.124 | 0.059 | 0.924 | 0.017 | 0.983 | 0.017 | 0.314 | 0.686 | 0.049 | 0.951 | 0.003 | 0.997 0.02 0.98 0.164 | 0.836 | 0.269 | 0.499 | 0.232 | 0.013 | 0.987 | 0.974 | 0.026 | 0.014 | 0.986

The optical sorter targets the PET and the paper and cardboard materials in two different streams.

2 Three optical sorters targeting the HDPE, the mixed plastics and the multilayer packaging are in the containers purification sequence (P17)
3 T: Targeted output, R : Refused output, Pap: Paper and cardboard output, PET: PET output, 2D: 2D type material output, 3D: 3D type material output
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4.3.5 Waste separation efficiency of the MRF

As mentioned above, since the methodology has been validated, results may now be used to assess

the performance of an MRF.

4.3.5.1 Comparison with literature data

Minimum and maximum separation efficiencies were reported for several mechanical sorting
equipment in previous work (Tanguay-Rioux et al., 2021a). These identified boundaries are
compared to the separation efficiencies calculated in this work in Figure 4.6 for several unit

operations. Theses separation efficiencies correspond to the unit operation’s TC for its targeted

material.
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Figure 4.6 Comparison of separation efficiencies with literature data

For the eddy-current separator and the optical sorter of mixed plastics, results show a separation
efficiency between the interval reported in literature. For the optical sorters of PET and HDPE, and
the magnetic separator, somewhat greater separation efficiencies than those reported in the
literature have been observed, probably because those reported from the literature were obtained
for MRFs accepting MSW rather than source-separated recyclable materials, thus subject to a

higher potential contamination. Finally, the opposite result was observed for the ballistic separator
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with observed efficiencies even below the smallest reported values. Here, the separation efficiency
of the first ballistic is reported since the second ballistic targets only materials smaller than 12.7
cm, thus skewing the results in comparison to literature values. A possible reason explaining that
the relatively poor recovery of paper and cardboard materials from the ballistic separator compared
to literature values, as shown in Figure 4.6, is the fact that the present equipment was designed to
recover materials smaller than 12.7 cm as fines. However, ballistic separators encountered in other
facilities have often been reported to have a screen size around 4-5 cm (Eule, 2013; Muller et al.,
2003; Rotter et al., 2004).

4.3.5.2 Separation sequence analysis
Recovery of paper and cardboards materials

The paper and cardboard materials are recovered into two streams, the OCC (old corrugated
cardboards) output stream and the mixed paper stream. About 55% of the OCC is recovered in the
OCC output stream with a purity of merely 85%, while about 85% of the other paper and
paperboard materials are recovered in the mixed paper output stream with a purity smaller than
60%. However, the purity of the latter stream increases to 75% when OCC is considered as a
targeted material, and a global recovery of 95% is achieved for the 4 paper and cardboard categories
used in this study for the characterization measurements. These results indicate a high recovery of
paper and cardboard materials. However, considering that the maximum contamination generally
accepted for these streams is 5% (RECYC-QUEBEC, 2020), the source of the high contamination
should be investigated. The composition of the main 3 streams (i.e., 2D-type materials from the
first ballistic separation and optical sorting, 2D-type materials from the second ballistic separation
and optical sorting, and optical sorting from the 3D-type material line) sent to the mixed paper

output stream (U6) is presented in Figure 4.7.
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Figure 4.7 Comparison of the waste composition of the three streams (separated from the first
ballistic separation, separated from the second ballistic separation and separated from the 3D line)

sent to the mixed paper output stream (U6)

Results demonstrate that an important part of the contamination of the mixed paper bales comes
from the imperfect separation occurring in the second ballistic separator and the subsequent optical
sorter. Separation based on the shape of the wastes appears to be much less effective for smaller
items (< 12.7 cm) than for larger items (> 12.7 cm). This is probably due to lesser differences in

shape and density being observed for smaller items.

Therefore, if the operator of the facility wishes to improve the quality of the mixed paper bales, a
subsequent separation of the stream coming from the second ballistic separator should be

envisioned to reduce the contamination by removing plastics and some rejects.
Recovery of plastic materials

The recovery of plastics could certainly be improved for almost all relevant output streams as it is
between 31% and 75% for rigid plastics and is even lower for plastic films (11%). For the purity,
results are relatively better, mainly for the PET and the HDPE bales. The main reason explaining

the low recovery results is the poor efficiency of the ballistic separation sequence, leading to an
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important loss of plastic materials to the paper and cardboard bales. Again, this poor separation
efficiency is mainly observed for the second ballistic separator, indicating that the unrecovered
plastic materials are mostly items smaller than 12.7 cm. The purification step proposed on the 2D-
type materials coming from this equipment should not only focus on purifying the stream, but also
on recovering the plastics. The stream could therefore be returned to the process at the beginning
of the 3D line following the metal separation or directly to the manual sorting stations according
to the choice of technology. Due to their relatively high efficiency (Figure 4.6), a sequence of 3
optical sorters targeting PET, HDPE and mixed plastics could be used. However, this addition

would require important investments for the facility.
Recovery of glass and metal materials

A very good recovery of the glass material is observed in the facility. It is important to note that
the fines separator located at the beginning of the 3D line is responsible for achieving this high
recovery, as it allows to recover about 10% of the glass that would otherwise by lost. The addition
of a fines separation on the 3D line is therefore recommended in processes that do not have one.
The purity of the glass bale has not been studied furthermore since its purification sequence was

not considered in this study.

For metal materials, as explained before, most of the materials recovered comes from the 3D line.
A relatively good purity is observed, but the recovery could be increased, mainly for the non-
ferrous metals and the aluminium cans. Again, an important source for this loss is the second
ballistic separation. One way to overcome this problem could be to install a magnetic separator and
an eddy-current separator prior to the ballistic separation sequence. This approach is used in a MRF
accepting mixed MSW in the province of Quebec, where a magnetic separator is located before the
ballistic separation sequence. This configuration leads to a very good efficiency of the magnetic
separation (Tanguay-Rioux et al., 2021a). However, due to a lack of comparison results, it is not
clear whether or not this approach could be applied for non-ferrous metals, since it is not clear if

this would lead to a significant decrease of the separation efficiency of the eddy current separator.

4.3.6 Scenario analyses

Two scenario analyses are performed on the process to guide improvement strategies. To do so,

the transfer coefficients previously calculated or the sorting sequence are slightly modified for
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these 2 scenarios in order to predict the influence of those modifications on the global efficiency

of the sorting process.

4.3.6.1 Ballistic separation improvement

Since the separation efficiency of the first ballistic separator was found to be rather low, and the
second ballistic separator was identified as a high source of contamination of the mixed paper bales
in previous sections, a further investigation of the impact of these unit operations on the global
performance of the process was performed. First, the TCs for the paper and cardboards obtained
for the first ballistic separator were increased to 0.95. This improvement in the unit operation
efficiency led to a small increase of 1.5% in recovery for the mixed paper bales and to an average
increase of 1% in purity for the other bales. Therefore, the improvement of the efficiency of the
unit operation leads to an almost negligible improvement of the global efficiency of the process,
probably because an optical separation targeting the paper materials lost to the 3D line allows to
recover them. Focusing on this unit operation should therefore not be a priority to improve the

process.

On the other side, improving the efficiency of the second ballistic separation could lead to
significant process improvements. While considering the same value of TC for the second ballistic
separator as for the first one, results indicate a potential increase in recovery for the PET bale, the
mixed paper bale and the multilayer packaging bale of respectively 14%, 10% and 12%, as well as
a decrease in recovery for the mixed paper bale and the plastic film bale of respectively 1.1% and
3%. In addition, this would decrease the purity for the PET, mixed plastics and multilayer
packaging bales by 2-5%, while increasing the purity for the mixed paper and plastic films bales
by 4-9%. With these results, the operator is now able to make an informed decision, based on

rigorous information, regarding the desired quality of the bales.

These results clearly demonstrate the benefits of the proposed methodology as a mean to identify
process bottlenecks, simulate the MRF operation and target specific improvement strategies.
4.3.6.2 Recirculation of the rejects output streams

Since a large quantity of valuable wastes ends up in the reject output stream directed to landfill,
the advantages of recirculating a fraction of this stream were investigated. Recirculation of an

output stream was previously identified as a way to increase its purity (Kleinhans et al., 2021).
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Moreover, the recirculation of the rejects output stream has been shown to improve the recovery
of the materials of interest by about 9% in a similar application (Raymond, 2017). The impact of
recirculating 25% and 50% of the rejects output stream on the purity and the recovery of the other
materials was assessed. The main hypothesis of this simulation is that the addition of more
materials entering the process does not affect the separation efficiency of the different unit

operations.

Results indicate very small variations for both the purity and the recovery, even for a recirculation
of 50% of the reject stream. The recovery increases in average by about 1.3%, while the purity
remains the same. This increase is more significant for mixed papers (5.5%), HDPE (4.7%), mixed
plastics (2.7%) and multilayered packaging (2.4%), due to their higher concentration in the reject
stream. However, these quantities are relatively small in comparison to the one observed by
(Raymond, 2017). This difference is probably explained by the fact that in this case, an important
fraction of the lost valuable materials ends up in other bales, making their recovery impossible only

throughout a recirculation of the rejects output stream.

4.3.7 Limitations of the model

The model and its application to the case study is based on two main hypotheses related to the

representativity of the data.

First, it is assumed that the characterizations realized are representative of the operation of the
facility. Several characterizations were carried out over a long period of time to limit the impact of
the variability of the waste input on the results. However, since municipal solid wastes are strongly

heterogeneous, this could affect the representativeness of the characterizations.

Secondly, it is assumed that the efficiencies calculated are representative of the average operation
of the facility. The operation of this type of facility varies according to many factors, such as the
input stream, the season, mechanical breakdowns, and the targeted markets. To limit the impact of
these variations on the results, characterization measurements in this study were performed only
when the facility was operating under normal conditions. Therefore, no characterization was
performed while the facility was operating with lower throughput, with a broken unit operation or

any other factor potentially affecting the sorting efficiency.
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4.4 Conclusion

A methodology based on the resolution of an optimization system is proposed to solve the mass
balance of a material recovery facility of municipal solid waste. The problem minimizes the
differences between the material flows of a facility and an initial estimate. To do so, a methodology
to define an initial estimate and several appropriate constraints is developed. The methodology is
applied to a case study for a real MRF located in the province of Quebec (Canada). The approach
allowed to calculate every material flow in the facility and the transfer coefficients for every waste
material in every unit operation. It also provides a rare dataset for several mechanical sorting unit

operations of solid waste.

Separation efficiencies similar to those observed in the literature are reported for the main sorting
unit operations of the process. However, challenges are identified regarding the purity and the
recovery of several output streams. These issues are mainly related to the poor performance of the
second ballistic separation of the process possibly explained by the fact that it mainly targets
materials smaller than 12.7 cm. The process could be improved by the addition of new optical
sorters as a complement for this second ballistic. This case study demonstrates how the
methodology developed allows to identify bottlenecks of the process and guide future
improvements. The second ballistic separator of the process was identified as an important source
of contamination for the mixed papers bale and an improvement of the efficiency of this unit
operation could clearly affect the global efficiency of the MRF. Finally, an analysis of the impact
of recirculating a fraction of the reject stream indicates that only small improvements would be

achieved even for a recirculation of 50%.
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Abstract

Material recovery facilities and mechanical biological treatments play an important role in current
municipal solid waste systems, by providing a way to separate the different municipal solid waste
fractions according to their main physical properties. However, the composition of their outputs
streams is directly impacted by the composition of the input stream and by the sequence of unit
operations considered, rending it particularly difficult to predict. Some authors have analyzed the
sorting efficiency of the different unit operations commonly found in these processes and have
derived partition coefficients. The main available coefficients were reviewed to identify the
differences on both the methodological and numerical levels. Results showed large discrepancies
for both cases amongst literature data but also with experimental data derived from an MRF plant
located in Canada. A sensitivity analysis realized on a typical MRF plant showed the strong
influence of the partition coefficient differences on the potential recovery of these plants. The
trommel was identified as the unit operation having the largest impact on the modeling results.
According to the sensitivity of the recovery of these kind of plants for each unit operation, a

modeling approach is proposed for three groups of unit operations.

5.1 Introduction

Material recovery facilities (MRFs) and mechanical-biological treatments (MBTS) are often used
by municipalities to process mixed municipal solid waste (MSW), in order to increase resource
recovery, as complement or replacement to source-separated collections (Cimpan et al., 2015;
Jansen et al., 2013). These facilities are used to increase the recovery of recyclable materials from

mixed MSW and the quality of the materials destined for further biological or thermal treatment.
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Therefore, these processes focus on separating recyclables, an organic waste fraction and a
combustible fraction, often referred to as refuse derived fuel (RDF), using a sequence of unit
operations such as air classification, ballistic separation, eddy current separation, magnetic
separation, screening and size reduction (Di Lonardo et al., 2012; Rotter, 2011; Velis et al., 2010).
Hand picking and optical sorting may also be used for more selective separation (Rotter, 2011). A
typical MRF is composed of 5 sections: pre-conditioning, conditioning, sorting, refining and final
product handling (Cimpan et al., 2016). The material separation is performed during conditioning,
sorting and refining steps. The conditioning steps, that usually include operations as sieving, air
classification and ballistic separation, prepare the materials for the subsequent downstream steps,
while the sorting and refining steps, that include unit operations such as magnetic separation, eddy
current separation, optical separation and hand picking, aim at separating the materials according
to the desired output streams and their subsequent purification steps (Cimpan et al., 2016). Sorting
unit operations may be classified in two groups, direct and indirect separators. Direct separators
target physical properties, while indirect separators use an indirect method, (e.g. air jet), to separate

an object identified based on its physical properties (Gundupalli et al., 2017).

The global efficiency (quality of the recovered streams and global recovery) of these facilities for
upgrading streams quality when mixed wastes are processed is generally low (Christensen and
Bilitewski, 2010). Moreover, the composition of the output streams strongly varies since the input
composition and the equipment configurations vary from one plant to another, having a direct
impact on the process efficiency (Caputo and Pelagagge, 2002; Di Lonardo et al., 2012; Pressley
et al., 2015; Velis et al., 2012), and thus on its environmental performance (Montejo et al., 2013).
The calculation of the outputs compositions and quantities by mean of a mass balance is critical
while designing this type of plant (Christensen and Bilitewski, 2010), and is generally done by
mean of semiempirical methods due to a poor knowledge on the unit operations performance (Velis
etal., 2013). Several approaches using partition coefficients have been used. A partition coefficient
is generally defined as a ratio between 0 and 1 corresponding to the fraction of an input stream that

ends up in a specific output stream.

The first approach relies on the calculation of global partition coefficients for each outputs of a
plant as a function of the input stream, usually based on existing plant performance data. It can be
used to compare two plants to identify further improvements (Themelis and Todd, 2004),to

compare the performance of a facility according to several scenarios (Arena and Di Gregorio, 2014)
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and to evaluate the possibility of integrating other units to a facility (Ardolino et al., 2017). It may
also be used to determine the material composition and the energy content of the facility outputs
(Nasrullah et al., 2014) or the fate of some elements (Nasrullah et al., 2015). Even though this
approach is useful for analyzing the global efficiency of a plant and provide an estimate of potential
yields, it does not permit the analysis of different configurations within the facility since it does
not provide sorting efficiency per sorting equipment. This approach is therefore limited in its

predictive capability.

Another approach is to determine partition coefficients for the total mass entering each unit
operation in the MRF. This approach is generally used in material flow analysis and allows to track
elemental concentration in the system. For example, Rotter et al. (2004) assessed the impact of the
sorting equipment selection and sequence on the concentration in heavy metals and chlorine for

the production of an RDF.

Finally, some authors have analyzed the sorting efficiencies of unit operations in an MRF context
for multiple waste materials and have derived partition coefficients for these sorting unit operations
(Bilitewski, 2010; Caputo and Pelagagge, 2002; Combs, 2012; Diaz et al., 1982; Ip et al., 2018;
Miiller et al., 2003; Pressley et al., 2015; Savage et al., 1984; Velis et al., 2013). This approach
allows for modeling the fate of various materials according to the MRF configuration and to

consider multiple waste materials, thus being input specific.

In the later case, the partition coefficients are generally calculated analytically or experimentally
(Diaz et al., 1982). When no actual plant information is available, they may also be derived from
expert judgement (Pressley et al., 2015). These coefficients are usually static and are restraint to
specific waste composition and operating conditions. This makes it difficult to use these values to
model different plants due to the important heterogeneity of MSW (Velis et al., 2012). Wolf (2011)
and Raymond (2017) showed that the efficiency of some sorting unit operations is influenced by
the input stream composition and the operating conditions of this equipment. For example,
Raymond (2017) showed that the ferrous metal recovery of a magnet is influenced by the ferrous
metal size, the ferrous metal concentration and the magnet height. More generally, almost every
unit operation in material recovery facilities are influenced by particle size and material density
(Diaz et al., 1982).
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As for deriving partition coefficients analytically, some authors have developed mechanistic, or
physical, models for some specific unit operations. These are based on a set of equations used to
represent the physical phenomena occurring in a process. For example, models were developed to
predict a trommel output based on the probability of passage of particles through the its screens
(Alter et al., 1981; Glaub et al., 1982; Stessel and Cole, 1996). Other unit operations commonly
used in MRFs have also been modeled with this approach, including air classifier and magnetic

separator (Savage et al., 1984).

Therefore, the objective of this study is to assess the limits of using published datasets of partition
coefficients for modeling the sorting efficiency of mechanical unit operations commonly found in
MRFs and MBTs. For simplification, the term MRF will be used to represent the mechanical
separation steps of both facilities in the next sections. To do so, available partition coefficients
issued from literature are compared to each other and to partition coefficients derived for an MRF
plant located in Canada. This allows to identify the differences and similarities, both for their
numerical values and their methodological description. A sensitivity analysis is also performed to
identify the impact of selecting one partition coefficient dataset over another for MRF output
streams prediction. Finally, future modeling needs are identified for multiple sorting unit
operations. These results will help plants operators and planners to better model and understand
the mechanical separation of solid waste, thereby improving the efficiency of current and future

plants.

5.2 Materials and methods

This section presents the methodology used to assess the limits of partition coefficients for MRF
modeling. First, the procedure used to select the unit operations that are compared is presented.
Then, the analysis performed on partition coefficient datasets is described. The method used for
developing new datasets based on an MRF plant located in Canada is demonstrated. Finally, the
approach used to identify modeling needs for MRF, which is based on a sensitivity analysis, is
presented.

5.2.1 Process selection and analysis

Datasets of partition coefficients used to define the sorting efficiency of various unit operations

typically found in an MRF, were collected from literature. These datasets were retrieved through a
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literature search in ScienceDirect and Engineering Village databases as well as Google Scholar.

2 13 29 [13

Different combinations of key words such as “solid waste”, “MSW?”, “sort”, “separate”, “unit

operation”, “equipment”, “material recovery facility”, “mechanical biological treatment” were
used. Datasets selected were taken from research articles from scientific journals and books on
MSW. In the case when duplicates were obtained, only one dataset from the original source was

kept.

The retrieved datasets had several formats according to their sources, ranging from one single value
to multiple values. Each dataset represents one-unit operation and each data in the dataset
represents the sorting efficiency of a certain material in a given output of the unit operation. The

completeness of the dataset depends on the number of materials covered in the dataset.

The data collection was limited to mechanical sorting unit operations, therefore excluding
shredding and manual sorting, for which more than one different dataset was identified. The unit
operations considered are: a trommel (TR), an air classifier (AC), a magnetic separator (MS), an
eddy current separator (ECS), a disc screen (DS), a ballistic separator (BS) and four optical sorters
(HDPE, PET, mixed plastics and glass) (OS-HDPE, OS-PET, OS-MP, OS-G). When the same
dataset was obtained from different sources, it was retained once. For the optical sorter targeting
mixed plastics, despite having only one dataset found in the literature, it was considered in the
analysis since it was possible to obtain a supplementary dataset from a local MRF plant located in
Canada (section 5.2.2). For every dataset, the source of the data (expert judgement, numerical
simulation or experiments), the availability of complementary information (no information,
information on operating conditions or information on the waste), the type of waste considered
(MSW or source-separated recyclables), and the number of waste categories (e.g., paper, plastic,
ferrous metal, food waste) considered were reviewed. The sorting efficiency of every unit operation
for the main targeted waste categories was also analyzed to identify the differences occurring in

the literature.

5.2.2 Valoris MRF plant sorting efficiencies

New partition coefficients were derived to be compared to those obtained from the literature. These
coefficients are derived from a characterization of the different outputs of the Valoris MRF plant
located in Bury (Canada) realized in 2017. This is done for five different sorting unit operations
that are a trommel, a magnetic separator, an eddy current separator, an optical sorter targeting PET
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and an optical sorter targeting mixed plastics. The characterization obtained from Valoris includes
the waste composition of the 18 output streams of the MRF plant for 15 waste categories. The plant
is designed to extract the different recyclable fractions and the organic fraction based on a sequence

of sorting equipment shown in supplementary information (Al).

To derive the partition coefficients, a least-square minimization is performed on the mass flows of
the global process. An optimization problem is solved for every waste material independently. The
problem minimizes the difference between predicted and actual output streams under constraints
that all the flows are positive and the mass is conserved (for every unit operation and for the global

process). The following optimization problem is solved:

m f

s.t. Xf >0 Vf (5_1)

Cu,fo =0Vuet Vf
XO _ZYm = O
m

where m, f and u are respectively the output streams, the flows and the unit operations. A is a matrix
of 0 and 1 linking the flows to the output streams. A value of 0 means that a flow is not linked to
an output stream and a value of 1 means that the flow is linked to an output stream. Xt is the vector
of waste stream, Y is the output streams vector and C is the unit operation matrix consisting of
values of -1 and 1 and includes every unit operation of the MRF. A value of -1 means that the flow
enters the unit operation and a value of 1 means that the flow exits the unit operation. Finally, Xo
is the mass inflow of the process and is define in the third constraint to make sure that the input

mass is equal to the output mass.

The calculated flows allow to determine partition coefficients for each unit operation as

q — Xa,b
TN X

(5-2)
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where Qap is the partition coefficient from node a to node b, Xay is the mass of the flow linking the

node a and the node b and Xi. are all the flows entering the node a.

All the partition coefficients per material calculated for a unit operation compose the dataset
representing this unit operation. In this case, quite complete datasets were assembled since 15 waste

categories covering the main categories of MSW were analyzed.

5.2.3 Simulation of a typical MRF and sensitivity analysis

To investigate the impact of the datasets differences on the modeling results of an MRF, a
sensitivity analysis was realized based on the simulation results of a typical MRF sequence. This
sequence is defined based on an example from literature and the flows are calculated for a typical
input composition and different combinations of sorting efficiencies identified in section 5.2.1 and
5.2.2. The purity and the recovery of every output stream are used as criteria to measure the

differences between the scenarios.

5.2.3.1 Typical MRF plant block diagram

The block diagram of an MBT plant in Germany described by Bilitewski et al. (2010) was adapted
to be representative of a typical MRF plant and to include several sorting unit operations from those
listed in section 5.2.1. The organic fraction treatment was not considered for the purpose of the
analysis. The adapted block diagram (Figure 5.1) includes one waste input noted G1, ten unit
operations noted P1 to P10 and 9 output streams noted M1 to M9. Of the ten unit operations
considered, there are only 8 actual different unit operations, since two magnetic separators (P3 and
P4) and two eddy-current separators (P5 and P6) are part of the overall process. For the output
streams, there are 8 different recoverable streams (two ferrous metal streams, two non-ferrous
metal streams, one organic stream, one RDF stream, one HDPE stream and one PET stream) and

one reject stream.
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Figure 5.1 Block diagram of the typical MRF plant used for simulation

5.2.3.2 Mass balance simulation and sensitivity analysis

Based on the MRF block diagram shown in Figure 5.1, every output stream and every flow
compositions are calculated for an input of mixed MSW. A typical composition (see supplementary
information A2) obtained from a characterization study carried out in the province of Quebec
(Canada) in 2012 (RECYC-QUEBEC, 2015), was considered as a representative mixed MSW
stream. The mass balance was solved with solver developed in Python and mainly focused on

solving the following equation based on the work of Ip et al. (2018):
fa= (1 - QT)_lfin (5-3)

where Q is the matrix of partition coefficient as defined in equation 5-2 for every unit operation, |
is the identity matrix, fin is the vector of input flows to each unit operation and f, is the vector of

output flows from each unit operation and n is the number of unit operations.



93

To build the matrix Q, the different datasets of partition coefficients are used for each unit
operation. Therefore, there are as many different Q matrices as there are combinations of datasets
of partition coefficients. To assess the sensitivity of the partition coefficients on the input and
output flows of each unit operation, the mass balance was solved for every Q matrix available and
the results were compared. For the processes occurring more than once in the plant (magnetic
separator and eddy current separator), the same dataset was used for both unit operations for a
given simulation. Therefore, partition coefficients were used to simulate the mass balance of a
typical MRF, and then a sensitivity analysis was realized on these partition coefficients to assess

the variation of the simulation results.

5.2.3.3 Datasets adaptation

As waste categories considered by each dataset from literature may differ from one to another, a
procedure available in supplementary information (A3) was applied to adapt these datasets in order
to proceed with identical categories in every case, thus allowing mass balance calculations. To do
so, when the data was not available for one category, it was extrapolated from the most similar
category. The categories considered in this study are the following: food waste, green residue, tree
branches, wood, other organics, papers, cardboards, HDPE, PET, plastic films, other plastics,
ferrous metals, non-ferrous metals, glass, rubber, textiles and other inorganics. These categories
were selected to cover the main waste types found in MSW and to include all the categories usually
recover in an MRF. Moreover, these categories, or similar ones, were often used in the retrieved

raw datasets.

For the ballistic separator, one dataset provided transfer coefficients only for the 2D output despite
the fact that this sorting equipment usually has 3 outputs (3D, 2D and fines). Therefore, the balance
of the materials was considered to be in the 3D output and that no material ends up in the fines

output.

5.2.3.4 MREF sorting efficiency

The global efficiency of the resource recovery of the MRF is analyzed by means of two factors that
are the purity and the recovery of every output streams of the plant (Vesilind et al., 2002). First,

the purity is defined as
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X1

(5-4)

X1

X1+ Y1

where X1 is the mass of the targeted materials in a given output and y; is the mass of the other

materials in the same output.

The recovery is defined as
Rxl = (5'5)

where x;1 is the mass of the targeted material in a given output and Xo is the mass of this material in

the input.

5.2.3.5 Comparison of the sensitivity analysis results

To compare the simulation results obtained for the different matrices Q, indexes are calculated to
aggregate results and allow for the comparison of different subsets. For example, a dispersion index
(equation 5-6) may be calculated to compare the purity of an output stream obtained while the first
dataset of the trommel is used (subset 1), the second dataset of the trommel is used (subset 2) and

so on for every dataset available for the trommel.

First, for every output stream (M1 to M9), a global dispersion index (GDI) for a subset s is defined
as the mean of the Euclidean distances of every data point of a subset s to the center of gravity of
all the subset points and is calculated as

N
GDI, = %Z J(Pk _P)? + (R, — R)? (5-6)
k=1

where N is the number of dataset combinations, Pk is the purity of the subset s for a certain
combination k and P is the mean purity of the subset s for the N combinations and Rk and R have

similar definitions for the recovery.

The GDI corresponds to the mean absolute deviation (MAD) when only one dimension is

considered (either purity or recovery) and is calculated as



95

N

1
MAD, = NZ abs(q, — q) (5-7)

k=1
where N is the number of dataset combinations, g is the value of the factor P or R of the subset s
for a certain combination k and g is the mean of this factor for the N combinations.

A relative dispersion index (RDI) is calculated as the ratio of the MAD of a subset to the MAD of
all the data minus 1

—1 (5-8)

where MAD:s is the dispersion index of a subset s and MADx is the total dispersion index for all
the subset together. Therefore, a negative RDI shows a diminution of the dispersion of the data for

the subset while a positive value shows an increase of the dispersion.

All the previous indexes are used to calculate the dispersion of the data points relative to their
center of gravity. Finally, a center of gravity displacement index (CDI) is introduced to determine

whether the center of gravity of the data points changes for a certain subset s and is defined as
CDIs = abs(qs — q) (5-9)

where g, is the mean of the factor for the subset s and g is the mean of the factor for all the subsets

together.

5.3 Results

Several datasets available in literature representing MSW sorting unit operations were analyzed
and compiled in terms of methodology and sorting efficiencies. New datasets were also obtained
during the course of this work from the Valoris plant. All of these datasets were used to simulate
the operation of a typical MRF and to calculate the recovery and the purity for different

combinations of datasets.
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5.3.1 Description of datasets retrieved in the literature

Few datasets were found in the literature. A total of 33 datasets representing 10 different sorting
unit operations from 9 publications were analyzed. The list of these unit operations and their
respective number of datasets are presented in Table 5-1. The optical sorter for mixed plastics (OS-
MP) was retained in Table 5-1 even though only one dataset was found in the literature, since it

was possible to derive another such dataset from the Valoris plant results (see Section 5.3.2)

Table 5-1 Unit operations and their number of considered datasets (number in parenthesis
indicates the number of datasets retrieved from the reference)

Number of References

Sorting unit operations different
datasets

Air classifier (AC) 4 1,2,4(2)
Ballistic separator (BS) 3 2,6,8
Disc screen (DS) 5 3(2), 7(3)
Eddy current separator (ECS) 5 2,3,5,7,9
Magnetic separator (MS) 4 3,4,57
Optical sorter — PET (OS-PET) 3 3,5, 7
Optical sorter — HDPE (OS-HDPE) 3 3,5, 7
Optical sorter — Glass (OS-G) 2 3,7
Optical sorter — Mixed plastics (OS-MP) 1 5
Trommel (TR) 3 4(2),7

. (Bilitewski, 2010)

(Caputo and Pelagagge, 2002)
(Combs, 2012)

(Diaz et al., 1982)

(Ip etal., 2018)

(Mdiller et al., 2003)

(Pressley et al., 2015)
(Raymond, 2017

(Savage et al., 1984)

CoNoGO~WNE

From these 33 datasets, 21 are derived from expert judgement, 9 from experimental data, O from
modeling results and in 3 cases, the origin of the data is not specified. This confirms that no sorting
efficiencies derived from modeling is available in the literature. Therefore, the majority of these
reported efficiencies are constant and can not be adjusted according to the equipment operating

conditions. However, the recovery of a material in most unit operations is a function of these
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operating conditions. For example, the hole sizes of a trommel have a critical influence on the
organic fraction recovery with this unit operation (Montejo et al., 2010). The datasets derived from
experimental conditions generally provide precise partition coefficients for specific conditions,
while the datasets derived from expert judgement are more general and only provide an order of

magnitude.

Also from these 33 datasets, 28 do not mention the operating conditions under which the partition
coefficients were obtained, 4 reported information about the inputs and one described some
physical characteristics of the equipment. Thus, in most cases, it was not possible to assess whether
a dataset could be more appropriate than another for a particular situation. The fact that physical
characteristics of the unit operations is almost never provided is surprising as they would have
critical impacts on the materials recovery. For example, Muller et al. (2003) showed a large

variability of recoveries for a ballistic separator for five different waste inputs.

Of the 33 datasets, 26 were obtained for raw MSW and 7 for recyclables, showing that the current
focus seems to be on MSW separation. As sorting efficiencies are very different for MSW and for
recyclables, these two types of datasets can not be compared but can only serve to assess the order

of magnitude of the separation efficiency.

Finally, from the 33 datasets, 13 considered only one waste category, 3 considered between 2-to-5
waste categories, 9 considered 6-to-10 waste categories and 8 considered 11-to-15 waste
categories. Therefore, in 33% of the cases, only one waste category was considered. This is mainly
observed for unit operations targeting specifically one waste category (i.e., OSs, MS and ECS).
This causes a problem for MRF modeling as it is impossible to predict the contamination of the
output streams. These results also show that the level of aggregation of the waste categories varies
from one study to another. For example, for a trommel, Pressley et al. (2015) considered 5 different
waste categories for organics materials (grass/leaves, branches, food waste, wood, other organics),
while Diaz et al. (1982) considered only one category. These differences lead to difficulties while
comparing coefficients from different sources. Also, they render modeling of an MRF plant based
on literature partition coefficients complex and uncertain as the number of targeted materials per
process could vary from one to another, hence forcing the practitioner to aggregate waste categories

in different ways.
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5.3.2 Description of unit operation datasets obtained from the Valoris plant

As several recirculation streams are included in the Valoris MRF process and no information was
available about the internal streams, it was not possible to assess the sorting efficiencies for all the
unit operations. However, sorting efficiencies for 5 unit operations could be determined since in
these cases, every output streams were known. These processes are: a TR, a MS, an ECS, an OS-
PET and an OS-MP. The obtained partition coefficients are presented in supplementary
information (A4). Some operating conditions used by the plant are also presented in supplementary
information (A5).

5.3.3 Yields comparison

Sorting efficiencies derived for MSW obtained from the different datasets for each unit operation
are compared in order to emphasize the major differences between them and the implications for

MRF plant modeling.

Using the 9 unit operations for which more than one dataset based on MSW were available (the
OS-G was excluded), minimum and maximum sorting efficiency values for the targeted waste
category were noted and compared to the Valoris plant results when possible. In some cases, since
different materials could be targeted depending on the process configuration and the operating
objectives, the partition coefficients were reported for materials that could typically be targeted by
these unit operations. Results are presented in Table 5-2 and are retrieved from the same sources
than those identified in Table 5-1.

Table 5-2 Comparison of the partition coefficients of different unit operations as a function of the

targeted material

Targeted Minimum Maximum Valoris plant
Equipment material partition partition partition
coefficient coefficient coefficient
AC Papers 0.82 0.98 -
Carboards 0.68 0.98 -
Plastics 0.51 0.98 -
BS Fibers 0.76 0.98 -
Plastics 0.23 0.98 -
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Plastic films 0.76 0.97 -
DS Fibers 0.21 0.6 -
ECS Non-ferrous 0.64 0.9 0.55
MS Ferrous metals 0.8 0.95 0.95
OS - PET PET 0.83 0.93 0.67
0S - HDPE HDPE 0.71 0.83 -
OS - Mixed plastics | Mixed plastics 0.74 0.74 0.35

Organics 0.75 0.89 0.83
'R Glass 0.41 0.8 1

Results presented in Table 5-2 clearly reveal a large range in partition coefficients observed
amongst the datasets, varying according to the chosen targeted material. This variation could lead

to major differences while modeling a complete MRF plant.

These results show that the narrowest ranges of partition coefficients from literature data are those
for the optical sorters and the magnetic separator. For the trommel, the air classifier and the ballistic
separator, the differences are depending on the targeted material. In some cases, large ranges are
observed, while in others, the range sizes are similar to those observed for the optical sorters. As
for the eddy-current separator and the disc screen, large ranges are also observed for the targeted

materials.

These differences may be explained by the fact that the trommel, the air classifier, the disc screen,
the ballistic separator, the magnetic separator and the eddy current separator are direct separators,
while the optical sorters are indirect separators (Gundupalli et al., 2017). Results from Table 5-2
seems to indicate that indirect separators have less variability in reported values of partition
coefficients and, hence, those could be used under all conditions, while direct separators show more
variability in reported partition coefficients and, hence, they may be linked to unreported operating
conditions. In addition, these conclusions do not include the contamination that could occur during

indirect separation, nor the real impact of these differences on an MRF modeling.

Regarding the results obtained from the Valoris plant, except for the trommel and the magnetic
separator, lower recoveries than those obtained from the literature were found. However, as shown
in the supplementary information (A4), a lower contamination was also obtained for these unit

operations. This could indicate that this facility is operated with more demanding settings.
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5.3.4 Simulation and sensitivity analysis for unit operations datasets

comparison

The previous section showed notable differences amongst the datasets partition coefficients but did
not provide any insight on the impact of these differences on the prediction of an MRF outputs.
Therefore, it is not yet clear if these differences would lead to diverging conclusions while
modeling the operations of an MRF. To remedy to this, a sensitivity analysis was realized on the

mass flows of a typical MRF calculated with a mass-balance solver described in section 5.2.3.

Based on the typical MRF plant presented in section 5.2.3.1 and the different partition coefficients
datasets, a total of 7680 different combinations were simulated. These combinations include the
Valoris plant partition coefficients and every available literature dataset developed for MSW. The
adapted numerical values of the partition coefficients and the references used are provided in
supplementary information (A6). The calculated recovery and purity parameters for the nine output

streams corresponding to the 7680 simulations are presented in Figure 5.2,
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Figure 5.2 MRF outputs recovery and purity for every dataset combinations
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Most output streams target a specific material (e.g. PET), hence the recovery and the purity
parameters correspond to this material. For the RDF output stream (M8), the materials that were
considered as targeted were: plastics, papers, cardboards and plastic films. For the organic fraction
output stream (M1), the target materials were: food waste, green residue, tree branches and other
organic materials. Finally, for the rejects output stream (M9) the targeted materials were all the
materials not targeted in any other stream. Results presented in Figure 5.2 show wide ranges for
both the recovery and the purity parameters of the different output streams according to the datasets
considered, showing that the choice of some partition coefficients over others can lead to major
differences in yield prediction. These differences are observed for the six single material target
outputs, but seems amplified for the prediction of the HDPE stream (M6), the PET stream (M7),
the second ferrous metal stream (M4) and both the first (M3) and the second (M5) non-ferrous
metal streams, also shown by their high GDI (between 0.38 and 0.44) calculated by mean of
Equation 5-6 and presented in Figure 5.2. A smaller dispersion is observed for the first ferrous
metal stream (M2) and the reject stream (M9) with respective value of the GDI of 0.21 and 0.26.
Finally, similar values of GDI are obtained for the organic (M1) and the RDF (M5) streams with
respective values of 0.11 and 0.14. This smaller dispersion is probably explained by the fact that

more than one waste materials are targeted in these streams.

Despite the significant dispersion of results obtained from the 7680 simulations, large fractions of
them are concentrated in a few quite compact data clouds, showing that predictions are influenced
by a limited number of unit operations. However, this also shows that both purity and recovery
parameters are affected by more than one unit operation since the data is located in a higher number
of point clouds than the number of different datasets available per process. For example,
approximately 12 main data clouds are observed for the HDPE output stream (M6) simulation
results while only two optical separator datasets are available, showing that the recovery of this

fraction is also influenced by the upstream sorting equipment.

To better understand the influence of the different sorting unit operations on the recovery and the
purity of the output streams, both factors were analyzed in terms of their RDI (Eg. 5-8) and CDI
(Eq. 5-9) for every stream as a function of the chosen datasets. Both parameters are calculated for
the different subsets corresponding to the choice of a dataset for a specific unit operation. For
example, 4 TR partition coefficients datasets are available, leading to 4 different subsets, and the

simulation results obtained for each subset are compared to those obtained globally. The global
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dispersion (indicated in the legend) and the center of gravity (indicated by an X on the Figure) of
the organic output stream are shown for the global data in Figure 5.3a and are compared to the
different subsets of TR in Figure 5.3b. Results indicate that the choice of the trommel dataset
clearly impacts both these indexes, leading to the calculation of relative indexes (RDI and CDI) to

quantify the differences between the global data and a subset.
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Figure 5.3 Comparison of the dispersion and the center of mass (indicated by an X on the figure)
of the organic output stream for the global data (a) and for different subsets (b) according to the

choice of the trommel dataset

The RDI indicates the relative difference of the dispersion of the subset compared to the global
data and the CDI indicates the displacement of the center of gravity of the subset compared to the
global data. An RDI of 0 shows that the choice of a dataset does not impact the dispersion of the
results, while a negative and a positive value respectively indicate a decrease and an increase of
the dispersion. For the CDI, a value of 0 shows no displacement of the center of gravity, while a

positive value indicates its displacement.

5.3.4.1 Organic output stream

The RDI and the CDI values for both the purity and the recovery for every subset of the organic
output stream are presented in Figure 5.4. The subsets used for every unit operation are displayed
on the figure to show their respective influence on the recovery of this output stream. In many cases
(OS, BS, AC), the RDI and the CDI are both null as their respective unit operations are located

after the output stream for this sequence and have no impact on the recovery of this stream.
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Figure 5.4 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity

displacement of the purity (c) and the recovery (d) parameters of the organic output stream (M1)
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Figure 5.4 also shows based on both the RDI and the CDI, that the main unit operation affecting
both the purity and the recovery of this stream is the trommel, which is not surprising since this
sorting equipment is the one generally targeting the organic fraction (Montejo et al., 2010). Also,
it is seen that the MS and the ECS have an impact on both the recovery and the purity, but to a
lesser extent. This indicates that the influence of the downstream equipment (i.e., equipment
located after the one targeting the material) is small in comparison to the unit operation directly
targeting it. As for the trommel, large differences in the simulation results are obtained according
to the chosen TR dataset, mainly for the CDI for both recovery and purity parameters. This sorting
equipment is therefore accountable for almost all the variability in the organic output stream

prediction.
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5.3.4.2 RDF output stream

For the RDF output stream (M8), the same procedure as above was used, and results are presented
in Figure 5.5. Even though the AC and the BS have an influence on the recovery and the purity
parameters as expected, the largest variation is caused by the choice of the TR dataset. This
causality is not obvious since the trommel does not directly target the RDF fraction as it is an
upstream equipment (i.e., equipment located before the one targeting the material). The AC, the
BS and the OS-MP, which are the 3 unit operations directly targeting the RDF materials, have a

small impact on both the purity and the recovery parameters.
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Figure 5.5 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity
displacement of the purity (c) and the recovery (d) parameters of the RDF output stream (M8)

according to the chosen datasets

Also, every other unit operation targeting materials that are not being recovered in the RDF stream
have a negligible impact on the RDF output stream variability. Therefore, materials falsely sorted
by these unit operations do not impact the global recovery of the RDF fraction, probably due to the
smaller quantities of these fractions.
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5.3.4.3 Optically separated output streams

Similar results are obtained for both output streams separated by optical sorters (HDPE stream and
PET stream). Only results for the PET stream (M7) is therefore presented here in Figure 5.6 while

the results for the HDPE output stream (M6) are given in supplementary information (A7).
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Figure 5.6 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity
displacement of the purity (c) and the recovery (d) parameters of the PET output stream (M7)
according to the chosen datasets

For these two streams, the three upstream unit operations (trommel, air classifier and ballistic
separator) have an impact on both the recovery and the purity parameters of the output. However,
this impact is more pronounced on the variability of the recovery parameter indicating that the
datasets corresponding to these unit operations are quite different from one another in regard to the
sorting efficiency of PET, resulting in much more dispersed recovery results. This is explained as
in some cases for some AC and BS datasets, almost no recovery is obtained, while a recovery is
obtained for others, leading to a large dispersion induced by the choice of these datasets. In these

cases, no information was available specifically for the PET and a sorting efficiency was derived
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from an overall plastic efficiency, indicating a need for improving the determination of sorting

efficiencies related to certain waste materials and for the modeling of these unit operations.

As for the dataset used for the optical sorter targeting the PET, its choice has a clear impact on both
the dispersion and the center of gravity of the purity parameter (see Figure 5.6a and 5.6c¢), which
was expected since no contamination was considered for one dataset, but has almost no impact on
the recovery parameter (see Figure 5.6b and 5.6d). The same conclusion was observed for the
HDPE output stream. This shows that for these output streams, recovery is not sensitive to the
partition coefficient of the targeted material for the range of partition coefficients commonly seen

in the literature.

5.3.4.4 Ferrous and non-ferrous output streams

For the ferrous output streams (M2 and M4), Figures 5.7 and 5.8 show that almost all the variability
in recovery and purity parameters is explained by the TR and the MS datasets. The air classifier
only shows a small impact for the first output (M2). All other unit operations have no impact as

they are located downstream of the ferrous fraction separation.
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Figure 5.7 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity
displacement of the purity (c) and the recovery (d) parameters of the first ferrous output stream

(M2) according to the chosen datasets
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For the magnetic separator, its dataset mainly impacts the purity and to a lesser extent the recovery,
which is similar to what was observed for the optically sorted streams (PET and HDPE). This can
be observed for both outputs M2 and M4 (see Figure 5.7a and 5.7b and Figure 5.8a and 5.8b). Once

again, the trommel dataset has a large impact on the recovery of the ferrous fraction.
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Figure 5.8 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity
displacement of the purity (c) and the recovery (d) parameters of the second ferrous output stream

(M4) according to the chosen datasets

For the non-ferrous output stream (M3 and M5), similar results than for the ferrous output streams
are observed. Therefore, only the results of the first output stream (M3) are presented in Figure 5.9.
The results for the second output stream are shown in supplementary information (A7). Similar to
the ferrous outputs, the recovery is mostly influenced by the trommel dataset while the purity is
mostly influenced by the ECS dataset. This is true for both outputs. However, the air classifier has
a larger influence on these streams than the ferrous output streams, since the range of partition

coefficients in the AC datasets is larger for the non-ferrous than for the ferrous materials.
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Figure 5.9 Relative dispersion of the purity (a) and the recovery (b) parameters and center of gravity
displacement of the purity (c) and the recovery (d) parameters of the first non-ferrous output stream

(M3) according to the chosen datasets

The choice of the ECS datasets has a more prominent impact than the MS datasets, resulting in a
larger displacement of the center of gravity of the purity parameter. This is probably due to the fact
that the available datasets include a higher contamination for the ECS than for the MS, and a wider
range of targeted material sorting efficiency. Also, as the fraction of non-ferrous metal in the input

stream is generally small, the contamination is easily overpredicted.

5.4 Discussion

As mentioned earlier, very few data on mechanical sorting efficiencies are available in the literature
and those existing focus on divergent waste categories making their comparison difficult.
Moreover, it was shown that available data do not always include efficiencies for critical waste
categories required for plant modeling. Research efforts should not only focus on providing new
useful data but also cover more waste categories, while providing both operating conditions and
feedstock composition since these are often lacking despite their strong influence on output stream

compositions.
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When comparing direct separators and indirect separators, the first observation was that the latter
ones seem to have smaller efficiency variation (see section 5.3.3). Other differences between these
two groups of equipment were also pointed out (see section 5.3.4). Indirect separators efficiencies
were shown to have little impacts on the separation efficiency of the output streams not directly
downstream from these separators, while the opposite was found for some direct separators (e.g.
trommel, air classifier, ballistic separator), which were shown to greatly affect multiple output

streams.

It was proposed at this point to classify mechanical separators into three types based on their sorting
mechanism and their influence on the MRF output composition (as reported in section 5.3.4); type
1 being the direct separators targeting a waste material property and generally used in the
conditioning section of an MRF, type 2 being the direct separators targeting one material and

generally used in the sorting section of an MRF and type 3 being the indirect separators.

Type 1 separators include trommels, air classifiers and ballistic separators and were shown to have
an important impact on both recovery and purity parameters of most of the output streams of a
typical MRF. This characteristic was even more pronounced for the trommel which was the most
critical unit operation for both the organic and the RDF output streams. The trommel also had a
great influence on all other outputs, particularly on their recovery. This importance is probably best
explained by the fact that these unit operations are located in the conditioning part of the MRF and
sort material based on their physical properties. The sorting efficiency of type 1 unit operations
being directly correlated to waste properties, it could significantly vary from one situation to
another according to the actual operating conditions of the equipment. The type 1 units should
therefore not be simulated with partition coefficients but rather on the bases of mechanistic models
capable of capturing the effects of waste material properties on sorting efficiency. These models
should be of varying complexity according to the importance of the unit operation in the overall

sorting process.

For the type 3 units, which comprise mostly the OS, the use of available partition coefficients for
the targeted material is probably sufficient for this application, since it was shown (see section
5.3.4) that the recovery of the targeted material is not sensitive to the optical sorter dataset. In this
case, the impact of the other unit operations is greater. However, a larger impact was observed with

regard to the choice of the OS dataset on the purity of the output streams. Large variations were
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observed, which is coherent since the partition coefficients for the non-targeted materials vary
greatly. More work is needed to improve predictions of this contamination, by capturing the impact
of one or two main parameters (e.g., materials concentration, mass flow) on the partition
coefficients. For example, Wolf (2011) and by Raymond (2017) observed that the targeted material
concentration could impact the contamination in the streams following some type 3 unit operations.
The contamination could therefore be modeled as linear regression function of one or two critical
operating parameters. It is proposed that sorting performance prediction of type 3 units should be
based on partition coefficient for the targeted material and linear regression for the non-targeted

materials.

The type 2 units include eddy current separators and magnetic separators. As reported (see section
5.3.4), similar results were obtained to those of the optical sorters. The impact of these unit
operations on the downstream output streams is small. As for their own output streams, the impact
is mainly on the purity and in a lesser extent on the recovery. Therefore, the same conclusions
related to the need for modeling of the contamination as for the OS should be applied, which is to
model the fate of contaminants based on linear regressions using operating parameters. As for the
recovery, a larger impact is observed than for the OS indicating that the sorting efficiency of the
targeted material should also be captured as a regression. Again, the main parameters affecting this
yield should be investigated, but it is believed that the material concentration and the mass flow
(linked with the bed volume) are critical. The type 2 units should be modeled based on linear

regression for both the targeted and the non-targeted materials.

The reported conclusions are based on simulation results that depend on both the MRF sequence
and the feedstock composition. Different scenarios could have led to different results. Also, it is
important to note that the approach used to combine datasets probably also affect the results.
However, we feel confident that the conclusions are still valid in the context of different

configurations since the simulation results were based on the global function of each unit operation.

These conclusions, as well as the identified differences in partition coefficients from literature, can
help the modeling and the analysis of MRF by practitioners. They could also help guide future

research in the field by providing useful insights on the current limitations.
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5.5 Conclusion

The comparison of the partition coefficients of mechanical sorting unit operations commonly found
in MRF showed that they are mainly derived from expert judgement or from specific experimental
conditions, leading to static coefficients that can hardly be used for prediction. Moreover, these
coefficients are derived for a variable number of waste categories, hindering their comparison.
Their numerical values also greatly differ from one source to another, especially for direct
separators. New partition coefficients were derived from an MRF plant located in Canada and
coefficients usually lower than the ones found in literature were observed, showing the importance
of external conditions on the unit operations recovery. These results indicate to practitioners the
main limits of the partition coefficients for MRF modeling, and therefore better guide them in the

selection of the coefficients for their own predictions.

The impact of these variations on the global recovery of the mechanical sorting separation steps of
an MRF was assessed by means of a global sensitivity analysis. Results showed that large
differences on both recovery and purity for every predicted output stream are obtained according
to the choice of the partition coefficients available in literature. Mainly, the trommel is the unit
operation inducing the largest variation in the simulation results. Three main modeling approaches
were defined according to the type of the sorting unit operation considered and should be used for
predictive modeling of the mechanical sorting steps of MRF or MBT plants. Unit operations
generally used in the conditioning step should be modeled based on mechanistic modeling
reflecting the waste properties and the operating conditions; direct unit operations used in the
sorting and the refining steps should be modeled based on linear regression for both the targeted
and the non-targeted materials; indirect unit operations also used in the sorting and the refining

steps should be modeled based on a mix of partition coefficient and linear regression.

The uses of this modeling approach would allow to increase confidence in MRF outputs prediction,
thus leading to the possibility of testing new solutions for enhancing products quality. It also helps
practitioners overcome the identified limits of partition coefficients for the prediction of MRF

outputs.
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Abstract

Several unit operations used in municipal solid waste (MSW) processing facilities are based on
physical properties of the waste materials, such as particle size, density and shape. Reliable
expressions describing particle size distribution of the different waste components present in MSW
are not readily available in the context of process modeling. In this study, characterization data for
household wastes and construction and demolition (C&D) wastes were analysed with the purpose
of selecting the most representative PSD expression for these waste streams. The Rosin-Rammler
distribution was identified over the log-normal and the gamma distributions as the best fitting PSD
for the waste samples. This was demonstrated for both raw and processed waste samples.
Parameters were derived and validated for every category of MSW materials considered in the
characterization. A model for mixed household waste PSD was developed based on the summation
of Rosin-Rammler expressions corresponding to each category of waste materials, as the
composition was determined to be the main factor influencing particle size. A simplified model
was also derived for mixed waste as a bimodal distribution since two main modes were observed

in household waste, one for the “organic” fraction and one for the “inorganic” fraction.

6.1 Introduction

Many efforts have been spent in recent years in improving the efficiency of municipal solid waste
(MSW) systems in order to move towards a more circular economy. To accompany this transition,
many aspects need to be considered, including the efficiency of source-separated collections, the
efficiency of material recovery facility (MRF), the valorization of residual wastes, the market for
secondary products and more. Using a phenomenological approach in the development of waste
treatment process models could be a good opportunity to evaluate the potential of novel treatment
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alternatives or to optimize current plants. This modeling technique should reflect actual
mechanisms and interactions occurring during the treatment processes (Blikra Vea et al., 2018). In
this context, improved knowledge of the physical properties of MSW is needed, as those directly
influence the yield and performance of the treatment processes (Diaz et al., 1982; Velis et al.,
2010).

Among these properties, particle size is probably one of the most important to assess, since it
directly impacts the performance of several processes, including sorting and size reduction
operations (Diaz et al., 1982; von Blottnitz et al., 2002; Velis et al., 2010). For example, Caputo &
Pelagagge (2002) modeled various sequences of a refuse derived fuel (RDF) production plant and
compared the mass recovery and the lower heating value (LHV) of the products. They showed that
adding a trommel and a shredder to a simple sequence leads to a net increase of the LHV of the
resulting RDF and to a decrease in mass recovery (Caputo & Pelagagge, 2002). These types of
equipment, which are mostly dependant on the particulate properties of the waste materials, are of
major importance in MSW processing, such as in MRF plants. However, MSW are characterized
by a large variability of shape and size, making it difficult to describe its particle size (von Blottnitz
etal., 2002; Velis et al., 2010). Furthermore, the large variability of ductility of MSW particles has
also been identified as problematic for predicting flow properties (von Blottnitz et al., 2002). These

issues clearly reveal the need for more studies related to MSW granulometric properties.

Particle sizes are mainly represented by mean of statistical distributions (e.g. normal, log-normal,
gamma) generally chosen according to the field of the application, including mining, powder
technology, etc. (Fieller et al., 1992). A dimension often used to represent a PSD is the sieve
diameter, which corresponds to the largest dimension of the smallest surface of an object allowing
it to pass through a sieve (Ruf, 1974; Merkus, 2009). Even though, the length of the object is not
considered in this case, sieving diameter is generally used as it is simpler than measuring every

dimension of the object.

Winkler & Wilson (1973) have analysed the dimensions of individual items comprising
approximately 900 kg of MSW. Alter et al., 1981 have then used those results to fit a log-normal
distribution for MSW. Similarly, Ruf (1974) determined particle size distributions (PSD) for
twelve categories of raw and shredded MSW based on their sieving diameters. He tested five

different statistical distributions to fit hisdata, which are the normal, the log-normal, the beta, the
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gamma and the uniform distributions (Ruf, 1974). In his study, Ruf did not conclude on the best
distribution for raw MSW, but determined that shredded MSW are generally best fitted with a log-

normal distribution.

More recently, Bessi et al. (2016) have calculated PSDs for different solid recovered fuels produced
by a mechanical separation of MSW to assess their heterogeneity, but they did not fit any
distribution to their data. Nakamura et al., 2006 have applied a gamma distribution to fit the particle
size of mixed MSW and of combustion ashes. Ashkiki et al. (2019) have analysed the inputs and
the outputs of a trommel using a Rosin-Rammler distribution. They have fitted this distribution for
a compostable and a RDF fractions issued from a mix of MSW based on the sieving diameter. In
this case, they observed a difference in the PSD of the compostable fraction for three different
seasons (spring, winter and summer), but not for the combustible fraction. This difference was
mainly explained by a bigger fraction of thatch and grass during the summer and the spring,
responsible for a decrease in the particle sizes during these seasons (Ashkiki et al., 2019). The
Rosin-Rammler distribution has also been identified to adequately fit the products of a size
reduction process of MSW (Savage & Trezek, 1980).

Due to the difficulty of assessing waste dimensions for the reasons mentioned earlier, an other
possible approach is the use of a mass distribution (von Blottnitz et al., 2002). In this case, objects
are described based on their weight instead of their size. Some authors have used a Rosin-Rammler
distribution to fit this type of distribution (von Blottnitz et al., 2002; Nakhaei et al., 2018).
However, this approach is less useful for mechanistic modeling of equipment process like a
trommel or a shredder as mass distributions do not directly describe a physical property targeted

by these processes.

Therefore, no consensus seems to exist regarding the best approach to use in order to characterize
MSW granulometric properties as many different statistical distributions were used in different
contexts. Generally, PSDs are neither normal nor symmetric (Fieller et al., 1992; Merkus, 2009)
and a unified model should be identified. Also, parameters influencing waste particle sizes were

not clearly identified in previous studies.

In this study, three different statistical functions were selected due to their potential to represent
most accurately the PSDs of MSW, namely the log-normal distribution, which is a skewed

deviation towards small particles from the normal distribution and has largely been applied for
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fitting positively skewed distribution (Limpert et al., 2001); the Rosin-Rammler distribution, which
was first developed for powdered coal (Rosin & Rammler, 1933) and is appropriate for
distributions without upper size limit that are often associated with solid waste particles (von
Blottnitz et al., 2002); and the gamma distribution, which is, like the Rosin-Rammler distribution,
a simplification of the generalized gamma distribution (Lawless, 2002). However, a major
difference is that the gamma approaches symmetry for large value of its shape parameter, which is
not the case for the Rosin-Rammler (Wong & Chidambaram, 1985). These three distributions were
selected for the analysis since they have previously been used by multiple authors for solid waste

in literature. The normal distribution was not considered because it is not strictly positive.

The objective of this study is the development of robust and unified expressions able to represent
the PSD of MSW materials. Potential factors influencing these PSDs will be identified, modeled
and validated. Once the best PSD expression has been selected, amongst a log-normal distribution,
a Rosin-Rammler distribution and a gamma distribution, it will be fitted for several categories of
MSW. PSD of mixed MSW fractions will then be reconstituted based on the individual PSD per

category. This approach will be tested and validated using three datasets.

6.2 Materials and methods

This section presents the MSW characterization data used in this study; the statistical analysis that
was done to interpret those data; the description of the expressions that were considered to fit the
PSDs; the methodology used for developing both models; the goodness-of-fit tests performed to

analyse the quality of the regressions.

6.2.1 MSW particle size data

Data obtained from two MSW characterization campaigns (unpublished data) and from one
published dataset in literature (Barton & al., 1985) are used in this study. The first two datasets
were collected as part of this study. The first dataset includes composition and PSD per waste
category of MSW collected curbside (household wastes and source-separated organic wastes). It

was used to fit a PSDs for every considered waste category.

The second characterization dataset was for C&D wastes, which are collected in municipal
ecocenters. These data were used to compare the results obtained with the previous dataset for

different raw and processed (trommel screening) MSW categories.
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Finally, a published dataset including particle size data for different household waste categories
from the Doncaster RDF plant (Barton & al., 1985). This dataset was used solely to compare the
results and validate the choice of the statistical distribution.

6.2.1.1 Description of the household waste characterization

This characterization was done within a collaborative project between the Centre de Recherche
Industrielle du Québec (CRIQ), the City of Montreal (Qc, Canada) and the Chaire de Recherche
sur la Valorisation des Matiéres Résiduelles (CRVMR). The household wastes and the source-
separated organic wastes generated during one week in four Montreal apartment buildings having
different number of dwellings, were collected for sieving and characterization analysis. The district
where the samples were collected is served by three waste collections (household wastes, source-
separated organic wastes and source-separated recyclables). Despite the presence of the two
source-separated collections, an important fraction of recoverable wastes is still contained in the
household waste streams. The same sampling procedure was applied once during the summer and
once during the fall of 2016. A total of 216 kg and 237 kg were collected for the household wastes
respectively for the summer and the fall, while respectively 118 kg and 96 kg were collected for

the source-separated organic wastes.

The samples were first hand-sorted in 15 categories, which are: animal derived food waste,
vegetable food waste, green residue, other organics accepted in a source-separated collection
(contaminated fiber), other organics not accepted in a source-separated collection (diaper, litter and
sanitary products), paper and cardboard, plastics, other plastics, plastic bags, ferrous metal, non-
ferrous metal, glass, hazardous residual waste, wood and others. Once sorted, each fraction was

hand-sieved in 5 intervals based on 4 sieve sizes of 2.54, 5.08, 7.62 and 10.16 cm.

6.2.1.2 Description of the C&D waste characterization

This characterization was done within a collaborative project between the National Research
Council of Canada (NRC) and the CRVMR. Fine and coarse fractions of the rejects from a C&D
waste sorting centre located in Ontario (Canada) were sampled for analysis. The fine fraction was
first separated in eight samples of approximately 5 kg and was split in two fractions using a pilot
trommel with a sieve size of 2 in. The unders and the overs thereby obtained were then hand-sieved
in 6 intervals based on 5 sieve sizes of 1.27, 2.54, 3.81, 5.08 and 7.62 cm. The PSD of the total fine
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fraction was deduced by summing the PSD of the unders and the overs obtained as output streams

from the trommel operation.

The coarse fraction was first hand-sorted in 13 categories: engineered wood, untreated wood,
fiberglass insulation, pink & blue polystyrene insulation, polyisocyanurate insulation, white
polystyrene insulation, gypsum, PVC, plastics, paper and carboard, shingles, other combustibles
and other non-combustibles. Each fraction was then hand-sieved in 7 intervals based on 6 sieved
sizes of 1.27, 2.54, 3.81, 5.08, 7.62 and 15.24 cm.

6.2.2 Statistical analysis of PSD

Hypothesis tests were done in order to validate the influence of two factors (the season and the
collection type) on the PSD of MSW. For this purpose, a p-value was calculated based on Student’s
T-Test (equation B.1 in supplementary information B1). A threshold value of 0.05 was used as it

is a value commonly used in literature.

6.2.3 Description of the selected PSD expressions

The log-normal cumulative distribution function is defined as
1 1 In(x) — ,u)
Fn(x) ==+ —erf | ——— 6-1

where u and o are the parameters of the distribution and are respectively the mean and the standard
deviation of In(x). x and o are respectively a location and a scale parameter of In(x), indicating the

position and the dispersion of the distribution (Limpert et al., 2001).

The Rosin-Rammler cumulative distribution function is defined as

Frr(x) =1 —exp (— [xio]n) (6-2)

where Xo and n are the parameters of the distribution. In this case, Xo is often defined as the location
parameter and n as the scale parameter. xo is strictly positive and indicates the value of x for a

cumulative fraction of 63.2% while n indicates the spread of the distribution (Alderliesten, 2013).

The gamma cumulative distribution function is defined as
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y(k, Ax)

Foa(x) = Tk

(6-3)
where 1 and k are the parameters of the distribution, I' (k) is the gamma function and y(k, Ax) is
the incomplete gamma function. In this case, 4 is the scale parameter, indicating the dispersion of

the distribution, while k is a shape parameter (Lawless, 2002).

Therefore, all the PSD expressions considered may be expressed with two parameters, one of
location and one of scale for the log-normal and the Rosin-Rammler distributions, and one of scale

and one of shape for the gamma distribution.

6.2.4 PSD model development

Two PSD models are developed, one to represent the PSD of each category of MSW and one to
represent the PSD of mixed MSW. The method used to develop these models is presented in this

section.

6.2.4.1 PSD model by MSW category

First, a cumulative mass fraction of particles "smaller than" is calculated as a function of sieving
diameters for every MSW category. For every calculated cumulative mass fraction, an
unconstrained least-square minimization technique, implemented in Python with the function
curve_fit of SciPy module, is performed allowing for the calculation of the parameters for the
gamma and for the log-normal distributions. For the Rosin-Rammler distribution, a similar

procedure was applied, but parameters were constrained to positive values only.

6.2.4.2 PSD model for mixed MSW

The second model should reflect the PSD of mixed MSW. Therefore, a multimodal distribution is
developed by summing the unimodal PSD corresponding to each category comprising the mixed
MSW.
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6.2.5 Goodness-of-fit tests

In order to compare the goodness-of-fit of the PSD regressions, two statistical tests were used. The
residual sums of squares (RSS) and the V, statistics, defined by Kuiper (1960) and used for particle
size analysis by Fieller et al. (1992), were considered.

A lower RSS shows a better goodness-of-fit between the PSD regression and the actual distribution
data, while the V,, statistic is used to determine the maximum and the minimum differences between

the regression expression and the empirical data and is derived from the Kolmogorov-Smirnov test.

For this study, none of the tests that were performed considered the number of parameters of the

distribution since it is the same for the three distributions and is therefore not influential.

6.3 Results and discussion

The representativeness of the characterization dataset used to fit the PSD expressions is first
analysed to validate the proposed methodology. Then, the MSW PSD are analysed to assess the
possibility of aggregating the data. A PSD expressions per waste category is proposed and validated
with different MSW types. Finally, two models are proposed for mixed MSW.

6.3.1 Particle size data description and representativeness

The mode and the cumulative fraction smaller than 10.16 cm were determined for every MSW
category (Table 6-1). These vary greatly by waste category as for some categories (generally
organic derived wastes), almost all the particles are smaller than 10.16 cm, while for some others
(e.g. inorganic wastes and recyclables), it is less than 50%. This shows that globally “inorganic”
waste categories have PSDs with larger mean particle sizes than “organic” waste categories. The
analysis of the mode shows similar results, with values between 2.54-5.08 cm for organic
categories and between 7.62-10.16 c¢cm or bigger than 10.16 cm for the inorganic categories.
Therefore, there appears to be two main modes in mixed MSW PSD, indicating that it could be

possible to express it as a bimodal distribution.

To analyse the representativeness of the data, a threshold size was identified for each waste
category in Table 6-1, corresponding to the sieve size for which about half of the sample mass was
included in the fraction smaller than this threshold size (FSTTS). In some cases, as for the animal
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derived food waste category, this FSTTS seems to be far from 50%, but this is explained by the

fact that almost all the sample mass is concentrated in one interval.

Table 6-1 Statistical description of particle sizes of the household waste categories

Waste category Mode Fraction FSTTS
(cm) STgFlfg gﬁn Thre:shold Fraction
) size (%)
Animal derived food waste 2.54-5.08 97.9 5.08 88.3
Vegetable food waste 2.54-5.08 87.9 5.08 55.3
Green residue 0-2.54 100.0 2.54 61.1
Other organic waste accepted 2.54-5.08 100.0 5.08 747
;)(;[::p:te reanie waste not| g 554 100.0 254 67.2
Paper and cardboard >10.16 41.4 2.54 41.4
Plastics >10.16 55.6 10.16 55.6
Other plastics >10.16 44.6 10.16 44.6
Plastic bags 7.62-10.16 70.9 7.62 355
Non-ferrous metal 5.08-7.62 83.0 7.62 66.2
Ferrous metal 5.08-7.62 75.5 7.62 47.9
Glass 7.62-10.16 84.8 7.62 38.6
Others >10.16 35.0 10.16 35.0

Values of the FSTTS shown in Table 6-1 were calculated for each waste category with an

increasing number of samples, from one up to eight samples. The variation of this parameter

(FSTTYS) as a function of increasing mass of samples for each waste category is presented in Figure

6.1. In this case, a sample is defined as the waste collected for one building for one season. As

these samples do not have the same mass, they were sorted in descending order. Then, the variation

of the FSTTS between samples was calculated to conclude on the minimal mass required of MSW

samples in order to ensure a representative particle size analysis. The percentage of variation of the

calculated FSTTS is presented on the y-axis as a function of the sampled mass on the x-axis in

Figure 6.1.
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Figure 6.1 Percentage of variation in function of the mass of sample considered for a) “organic”

waste categories and b) “inorganic” waste categories

Results show that when the sampled mass reached 300 kg or more, the variation of the FSTTS
greatly decreases for every waste category. Also, after adding additional mass to the sample to
obtain a total mass above 400 kg, a variation smaller than 10% is observed for all the waste
categories. This indicates that this quantity appears to be sufficient to ensure a representative PSD
for each waste category. The data presented in the next sections met this criterion of minimal
sampled mass, and, thus, are considered as representative for the given situation and geographical
context.

It should be noted that for the wood and the hazardous residue categories, the samples collected
did not amount to a sufficient mass to perform statistical analysis on these categories. It is typical
that these categories do not constitute significant fractions of collected household waste. Hence for
these two categories, distribution parameters were calculated and are provided in the
supplementary information section (B2) but are not considered in the analysis as their

representativeness is not assured. They should therefore be used with care.
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6.3.2 Parameters influencing PSD of MSW

In order to model the PSD of MSW, both by category and for mixed MSW, it is necessary to assess
the presence of external factors influencing the results. Two main factors were analysed by mean
of a statistical hypothesis test to verify whether the results are influenced by them in this case: the
season (summer and fall) and the type of collection (household wastes and source-separated

organic wastes).

6.3.2.1 Season

A hypothesis test was deemed necessary to verify whether there is a difference in MSW particle
sizes collected during both seasons. The null hypothesis of the equality of the means of the FSTTS
was validated by mean of a comparison of the p-value with a threshold value of 0.05. This analysis

was done on the household waste data only.

A p-value of 0.6643 was obtained while comparing both seasons when all MSW are included,
meaning that the hypothesis of equality of mean can not be rejected. Therefore, is it not possible to
conclude to a statistical difference in particle sizes of the MSW collected for the two seasons. This
observation differs with results presented in a recent study by Ashkiki et al. (2019) where they
found differences in PSD of mixed MSW collected during winter, spring and summer. One main
difference here, the seasons considered are not the same. Also, as in Ashkiki et al. (2019), some
differences between the two seasons for PSD were observed, but their FSTTS were not

significantly different.

The same procedure was also applied for each waste category to determine whether the same
conclusion may be reached. The hypothesis of equality of the means could not be rejected for
almost all categories, the only exceptions being the green residue, the glass and possibly the other
plastics. The obtained p-values are presented in supplementary information (B3). In the case of the
other plastics, as the p-value is very close to the critical value, it seems better not to reject the null
hypothesis. Therefore, it is not possible to conclude that the season have an impact on the particle
size of most MSW categories except for the green residue and the glass. For the green residue, this
is probably due to the fact that its generation vary greatly from one season to another. This is
particularly true during the fall in Canada, as the fraction of leaves greatly increases. Smaller

particles are therefore obtained than for the summer.
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As for the glass category, the null hypothesis should also be rejected leading to the conclusion that
the particle size is different in the fall and summer. This may be explained by the fact that only 10
kg for the summer and 6 kg for the fall were sampled. Since the density of glass is high, it is
possible that too few objects were considered for the analysis. Also, for one sample (corresponding
to one building) out of four taken during the fall, no glass objects were found, which may have

altered the analysis.

These results allow the aggregation of the particle size data from both seasons since it was observed
that no statistical differences were measured for every waste category and for the global MSW

stream.

6.3.2.2 Collection type

For every waste category available in the household waste dataset, the same approach was used to
measure potential differences in particle size for a certain category between the household wastes
and the source-separated organic wastes. The null hypothesis of the equality of means was
considered. In this case, only the waste categories targeted in a source-separated organic collect
were considered. The obtained p-values are also presented in supplementary information (B3).
Results show that it is impossible to conclude to a difference in the PSD of the targeted categories
between the household wastes and source-separated organic wastes. Therefore, it seems likely that
in terms of particle sizes for these categories, citizens tend to throw away similar type of materials
in both collection types. This is not surprising as only the organic fractions were considered here,

and these types of waste have small and quite uniform particle sizes.

As for the season, these results allow the aggregation of the particle size data from both collection

types since there were no statistical differences for every waste category.

6.3.3 Model parameter identification for waste category PSD and goodness-of-

fit measurement

Three PSD expressions are used to fit the PSD data for each MSW category, using the least-square
minimization presented in section 6.2.4, while the goodness-of-fit tests presented in section 6.2.5
are used to analyse the resulting expression. This procedure is applied to both datasets available
for the household wastes (section 6.3.3.1). Then, the developed expressions are validated with other

types of wastes, which are raw C&D wastes (6.3.3.2) and processed C&D wastes (section 6.3.3.3).
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6.3.3.1 Household wastes

The characterization results for the household wastes obtained by the CRIQ/City of
Montreal/CRVMR was used to develop the model. As seen in section 6.3.2, in the context of the
present study, MSW particle sizes were not influenced by the season and the collection type. As a
result, all the data was aggregated in order to provide a more substantial waste sample for the
analysis. Results of the goodness-of-fit tests and associated distribution parameters are presented
in supplementary information section (B2). As the green residue and the glass categories are
influenced by the season, mean and per season distribution parameters are also provided in

supplementary information.

For the wood category, a maximum particle size was fixed at 16 in based on observations, since
incoherent results were obtained if no maximum boundary was fixed for the parameters
identification. This shows that for this category, more screen sizes for the sieve analysis should

have been used.

In the case of the household wastes, the results obtained show that for the 13 categories considered
for the comparison, the three distributions tend to fit well the measured PSDs. Also, it is possible
to see that both tests (RSS and V) are always in accordance. They concluded in 5 cases to the
predominance of the log-normal distribution, in 5 cases for the Rosin-Rammler distribution and in

3 cases for the gamma distribution.

The Doncaster RDF plant dataset (Barton & al., 1985) was used to verify if similar results could
be obtained for the comparison of the PSD for the different categories. In this case, for the 10 waste
categories considered, the Rosin-Rammler distribution was more accurate in 5 cases, the log-

normal distribution in 4 cases and the gamma distribution in only 1 case.

At this point, we could exclude the use of the gamma distribution for modeling the PSD of MSW
per categories. However, it is not possible to conclude between the Rosin-Rammler and the log-

normal distributions, as both seem to perform almost equally.

6.3.3.2 C&D wastes

For the C&D wastes, the same procedure as for the household wastes was applied to the
characterization results produced by NRC/CRVMR. In this case, both tests were also always in

accordance. The results of the goodness-of-fit tests and the distribution parameters are provided in
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supplementary information section (B2). For this type of waste, the best distribution for fitting the
different categories was the Rosin-Rammler distribution in 10 cases, the gamma distribution in 2
cases and the log-normal distribution in only 1 case. Therefore, the Rosin-Rammler distribution

seems to be able to better represent the PSD of the different C&D waste categories.

6.3.3.3 Processed C&D wastes

Finally, the same procedure was also performed for the overs and the unders outputs of the trommel
for the 8 collected samples. For both goodness-of-fit tests, the mean and the standard deviation of
the results were calculated for the 8 samples (Figure 6.2). Results indicate that for the two tests,
both for the unders and the overs fractions, there is an advantage for the Rosin-Rammler

distribution over the two others for fitting the experimental data.
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Figure 6.2 a) RSS results and b) Vn results for the processed C&D wastes

6.3.3.4 Model description

When considering only the household wastes, it is possible to exclude the gamma distribution from
the list of potential expressions adequate for representing the PSD of the different MSW categories,
but it is not possible to conclude on the best expression between the Rosin-Rammler and the log-
normal distributions. However, the Rosin-Rammler distribution is more accurate in regard to the
data obtained from C&D wastes, both for the raw and the processed wastes. Being able to use a
single PSD expression to describe all MSW categories might be beneficial for process modeling,
as it would provide a simple manner to track the PSD of materials along a certain waste treatment
sequence by using two parameters. Considering its efficiency in fitting actual PSDs of MSW
categories, we propose that the Rosin-Rammler distribution should be used for modeling MSW

granulometric properties. This way, it would be possible to represent both inputs and outputs of a
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treatment process with the same form of expression, making calculations easier when many
processes are considered. The Rosin-Rammler parameters obtained for the household waste are
presented in Table 6-2. As mentioned before, “organic” wastes have smaller particles than

“inorganic” wastes as can be seen with the location parameter.

Table 6-2 Rosin-Rammler parameters obtained for the household waste

Waste category Locatzggl) ??r;a;meter Scale parameter (n)
Animal derived food waste 3.78 2.65
Vegetable food waste 5.46 1.74
Green residue 3.81 1.10
Other organic waste accepted 4.75 3.94
Other organic waste not accepted 2.46 1.10
Paper and cardboard 11.40 3.24
Plastics 11.02 2.49
Other plastics 13.61 1.38
Plastic bags 9.45 3.62
Non-ferrous metal 7.87 3.14
Ferrous metal 8.94 2.94
Glass 8.74 4.70
Hazardous residual waste 8.43 1.44
Wood 23.03 2.80
Others 15.24 2.16

6.3.4 Models for a mix of household waste

Two models are developed to represent the PSD of mixed MSW. The model is developed based

solely on waste composition and a simplified version is proposed.

6.3.4.1 Proposed model

As seen in section 6.3.1 and 6.3.2, in the context of this study, the PSDs of waste are not influenced
by the season or the collection type, but only by the waste composition. Therefore, the developed
model is only based on the composition of the mixed MSW. The model proposed is defined as a

multimodal distribution by

fu(x) = z m; frr (%, X0, 1) (6-4)

jec
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where m; is the mass fraction of a waste category j, C is the aggregate of all the waste category j,
Xo,j IS the location parameter of the Rosin-Rammler distribution of the waste category j, nj is the
scale parameter of the Rosin-Rammler distribution of the waste category j and frr is the probability

density function of the Rosin-Rammler distribution described by equation 6-5.

n/x n—-1 x 1"
F=wl) e (L)) (6-9)
This model was validated with the household dataset presented in section 6.2.1 for the summer and
the fall. Figure 6.3 shows a good agreement of fit for the calculated distributions and the
experimental data both for the summer and the fall with respective values of R? of 0.993 and 0.996,
showing that it is possible to calculate the global PSD by summing all the specific PSDs of each
MSW category.
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Figure 6.3 Comparison of calculated and experimental particle size of MSW for a) the cumulative
mass fraction of the fall, b) the cumulative mass fraction of the summer, c¢) the probability density

function of the fall, d) the probability density function of the summer
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The same procedure was applied for the C&D wastes showing also a good agreement with a value
of R? of 0.976 (not shown). When the global PSDs are presented as a density probability function
(Figure 6.3c and 6.3d), the the two modes observed in section 6.3.1 around 5 cm and 10 cm clearly
appear. These modes indicate that it is probably possible to simplify the model to a bimodal

distribution.

The model was also applied to six compositions of MSW adapted from literature or from the
datasets used in this study, in addition to a typical composition of source-separated organic wastes
(this study) and a composition of source-separated recyclables (RECYC-QUEBEC, 2015). The
adapted compositions are presented in supplementary information section (B4). Household waste
composition datas were adapted for different countries and contexts: Montreal, Canada (fall and
summer data of this study), Japan (Christensen et al., 2011), Denmark (Edjabou et al., 2015), Spain
(Montejo et al., 2011) and UK (Burnley et al., 2007). These compositions were used to calculate a
PSD for each case with the multimodal model presented above. The calculated PSDs are presented

in figure 6.4.
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Figure 6.4 Probability density function of various waste composition

The visualization of these density distribution functions shows that it has a main peak between 2.54
and 5.08 cm, corresponding to the “organic” fractions and another peak around 12.7 cm
corresponding to the “inorganic” fraction. This was expected since both peaks correspond to the
main modes observed for the data per category. These results indicate that it is probably possible

to simplify the model to a bimodal distribution.
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6.3.4.2 Simplified model

The proposed multimodal model is very useful for determining the PSD of MSW. However, it is
common that the exact composition of the waste is not known. A simplified version of the model
is thus presented. As seen in section 6.3.1 and section 6.3.4.1, two main modes are present in MSW
particle sizes, one for the “organic” fraction and one for the “inorganic” fraction. Therefore, the

proposed simplified model is based on a bimodal distribution of these fractions.

The simplified proposed model takes the form of equation 6-6.

fMM (x) = morngR(x; xO,org' norg) + minorngR(xr xO,inorgr ninorg) (6'6)

where Morg is the “organic” mass fraction, Minorg is the “inorganic” mass fraction and Xo,org, Xo,inorg,

No,org, No,inorg are the respective Rosin-Rammler parameters for these two fractions.

To determine these Rosin-Rammler parameters corresponding to the two fractions, the calculated
PSDs used in Figure 6.4 were fitted to determine the four Rosin-Rammler parameters in equation
6-6. The mean of the resulting parameters for the eight MSW compositions was calculated to
determine the parameters of the simplified model. The following parameters were obtained: Xoorg
= 4.55, Xo,inorg = 11.23, Noorg = 1.75, No,inorg = 2.46. When comparing both models, the simplified
bimodal and the complete multimodal, a R? value ranging from 0.920 to 0.983 for the eight
compositions is obtained. Even though 6 of the compositions are for household wastes while the
two others are for source-separated fractions, a very good agreement is obtained showing that it is
possible to express the PSD of mixed MSW with a bimodal Rosin-Rammler distribution using the

composition of “organic” and “inorganic” fractions.

6.4 Conclusion

The particle size of 15 different waste categories were characterized to provide distribution
parameters. The characterization data were obtained during two characterization campaigns, one
during the summer and one during the fall, for two different collection types in a Canadian context.
The statistical analysis of the data showed that no differences were obtained in the PSD of the
MSW for both seasons considered and for the collection type, allowing for the aggregation of the

data.
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A comparison of three PSD expressions for different types of MSW showed that the Rosin-
Rammler distribution is the most appropriate to fit MSW PSDs. Parameters for this distribution

were determined for 13 MSW categories, allowing for the modeling of their respective PSD.

A second model was developed to represent the PSD of mixed MSW, based on a multimodal
distribution. A simplified version was also proposed based solely on the “organic” and “inorganic”
fractions for cases where very little information is available on the composition of the waste. This
was possible since MSW appeared to be well represented by two modes, one corresponding to the

“organic” categories between 2.5-5 cm and one for the “inorganic” categories around 10 cm.
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Abstract

Mechanical sorting plays a pivotal role in current municipal solid waste management systems for
resource recovery. However, material recovery facilities, generally face several challenges in
meeting quality standards for multiple waste fractions. Improving these facilities requires a better
understanding of municipal solid waste physical characteristics, since they are directly targeted by
mechanical sorting unit operations. Three waste physical properties (bulk density, particle size and
shape factor) were characterized for several recyclable materials. Narrow ranges of densities were
observed for similar waste materials, while the particle size distributions were found to vary widely.
Statistical parameters were determined for these two properties. A novel approach, based on the
void fraction of a waste item, is proposed to quantify the shape factor. Potential applications of the
characterization results for improving mechanical sorting are demonstrated through the analysis of

the recovery of corrugated cardboards and multilayer cardboards in a material recovery facility.

7.1 Introduction

Mechanical sorting in material recovery facilities (MRF) and mechanical-biological treatment
(MBT) facilities plays a pivotal role in current municipal solid waste (MSW) management systems
(Cimpan et al., 2015). These facilities combine several mechanical unit operations under various
configurations with different automation levels (Chang & Pires, 2015). However, due to the high
heterogeneity of their feedstocks, these plants often face high contamination levels in their output
streams (Cimpan et al., 2015; Damgacioglu et al., 2020; Ip et al., 2018; Velis et al., 2010). For
example, while analyzing the mass balance of an MRF located in the USA, Damgacioglu et al.
(2020) showed inefficiencies in the sorting unit operations leading to a high contamination of every
output stream, resulting in non-compliance with quality standards. Similarly, the analysis of several
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MBT plants by Montejo et al. (2010) showed that the use of a trommel to produce a compost-like
product from MSW lead to a poor purification of the organic fraction, resulting in high

concentrations of inorganic materials and suggesting the need for process improvement.

These issues related to the quality of the materials recovered from mechanical sorting operations
raise questions about the waste collection strategies. For example, the province of Quebec, Canada,
is currently reviewing its waste deposit system to extend it to several waste materials for which
sorting issues were observed. In addition to aluminium cans and some glass bottles, the province
is planning to extend this system to all glass bottles, small PET bottles and, in a second step, to
multilayer cardboards packaging. These additions could however affect the entire waste recycling
system and in-depth analysis of the alternatives and impacts of this decision should be done to
ensure that this solution is adequate. To do so, a thorough understanding of the separation

mechanisms of these materials in a sorting facility must be achieved.

However, this kind of facilities faces an important lack of analysis regarding the technological
strategies and their efficiencies (Cimpan et al., 2015). MRFs are often designed based on
semiempirical methods due to a lack of knowledge about the performance of the sorting unit
operations (Velis et al., 2013). Process efficiencies of MRFs are rarely available in the literature
(Cimpan et al., 2015). MSW treatment would however benefit from a better understanding of the

operation of the different equipment used in the field (Velis et al., 2013).

Even though this approach was not frequently used in the literature, future modeling techniques of
MREF unit operations could include physical mechanisms occurring during the separation (Ip et al.,
2018). Beyer & Pretz (2004) identified the use of a process-based simulation linked to the waste
characteristics as a way to optimize the operation of secondary material processing plants. This
approach however requires a good knowledge of waste properties as sorting operations in such
facilities are based on several of these, including particle shape, particle size, particle density,
magnetic properties and optical properties (Beyer & Pretz, 2004; Feil et al., 2016; Ip et al., 2018;
Kleinhans et al., 2021). Increasing the knowledge about waste physical properties could thus
represent an interesting approach to model or estimate the sorting unit operations efficiency. For
example, Kleinhans et al., (2021) used their knowledge about waste particle size distribution to
estimate the efficiency of a disc screen. Therefore, the improvement of mechanical sorting of MSW

requires a better understanding and description of the waste properties (Velis et al., 2010).
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In addition to separation efficiencies, waste properties are important for several other applications.
Waste particle size and bulk density are required for waste sampling to ensure the collection of a
representative sample (Feil et al., 2016). Properties are also necessary to plan waste collection
strategies (Chang & Pires, 2015). Finally, some properties may be related to others. For example,
materials with smaller particle size have been shown to have higher moisture content, even for dry

materials such as plastic films, due to a higher specific surface (Beyer & Pretz, 2004).

Particle size is often identified as one of the most important property for waste mechanical sorting
(Velis et al., 2010) as several equipment target this property in their operation. Particle size of
MSW items is mainly concentrated in the 1-2 cm to 30-50 cm region and is generally expressed as
a statistical distribution (Stessel, 2012). Many distributions have been used to fit raw MSW
including the gamma, the log-normal and the Rosin-Rammler distributions (Ashkiki et al., 2019;
Nakamura et al., 2006; Ruf, 1974). The Rosin-Rammler distribution seems to always be able to fit
experimental data of solid waste particle size (Vesilind, 1980). Moreover, this distribution was
identified in previous work as the most appropriate statistical distribution to fit MSW patrticle size
distributions (PSDs) with recent data (Tanguay-Rioux et al., 2020). Parameters for several MSW
feedstocks were calculated in this previous work, but only a few categories of recyclable materials

were covered at the time, leaving room for improvement.

As for the bulk density of waste materials, it may vary according to several factors such as the
measurement method, the compression applied during collection and the degree of contamination
(Feil et al., 2016). Some authors have reported typical ranges of bulk density for several MSW
feedstocks (Tchobanoglous et al., 1993; Vesilind et al., 2002). WRAP (2010) presented the bulk
density, the standard deviation, the lowest value, the highest value and the confidence interval for
several MSW feedstocks. However, this characterization combined several different
characterization methods, leading to inconsistencies during comparison and some waste categories

were greatly aggregated.

As for the shape factor of MSW items, it has been little studied even though it can greatly influence
the sorting efficiency of the waste. Savage et al. (1984) classified MSW under 4 types of shape
factor, which are flakes, splinters, cubes and cylinders. For every shape, they determined drag
coefficients to relate the shape to an operating condition (Savage et al., 1984). However, this

approach is limited to a restrictive number of shape factors and is subjective to the practitioner.
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Few studies have addressed the particle size, the density and the shape factor of MSW. The present
work aims at increasing knowledge regarding these waste properties and their influence on
equipment sorting efficiencies. Furthermore, the representativeness of the data is discussed to guide
further waste characterization. Finally, the characterization results are analyzed in regard to their
influence on waste recovery from mechanical sorting operation, with an emphasis on multilayer

cardboards and corrugated cardboards as case studies.

7.2 Material and method

7.2.1 Characterization of source-separated recyclable materials

Sampling of MSW can be highly intensive work and several approaches have been used in recent
years. Edjabou et al. (2015) proposed a complete sampling methodology to characterize MSW
composition for a given geographical area. However, no sampling methodology has been
developed specifically for determining PSD and density. Moreover, it is believed that the extensive
sampling and sorting procedure carried out to determine waste composition could be simplified for
characterization of waste properties, since they are less geographically dependent. For example,
previous studies showed small variation in the bulk density measurements, even with relatively
small sample size (WRAP, 2010). Bessi et al. (2016) collected samples from 1.2 kg to 48.8 kg to
calculate the PSD of different refuse derived fuel (RDF) according to their estimated heterogeneity.
For measuring the PSD of trommel outputs, Ashkiki et al. (2019) collected samples between 20 kg

and 75 kg. For pure materials, heterogeneity should be even smaller, requiring smaller samples.

The standard ASTM D5231 states as a guideline that samples of 90-136 kg should be taken to
measure the waste composition of unprocessed municipal solid waste, with a number of samples
calculated based on the Student’s t-test. To do so, the mean composition and the standard deviation
for a chosen governing waste material are needed and typical values are provided. However, these
values were determined several years ago and are not necessarily representative of the present
situation (Sharma & McBean, 2007).

In this case, since the studied feedstock includes only source-separated recyclable materials rather
than unprocessed mixed MSW, it was decided to reduce the sample mass to 50 kg, since it was
estimated that the input stream is more homogeneous and similar quantities were collected in the

previous works mentioned above. As for the number of samples required, it should be determined
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with representative mean and standard deviation. It was thus decided to fix a number of samples
and to validate its representativeness once the characterization is done. To do so, the mean
composition and the standard deviation are calculated, as well as a theoretical number of samples
for a governing waste material (see section 7.3.1). Therefore, it was decided to collect 6 samples

of about 50 kg of mixed recyclable waste.

For the bulk density measurement, the standard ASTM E1109 recommends that samples larger
than 250 kg should be collected for material having a maximal nominal size higher than 90 mm.
This sample size was however deemed impractical due to the need to manually sort the waste into
categories. Therefore, it was estimated that the number of samples identified previously is

sufficient after validation using a rigorous data representativeness analysis (see section 7.2.2.1).

As for the PSD, no ASTM standard referred specifically to MSW. The standard ASTM E1037
refers to the calculation of PSD for RDF, while the standard ASTM D5519 is generally applicable
for material larger than 75 mm. In the first case, samples of 1 kg are used, which is too small for
several waste materials, while in the second case, no clear sample size is proposed. Therefore, as
for the density, it was estimated that the number of samples identified previously is sufficient after

validation using a rigorous data representativeness analysis (see section 7.2.2.1).

7.2.1.1 Waste sampling

The 6 samples of about 50 kg were collected and sorted over six different days between November
2019 to February 2020. Wastes were collected with garbage trucks in which a certain level of
compaction is done, leading to a slight modification of the shape of the waste items. The wastes
were then discharged in piles in the reception area of a material recovery facility. Waste samples
were taken using a mechanical loader without further compaction. The work was realized in a
material recovery facility of recyclable materials located in Montreal, Canada. The facility is
designed to receive a single stream of comingled recyclables, including fibers, plastics, metals and

glass.

7.2.1.2 Waste sorting

For every sample, the wastes were manually sorted in 14 categories, namely corrugated cardboards
(CC), multilayer carboards (MC), flat carboards (FC), newspapers (N), mixed papers (MPa),
broken glass (BG), unbroken glass (UG), PET, HDPE, plastic films (PF), mixed plastics (MPI),
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ferrous metals (FM), non-ferrous metals (NM) and rejects (R). These categories have been chosen
to match the characterizations performed by the operator of the plant, thereby facilitating
information sharing. Also, these categories correspond to the main waste bales separated by the
facility. Finally, the broken and unbroken glass were sorted separately since it is estimated that
during the mechanical sorting step, the collected intact glass is most likely to be broken in smaller
pieces. Therefore, for property analyses, the presence of unbroken glass in the sample would clearly

skew both the PSD and density measurements.

For this characterization, MCs cover both aseptic and gable top cartons, and is mainly composed

of food and beverage cartons.

Each category was then manually sieved and weighted based on the following sieve sizes: 0.3175
cm, 0.635 cm, 1.27 cm, 2.54 cm, 5.08 cm, 7.62 cm, 10.16 cm, 15.24 cm, 20.32 cm and 30.48 cm.
Handmade square sieves were used and objects were sieved in order to measure their sieving
diameter, which is a measure often used to represent PSD (Merkus, 2009). Then, all sieved
fractions of a waste category were mixed, weighted and the bulk volume occupied by the wastes
was measured without adding compaction. The bulk density calculated is therefore the loose
density as received. Finally, pictures were taken to assess the shape of the objects. Based on the
work of Savage et al. (1984), the shape that best represented a material was chosen amongst the

following choices for comparison purposes: cube, cylinder, prism and flake.

7.2.2 Data analysis

Two main statistical analyses were performed on the characterization results. First, for both density
and PSD results, a representativeness analysis was done to ensure that sufficient quantities of waste
were collected. Then, statistical distribution functions were fitted to the sample data to determine

statistical parameters in order to express the physical properties.

7.2.2.1 Representativeness analysis

To assess that enough waste was collected during the sampling procedure to determine both the
density and the PSD, two distinct analyses were performed on the data.
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For the density results, the interval of confidence was calculated based on the Student’s t-test with
a confidence level of 90%. A theoretical minimal number of samples was also calculated to guide

future bulk density characterization.

For PSD results, the Kolmogorov-Smirnov test was applied to sub-samples (i.e., combinations of
subsets of samples) to determine the minimal mass that needed to be characterized until the sub-
sample and the final PSDs were statistically equivalent. A threshold of 0.05 was chosen for the

rejection of the null hypothesis of the equivalence of the PSDs.

7.2.2.2 Determination of statistical distributions

Density samples were assumed to follow a normal distribution. Experimental results obtained for
the 14 waste categories were fitted to determine the mean and the standard deviation of the density
samples for every category. This allows the calculation of a mean value as well as a reliable

interval, useful for modeling purposes.

For the particle size data, the quality of fit of three statistical distributions (gamma, log-normal and
Rosin-Rammler) were compared by means of their residual sums of squares (RSS) to assess
whether the Rosin-Rammler distribution provides the best fit for the waste PSD, as was found in a
previous study (Tanguay-Rioux et al., 2020). Statistical parameters were then determined for the
more appropriate statistical distribution to provide useful values for further analysis.

7.2.2.3 Shape factor characterization

To characterize further the shape factor of the waste items, the void fraction was calculated to
provide an objective and quantifiable parameter. The void fraction of a waste item, which includes
the void within the waste item itself (e.g., the empty space in a ferrous can) and the void between

items in a packed layer, was calculated using the following equation:

bulk density

Void fraction =1 — (7-1)

material density
Between 10 to 15 objects were collected per waste category to assess the mean density and the
standard deviation of the material. Two approaches were used to determine this density. For
materials with a higher density than water (i.e. ferrous and non-ferrous metals, glass and PET), the

following equation derived from Archimedes’ principle was used:
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W,
material density = HaPw_ (7-2)
Wq — Wy
where wa is the weight of the object measured in air, wy is the weight of the object measured in

water and pw is the density of water.

For materials with a lower density than water, waste items were cut in small pieces, weighted and

their volume was measured with a graduated cylinder.

To assure that a sufficient quantity of objects was tested, a confidence interval was calculated for

the material density with a confidence level of 90% based on the Student’s t-test.

7.3 Results and discussion

Composition, density and particle size were determined for multiple waste categories commonly
found in commingled recycling streams, based on the sampling and the sorting of 302 kg of source-
separated recyclable materials. A statistical analysis was performed on the density and the PSD
measurements to assess the representativeness of the results as a function of the sample size. A
shape factor was also determined based on the void fraction calculation for every recyclable
material. The analysis of these properties aims at a better understanding of governing mechanisms

related to waste sorting strategies.

7.3.1 Composition of source-separated recyclable materials

Sampled recyclable waste materials are composed of cardboards and papers (55.9 wt%), glass (15.2
wit%), targeted plastics (13.5 wt%), metals (4.0 wt%) and rejects (11.4 wt%). The complete
characterization is presented in supplementary information as well as the composition of source-
separated recyclable materials of the province of Quebec (Canada) (C1). As expected, metals are
under-represented in the waste in comparison to the other categories, while fibers account for more
than half of the waste. Of the latter fraction, corrugated cardboards account for the largest fraction
(35%), while newspapers, mixed papers and flat cardboards all account for a similar quantity (18-
24%) and multilayer cardboards only account for 5% of the fibers sampled. Finally, an important
fraction of the waste entering the facility is also found to be contamination represented by the
rejects category and including several different objects (e.g., food wastes, non-recyclable plastics,

dishes, toys, wood) leading to large variation of the properties of this reject waste fraction.
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The composition results are similar to what was expected since the composition entering the facility
is closed to the composition collected for the whole province for almost every waste category. The
main differences are observed for the corrugated cardboards, which are over-represented, and the

newspapers, which are under-represented.

Based on the statistical analysis described in section 9.1 of the standard ASTM D5231 and both
the mean compositions and the standard deviations presented in Table C1, a minimum number of
samples of 5 was obtained while considering the corrugated cardboard as the governing waste
material with an error of 0.2. This waste material was chosen as the governing one since it is the
most represented material in the feedstock. Moreover, an error of 0.2 was deemed sufficient since
the focus here is mainly on the characterization of the density and the PSD rather than the

composition.

7.3.2 Density analysis

A statistical analysis is done on the density measurements to ensure that sufficient amounts of
waste were collected and to provide guideline for future characterization procedure. The mean

density and the standard deviation are also calculated to provide useful parameters.

7.3.2.1 Density data representativeness

The Student’s t-test results on the density measurements, presented in supplementary information
(C2), provide a relative confidence interval smaller than 33% with a confidence level of 90% for
every waste category characterized, apart from the rejects category. This indicates that it is possible
to assume that the density is the interval [density*(1-0.33), density*(1+0.33)] for every waste
category. However, for half of the categories, this confidence interval is smaller than 15%,
indicating a fairly good confidence in the results. Larger than 15% confidence intervals are
obtained for mixed papers, multilayer cardboards, unbroken glass, ferrous metals and plastic films
indicating a probably larger diversity of objects for these categories or a smaller mass sampled. On
the other side, small confidence intervals are observed for HDPE, PET, mixed plastics, flat
cardboards, broken glass, newspapers and corrugated cardboards, showing that small confidence

interval can be achieved without requiring large samples.

Furthermore, the theoretical minimal amount of waste to sample to achieve a relative confidence

interval smaller than 20% was calculated assuming that the variability is equivalent to the one
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calculated in this study. Results (C2) show that between 2 kg and 70 kg are required according to
the waste category. However, this amount is reduced to 26 kg when the mixed paper category is
not considered, indicating once again that a relatively small amount of waste is needed for density
characterization. For a similar composition than that reported in the previous section, between 400
kg and 700 kg of mixed recyclable materials would be needed to obtain a confidence interval
smaller than 20% for every waste category, except for the rejects. However, it is believed that
reducing the average mass per sample could further decrease the total mass required to be sampled

despite an increase of the number of samples.

7.3.2.2 Density of source-separated recycling materials

The bulk density and the coefficient of variation for each waste category are presented in Figure
7.1. The data are also presented in supplementary information (C3). The density varies between
23.6 and 587.9 kg m™, while the coefficient of variation varies between 12% and 40%, with an
average value of 22%. The density calculated is the bulk density, therefore including the internal

void fraction of the objects as well as the space between objects.
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Figure 7.1 Mean density (A) and coefficient of variation (B) of several recyclable materials

Results presented in Figure 7.1 clearly show the large difference in density between glass objects
and the other materials. Moreover, a large difference is observed between broken and unbroken
glass densities, emphasising the importance of taking the shape of the objects into account when

reporting this property. On the opposite, plastics have the smallest densities, while fibers and metals
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have in-between values. Results therefore demonstrate that similar waste materials have a similar
density since not only the materials are similar, but their shape is also similar. The only exception
is the multilayer cardboards category, which is generally reported as fiber materials, but has a

density closer to plastics, mainly due to its shape. This aspect is further analyzed below.

In contrast to the density, coefficient of variations (CV) is quite different within a certain waste
type. As observed with the confidence interval, a higher heterogeneity is obtained for plastic films,
unbroken glass, ferrous metals and the mixed papers. These high CV should therefore be
considered when analyzing their fate throughout an MRF since this variability could affect their
separation efficiency. Surprisingly, most of plastic categories have a small CV even though these
materials take several different forms. This high heterogeneity should lead to higher variation of
the shape factor and thus influence the density measurement, but this aspect does not seem to be

crucial in this case.

A comparison of the results for the bulk density with literature data was performed and is shown
in Figure 7.2. Bulk densities reported from 6 different publications (Apotheker, 1991;
Tchobanoglous et al., 1993; US EPA, 1991, 2016; Vesilind et al., 2002; WRAP, 2010) for several
waste materials were compiled and the mean and standard deviation of these data were calculated.
The confidence interval for each waste material was then calculated with a confidence level of 90%

and are reported as the range of literature data in Figure 7.2.

Range of

literature data

350 * Calculated
value
300

Bulk density [kg/m?]

Newspapers
Mixed papers 4
Corrugated cardboard -
Unbroken glass 4
Non-ferrous metals -
Ferrous metals
PET -
HDPE A
Mixed plastics |
Plastic films

Figure 7.2 Comparison of the bulk density measurements with literature data
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Results indicate that for most waste materials, the bulk density calculated is comprised in the
interval reported from literature. For the newspapers and the corrugated cardboards, the value is
however different than the ones reported in literature. This could possibly be explained by

differences in operating variables as the moisture content and the compaction level.

7.3.3 Particle size analysis

The 14 recyclable materials categories previously identified were sieved in 11 interval sizes. To
provide an overview of the particle sizes resulting from this characterization, the mode and the

largest size observed for each waste category were identified and are presented in Figure 7.3.
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Figure 7.3 Mode (A) and largest screen size (B) for each waste category

Most of particle size modes of recyclable materials fall in the 10.2-15.2 cm or the 15.2-20.3 cm
intervals. The corrugated cardboard category is the only one having a larger mode, while both glass

and metal categories have smaller modes.

For more than half of the categories, objects with a sieving diameter larger than 20 cm were found
indicating that recyclable materials can include relatively large objects. Glass appears to be the
category having the smallest object as no object larger than 10.2 cm were detected. Multilayer
cardboards also seem to have small homogeneous object since no object with a sieving diameter

larger than 15.2 cm was detected.
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7.3.3.1 Best statistical distribution for PSD of MSW

As observed in previous work (Tanguay-Rioux et al., 2020), the Rosin-Rammler distribution was
found to be the most appropriate for fitting MSW PSDs when compared to the gamma and the log-
normal distributions. For the 78 samples available, a smaller RSS was obtained in 47 cases with
the Rosin-Rammler distribution, in 11 cases with the gamma distribution and in 20 cases with the
log-normal distribution. These 78 samples include the results for the 6 initial samples that included
13 waste categories out of the 14. The unbroken glass was not considered due to a lack of sufficient
data to fita PSD.

7.3.3.2 PSD data representativeness

To ensure that sufficient quantities of waste were collected for the analysis, a Kolmogorov-Smirnov
test was performed. This test is generally used to assess the statistical equivalence of two
continuous distributions. The null hypothesis of the equality of the distributions is rejected if the
p-value calculated with the test is smaller than a threshold size, which was fixed at 0.05 in this

case.

The test was successively applied to different combinations of subsets of samples and compared to
the PSD when all 6 samples are considered to assess if the PSD of the subset is equivalent to the
global PSD. The following subsets were used: the first sample, the first two samples, the first three
samples and so on. The complete results of the Kolmogorov-Smirnov test are presented in

supplementary information (C4).

Results indicate that for every waste category with the exception of the rejects, it is not possible to
conclude that the PSD obtained with the first 5 samples and the PSD obtained with all 6 samples
are significantly different. Therefore, the addition of the sixth sample did not influence the PSDs
obtained, indicating that the sampled mass is sufficient in this study. Moreover, results show that
taking 4 samples of 50 kg of mixed waste is sufficient for most of the categories, the only
exceptions being the ferrous metals and the rejects. These latter cases are respectively characterized
by a small number of objects collected and a high heterogeneity, explaining the need for a larger
sample. Similar to the density characterization, it is therefore possible to characterize the PSD of
the various categories of a commingled recycling stream with relatively small quantities of waste,
in this case between 200 kg and 300 kg.



144

7.3.3.3 PSD analysis

For the 13 waste categories for which it was possible to fit a PSD function, the Rosin-Rammler
parameters were determined based on the total mass collected. Parameters are presented in Table

7-1. The small fraction and the overflow fraction are also presented in Table 7-1.

Table 7-1 Particle size of different categories of recyclables materials

Parameters of RR distribution Properties of the PSD
arI:r)T‘]:;tt;?r(]x ) Scale Fines fraction fra(c)t\i/gr:fzg\évl 5

P (cm) % | parameter (n) | (<1.3 cm) (%) cm) (%) '
Corrugated cardboards 26.9 3.53 0 21.2
Multilayer cardboards 11.2 5.65 0 0
Flat cardboards 15.6 2.46 0 1.6
Newspapers 17.6 3.94 0 0
Mixed papers 14.7 2.60 1.7 0
Unbroken glass - - 36.5 0
Broken glass 2.3 1.39 0 0
PET 11.9 2.89 0 0
HDPE 17.0 3.17 0 0
Plastic films 15.7 2.79 0 1.3
Mixed plastics 11.3 2.14 0.5 0
Ferrous metals 10.2 5.49 0 0
Non-ferrous metals 8.7 3.94 0 0
Rejects 14.7 1.71 1.7 3.2

The location parameter corresponds to the particle size at a cumulative fraction of 63.2% and the
scale parameter indicates the shape of the distribution as shown in the following equation of the

cumulative density function.

X n
F(x)=1—exp (— (1 - —) ) (7-3)
X0
A preliminary analysis of the data shows that the corrugated cardboards and the broken glass
categories have a location parameter significantly different than the other waste categories.
Moreover, as observed previously, the metals categories seem to have smaller sieving diameters
than fibers and plastics. As for plastics and fibers, no clear different tendencies are observed.
Multilayer cardboards have smaller particle sizes than other fibers type, but also have a wider

range. Moreover, flat cardboards, newspapers and mixed papers all seem to have similar PSD based



145

on the RR parameters. As for plastics, larger differences are observed amongst them as HDPE and

plastic films have a significantly higher location parameter than PET and mixed plastics.

Moreover, the only category having an important overflow fraction is the corrugated cardboard,
while the only category having an important fraction of fines is the broken glass, highlighting again

their differences with the other waste materials.

To further investigate the similarities in the PSD of different waste categories, a Kolmogorov-
Smirnov test was performed. All two-by-two combinations of waste categories were tested to
assess whether some of them were statistically equivalent. Results are presented in supplementary

information (C5).

Surprisingly, the null hypothesis of the PSD equivalence was rejected for only 6 waste categories
out of 13, which are corrugated cardboards, mixed papers, broken glass, HDPE, non-ferrous metals
and rejects. For all the other categories, it was not possible to conclude to a statistical difference of
their PSD with at least one other waste category. Flat cardboards, newspapers and plastic films
were all determined to have equivalent PSD. As for the other combinations for which it was not
possible to reject the null hypothesis, they were PET-mixed papers, multilayer cardboards-ferrous
metals and multilayer cardboards-PET. This finding is particularly interesting when it comes to
waste sorting since it indicates that these combinations of recycling materials would theoretically

have a very similar sorting efficiency in an equipment targeting the particle size.

7.3.4 Shape factor analysis

The mean density, the standard deviation and the confidence interval with a confidence level of
90% of the raw materials calculated as described previously are presented in Table 7-2, while the
number of objects measured per waste category is presented in supplementary information (C6).
For the mixed plastics category, the density was measured for polypropylene, which was estimated
to be the most present plastic in the category. In addition to the density of the material, the void
fraction, calculated based on this material density and the bulk density, as well as the typical shape
assumed for every waste category are also presented in Table 7-2.

Confidence intervals reported in Table 7-2 are smaller than 8% for every waste category except for

the flat cardboards. These small values demonstrate that the density of the waste materials is
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relatively homogeneous and indicate that a sufficient number of objects was collected for this

purpose.

Table 7-2 Density and shape and void fraction of different categories of recyclables materials

Material density
Mean Standard Confidence Typical shape Void
density (kg | deviation interval at fraction

m3) (kg m®) 90% (%)
Corrugated cardboards 756 105 8.0 Flake 0.902
Multilayer cardboards 822 46 3.3 Prism 0.953
Flat cardboards 892 188 12.2 Flake 0.907
Newspapers 1004 117 6.8 Flake 0.894
Mixed papers 967 101 6.1 Flake 0.870
Broken glass 2584 197 35 Cube 0.769
Unbroken glass 2584 197 3.5 Cylinder 0.896
PET 1339 78 2.8 Prism 0.978
HDPE 971 30 1.7 Prism 0.965
Plastic films 697 51 4.9 Flake 0.966
Mixed plastics (PP) 873 41 2.4 Prism 0.960
Ferrous metals 7030 525 3.7 Cylinder 0.987
Non-ferrous metals 1957 290 7.7 Cylinder 0.978
Rejects - - - - -

The void fraction of recyclable materials is comprised between 0.769 and 0.987. A smaller value

indicates that a waste category is composed of 2D-type objects, while a value closer to 1 indicates

that the category is composed of 3D-types objects. Plastic and metal items clearly have higher void
fraction (i.e., 0.96 — 0.978) than fibers (i.e., 0.870 — 0.904), which is expected since they are mainly

containers, while fibers are mainly flakes. The only exception is observed for multilayer

cardboards, which are generally considered as fibers but have a void fraction of 0.953, which

classify them as 3D-type objects. Broken glass is characterized by a significantly smaller void

fraction, since these particles are smaller and without internal void. This parameter can helps

understand and quantify the shape of MSW and even helps to understand the fate of these materials

in sorting unit operations targeting the shape.
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7.3.5 Outcomes for material sorting

In this section, an analysis of the influence of waste physical properties on mechanical sorting and

how the results may be used for improving MRF operation, is presented.

7.3.5.1 Source-separated recyclable materials separation in MRF

The density and the particle size of different waste materials were generated for each material by
using 100 random property data points following the distributions calculated in the previous
sections. Results are presented in Figure 7.4 for mixed papers, mixed plastics, broken glass and

ferrous metals.

In single-stream MRFs, an equipment targeting particle size, such as a trommel screen or a star
screen, is often used to initially separate fibers from containers (Cimpan et al., 2015). Results in
Figure 7.4 clearly show that mixed papers and mixed plastics have similar PSDs, thus making them
difficult to sort based on particle size. Size separation could therefore not be used solely for this
objective. It can however remain useful as a conditioning step to increase the efficiency of a further
separation based on another waste property (Cimpan et al., 2016). In this case, a separation based
on the shape would be more effective since all fiber categories showed a void fraction smaller than
0.91, indicating flake-type shapes, while the plastics showed a void fraction higher than 0.96,
indicating 3D-type objects. Ballistic separations could thus be envisioned since they allow the
separation of waste materials based on both their shape and their size (Eule, 2013). They have
specifically been identified to successfully separate these types of materials at the beginning of

mechanical sorting sequences (Eule, 2013; Mastellone et al., 2017).
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Figure 7.4 Particle size and density random data points for mixed papers, mixed plastics, broken

glass and ferrous metals

Moreover, results in Figure 7.4 indicate that glass items could easily be removed from the other
materials based on their particle size or density. This is not surprising since trommel screen has
often been identified as a mean to remove glass from plastic and fiber materials (Ardolino et al.,
2017; Mastellone et al., 2017). Figure 7.4 shows that a suitable screen size to recover this fraction
could be between 3.5 and 6 cm, which is similar to the 5 cm reported by Mastellone et al. (2017)
for an MRF. However, it is also observed that some paper and plastic would also end up in the
small fraction. This quantity can be estimated based on the Rosin-Rammler parameters previously
calculated. Here, 6% of the mixed papers and 16% of the mixed plastics have a particle size smaller
than 5 cm, indicating that further recovery methods for the “unders” fraction from the trommel
could be considered. Therefore, the PSD provides a reliable way to estimate stream contamination,

thus helping for further plant improvements.

The same procedure was applied for plastics (Figure 7.5A) and fibers (Figure 7.5B). For plastic
materials, no tendency indicating a potential separation based on their physical properties is
observed. This was expected since plastics are mainly separated from each other based on optical

techniques (Cimpan et al., 2015).
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Figure 7.5 Comparison of particle size and density for A) plastics and B) fibers

As for fiber materials, no clear tendency is observed. Dubanowitz (2000) reported that a trommel
could be used in MRF to separate mixed papers from newspapers and corrugated cardboards.
However, results from Figure 7.5B shows that mixed papers, newspapers and flat cardboards all
have a similar PSD, making their separation difficult in a size sorting equipment. One reason
possibly explaining this difference is that newspaper use has evolved since 2000 in Canada and
their occurrence in MSW have strongly decreased. The proportion of newspapers type materials in
the source-separated collection in the province of Quebec (Canada) decreased from 29% in 2007,
of which 42% were flyers, (RECYC-QUEBEC, 2007) to 19% in 2018, of which 64% were flyers
(RECYC-QUEBEC, 2020). This important increase of flyers, which are made of the same kind of
material but are smaller than newspapers, could explain the difference observed. As for the
separation of corrugated cardboards with a trommel, results indicate that this could probably be an

effective approach due to their larger PSD.

7.3.5.2 The case of multilayer cardboards

Unpublished data from a highly mechanized recyclable sorting facility located in the province of
Quebec, Canada, indicates that 71% of the multilayer cardboards entering the facility is correctly
recovered and baled, with a purity of 73%. The remaining 29% of multilayer cardboards are mainly
lost in the mixed papers bales and the rejects bales due to an inefficient sorting from the ballistic

separators and the optical separator. As for bales of multilayer cardboards, the impurities are mostly
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fibers and rejects. These data provide an interesting overview of the efficiency of a plant but should
be used with care since they are not necessarily representative of other plants since they are
influenced by several techno-economic factors. Figure 7.5B and Table 7-2 show that multilayer
cardboards have similar PSDs as paper and cardboard categories, with a slightly smaller density
and a higher void fraction. Due to the lack of mechanical operation available to easily exploit the
difference in density, it seems unlikely that further significant improvement in recovery of
multilayer cardboards is possible due to the similar particle sizes. Even though, higher collection
rates were reported in Germany, the implementation of a deposit system would still be preferable
in terms of recovery as collection rates between 80 and 99% could be achieved with this latter
option (Zero Waste Europe, 2020). Therefore, the use of a deposit system of these materials, as
envisioned by the Quebec government, appears to be a good alternative to improve the recovery of

this material if the current separation is considered insufficient.

3.5.3 The case of corrugated cardboards

Unpublished data from the same sorting facility in Quebec also indicate that only 55% of the
corrugated cardboards entering the facility is recovered and baled, with a purity of 73%. The
remaining cardboards are mostly lost in the mixed papers bales (32%) and the newspapers bales
(9%) due to an inefficient sorting from the first steps of the process, which is mainly based on a
size separation of 23.5 cm. As for the bales of corrugated cardboards, the impurities are mainly
composed of rejects. Figure 7.5B clearly shows that corrugated cardboards have larger particle
sizes than other fiber types, justifying this separation strategy. According to the Rosin-Rammler
parameters calculated in the previous sections, about 56% of the corrugated cardboards are smaller
than 23.5 cm, which correspond exactly to the quantity recovered based on this size in the facility.
Therefore, the Rosin-Rammler parameters adequately predict the separation efficiency. As for
increasing the recovery of this waste material, it could be possible to add a subsequent size
separation a little smaller than 23.5 cm prior to baling the mixed papers. This way, the
contamination from plastics and other rejects would not increase since these materials would be
diverted. Moreover, the bale purities for corrugated cardboards could increase to 70% for a 20 cm

separation and to 80% for a 17 cm separation.
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7.4 Conclusion

Density, particle size and shape factor of recyclable materials were determined following a
characterization of the input of an MRF located in Canada treating commingled recyclable
materials. A new procedure based on the void fraction calculation is proposed to characterize the
shape factor of MSW, allowing for an objective quantification of this property. Density is assumed
to follow a normal distribution, allowing for the calculation of its mean and standard deviation.
PSDs are shown to be best fitted by a Rosin-Rammler distribution, allowing for the calculation of
two parameters describing the waste materials. The results provide a rare dataset presenting the

physical properties of MSW categories.

Both density and particle size were shown to be relatively constant throughout the samples.
Statistical methods were used to assess the representativeness of the presented results as well as to
provide insight for future work. Waste quantities to sample were provided as an indication for

future characterization of MSW properties.

Even though these properties are determined in the Canadian context, making their extrapolation
to other contexts uncertain, they provide a useful insight on the sorting efficiency of several
mechanical unit operations of MRF. Results were used to explain and deepen the available
knowledge on the mechanical sorting of recyclable materials, with an emphasis on the cases of
multilayer cardboards and corrugated cardboards. It was shown that in order to improve the
recovery of these materials, the recovery of multilayer cardboards should be done via a source-
separation deposit system, while the recovery of corrugated cardboards could be increased by

adding a new size separation step.
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Abstract

Material recovery facilities (MFRs) play an important role in today’s waste management systems
to maximize recycling efficiency for several waste materials. These facilities face multiple
challenges related to the quality of their output streams, often due to a poor understanding of the
mechanisms occurring within the sorting equipment. Improving modeling techniques of these unit
operations appear to be a promising opportunity to mitigate these challenges. Mechanical sorting
efficiency of municipal solid waste is often predicted from simple transfer coefficients, which are
obtained for a specific set of operating conditions of the sorting equipment and sorting sequence
configuration. When these transfer coefficients are used in situations that are different to those in
which they were obtained, poor predictions can be expected. To overcome these limitations, a new
predictive tool, based on the integration of mechanistic models and transfer coefficients, is
presented. Mechanistic models are developed only for the most influential unit operations in a
MRF, in order to predict their sorting efficiency based on the physical phenomena occurring.
Integration of these models with the use of transfer coefficients for the other unit operations allows
the entire predictive tool to remain as simple as possible while providing high prediction accuracy
and flexibility. The use of the tool is validated with a real case study of a material recovery facility
processing mixed municipal solid waste in Canada. Results indicate a good prediction of the mass
flows, the purity and the recovery of the facility. Moreover, a new modeling technique is proposed

for the representation of a ballistic separator based on the shape factor of the waste items.

8.1 Introduction

Mechanical sorting of municipal solid waste (MSW) plays an important role in today’s waste
management strategies. It is generally used in material recovery facilities (MRFs) or in mechanical -
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biological treatment (MBT) facilities to separate waste materials from source-separated recyclable
streams or mixed MSW streams. Both approaches allow to recover recyclable materials that can

be reintroduced into the economy as secondary materials.

Even though life-cycle assessment (LCA) results on MSW strongly vary according to the studies,
mechanical recycling is often considered as a more environmentally friendly pathway for handling
materials such as plastics, paper and metals, than other options as incineration and landfilling
(Bjorklund et al., 2010; Laurent et al., 2014).

However, mechanical sorting of MSW for recycling purposes still faces several challenges.
Materials recovered through mechanical sorting were often shown to contain a high level of
contaminants due to the high heterogeneity of the feedstock (Cimpan et al., 2015; Damgacioglu et
al., 2020; Ip et al., 2018; Mastellone et al., 2017; Velis et al., 2010). A good quality of output bales
is however essential in order to achieve high recycling rates (Eriksen et al., 2019). In addition to
quality issues, low recycling rates for several waste materials were often observed (Eriksen et al.,

2020). Therefore, improvements to the waste recycling systems must be implemented.

To increase the resource recovery of waste materials, several approaches have been identified at
different levels of the waste management system, including product design, source separation and
treatment technologies. For example, reducing the proportion of black plastics in the economy,
reducing the fraction of plastics composed of more than one polymer and performing a source-
separation of food packaging and non-food packaging could all lead to an increase in the recycling
rates of plastic materials (Eriksen & Astrup, 2019). Improving extended producer responsibility
(EPR) can also play an important role to increase the recycling rates by creating incentives for
recycling (Andreasi Bassi et al., 2020). Finally, new treatment technologies may be implemented
to the current system. For example, implementing chemical recycling over mechanical recycling
could limit the degradation of plastic materials during the recycling process and limit the impact
of feedstock contamination (Ragaert et al., 2017; Thiounn & Smith, 2020). However, the impacts
of these modifications to the waste management system need to be evaluated using the most

rigorous environmental impact assessment prior to be integrated into current treatment strategies.

A key aspect while assessing the environmental impact of municipal solid waste recycling is the
calculation of the substitution potential of a waste material in the economy as a secondary material

(Andreasi Bassi et al., 2017; Rigamonti et al., 2020). This substitution potential is particularly
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important for materials recovered in recycling loops as papers, glass and metals, since they are
strongly affected by the quality of material streams circulated back into the economy (Andreasi
Bassi et al., 2017).

In the framework proposed by Vadenbo et al. (2017) to calculate the substitution potential of a
material, the recovery efficiency plays an important role and is often calculated by a material flow
analysis (Vadenbo et al., 2017). However, this parameter faces a lack of transparency as it is often
not reported in LCA studies (Viau et al., 2020). For recycling, this recovery efficiency is expressed
as a combination of the collection and the recycling processes (Vadenbo et al., 2017). Therefore,
for materials processed by MRFs, both the recovery and the purity are crucial parameters to address

the recovery efficiency of the facility and thus its environmental performance.

This need to adequately predict both the recovery and the quality of the bales produced from sorting
operations will only continue to gain importance with the growing influence of eco-design concepts
and the interest in banning single-use plastics. It is therefore expected that new waste materials
with new physical properties will integrate waste treatment loops and it will be crucial to

adequately predict their recovery pathways.

To do so, a rigorous modeling of the treatment facilities is required. Material flow analysis (MFA)
is a decision-support tool that has been applied several times to model the mass balance of MSW
systems (Allesch & Brunner, 2015). It has been used often in recent years to model specifically
mechanical sorting processes (Caputo & Pelagagge, 2002; Damgacioglu et al., 2020; Giani et al.,
2016; Rotter et al., 2004; Velis et al., 2013). MFA is based on the use of transfer coefficients to
predict the partitioning of a material in the output of a unit operation based on its inputs.

However, most of the MFAs focusing on MRF do not allow for the variation of the input
composition or the sorting sequence since they are often performed on existing plants with
measured data (Kleinhans et al., 2021). Moreover, these types of studies focusing on transfer
coefficients calculation for MRF face three main challenges, which are a high complexity of the
studied facility, a strong influence of the input composition and the difficulty to obtain reliable

transfer coefficients (Kleinhans et al., 2021).

Two models for predicting the output products of a MRF based on the input stream and the sorting
sequences have been developed recently by Ip et al. (2018) and Kleinhans et al. (2021). These two

models use a similar mathematical algorithm to solve the mass balance of the process, which is
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based on the work of Wolf (2011) and Testa (2015). In both cases, the unit operations are described
based on transfer coefficients, calculated by input-output mass balances for Ip et al. (2018) and
estimated based on expert judgement for Kleinhans et al. (2021). Along with expert judgement and
input-output mass balances, transfer coefficients can also be calculated based on the physical
phenomena occurring in the sorting equipment or based on performance indicators obtained from
the manufacturers (Ip et al., 2018; Kleinhans et al., 2021).

However, for some mechanical unit operations, the separation efficiency can vary significantly
from one waste material to another (Jansen et al., 2015; Tanguay-Rioux et al., 2021a). Moreover,
the separation efficiencies of mechanical sorting unit operations have been shown to vary according
to several factors such as the input stream composition, the waste physical properties and the
operating conditions (Raymond, 2017). Modeling sorting operations based only on transfer
coefficients can thus lead to large inconsistencies since they do not generally consider the real
operating conditions of the process (Tanguay-Rioux et al., 2021a). The use of models considering
the mechanistic behaviour of the unit operations instead of fixed transfer coefficients could help
overcome these limitations. It would also allow more reliable simulations of new treatment

scenarios and technologies (Blikra Vea et al., 2018).

However, it was found that this approach has been used seldomly in the past for an entire MRF,
possibly due to the large variation of MSW physical properties and the high number of potential
unit operations (Kleinhans et al., 2021). Still, previous work showed that it would not be necessary
to model every unit operation of a sorting facility based on the physical phenomena since it should
only be done for direct separators targeting waste properties (Tanguay-Rioux et al., 2021a), thus

reducing considerably the modeling complexity.

The objective of this study is to present a tool for MSW sorting process based on a mixed modeling
approach, which relies on an integration of mechanistic modeling and transfer coefficients
utilization. The approach is based on a rigorous description of the material flows, including a
description of the main physical properties, and allows to consider the main operating conditions,
the process sequence and the input waste composition and physical properties. The model is
validated with a real case study on a material recovery facility of mixed MSW. Finally, the benefits
of the method over the use of transfer coefficients are demonstrated by showing the effect of the

process sequence and operating conditions on the different unit operation’s sorting efficiency.
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8.2 Material and methods

8.2.1 Model description

A mathematical algorithm was developed to solve the mass balance of mechanical sorting
processes. This algorithm sequentially calculates the outputs of every unit operation of the process.
Each unit operation is defined as an independent module having its own mathematical model.
These modules predict the output composition of the unit operation as well as potential
modifications to the waste properties, for a given input composition and a module description.
Every module and the general algorithm are built on Python as independent classes. The input
information, as the unit operations considered, the process sequence, the input composition and the
input properties, are provided with an Excel interface. A graphical representation of the model is
provided in Figure 8.1.

Mathematical algorithm

User lIlpU(S E- ------------------------------------------ § Un]t Ope[-atl()n modules
| I Importation of the user inputs 3 grmmmmmm—- ,;w;w;"," H User inputs
I Input composition | : i Mathematical resolution } TR
| Input properties | Creation of the process H ¢ of the unit operation % | Unit operations !

v S " —p o —" Y . " . v

I List of unit operations | mapping H : according to the choice | description
I Process sequence | : H H of module P e e e
e 1 Mass balance H N T ey ;

............................................

Excel interface
Modcl outputs

Python class
) Flows composition
Python objcct Flows properties

Figure 8.1 Graphical representation of the tool

8.2.1.1 Model inputs
Model inputs are provided with an Excel interface. Required information include:

e The description of the input stream, including its mass flow, its composition and its physical

properties;
e The list of the process unit operations;
e The list of the edges (link between two unit operations) of the process;

e A description of the unit operations (further discussed in section 8.2.1.3 and 8.2.2).
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8.2.1.2 Properties description

The model is developed to track six properties for every stream, which are the bulk density, the
shape factor, the particle size distribution (PSD), the moisture content, the lower heating value
(LHV) and the elemental composition. Properties are all defined as independent variables
associated to one waste material. They can be modified by a unit operation or remain unchanged if

it does not influence them.

8.2.1.3 Modules description

Three types of modules are currently defined. Their mathematical algorithm is further discussed in
section 8.2.2. They all include default values that can be modified by the user. The modules allow
to calculate the mass flow, mass composition and waste properties of every output stream of the
different unit operations according to its input stream description. They can consider as many input

streams as necessary.

8.2.1.4 Mathematical algorithm

The mathematical algorithm is presented in Figure 8.2. First, user inputs are imported, including
the process sequence, the descriptions of the unit operations and the input flows. Then, all the
streams of the process are created and initialized with a null mass flow. At this stage, it is not
necessary to define the flows properties since these will be automatically determined by the
different unit operation calculations. Every unit operation is then solved independently to calculate
the mass flow, the composition, and the physical properties of its output streams according to the
type of unit operation defined by the user and its operating conditions. Once every unit operation
is solved, the system mass balance is solved two other times by considering the results of the
previous run as the new initial mass flows. These iterations are required since the algorithm solves
the mass balance in the order in which the unit operations were defined. Therefore, for some unit
operations, it is possible that some input streams are not yet calculated during the first iteration.
Finally, the purity and the recovery are calculated for the main output streams for every targeted

material.
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Figure 8.2 General mathematical algorithm used to solve the mass balance

8.2.1.5 Model outputs

Model outputs are provided as Python objects, including dictionaries and DataFrame, and can be

exported to Excel. They include the following information about every stream:
e Mass flow;
e Material composition and elemental composition;

e Physical properties.

8.2.2 Unit operation modules

Two approaches are used to develop the unit operation modules, which are the use of mechanistic
modeling and the use of transfer coefficients. In the current version of the model, two modules are
developed based on the mechanistic modeling approach, one for a trommel and one for a ballistic
separator. The other unit operations are solved based on a generic transfer coefficients module for
which the specific values can be defined by the user. For both modeling approaches, the modules



159

predict the separation efficiency. In this case, the separation efficiency of a unit operation is defined
as the fraction of material i in the inlet streams that ends up in a specific output stream. The choice
of the output stream depends on the objective of the unit operation and can vary according to the
situation. For example, the separation efficiency of a ballistic separator can be expressed towards

the 2D or the 3D outputs, according to the separation objective.

8.2.2.1 Ballistic separator module

Ballistic separators partition waste materials in three output streams according to the waste
properties. Those three output streams are for 2D-type, 3D-type and fines items. Their separation
efficiency depends mainly on the shape factor and the particle size of the waste items (Eule, 2013).

A partitioning model based on these two properties was developed for this unit operation.

First, it is assumed that 100% of the items of each waste material that are smaller than the screen

size of the ballistic separator is recovered in the fines fraction according to the following equation:
E; fines = Fi(ds) (8-1)

where E; rines is the separation efficiency of the material i in the fines output and F;(x) is the

cumulative mass fraction of items of material i smaller than x and d; is the screen size. Therefore,

F;(dy) gives the mass fraction of items of waste material i that are smaller than the screen size d;.

Once the fines separation efficiency is calculated, the 2D/3D separation is calculated on the
remaining fractions for every waste material. For this separation based on the shape of the
materials, separation efficiencies for several waste materials obtained for a real situation in
previous work were fitted according to the shape factor also determined in previous work for these

waste materials (Tanguay-Rioux et al, 2021b). The fitting results are presented in section 8.3.1.1.

Three main assumptions are considered. The first hypothesis is that the size separation is 100%
effective. This seems appropriate since ballistic separators are often preceded by one or more size
separations, leading to a small fraction of fines entering this step. The second hypothesis is that the
shape factor of a given material item is not influenced by its size. The third hypothesis is that the
2D/3D separation does not modify the waste properties. As a result, the PSD of these two output

streams was assumed to be the same as the PSD of the input stream for a given waste material.
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8.2.2.2 Trommel module

The model used to predict the trommel separation efficiency is adapted from Alter (1983). The
model is based on the calculation of the probability of passage of a particle through the sieves of
the equipment according to its number of impingements. The methodology was modified to
consider the passage of particles due to reflection, and introduced by Glaub et al. (1982). The
probability of a particle to pass through an aperture of the screen is therefore expressed with the

following equations:

(Da — Dy, cos /10)2

2 (3-2)

P=Q

and
B,=1-(1-P)" (8-3)

where Py is the probability of passage after n impingements, P is the probability of passage after
one impingement, Q is the ratio of apertures to the total surface, also named the screen ratio, Da Is
the screen size, Dy is the particle size and cos A, is the reflection parameter. The number of

impingements is a function of the trommel length, radius and inclination.

The complete methodology to calculate the number of impingements and the reflection parameter
is described by Alter (1983) and Glaub et al. (1982).

To apply equations 8-2 and 8-3 to every waste material over their PSD, and thus calculate the
trommel recovery per material and the new PSD of the output streams, the PSD of the input stream
is discretized in 200 increments. Then, the average particle size Da is calculated for every increment
through the integration of the distribution and a probability of passage is calculated. This
probability corresponds to the separation efficiency for that specific particle size. Then, all
increments are aggregated according to their separation efficiency, hence yielding the composition
of the outputs and their new PSDs. The separation efficiency of the trommel for each material i,
which is defined either as the fraction of material i in the inlet streams that ends up in the unders

stream or the overs stream, is thus obtained.

The main assumption of the model is that there are no interactions between the particles that would

influence the probability of passing through the apertures of the trommel.
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8.2.2.3 Other unit operations

Transfer coefficients are retrieved from expert judgement, input-output characterizations or

literature data. The separation efficiency is predicted using the transfer coefficients as:
Eij=ai; (8-4)
where E; ; is the separation efficiency of the material i in the output stream j and g; ; is the transfer

coefficient of the material i in the output stream j.

The output streams composition is calculated with the following equation:
Fij = qy;F" (8-5)
It is assumed that this module does not modify the waste properties of the streams.

8.2.3 Model validation

The model is validated by comparing its predictions to a real material recovery facility.

8.2.3.1 Case study description

The MRF used as a case study is located in the province of Quebec, Canada. The facility is designed
to handle mixed municipal solid waste. The region covered by the facility is already served by a

collection of recyclable materials and a collection of organic materials.

The process includes 2 ballistic separators, 2 trommels, one disc screen, one magnetic separator,
one eddy current separator, several optical sorters and manual separation stations. The complete
sequence of the process is shown in Figure 8.3. The process and the streams represented by dotted
lines were excluded of the system boundaries. A more in-depth description of the system

boundaries is presented in section 8.2.3.2.
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Figure 8.3 Process sequence and system boundaries of the MRF used for the case study

8.2.3.2 Unit operations modeling

For both ballistic separators (P6. P7), no separation of the fines fraction is done in the MRF.
Therefore, a screen size of 0 cm was imposed and only 2 output streams were considered. As for
the size separation in the trommels (P2, P5) and the disc screen (P16), the only information known
is their screen size, which are respectively 30.5 cm, 8.9 cm and 1.9 cm for the first trommel (P2),
the second trommel (P5) and the disc screen (P16). It was decided to predict the disc screen
separation efficiency using the same type of model as the one developed for a trommel, since they
are both size separation operations. The disc screen model used a 1.9 cm screen size and a small
“trommel” radius in order to generate a large number of impingements, which is more
representative of the separation mechanism in a disc screen. The complete list of input parameters

provided to the model to represent the three separation sizes are presented in Table 8-1.
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First trommel Second trommel Disc screen
(P2) (P5) (P16)
Screen size (cm) 30.5 8.9 1.9
Length (m) 5 7 5
Diameter (m) 2 2 0.5
Screen ratio 0.2 0.4 0.4
Inclination (°) 5 5 5

For the other unit operations, they were all model based on the utilization of transfer coefficients.
The separation efficiencies calculated in previous work (Tanguay-Rioux et al., 2021a) for the same
MRF were used for the pre-sorting manual separation step using a mechanical shovel (P1), the
magnetic separator (P4), the eddy-current separator (P10), the optical sorter targeting PET (P8) and
the optical sorter targeting mixed plastics (P9). Since these coefficients were derived from the same
MREF, they are representative of the facility. Finally, the manual sorting stations (P3, P11, P12,
P15) and both the optical sorters (P13, P14) on the 2D output of both ballistic separators (P6, P7)
were not modeled due to a lack of representative data on their separation efficiency. Therefore, the
output streams of these unit operations were aggregated and represented by the final output streams
still within the system boundary (AU1, AU2, AU3 and AU4). For example, the output streams U3,
U5, U11, U12 and U14 were all aggregated and are represented by the internal stream for the overs

leaving the trommel AUL.

8.2.3.3 Input composition and physical properties

The composition of the input stream (G1) was determined by making the sum of all the output
streams (U1l to U16) according to their characterization. As for the physical properties, bulk
density, shape factor and PSD, the measurements made in previous works were used. For some
waste materials, data were missing since they were not characterized in these studies. In these
cases, missing data were filled in with estimations and literature data. A complete list of the waste
properties and the input composition used in this case study are provided in supplementary

information (D1).
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Since moisture content, LHV and elemental composition are not used in this case study, they were
not reported for simplicity reasons. However, these could be tracked using typical expressions
found in the literature if required.

8.2.3.4 Performance indicator and validation

Three performance indicators are used to assess the accuracy of the separation predictions.

First, the total mass flow of the main output streams was considered as a performance indicator.

The other two are the purity and the recovery, which are calculated using the following equations.

Xij
Pij =<nr v (8-6)
i=I1XiJ'
and
T = — 8-7
" Xiin &7

where p; ; is the purity of the material i in the stream j, r; ; is the recovery of the material i in the
stream J, X; ; is the mass flow of the material i in the stream j, X; ;is the mass flow of the material

I in the input streams of the global process and n; is the number of waste materials.

The purity is a measure of the quality of the output streams and indicates the ability of the system
to adequately concentrate the correct waste material in a given stream. The recovery is a measure
of the quantity of materials sorted in a given stream and indicates the ability of the system to

adequately sort the materials in the right stream.

The performance indicators were calculated for different points of the facility, including the output
streams U1, U6, U9, U10 and U13, and the AU1 to AU4 streams representing the aggregated
streams of unit operations P3, P11, P12 and P13. These points were identified as part of the system

boundaries since they are not dependant on manual sorting.
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8.3 Results

8.3.1 Unit operation modeling

The performance of the trommel and the ballistic separator models in comparison to experimental

data is presented in this section.

8.3.1.1 Ballistic separator

Separation efficiencies obtained in previous work for a commingled recyclable MRF were fitted
by a sigmoid function according to the shape factor of several waste materials. In this case, the
shape factor is defined as the void fraction (v), according to previous results (Tanguay-Rioux et

al, 2021b). The regression function takes the following form:

Emax

1+ exp(ﬁ(v — 1750))

Ep(v) = (8-8)

E,,(v) is the separation efficiency of the ballistic separation according to the void fraction v of a
waste material and E,,,, B and vg, are the parameters of the regression. E,,,, represents the
maximal separation efficiency, f represents the slope of the curve and vs, represents the void

fraction for which the separation efficiency is 50%. Raw data as well as the fitting results are shown

in Figure 8.4.
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Figure 8.4 Experimental data and model results for ballistic separation
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The results of the regression are presented in equation 8-9.

0.823
1+ exp(149(v — 0.950))

E)p(v) = (8-9)

Therefore, the maximal separation efficiency value is 0.823 and the v, value is 0.950.

Results in Figure 8.4 indicates that the sigmoid function can adequately be used to predict the
separation efficiency for most waste materials. The fit agreement is very good, except for glass and
plastic film items. The difficulty of predicting glass separation efficiency is explained by its
significantly smaller void fraction than any other waste material items since, unlike the other waste
materials, glass enters the facility in a broken form. Therefore, while void fraction above 0.95
indicates 3D-type objects and void fraction around 0.9 indicates 2D-type objects. The four data
points in Figure 8.4 with a high E,, represent paper and cardboard materials, while at the opposite
end of the curve, data points with a small E, represents plastic and metal containers. As for void
fraction smaller than 0.85, it represents a significantly smaller void between waste items, indicative
of small objects with low internal void, such as glass particles. Therefore, it is unlikely that these
waste items would end up in the 2D-type outputs. In the model, for material items with a void
fraction smaller than 0.85, a separation efficiency in the 2D-type output of 5% was imposed, which
is estimated since the separation is rarely 100% efficient and it was shown in Figure 8.4 that these
types of materials are mainly recovered in the 3D fraction.

As for the plastic films, they are characterized by a low bulk density, which is not reflected by the
void fraction measure, possibly due to a lower level of natural compaction during the
measurements. Further waste characterizations should thus be considered for this material in order

to improve its shape factor measurements.

8.3.1.2 Trommel

The trommel module was tested by comparing the simulation results with experimental data of the
composition of the RDF-like fraction obtained from 10 MBT facilities and retrieved from Montejo
et al. (2011). In this case, MBTs include a trommel (sieves size of 8-9 cm), manual sorting and
metals separation. With the information provided in the study, it was possible to deduce a

separation efficiency for the overs output stream for the trommel and to compare these results to
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the predictions obtained with our trommel module using the same operating conditions. For this
validation, only the materials for which a PSD was measured in our previous works were selected.
Results are shown in Figure 8.5.
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Figure 8.5 Comparison between predicted and measured separation efficiency in the overs output

of the trommel for different materials

Results indicate that the trommel module gives a good prediction of the separation efficiency of
the trommel for the main waste materials. The largest difference is obtained for the green residue
category. This could probably be explained by the differences of context, since PSD were taken as
those measured in a Canadian context, while the experimental results are obtained in a Spanish
context. Globally, an average absolute difference of 6% is observed between predicted and
measured trommel separation efficiencies. This average difference is reduced to 4.8% when the
green residue category is neglected. This good agreement indicates that the model can adequately
be used to predict the efficiency of a trommel for raw MSW. However, results also indicate, that a

PSD measured in a similar context should be used for each feedstock material.
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8.3.2 Model validation

Based on the sorting sequence presented in Figure 8.3, it is assumed that the optical sorter 2 (P14)
do not send any material to the 3D-line (P8) since the real efficiency of this unit was not directly
measured and its estimation would be highly subjective. Moreover, discussions with the operator
indicated that this optical sorter do not perform as expected. Therefore, for comparison purposes,
we can expect that the mass flow at the sampling point P13 will be slightly overestimated. This can
be seen in Figure 8.6A. Globally, the Figure 8.6A demonstrates a relatively good prediction of the
mass flows for the main outputs. The biggest differences are observed for the output stream U6
and the internal unit operations P12 and P13. The error occurring for the output stream U6 is
explained by a difference between the description of the ferrous metal category for the
characterization of the composition and for PSD analysis. For the PSD analysis, only ferrous
recyclable materials were sorted in this category, therefore including solely cans and lids, while for
the characterization of the composition of the input/output streams, the ferrous metal category
included several other types of materials, such as kitchen items and other large objects. Therefore,
it is expected that the PSD of the ferrous metals category would have both a larger location
parameter and a larger scale parameter to reflect the presence of larger items and the larger
dispersion of the particle size items. These differences mean that the model is not able to reflect
the separation of the large ferrous items by the first trommel. As for the unit operation P12, an
important difference is observed for the mass flows since it is the last unit operation of the process.
Therefore, the prediction errors of all other unit operations accumulate for the prediction of the last

unit operation.
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The results showed in Figure 8.6B and 8.6C, for the purity and the recovery, also demonstrate a
good agreement between the modeling results and the characterization results for most streams.
However, more accurate results are obtained for the purity with an average absolute difference of
5.0%, than for the recovery for which an average absolute difference of 9.2% is obtained. This
difference is however reduced to 7.4% if the fines output (U13) is not considered. As demonstrated
by the results, the prediction of the fate of the fines material is difficult. This can be explained by
the fact that they often can get trapped in other materials. Also, brittle materials are often broken
in smaller pieces in certain mechanical sorting unit operations as ballistic separators, having for

effect to create more fines along the process (Eule, 2013).

Papers and cardboards materials are mainly recovered in the stream U2, which is represented in
Figure 8.6 by the stream P13 and for which a poorer prediction of the purity and the recovery is
observed. This is possibly explained by the moisture content affecting the efficiency of both the
size separation and the ballistic separation, which is not reflected in the modeling.

However, even though some aspects of the modeling results could be improved, a good prediction
of the process efficiency is obtained for a relatively complex MRF processing mixed MSW based
on their physical properties. This shows that the model can adequately be used to predict the output

of a similar process.

8.3.3 Influence of the operating parameters on the separation efficiency

predictions

To demonstrate the benefits of this modeling approach for MRF modeling, different scenario
analyses were performed. The modeling approach allows to consider the impact of the operating
conditions, the sorting sequence, the waste composition and the waste properties on the separation

efficiency of the main mechanical unit operations.

8.3.3.1 Operating conditions

The operating conditions of the different unit operations have a large influence on the separation
efficiency of the MRF. This is particularly important for mechanical sorting equipment targeting a
waste property rather than a specific material (Tanguay-Rioux et al., 2021a). Therefore, the main
operating conditions should be reflected through the unit operation modeling. For example, the

screen size of trommels and other size separation unit operations strongly influence the separation
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efficiency that can be achieved. To demonstrate this importance, the separation efficiency of
several raw materials in the unders output was calculated for different screen size and is presented

in Figure 8.7. The other operating conditions were set as constant.
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Figure 8.7 Separation efficiency for the unders output stream of a trommel for several waste

materials according to the screen size

As expected, large variations of separation efficiencies are observed for every waste material
considered. Moreover, the variability trend differs for different waste material, making it
questionable to estimate adequate transfer coefficients for a given situation based solely on expert

judgement or literature data for this unit operation.

8.3.3.2 Sorting sequence

An other important aspect having an influence on the separation efficiency of mechanical sorting
unit operations is the process sequence since it indirectly modifies the waste properties. To
demonstrate the importance of the sorting sequence and how the mixed modeling approach used
in this work is able to capture its influence, a scenario analysis was performed to compare two
situations. For scenario A, the unders separated with a trommel having a screen size of 18 cm are
subsequently separated with another trommel having a screen size of 9 cm. For scenario B, only
the 9 cm trommel is used without prior separation. To compare the scenarios, the separation
efficiency of several materials for the unders output stream of the 9 cm trommel is compared for

both scenarios. Results are presented in Figure 8.8.
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The differences between the scenarios strongly vary according to the waste material considered.
For example, the separation efficiency of the cardboard materials increases by 290% in scenario B
in comparison to scenario A, while it only increases by 0.22% for glass materials. Globally, an
increase in the separation of the waste material for the unders fraction is observed for the scenario
A since the first trommel allows to remove large materials, leading to a globally smaller PSD, and
thus increasing the fraction of material recovered in the unders fraction by the second trommel.

Even though these variations can be expected and can seem relatively small for certain waste
materials, they do influence the final results and could potentially change the conclusions regarding
the MRF performance. Moreover, this influence is not captured by conventional modeling
techniques using only transfer coefficients. Therefore, the use of transfer coefficients only is not

recommended to compare the efficiency of different sorting sequences.

Here, the influence of the sorting sequence was demonstrated with a sequence of two size
separations. However, similar results would be obtained for the recovery of the fines fraction from

a ballistic separation if it is preceded by a size separation.
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8.3.3.3 Feedstock composition and waste physical properties

Results shown in section 8.3.3.1 and 8.3.3.2 demonstrated the influence of both the operating
conditions and the sorting sequence on the separation efficiency of the mechanical sorting
operations, since these sorting operations depend on the physical properties of the wastes.
Therefore, both the physical properties and the waste composition would also directly influence

the separation efficiency and should be considered in the modeling approach.

8.4 Discussion

The tool presented allows to take four main aspects into consideration while modeling MRF of
MSW, which are the waste composition and physical properties, the operating conditions of the
main unit operations and the process sequence. Since the tool is based on the use of independent
modules, it is highly flexible, allowing to easily analyze several different scenarios. For example,
the model can be adapted to reflect different waste composition, different waste characteristics and
different sorting sequences. Assessing different scenarios can allow to compare the products

quality to different standards and requirements according to the available markets.

The mixed modeling approach used in this work allows to overcome limitations observed with
other approaches found in the literature due to their inherent use of transfer coefficients, without
adding needless complexity. Moreover, it allows to predict both composition and physical
properties of waste. This represents an important aspect in order to measure the quality of the
products in a circular economy context, and even help to calculate substitutability indicators of
secondary materials. The flexibility of the tool also allows to easily add new waste materials in the
inlet stream as well as new unit operations in a sorting process. This offers an opportunity to guide
the conception of new products as it is possible to predict their recovery in an MRF according to

their specific characteristics.

Finally, even though the tool was developed to model mechanical sorting unit operations, it can
include other type of treatment processes. For example, the tool was previously used to integrate a
mechanistic model of an anaerobic digestion process into a more conventional MFA including pre-
treatment and post-treatment for handling source-separated organic materials (Urtnowski-Morin et
al., 2021).
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This new tool however faces some challenges that should be used to guide future works in order to
improve its prediction capability. In the current state of the tool, the moisture content of the waste
is not considered in the modeling of the separation efficiency of the unit operations. However, high
moisture content is known to reduce the efficiency of many sieving equipment (Ashkiki et al.,
2019). It can also reduce the separation efficiency of paper materials in air classification (Rotter et
al., 2004). This waste property could thus be included in future modeling development. For
example, Ashkiki et al. (2019) modeled the clogging process of a trommel in a Canadian context.

Moisture could also influence other waste properties such as the density.

Another limitation is related to the description of the waste material physical properties. These are
characterized for a waste material in a given context. They need to be estimated or calculated for
waste categories different than the ones already defined or for different contexts. However,
defining physical properties of solid waste is a long and resource-intensive process. More research
should therefore focus on determining physical properties in different contexts for more waste

materials to increase the global knowledge related to these.

As mentioned before, the prediction of the fines materials fate is difficult due to the creation of
new fines along the process. The process of fines creation along the treatment sequence could thus
be investigated in future work in order to predict it.

Finally, future works should focus on developing more mechanistic models of unit operations and
improving the current ones in order to provide a wide range of modeling possibilities. Air
classification and bio-drying should be prioritized, since they both play an important role in MBT
and both have a direct correlation with waste physical properties. Also, more separation
efficiencies, expressed as transfer coefficients, should be determined for all the mechanical sorting
unit operations since few data are currently available in the literature leading to high uncertainties

related to the real performance of many sorting equipment.

8.5 Conclusion

A mixed modeling tool based on the integration of mechanistic modeling and transfer coefficient
utilization was developed to predict the performance of a sequence of mechanical sorting unit
operations of MSW. This tool, which is based on a rigorous description of the waste characteristics,

including its composition, its PSD and its shape factor, is used to predict the characteristics of every
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output stream of a mechanical sorting process. The combination of the two modeling approaches
captures the influence of operating conditions of certain sorting unit operations, while limiting the
complexity of the model. Its flexible structure allows to easily model different scenarios applicable

to various location contexts.

Two mechanistic models are developed, for a trommel and a ballistic separator. The trommel
module is adapted from the literature to take the PSD characteristics of the waste items into account.
For the ballistic separator, a new modeling strategy is proposed. The separation efficiency is

modeled based on a sigmoid function according to the void fraction of the waste materials.

The tool was validated by comparing the prediction results to actual characterizations obtained for
a MRF targeting mixed MSW in a Canadian context. Even though some differences are observed
between predictions and actual results of the fate of some waste materials, the performance
indicators showed overall good predictions of the output product streams. In comparison to other
modeling tools available in the literature, this tool takes into account the operating conditions of
some unit operations, the sequence of equipment in the process, the input composition, and the
physical properties of the waste, leading to a better confidence in the predictions. It thus represents
an interesting opportunity to improve resource recovery by linking the waste characteristics to their
recovery in an MRF. This could lead to a better understanding of the quality and the recovery of
the targeted materials in such facilities and therefore improve the assessment of environmental

impacts associated to them.
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CHAPITRE9 INFLUENCE DE LA CONFIGURATION DE LA CHAINE
DE TRI ET DES CONDITIONS D’OPERATIONS SUR LA QUALITE
DU TRI DES MATIERES RESIDUELLES MIXTES

9.1 Mise en contexte de I’étude de cas

Une étude de cas a été réalisée a partir des outils développés et présentés dans les chapitres
précédents. L’objectif de 1I’étude de cas est de démontrer I’intérét de ces outils en étudiant I’impact
de la séquence de tri et des conditions d’opération d’une usine de TMB sur la qualité des matieres

récupérées dans un contexte québécois.

Puisque le bio-séchage n’a pas été modélisé dans le cadre de ce projet, la séquence modélisée inclut
uniquement du tri mécanique. Il faut toutefois noter que dans un contexte québécois, la présence
d’une étape de bio-séchage semble essentielle pour réduire 1’humidité des matiéres a trier et ainsi
limiter I’encrassement des différents équipements. Egalement, en raison de 1’absence de débouchés
permettant de valoriser adequatement la matiére organique, il a été considéré que la matiere
organique triée mécaniquement est traitée dans un procédé de carbonisation hydrothermale en vue
de produire un CDD carbonisé. L’intégration du procédé de HTC dans la seéquence de tri se fait a
titre démonstratif et doit étre considérée comme une des options pour améliorer la qualité de cette

fraction. D’autres alternatives pourraient toutefois étre privilégiées suite a d’autres analyses.

Afin de comparer les scénarios entre eux, différents critéres de performance ont été définis
permettant de classer les résultats selon différents objectifs. Egalement, les scénarios ont été filtrés
en fonction de leur performance par rapport a certains criteres minimaux de qualité. Di a I’absence
de normes québécoises ou canadiennes, la qualité des CDD produits dans 1’étude de cas a été
comparée aux normes européennes (CEN/EN 15359) (European Committe for Standardisation,
2006).

9.2 Meéthodologie utilisée pour la réalisation de I’étude de cas

Pour la réalisation de 1I’étude de cas, différents scénarios ont été définis et résolus a partir de 1’outil
présenté au Chapitre 8. Un modele de HTC a été ajouté a I’outil afin d’approfondir la réflexion sur
la production d’un CDD carbonisé par un procédé de TMB. Différents critéres ont également été

définis afin d’analyser la performance des scénarios.
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Pour cette analyse, la composition entrante utilisée correspond a la composition moyenne des
matiéres résiduelles au Québec (EEQ & RECYC-QUEBEC, 2021). Au niveau des propriétés
physiques, les mémes valeurs que celles définies dans le Chapitre 8 ont été utilisées. Finalement,
pour la composition élémentaire, le PCI et le pourcentage d’humidité, les valeurs mesurées dans

un contexte danois par Gotze et al. (2016) ont été utilisées.

9.2.1 Description des scénarios

Différentes configurations potentielles d une chaine de traitement mécanique, ainsi que différentes
conditions d’opération pouvant étre utilisées pour le traitement de matieres résiduelles dans un
contexte québécois ont été identifiées. A partir d’une séquence de base, présentée dans la Figure
9.1, et de plusieurs conditions d’opérations différentes, présentées dans le Tableau 9-1, 1200

scénarios ont été définis en considérant toutes les combinaisons possibles de configuration.

Gl-
Alimentation

!l

P13 - Crible

rotatif grossier U1l - Rejets

P1 - Pré-tri U0 - Rejets

P2 - Crible
rotatif médian

i

P3 - Séparateur
magnétique 1

7

P4 - Séparateur par
courant de Foucaul 1t

P11 - Séparateur
ballistique 1

\—\—\A

P12 - Séparateur
ballistique 2
P6 - Séparateur »
magnétique 2
U5 - CDD sec

U12 - Fines U1 - Métaux P7 - Séparateur par
ferreux courant de Foucault 2

. P8 - Séparateur
U2 - Métaux / opuqu’; PET
non-ferreux
U3 -PET
P9 - Séparateur
optique HDPE
B U4 -HDPE
- U8 - Résidi ( )

us CDD) CJ? - Liqulda ( oS! u?

gazeux

P14 - Crible
rotatif fin

~

carbonisé -
P10 - Séparateur

optique plastiques

ug -
Plastiques U10 - Rejets
mixtes

Figure 9.1 Scénario de base pour la modélisation du TMB
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Les équipements pour lesquels des modifications sont effectuées sont les trois cribles rotatifs, les
deux séparateurs balistiques et le séparateur optique de plastiques mixtes. En prenant, toutes les
configurations possibles présentées dans le Tableau 9-1, un total de 1440 scénarios peuvent étre
créés. Par contre, certains de ces scénarios sont les mémes ou ne sont pas possibles. Ainsi, 1200

scénarios ont été jugés possibles et ont donc été conservés.

Tableau 9-1 Description des conditions possibles pour 1’étude de cas

Crible Crible Premier Deuxiéme Séparation Crible

rotatif rotatif séparateur | séparateur plastiques rotatif fin

grossier médian balistique balistique mixtes

Non (0) 51cm (1) Non (0) Non (0) Non (0) Non (0)

203cm (1) | 7,6cm(2) 0,5cm (1) Oui (1) VersCDD (1) [ 1cm (1)

254cm (2) |8,9cm(3) 4,5cm (2) Vers 2cm (2)

recyclage (2)

30,5cm (3) | 10,2cm (4) 3cm (3)

12,7 cm (5)

Le nombre entre parenthéses dans le Tableau 9-1 permet de numéroter chaque condition afin de
définir un indice de configuration comportant 6 chiffres pour chaque scénario. Par exemple, un
scénario ayant un crible rotatif grossier de 30,5 cm, un crible rotatif médian de 7,6 cm, aucun
séparateur balistique, une séparation des plastiques mixtes vers un marché de recyclage et un crible

rotatif fin de 3 cm aurait I’indice de configuration suivant : 3-2-0-0-2-3.

La configuration de base et les conditions d’opération a tester ont été définies a partir d’exemples

provenant de la littérature.

Pour les autres equipements que les séparateurs balistiques et les cribles rotatifs, les coefficients de
transfert utilisés pour la validation du modéle (Chapitre 8) ont également été utilisés pour 1’étude

de cas.
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9.2.2 Modele de carbonisation hydrothermale

Le modele de carbonisation hydrothermale développé se base sur des données issues de la
littérature. Le procédé produit trois fractions, soit un solide carbonisé, une phase liquide contenant
des composés organiques dissous et une phase solide contenant principalement du CO2. L approche
de modélisation repose sur une estimation du rendement massique dans la phase solide et dans la
phase gazeuse pour les principaux éléments chimiques, et ’estimation des caractéristiques du

produit solide a partir de résultats expérimentaux en laboratoire.

Le rendement massique dans la phase solide (#), le pouvoir calorifique supérieur (PCV), le contenu
en carbone fixe (CF), le contenu en matiéres volatiles (MV), et le contenu en C, O, H et N sont
tirés de la littérature pour des conditions d’opérations similaires, soit environ 250°C et 1h de temps
de résidence, et différents types de matiéres résiduelles. Les données utilisées et les sources
associées sont présentées dans le Tableau 9-2. Ces données permettent de calculer la quantité de
solide carbonisé produit, ainsi que ses principales caractéristiques.

Tableau 9-2 Hypothéses utilisées pour la modélisation du procédé de HTC

PCV C o) H N
MV CF Source
T (Makg) %) | %) | %) | )
Papiers et 0341 | 239 | 0528 | 0200 | 76,7 | 171 | 61 | o1 | (Beroe et al,
cartons 2011)
Déchets 0456 | 201 | 0534 | 0300 | 769 | 11,3 | 66 | 52 |(EBeree et al,
organiques 2011)
Residus Verts |  c16 | 196 | 069 | 0250 | 509 | 435 | 52 | 04 | (Sharmaetal,
2019)
Bois 059 | 235 | 063 | 036 | 622 | 327 | 51 | 00 |{Hwangetal,
2012)
Textiles 072 | 2089 | 0,737 | 0258 | 570 | 385 | 43 | 02 |&in et al,
2016)
Plastiques Aucune dégradation et aucune interaction
Autres , . . .
inertes Aucune degradatlon et aucune Interaction

Pour ce qui est de la répartition des autres éléments, il a été posé qu’ils se répartissent entre la phase
solide et la phase liquide selon les données expérimentales obtenues par différentes sources
(Danso-Boateng et al., 2015; Escala et al., 2013; Liu & Balasubramanian, 2014; Peng et al., 2017).

Pour la fraction liquide, le modele permet uniquement de calculer sa composition élémentaire a



179

partir d’un bilan de masse. Finalement, il a été posé que le gaz contient 95% de CO2 et 5% de CO
avec un rendement massique de 8%, ce qui correspond a un rendement similaire a ceux observés

dans la littérature.

Malgré le fait que ce modéle repose sur plusieurs hypothéses importantes et n’a pas été validé
expérimentalement, il peut étre utilisé pour effectuer des prédictions générales en lien avec
I’implantation d’un procédé de HTC dans un TMB. Ainsi, I’objectif est principalement de donner
un ordre de grandeur pour certaines variables générales, comme le pouvoir calorifique du produit

et le rendement massique. Il faut toutefois faire attention lors de I’interprétation des résultats.

9.2.3 Critéres de performance et analyse de qualité

Afin de comparer les scénarios entre eux, deux approches sont utilisées. Tout d’abord, les scénarios
sont filtrés en fonction de si leurs produits respectent certains standards de qualité. Ainsi, la qualité
des fractions destinées a la valorisation énergétique est comparée aux principaux éléments de la
norme sur les CSR définie par le comité européen de normalisation (European Committe for
Standardisation, 2006). Cette norme a été utilisée puisqu’il n’y a présentement pas de normes
équivalents au Québec et au Canada. Les principaux criteres utilisés pour 1’analyse sont présentés
dans le Tableau 9-3 et permettent de classifier les CSR en 5 classes distinctes. Dans le cas présent,
deux produits sont destinés a la valorisation énergétique, soit le flux de matiéres combustibles
produit a partir de matiéres séches et séparé par les séparateurs balistiques (U5) et le flux de
matiéres organiques traités par carbonisation hydrothermale (U6). Pour le reste de 1’étude, le

premier sera identifié par le terme CDD sec et le deuxiéme par le terme CDD carbonisé.

Tableau 9-3 Critéres définis par le comité européen de standardisation pour classifier les CSR

Classes
1 2 3 4 5

Eogva calorifique | MJ/kg sur 5 95 > 20 > 15 > 10 53
inférieur base humide

0
Contenu en chlore /o sur base <02 <06 <10 <15 <3,0

seche
Contenu en mercure | mg/MJ sur <0,02 <0,06 <016 <030 <10

base humide

Une fois les scénarios filtrés selon leur capacité a répondre a la norme mentionnée précédemment,

ils ont été classés selon 4 critéres de performance.
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Le premier critere définit le rendement massique des produits destinés aux filieres de recyclage
(RMR) selon la formule suivante :

Nyrec F.

RMR = ’Fl L V)€ S (9-1)

in

ou Fj est la masse du flux de matiére j, Fin est la masse du flux de matiére entrant au procédé et Srec
est I’ensemble de flux destinés aux marchés du recyclage de longueur nrec.. Dans le cas présent, les
flux destinés aux marchés de recyclage incluent les métaux ferreux (U1), les métaux non-ferreux

(U2), le PET (U3), le HDPE (U4), et dans certaines configurations, les plastiques mixtes.

Le deuxieme critere definit le rendement énergétique des produits destinés aux filieres de

valorisation énergétique (RMV) selon la formule suivante :

nval E

RMV = —=—— vj €S,y (9-2)

Ein
ou E;j est le contenu énergétique (MJ) contenu dans le flux de matiére j, Ein est le contenu
énergétique (MJ) du flux de matiére entrant au procédé et Sva est ’ensemble de flux destinés a la
valorisation énergétique de longueur nva. Dans le cas présent, les flux destinés a la valorisation
énergétique incluent le CDD sec (U5) et le CDD carbonisé (U6).

Le troisieme critere définit un index représentant la pureté pondérée des flux de matieres destinés
aux marchés de recyclage (IPR) selon la formule suivante :

Nrec ] F} c S
IPR = Z — Vj € -

=1 aneCF F; ] rec (9-3)
ou F; . est la masse de la matiere ciblée dans le flux j. Pour chague marché de recyclage, la matiere
ciblée correspond a la matiére principalement ciblée dans le ballot. La seule exception est le ballot
de plastiques mixtes, pour lequel trois catégories de matieres ont été considérées comme ciblées,

soit le PET, le HDPE et les plastiques mixtes.

Le quatrieme critere définit un index représentant la pureté pondérée des flux de matieres destinés

a la valorisation énergétique (IPV) selon la formule suivante :
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Nyal F}‘,C )
v=>" V) € Suus (9-4)

Dans ce cas, les matiéres ciblées considérées pour une valorisation énergétique sont celles ayant
un PCI supérieur a 12 MJ/kg sur une base humide. Il a été considéré qu’il n’est pas possible de

séparer les matiéres n’ayant pas réagies durant I’étape de HTC du CDD carbonisé.

9.3 Résultats et discussion

La qualité des deux CDD produits par les différentes configurations de TMB est comparée a la
norme identifiée, puis les scénarios permettant d’atteindre une qualité minimale sont comparés

entre eux a partir des quatre critéres de performance définis.

9.3.1 Analyse de la qualité des produits

Sur les 1200 scénarios analysés, aucun ne permet d’obtenir un produit combustible respectant les
trois criteres pour la classe 1, 2 ou 3 (Tableau 9-3) pour les deux CDD, tandis que 626 scénarios
permettent d’obtenir une classe 4 pour les deux CDD. Les résultats obtenus pour les trois critéres
sont présentés dans la Figure 9.2 sous forme de diagramme a moustaches. Pour ces diagrammes,
les trois lignes de la boite représentent les trois quartiles, soit la valeur qui sépare les premiers 25%,
50% et 75%. Les deux extrémités représentent les données minimales et maximales comprises dans
I’intervalle correspondant a la valeur du quartile le plus proche plus ou moins 1.5 fois la différence
entre le troisieme quartile et le premier quartile. Finalement, les points a I’extérieur représentent

les valeurs aberrantes.
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Figure 9.2 Diagramme a moustaches de la qualité des produits combustibles selon trois les critéres,

A) contenu en chlore, B) pouvoir calorifique inférieur et C) contenu en mercure
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Parmi ces trois critéres, le principal frein a I’atteinte d’une bonne qualité de CDD, autant pour le
combustible sec que le combustible carbonisé, vient du faible PCI obtenu. Ceci a d’ailleurs été
observé expérimentalement pour la production d’un CDD a partir de matiéres résiduelles (Bessi et
al., 2016). En effet, une valeur de PClI inférieure a 15 MJ/kg est obtenue pour les deux combustibles
dans tous les scénarios, ce qui est inférieur au critere pour atteindre la classe 3. Pour ce qui est du
critere du contenu en chlore, les valeurs obtenues font en sorte que les deux produits sont
principalement situés dans la classe 2, ou dans la classe 1 pour certains scénarios plus rares pour le
CDD sec. Finalement, pour ce qui est du contenu en mercure, les résultats obtenus sont nettement
plus petits que la limite inférieure pour atteindre la classe 1, faisant en sorte que tous les scénarios
permettent d’obtenir un combustible respectant la classe 1. Toutefois, il est nécessaire de prendre
ce dernier résultat avec prudence, puisque le mercure est present en trés faible quantité dans les
ordures ménageres. Ainsi, il n’est pas toujours détecté dans les caractérisations réalisées. Il est donc
possible qu’une caractérisation réelle méne a un contenu en mercure plus élevé. Toutefois, dans
leur analyse de plusieurs échantillons de CDD produits par tri mécanique a partir de matieres
résiduelles, Bessi et al. (2016) ont montré que tous les échantillons respectaient le critere de classe

1 pour le contenu en mercure, montrant que ce critére n’est généralement pas limitant.

Comme le PCI se trouve a étre un frein important pour atteindre une bonne qualité de CDD, ce
parameétre a été étudié plus en détail pour les deux produits. Deux scénarios ont été comparés pour
le CDD sec, soit lorsqu’aucune étape supplémentaire n’est effectuée (scénario 1A) ou lorsqu’un
séchage est effectué permettant de retirer toute 1’eau encore présente (scénario 1B). Pour le CDD
carbonisé, quatre scénarios sont comparés, soit un traitement de la matiere organique par une étape
de HTC (scénario 2A), un traitement de la matiére organique par une étape de HTC suivi d’une
séparation parfaite de tous les composés inertes (scénario 2B), aucun traitement de la matiere
organique (scénario 2C) et un séchage de la matiére organique uniquement (scénario 2D). Les
résultats sont présentés dans la Figure 9.3. Dans cette figure, les lignes pointillées identifient les

différentes classes pour le critére du PCI tel que présenté dans le Tableau 9-3.
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Figure 9.3 Comparaison de scénarios pour la production d'un CDD

Au niveau des scénarios 1A et 1B, un séchage du CDD permettrait d’obtenir un PCI supérieur a 15
MJ/kg pour la plupart des configurations, ce qui permettrait d’atteindre un CDD de classe 3 pour
ce critere. L’utilisation d’une étape de bio-séchage permettrait donc d’améliorer le PCI de la
fraction. Toutefois, comme cette étape permet uniquement d’abaisser I’humidité des matiéres
résiduelles a environ 20%, une autre étape de séchage serait possiblement nécessaire en vue

d’atteindre 15 MJ/kg pour beaucoup de configurations modélisées.

Au niveau des scénarios étudiés pour le CDD carbonisé, le scénario 2B se démarque clairement
des autres scénarios en étant le seul permettant d’obtenir un CDD de classe 1-2. La possibilité de
séparer les maticres inertes du combustible carbonisé n’est toutefois pas garantie et devrait étre
étudiée plus en détail. Une certaine quantité des matiéres inertes pourrait par exemple étre retirée
en se basant sur une différence de tailles de particules ou par différence de densité. Ainsi, il serait

possible d’obtenir un PCI entre le scénario 2A et le scénario 2B selon la capacité de séparation.

Dans le cas ou aucune séparation des maticres inertes n’est possible, le procédé de HTC (2A)
permet d’obtenir un PCI équivalent a un séchage complet des matiéres organiques (2D). Une
analyse énergétique pourrait donc permettre de trancher parmi les deux approches pour déterminer
laquelle aurait le meilleur rendement énergetique. L’avantage du scénario 2A par rapport au
scénario 2D est toutefois qu’il permet également une diminution des concentrations de

contaminants comme le chlore. Egalement, le scénario pour lequel aucun traitement n’est effectué
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(2C), il est possible d’observer qu’un PCI significativement plus faible est obtenu que pour les

autres et ne permet pas de produire un combustible intéressant pour une valorisation énergétique.

9.3.2 Performance des scénarios

En considérant les scénarios 1A et 2A (Figure 9.3) pour la production des CDD, les quatre critéres
de performance définis dans la section 9.2.3 ont été calculés pour toutes les configurations
modélisées de TMB. Les criteres sont comparés deux a deux dans la Figure 9.4 afin d’analyser les
corrélations potentielles entre ceux-ci. Ainsi, le critere de récupération et le critére de pureté sont

comparés pour les deux types de produits.
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Figure 9.4 Variation des critéres deux a deux pour A) la pureté (IPR) et la récupération (RMR) des
matiéres recyclables, B) la pureté (IPV) et la récupération (RMV) des matiéres combustibles, C) la
récupération des matiéres combustibles (RMV) et la récupération des matiéres recyclables (RMR)
et D) la pureté des matiéres combustibles (IPV) et la pureté des matieres recyclables (IPR)
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La Figure 9.4A et la Figure 9.4B montrent une corrélation inverse entre la pureté et la récupération
des matiéres, autant au niveau des matieres séparées pour les filieres du recyclage (coefficient de
corrélation de -0.23) que les matieres séparées pour une valorisation énergétique (coefficient de
corrélation de -0,63). Ceci indique trés clairement qu’il n’est pas possible de maximiser ces deux
parameétres en méme temps. Ainsi, il est nécessaire de faire un compromis entre ces deux variables
en fonction des objectifs du centre. Au niveau de la corrélation entre la récupération des matieres
recyclables et des matieres combustibles (Figure 9.4C), les résultats semblent indiquer qu’une
augmentation de 1’un de ces criteres permet également une augmentation de I’autre puisqu’une
faible corrélation est observée (coefficient de corrélation de 0,35). Ainsi, augmenter la quantité de
matieres recyclables ne se traduit pas nécessairement par une diminution de la récupération des
matieres combustibles, ce qui est trés intéressant pour assurer la viabilité de ce type de procédés.
Une trés faible corrélation est également observée pour la qualité des produits dédies aux filieres
de recyclage et aux filieres de valorisation énergétique (Figure 9.4D), puisqu’un coefficient de
corréelation de 0,12 est obtenu, montrant que le lien entre ces variables est faible. Ainsi, améliorer

la qualité¢ d’un produit ne se traduit pas par une diminution de la pureté de 1’autre.

Les scénarios ont ensuite été filtrés afin de conserver uniquement les scénarios permettant de
respecter le critere 2 pour le contenu en chlore et le critére 4 pour le PCI. Puis les scénarios ont été
analysés afin de déterminer lesquels permettent d’obtenir la meilleure performance en fonction des
criteres considéreés. Les cing meilleures configurations pour les quatre critéres sont présentées dans
le Tableau 9-4. Dans certains cas, plusieurs configurations sont données pour une valeur unique
d’un critére puisque ces configurations permettent d’obtenir exactement la méme performance.
Ceci arrive lorsqu’un équipement n’a pas d’influence sur un critére. Par exemple, le crible rotatif

fin n’a pas d’influence sur la récupération des matiéres recyclables.
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Tableau 9-4 Meilleures configurations de TMB selon le critere de performance considéré

RMR RMV IPR IPV
Configurations | Valeurs | Configurations | Valeurs | Configurations | Valeurs | Configurations | Valeurs
0-1-2-1-2-3 0,036 0-5-0-0-1-0 0,411 1-5-2-0-2-1 0,852 0-3-1-1-1-3 0,530

0-5-0-0-0-0 1-5-2-0-2-2
1-5-2-0-2-3
1-5-2-0-2-0
0-2-1-1-2-2 0,035 0-5-0-0-1-1 0,404 1-5-1-0-2-1 0,850 0-3-2-1-1-3 0,529
0-2-1-1-2-3 0-5-0-0-0-1 1-5-1-0-2-2
1-5-1-0-2-3
1-5-1-0-2-0
0-2-2-1-2-2 0,035 0-5-0-0-1-2 0,397 1-4-2-0-2-1 0,850 0-4-1-1-1-3 0,529
0-2-2-1-2-3 0-5-0-0-0-2 1-4-2-0-2-2
1-4-2-0-2-3
0-3-1-1-2-1 0,034 0-5-0-0-1-3 0,389 1-3-2-0-2-1 0,849 0-2-1-1-1-3 0,528
0-3-1-1-2-2 0-5-0-0-0-3 1-3-2-0-2-2
0-3-1-1-2-3 1-3-2-0-2-3
0-3-2-1-2-1 0,034 3-5-0-0-1-0 0,320 1-2-2-0-2-2 0,847 0-4-2-1-1-3 0,527
0-3-2-1-2-2 3-5-0-0-0-0 1-2-2-0-2-3
0-3-2-1-2-3

Au niveau de la récupération des matiéres en vue de leur acheminement vers des filiéres de
recyclage (RMR), il est tout d’abord possible de constater que méme pour le scénario le plus
performant, une quantité relativement faible de matiéres est récupérée, soit environ 3,5% de
I’intrant. La valeur théorique maximale du RMR est de 5,4%, valeur qui pourrait théoriquement
étre atteinte si tous les équipements séparant des matiéres recyclables avaient une efficacité de
100%. Cette faible récupération est attendue puisque la récupération de matiéres recyclables n’est
généralement pas le principal objectif visé par un TMB. Une quantité de matiéres recyclables
similaire est d’ailleurs obtenue pour le centre de tri de Valoris au Québec. Les cing scénarios ont
tous en commun qu’ils ne comprennent pas de crible rotatif grossier, ont deux séparateurs
balistiques et acheminent les plastiques mixtes vers les marchés de recyclage. La principale

différence se situe au niveau de la taille des ouvertures du crible rotatif médian. Plus la taille des
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ouvertures est petite, plus la quantité de matieres recyclables récupérée est importante puisqu’une
quantité moins importante de ces matiéres est perdue dans le flux de matieres organiques. Malgré
une bonne récupération, on peut toutefois s’attendre a ce qu’une faible qualité de ces maticres soit

obtenue.

Au niveau du critére de qualité des matiéres recyclables récupérées (IPR), des configurations tres
différentes sont d’ailleurs observées que pour le RMR. Ainsi, pour favoriser la qualité des matieres
recyclables, un crible rotatif grossier ayant la plus petite taille d’ouvertures et un crible rotatif
médian ayant la plus large taille d’ouvertures devraient étre utilisés. Comme pour le RMR, le
premier séparateur balistique devrait étre utilise, les plastiques mixtes devraient étre envoyés vers
des fili¢res de recyclage et le crible rotatif fin n’a pas d’influence. Ces tailles d’ouvertures pour les
deux premiers cribles rotatifs permettent de retirer plusieurs contaminants de la ligne de contenants
permettant ainsi d’obtenir de meilleures puretés, car plusieurs contaminants inertes ont une taille
de particules élevée, mais se traduisent par une diminution importante de la récupération. Au niveau
du deuxieme séparateur balistique, son utilisation semble mener a une diminution de la qualité des
matieres recyclables, possiblement par une concentration de certaines matieres incorrectement

triées par les séparateurs optiques.

Au niveau de la récupération de matieres destinées a une filiere de valorisation énergetique (RMV),
tous les scénarios les plus performants ont en commun qu’ils n’ont pas de crible rotatif grossier,
ont une large taille d’ouvertures pour le crible rotatif médian, n’ont pas de séparateur balistique.
Ils ont cependant des tailles d’ouvertures variables au niveau du crible rotatif fin, puisque cet
équipement permet principalement de retirer des matiéres inertes et n’a donc pas d’effet sur le
rendement énergétique. Au niveau de la séparation des plastiques mixtes, le fait de ne pas avoir de
séparation ou d’effectuer une séparation vers les filieres de valorisation énergétique s’équivaut
dans ces cing configurations puisque lorsqu’il n’y a pas de séparateur balistique, toutes les matiéres
n’ayant pas été récupérées de la ligne de contenant sont envoyées vers une valorisation énergétique.
Ceci permet donc de favoriser la récupération, mais aux dépens de la qualité. Une large taille des
ouvertures du crible rotatif médian est observée, car cela permet d’augmenter le PCI des matieres
organiques qui auraient autrement un contenu energétique beaucoup plus faible. Ceci tend a
démontrer que 1’utilisation d’un procédé de HTC permet d’augmenter le rendement énergétique

d’un TMB.
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Finalement, au niveau de la pureté des matieres destinées a la filiere de la valorisation énergétique
(IPV), la présence d’un crible rotatif grossier n’est pas nécessaire, mais les deux séparateurs
balistiques doivent étre présents, ainsi qu’un crible rotatif fin ayant la plus large taille d’ouvertures.
Egalement, les plastiques mixtes doivent étre acheminés vers la valorisation énergétique. Au niveau
du crible rotatif médian, une taille d’ouvertures mitoyennes, soit entre 3 et 4 pouces est a privilégier.
Ainsi, tel qu’attendu, une configuration complétement différente doit étre utilisée pour produire

des CDD de qualité que pour produire des quantités importantes de CDD.

Ces résultats demontrent tres clairement une opposition entre les configurations a privilégier pour
atteindre une bonne récupération et une bonne pureté des différents produits d’une séquence de tri
mécanique. Le Tableau 9-4 permet donc de privilégier certaines configurations de scénarios selon
les différents criteres, mais ne permet toutefois pas de choisir un scénario par rapport aux autres a
partir d’un score unique. Pour ce faire, il est possible de pondérer les différents critéres a partir de
I’équation 9-1. Dans le cas présent, une pondération égale a été donnée a tous les facteurs. Il est
toutefois possible de donner une pondeération plus importante a un facteur, selon les objectifs

spécifiques du centre.

- Cl,min - Cz,min - C3,min

c C c Cae = Cami
Ce = 0.25 ¢ +0.25 —2¢ +0.25 ¢ +0.25 —C— M (9-5)

Cl,max - Cl,min Cz,max - CZ,min C3,max - C3,min C4,max - C4-,min

ou C est le critere global pour la configuration ¢, C; . est la valeur du premier critere, C; ,,;, est la
valeur minimale obtenue pour le premier critere et C; ,,4, €st la valeur maximale obtenue pour le
premier critere. Cette équation permet donc d’obtenir une performance globale ayant une valeur
entre 0 et 1. Les 10 configurations obtenant la valeur la plus élevée pour le critére global de

performance et la valeur obtenue pour ce critere sont présentées dans le Tableau 9-5.
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Tableau 9-5 Configuration des scénarios permettant d'obtenir les valeurs les plus élevées de Cc

Rang Configuration | Valeur de Cc
1 0-2-2-0-2-3 0,621
2 0-2-1-1-2-3 0,618
3 0-3-2-0-2-3 0,618
4 0-2-2-1-2-3 0,618
5 0-2-1-0-2-3 0,617
6 0-3-1-0-2-3 0,615
7 0-1-2-1-2-3 0,615
8 0-1-2-0-2-3 0,612
9 0-3-1-1-2-3 0,611

10 0-3-2-1-2-3 0,610

En analysant ces résultats, certains aspects reviennent systématiqguement dans toutes les
configurations. Ainsi, pour effectuer un compromis entre les quatre critéres, il n’est pas nécessaire
d’avoir de crible rotatif grossier, le premier séparateur balistique doit étre présent, les plastiques
mixtes doivent étre envoyé€s vers une filicre de recyclage et il est nécessaire d’avoir un crible rotatif
fin. Au niveau du crible rotatif médian, une taille d’ouvertures de 7.6 ou 8.9 cm est a privilégier.
Pour ce qui est du deuxieme séparateur balistique, sa nécessité dépend du scénario et son utilisation
ne semble donc pas cruciale. Egalement, la taille des ouvertures du premier séparateur balistique
ne semble avoir un impact important, probablement di au fait que les quantités recupérees sont

relativement faibles.

Les résultats obtenus pour la taille des ouvertures de crible rotatif correspondent a ce qui est
généralement observé dans la littérature, puisque des tailles d’ouverture de 8-9 cm ont souvent été
rapportées (Montejo et al., 2010). Au niveau de la récupération des plastiques mixtes, méme si le
résultat de cette étude démontre qu’il serait préférable d’en effectuer la valorisation par recyclage,
les deux alternatives devraient étre ¢étudiées a partir d’une analyse environnementale. Comme
mentionné dans la revue de la littérature, cette fraction est généralement plus difficilement
recyclable et est souvent caractérisée par une qualité moindre. Toutefois, la modélisation réalisée

permet d’avoir des bases solides pour effectuer cette analyse.
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9.4 Conclusions de I’étude de cas

Cette étude de cas a permis de montrer que 1’outil développé peut prédire la composition et les
caractéristiques des différents produits issus d’un tri mécanique de matiéres résiduelles. Egalement,
I’outil permet de modéliser I’impact d’intégrer un procédé de conversion thermique a une chaine
de tri mécanique. Ceci permet de facilement comparer plusieurs scénarios et configurations de
systemes pour la valorisation des matiéres résiduelles et peut faciliter la prise de décision selon la
situation dans laquelle le systéme doit étre implanté. Par exemple, la disponibilité d’énergie
renouvelable et a faible émission de carbone dans un marché, les politiques gouvernementales et
la présence de débouchés locaux pour les matiéres résiduelles peuvent toutes influencer
considérablement la stratégie optimale de gestion, ainsi que la configuration privilégiée pour un
TMB.

Dans le cas présent, il a été montré que lors de 1’implantation d’un procédé de TMB dans un
contexte québécois, la valorisation énergétique des fractions combustibles semble indispensable
malgré le profil énergétique actuel, puisque sans cette valorisation, le procédé ne permet de
récupérer qu’au plus 3,5% des matieres. Par contre, en regard des criteres de qualité, il a été montré
que Datteinte d’un PCI ¢levé est le principal frein a la valorisation énergétique des maticres
résiduelles. Un séchage du CDD sec et une séparation des inertes du CDD carbonisé pourraient

cependant considérablement améliorer la classe des CDD produits.

Une comparaison de la performance des différents scénarios en regard de leur capacité a produire
des CDD et des matieres recyclables a montré qu’il est possible de combiner ces deux objectifs,
puisqu’il n’y a pas de corrélation inverse entre ces deux objectifs autant au niveau de la qualité que
de la récupération. Toutefois, I’atteinte d’une récupération élevée se fait nécessairement au profit
d’une perte de pureté et vice versa. Ceci a d’ailleurs été observé pour les deux types de produits.
Des compromis doivent donc étre faits a partir d’un critére de comparaison unique, nécessitant
toutefois une pondération des différents facteurs. Lorsque les 4 criteres définis sont jugés égaux en
termes d’importance, il est possible de maximiser la performance du TMB en utilisant une
configuration requérant un crible rotatif médian d’environ 8 cm, un crible rotatif fin de 3 cm, un
séparateur balistique et une séparation des plastiques mixtes pour I’acheminement vers des marchés

de recyclage.
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CHAPITRE 10 DISCUSSION GENERALE

L’objectif principal de ce projet de recherche était de développer un outil prédictif permettant de
représenter un procédé de TMB de matieres résiduelles et pouvant capturer I’impact des
mécanismes physiques et des propriétés des matiéres résiduelles. Cet objectif a principalement été
atteint dans le Chapitre 8 alors que I’outil développé est présenté et dans le Chapitre 9, dans lequel
il est utilisé dans une étude de cas. Toutefois, pour produire ces résultats, et ainsi répondre aux
principales limitations identifiées dans la littérature quant & la modélisation du tri mécanique des

matieres résiduelles, plusieurs étapes ont di étre réalisées.

Ainsi, afin d’améliorer la compréhension des mécanismes du tri mécanique des matieres
résiduelles, il a tout d’abord été montré qu’il est nécessaire d’obtenir plus d’informations sur les
flux de matiéres et les efficacités de séparation des centres existants. Pour remédier a 1’absence de
méthodologie disponible dans la littérature pour réaliser ce type d’analyses, le Chapitre 4 présente
une approche systématique permettant de déterminer les flux de matiéres d’un centre de tri
mécanique en se basant sur la réalisation de caractérisations. Ce chapitre vient ainsi combler un
vide dans la littérature, tout en permettant d’obtenir des efficacités de tri pour plusieurs
équipements, données qui sont souvent trés peu disponibles. L’obtention de ces données a
d’ailleurs été essentielle au développement d’un modéle de séparateur balistique en fournissant des

efficacités utiles pour la calibration du modele.

Le Chapitre 5 a ensuite permis d’identifier les limitations associées a la modélisation du tri
mécanique des matiéres résiduelles a partir de coefficients de transfert et de brosser un portrait des
données disponibles dans la littérature. Ce chapitre a également permis d’identifier des pistes pour
améliorer la modélisation du tri mécanique, permettant ainsi d’établir les bases de 1’outil. Comme
il a ét¢ déterminé qu’une modélisation des mécanismes était nécessaire pour représenter les
séparateurs directs ciblant une propriété, il a également été déterminé qu’une meilleure
compréhension des propriétés physiques des matiéres résiduelles devait étre atteinte, puisque la

revue de la littérature a soulevé plusieurs limitations a ce niveau.

Le Chapitre 6 et le Chapitre 7 ont ainsi permis de remédier a cette lacune en analysant trois
principales propriétés physiques des matiéres résiduelles importantes pour le tri mécanique, soit la
densité, le facteur de forme et la taille des particules. L’approche utilisée pour représenter le facteur

de forme, soit la fraction de vide des matieres, permet de quantifier pour une premiére fois cette
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propriété dans le contexte des matiéres résiduelles, venant ainsi combler un vide important dans la
litterature. Ceci a également mené a la modélisation du séparateur balistique et ouvre la porte a la
modélisation de plusieurs autres équipements ciblant cette propriété. Au niveau de la représentation
de la taille des particules des matiéres résiduelles, I’identification d’une distribution permettant de
représenter I’ensemble des catégories de matiére, soit la distribution de Rosin-Rammler, permet
d’homogénéiser la modélisation de cette propriété dans la littérature. Ces chapitres ont donc
contribué a I’lamélioration de la modélisation des propriétés physiques dans la littérature et donc,

fournis des bases solides pour la modélisation mécanistique des équipements de tri.

Cette modélisation, présentée dans le Chapitre 8, permet de remédier aux principales limitations
identifiées dans la littérature et dans le Chapitre 5 en lien avec la modélisation du tri mécanique,
soit I’impossibilité de prendre en compte les propriétés physiques des matiéres, les conditions
d’opération des équipements de tri et la séquence des opérations. De plus, il permet d’effectuer une
intégration judicieuse de modéles mécanistiques et de coefficients de transfert selon les besoins
spécifiques des opérations unitaires, permettant ainsi d’obtenir un niveau de détail élevé lorsque
nécessaire sans ajouter un niveau de complexité trop important. L’outil présenté est le premier
modele de tri mécanique se basant sur une représentation des mécanismes des équipements pour
lequel une validation avec des données de terrain a éte effectuée. La validation effectuée, étant
réalisée pour un centre de tri réel avec des données de terrain, permet de démontrer 1’intérét de

I’ensemble de la méthodologie.

Finalement, le modéle a été utilisé dans le Chapitre 9 pour analyser 1’influence des conditions
d’opération et de la séquence de tri sur I’efficacité d’un procédé de TMB auquel un procédé de
carbonisation hydrothermale a été intégre a travers une analyse de scénarios. La flexibilité de 1’outil
développé répond a un besoin identifié en ayant la capacité de prédire I’efficacité de différentes
configurations de tri pour différents flux de matieres. Ainsi, le modeéle peut étre utilisé pour
comparer des scénarios, déterminer les taux de recyclage d’un systéme, produire des inventaires
de cycle de vie, analyser la récupération de nouveaux produits et prédire I’impact de I’ajout de
nouvelles unités a un systeme existant. Cette capacité prédictive du modele représente un atout
indéniable dans le contexte actuel puisqu’il est attendu que les systémes de gestion de matiéres
résiduelles actuels évoluent dans les prochaines années devant 1’émergence du concept d’éco-
conception, la progression de la collecte a la source, 1’élargissement de la consigne et 1’intérét

grandissant pour la réduction a la source.
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Lors de la réalisation de ce projet, plusieurs défis importants ont été rencontrés. Ainsi, trés peu de
données sont disponibles dans la littérature en lien avec la modélisation du tri mécanique des
matiéres résiduelles et les propriétés physiques de ces matiéres. Egalement, les données disponibles
font souvent face a un manque de transparence et doivent étre trouvées dans des sources moins
conventionnelles. Par exemple, beaucoup d’informations en lien avec le tri mécanique des matieres
résiduelles ont été trouvées dans des rapports techniques plut6t que dans des articles scientifiques
ou des livres, faisant en sorte que les données sont plus difficiles a obtenir et que leur qualité n’est
pas assurée. Egalement, les données disponibles datent souvent de plusieurs années ce qui limite
leur validité. Afin d’approfondir la modélisation du tri mécanique des maticres résiduelles, il est
donc essentiel d’obtenir la majorité des données a I’interne, puisque la littérature n’en contient pas

suffisamment.

Egalement, un autre défi important rencontré dans le cadre de ce projet est en lien avec les données
réellement possibles d’obtenir dans un centre de tri mécanique. Ainsi, dans un centre de tri, il n’est
pas possible de caractériser I’ensemble des convoyeurs. Le nombre de points qu’il est possible de
réellement échantillonner est largement restreint, faisant en sorte qu’il n’est presque jamais
possible de caractériser a la fois les matiéres entrantes et sortantes d’un équipement. Ceci limite
grandement la possibilit¢ de déterminer I’efficacité de différents équipements selon leurs
conditions d’opération. Il est donc nécessaire de combler le manque de données disponibles par

des caractérisations ciblées et des stratégies de résolution mathématique.

Finalement, effectuer des caractérisations de propriétés physiques des matiéres, comme la taille
des particules, prend un temps considérable. La réalisation de ce type de mesure doit donc étre tres
bien ciblée et planifiée afin d’optimiser le temps de caractérisation et s’assurer que des données
pertinentes et représentatives sont obtenues dans le projet. Par exemple, caractériser les tailles de
particules d’une quinzaine de catégories de maticres d’un échantillon de 50 kg de maticres

recyclables peut facilement prendre une journée de travail a une équipe de quatre trieurs.
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CHAPITRE 11 CONCLUSION

La conclusion inclut une synthése des travaux réalisés durant ce projet, les principales limites

identifiées et des recommandations en vue de travaux futurs.

11.1 Synthése des travaux

Tout d’abord, la réalisation de ce projet de recherche a mené a I’amélioration de la représentation
des propriétés physiques des matiéres résiduelles, variables qui sont essentielles a la modélisation
des mécanismes du tri mécanique. Il a été montré que la taille des particules des matiéres résiduelles
peut adéquatement étre représentée par une distribution de Rosin-Rammler. Pour un mélange de
matieres résiduelles mixtes, la distribution des tailles de particules se traduit par deux modes, I'un
pour les matiéres organiques et I’autre pour les matiéres inorganiques, démontrant 1’intérét
d’utiliser cette propriété pour adéquatement séparer ces fractions. Une approche basée sur la
fraction de vide a été proposée pour représenter le facteur de forme des matiéres résiduelles,
permettant ainsi de quantifier pour une premiere fois cette propriété dans la littérature pour des
matiéeres residuelles. Ceci permet également d’effectuer la modélisation d’équipements de tri
ciblant cette propriété, comme les séparateurs balistiques. Le lien important entre les propriétés
physiques des matiéres et la représentation numeérique des opérations de tri a d’ailleurs été

démontré a plusieurs reprises.

Outre 1’étude des propriétés, ce projet a également mené au développement d’une méthodologie
permettant de calculer les efficacités de tri des différents équipements d’un centre de tri de matieres
résiduelles a partir d’un algorithme d’optimisation linéaire. Ceci permet d’homogénéiser les
hypotheses posées et d’ainsi donner une plus grande transparence et une plus grande cohérence aux
résultats obtenus. Ceci pourrait ainsi permettre de faciliter ’acquisition de ce type de données,
menant & une meilleure compréhension globale de 1’opération de centre de tri de maticres

résiduelles.

Une analyse de la variabilité des efficacités de tri des opérations mécaniques des matieres
résiduelles a permis de catégoriser les principaux équipements en trois types selon 1’approche a
utiliser pour les modéliser, soit les séparateurs directs ciblant une propriété, les séparateurs directs
ciblant une matiere et les séparateurs indirects. De ces trois types, seuls les séparateurs directs

ciblant une propriété requierent d’étre modélisés a partir d’une représentation des mécanismes
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physiques puisqu’il a ét¢ montré qu’il est nécessaire de capturer 1’effet des conditions opératoires

sur I’efficacité de séparation pour ce type d’équipement.

Finalement, un nouveau modéle intégrant une approche de modélisation mécanistique et par
coefficients de transfert a été développé et validé. Ce modele permet de prendre en considération
les principales conditions d’opération des équipements de tri, la configuration des équipements et
les propriétés physiques des matiéres entrantes. Ainsi, le modele développé est le premier outil
présenté dans la littérature ayant été validé permettant de prendre en compte ces trois aspects pour
la représentation numérique du tri mécanique de matieres résiduelles. Cet outil a une grande

flexibilité permettant de facilement effectuer des analyses de scénarios.

Une analyse réalisée a d’ailleurs permis de montrer que la production d’un combustible dérivé de
déchets est essentielle pour permettre I’implantation d’un TMB dans un contexte québécois di aux
faibles taux de récupération des matiéres recyclables potentiellement atteignables, soit au mieux
3,5%. Plus encore, une valorisation énergétique de la fraction organique devrait étre envisagée
puisque sa valorisation matérielle semble peu envisageable due a sa faible qualité. Ceci devrait
toutefois se faire suite a une mise en valeur de cette fraction, par exemple a partir d’un séchage
important ou I’utilisation d’un procédé thermochimique comme la carbonisation hydrothermale.
Les résultats de cette analyse ont également montré qu’une augmentation de la récupération des
matieres se traduit inévitablement par une réduction de sa qualité, et cela autant pour les matieres
recyclables que les matieres combustibles. Il est donc essentiel de faire un compromis entre ces
deux variables lors de la conception de ce type de procédé. Finalement, les travaux ont permis
d’identifier une configuration de TMB permettant de faire un compromis entre les différents
criteres de qualité. Celle-ci indique qu’une séparation de la fraction organique a partir d’une
séparation granulométrique d’environ 8 cm suivie d’une purification avec une séparation
granulométrique de 3 cm sont nécessaires. Egalement, I’utilisation d’au moins un séparateur

balistique est requise pour assurer une qualité suffisante des fractions produites.

L’ensemble de ces résultats témoigne que 1’outil développé peut servir dans le contexte actuel de
gestion des matiéres résiduelles pour favoriser une augmentation de la récupération des ressources.
Cet outil peut également contribuer a mieux guider I’éco-conception des matieres, la conception
des centres de récuperation et la planification globale des systemes de gestion en fournissant des

données d’analyses fiables.
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11.2 Principales limitations et recommandations

La qualité des prédictions de 1’outil développé dépend fortement de la qualité de la représentation
des caractéristiques des flux de matiéres. Ainsi, plus le nombre de catégories de matiéres considéré
dans la modélisation est grand, plus les catégories sont homogeénes, et donc plus la prédiction des
caractéristiques est adéquate. Egalement, plus la qualité des caractérisations est grande, plus la
qualité des prédictions est bonne. Toutefois, la prise en compte d’un plus grand nombre de
catégories est limitée par la complexité engendrée par le besoin de déterminer des propriétés
physiques pour toutes les nouvelles catégories. Ainsi, le nombre relativement restreint de catégories
de matiéres résiduelles présentement considérées, principalement pour les catégories de matieres

inertes, devrait étre augmenté dans des versions futures afin d’augmenter la qualité des prédictions.

Egalement, les propriétés physiques sont déterminées a partir de caractérisation des matiéres. Par
contre, a ce stade, I’analyse de la variation de ces propriétés en fonction de différents facteurs n’a
pas été réalisée. Par exemple, les propriétés de certaines catégories de matiéres pourraient
potentiellement varier en fonction de la saison, du niveau de compaction appliqué lors de la collecte
et de I’humidité des matiéres. Les différentes propriétés peuvent donc potentiellement varier, ce
qui n’a pas été considéré dans le cadre de ce projet. Une étude plus approfondie des sources de

variation des propriétés physiques pourrait ainsi permettre d’augmenter la fiabilité des résultats.

Cette derniére limitation est d’ailleurs reliée a une autre limitation précédemment identifiée quant
a la prise en compte de I’humidité pour la modélisation des opérations de tri. Ainsi, dans la version
actuelle, autant I’impact du taux d’humidité sur les autres propriétés que sur la réduction de
I’efficacité des équipements n’ont pas été considérés. Approfondir le lien entre ces parametres
pourrait donc contribuer a améliorer la qualité de la prédiction. Ceci ouvre également la porte a
une modélisation du bio-séchage, qui pourrait mener a une amélioration de la modélisation de la
séquence. Plus globalement, la modélisation mécanistique proposée permet de représenter une
opération idéale, ce qui n’est pas toujours le cas dans les centres de tri de matieres résiduelles.
Ainsi, I’encrassement a été négligé, malgré le fait que ceci peut jouer un réle important dans la
réduction de ’efficacité des équipements de tri. Cet aspect pourrait donc étre modeélisé a partir de
relation empirique en fonction de différents paramétres comme la température extérieure,

I’humidité et le débit d’opération.
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Il est également a noter que les contraintes associées a la valorisation des matiéres résiduelles autres
que la qualité des matiéres n’ont pas €té prises en compte a ce stade. Toutefois, le recyclage et la
valorisation de certaines fractions de matiéres résiduelles dépendent de plusieurs autres facteurs
tels que des contraintes environnementales et sociales. Ainsi, 1’acceptabilité sociale, la mitigation
des nuisances et les impacts environnementaux associés a la valorisation d’un produit peuvent
grandement affecter la recyclabilité réelle de ce produit. La prise en compte de ces aspects pourrait

permettre de mieux refléter la situation réelle.

Tous les résultats obtenus dans le cadre de ce projet I’ont été pour un contexte québécois. Toutefois,
il serait possible d’utiliser ces résultats pour un contexte différent dans la mesure ou les données
brutes de propriétés physiques sont représentatives de la nouvelle situation a 1’étude. Ainsi, la
principale limite a 1’extrapolation des résultats se situe au niveau de la representativité de ces
données pour d’autres contextes. Par exemple, il est possible que la composition des matiéres
résiduelles, ou méme la forme et la taille des objets, change selon les pays, les habitudes de
consommation, les saisons, etc. Ainsi, pour permettre une utilisation de 1’outil dans d’autres
contextes, une investigation approfondie de cette représentativité devrait étre réalisée. Toutefois,
si un nombre de catégories de matieres plus important était couvert dans une version future, il serait
probablement plus facile d’extrapoler les résultats, puisque 1’impact de la variation de la

composition serait considérablement réduit.

Finalement, en raison des contraintes externes au projet, le modéle de HTC n’a pas pu étre validé
expérimentalement. Ainsi, la fiabilité de ce mod¢le n’est pas garantie et devrait étre investiguée
plus en détail. Egalement, d’autres modéles, incluant autant des opérations de tri mécanique que
des procédés thermochimiques, devraient étre développés dans une prochaine version afin
d’augmenter le nombre de modules disponibles, permettant ainsi d’analyser différentes
configurations et différentes possibilités d’intégration de procédé dans la séquence de tri

mécanique.

11.3 Perspectives futures

L’outil développé dans cette thése permet de calculer les flux de maticres et leurs principales
caractéristiques pour un centre de tri mécanique de matieres résiduelles. Les chapitres précédents
ont montré les principales utilisations de 1’outil et les principaux résultats pouvant en étre tirés.

Ceux-ci s’appliquent autant au niveau du tri des maticres recyclables que du tri des maticres
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résiduelles mixtes a partir d’un TMB. Toutefois, ’outil peut également servir dans d’autres
contextes pour améliorer la planification des systéemes de gestion. Par exemple, 1’outil développé
peut jouer un role pour améliorer la recyclabilité des nouvelles matiéres mises en marché sachant
qu’un focus important est présentement mis sur la recyclabilité réelle des produits, autant au niveau
de leur recyclage que de leur séparation. Ainsi, il est essentiel de s’assurer que les nouvelles
matieres vont pouvoir étre réellement récupérées dans les centres afin d’en effectuer le recyclage.

Ceci doit donc passer par une modélisation rigoureuse de la séparation de ces nouvelles matieres.

Egalement, il a ét¢ mentionné que certains questionnements ne peuvent pas étre uniquement
répondus avec 1’outil développé. La planification en gestion des maticres résiduelles dépend de
plusieurs facteurs, qui ne sont pas exclusivement techniques, incluant des aspects énergeétiques,
environnementaux, sociaux et économiques. Ainsi, I’outil proposé doit servir de base pour guider
ces analyses afin de s’assurer que les solutions choisies vont permettre d’obtenir des gains réels
tout en s’intégrant adéquatement dans le contexte pour lequel elles sont proposées. Pour ce faire,
I’outil développé peut servir pour calculer des inventaires de cycle de vie, menant a une description
plus rigoureuse des flux de maticres lors de I’analyse environnementale des produits. Une meilleure
prédiction des émissions, des intrants et des différents produits peut ainsi étre effectuée en utilisant

I’approche de modélisation proposée dans cette these.

Finalement, ’approfondissement des connaissances en lien avec les propriétés physiques des
maticres et des mécanismes de séparation mécanique pourrait permettre d’améliorer 1’approche
utilisée pour séparer les matiéres, ainsi que les équipements utilisés. Les résultats permettent de
mieux cibler les mécanismes devant étre exploités pour séparer certaines matieres, ouvrant la voie

au développement de nouvelles stratégies et de nouveaux équipements.
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A2: Input composition

Table A1 MSW input composition adapted from (RECYC-QUEBEC, 2015)

Waste categories Fraction
Ferrous metal 1.61%
Non-ferrous metal 0.60%
Glass 2.77%
Plastics 3.02%
HDPE 0.37%
PET 0.63%
Papers 3.14%
Cardboards 4.76%
Other inorganic materials 17.32%
Other organic materials 18.52%
Green residue 10.42%
Food waste 25.69%
Tree branches 1.99%
Wood 2.02%
Plastic films 3.18%
Rubber 1.00%
Textiles 2.94%
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A3: Adaptation rules for obtaining the same waste categories:

The rules should be followed in order and applied only if necessary. If the rule can not be applied

due to a lack of data, go to the next rule. Rules should not be applied if there is already a raw data.

1. Green residue is equal to food waste

2. Food waste is equal to green residue

3. Wood is equal to tree branches

4. Tree branches is equal to wood

5. Paper is equal to cardboard

6. Cardboard is equal to paper

7. Green residue, food waste, wood and tree branches are equal to other organics

8. Plastic films, HDPE and PET are equal to plastics

9. Papers, cardboards, HDPE, PET, plastic films, other plastics, ferrous metals, non-ferrous
metals, glass, rubber, textiles are equal to other inorganics

10. Other organics is equal to food waste

11. Other inorganics is equal to rubber



A4: Valoris MRF partition coefficients

Table A2 Partition coefficients derived for the Valoris MRF

222

MS ECS TR OS-PET OS-MP
Non- Non- Non- Non-
Ferrous | ferrous Aluminium | aluminium PET |PET Plastic | plastic
output | output output Unders | Overs | output | output | output | output

Food waste | 0.000 1.000 0.001 0.999| 0.827| 0.173| 0.004 0.996| 0.001 0.999
Mixed

paper 0.000 1.000 0.011 0.989| 0.307| 0.693| 0.010 0.990| 0.005 0.995

Flat 0.012 0.988 0.004 0.996| 0.189| 0.811| 0.008 0.992| 0.002 0.998
cardboard

Multilayer 0.000 1.000 0.001 0.999| 0.598| 0.402| 0.001 0.999| 0.001 0.999
cardboard

Ferrnr:t‘;i 0.945 0.055 0.000 1.000| 0.502| 0.498| 0.000| 1.000| 0.000 1.000
Non-

ferrous| 0.000 1.000 0.406 0.594| 0.855| 0.145| 0.001 0.999| 0.000 1.000
metal

Cans| 0.000 1.000 0.727 0.273| 0.941| 0.059| 0.000 1.000| 0.001 0.999

PET| 0.000 1.000 0.000 1.000| 0.579| 0.421| 0.667 0.333| 0.061 0.939
Mixed

plastic 0.000 1.000 0.000 1.000| 0.544| 0.456| 0.005 0.995| 0.345 0.655

Rigid ] . - -| 0.000| 1.000 . ; ; ;
plastic

Plastic film| 0.011 0.989 0.000 1.000| 0.242| 0.758| 0.014 0.986| 0.000 1.000

Wood | 0.000 1.000 0.000 1.000| 0.063| 0.937| 0.001 0.999| 0.000 1.000

Fine| 0.000 1.000 NaN NaN| 1.000| 0.000| NaN NaN NaN NaN

Reject| 0.004 0.996 0.001 0.999| 0.497| 0.503| 0.003 0.997| 0.001 0.999




Ab5. Valoris processes operating conditions

Trommel:

e Screen sizes: 127
e Length: 28 ft
e Diameter: 10 ft

Magnetic separator:

e Targeted material concentration in the input: 3.5%
Eddy current separator:

e Targeted material concentration in the input: 4.4%
Optical sorter — PET:

e Targeted material concentration in the input: 4.4%
Optical sorter — Mixed plastics:

e Targeted material concentration in the input: 8.5%
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A6: Adapted coefficients for the processes considered

224

Some data were aggregated to correspond to similar categories. Data marked by * were adapted.

Table A3 Adapted coefficients for the trommel

Adapted from Adapted from (';‘:jeasg':gg ];rtogr Adapted from
(Diaz et al., 1982) | (Diaz et al., 1982) 2015) N Valoris plant
Overs  Unders | Overs Unders | Overs Unders | Overs Unders
Ferrous metal 0.8 0.2 0.41 0.59 1 0 0.498 0.502
Non-ferrous metal 0.8 0.2 0.37 0.63 1 0 0.12 0.88
Glass 0.2 0.8 0.01 0.99 0.9 0.1 0 1*
Plastics 0.9 0.1 0.62 0.38 0.95 0.05 0.588 0.412
HDPE 0.9 0.1* 0.62 0.38* 0.95 0.05* 0.588  0.412*
PET 0.9 0.1* 0.62 0.38* 0.95 0.05* 0.421 0.579
Papers 0.85 0.15 0.69 0.31 1 0 0.693 0.307
Cardboards 0.85 0.15 0.69 0.31 1 0 0.811 0.189
Other inorganic materials 0.25 0.75 0.02 0.98 0.8 0.2 0.503 0.497
Other organic materials 0.25 0.75 0.11 0.89 0.2 0.8 0.173 0.827*
Green residue 0.25 0.75* 0.11 0.89* 0.15 0.85 0.173 0.827*
Food waste 0.25 0.75* 0.11 0.89* 0.15 0.85 0.173 0.827
Tree branches 0.25 0.75* 0.11 0.89* 0.9 0.1 0.937 0.063*
Wood 0.25 0.75* 0.11 0.89* 0.95 0.05 0.937 0.063
Plastic films 0.9 0.1* 0.62 0.38* 0.95 0.05 0.758 0.242
Rubber 0.25 0.75* 0.02 0.98* 0.95 0.05 0.503  0.497*
Textiles 0.25 0.75* 0.02 0.98* 0.95 0.05 0.503  0.497*
Table A4 Adapted coefficients for the air classifier
Adapted from Adapted from (Diaz | Adapted from (Diaz A?gg:)e;dtgrgm
(Bilitewski, 2010) etal., 1982) et al., 1982) Pelagagge, 2002)
Light Heavy Light Heavy Light Heavy Light Heavy
Ferrous metal 0.125 0.875 0.1 0.9 0.1 0.9 0.1 0.9
Non-ferrous metal 0.385 0.615 0.5 0.5 0.5 0.5 0.8 0.2
Glass 0.056 0.944 0.6 0.4 0.02 0.98 0.7 0.3
Plastics 0.51 0.49 0.98 0.02 0.98 0.02 0.98 0.02
HDPE 0.51 0.49* 0.98 0.02* 0.98 0.02* 0.98 0.02*
PET 0.51 0.49* 0.98 0.02* 0.98 0.02* 0.98 0.02*
Papers 0.82 0.18 0.98 0.02 0.98 0.02 0.98 0.02
Cardboards 0.683 0.317 0.98 0.02 0.98 0.02 0.98 0.02
Other inorganic materials | 0.333  0.667* 0.2 0.8 0.15 0.85 0.2 0.8
Other organic materials 0.443  0.557* 0.7 0.3 0.4 0.6 0.7 0.3
Green residue 0.443  0.557* 0.7 0.3* 0.4 0.6* 0.7 0.3*
Food waste 0.443 0.557 0.7 0.3* 0.4 0.6* 0.7 0.3*
Tree branches 0.368  0.632* 0.7 0.3* 0.4 0.6* 0.7 0.3*
Wood 0.368 0.632 0.7 0.3* 0.4 0.6* 0.7 0.3*
Plastic films 0.94 0.06 0.98 0.02* 0.98 0.02* 0.98 0.02*
Rubber 0.333 0.667 0.2 0.8* 0.15 0.85* 0.2 0.8*
Textiles 0.783 0.217 0.2 0.8* 0.15 0.85* 0.2 0.8*




Table A5 Adapted coefficients for the magnetic separator
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Adapted from Adapted from (Ip et | Adapted from (Diaz | Adapted from Valoris

(Pressley et al., 2015) al., 2018) etal., 1982) plant

Magnetic  Other | Magnetic  Other Magnetic  Other | Magnetic  Other
Ferrous metal 0.88 0.12 0.951 0.049 0.8 0.2 0.945 0.055
Non-ferrous metal 0 1 0.0007 0.9993 0 1 0 1
Glass 0 1 0.0022 0.9978 0 1 0 1*
Plastics 0 1 0.0031 0.9969 0.02 0.98 0 1
HDPE 0 1 0.0031 0.9969 0.02 0.98* 0 1*
PET 0 1 0.0031 0.9969 0.02 0.98* 0 1
Papers 0 1 0.0007 0.9993 0.02 0.98 0 1
Cardboards 0 1 0.0007 0.9993 0.02 0.98 0.012 0.988
Other inorganic
materials 0 1 0.0147 0.9853 0 1 0.004 0.996
Other organic materials 0 1 0.0002 0.9998 0.05 0.95 0 1*
Green residue 0 1 0.0002  0.9998* 0.05 0.95* 0 1*
Food waste 0 1 0.0002  0.9998* 0.05 0.95* 0 1
Tree branches 0 1 0.0002  0.9998* 0.05 0.95* 0 1*
Wood 0 1 0.0002  0.9998* 0.05 0.95* 0 1
Plastic films 0 1 0.0144 0.9856 0.02 0.98* 0.011 0.989
Rubber 0 1 0.0147  0.9853* 0 1* 0.004 0.996*
Textiles 0 1 0.0147  0.9853* 0 1* 0.004 0.996*

Table A6 Adapted coefficients for the eddy current separator

Adapted from Adapted from Adapted from
(Savage et al., Ad;p;elzd ;Bolrg)(lp (Pressley et al., (Caputo & @i?g:?:g{;nr?
1984) B 2015) Pelagagge, 2002)
Alumin Alumin Alumin Alumin Alumin

ium Other ium Other ium Other ium Other ium Other
Ferrous metal 1 0 0 1 0 1 0.8 0.2 0 1
Non-ferrous metal 0.636 0.364 | 0.846 0.154 0.87 0.13 0.9 0.1 0.549  0.451
Glass 0.083 0917 | 0.762 0.239 0 1 0 1 0 1*
Plastics 0.089 0911 | 0.008 0.992 0 1 0.02 0.98 0 1
HDPE 0.089 0.911* | 0.008 0.992 0 1 0.02 0.98* 0 1*
PET 0.089 0.911* | 0.008 0.992 0 1 0.02 0.98* 0 1
Papers 0.083 0.917* | 0.000 1.000 0 1 0.02 0.98 0.011  0.989
Cardboards 0.083 0.917* | 0.000 1.000 0 1 0.02 0.98 0.004  0.996
Other inorganic
materials 0.083 0917 | 0.004 0.996 0 1 0.05 0.95 0.001  0.999
Other organic
materials 0.083 0.917* | 0.001  1.000 0 1 0.02 0.98 0.001 0.999*
Green residue 0.083 0.917* | 0.001 1.000* 0 1 0.02 0.98* | 0.001 0.999*
Food waste 0.083 0.917* | 0.001 1.000* 0 1 0.02 0.98* | 0.001 0.999
Tree branches 0.083 0.917* | 0.001 1.000* 0 1 0.02 0.98* 0 1*
Wood 0.083 0.917* | 0.001 1.000* 0 1 0.02 0.98* 0 1
Plastic films 0.089 0.911* | 0.001  0.999 0 1 0.02 0.98* 0 1
Rubber 0.083 0.917* | 0.004 0.996* 0 1 0.05 0.95* | 0.001 0.999*
Textiles 0.083 0.917* | 0.004 0.996* 0 1 0.05 0.95* | 0.001 0.999*
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Table A7 Adapted coefficients for the ballistic separator

Adapted from (Raymond. Adapted from (Caputo & | Adapter from (Miller et al..
2017) Pelagagge. 2002) 2003)

Fines 2D 3D Fines 2D 3D Fines 2D 3D
Ferrous metal 0.03 0.04 0.93 0 0.1 0.9 0.04 0.64 0.32*
Non-ferrous metal 0.03 0.04 0.93 0 0.8 0.2 0.04 0.64 0.32*
Glass 0.52 0.12 0.36 0 0.7 0.3 1.00 0.00 0.00
Plastics 0.1 0.23 0.67* 0 0.98 0.02 0.05 0.79 0.16
HDPE 0.1 0.23 0.67 0 0.98 0.02* 0.05 0.79 0.16*
PET 0.1 0.2 0.7 0 0.98 0.02* 0.05 0.79 0.16*
Papers 0 0.76 0.24 0 0.98 0.02 0.02 0.91 0.07*
Cardboards 0 0.76 0.24 0 0.98 0.02 0.02 0.91 0.07*
Other inorganic
materials 0.5 0.25 0.25 0 0.2 0.8 0.16 0.79 0.05
Other organic
materials 0.5 0.25 0.25* 0 0.6 0.4 0.00 0.97 0.02
Green residue 0.5 0.25 0.25* 0 0.6 0.4* 0.40 0.51 0.09*
Food waste 0.5 0.25 0.25* 0 0.6 0.4* 0.40 0.51 0.09
Tree branches 0 0 1* 0 0.6 0.4* 0.11 0.43 0.46*
Wood 0 0 1* 0 0.6 0.4* 0.11 0.43 0.46
Plastic films 0 0.76 0.24* 0 0.98 0.02* 0.01 0.97 0.01
Rubber 0.5 0.25 0.25* 0 0.2 0.8* 0.00 0.85 0.15*
Textiles 0.5 0.25 0.25* 0 0.2 0.8* 0.00 0.85 0.15

Table A8 Adapted coefficients for the optical sorter targeting PET

Adapted from (Pressley et | Adapted from (Ip et al., Adapted from Valoris
al., 2015) 2018) plant
PET Other PET Other PET Other
Ferrous metal 0 1 0.3375 0.6625 0 1
Non-ferrous metal 0 1 0.0474 0.9526 0.001 0.999
Glass 0 1 0.0103 0.9897 0.003 0.997*
Plastics 0 1 0.1074 0.8926 0.005 0.995
HDPE 0 1 0.2066 0.7934 0.005 0.995*
PET 0.83 0.17 0.9319 0.0681 0.667 0.333
Papers 0 1 0.0485 0.9515 0.01 0.99
Cardboards 0 1 0.0485 0.9515 0.008 0.992
Other inorganic materials 0 1 0.3175 0.6825 0.003 0.997
Other organic materials 0 1 0.0005 0.9995 0.004 0.996*
Green residue 0 1 0.0005 0.9995* 0.004 0.996*
Food waste 0 1 0.0005 0.9995* 0.004 0.996
Tree branches 0 1 0.0005 0.9995* 0 1*
Wood 0 1 0.0005 0.9995* 0 1
Plastic films 0 1 0.1316 0.8684 0.014 0.986
Rubber 0 1 0.3175 0.6825* 0.003 0.997*
Textiles 0 1 0.3175 0.6825* 0.003 0.997*




Table A9 Adapted coefficients for the optical sorter targeting HDPE

Adapted from (Pressley | Adapted from (Ip et al..
et al.. 2015) 2018)
HDPE Other HDPE Other
Ferrous metal 0 1 0 1
Non-ferrous metal 0 1 0.0007 0.9993
Glass 0 1 0.0028 0.9972
Plastics 0 1 0.0093 0.9907
HDPE 0.83 0.17 0.7129 0.2871
PET 0 1 0.0032 0.9968
Papers 0 1 0.0005 0.9995
Cardboards 0 1 0.0005 0.9995
Other inorganic materials 0 1 0.0028 0.9972
Other organic materials 0 1 0 1
Green residue 0 1 0 1*
Food waste 0 1 0 1*
Tree branches 0 1 0 1*
Wood 0 1 0 1*
Plastic films 0 1 0.0673 0.9327
Rubber 0 1 0.0028 0.9972*
Textiles 0 1 0.0028 0.9972*

Table A10 Adapted coefficients for the optical sorter targeting mixed plastics

Adapted from (Ip et al.. Adapted from Valoris
2018) plant
Plastics Other Plastics Other
Ferrous metal 0.0017 0.9983 0 1
Non-ferrous metal 0.021 0.979 0 1
Glass 0.2181 0.7819 0.001 0.999*
Plastics 0.7445 0.2555 0.345 0.655
HDPE 0.0081 0.9919 0.345 0.655*
PET 0.0049 0.9951 0.061 0.939
Papers 0.0032 0.9968 0.005 0.995
Cardboards 0.0032 0.9968 0.002 0.998
Other inorganic materials 0.0373 0.9627 0.001 0.999
Other organic materials 0.0006 0.9994 0.001 0.999*
Green residue 0.0006 0.9994* 0.001 0.999*
Food waste 0.0006 0.9994* 0.001 0.999
Tree branches 0.0006 0.9994* 0 1*
Wood 0.0006 0.9994* 0 1
Plastic films 0.2179 0.7821 0 1
Rubber 0.0373 0.9627* 0.001 0.999*
Textiles 0.0373 0.9627* 0.001 0.999*

*These data were adapted.
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A7. HDPE and second non-ferrous output streams according to the chosen datasets
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Relative dispersion of recovery

Relative dispersion of purity
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Figure A3 Dispersion and center of gravity displacement for the purity and the recovery of the

second non-ferrous output stream (M5) according to the chosen datasets
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ANNEXE B ANNEXE DE L’ARTICLE 3

B1. Equations used for the statistical analysis and the model development

1) p-value calculation:

X, — X3
p=2P|T,> (B.1)

2 2
S S
_1_|_N_2
“1 2

where X is the calculated mean diameter, s is the calculated standard deviation of the samples and
N is the number of samples.

2) Goodness-of-fit calculation:

The residual sum of squares is given by
—\2
RSS = Z(Fi(x) - F(®) (B.2)
i

Where F(x) is the actual cumulative distribution data and F(x) is the predicted cumulative
distribution data for a given sieve diameter x.

The Vn statistic test is defined as

V, = sup Dy (x) — inf D (x) = Dy + Dy (B.3)
X X

where

Dp(x) = F(x) = Fy(x) (B.4)



B2. Fitting results

1) Household wastes

Table B1 Goodness-of-fit results and distribution parameters for household wastes

Waste

Location

or Scale
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Distribution type RSS Vn
category shape parameter parameter
Animal Log-normal 0.22 0.40 0.00127 0.0397
derived food Rosin-Rammler 1.49 2.65 0.00216 0.0456
waste Gamma 6.05 4.53 0.00172 0.0437
Vegetable Log_—normal 0.51 0.63 0.00086 0.0393
food waste Rosin-Rammler 2.15 1.74 0.00149 0.0454
Gamma 2.68 1.38 0.00068 0.0362
Log-normal 0.07 0.89 0.00748 0.1119
Green residue Rosin-Rammler 1.50 1.10 0.00483 0.0924
Gamma 1.18 0.80 0.00503 0.0951
Other organic Log-normal 0.48 0.34 0.00036 0.023
waste Rosin-Rammler 1.87 3.94 0.00022 0.0156
accepted Gamma 9.63 5.64 0.00002 0.0058
Other organic Log-normal -0.28 0.77 0.00069 0.0316
waste not Rosin-Rammler 0.97 1.10 0.00025 0.0183
accepted Gamma 1.20 1.27 0.00028 0.0192
Log-normal 1.40 0.44 0.00083 0.0379
Paper and .
cardboard Rosin-Rammler 4.49 3.24 0.00006 0.0106
Gamma 6.28 1.48 0.00043 0.0271
Log-normal 1.32 0.55 0.00032 0.0203
Plastics Rosin-Rammler 4.34 2.49 0.00188 0.0532
Gamma 4.23 1.04 0.00087 0.0346
Log-normal 1.43 1.01 0.00083 0.0392
Other plastics Rosin-Rammler 5.36 1.38 0.00216 0.0607
Gamma 1.61 0.31 0.00183 0.0561
Log-normal 1.19 0.34 0.00004 0.0079
Plastic bags  Rosin-Rammler 3.72 3.62 0.00185 0.0577
Gamma 9.39 2.74 0.00028 0.0211
Non ferrous Log_—normal 0.99 0.35 0.00423 0.0843
metal Rosin-Rammler 3.10 3.14 0.01145 0.1324
Gamma 8.35 2.95 0.0061 0.1015
Log-normal 1.11 0.40 0.0042 0.0722
Ferrous metal Rosin-Rammler 3.52 2.94 0.00256 0.0665
Gamma 6.59 2.04 0.00344 0.0675
Glass Log-normal 1.14 0.24 0.00121 0.0388
Rosin-Rammler 3.44 4.70 0.0006 0.0294




232

Gamma 17.68 5.54 0.00059 0.0245
Hazardous Log_—normal 0.91 0.81 0.01607 0.0546
residual waste Rosin-Rammler 3.32 1.44 0.02578 0.0899
Gamma 1.91 0.62 0.02291 0.0768
Log-normal 1.90 0.40 0.00282 0.0526
Wood Rosin-Rammler 9.07 2.80 0.00083 0.0283
Gamma 6.09 0.80 0.0019 0.0427
Log-normal 1.70 0.74 0.00152 0.0504
Others Rosin-Rammler 6.00 2.16 0.00065 0.0331
Gamma 2.86 0.48 0.00097 0.0403

Table B2 Goodness-of-fit results and distribution parameters for the green residue and the glass

per season
Waste category Distribution Location or shape Scale RSS i
type parameter parameter
Log-normal -0.45 0.96 0.00826 | 0.1198
Green residue - Rosin- 0.87 0.88 0.00683 | 0.1100
Fall Rammler
Gamma 0.75 0.82 0.00663 | 0.1089
Log-normal 0.38 0.58 0.02944 | 0.2247
Green residue - Rosin- 1.89 1.95 0.01747 | 0.1700
Summer Rammler
Gamma 3.03 1.79 0.02253 | 0.1984
Log-normal 1.07 0.26 0.00087 0.0327
Glass-Fall  ~osin- 3.23 4.39 0.00233 | 0.0539
Rammler
Gamma 15.30 5.11 0.00177 | 0.0250
Log-normal 121 0.20 0.00214 | 0.0496
Glass - Summer <o 3.64 5.48 0.00028 | 0.0182
Rammler
Gamma 24.01 7.05 0.00177 | 0.0471
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2) C&D wastes

Table B3 Goodness-of-fit results and distribution parameters for the C&D wastes

Waste category  Distribution type Location or Scale parameter RSS Vn
shape parameter
Log-normal 1.23 0.55 0.00442 0.067
Engineered wood Rosin-Rammler 4.32 2.13 0.00023 0.0182
Gamma 3.59 0.93 0.00112 0.0343
Log-normal 0.92 0.46 0.00324 0.062
Untreated wood  Rosin-Rammler 2.93 2.78 0.00053 0.0298
Gamma 5.31 1.97 0.00141 0.0467
Fiberglass Log_—normal 1.20 0.47 0.0423 0.2226
Insulation Rosin-Rammler 4.01 2.53 0.01871 0.1555
Gamma 4.55 1.25 0.03061 0.1973
Pink & Blue Log-normal 0.82 0.38 0.00437 0.0807
Polystyrene Rosin-Rammler 2.62 3.19 0.00043 0.0262
Insulation Gamma 7.42 3.10 0.00253 0.0626
Polyisocyanurate Log_—normal 0.21 0.28 0.00382 0.0633
Insulation Rosin-Rammler 1.39 3.94 0.00072 0.0248
Gamma 12.46 9.76 0.00284 0.051
White Log-normal 0.59 1.19 0.03685 0.2058
Polystyrene Rosin-Rammler 2.82 0.96 0.01803 0.1552
Insulation Gamma 0.89 0.31 0.01738 0.1497
Log-normal 0.94 0.62 0.01909 0.1261
Gypsum Rosin-Rammler 3.26 1.88 0.00466 0.065
Gamma 2.77 0.93 0.00954 0.0974
Log-normal 0.67 0.63 0.01492 0.1426
PVC Rosin-Rammler 2.45 1.93 0.00891 0.118
Gamma 2.86 1.27 0.01035 0.121
Log-normal 1.02 0.71 0.00293 0.0681
Plastics Rosin-Rammler 3.74 1.58 0.00946 0.1097
Gamma 2.23 0.66 0.00598 0.0863
Paper and Log_—normal 0.97 0.55 0.00104 0.0303
Carboard Rosin-Rammler 3.22 2.24 0.00145 0.0428
Gamma 3.73 1.26 0.0001 0.0116
Log-normal 1.09 0.41 0.0031 0.0687
Shingles Rosin-Rammler 3.41 3.12 0.00044 0.0262
Gamma 6.36 2.01 0.00108 0.0401
Other Log_—normal 1.23 0.31 0.00658 0.0726
combustibles Rosin-Rammler 3.94 3.51 0.00078 0.0282
Gamma 9.51 2.64 0.00413 0.0627
Log-normal 0.91 0.51 0.00753 0.0989
Other non- .
combustibles Rosin-Rammler 2.97 2.42 0.00253 0.0694
Gamma 4.18 1.53 0.00417 0.0825
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B3. Student-test results

1) Influence of the season

Table B4 Student-test results for the equality of mean particle size hypothesis between two

seasons

Waste category p-value Rejection of

the hypothesis

Animal derived food waste 0.9012 Not rejected
Vegetable food waste 0.1936 Not rejected
Green residue 0.0051 Rejected

Other organic waste accepted 0.3273 Not rejected
Other organic waste not accepted 0.5486 Not rejected
Paper and cardboard 0.1017 Not rejected
Plastics 0.0790 Not rejected
Other plastics 0.0488 Not rejected
Plastic bags 0.1780 Not rejected
Non-ferrous metal 0.5468 Not rejected
Ferrous metal 0.6453 Not rejected
Glass 0.0066 Rejected

Others 0.8747 Not rejected

2) Influence of the collection type

Table B5 Hypothesis tests results for the collection type influence on particle size

Waste category p-value Rejection  of
the hypothesis

Animal derived food waste 0.8081 Not rejected

Vegetable food waste 0.1059 Not rejected

Other organic waste accepted 0.0588 Not rejected




B4. Mixed MSW compositions

Table B6 Composition of various MSW
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This This (Christen | (Edjabou | (Montejo | (Burnley | Source- Source-
study study sen et al., | et al, | et al, | et al., | separated | separated
(Fall) (Summer | 2011)* 2015)* 2011)* 2007)* inorganic | organics
) s*
Animal
derived 0.1025 0.1638 0.3614 0.081 0.2813 0.1755 0.009 0.350
food waste
Vegetable | o751 | 01673 | 0 0.365 02813 | 0.1755 | 0.000 0.431
food waste
Green 0.0224 0.0055 0.0341 0.048 0.0184 0 0.000 0.017
residue
Other
organic 0.0613 | 0.0522 | 0.012 0 0 0 0.002 0.075
waste
accepted
Other
organic 01112 | 0.1888 |0.0753 | 0.086 0 0.036 0.005 0.014
waste not
accepted
Paper and | hges | 00784 | 02149 | 0.144 0.138 0.236 0.611 0.055
cardboard
Plastics 0.0328 0.0308 0.1044 0.051 0.0777 0.102 0.071 0.005
Other 0.016 0.0058 0.0251 0.005 0.029 0 0.020 0.036
plastics
Plastic bags | 0.0492 0.0524 0 0.098 0 0 0.017 0.001
Non ferrous | o o045 | 0.0043 | 0 0 0.005 0.01 0.029 0
metal
;eertr;’lus 0.0165 | 0.007 0.0402 | 0.019 0.0246 | 0.036 0.010 0.001
Glass 0.0292 0.0403 0.0572 0.021 0.0328 0.072 0.184 0.008
Hazardous
residual 0.0087 0.0058 0 0.006 0 0.006 0.002 0
waste
Wood 0.0081 0.0331 0.0622 0.006 0.0133 0 0.003 0.003
Others 0.176 0.1646 0.0131 0.07 0.0986 0.151 0.000 0.004

* These characterizations were adapted to correspond to the waste categories considered in this

study.
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ANNEXE C ANNEXE DE L’ARTICLE 4

C1. Composition of the source-separated recyclable materials

Table C1 Composition of the source-separated recyclable materials

Waste category Samples composition Average waste
fraction for the
Mean weight Standard Quebec province
fraction (%) deviation (%) (Canada)!
Corrugated cardboards 19.5 3,5% 12,7
Multilayer cardboards 2.6 0,6% 2,5
Flat cardboards 10.1 1,4% 8,6
Newspapers 10.0 4 5% 19,2
Mixed papers 13.6 6,4% 12,5
Broken glass 8.9 3,0%
19,0
Unbroken glass 6.3 4,2%
PET 4.0 0,8% 2,8
HDPE 3.6 2,4% 2,1
Plastic films 2.5 0,4% 2,8
Mixed plastics 34 0,6% 3,3
Ferrous metals 3.1 0,7% 2,9
Non-ferrous metals 0.9 0,4% 0,6
Rejects 114 0,2% 11,1

1. RECYC-QUEBEC. (2020). Caractérisation des matiéres sortantes des centres de tri 2018-2020
(p. 17). https://www.recyc-quebec.gouv.qc.ca/haut-de-page/salle-de-presse/archives-presse/2020-

publication-caracterisation-matieres-sortantes-centres-de-tri-2018-2020
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C2. Data representativeness for bulk density measurement

Two different measurements were performed on the bulk density data to assess the
representativeness of the samples. The confidence interval was calculated on the data and a
theoretical sample size required to achieve a certain confidence was calculated for further

characterizations. Both analyses are performed based on the Student’s t-test.

For the waste categories that had large quantities of objects gathered during the sorting step, the
initial six collected samples were further separated in smaller samples to facilitate the density
measurements. As a result, between five and twelve samples were obtained per waste category for

the density measurements, and thus for the statistical analysis.

The confidence interval expressed as a percentage of the mean value was calculated based on the
Student’s t-test using a confidence level of 90%. Results are presented in Table C2. Confidence

intervals vary between 9.5% and 28% for the main waste categories.

For the minimum theoretical mass to sample, the number of samples required to achieve a
confidence interval smaller than 20% is calculated according to the sample size used during this
study (sum of 50 kg for all the categories). The standard deviation and the mean bulk density were
assumed to be constant. The minimum number of samples, the sample size and the total mass to
collect for each waste material are presented in Table C2. Samples varying from 3 kg to 70 kg were

calculated according to the waste material and its variability.
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Table C2 Statistical analysis of the density measurements

Waste category Actual confidence | Theoretical sample size to collect to achieve a confidence
interval (%) | interval smaller than 20% with a confidence level of 90%
gbi;aiit?:lds;;i:isthe Average mass per Number of Theoretical mass

sample (kg) samples required to sample (kg)

Corrugated cardboards 13.8 4.9 5 24.5

Multilayer cardboards 215 1.3 5 6.5

Flat cardboards 11.6 4.3 2 8.6

Newspapers 13.8 3.8 3 114

Mixed papers 27.8 5.0 14 70.0

Broken glass 10.7 4.4 2 8.8

Unbroken glass 32.8 3.3 8 26.4

PET 11.9 1.7 2 34

HDPE 9.5 15 2 3.0

Plastic films 21.3 11 6 6.6

Mixed plastics 15.7 15 3 4.5

Ferrous metals 28 15 8 12.0

Non-ferrous metals 18.2 0.5 4 2.0

Rejects 43.3 4.4 26 114.4
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C3. Bulk density and standard deviation measured for different categories of recyclable

materials

Table C3 Density measurements

Bulk density

Mean (kg m)

Standard deviation

(kg m?)
Corrugated cardboards 75.0 17.5
Multilayer cardboards 37.2 8.9
Flat cardboards 81.6 8.8
Newspapers 102.9 21.1
Mixed papers 111.4 45.3
Broken glass 587.9 69.7
Unbroken glass 262.5 80.8
PET 29.3 4.5
HDPE 34.4 4.2
Plastic films 23.6 6.5
Mixed plastics 34.5 4.3
Ferrous metals 88.5 27.5
Non-ferrous metals 40.0 8.1
Rejects 88.2 47.3
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C4. Results of the Kolmogorov-Smirnov test for the representativeness of the particle size

samples

Results of the Kolmogorov-Smirnov test for the comparison of the PSD obtained with all 6 samples
to PSD obtained with sub-samples. 5 sub-samples are tested according to the number of samples
considered. An R in Table C4 means that the null hypothesis can be rejected, thus meaning that the

PSD are different.

Table C4 Results of the Kolmogorov-Smirnov test for the particle size samples

Sub-samples considered
Sample 1 Samples 1 Samples 1,2 | Samples 1, 2, | Samples 1, 2,
and 2 and 3 3and 4 3,4and5
Corrugated
cardboards
Multilayer
cardboards
Flat cardboards R
Newspapers R R
Mixed papers R
Broken glass R
PET
HDPE
Plastic films
Mixed plastics R R
Ferrous metals R R R R
Non-ferrous metals R R R
Rejects R R R
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C5. Results of the Kolmogorov-Smirnov test for the two-by-two comparisons of the PSDs

Kolmogorov-Smirnov test for the two-by-two comparisons of the PSDs of the different waste
materials. An NR in Table C5 means that the null hypothesis of the similitude of the PSDs can not
be rejected, thus meaning that the PSD are similar. Recyclable materials in bold indicate that their

PSD was not similar to any other PSD.

Table C5 Kolmogorov-Smirnov test for the two-by-two comparisons

Corr | Mult | Flat | New | Mix | Bro | PET | HD | Plast | Mix | Ferr | Non | Reje
ugat | ilaye | card | spap | ed ken PE ic ed ous - cts
ed r boar | ers | pape | glas film | plast | meta | ferro
card | card | ds rs S S ics Is us
boar | boar meta
ds ds Is

Corrugated | NR
cardboards

Multilayer NR
cardboards

Flat NR
cardboards

Newspapers NR | NR

Mixed NR
papers

Broken NR
glass

PET NR NR

HDPE NR

Plastic films NR NR NR

Mixed NR NR
plastics

Ferrous NR NR
metals

Non-ferrous NR
metals

Rejects NR




C6. Material density measurement

242

Table C6 Number of objects analyzed, density and standard deviation measured for the materials

density measurement.

Mean density

Standard deviation

Number of objects

(kg M) (kg M) analyzed
Corrugated cardboards 756 105 10
Multilayer cardboards 822 46 10
Flat cardboards 892 188 10
Newspapers 1004 117 10
Mixed papers 967 101 10
Broken glass 2584 197 15
Non-broken glass 2584 197 15
PET 1339 78 14
HDPE 971 30 11
Plastic films 697 51 8
Mixed plastics (PP) 873 41 12
Ferrous metals 7030 525 13
Non-ferrous metals 1957 291 12




C7. Original experimental data

Table C7 Experimental data for the composition measurement for every sample

Mass sampled (kg)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Ccac;gsggrtgg 9,00 10,97 9,41 10,90 10,38 8,16
Muttiayer 1,78 1,55 0,79 0,92 1,36 156
Flat cardboards 5,99 5,97 311 4,97 6,38 4,23
Newspapers 9,50 6,75 4,94 2,15 4,42 2,58
Mixed papers 6,61 8,46 3,82 12,19 5,56 4,28
Broken glass 5,07 6,06 4,09 1,95 6,40 3,24
Unbroken glass 2,78 2,47 3,26 1,04 7,59 1,99
PET 2,76 1,61 2,04 2,13 1,92 1,69
HDPE 1,34 1,13 1,54 1,13 1,83 3,90
Plastic films 1,75 1,13 0,91 1,42 1,08 1,16
Mixed plastics 1,95 2,06 1,68 1,22 1,74 1,76
Ferrous metals 1,98 1,68 0,72 1,40 2,09 1,45
Non-ferrous metals 0,73 0,30 0,16 0,69 0,62 0,3

Rejects 9,82 2,82 2,49 5,44 3,29 10,48
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Table C8 Experimental data for the bulk density measurement for every sample

Density (kg m™)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Corrugated 59,8 84,4 86,5 459 75,2 98,4
cardboards

Multilayer 34.8 5.8 20,0 30,7 38,4 34,2
cardboards

Flat cardboards 73,1 92,5 68,8 83,7 91,5 79,9
Newspapers 1141 91,0 141,3 98,1 100,1 72,7
Mixed papers 78,7 83,0 71,8 202,9 130,7 101,3
Broken glass 713,9 576,8 481,5 576,6 618,3 560,0
Unbroken glass 179,5 - 260,9 383,5 316,4 172,1
PET 31,0 35,2 28,6 32,3 28,2 20,6
HDPE 34,3 29,1 32,6 39,8 39,9 30,6
Plastic films 18,7 20,6 16,8 36,8 25,0 23,7
Mixed plastics 34,1 40,5 32,2 29,0 40,1 31,3
Ferrous metals 82,3 132,6 56,4 102,5 102,6 54,9
Non-ferrous metals 44,6 45,1 28,8 40,0 51,3 30,4
Rejects 74,1 56,2 45,9 107,3 61,1 184,6
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Table C9 Experimental data for the particle size analysis for the sample 1

Mass sampled by sieve size (kg)

<18 | <ua | <12v | <1v | <2v | <3 | <4 | <6 | <8 | <12" | >12
ga‘;gg‘g;‘rtgg 0 0 0 0 | 0,042 | 0,036 | 0,207 | 0,403 | 2,253 | 3,487 | 2,529
Muttlayer o | o | o | o | o004 |0023]|0549|1124] 0 | o | o0
Flat cardboards | 0 0 0 |0002| 0226 | 0611 | 0,964 | 2,435 | 0,695 | 1,023 | 0
Newspapers 0 0 0 |0004| 0038 | 0156|0412 | 1,81 | 4987 | 2,089 | 0
Mixed papers | 0 0 0 |0071]| 0327 | 0493 | 1,426 | 1,911 | 2,342 | 0 0
Brokenglass | 0,37 | 0,527 | 1,215 | 1,785 | 0,881 | 0,26 | 0 0 0 0 0
Unbroken glass 0 0 0 0 0 1,804 | 0,942 0 0 0 0
PET 0 0 0 0 |00305 | 0513 | 0512 | 1,052 | 0,649 | 0 0
HDPE 0 0 0 0 01 |0134 0055 | 0423|0355 0266 0
Plastic films 0 0 0 |0003| 0054 | 0176 | 0,123 | 0,653 | 0,487 | 023 | 0
Mixed plastics | 0 0 |0003 0068 | 0243 | 0416 | 0,384 | 0,772 | 0,063 | 0 0
Ferrous metals | 0 0 0 0 | 0046 | 0439 | 0,657 | 0,293 | 0,564 | 0 0
mgglf:”ous 0 0 0 0 0 | 00880506 | 0009|0122 | 0 0
Rejects 0 0 |0271 0368 | 0949 | 2211 | 0,515 | 1,607 | 1,624 | 1,166 | 1,105
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Table C10 Experimental data for the particle size analysis for the sample 2

Mass sampled by sieve size (kg)

<18 | <ua | <12v | <1v | <2v | <3 | <4 | <6 | <8 | <12" | >12
ga‘;gg‘g;‘rtgg 0,039 | 0,196 | 0,445 | 1,176 | 1,893 | 6,97 | 0,54
Muttlayer 0,274 | 0,716 | 05
Flat cardboards 0,014 | 0551 | 0,602 | 1,188 | 1,687 | 0,88 | 0,778
Newspapers 0,009 | 0,058 | 0,123 | 0,564 | 2,376 | 3,526
Mixed papers 0,498 | 0,173 | 0,577 | 0,674 | 1,131 | 3,346 | 1,895
Brokenglass | 0,421 | 0,579 | 1,552 | 2,247 | 1,311
Unbroken glass 1,516 | 0,953
PET 0,012 | 0,535 | 0,278 | 0,639 | 0,295
HDPE 0,015 | 0,076 | 0,153 | 0,209 | 0,24 | 0,37
Plastic films 0,01 | 0,049 | 0,087 | 0,122 | 0,212 | 0,42 | 0,132
Mixed plastics 0,028 | 0,096 | 0,224 | 0,585 | 0,421 | 0,488 | 0,044
Ferrous metals 0,022 | 0,021 | 0,036 | 0,594 | 0,704 | 0,35
mgglf:”ous 0,008 | 0,007 | 0,227 | 0,045
Rejects 0,051 | 0,118 | 0,612 | 0,508 | 0,884 | 0,545 | 0,03 | 0,095
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Table C11 Experimental data for the particle size analysis for the sample 3

Mass sampled by sieve size (kg)

<18 | <ua | <12v | <1v | <2v | <3 | <4 | <6 | <8 | <12" | >12
ga‘;gg‘g;‘rtgg 0,052 | 0,046 | 0,178 | 0,375 | 2,124 | 5,509 | 0,984
Muttlayer 0,034 | 0,078 | 0,148 | 0,525
Flat cardboards 0,076 | 0,259 | 0,382 | 0,865 | 0,988 | 0,58
Newspapers 0,004 | 0,068 | 0,277 | 0,433 | 2,173 | 1,25 | 0,791
Mixed papers 0,089 | 0,093 | 0,414 | 0,535 | 0,615 | 1,891 | 0,169
Broken glass | 0,235 | 0,161 | 1,036 | 1,301 | 0,951 | 0,438
Unbroken glass 0,616 | 2,64
PET 0,625 | 0,267 | 0,696 | 0,363
HDPE 0,059 | 0,053 | 0,064 | 0,313 | 1,074
Plastic films 0,009 | 0,045 | 0,146 | 0,138 | 0,386 | 0,178
Mixed plastics 0,013 | 0,046 | 0,276 | 0,305 | 0,311 | 0,312 | 0,176 | 0,255
Ferrous metals 0,021 | 0,002 | 0,052 | 0,148 | 0,232 | 0 | 0,258
mgglf:”ous 0022 (0068 | 0 |0068
Rejects 0,057 | 0,079 | 0,448 | 0,246 | 0,298 | 0,987 | 0,213 | 0,243
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Table C12 Experimental data for the particle size analysis for the sample 4

Mass sampled by sieve size (kg)

<18" | <ua | <12v | <1t | <2v | <3 | <4" | <6 | <8 | <12" | >12"
ga‘;gg‘g;‘rtgg 0,003 | 0,052 | 0,117 | 0,211 | 0,987 | 2,227 | 5,617 | 1,677
Muttlayer 0,11 | 0,264 | 0,457
Flat cardboards 0,009 | 032 | 0,328 | 0,545 | 1,794 | 0,876 | 0,767 | 0,292
Newspapers 0,004 | 0,018 |0,1014| 0,63 | 1,095 | 0,302
Mixed papers 0,063 | 053 | 0,339 | 1,076 | 2,164 | 6,567 | 1,391
Brokenglass | 0,06 | 0,157 | 0,494 | 0,7 | 0,183 | 0,06 | 0,432
Unbroken glass 1,041
PET 0,668 | 0,397 | 0,808 | 0,212
HDPE 0,043 | 0,133 | 0,084 | 0,462 | 0,404
Plastic films 0,002 | 0,022 | 0,087 | 0,189 | 0,723 | 0,315 | 0,108 | 0,099
Mixed plastics 0,008 | 0,027 | 0,084 | 0,131 | 0,304 | 0,364 | 0,069 | 0,232
Ferrous metals 0,005 | 0,002 | 0,005 | 0,2 | 1,035 | 0,128
mgglf:”ous 0,002 | 0,023 | 0,293 | 0,168 | 0,195
Rejects 0,039 | 0,133 | 0,761 | 0,737 | 0,223 | 0,134 | 1,33 | 1,914
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Table C13 Experimental data for the particle size analysis for the sample 5

Mass sampled by sieve size (kg)

<18 | <ua | <12v | <1v | <2v | <3 | <4 | <6 | <8 | <12" | >12
ga‘;gg‘g;‘rtgg 0,056 | 02 | 0,197 | 0,913 | 2,526 | 3,364 | 2,926
Muttlayer 0,196 | 0,328 | 0,766
Flat cardboards 0,231 | 0,652 | 1,001 | 2,299 | 1,513 | 0,584
Newspapers 0,039 | 0,166 | 0,369 | 1,738 | 0,558 | 1,426
Mixed papers 0,109 | 0,075 | 0,481 | 0,946 | 0,552 | 1,302 | 1,976
Brokenglass | 0,201 | 0,321 | 0,927 | 2,221 | 2,165 | 0,229 | 0,491
Unbroken glass 0,142 | 5,245 | 2,199
PET 0,697 | 0,478 | 0,715 | 0,05
HDPE 0,039 | 0,396 | 0,324 | 0,079 | 0,679 | 0,21
Plastic films 0,024 | 0,086 | 0,119 | 0,563 | 0,188 | 0,133
Mixed plastics 0,062 | 0,186 | 0,342 | 0,346 | 0,427 | 0,373
Ferrous metals 0,123 | 0,306 | 1,089 | 0,555
Non-ferrous 0,007 | 0,138 | 0,401 | 0,041
Rejects 0,133 | 0541 | 0,669 | 0,19 | 0,554 | 1,255
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Table C14 Experimental data for the particle size analysis for the sample 6

Mass sampled by sieve size (kg)

<18 | <ua | <12v | <1v | <2v | <3 | <4 | <6 | <8 | <12" | >12
ga‘;gg‘g;‘rtgg 0,008 | 0,042 | 0,18 | 0,468 | 1,035 | 2,562 | 3,799
Muttlayer 0,043 | 0,026 | 0,543 | 0,937
Flat cardboards 0,024 | 0,304 | 0,336 | 0,282 | 1,35 | 1,143 | 0,73 | 0,195
Newspapers 0,075 | 0,134 | 0,409 | 0,967 | 0,838 | 0,485
Mixed papers 0,128 | 0,345 | 0,28 | 0,737 | 1,304 | 1,442
Brokenglass | 0,194 | 0,234 | 1,059 | 0,75 | 0,344 | 0,199
Unbroken glass 1,987
PET 0,023 | 0,312 | 0,407 | 0,68 | 0,258
HDPE 0,001 | 0,096 | 0,095 | 0,191 | 1,254 | 1,708 | 0,561
Plastic films 0,058 | 0,148 | 0,159 | 0,176 | 0,339 | 0,281
Mixed plastics 0,029 | 0,097 | 0,322 | 0,265 | 0,574 | 0,206 | 0,059
Ferrous metals 0,017 | 0,003 | 0,07 | 0131 | 0,62 | 0,596
mgglf:”ous 0,002 | 0,029 | 021 | 0,016 | 0,016
Rejects 0,147 | 0,156 | 0,59 | 0,625 | 0,216 | 5,794 | 1,714 | 1,122
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ANNEXE D ANNEXE DE L’ARTICLE 5

D1. Input composition of the case study and description of the waste properties

Table D1 Waste composition and physical properties of the input stream for the case study
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Composition

Shape

Density

Rosin-Rammler

(%)? factor (kg m3) X (5] a;rametersn
Ferrous metal 4.0 0.987¢ 92.7¢ 4.01° 5.49
Non-ferrous metal 0.8 0.978° 42 5° 3.41° 3.94
Glass 2.3 0.769° 596.1° 0.90° 1.39
Recyclable plastics 2.1 0.960° 35.0° 4.44° 2.14
HDPE 0.7 0.965° 33.7° 6.70° 3.17
PET 0.7 0.978° 29.5¢ 4.70° 2.89
Non-recyclable 9.0 0.960¢ 35.0° 4.44° 2.14
plastics
Papers 1.2 0.870° 125.4° 5.80° 2.60
Newspapers 1.2 0.894° 106.7° 6.92° 3.94
Flat cardboards 1.2 0.907°¢ 82.9¢ 6.12° 2.46
Corrugated cardboards 1.2 0.902° 74.2° 10.58° 3.53
Tetrapack 0.4 0.953° 38.3° 4.41° 5.65
Other inorganic 22.2 0.800¢ 108.3¢ 6.00° 2.16
materials
Fines 9.8 0.769¢ 596.11 0.10¢ 1.10
Other organic 3.4 0.870¢ 264.5¢ 1.87° 3.94
materials
Green residue 2.0 0.800¢ 135.0¢ 1.50° 1.10
Food waste 19.7 0.950¢ 358.2¢ 1.79° 1.75
Tree branches 0.0 0.800¢ 179.6¢ 9.07¢ 2.80
Wood 3.4 0.800¢ 179.6¢ 9.07" 2.80
Plastic films 1.8 0.966° 23.9¢ 6.17¢ 2.79
Gravel 6.4 0.769¢ 200.9¢ 0.97¢ 1.10
Textiles 3.9 0.900¢ 102.8¢ 6.00¢ 2.16
RDD 0.6 0.769¢ 200.9¢ 3.32° 1.44
Linear objects 1.8 0.800¢ 108.3¢ 12.00¢ 3.00

a Characterization results

b (Tanguay-Rioux et al., 2020)
¢ (Tanguay-Rioux et al., 2021)
d Estimation through literature or similar categories



