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RÉSUMÉ

Le développement de technologies de plus en plus innovantes combiné à notre insatiable
appétit pour les données conduit à une demande grandissante en bandes passantes et une
consommation excessive d’énergie par les centres de données. Cette énorme consommation
d’électricité se traduit majoritairement par une dissipation d’énergie sous forme de chaleur
aussi bien néfaste pour l’environnement que pour les dispositifs électroniques eux-même.
L’introduction de la photonique intégrée sur silicium (Si), compatible avec la technologie
CMOS, a été proposée pour remédier à ces problèmes. Cependant, le développement de
dispositifs photoniques efficaces et performants reste une tâche ardue du fait de la bande
interdite indirecte du Si et du germanium (Ge). En effet, cette propriété limite sévèrement les
taux d’émission et d’absorption de ces matériaux, les rendant donc inefficaces. Dans le but de
trouver une solution à cette inefficacité, la piste des alliages semi-conducteurs du groupe IV a
récemment été explorée. Les alliages de germanium-étain (GeSn) par exemple, présentent
une possibilité d’obtenir une bande interdite directe ajustable en fonction de la composition
de Sn et de la contrainte appliquée au matériau. Ils ont et continuent de susciter énormément
d’intérêt aussi bien du point de vue théorique pour une meilleure compréhension de leurs
propriétés optiques que du point de vue expérimental pour la conception de dispositifs.

Dans cette optique, un cadre théorique est développé pour étudier les propriétés de lumi-
nescence des alliages de GeSn. Il s’appuie sur le modèle k.p à huit bandes, combiné à
l’approximation de la fonction d’enveloppe (EFA) pour estimer les spectres d’absorption et
d’émission spontanée d’un matériau massif unique. Contrairement au modèle de densité
conjointe d’états (JDOS), dans lequel l’élément de matrice de quantité de mouvement est
considéré constant, les forces des transitions optiques sont explicitement calculées dans notre
modèle. On montre également qu’elles dépendent du vecteur d’onde ~k et de la polarisation
du champ électromagnétique incident. En outre, une méthode relativement simple est utilisée
pour estimer les intégrales sur la première zone de Brillouin. Cette approche tient compte
explicitement de l’impact de la déformation du réseau sur les directions dites représentatives
de l’espace réciproque.

Ensuite, le modèle développé est utilisé pour étudier les propriétés de photoluminescence (PL)
des couches de GeSn déformées et relaxées. Les différences entre notre approche et le modèle
JDOS ont été mises en évidence à chacune des étapes du calcul. En outre, il a été démontré
que le modèle décrit efficacement les observations expérimentales, et une valeur de ∼ 1, 6 ns a
été extraite à 4 K pour la durée de vie radiative des porteurs en régime permanent (τrad) de
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l’échantillon de Ge0.83Sn0.17 déformé. Cette durée de vie augmente tout en restant de l’ordre
des ns sur la gamme de température de 4-80 K. De plus, il a été démontré que la relaxation
du réseau cristallin augmente τrad. Par exemple, il a été montré que τrad évolue suivant la loi
de puissance a + bT c avec des valeurs de c autour de 2, 27 pour le matériau relaxé et 1, 97
pour le matériau déformé. A 80 K, la valeur de ∼ 9, 5 ns est atteinte pour τrad(relaxé), alors
que τrad(déformé) est ∼ 3, 5 ns. Ces résultats mettent en avant la possibilité d’utiliser notre
cadre théorique pour la description des propriétés physiques des alliages de Ge1−xSnx.

Enfin, des diodes électroluminescentes ont été fabriquées à partir de couches p-i-n à double
hétérostructures de GeSn avec une couche intrinsèque de contenant 9,4% de Sn. Ces dispositifs
ont des diamètres variables dans l’intervalle 20-160 µm. Leurs performances ont été étudiées
en effectuant des mesures I-V dans des conditions d’obscurité à 300 K. L’un des résultats
que l’on peut extraire de ces mesures est le claquage atteint par le dispositif de 40 µm de
diamètre à seulement 11 V. En outre, une émission d’électroluminescence à environ ∼ 2.5 µm
est démontrée à 300 K et il est prouvé qu’elle résulte de la recombinaison des porteurs à
l’intérieur de la couche intrinsèque à bande interdite directe. De plus, un épaulement assez
intriguant a été observé autour de 0.54 eV dans les spectres d’émission. Son origine a été
étudiée en réalisant des mesures de PL en fonction de la température, mais aucune explication
concrète n’a été trouvée.

Les résultats de cette thèse mettent en évidence le potentiel du GeSn en tant que matériau
efficace et adéquat pour l’intégration monolithique de la photonique et de la microélectronique
au Si, recherchée depuis longtemps. De plus, ils soulignent le besoin de modèles théoriques et
de simulations de plus en plus précis pour espérer développer des dispositifs efficaces à base
de GeSn.
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ABSTRACT

The insatiable desire for data fueled by the continuous development of new highly connected
technologies leads to an input/output bottleneck and excessive energy consumption by the
data centers. This tremendous electricity consumption results mainly heat generation, which
represents a major issue for the environment and for the electronic devices themselves. Silicon
(Si) integrated photonics, compatible with the CMOS processing technologies, has been
proposed as a viable solution to extend the bandwidth and reduce power consumption.
However, developing efficient and effective Si-based photonic devices is still one of the most
arduous tasks to perform due to the indirect bandgap of both Si and germanium (Ge). Indeed,
this property severely limits their emission and absorption rates, therefore making them
inefficient. Group IV semiconductors alloys have been recently explored as possible materials
to overcome this limitation. The Germanium-Tin (GeSn) alloys, for instance, may have a
bandgap energy that is adjustable depending on the Sn composition and the lattice strain.
They have been attracting a great deal of interest both from the theoretical standpoint for a
better understanding of their physical properties and from the experimental side for designing
and fabricating efficient devices.

With this perspective, a theoretical framework is developed to investigate the luminescence
properties of GeSn alloys. This framework relies on the band structure of these materials
obtained within the eight-band k.p formalism and combined with the envelope function
approximation (EFA) to estimate the absorption and spontaneous emission spectra of single
bulk material. Unlike the joint density of states (JDOS) model, in which the momentum
matrix element is considered constant, the oscillator strengths are explicitly computed in our
model. They are also shown to be dependent on the wave vector ~k and the polarization of
the incident electromagnetic field. Furthermore, a simple though accurate method is used to
compute the integrals over the first Brillouin zone (BZ). This approach accounts explicitly for
the impact of the lattice strain on the representative directions of the ~k-space.

Next, using the framework mentioned above, the photoluminescence (PL) properties of both
strained and relaxed GeSn were investigated. The differences between our approach and
the JDOS model were highlighted at each step of the computations. Besides, the model was
shown to fit the experimental data, and a value of ∼ 1.6 ns was extracted at 4 K for the
steady-state radiative carrier lifetime (τrad) of the as-grown Ge0.83Sn0.17 sample. This lifetime
increases with the temperature while staying in the order of ns over the 4-80 K temperature
range. Furthermore, the strain relaxation in the material was shown to increase τrad. For
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instance, τrad is shown to evolve following the power-law a+ bT c with a value of c around 2.27
for the strained-relaxed material compared to 1.97 for the as-grown material. At 80 K, the
value of ∼ 9.5 ns is reached for τrad(relaxed), while τrad(as-grown) is ∼ 3.5 ns. These results
show the possibility of using the framework to describe the physical properties of Ge1−xSnx
materials.

Finally, light-emitting devices (LEDs) were fabricated from GeSn p-i-n double heterostructures
with an i layer of 9.4% Sn. These devices have varying diameters in the 20-160 µm range. Their
performance was investigated with I-V measurements under dark conditions at 300 K. One of
the results of these measurements was the breakdown reached by the 40 µm diameter device
at just 11 V. Besides, an electroluminescence emission at around ∼ 2.5 µm was demonstrated
at 300 K and proved to result from the carrier’s recombination inside the direct bandgap
i-layer. Furthermore, an intriguing shoulder around 0.54 eV was observed in the emission
spectra. Its origin was studied using temperature-dependent PL, but no concrete explanation
was extracted.

The results in this thesis highlight the potential of GeSn as an effective material system for
the monolithic integration of photonics with Si microelectronics. Additionally, they stress
the need for more accurate theoretical models and simulations for developing efficient GeSn
devices.
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CHAPTER 1 INTRODUCTION

We live in an era in which the appetite for data is growing exponentially with no signs of
slowing down. Cloud computing, 5G networks, mobile data traffic, cryptocurrencies, or the
so-called internet of things (IoT): all these technologies have been fueling the insatiable
desire for data and higher bandwidth. The increasing number of internet users results in the
exponential growth of the global data traffic, which is expected to increase from 33 ZB in
2018 to 175 ZB in 20251 [6].

The availability of faster and smarter devices has brought telecommunications and information
technology to a new age. Cloud computing allows the users to harness the power of online
storage and supercomputers to have real-time access to products and services and run nearly
every aspect of their lives. 5G technology should enable a massive number of IoT devices
to connect and communicate with one another, and therefore be reliable for applications
such as self-driving cars. However, this need for vast access to data puts stress on data
centers and leads to considerable energetic and environmental costs. For instance, data centers
were predicted to use between 196 TWh and 400 TWh in 2020 (1-2% of the global electricity
demand) [7,8]. With the impact of the COVID-19 pandemic and the perpetual need for data,
there is no doubt that the energy consumption would still increase if no efficient solution is
found. It should be noted that the power consumed by the data centers is, for the most part,
converted into heat by the servers. Different techniques have been exploited to efficiently
use the excess thermal energy generated and keep the servers to optimum temperatures.
However, a more viable solution would be to develop more energy-efficient devices for the
telecommunications industry.

One promising solution proposed to overcome the limitations discussed above is the intro-
duction of the photonic integrated circuits (PICs) technology. Optical and optoelectronic
technologies have been used since the mid-90s to transfer data over long distances via optical
fibers [9]. However, there are still some challenges to implementing optical interconnects at the
chip level. Indeed, the development of optical communications for chip-to-chip applications
requires low power dissipation, small latency, high levels of integration, and high-volume
manufacturability [10]. These conditions imply that the fabrication of PICs should be com-
patible with the conventional silicon integrated circuit infrastructure, i.e., the complementary
metal-oxide-semiconductor (CMOS) technology. PICs circuits generally include devices such
as photodetectors and light-emitting sources. Developing such components requires materials

11 ZB = 1021 bytes
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with efficient light absorption and emission, and therefore with good optical properties. Silicon
(Si) and Germanium (Ge) have rather poor optical properties due to their indirect bandgap.
On the other hand, III-V semiconductors such as GaAs, InP, GaAs, or GaN have a direct
bandgap. This property has been exploited for developing high-gain lasers and efficient
photodetectors [11]. These devices have been integrated over the silicon platform either
via wafer bonding (heterogeneous integration) or butt-coupling (hybrid approach) [12–16].
However, these techniques result in the higher price of complicated packaging and higher
interconnect parasitic capacitance [17]. On top of that, III-V substrates also suffer from their
limited scalability, which prevents high-volume manufacturing. The monolithic integration of
optical components based on group IV semiconductors with silicon electronics could offer cost
advantages and ease of integration with the CMOS technology [18].

For the monolithic integration to be effective, the limitations imposed by the indirect bandgap
of Si and Ge have to be overcome. It has been reported that the bandgap directness of Ge
can be tuned with tensile strain and n-type doping [19, 20]. These approaches resulted in the
demonstration of Ge-on-Si lasers and light-emitting diodes operating at room temperature
with a biaxial tensile strain value of ∼ 0.25% and n-type doping level in the order of
1019 − 1020 cm−3 [21–25]. However, these lasers could not be practical due to the extremely
high thresholds (≥ 100 kA/cm2) and their very poor efficiencies. Ge photodetectors with
good coverage of the C-band (1530− 1565 nm) have also been demonstrated [26]. However,
their efficiency drops significantly in the L-band (1565− 1625 nm). Besides tensile strain and
doping, alloying Ge with tin (Sn) can also result in direct bandgap semiconductors. This
potential has motivated tremendous efforts to investigate the GeSn material system and
develop all-group IV optoelectronic devices.

Besides the potential of GeSn in optical communications, this material system can also benefit
other sectors. One of the key properties of GeSn materials is the tunability of the bandgap
energy in the short-wave infrared (SWIR)2 to mid-wave infrared (MWIR)3 range. This
property can be exploited to develop devices for sensing and spectroscopy applications [18,27].

Given the potential of the GeSn material system and the set of possible applications, more
investigation should be done to identify, estimate and optimize the required parameters to
develop efficient devices. The current work contributes a part to the study of the optoelectronic
properties of GeSn semiconductors. The aim is to provide an accurate theoretical and numerical
framework to describe the luminescence properties of the Ge1−xSnx semiconductors. The
fabrication and characterization of GeSn light emitters are also investigated. The thesis is

2SWIR: 1.5− 3 µm
3MWIR: 3− 8 µm
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organized into seven chapters. Chapter 2 provides an overview of the progress observed in
the GeSn material system and describes the current state-of-the-art of the field. Chapter 3
presents the mathematical and physical ideas used to describe the luminescence properties of
GeSn structures. While chapter 4 gives a general description of the experimental methods
and techniques used in this work, the main results are the subject of the following three
chapters. Indeed, chapter 5 presents detailed analyses of the Ge0.83Sn0.17 optical properties
using the theoretical framework from chapter 3. The values of the radiative carrier lifetime
are extracted from these analyses. The fabrication and characterization of GeSn-based light
emitters are included in chapter 5. Finally, chapter 6 summarizes the work and discusses
research perspectives. The appendices at the end present different calculations about the
carrier dynamics and the recombination mechanisms.
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CHAPTER 2 LITERATURE REVIEW

It was as early as 1982 when the idea of allowing Sn with Germanium to form a possible direct
bandgap group IV semiconductor was theoretically elaborated [28]. Despite the bandgap
directness and the enhanced mobility presented, GeSn remained for a long time a speculative
material mainly because of the very low solid solubility of Sn in Ge [29]. Many attempts to
circumvent this limitation were presented in the literature [30]. However, it was not until
the beginning of this century that a direct bandgap GeSn, as well as the first optically
injected GeSn laser, were experimentally demonstrated [31]. These achievements led to more
GeSn-based optical devices, including light emitters and photodetectors [18,32].

This chapter is meant to give a general overview of the progress of the GeSn material system.
By reviewing the electronic and optical properties of the material, this chapter highlights the
advances and the shortcomings of various GeSn-based devices.

2.1 GeSn as a direct bandgap semiconductor

Ge1−xSnx semiconductors have been attracting a great deal of interest in recent years because
of their potential to achieve the monolithic integration of photonics with Si microelectronics.
Whereas Si and Ge are indirect bandgap semiconductors, the diamond cubic Sn1 (α-Sn) is a
semimetal with an inverted band structure at the Γ point (see figure 2.1).

Allowing Sn with Ge is predicted to lower the conduction bands at both the Γ and the L
valleys. However, the decrease at the Γ valley is estimated to be faster, as presented in
figure 2.2. In that case, a direct bandgap semiconductor should be obtained for higher Sn
compositions. Indeed, using the virtual-crystal approximation (VCA) and a second-nearest-
neighbor tight-binding model, Jenkins and Dow predicted the transition from an indirect to
a direct bandgap material to occur at a Sn content of ∼ 20 at.% [33]. A few years later, in
1989, Mäder et al. reported the higher value of 26 at.% [34]. More recent studies estimated
the crossover to be as low as 6 at.% for unstrained Ge1−xSnx materials [35, 36].

1Sn has two main allotropes. The gray tin (α-Sn), stable at temperatures below 13 °C, crystallize in
the diamond structure while white tin (β-Sn), the more familiar and stable form at room temperature, is
tetragonal [28]. With a crystalline structure similar to that of Ge, α-Sn is the material of choice for the
synthesis of GeSn alloys. For the sake of simplification, α-Sn will be referred to as Sn in the following parts of
the document.
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Figure 2.1 Calculated electronic bandstructure of Si, Ge, and α-Sn [1]. © IOP Publishing.
Reproduced with permission. All rights reserved.

Figure 2.2 Electronic band structures of Ge1−ySny for (a) y = 0.05, (b) y = 0.11, and
(c) y = 0.20, showing the transition from indirect [panel (a)] to direct bandgap [panel (c)].
Reprinted from [2] , with the permission of AIP Publishing.

Furthermore, the value of the crossover point was found to depend on the strain in the
material [35, 37, 38]. Indeed, compressive biaxial strain is shown to influence the band
structure of Ge oppositely compared to the incorporation of Sn [35]. In that case, an increase
of compressive strain moves the indirect-to-direct transition to larger Sn composition. However,
as presented in section 2.2, the growth of GeSn even with a Sn content of 6 at.% is not trivial.



6

2.2 Epitaxial growth of GeSn alloys

The epitaxial growth of GeSn presents multiple challenges which had limited the progress
of the early studies. One of the main challenges is the difficulty to grow high-quality single-
crystalline direct bandgap GeSn due to the equilibrium solid solubility of Sn being as low
as 1 at.% in Ge [29]. Additionally, Sn has a strong tendency to segregate to the surface and
undergo a transition from its α phase to the β phase (metallic) at above 13.2 °C [39,40].

Soon after Goodman’s work, Oguz et al. reported, in 1983, the synthesis of the first mi-
crocrystalline GeSn thin films using pulsed UV laser crystallization [41]. Later in 1987,
the deposition of monocrystalline Ge1−xSnx layers with x up to 8 at.% by bias sputtering
deposition on Ge(100) and GaAs(100) was demonstrated [42]. Besides these studies, and
despite the challenges, the growth of GeSn epi-layers was achieved using various physical vapor
deposition (PVD) techniques such as solid-phase epitaxy [43–45], pulsed laser deposition [46],
and sputtering [47]. However, it was mainly the epitaxial processes using molecular beam
epitaxy (MBE) [39,40,48–56] and chemical vapor deposition (CVD) [57–61] that motivated
the revived interest in the GeSn material system. While MBE was the method of choice until
the 1990s, for the epitaxial growth of GeSn with appropriate crystalline quality [56, 62], it
failed to offer device quality films due to the very low growth temperatures (100− 200 °C), the
formation of dislocation defects, and the limited layer thickness required for monocrystalline
growths [63]. On the other hand, CVD offers the possibility of selective growth, uniform
deposition over large wafers, and higher growth rates [63]. However, the lack of suitable Sn
precursors prevented the epitaxial growth of GeSn layers using CVD for many years. In
2001, Taraci et al. reported the first GeSn epi-layers containing up to 25 at.% Sn, grown
directly on Si in an ultra-high vacuum (UHV)-CVD reactor using C6H5SnD3 and Ge2H6

as Ge and Sn precursors, respectively [64]. Later in 2011, Vincent et al. introduced the
stable and commercially available tin-tetrachloride (SnCl4) as Sn precursor and achieved the
epitaxial growth of high-quality Ge0.92Sn0.08 layers in atmospheric pressure (AP)-CVD envi-
ronment [65]. The development of accessible, cost-effective, and stable chemicals precursors
for both Sn (SnCl4) and Ge (Ge2H6, GeH4) opened the way to the growth of monocrys-
talline GeSn epi-layers using a broad range of CVD techniques such as AP-CVD [66,67], and
reduced-pressure (RP)-CVD [61,68–72].

The epitaxial growth of GeSn on Si is performed using a Ge-virtual substrate (VS) as an
interlayer [68]. For that reason, the grown layers are typically compressively strained. This
strain accumulation was found to induce a composition gradient as the layer grows thicker
[69, 73]. The use of intermediate GeSn multi-layer heterostructure has been demonstrated
to be efficient for the growth of layers with uniform and high Sn content (10-20 at. %
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range) [61, 68,74].

2.3 GeSn-based optoelectronic devices

The epitaxial growth of high-quality GeSn materials enabled the development of group IV
optoelectronic devices. Indeed, the availability of these materials enabled the demonstration
of direct bandgap emissions in the SWIR and MWIR ranges [5,31,61]. These emissions served
as building blocks for more elaborated Silicon-compatible GeSn-based light emitters.

2.3.1 Light emitters

In 2015, the first demonstration of an optically pumped GeSn laser emitting at a wavelength
of ∼ 2.3 µm was reported [31]. Fabricated from a sample of 560 nm thick layer of Ge0.874Sn0.126,
grown on a Ge-VS/Si(001) substrate, the 5-µm-wide and 1-mm-long Fabry-Perot waveguide
cavities represented a promising result towards the integration of silicon optoelectronic devices.
However, they suffered from their low operation temperature (T≤ 90 K) and the high threshold
excitation density of ∼ 325 kW/cm2. These issues combined with the pulsed optical pumping
prevented the use of this GeSn laser for practical applications [75].

Since then, substantial progress has been made to reach higher operation temperatures. For
instance, Zhou et al. showed an optically pumped Ge0.80Sn0.20 edge-emitting laser based on
the ridge and planar waveguide structures [76]. Even though they demonstrated a near-room
temperature operation, it was at the expense of the threshold excitation density, which was
about 796 kW/cm2 at the maximum operating temperature of 270 K for the 100 µm wide
ridge structure. Similarly, Chretien et al. reported an optically pumped GeSn-based laser
with an operating temperature up to 273 K and a high lasing threshold of ∼ 2 MW/cm2 [77].
Going from a step-graded GeSn epitaxial stack encapsulated by two SiGeSn barriers, they
designed tensile-strained and free-standing microbridges placed between broadband mirrors
to offer optical feedback.

Different attempts to improve the lasing threshold were also presented in the literature. Indeed,
Stange et al. investigated the lasing properties of undercut microdisks cavities fabricated
from SiGeSn/GeSn multi Quantum Wells (MQW) heterostructures [78]. They reported a
lasing threshold on the order of 35 kW/cm2 with a 1064 nm pump [79]. However, a maximum
operating temperature of 120 K was found due to the limited bandgap directness of the 13 at.%
GeSn alloy used for the wells. Furthermore, a significant reduction of the laser threshold
was demonstrated using a highly tensile strained (1.4%), 5.4 at.% GeSn material [80]. The
choice of a GeSn material with a low Sn composition in this study is justified by the relatively
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low density of misfit dislocations and impurities at the interface with Germanium which is
shown to scale with the Sn content and to contribute to the high pumping levels required to
achieve lasing [66,78]. The initially indirect bandgap Ge0.946Sn0.054 was encapsulated with a
silicon nitride stressor layer and converted into a direct bandgap optical gain material with a
directness ∆EL−Γ of 70 meV. The material quality advantage and the tensile strain combined
with processing technology and thermal management enabled lasing with a low threshold of
1.1 kW/cm2 in continuous wave (CW) operation. However, the lasing operating temperature
was limited to 70 K for the CW and 100 K for pulsed operation.

Given all the previous information, it should be noted that GeSn lasers integrating higher
operation temperatures, lower thresholds, and CW operation is yet to be found. Improving
the growth protocols to achieve higher Sn content while maintaining good material quality
should benefit the development of such devices.

In addition to lasers, GeSn-based light-emitting devices (LEDs) have also been demonstrated
[81–83]. However, more research is required to improve their performances and reach room
temperature operation.

2.3.2 Photodetectors and sensors

As stated in the previous sections, the incorporation of Sn into the Ge lattice enables the
tunability of the bandgap in the SWIR to MWIR range. By exploiting this quality of the
GeSn material system, photodetectors can be engineered for optical communications, sensing,
and imaging applications.

In 2019, a high-speed GeSn/Ge MQW photodiode integrated on a 300 mm Si wafer was
demonstrated [84]. This device exhibited a detection cut-off beyond 2 µm, a 3-dB bandwidth
above 10 GHz in addition to a low leakage current density of 44 mA/cm2 (at a reverse bias of
1 V), similar to that of Ge-on-Si photodiodes. The demonstration of a GeSn-on-Si avalanche
photodiode (APD) for light detection around 2 µm was also reported [85]. In this device, the
separate Ge0.9Sn0.1 MQW and Si layers were respectively employed for light absorption and
carrier multiplication, resulting in a thermal coefficient of the avalanche breakdown voltage
estimated at 0.053 %K−1, smaller than that of APDs with III-V multiplication material.

The fabrication of GeSn-based MWIR detectors is not yet fully explored in the literature;
however, recent studies show that GeSn materials can be engineered to cover this wavelength
range [68,86].

This literature review covered the progress observed in the GeSn material system. Despite the
material challenges and the discrepancies in the theoretical estimation of the bandgap energy,
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the collective efforts of the researchers combined with the availability of suitable commercial
precursors enabled the CVD growth of high-quality monocrystalline layers. This milestone
led to the demonstration of different optoelectronic devices such as LEDs, photodiodes, as
well as optically and electrically pumped GeSn-based lasers. However, many challenges still
need to be addressed before achieving the monolithic integration of GeSn on the Si platform.
Alternative growth protocols are still required to engineer higher Sn content materials and
improve their crystalline quality. The optimization of the microfabrication processes also
needs to be addressed to enhance the performance of the devices. From a theoretical point
of view, establishing accurate models and simulations is crucial to estimate the properties
of the GeSn materials and design more efficient devices. The next chapters suggest possible
approaches in terms of the theoretical and numerical estimations of the properties of GeSn.
The fabrication of GeSn-based LEDs for room-temperature emission is also studied.
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CHAPTER 3 MODELING OF THE LUMINESCENCE PROPERTIES OF
GeSn-BASED LIGHT EMITTERS

Semiconductors emit light through carrier pair recombination processes. For an intrinsic
semiconductor, at thermal equilibrium, the carriers’ densities are fixed by the law of mass
action (np = n2

i ), and the resulting emission intensity is typically very low. The creation of
excess electron-hole pairs could be a solution for increasing this intensity. It could be done
by doping the material but, the emission intensity is not expected to increase considerably
at thermal equilibrium. Another solution would be to illuminate the material or even bias
the device (p-n or p-i-n devices) in order to inject more carriers in the active region and
emit some light. These processes are commonly known as photoluminescence (PL) and
electroluminescence (EL), respectively. Both of them emerge from the optical and electronic
transitions that happen inside the materials. This chapter highlights our effort to better
understand the fundamental physics underlying the GeSn luminescence properties.

The luminescence spectrum intensity can be determined using the direct inter-band emission
theory and the spontaneous emission spectrum rspon [87]. This parameter is necessary to
quantify the rate of photons emitted spontaneously. It is calculated using the Fermi golden
rule [88,89] and the perturbation theory as described in equation (3.1) below. In this equation,
nre

2/πc3ε0~4 is a material-related constant with e the elementary charge, nr the refractive
index of the material, and c the speed of light in a vacuum. V is the volume of the states in the
~k-space. We sum over the different values of ~kc and ~kv in the Brillouin zone (BZ) to account
for the possible transitions between the conduction and the valence bands. The Dirac delta
function limits the transitions to those with an energy difference of ~ω, the photon energy. The
summations over the spins of the initial states η and the final states σ have been written out
explicitly instead of a simple factor of 2. Moreover, M2

cv(~kc, ~kv) =
∣∣∣〈Φη

c(~kc)
∣∣∣ ~
m0
ê.~p

∣∣∣Ψσ
v (~kv)

〉∣∣∣2
represents the strength of the transition from the state |Φη

c〉 to |Ψσ
v 〉 with ê the polarization

unit vector and ~p the momentum matrix operator. Finally, we use the Fermi-Dirac statistics to
account for the probability occupation of the different states. f is the Fermi-Dirac distribution
given by f(ε, µ) =

[
1 + exp

(
ε−µ
kBT

)]−1
in which ε is the energy and µ the Fermi-level of the

charge carrier described by the function.
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rspon(~ω) = 1
V

(~ω)
(

nre
2

πc3ε0~4

)∑
~kc,~kv

∑
η,σ

∣∣∣∣∣
〈

Φη
c(~kc)

∣∣∣∣∣ ~m0
ê.~p

∣∣∣∣∣Ψσ
v (~kv)

〉∣∣∣∣∣
2

×δ
(
εηc (~kc)− εσv (~kv)− ~ω

)
f (εηc , µe)

[
1− f (εσv , µh)

]
(3.1)

The central objective of this chapter is to bring new ideas to implement a theoretical framework
to describe the GeSn luminescence properties using the multi-band k.p formalism. The model
presented in this chapter is focused on single bulk material that can also be seen as a top
layer or i-layer in a device heterostructure. The hypotheses and approximations used in this
framework are outlined and justified in the methodology. The obtained results are discussed
in the subsequent chapters.

The computation of the spontaneous emission spectrum requires prior knowledge of the band
structure of the semiconductors, the momentum matrix elements, and the quasi-Fermi levels,
as seen in equation (3.1). The computations of the integral over the BZ and the Dirac delta
function also need to be addressed. Depending on the experimental considerations, we can
make some hypotheses and approximations to obtain a simple yet accurate model to explain
the experimental observations.

For a single bulk direct bandgap semiconductor, the optical matrix element M2
cv(~k) is usually

considered isotropic and independent of the wave vector ~k [88]. In that case, we have

M2
cv(~k) = M2

b = P 2

3 (3.2)

, where P is the Kane parameter.

3.1 Spontaneous emission spectrum and the single-band effective mass approx-
imation

The single-band effective mass approximation (SBEMA) is used by various research groups
in the literature for the computation of materials band-structure close to the center of the
BZ (at ~k = ~0) [90–94]. In the situation where each band is considered separately without
the influence of the others, the effective mass approximation is used to obtain isotropic and
parabolic dispersion relations [88]. In that case, each band is characterized by its extremal
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energy value and its effective mass, as presented in equations (3.3).

εηc (~k) = Eη
c +

~2
∣∣∣~k∣∣∣2

2m∗c
,

εσhh(~k) = Eσ
hh −

~2
∣∣∣~k∣∣∣2

2m∗hh
,

εσlh(~k) = Eσ
lh −

~2
∣∣∣~k∣∣∣2

2m∗lh
,

εσso(~k) = Eσ
so −

~2
∣∣∣~k∣∣∣2

2m∗so

(3.3)

With the energy conservation imposed by the Dirac delta function in equation (3.1), the
energy of the emitted photon ~ω is given by

~ω = Eη
c − Eσ

v + ~
2


∣∣∣~kc∣∣∣2
m∗c

+

∣∣∣~kv∣∣∣2
m∗v

 (3.4)

If we assume the bands to be the same for the different spin values (spin ↑ and spin ↓) and
consider only the ~k-conserving transitions, equation (3.4) becomes

~ω = Ec − Ev +
~
∣∣∣~k∣∣∣2
2

(
1
m∗c

+ 1
m∗v

)
= Ec,v +

~
∣∣∣~k∣∣∣2

2mc,v

(3.5)

The parabolic dispersion relations, combined with equation (3.2), have the merit of simplifying
the computation of the spontaneous emission spectrum defined in equation (3.1). They lead,
for example, to equation (3.6) which is a relatively simple formula for this quantity (see
appendix A for the derivation).

rspon(~ω) =
(
nre

2~ωM2
b

πc3ε0~4

)∑
v

ρJDOS (~ω − Ec,v) f (εc(~ω), µe)
[
1− f (εv(~ω), µh)

]
(3.6)

ρJDOS(E) is better known as the joint density of states (JDOS) and is proportional to
√
E.

For a non-degenerately doped semiconductor exposed to an external excitation so that a
sufficiently weak injection takes place, we expect the quasi-Fermi levels to lie within the
bandgap and away from the different band edges by several kBT . In that case, the Fermi
distribution can be approximated [95] by the Boltzmann distribution fB(ε, µ) = exp

(
− ε−µ
kBT

)
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(see figure 3.1), and equation (3.6) becomes

rspon(~ω) ≈
∑
v

Dv (~ω − Ec,v)1/2 exp
(
−~ω − Ec,v

kBT

)
, ~ω ≥ Ec,v (3.7)

where
Dv = (2mc,v)3/2

2π2~3

(
nre

2~ωM2
b

πc3ε0~4

)
exp

(
µe − µh − Ec,v

kBT

)
. (3.8)
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The coefficient ~ω in Dv is usually neglected relative to the exponential and the square root
functions inside of equation (3.7) [3,87]. In that case, the emission peak position is located at
Ec,v + kBT/2, and the full width at half maximum is around 1.8kBT for a semiconductor at
thermal equilibrium, as presented in figure 3.2.

The exponential dependence of Dv is directly related to the carrier densities inside the material.
In fact, for the electrons density n and holes density p, the spontaneous spectrum rspon can
be written as (see appendix B for the derivation)

rspon(~ω) ≈ ~ω

∑
v

(2mc,v

mc

)3/2 (~ω − Ec,v)1/2

Kv(T ) exp
(
−~ω − Ec,v

kBT

)np, ~ω ≥ Ec,v (3.9)

with Kv(T ) a coefficient defined by equation (B.6) in appendix B.

Since n, p, Kv(T ) and the masses are not dependent on the energy ~ω, equation (3.9) can be
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Figure 3.2 Theoretical spontaneous emission spectrum for low injection regime and parabolic
band approximation. Adapted from [3]

rewritten as

rspon(~ω) =
∑
v

Av(T )~ω (~ω − Ec,v)1/2 exp
(
−~ω − Ec,v

kBT

)
, ~ω ≥ Ec,v (3.10)

3.2 Sub-bandgap emission and broadening mechanisms

The theoretical spontaneous emission spectrum developed previously is not sufficient for an
accurate description of the PL spectrum. Indeed, there is a sub-bandgap emission below
Ec,v which is not highlighted in equation (3.7). This emission results from carrier disorders
and broadening mechanisms in the materials [96–98]. To account for that, the theoretical
spectrum rsponideal from equation (3.10) is convoluted with a broadening function B resulting in
equation (3.11).

rspon(~ω) =
∫ +∞

−∞
rsponideal(ε)× B(~ω − ε)dε (3.11)

The broadening function B is usually chosen as a Gaussian or a Lorentzian to account for
the inhomogeneous and homogeneous broadening mechanisms. The Lorentzian function was
reported to sometimes overestimate the effects of the homogeneous broadening due to its
slowly decaying tails. When this is the case, the hyperbolic secant function is used as a
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replacement [99]. In addition to these functions, Katahara et al. [100] suggested a new set of
functions given by

B(ε) = 1
2γΓ

(
1 + 1

θ

) exp
− ∣∣∣∣∣ε− ε1γ

∣∣∣∣∣
θ
 (3.12)

where Γ is the Gamma function, γ is the width of the broadening function and ε1 is the
characteristic energy of emission. The exponent θ may vary between 0.5 and 2.

The relatively simple equation obtained when combining equations (3.10) and (3.11) can be
very useful. Indeed, it is widely used in the literature [5, 101, 102] to fit the temperature-
dependent PL spectrum in order to extract the bandgap Eg(T ) (= min [Ec,hh(T ), Ec,lh(T )]).
In that case, Av(T ) plays the role of a scaling factor which also varies with the temperature.
The accuracy of this fit process relies on the accuracy of the non-degenerate semiconductor
condition and the parabolic band approximation in addition to the fulfillment of the low-
injection regime.

The SBEMA leads to a set of relatively easy analytical formulas for the computation of the
spontaneous recombination spectrum, as we can see with the model developed above. For
a non-degenerately doped semiconductor in weak-injection conditions, equation (3.7) is the
appropriate formula to use since most carriers are located almost at ~k = ~0. However, a
different picture is expected when increasing values of the excitation power or even the doping
concentration. Indeed, the increasing densities of carriers inside the material would shift the
quasi-Fermi levels towards the band edges. In that case, the semiconductor would not be
non-degenerate anymore and, the calculations are not as simple as presented before. For
a biaxially strained semiconductor, the ~k direction degeneracies are expected to be broken.
In this situation, the band dispersions would be more and more anisotropic. The isotropy
argument put forward by the SBEMA is therefore increasingly challenged and, a more accurate
description of the band structure is required. With all these limitations, some questions arise.
For example, how can we take into account the anisotropy of the band structures in strained
materials? What can we do for degenerately-doped semiconductors? How do we deal with
excitation regimes other than the weak injection? Can we develop a framework to go beyond
the limitations of the SBEMA/JDOS model and extract more parameters in addition to the
semiconductor bandgap? We will address most of these questions in section 3.3 and chapter
5, with the multi-band k.p formalism.
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3.3 Spontaneous emission spectrum and the multi-band k.p formalism

The computation of the spontaneous emission spectrum, using the multi-band k.p formalism,
follows the methodology summarized by the chart in figure 3.3. As mentioned before, the

Figure 3.3 Different steps for the computation of the recombination rate and the optical gain

SBEMA is widely used for computing the material band structures with each band taken
separately. However, when their interactions (or coupling) are explicitly taken into account,
a very different picture that requires much more effort is obtained. Most of the methods
used in that case rely on numerical simulations. We have, for example, the tight binding, the
pseudo-potential, and the Green’s function formalism, which have been discussed in detail
in [103,104]. These methods can be accurate to describe the band-structure of a semiconductor
material but, for direct band-gap semiconductors with the optical transitions relatively close
to the Γ point, the multi-band k.p method [105] introduced by Bardeen [106] and Seitz [107]
is more suitable.
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3.3.1 Multi-band kp model and electronic band structure of (Si)GeSn alloys

In our team, we developed the six and eight bands k.p models for biaxially strained materials
based on the formalism highlighted by Eißfeller [108], Bahder [109], and Winkler [110]

The multi-band k.p formalism together with the envelope function approximation (EFA) can
be seen as a method used to solve the Schrödinger equation given by equation (3.13) in which V
is the mean-field periodic potential including all the different interactions. The eigenfunctions
ψn(~r) are Bloch’s functions defined in equation (3.14) with the periodic functions un,k̂(~r).

Ĥψn(~r) =
[

p2

2m0
+ V(~r)

]
ψn(~r) = Enψn(~r) (3.13)

ψn(~r) = exp
(
i~k · ~r

)
un,~k(~r) (3.14)

Using equation (3.14), the equation (3.13) becomes

Ĥ(~k)un,~k(~r) =
[

p2

2m0
+ V(~r) + ~

m0
~k · ~p + ~2k2

2m0

]
un,~k(~r) = En(~k)un,~k(~r) (3.15)

The k.p formalism relies on the fact that the carriers in the semiconductors would mainly be
located in regions relatively close to the extrema of the conduction and valence bands to solve
this equation and extract the functions un,~k as well as the energies En(~k). In that situation,
the description of the band structure in the remaining regions should be neglected. With the
k.p method, the dispersion relation En(~k) is expanded around a particular point ~k0, where
En(~k0) and un,~k0

(~r) are assumed to be known for each value of n.

Since un,~k0
(~r) and En(~k0) are solutions of equation (3.15) at ~k0, the functions un,~k0

(~r) form
an orthonormal basis in which the unknown functions un,~k can be expanded following the
relation

un,~k(~r) =
∑
m

φn,m(~k)um,~k0
(~r) (3.16)

By inserting this equation into equation (3.15), multiplying both sides of the equation by
u∗
l,~k0

(~r), and integrating over the unit cell, we obtain

∑
m

Ĥl,m(~k)φn,m(~k) = En(~k)φn,l(~k) (3.17)

with
Ĥl,m(~k) =

[
Em(~k0) + ~2

2m0

(
~k2 − ~k2

0

)]
δl,m + ~

m0

(
~k − ~k0

)
· ~pl,m (3.18)
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and
~pl,m =

∫
unit cell

d3~ru∗
l,~k0

(~r)pum,~k0
(~r) (3.19)

In equation (3.17), the summation is done over an infinite number of bands m. In that case,
the Hamiltonian H should have an infinite-dimensional matrix. However, only a few bands
are usually physically relevant to describe the carrier dynamics in the conduction and the
valence bands. The number of bands is mainly reduced by using Löwdin’s perturbation theory
which allows us to restrict the study to the N relevant bands while considering the impact of
the other bands as small perturbations with the off-diagonal terms ~

m0

(
~k − ~k0

)
· ~pl,m [111].

The resulting Hamiltonian is given by equation (3.20), where l and m are lesser than N and
B is the set of remote bands.

Ĥ′l,m(~k) = Ĥl,m(~k) +
∑
j∈B

Ĥl,j(~k)Ĥj,m(~k)
El(~k0)− Ej(~k0)

(3.20)

The spin-orbit interaction can also be taken into account by adding ĤSO (equation (3.21)) in
equation (3.13)

ĤSO = ~
4m2

0c
2 (∇V × p) · σ (3.21)

With this new term, Ĥl,m from equation (3.17) becomes

Ĥl,m(~k) =
[
Em(~k0) + ~2

2m0

(
~k2 − ~k2

0

)]
δl,m + ~

m0

(
~k − ~k0

)
· πl,m (3.22)

with
πl,m =

∫
unit cell

d3~ru∗
l,~k0

(~r)
[
p + ~

4m0c2 (∇V × p)
]
um,~k0

(~r) (3.23)

A semiconductor layer pseudomorphically grown on a lattice-mismatched substrate is subject
to a uniform biaxial bi-isotropic strain in its plane. The in-plane lattice strain ε‖ is then given
by

ε‖ = aS − aL
aL

(3.24)

with aS and aL the bulk lattice constants of the substrate and the semiconductor layer,
respectively. In our models, the lattice strain is accounted for through the Pikus-Bir Hamilto-
nian [112]. Within this formalism, the strain impact is incorporated into the band structure
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as a perturbative term

Hstrain =
 ∑
α,β∈{x,y,z}

Dαβij εαβ


ij

(3.25)

with εαβ the (α, β) element of the strain tensor ε and Dαβij a deformation potential.
We assume a homogeneous strain which results in εαβ = εβα. In the cartesian ba-
sis {|S ↑〉 , |S ↓〉 , |X ↑〉 , |Y ↑〉 , |Z ↑〉 , |X ↓〉 , |Y ↓〉 , |Z ↓〉}, the Hamiltonian Hstrain is given
by [113]

Hstrain =


Hcb 02×6

06×2
Hvb 03×3

03×3 Hvb

 (3.26)

with

Hcb =
aΓ

c · tr(ε) 0
0 aΓ

c · tr(ε)

, (3.27)

Hvb =


lεxx +m (εyy + εzz) nεxy nεzx

nεxy lεyy +m (εxx + εzz) nεyz

nεzx nεyz lεzz +m (εyy + εxx)

 (3.28)

The trace of ε defined by tr(ε) in the matrices is given by εxx + εyy + εzz. The coefficient aΓ
c

is the Γ-valley conduction band deformation potential. The quantities l, m, and n are related
to the valence bands absolute deformation potential av and the shear deformation potentials
b and d. They are defined in the equation (3.29)

av = l + 2m
3 ,

b = l −m
3 ,

d = n√
3
.

(3.29)

The relation between the strain tensor ε and the in-plane strain ε‖ is dependent on the
substrate crystallographic orientation. Indeed, Hinckley et al. developed the underlying theory
for an arbitrary crystallographic orientation [113]. For the case of a (001)-oriented substrate,
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the strain tensor components are given by

εxx = εyy = ε‖

εzz = −2C12

C11
εxx

εxy = εyz = εxz = 0

(3.30)

with C11 and C12 the elastic stiffness constants.

Like the strain tensor, the ~k-dependence of the k.p Hamiltonian is also subject to the
substrate crystallographic orientation since different rotation matrices have to be considered
for a direction other than [001]. More information about the underlying theory for these
rotation matrices can be found in Eißfeller’s thesis [108].

Most of the physical parameters of GeSn alloy are obtained by linear interpolation among
those of Si, Ge, and α-Sn, except for the unstrained energy and the Luttinger parameters.
Indeed for GeSn, we use the quadratic polynomial interpolations

EGe1−ySny
g,µ (T ) = (1− y)EGe

g,µ(T ) + yESn
g,µ(T )− y(1− y)bµ

∆Ge1−ySny
SO = (1− y)EGe

SO + yESn
SO − y(1− y)bSO

(3.31)

where bµ, bSO are the bowing parameters for GeSn, and µ refers to the different conduction
valleys; i.e., Γ, L and X. The Luttinger parameters are obtained after fitting the results from
the work of Kain Lu et al. [2] and we have

γ
Ge1−ySny
i =

(
1− y

0.2

)
γGe
i + 29.2108

(
y

0.2

)
− 20.3391

(
y

0.2

)(
1− y

0.2

)
(3.32)

where γi refers to the different Luttinger parameters; i.e, γ1, γ2, and,γ3. The material physical
parameters used for our models are listed in Table 3.1.

Table 3.1 – Physical parameters of Ge and α-Sn

Parameters Ge Sn Ge1−ySny bowing

Lattice constants(nm)

a 0.565789 (at 298 K)b* 0.64892 (at 293 K)d# -0.0083f

Effective masses(m0)

mc 0.0383a -0.058g

mLt 0.0807c 0.075c

mLl 1.57c 1.478c

Continued on next page
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Table 3.1 – Physical parameters of Ge and α-Sn (Continued)

Parameters Ge Sn Ge1−ySny bowing

Luttinger parameters

γ1 13.3667a -25.19e Equation (3.32)

γ2 4.2333a -15.10e Equation (3.32)

γ3 5.6833a -13.53e Equation (3.32)

κ 3.41a -11.84g

Average valence band energy

EV,avg (meV) 0** 690c

Bandgaps(meV)

EΓ
g 898.1 (at 1.5K) -390 (at 0K)e 2.46×103e

ELg 785.0 (at 0 K)a 100f 1.23×103e

EXg 931.0a 735.2f

∆SO 289a 600f 100f

Elastic constants(GPa)

C11 128.53a 69.00c

C12 48.28a 29.30c

C44 66.80a 36.20c

Permittivities

εr 16a 24e

Optical energy

Ep (eV) 26.3a 24c

Deformation potentials

aΓ
c (eV) -10.41a -6.00c

aLc (eV) -1.54a -2.14c

aXc (eV) 2.55a 0***

av(eV) 1.24a 1.58c

b(eV) -2.86a -2.7c

d(eV) -5.28a -4.1d

ΞΓ
u 0a 0a

ΞLu 16.3a 0***

ΞXu 9.42a 0***

Varshni parameters

αΓ (meV/K) 0.6842a -0.7940e

βΓ (K) 398a 11e

αL (meV/K) 0.4561a -

Continued on next page
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Table 3.1 – Physical parameters of Ge and α-Sn (Continued)

Parameters Ge Sn Ge1−ySny bowing

βL (K) 210a -

αX (meV/K) 0.4774a -

βX (K) 235a -
a

Reference [114], b Reference [115],c Reference [116], d Reference [117], e Reference [118], f Reference [119], g Reference [120]
*

the lattice constant is computed through the analysis of Germanium thermal expansion;
**
EV,avg of other materials are relative to that of Ge.

#
a(T ) = 0.64892 + 3.1× 10−6(T − 293)

***
These parameters are unknown so we consider them as zero.

3.3.2 The momentum matrices

The momentum matrices are representative of the strength of the different transitions that
could happen between the carriers after the excitation of the material. In addition to the
SBEMA, the computations highlighted in the previous sections rely on the assumption that
the momentum matrix element is a constant of the wave vector ~k. Instead of relying on
this assumption, we compute these matrices through the k.p Hamiltonian as discussed by
Szmulowicz [121].

If we define by |Φ〉 and |Ψ〉 the initial and final states, within the EFA, the strength of the
transition is defined by [121]:

〈
Φ
∣∣∣∣∣ ~m0

ê.~p
∣∣∣∣∣Ψ
〉

=
∑
µν

Φ∗µ(~k, ~r)
ê · ∂Hµν(~k, ~r)

∂~k

Ψν(~k, ~r) (3.33)

with

• Φµ and Ψν the coefficients of the envelope function vector related to the states |Φ〉 and
|Ψ〉 respectively,

• For a single bulk material, Φµ and Ψν are only functions of the wave vector ~k,

• ê gives the polarization of the incident light,

• ∂Hµν(~k,~r)
∂~k

is the derivative of the k.p Hamiltonian with respect to the wave vector ~k.

ê · ∂Hµν

∂~k
=

∑
l∈(x,y,z)

εl

(
∂Hµν

∂kl

)
=

∑
l∈(x,y,z)

εlM
µν
l (3.34)

To simplify the expressions of the different momentum matrix elements, we introduce several
notations. Among them, we have g and g0 defined as the conduction-band effective g-factor
and the electron-spin g-factor, respectively. We denote by δ a Boolean parameter set to 1
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to account for these g-factors explicitly and 0 otherwise. The coefficient P indicates the
conduction band-valence band coupling parameter, also known as the Kane parameter. This
parameter is used to characterize the coupling between the lowest conduction band and the
highest valence band in the eight bands k.p formalism [122]. Its impact on the conduction
band Hamiltonian is highlighted by the parameter Ac = ~2

2m0
S with S, a dimensionless

parameter defined by [122]

S = m0

m∗e
− 2m0

~2

(
Eg + 2

3∆so

Eg(Eg + ∆so)

)
P 2. (3.35)

In this equation above, m∗e is the experimentally determined conduction band effective mass
at the Γ point. The parameter Eg is the unstrained bandgap energy between the lowest
conduction band edge and the highest valence band edge energy. We denote by L′,M ′, N ′+, N

′
−

the modified Dresselhaus-Kip-Kittel (DKK) parameters for the eight bands k.p model. We
also consider the notations

[a, b] = a · b− b∗ · a

[a, b]+ = a · b+ b∗ · a,

f(a) = ~2δ

2m0
[g − g0, ka],

S±(a, b) = −if(b)± f(a),

A±(a, b) = [A, ka]+ ± if(b),

N1(a) = k∗a ·N ′− +N ′+ · ka,

N2(a) = k∗a ·N ′+ +N ′− · ka

with “·” here a non-commutative product, and b∗ the complex conjugated of b. The non-
commutative product is considered to take into account quantum wells, quantum wires and
quantum dots in addition to the case of bulk materials.

For a (001) substrate, in the Cartesian basis presented in the previous section, we have the
matrices
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Mx =



A+(x,y) −f(z) P 0 0 0 0 0

f(z) A−(x,y) 0 0 0 P 0 0

P 0 [L′,kx]+ N1(y) N1(z) 0 0 0

0 0 N2(y) [M ′,kx]+ 0 0 0 0

0 0 N2(z) 0 [M ′,kx]+ 0 0 0

0 P 0 0 0 [L′,kx]+ N1(y) N1(z)

0 0 0 0 0 N2(y) [M ′,kx]+ 0

0 0 0 0 0 N2(z) 0 [M ′,kx]+



My =



A−(y,x) if(z) 0 P 0 0 0 0

if(z) A+(y,x) 0 0 0 0 P 0

0 0 [M ′,ky ]+ N2(x) 0 0 0 0

P 0 N1(x) [L′,ky ]+ N1(z) 0 0 0

0 0 0 N2(z) [M ′,ky ]+ 0 0 0

0 0 0 0 0 [M ′,ky ]+ N2(x) 0

0 P 0 0 0 N1(x) [L′,ky ]+ N1(z)

0 0 0 0 0 0 N2(z) [M ′,ky ]+



Mz =



[A,kz ]+ S+(x,y) 0 0 P 0 0 0

S−(x,y) [A,kz ]+ 0 0 0 0 0 P

0 0 [M ′,kz ]+ 0 N2(x) 0 0 0

0 0 0 [M ′,kz ]+ N2(y) 0 0 0

P 0 N1(x) N1(y) [L′,kz ]+ 0 0 0

0 0 0 0 0 [M ′,kz ]+ 0 N2(x)

0 0 0 0 0 0 [M ′,kz ]+ N2(y)

0 P 0 0 0 N1(x) N1(y) [L′,kz ]+


For the case of bulk material grown on a (001) oriented substrate, · becomes a
regular product and (kx, ky, kz) a real vector. In the angular momentum basis
{|S ↑〉 , |S ↓〉 , |HH ↑〉 , |LH ↑〉 , |LH ↓〉 , |HH ↓〉 , |SO ↑〉 , |SO ↓〉} [108] which is more relevant
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for our computations, the matrices above become :

Mx =



2Ackx 0 − P√
2

0 P√
6

0 0 − P√
3

0 2Ackx 0 − P√
6

0 P√
2

− P√
3

0

− P√
2

0 − ~2kxΓ+
m0

~2√3γ′3kz
m0

~2√3η−(x,y)
m0

0 −
~2√6γ′3kz

2m0
− ~2√6η−(x,y)

m0

0 − P√
6

~2√3γ′3kz
m0

~2kxΓ−
m0

0 ~2√3η−(x,y)
m0

−
~2√2γ′2kx

m0

3~2√2γ′3kz
2m0

P√
6

0 ~2√3η+(x,y)
m0

0 ~2kxΓ−
m0

−
~2√3γ′3kz

m0

3~2√2γ′3kz
2m0

~2√2γ′2kx
m0

0 P√
2

0 ~2√3η+(x,y)
m0

−
~2√3γ′3kz

2m0
− ~2kxΓ+

m0
~2√6η+(x,y)

m0
−

~2√6γ′3kz
2m0

0 − P√
3
−

~2√6γ′3kz
2m0

−
~2√2γ′2kx

m0

3~2√2γ′3kz
2m0

~2√6η−(x,y)
m0

−
~2γ′1kx
m0

0

− P√
3

0 − ~2√6η+(x,y)
m0

3~2√2γ′3kz
2m0

~2√2γ′2kx
m0

−
~2√6γ′3kz

2m0
0 −

~2γ′1kx
m0



My =



2Acky 0 − iP√
2

0 − iP√
6

0 0 iP√
3

0 2Acky 0 − iP√
6

0 − iP√
2

− iP√
3

0

iP√
2

0 − ~2kyΓ+
m0

−
i~2√3γ′3kz

m0
− ~2√3η+(y,x)

m0
0

i~2√6γ′3kz
2m0

~2√6η+(y,x)
m0

0 iP√
6

i~2√3γ′3kz
m0

~2kyΓ−
m0

0 − ~2√3η+(y,x)
m0

−
~2√2γ′2ky

m0
−

3i~2√2γ′3kz
2m0

iP√
6

0 − ~2√3η−(y,x)
m0

0 ~2kyΓ−
m0

i~2√3γ′3kz
m0

3i~2√2γ′3kz
2m0

~2√2γ′2ky
m0

0 iP√
2

0 − ~2√3η−(y,x)
m0

−
i~2√3γ′3kz

m0
− ~2kyΓ+

m0
− ~2√6η−(y,x)

m0
−
i~2√6γ′3kz

2m0

0 iP√
3
−
i~2√6γ′3kz

2m0
−

~2√2γ′2ky
m0

−
3i~2√2γ′3kz

2m0
− ~2√6η+(y,x)

m0
−

~2γ′1ky
m0

0

− iP√
3

0 ~2√6η−(y,x)
m0

3i~2√2γ′3kz
2m0
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
with γ′1, γ′2, γ′3 the modified Luttinger parameters. To simplify these matrices expressions, we
have introduced the coefficients Γ± = γ′2 ± γ′1, k± = kx ± iky and the function η±(a, b) =
γ′2ka ± iγ′3kb.

The list of the prerequisites for the computation of the recombination spectrum is now
shortened. Indeed, in addition to the band structure, the momentum matrices are now
known. Our only missing parameters are the quasi-Fermi levels. The theory related to these
parameters will be highlighted in section 3.3.3 below.

3.3.3 Carriers density and quasi-Fermi levels

For a quasi l-dimensional system, the carrier densities are computed through the multi-band
k.p model. The electron and holes charge densities are given by [123]

n(~r) =
∑
i∈CB

1
(2π)3−l

∫
BZ
d3−l~kl

∣∣∣Ψi(~r, ~kl)
∣∣∣2f(εi(~kl), µe(~r)

)
,

p(~r) =
∑
j∈VB

1
(2π)3−l

∫
BZ
d3−l~kl

∣∣∣Ψj(~r, ~kl)
∣∣∣2[1− f(εj(~kl), µh(~r)

)] (3.36)

Here, the summations are done over the eigenstates of the conduction and valence bands. ~kl
corresponds to the wave vectors restricted to the (3− l)-BZ (~kl = (k1, ...k3−l)). The function
f represents the Fermi-Dirac distribution with the position-dependent electron and holes
quasi-Fermi levels µe and µh. The spin degeneracies are explicitly taken into account in this
formula. It is the reason why we do not have the prefactor 2 for each charge density. Ψ(~r, ~kl)
refers to the ith envelope function of the conduction (valence) band linked to the eigenvalue
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Ei(~kl).
∣∣∣Ψi(~r, ~kl)

∣∣∣2 represents the probability density for a given subband i. In a N -bands
k.p model, it is given by

∣∣∣Ψi(~r, ~kl)
∣∣∣2 =

N∑
µ=1

∣∣∣Ψ(µ)
i (~r, ~kl)

∣∣∣2. (3.37)

The position dependence here is presented to account for systems with confinement such as
quantum wells (QW)s, quantum wires, and quantum dots. However, for single bulk materials,
the ~r-dependence from equations (3.36) would be dropped, resulting in the probability density
from equation (3.37) being unity.

The computation of the integral over the BZ is a relatively complex task to perform. It
generally requires some time-consuming methods in addition to the mathematical complexity.
The computation time can be reduced by relying on the symmetry of the crystal or the most
symmetrical directions in the BZ. For the charge densities presented above, we could also
rely on the convergence of the Fermi-Dirac distribution to restrict our integration domain to
a relatively small part of the Brillouin zone.

In the case of the SBEMA, the integral over the BZ(l < 3) are analytically computed by
relying on the simple energy dispersion relation presented in the previous sections. In that
case, the charge densities for bulk semiconductors (l = 0) are

n = gνNν(T )F1/2

(
−εν(~0) + µe

kBT

)
,

p = 2
∑
i∈VB

Ni(T )F1/2

(
εi(~0)− µh
kBT

)
,

(3.38)

In the case of the holes carrier densities, the summation is done over the heavy, the light,
and split-off holes bands’ energy. The factor gν represents the spin and valley degeneracies of
the different conduction bands represented by ν. For example, gΓ = 2, gL = 8, gX = 6. The
function F1/2 is the complete Fermi-Dirac integral for an index of 1/2 and is given by

F1/2(y) = 2√
π

∫ +∞

0

√
x

1 + exp(x− y)dx. (3.39)

Ni(T ) is the effective density of states at a temperature T defined by

Ni(T ) =
(
mDOS
i kBT

2π~2

)3/2

(3.40)

with mDOS
i the density of state mass of the given band i or a given valley in the case of the
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conduction bands.

The L and X valleys are expected to contribute to the charge densities depending on the
semiconductor material and the lattice strain. With our eight bands k.p model, we cannot
describe the bands related to these valleys. It, therefore, means that we cannot use the
equations (3.36) to compute their charge densities. In that case, the eight bands k.p model and
the SBEMA are simultaneously used to have a complete (or at least a reasonable) description
of the charge densities inside the material. For instance, the charge densities in the Γ valley
will be described by equations (3.36) and that in the other valleys by equations (3.38).

The method highlighted here to determine the quasi-Fermi levels is most efficient to characterize
a bulk material under optical injection of carriers to measure the PL. In thermal equilibrium,
the single Fermi level Ef is determined by solving the electroneutrality condition given by

n
∣∣∣∣(Γ)

µe=Ef
+ n

∣∣∣∣(L)

µe=Ef
+ n

∣∣∣∣(X)

µe=Ef
+N−A

∣∣∣∣
µh=Ef

= p
∣∣∣∣
µh=Ef

+N+
D

∣∣∣∣
µe=Ef

(3.41)

Without a loss of generality, we assume the dopants to be fully ionized. In that case, N−A ≈ NA

and N+
D ≈ ND.

When carriers are optically injected inside the material, a non-equilibrium state is reached for
the whole system. However, a local equilibrium is considered for both the electrons and the
holes. In that case, we have two different Fermi levels, µe, and µh, for the electrons and holes,
respectively. If n0 and p0 denote the total electrons and holes charge densities at thermal
equilibrium, µe and µh are determined by solving equations (3.42)

n0 + δn = n
∣∣∣∣(Γ)

µe

+ n
∣∣∣∣(L)

µe

+ n
∣∣∣∣(X)

µe

p0 + δp = p

∣∣∣∣
µh

(3.42)

where δn and δp are the excess electrons and holes densities respectively.

Here in our model, the density of traps is assumed to be small compared to the electrons and
holes’ charge densities. In that case, δn and δp should be equal. Moreover, the conduction
band electrons are considered to be shared between the Γ and L valleys. This consideration
is only used when the energy band offset between these valleys is close or below the thermal
energy kBT . In this situation, we expect the electrons to transition between those valleys.
With equations (3.42), it becomes relatively easy to extract the quasi-Fermi levels if we know
how to compute the integrals over the reciprocal space for the k.p model.
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3.3.4 Computation of the integrals over the Brillouin zone

The calculation of the integrals over the BZ for bulk structures relies on various methods
presented in the literature. The easiest one is the SBEMA. It guarantees more or less
an analytical computation for most of the integrals in the model. Equation (3.38) is an
example of the simplicity of this method. Besides, there are several other methods such as the
special-points approximation [124,125], the tetrahedron method and its variants [126–128],
and also the special-lines approximation (SLA) [129]. The best techniques in our case should
be compatible with our eight bands k.p formalism while requiring less computation time.
With these conditions in mind, we can start by ignoring the tetrahedron methods known to
be time-consuming procedures and even not suitable for the eight bands k.p formalism [128].
As mentioned by Enders, the special-points approximation is appropriate and accurate only
when the global features of the band structure rather than the local details are required [129].
Therefore, it cannot be used in our case since we deal with the details relatively close to the Γ
point. In our model, all the computations related to the bulk-like structures are done using
the SLA technique.

Within the SLA, the three-dimensional BZ integrals are replaced by a sum of one-dimensional
integrals over some directions (denoted as “special” ) of the crystal lattice. These directions
could be, for example, the symmetry directions that we use in our k.p model. If we denote
by L the set of the special directions, equation (3.36) will become

n = 1
2π2

∑
β∈L

wβ

(∑
i∈CB

∫ kBZ

0

k2
βdkβ

1 + exp [(εi(kβ)− µe) /kT ]

)
(3.43)

with wβ the weight of the special direction β and kBZ ≈ 0.5 (units of π/a0, a0 being the lattice
constant of the material) for the eight bands k.p model to still be accurate. Depending on the
computation, the exact value of the upper limit of integration kBZ could be neglected since
we expect the integrand to vanish rapidly while increasing the value of the kβ. Unlike the
SBEMA, which leads to parabolic and isotropic-like band structure, this method accounts for
the anisotropy and the non-parabolicity of the bands obtained with the k.p band structure.
It is one of the reasons why we expect it to be more efficient than the SBEMA.

For group IV semiconductors, the characteristic directions can be considered as [100], [110],
and [111] with all their degeneracies ([100] six-fold, [110] twelve-fold, and [111] eight-fold). In
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that case, the set of special directions should be

L =
{

[100], [001], [010], [1̄00], [01̄0], [001̄], [110], [101], [11̄0],

[101̄], [1̄10], [1̄01], [1̄1̄0], [1̄01̄], [011], [01̄1̄], [01̄1], [011̄],

[111], [111̄], [11̄1], [11̄1̄], [1̄1̄1̄], [1̄11], [1̄1̄1], [1̄11̄] }

(3.44)

with wβ = 1
26 for each direction. We expect some of the directions to be equivalent depending

on the strain applied to the material. For example, for an unstrained material, L is reduced to

L = {[100], [110], [111]} (3.45)

since [100], [110] and, [111] are equivalent to their degeneracies.

The symmetric directions are usually assumed to carry all the relevant sets of information.
This assumption is not always accurate since less symmetric lines can also convey relevant
details about the material. Therefore, more directions have to be considered in addition to
the ones from equation (3.44). We can take this case into account by considering Kane’s Y
stars [130]. The Y stars are the ~k-directions forming equal angles with adjacent symmetry
directions. There are forty-eight directions as presented in table 1 and figure 1 of [131]. The
set L from equation (3.44) should have seventy-four elements with these forty-eight new
directions taken into account. With the determination of the thermal equilibrium Fermi level
Ef and the quasi-Fermi levels, µe and µh from equations (3.41) and (3.42), the consideration
of all these directions should increase the computation time depending on the algorithm used.

3.4 Spontaneous emission intensity and steady-state radiative carrier lifetime

We shall use the symbols Rê
sp to denote the rate of polarization-dependent spontaneous

emission per unit volume (s−1 · cm−3), where ê gives the polarization of the incident light as
presented in section 3.3.2. This parameter is generally defined by [88]

Rê
sp =

∫ +∞

0
rsponê (~ω) d~ω (3.46)

with rsponê (~ω) the spontaneous emission spectrum as presented in sections 3.1 and 3.3.
The total spontaneous emission rate per unit volume Rsp is defined as the average of the
contributions from the three polarizations and, therefore, given by

Rsp =
Rêx
sp +Rêy

sp +Rêz
sp

3 (3.47)
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In the previous equation, êx = (1, 0, 0) is the unit vector following the x̂-axis, êy is the unit
vector following the ŷ-axis, and êz is the one following the ẑ-axis. With the assumption
from equation (3.2), the momentum matrix elements are considered isotropic for bulk cubic
semiconductors. In that case, Rêx

sp , Rêy
sp , and Rêz

sp should be the same and, therefore, the
equations (3.47) and (3.46) should give the same result.

The net spontaneous recombination rate Rnet
sp is defined as the amount by which the non-

equilibrium spontaneous recombination rate Rneq
sp exceeds the thermal equilibrium generation

rate G0 [132]. At thermal equilibrium, the generation rate G0 should be the same as the
spontaneous emission rate Req

sp. In that case, Rnet
sp may be written in the form

Rnet
sp = Rneq

sp −Req
sp (3.48)

The steady-state radiative carrier lifetime τrad is determined by the net spontaneous emission
rate and the excess carrier concentration ∆n, which gives equation (3.49) [132]

τrad = ∆n
Rnet
sp

(3.49)

Rsp is usually estimated using equation (3.50) in which B is a material-dependent parameter,
n, and p the electrons and holes charge densities, respectively.

Rsp = Bnp (3.50)

In that case, the steady-state radiative carrier lifetime should be

τrad = ∆n
B(n0 + ∆n)(p0 + ∆n)−Bn0p0

= 1
B(∆n+ n0 + p0) (3.51)

There is a possibility for analytical computation of the coefficient B for a non-degenerate
semiconductor in a low injection regime. Indeed, by assuming parabolic bands, we can derive
the coefficient B as presented in equation (3.52) (see appendix B for the derivation).

B =
∑

v

(
2mc,vkBT

mc

)3/2
Ec,v
Kv(T )

√
π

2

(
1 + 3kBT

2Ec,v

) (3.52)

The bimolecular recombination coefficient is presented in equation (3.52) as independent
of the excess carrier concentration (and therefore the quasi-Fermi levels), but this is not
always true. In fact, B is known [133,134] to depend on the carrier density ∆n and is often



32

approximated by [135]
B = B0 −B1∆n (3.53)

with B0 and B1 which are material-dependent constants.
Given all that has been said about coefficient B, it seems wise to rely on equations (3.46),
(3.47), and (3.49) which state the general case without any specific approximations.

3.5 The non-radiative recombination processes in single bulk semiconductor
materials

3.5.1 Auger recombination process

The Auger recombination is a three-particle process where the energy released by the recombi-
nation event between two of the particles (electron-hole) is used to excite the third one. This
energy is eventually lost to lattice phonons after the relaxation of this third carrier. Unlike
the Shockley-Read-Hall (SRH) process described in the next section, the Auger recombination
process is considered intrinsic to the material [136]. Although discovered in 1925, it was not
until 1959 that this process was theoretically studied in semiconductors with the pioneering
works of Beattie and Landsberg [137]. For an unstrained semiconductor, Beattie highlighted
the existence of ten phonon-less band-to-band Auger processes [138] later on grouped in three
main classes as presented in figure 3.4.

Figure 3.4 Band-to-band Auger processes. The electrons are represented by closed circles
and holes by open circles. Reprinted from N. K. Dutta and R. J. Nelson, "The case for
Auger recombination in In1−xGaxAsyP1−y", Journal of Applied Physics 53, 74-92 (1982)
https://doi.org/10.1063/1.329942 , with the permission of AIP Publishing [4].

In the CCCH process, the Coulomb interaction between the electrons 1 and 2 in the conduction
band (C) results in the recombination of electron 1 with the hole 1’ in the heavy-holes valence
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band (H). The energy emitted after this recombination is captured by electron 2, which is
excited to the higher energy state 2’. For the CHHS process, electron 1 recombines with hole
1’, and the emitted energy is captured by the nearby heavy hole 2 (H), which is later excited
to a spin-orbit split-off (S) hole band. The CHHL process is similar to the CHHS except for
the heavy hole 2, which is excited to the light hole 2’. With these definitions, the CCCH
process is expected to be significant when the electron concentration is high. The CHHS and
CHHL would be notable for a material with a high density of holes. The CHHS process is
said to dominate the CHHL when the bandgap energy Eg is greater than the split-off energy
∆ and vice versa. For strained materials, it could be possible to see Auger recombination
processes such as CCCL or CHLS since the heavy and light holes bands are split.

Auger recombination rate RA is usually estimated using equation (3.54),

RA = Cnn
2p+ Cpnp

2 (3.54)

where n and p are the electron and hole charge carrier densities, respectively. Cn and Cp

are the Auger coefficients linked to the CCCH and the CHHS/CHHL processes, respectively.
They are material-dependent parameters usually determined experimentally.

There are two issues with this formula that need to be addressed. The first one is related to
the lack of optimized parameters for relatively new semiconductors such as GeSn. This lack
of parameters forces us to rely on approximations that are not always accurate. For example,
Zhang et al. [139] used the values of the Auger coefficients from a tensile-strained n-type Ge
to estimate RA in a strained GeSn sample with 3% Sn. This approach could be relevant
as a first approximation but, the impact of the doping concentration, the temperature, the
strain, and the Sn content, even small, should not be neglected. The second issue, which
is more general, is related to the derivation of the formula itself. Indeed, as mentioned by
Larry Coldren et al. , this widespread definition of RA is strictly valid only for non-degenerate
semiconductors, where the Boltzmann approximation still holds [140]. In this situation, the
SBEMA is sufficient to describe the band structure.

One of the main difficulties with the Auger recombination is to accurately evaluate the band
structure more than a bandgap away from the band-edges. It is required to describe the
charge carriers’ behavior, especially the charge carrier 2’ in figure 3.4. The computation of
RA also requires prior knowledge of the overlap integrals of the Bloch functions [137]. In
addition to the pioneering work from 1959, more refined theoretical models were developed to
evaluate the Auger recombination rate [4, 141–144]. However, the scarcity of experimental
data on the band structure and the overlap integrals made these models relatively simplistic.
To account for these effects, Haug developed a theoretical model in which the calculations are
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performed with arbitrary band structures (meaning that the dependence on the wave vector
~k is not as explicit as it could be with the SBEMA) [145]. Degenerate semiconductors are
also taken into account with the use of the Fermi-Dirac distribution. It seems appropriate to
use the multi-bands k.p to describe the band structure in this approach. In that case, the
fourteen bands k.p model would at least be required to estimate the band structure more
than a bandgap away from the band-edges.

It is relevant to mention that only the CCCH process can be accurately described by Haug’s
approach. The CHHL and CHHS processes are more complicated and, therefore, require
more attention. Moreover, Haug presents the representation of the overlap integrals by the
k.p perturbation theory as questionable since the ~k-differences in the Auger processes are
not always small. Given the information provided above, it is pretty clear that the Auger
recombination processes could not be accurately estimated within our theoretical framework.

3.5.2 Shockley-Read-Hall recombination process

SRH recombination mechanism is usually defined as a process involving the capture of
minority carriers by quantum states lying in the semiconductor bandgap given the defects
and imperfections in the material [146–148]. These defects include impurities, dislocations,
lattice imperfections, unwanted foreign atoms, and even native defects such as interstitials
and vacancies [3]. For a recombination center or a trap level of energy Et in the bandgap, the
total rate of electron capture Ucn is estimated by Shockley and Read in [147] and given by
equation (3.55).

Ucn = Cn(fptn− ftn1) (3.55)

In this equation, fpt = 1 − f(Et) = 1 − ft is the probability that a trap is empty, and f

represents the Fermi-Dirac distribution. n1 = Nc exp [(Et − Ec)/kBT ], is the electrons charge
concentration in the conduction band for the case in which the Fermi level falls at Et. Cn is
the probability per unit time that an electron in the conduction band will be captured by the
traps when they are all empty.

The total rate of hole capture Ucp is estimated using the same approach and given by

Ucp = Cp(ftp− fp,tp1) (3.56)

It is worth mentioning that these equations were obtained for non-degenerate semiconductors.
However, they can still be valid for degenerate semiconductors if we consider the definition of
the mean capture coefficient 〈cn〉 in equation (D.3) to provide an unambiguous meaning to
the capture cross-sections [149].
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For steady-state conditions, the quantities Ucn and Ucp must be equal, and the SRH recombi-
nation rate RSRH is defined by equation (3.57) derived in several textbooks [95,150,151].

RSRH = σnσpvth,nvth,pNt(pn− p1n1)
σnvth,n (n+ n1) + σpvth,p (p+ p1) (3.57)

Here, Nt is the density of trapping centers per unit volume; σn and σp are the electron and
hole capture cross-sections, respectively. vth,i =

√
3kBT/m∗i is the thermal velocity of the

respective carrier. These parameters are linked to the probabilities Cn and Cp by equation
(3.58).

Cn = σnNtvth,n, Cp = σpNtvth,p (3.58)

For non-degenerate semiconductors, Nc (Nv for the holes) is independent of the quasi-Fermi
level µe (see equation (D.6)), and therefore, n1 and p1 are only functions of ni the electron or
hole concentration, and Ei the Fermi level both for an intrinsic semiconductor. In that case,
equation (3.57) becomes

RSRH = σnσpvth,nvth,pNt[pn− n2
i ]

σnvth,n
[
n+ ni exp

(
Et−Ei
kBT

)]
+ σpvth,p

[
p+ ni exp

(
Ei−Et
kBT

)] (3.59)

When the trap density Nt is negligible relative to the majority carrier densities under equilib-
rium conditions, the carrier charge densities n and p are supposed to be relatively insensitive
to changing concentrations in the traps. In that case, the injected carrier concentrations ∆n
and ∆p should be equal, and the SRH carrier lifetime τSRH is given by equation (3.60), where
we have introduced the lifetimes τp0 = (σpNtvth,p)−1 and τn0 = (σnNtvth,n)−1.

τSRH = ∆n
RSRH

= τp0

(
n0 + ∆n+ n1

n0 + p0 + ∆n

)
+ τn0

(
p0 + ∆n+ p1

n0 + p0 + ∆n

)
(3.60)

For the general case, when the density of traps Nt is not small compared to the carrier charge
densities, it becomes irrelevant to define an SRH carrier lifetime since ∆n 6= ∆p. In that case,
there are two lifetimes τn and τp well described in appendix A of [147] for small values of ∆n
and ∆p.

The SRH model presented here was extended by Macdonald and Cuevas [152] to account for
arbitrary values of the density of traps Nt and the excess carrier densities ∆n and ∆p. The
complexities in these SRH models are hidden behind the computation of the parameters Cn,
Cp, Nc, Nt, and Et. Indeed, as inferred from the previous equations, explicit knowledge of
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these parameters is required. In many practical cases, the values of Nt and Et are unknown.
The problem with the energy level Et is sometimes circumvented by considering deep-level
states or mid-gap states for which Et = Ei, the intrinsic Fermi level. The prior knowledge
of the capture cross-sections is required to estimate the probabilities Cn and Cp. These
cross-sections can be thermally activated, and their temperature dependence shall be included
to find Cn and Cp [153].

In this chapter, the different steps required for the computation of the spontaneous emission
spectrum were presented. While presenting the SBEMA, the chapter highlighted its weaknesses
and the differences with the multi-band k.p formalism used in our framework. The framework
presented here can also be used to describe both the inter-bands (CB-VB) and intra-valence
bands absorption mechanisms. Besides the radiative processes, there was an emphasis on the
non-radiative recombinations mechanisms such as Auger and SRH recombinations.
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CHAPTER 4 EXPERIMENTAL DETAILS

This chapter provides an overview of different methods and techniques used throughout
this project. It is divided into three sections, covering the growth process of GeSn, the
microfabrication of devices, the characterization techniques used to investigate these materials
and devices.

4.1 Heteroepitaxial growth of GeSn layers

Epitaxy is the oriented growth of one crystalline material on a substrate wafer. During this
process, the substrate serves as a seed crystal since the grown layer duplicates its crystal
structure as well as its orientation. According to Ivan Markov, epitaxial growth can only
occur when the chemical potentials of the grown crystal and the substrate differ [154]. In
that case, homoepitaxy takes place when this difference is mainly the result of the lattice
mismatch rather than the difference in their chemistry. On the same line, heteroepitaxial
growth occurs when the difference in the strength of the chemical bonds is the principal cause
of the difference in the chemical potentials regardless of the lattice mismatch. During epitaxial
growth, the difference in the lattice constants results in lattice strain in the grown layers. This
lattice distortion yields different in-plane (aL,‖) and out-of-plane lattice (aL,⊥) parameters.
For pseudomorphic growth, the value of aL.‖ matches the in-plane lattice constant of the
substrate (see figure 4.1). It results in a change in aL,⊥ according to Poisson’s ratio.

Substrate

Epi-layer

(a) Unstrained (b) Strained (biaxial strain)

Figure 4.1 Example of a crystalline material to be grown epitaxially on a substrate wafer.
(a) Unstrained (b) Strained: pseudomorphic growth.

CVD is one of the principal techniques used for the growth of semiconductor thin films and
heterostructures. It consists of the deposition of solid thin layers on the surface of a heated
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substrate by chemical reactions of gas-phase or vapor-phase precursor. The typical CVD
process can be divided into several key steps [155]. First, the precursor chemicals and any
required diluent gas must be fed into the CVD reactor. Once in the reactor, they decompose
to form the film precursors and some volatile by-products. These film precursors are later
transported to the substrate before adsorbing onto its surface. Once at the sample surface,
the adatoms diffuse to the appropriate lattice sites and react with the surface atoms to be
incorporated into the layer and form a continuous film. In the end, the reaction by-products,
in addition to the excess precursors, desorb from the surface. They are transported to the
reactor exhaust and pumped out of the system. Figure 4.2a presents a summary of the overall
process.

Thermocouple and
Substrate heater

control

Gas precursor inlet

Adsorption of 
precursors

Transport to

Surface diffusion nucleation
Surface reaction and

Continuous film

Decomposition and
mass transfort of 
the reactants reaction by-products

Desorption of By-products
removal

(a)

(b)

Substrate

 the surface

Figure 4.2 Thin films deposition. (a) Schematic representation of the typical CVD process.
(b) Schematic illustration of the reduced pressure CVD reactor.

The GeSn samples used in this work were grown on 4-in. (100) Si wafers in a custom-made
vertical RP-CVD system, from which a simplified schematic illustration is shown in panel
(b) of figure 4.2. The Si wafers were first cleaned in a 2% hydrofluoric acid (HF) solution
and put on the substrate holder in the chamber. The temperature of the substrate was kept
constant by a feedback loop between the thermocouple and the heater. This heater also
favors a good temperature uniformity during the film deposition. Before the growth of a
GeSn layer, a 600− 700 nm thick Ge-VS was grown using ultrapure H2 carrier gas and 10%
monogermane (GeH4) as a precursor. Subsequently, a thermal cycling annealing (800 °C) was
performed, followed by the growth of additional Ge layers. The precursors used for GeSn film
growth are GeH4 and SnCl4 for Ge and Sn, respectively. The liquid SnCl4 was delivered to
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the chamber using an H2 bubbler which enabled the control of the SnCl4 mass flow. Diborane
(B2H6) and arsine (AsH3) were used as precursors for p- and n-type doping, respectively.
Further details on the growth process of Ge-VS and metastable GeSn are found in [156–158]
and [5, 61,68,69,159,160], respectively.

4.2 Microfabrication of devices

4.2.1 Lithography

Lithography is a printing process used to transfer a pattern on a surface. Photolithography
is the most widely used form of lithography in microfabrication [155]. With this process, a
micro or nanoscale pattern is transferred to thin films material using UV light, a photomask
(transparent plate of glass or quartz with opaque absorber pattern metals), and a photoactive
organic material called photoresist. As the first step, the photoresist is deposited on the
surface of the material by spin coating. By varying the time and speed of the spin process, the
thickness of the resist can be controlled. After the photoresist deposition, the sample is baked,
exposed to UV light, and later immersed in a developer solution to highlight the desired
pattern. There are two types of resists used in photolithography, i.e., positive and negative
photoresists. The exposed regions of a positive resist become more soluble due to the break
of the polymer chains after reaction with light. For that reason, they dissolve faster in the
developing solutions compared to the unexposed regions. In the case of negative photoresists,
the exposed regions are rather strengthened, and therefore, they become less soluble than
the other regions. For that reason, the unexposed areas are the ones being dissolved in the
developing solution.

In addition to UV light, the pattern can also be transferred using either X-rays (X-ray
lithography) or a focused beam of electrons (electron beam lithography (EBL)). X-rays
have shorter wavelengths than UV light (∼ 4− 10Å compared to ∼ 2000− 4000Å). This
difference allows for more energy to be conveyed to the material and, therefore, higher
patterning resolution when using X-ray lithography [155]. Unlike photolithography and X-ray
lithography, the EBL is maskless, and therefore, a more versatile process. It also yields
higher patterning resolution (down to < 10 nm) thanks to the high-energy electrons employed
(10−100 keV). However, the slow exposure speed and the need for vacuum make the EBL more
complex and time-consuming than photolithography [155]. The EBL is, for example, used in
the literature to fabricate GeSn-based microdisk optical cavities [79,161–163]. On the other
hand, GeSn-based LEDs in the literature have been patterned using photolithography [83].
Similarly, our LED in this work is also patterned using photolithography (see chapter 5).
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4.2.2 Etching

In nano- and microfabrication, etching consists of the selective removal of regions of deposited
layers or wafers. It is commonly used after a lithography process to transfer patterns from
the resist to the layers of interest. Etching procedures are often divided into two classes
mainly, wet and dry etching. Wet etching processes involve the immersion of the sample in
chemical solutions, whereas dry etching employs ion bombardment, reactive chemical species,
or combined physical and chemical mechanisms.

Reactive ion etching (RIE) is a chemical and physical dry etching technique. During this
process, the organic material on top of the wafer surface reacts with high-energy ions from the
chemically reactive plasma generated using a radio-frequency (RF) electromagnetic field in a
low-pressure environment, i.e., in a vacuum chamber. In this environment, the wafer lies on
one of the electrodes of the RF generator. After the plasma generation, this electrode acquires
a negative charge, enhancing the negative bias on the wafer. This charge accumulation results
in positive ion acceleration towards the wafer and energetic bombardment of its surface.
Following the ion bombardment, the reactive species from the plasma diffuse to chemically
attack the surface of the wafer. The directionality of the ions combined with the high reaction
rate leads to highly anisotropic etching [155].

Inductively coupled plasma (ICP) RIE is a type of RIE used when higher etch uniformity and
rates are required throughout the process. An ICP source is used to create and modulate the
density of the plasma by electromagnetic induction whereas, a separate RF generator applies
a bias to the wafer to control the energy of the ion [164]. Generally, high-density plasmas
with low-energy ions and lower pressures are used to increase the etch rates in addition to the
etch uniformity.

GeSn layers are etched using wet etching as well as dry etching techniques. Indeed, Cheng et
al. investigated a wet etching process using ammonia peroxide mixture (H2O2:NH4OH:H2O) to
fabricate full-relaxed GeSn patterns on Ge [165]. This process was later studied for Ge1−xSnx
alloys with 4.2% < x < 16.0% [166]. Gupta et al. demonstrated in 2013 a new CF4-based
dry etching recipe to selectively remove the Germanium layer over GeSn [167]. However,
as presented by Elbaz et al. , this etching recipe is unable to etch the defective area at the
bottom interface between GeSn and Ge [168]. For that reason, they employed a dry etching
recipe with SF6 gas considered to be less selective compared to CF4. Moreover, a Cl2-based
(Cl2/N2/O2 gases) ICP RIE recipe was developed for more directional or vertical etching of
GeSn [161,169].

For the present work, the fabrication of the light-emitting devices relied on the directional
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etching obtained using Cl2/N2/O2 based ICP RIE technique.

4.3 Materials characterization

4.3.1 X-ray diffraction (XRD) and Reciprocal space mapping (RSM)

X-ray diffraction (XRD) is a well-established non-destructive method used for the structural
characterization of crystals, especially epitaxial layers. It is widely used in the literature
to estimate the strain, the chemical composition, and the degree of crystallinity of group
IV semiconductors [31, 68, 69, 170–176]. This method relies on the elastic scattering of the
incident X-rays by the atoms of a crystal, as presented in figure 4.3(a). Indeed, there are
constructive and destructive interferences of scattered waves to form a diffraction pattern.
The constructive interferences occur at specific angles θ estimated using Bragg’s law:

mλXRD = 2dhkl sin(θ) (4.1)

Here, λXRD is the wavelength of the incident X-ray beam, dhkl is the distance between the
(hkl) planes, and m is the diffraction order. The XRD measurements presented in this project
were performed using a Bruker D8 Discovery, with the Kα1 line (λ = 0.15406 nm) of a copper
source as incident X-ray beams. Figure 4.3(b) presents a very simplified measurement setup.

incident wave diffracted wave

(a) (b)

Plane parallel
to the surface
of the sample

Sample

X-ray source

Detector

Figure 4.3 X-ray diffraction. (a) Schematic illustration of the Bragg’s law. (b) Schematic
illustration of the XRD setup

In this illustration, ω denotes the angle between the incident beam and the sample’s surface,
and 2θ is the angle between the incident and the diffracted beams. Three different scan modes
are usually performed with this setup. The first is the ω scan (or rocking curve) performed
by rotating the sample around the diffractometer axis while holding the detector at a specific
position (θ ≈ θB, the Bragg angle). This method enables the estimation of the mosaic spread,
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and therefore, the crystal quality of the layers [177]. In addition to that mode, there is the
standard ω− 2θ scan around the (004) direction of Silicon. In this configuration, the detector
is also rotated but twice as fast as the sample. For that reason, symmetry is maintained
between the incident and the diffracted beams with respect to the sample’s surface throughout
the entire scanning range, and only the symmetrical Bragg reflections are captured in the
diffraction pattern. This scan mode can give quick information about the crystal quality and
the differences in the out-of-plane lattice parameters.

For a multi-layer heterostructure, the gradients of strain and chemical composition broaden the
diffraction intensity distribution following different directions in the reciprocal space [177]. The
XRD-reciprocal space mapping (RSM), which combined the scan modes above, is employed in
this work to decouple the contributions of strain and Sn composition [178,179]. The method
also allows the evaluation of the epitaxial strain in the grown layers. It is noteworthy to
mention that the lattice mismatches are the only parameters directly estimated with the XRD
techniques. However, with basic elastic theory (Hooke’s law), one can also evaluate the strain
values. It is also possible to determine the chemical composition of a semiconductor alloy
if the dependence of the lattice constants on the chemical composition is known [177]. For
GeSn layers, the deviation of the lattice constant from Vegard’s law is taken into account
using a bowing parameter of 0.041Å [66].

4.3.2 Photoluminescence spectroscopy

PL is the process of light emission by a material following the absorption of photons. After
absorbing the photons, the system is excited to a higher energy level, and subsequent
emission of photons occurs due to spontaneous decay to lower energy levels. According
to Stokes’s law, the wavelength of the emitted photons should be greater than the one
of the excitation light [180]. The eventual excess of energy is lost through non-radiative
transitions. A luminescence that does not follow this law is referred to as anti-Stokes
luminescence. They usually occur when the excited electron receives additional energy
following its interaction with the crystal lattice or when a two-photon absorption process
takes place [181]. Photoluminescence spectroscopy is a helpful tool for investigating the
band structure and the optical properties of semiconductors usually conveyed by the optical
transitions inside the materials.

While PL spectroscopy in the visible part of the electromagnetic spectrum is an easy technique
[182], it is not necessarily the case in the infrared. Indeed, the atmospheric absorption lines
and the thermal background radiation, in addition to the reduced sensitivity of detectors in
the infrared, are some of the challenges facing near-infrared (NIR) and MWIR PL.
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For the measurements presented in chapter 5, Fourier Transform InfraRed (FTIR) spec-
troscopy, which relies on the Michelson interferometer [183], is our preferred technology.
This technology has various advantages over the earlier conventional dispersive systems (e.g.,
grating or prism). In the FTIR spectrometer, there is a simultaneous observation of all the
wavenumbers of light at all times, instead of a sequential observation as in the case of dispersive
spectrometers. This difference is known as the multiplex (Fellgett’s) advantage and results
in higher signal-to-noise ratios in the spectra recorded with FTIR spectrometers [184]. The
improved signal-to-noise ratio is also the consequence of the higher optical throughput (known
as throughput or Jacquinot’s advantage) due to the absence of slits in FTIR instruments [184].
In FTIR spectrometers, a laser output, usually He-Ne laser, is used as a reference to estimate
the frequencies in the output spectrum. With the accurate and stable estimation of the
wavenumber of the He-Ne laser, the calibration of FTIR interferometers is much more precise
and reliable in comparison to the dispersive systems [184]. This stability of calibration is the
laser reference or Connes’ advantage.

A schematic representation of our PL setup is presented in figure 4.4. The excitation consists

Vacuum
controller

Compressor
for the

Cryostat

Figure 4.4 Schematic representation of the FTIR based photoluminescence setup.

of a continuous-wave 532 nm laser from Laser Quantum. The laser is focused onto the sample
after following the green path. The 25× reflective microscope objective and the beam splitter
are used to collect the PL signal and couple it into the VERTEX 80 FTIR spectrometer
from Bruker. The PL signal goes through the interferometer compartment equipped with a
Calcium fluoride (CaF2) beamsplitter and later focused onto the liquid nitrogen (N2) cooled
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Indium Antimonide (InSb) detector (spectral range of 1− 5.4 µm). The laser signal is filtered
out from the PL signal using a germanium window as a longwave-pass filter, which cuts on at
1850 nm.

The PL measurements were performed at a resolution of 32 cm−1 (≈ 4 meV) or 128 cm−1

(≈ 16 meV). The Fourier transform process uses the three-term Blackman-Harris apodization
function and the power spectrum as phase correction mode [185,186].

In order to remove the thermal background radiation from the PL signal, the excitation
laser is modulated using a mechanical chopper wheel at a specific frequency. It results in
a modulation of the PL signal with the same frequency and its amplification via a lock-in
amplifier [187,188]. The FTIR spectrometer was then operated in its step-scan function to
account for this laser modulation [189].

The experimental methods presented in this chapter are of primary importance to assess the
accuracy of the theoretical framework developed in chapter 3. While the epitaxial growth
and the microfabrication techniques ensure the availability of the materials and devices, the
different characterization techniques are commonly used to evaluate the material properties
of semiconductors. The Sn composition and the lattice strain are some of the parameters
estimated using XRD. These parameters are crucial to elaborate the band structure of
Ge1−xSnx alloys. Photoluminescence spectroscopy also provides a set of experimental data
relevant for the benchmarking of the framework.
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CHAPTER 5 CHARACTERIZATION OF GeSn LIGHT-EMITTERS:
COMPARISON BETWEEN THEORY AND EXPERIMENT

This chapter presents the results of the numerical studies performed on a Ge0.83Sn0.17 material
[5] using the theoretical framework developed in chapter 3. Additionally, GeSn double
heterostructure (DH) based LEDs are demonstrated and discussed. The experimental results
are analyzed and interpreted with a focus on the optical properties of the materials.

5.1 Mid-infrared emission from strained and relaxed direct bandgap Ge0.83Sn0.17

semiconductor

The epitaxial growth of the Ge0.83Sn0.17 layers was carried out using low-pressure chemical
vapor deposition (LP-CVD) starting from a 600 - 700 nm Ge virtual substrate on a 4-in.
silicon wafer. To ensure the growth of a Ge0.83Sn0.17 layer with a uniform Sn composition, a
multilayer heterostructure top layer (TL)/middle layer (ML)/bottom layer (BL) was grown.
The incorporation of Sn in the different layers was controlled using the growth temperature and
later estimated from an RSM analysis around the (224) asymmetrical XRD peak. Figure 5.1
shows the results of the scanning transmission electron microscope (STEM) and XRD-RSM
analyses. The thicknesses of the TL/ML/BL stacking were estimated to be 160/155/65 nm.
Besides, the TL is compressively strained with a lattice strain around -1.3%, as presented
in figure 5.1-b. The grown layers were also patterned into microdisks to relax the epitaxial
lattice strain and decouple the impact of both the lattice strain and the Sn composition on
the optical emission of the Ge0.83Sn0.17 layer (see figure 5.1c).

Figure 5.2 shows the band lineup diagrams of the Ge0.92Sn0.08/Ge0.88Sn0.12/Ge0.83Sn0.17 ob-
tained within the eight bands k.p formalism. In both the as-grown and relaxed samples,
the electrons and holes are expected to diffuse to the TL, where they should recombine. In
that case, the PL spectrum should be mainly the result of the recombination from this layer.
Therefore, from a theoretical standpoint, it would be judicious to analyze the PL results as if
they were coming from a single bulk GeSn material with a 17 at. % Sn composition.

5.1.1 Ge0.83Sn0.17 band structure : single-band effective mass approximation and
eight bands k.p formalism

The SBEMA requires prior knowledge of the effective masses for electrons and holes, as
presented in equation (3.3). Different research groups investigated the variation of the
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Figure 5.1 Cross-sectional TEM image along the [110] zone axis of the Ge1−xSnx 17/12/8 at.
% (TL/ML/BL) multilayer heterostructure grown on the Ge-VS/Si substrate. (b) XRD RSM
around the asymmetrical (224) reflection for the as-grown Ge0.83Sn0.17 sample. (c) Schematics
of the microdisk fabrication process. Reprinted figure with permission from [5]. Copyright
2021 by the American Physical Society.

Figure 5.2 (a),(b) Calculated 8×8 k.p band lineup at 300 K for the Ge0.83Sn0.17 with an
in-plane biaxial strain ε‖ = −1.3% (as grown) (a) and ε‖ = −0.2% (microdisks). Reprinted
figure with permission from [5]. Copyright 2021 by the American Physical Society.

effective masses as a function of the Sn composition for unstrained GeSn materials [2, 190].
A quadratic evolution was demonstrated depending on the wave vector direction studied.
For biaxially strained GeSn, the strain tensor is expected to modify the band structure and,
therefore, the effective masses. In that case, these different masses can be extracted from the
eight bands k.p bandstructure as presented in equation (5.1) with β representing the specific
k̂-vector direction ([100], [110], or [111]). The [100] effective masses could be used to satisfy
the isotropy assumption of the SBEMA. Another idea is to average the masses following the
different directions to obtain a new set of masses that could be used as an input parameter
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for the SBEMA.
1

m∗c,v|β
=
(

1
~2

∣∣∣∣∂2Eβ
∂k2

∣∣∣∣
)∣∣∣∣

k=0
(5.1)

Figures 5.3 and 5.4 present the band structures at 4 K and 300 K resulting from the different
formalisms mentioned before. The SBEMA band structure seems to be different depending
on the set of masses used. As expected, there is almost a perfect match between the SBEMA
and the eight bands k.p for a specific range of wave vectors very close to the Γ point. This
range is somehow dependent on the strain and the temperature in the material. For example,
we identify the ranges −0.118 nm−1 ≤ k ≤ 0.161 nm−1 and −0.076 nm−1 ≤ k ≤ 0.099 nm−1

at 4 K for the as-grown and the relaxed TL, respectively. At 300 K, these ranges become
−0.197 nm−1 ≤ k ≤ 0.145 nm−1 and −0.084 nm−1 ≤ k ≤ 0.104 nm−1 for the as-grown and the
relaxed TL, respectively. However, some differences are observed when the ~k vector moves
away from the Γ point. These differences are more significant for the valence bands, with, for
example, the bands crossing resulting from the SBEMA for both unstrained and biaxially
strained materials. From these results, some differences should be expected in the evaluation
of the emission characteristics with the SBEMA and the eight bands k.p formalism.

5.1.2 Determination of the quasi-Fermi levels for Ge0.83Sn0.17

Equation (3.10) is sometimes convenient to evaluate the edge-to-edge bandgap energy Eg of
semiconductors from PL measurements. This formula contains only two free parameters, i.e.,
the bandgap Eg and the full width at half maximum (FWHM) of the broadening function.
The accuracy of this method is based on the somehow restricting assumption of a non-
degenerately doped semiconductor and the fact that the optical carrier injection would be
small enough to maintain the quasi-Fermi levels within the bandgap and away from the
different band edges by several kBT [3]. This assumption is in some way problematic since
power-dependent PL analysis cannot be performed for fear of finding an evolution of the
edge-to-edge bandgap energy Eg as a function of the injected excess carriers density. This
evolution should not be confused with the Burstein-Moss effect [191], which mainly deals
with the variation of the optical energy gap E0(6= Eg) as a function of the carrier’s density.
For an n-type semiconductor at thermal equilibrium, E0 is defined as the energy difference
between the valence band maximum and the Fermi level position in the conduction band. Its
variation results from the shift of the Fermi level relative to the band edges as more charge
carriers are injected inside the material. Equation (3.6) and its underlying formalism can
therefore be used as a solution since they rely on the SBEMA while ignoring the different
assumptions mentioned before. An even more accurate alternative would be to rely on the
framework developed in chapter 3 based on the eight bands k.p formalism.
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Figure 5.3 Comparison of the single-band effective mass approximation and the eight bands
k.p bandstructures for Ge0.83Sn0.17 at 4 K.
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Figure 5.4 Comparison of the single-band effective mass approximation and the eight bands
k.p bandstructures for Ge0.83Sn0.17 at 300 K.
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The quasi-Fermi levels require accurate computations of the carrier charge densities, as
presented previously in chapter 3. With the differences in the band structure highlighted in
the previous section, the carrier densities would be dependent on the formalism used. The
calculations using the eight bands k.p formalism require defining the set of “special” directions
to consider for the integrals over the BZ. The computation times would depend on the number
of directions considered. Note, however, that for both as-grown and relaxed Ge0.83Sn0.17, the
number of directions is much reduced. Indeed, the seventy-four lines previously mentioned
are grouped into eight classes, as shown in figure 5.5, highlighting the band structure of the
as-grown material following different directions of the wave vector ~k. Panel (a) in figure 5.5
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Figure 5.5 Determination of the “special” directions considered within the special-lines
approximation for the computation of the integrals over the Brillouin zone for a -1.27 %
biaxially strained Ge0.83Sn0.17.

presents the gathering of the [100] six degeneracies into two main classes. The [100] direction
becomes four-fold degenerated and [001] two-fold. It is also the case for [110] that is now
four-fold degenerated while [101] is eight-fold. The [111] direction leads to only one class as
presented on panel (c). Regarding the Y stars, panel (d) highlights only three lines, each of
them sixteen-fold degenerated. The set L to be considered within the SLA is, therefore, given
by

L =
{

[100], [001], [110], [101], [111], [1,
√

2− 1,
√

3−
√

2],

[1,
√

3−
√

2,
√

2− 1], [
√

3−
√

2,
√

2− 1, 1] }
(5.2)
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Figure 5.6 presents the results for the computations of electron and hole densities at 4 K using
both the eight bands k.p formalism (equation (3.36)) and the SBEMA (equation (3.38)). In
this figure, “SLA (26 lines)” corresponds to the computation with the set L from equation
(3.44) while “SLA (74 lines)” highlights the impact of the extra forty-eight Y stars on the
charge carrier’s density. Regarding the “SLA (8 lines)”, it is the set from equation (5.2)
that is considered. For “SLA (5 lines)”, the impact of the three additional Y stars classes
in equation (5.2) is ignored. The observations from figure 5.5 are pretty much confirmed
here since the contribution from the supplementary directions within the set L is negligible.
Panels (a) and (b) show the slight impact of the Y stars on the electrons’ charge densities in
both the as-grown and the relaxed Ge0.83Sn0.17. The picture is somehow different for the holes
since there is one region where the impact of these stars is negligible along with the other one
where it is visible even though reduced for the -0.2 % biaxially strained Ge0.83Sn0.17 material.
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Figure 5.6 Computation of the charge carrier densities for both as-grown and relaxed
Ge0.83Sn0.17 at T = 4 K.

An almost perfect match between the k.p and the SBEMA results is observed when the
electrons (holes) quasi-Fermi level is between the bandgap energy and the conduction (valence)
band edge. This result is explained by the accumulation of carriers very close to the Γ point,
where a perfect match between the k.p and the SBEMA band structures is observed (see
figures 5.3 and 5.4). When the quasi-Fermi levels shift into the bands, the differences in
the band structure start to be significant. In that case, the equations (3.36) and (3.38) give
completely different results for the electrons and the holes. Therefore, the values of the
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quasi-Fermi levels are expected to change depending on the doping densities, the excess
carrier’s concentration, and the formalism used. The spontaneous emission intensities would
also be different since they are exponentially dependent on the quasi-Fermi levels.

5.1.3 Momentum matrix elements for Ge0.83Sn0.17

The optical momentum matrix element in a bulk semiconductor is usually considered indepen-
dent of the polarization of the electromagnetic field. This isotropy is expressed by replacing
the momentum matrix elements M2

cv(~k) in equation (3.1) with their average over the solid
angle dΩ (see section 9.5 and appendix 9A of [88] for more information about the process). In
this process, the band-edge wave functions are the main contributors to the optical transitions.
In that case, the envelope functions are independent of the wave vector ~k since they are
defined, as in equation (5.3) with, δ being the Kronecker delta function.

∣∣∣ΦCB(~k)
〉
≈ |S ↑〉 = (δi,1)1≤i≤8

∣∣∣ΦCB(~k)
〉
≈ |S ↓〉 = (δi,2)1≤i≤8∣∣∣ΨHH(~k)

〉
≈ |HH ↑〉 = (δi,3)1≤i≤8 or

∣∣∣ΨHH(~k)
〉
≈ |HH ↓〉 = (δi,6)1≤i≤8∣∣∣ΨLH(~k)

〉
≈ |LH ↑〉 = (δi,4)1≤i≤8

∣∣∣ΨLH(~k)
〉
≈ |LH ↓〉 = (δi,5)1≤i≤8∣∣∣ΨSO(~k)

〉
≈ |SO ↑〉 = (δi,7)1≤i≤8

∣∣∣ΨSO(~k)
〉
≈ |SO ↓〉 = (δi,8)1≤i≤8

(5.3)

For the Ge0.83Sn0.17 grown following the [100] direction, the wave vector directions relevant
for the calculations are more or less known. For that reason, there is no need for an average
since M2

cv(~k) can be explicitly computed, following the process described in section 3.3.2. In
addition, the envelope functions don’t fully respect the approximations given in equation (5.3).
As presented in tables 5.1 and 5.2, they depend on the wave vector ~k and, their unpredictable
variations deserve to be taken into account regardless of their amplitude.

Table 5.1 – Envelope wave functions at ~k = (0, 0, 0) and T = 4 K for the −1.27% biaxially strained
Ge0.83Sn0.17

|ΦS↑〉 |ΦS↓〉 |ΦHH↓〉 |ΦHH↑〉 |ΦLH↓〉 |ΦLH↑〉 |ΦSO↓〉 |ΦSO↑〉

|S ↑〉 1 0 0 0 0 0 0 0

|S ↓〉 0 1 0 0 0 0 0 0

|HH ↑〉 0 0 0 1 0 0 0 0

|LH ↑〉 0 0 0 0 -3.0533×10−16 -0.9625 0 -0.2713

|LH ↓〉 0 0 0 0 -0.9625 2.7756×10−16 0.2713 1.1102×10−16

|HH ↓〉 0 0 -1 0 0 0 0 0

|SO ↑〉 0 0 0 0 0 -0.2713 0 0.9625

|SO ↓〉 0 0 0 0 0.2713 -7.9724×10−17 0.9625 -2.2471×10−17



52

Table 5.2 – Envelope wave functions at ~k = (0.01, 0, 0) and T = 4 K for the −1.27% biaxially strained
Ge0.83Sn0.17

|ΦS↑〉 |ΦS↓〉 |ΦHH↓〉 |ΦHH↑〉 |ΦLH↓〉 |ΦLH↑〉 |ΦSO↓〉 |ΦSO↑〉

|S ↑〉 0.0022 0.9998 2.5350·10−4 -0.0172 -0.0107 -4.9208·10−4 7.9498·10−18 0.0052

|S ↓〉 0.9998 -0.0022 0.0172 2.535·10−4 -4.9208·10−4 0.0107 -0.0052 4.6562·10−19

|HH ↑〉 -3.8643·10−5 -0.0172 0.0147 -0.9997 -3.3451·10−4 -1.5354·10−5 2.2086·10−17 6.5896·10−6

|LH ↑〉 -0.0089 1.9991·10−5 -4.7418·10−4 -6.9775·10−6 -0.0441 0.9614 0.2713 -1.7791·10−17

|LH ↓〉 1.9991·10−5 0.0089 6.9775·10−6 -4.7418·10−4 0.9614 0.0441 -2.0847·10−16 0.2713

|HH ↓〉 0.0172 -3.8643·10−5 -0.9997 -0.0147 1.5354·10−5 -3.3451·10−4 6.5896·10−6 0

|SO ↑〉 -0.0079 1.7719·10−5 -2.3336·10−4 -3.4338·10−6 -0.0124 0.2709 -0.9625 1.1102·10−16

|SO ↓〉 -1.7719·10−5 -0.0079 -3.4338·10−6 2.3336·10−4 -0.2709 -0.0124 1.1407·10−16 0.9625

Figure 5.7 presents the polarization dependence of the strength of the different optical
transitions between the conduction and the valence bands for the as-grown Ge0.83Sn0.17

layer. The wave vector ~k varies following the [100] direction. Panels (a) and (b) present
the contributions from the transverse electric (TE) polarization which is obtained by using
ê = (1, 0, 0) in equation (3.33) and the the transverse magnetic (TM) polarization for
which ê = (0, 0, 1). In figure 5.8, the impact of the special directions on the strengths
of the transitions is presented. Indeed, this figure shows the behavior of the momentum
matrix elements following the [100], [110], and [111] directions. Rather than comparing the
transverse electric (TE) and the transverse magnetic (TM) separately, the average of the
three polarizations (2× TE + TM)/3 is studied.

5.1.4 Spontaneous emission spectrum : single-band effective mass approxima-
tion and eight bands k.p formalism

This section gathers all the previous pieces of information presented to analyze the impact of
the formalism on the final parameter which, is the spontaneous emission spectrum rspon. The
results of the comparison between the SBEMA, using equation (3.6) and the eight-bands k.p
formalism using equation (3.1) are highlighted. As presented in section 3.3.3, the determination
of the quasi-Fermi levels involves the excess carrier concentration ∆n as an input or fitting
parameter. Here, different values of ∆n were used to study the differences between these two
formalisms. Figures 5.9 and 5.10 summarize the results of these computations. The insets in
the different panels are used to present the impact of the formalism on the emission peak
position.

For the as-grown sample with an unintentional residual p-doping of 1017cm−3, the thermal
equilibrium electron charge density n0 is far more negligible relative to the hole charge density
p0 ≈ 1017cm−3. In that case, at ∆n = 1014cm−3, only a slight difference in the values of µe,
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Figure 5.7 Optical strength of the transitions between the conduction and valence bands for
the as-grown Ge0.83Sn0.17 at T = 4 K. Here, the wave vector ~k is along the [1 0 0] direction.
The contribution from the transverse electric (TE) polarization is found using ê = (1, 0, 0) in
equation (3.33). For the transverse magnetic (TM), ê = (0, 0, 1). The ŷ-axis is divided by P 2

with P the Kane parameter.
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Figure 5.8 Comparison of the unpolarized optical strengths of the transitions between the
conduction and valence bands for the as-grown Ge0.83Sn0.17 at T = 4 K. The unpolarized
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Figure 5.9 Comparison of the spontaneous emission spectra for the as-grown Ge0.83Sn0.17 at
T = 4 K. Some of the parameters used during the computations are presented in the tables
on the right

the electron quasi-Fermi level, is expected since n ≈ ∆n (see panel (a) of figure 5.6). For the
holes, the value of the excess carrier concentration is negligible compared to p0. Therefore, the
energy difference between the hole quasi-Fermi level µh and the valence band edge should be
between −25 meV and 0 meV. In this region, the value of the carrier charge density estimated
using the eight-bands k.p is not that far from the one obtained using the SBEMA (see panel
(d) of figure 5.6). The results from panel (a) of figure 5.9 are therefore not surprising. However,
as soon as ∆n is increased, the two formalisms lead to different results. It is, for example, the
case for the injected carrier density around 1016cm−3, where a very slight shift of the emission
peak position is observed. These differences are more significant for ∆n above p0, as shown
in panel (c) for the value of 1018cm−3. Indeed, the peak position completely moves from
around 0.575 eV (SBEMA) to 0.475 eV (eight-bands k.p). Regarding the differences observed
between the emission intensities, they could be explained by the exponential dependence in
µe and µh of the spontaneous emission spectrum. Indeed, no matter how small they are, the
differences in the values of µe,h obtained from SBEMA and the ones from the eight-bands
k.p contribute to the increase or decrease of the emission intensity. The variation of M2

cv as a
function of the wave vector ~k in the k.p formalism also impacts the emission intensity and
leads to the differences previously mentioned. The different values of µe and µh, as well as
the emission intensities Rsp, can be seen in table 5.3. All the different explanations presented
above are also valid for the relaxed Ge0.83Sn0.17.
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Figure 5.10 Comparison of the spontaneous emission spectra for the relaxed Ge0.83Sn0.17 at
T = 4 K. Some of the parameters used during the computations are presented in the tables
on the right

For both the as-grown and the relaxed Ge0.83Sn0.17 samples, the band offset ∆EΓ,L between
the Γ and the L valleys is large enough for the contribution of the L valley in the carrier
dynamics to be neglected (−96.19 meV for the as-grown and −134.02 meV for the relaxed
material at 4 K). Under optical injection, the increasing carrier concentration enables the
electron quasi-Fermi level µe to move towards the Γ valley conduction band edge. From a
specific value of the excess carrier concentration ∆n, the energy difference between µe and
the L valley conduction band edge would be small enough to allow the electrons to populate
this valley (see equation (3.38)). The carrier dynamics in the L valley must therefore be
considered when this value of ∆n is reached. For Ge0.83Sn0.17, the impact of the L valley is
Table 5.3 – Values of the quasi-Fermi levels and the emission intensities at T = 4 K for the −1.27% biaxially
strained Ge0.83Sn0.17. The values in the light cyan cells are the results from the eight-bands k.p formalism

while the ones in white cells are from the single-band effective mass approximation

∆n (cm−3) µe (meV) µh (meV) Rsp(s−1 · cm−3)

1014 450.0203 33.23982 6.37254×1022

450.1623 25.28013 1.2783×1023

1016 454.089 32.6444 6.4034×1024

455.127 24.1339 1.29151×1025

1018 527.2328 4.889568 6.69744×1026

551.6674 -44.36463 1.61928×1027
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perceptible when ∆n is around 2× 1018cm−3. At this value, the equations (3.41) and (3.42)

are not solvable unless n
∣∣∣∣(L)

µe

is explicitly computed through equation (3.38) instead of being
set to zero.

5.1.5 Comparison between theoretical and experimental photoluminescence re-
sults

The luminescence properties of the samples were investigated using an FTIR-based PL setup
with lock-in technique [61]. Power- and temperature-dependent PL were both performed. For
accurate temperature control, the samples were mounted in a vertically oriented helium flow
cryostat. The optical path of the PL emission was purged with nitrogen gas (N2) to avoid
water absorption lines being detected in the measured spectra. A germanium window was
also used as a long-pass filter to remove the laser from the PL signal.

The power-dependent PL measurements were performed at 4 K for the as-grown sample, with
the power density Pexc varying from 6.9 W/cm2 to 5.4 kW/cm2. Band to band emission was
reported only for Pexc greater than 67.95 W/cm2. Below this value, the PL emissions were
considered to most likely come from free- and bound-exciton recombination [192–194]. For
this reason, the fit of the experimental results starts from the 67.9545 W/cm2 data. They are
fitted with equation (3.1) using the eight bands k.p formalism and the unpolarized optical
momentum matrix elements (2M2

cv,TE +M2
cv,TM)/3. The fitting parameters in this process

are the excess carrier concentration ∆n and γ the FWHM of the broadening function B. B
is not fixed from the beginning of the process. Instead, it is chosen based on the resulting
R-squared (R2) factor of the fitting process. In fact, for a fixed value of Pexc, among the three
functions mentioned in section 3.2, only the one resulting in the highest R2 value is selected.
It is, therefore, possible to have a different broadening function from one excitation power to
another.

Figure 5.11 presents the results of the fitting process mentioned before. For each value of Pexc,
an R2 factor of around 99.5% is observed, expressing the goodness of the fit. The broadening
function is found to be a Lorentzian for all the excitation power densities below 990.9 W/cm2.
Beyond this value, only the hyperbolic secant broadening function is observed. The broadening
mechanisms are, therefore, homogeneous throughout the whole range of excitation power.
Besides, for an excitation power density of 5.413 kW/cm2, the emission tail between 0.43 eV
and 0.45 eV is underestimated by the eight bands k.p spontaneous emission spectrum. This
behavior is also observed with a Lorentzian broadening function (not shown). This tail could
not be attributed to the ML layer because of its bandgap energy of ∼ 0.53 eV at 4 K. It is
most likely the result of some additional mechanisms uncaptured by our framework.
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Figure 5.11 Power-dependent photoluminescence at T = 4 K for the -1.27% biaxially strained
Ge0.83Sn0.17. The scatter points are from the measurements while the black lines are the
results from the simulations

One strength of our theoretical framework is the ability to extract more physical parameters
in addition to the bandgap energy. Figure 5.12 presents the variation of some of the extracted
parameters as functions of the excitation power density. For a p-type background doping
around 1017cm−3, the thermal equilibrium Fermi level EF is about 33.25 meV. As shown in
panel (a), the non-degenerate semiconductor approximation is not appropriate here since
EF is less than the valence band edge energy which, is around 42.93 meV. Starting from
67.9545 W/cm2, both the electrons and holes quasi-Fermi levels start to deviate from EF .
Regarding the electrons quasi-Fermi level µe, a slightly progressive increase from 450.02 meV
to 461 meV is observed. µe quickly goes above the conduction band edge energy (450.45 meV),
causing the electron concentration to increase. On the other end, the holes quasi-Fermi level
µh decreases while remaining very close to the thermal equilibrium level with a maximum
offset of 2.76 meV at 5.4 kW/cm2. While these variations may be perceived as small, they
are not insignificant. Indeed, with the thermal energy of about 0.34 meV at 4 K, one should
expect a noticeable increase in the spontaneous emission intensity Rsp.

Using equation (3.49) from section 3.4, the steady-state radiative carrier lifetime τrad is
extracted as a function of Pexc. Panel (b) of figure 5.12 presents the extracted results. The
observed behavior of τrad is the result of the evolution of both ∆n and the net spontaneous
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Figure 5.12 Extracted parameters from the fitting process of the 4 K power-dependent
photoluminescence for the -1.27% biaxially strained Ge0.83Sn0.17.

emission intensity Rnet
sp as functions of Pexc. Even though they are both increasing with Pexc,

Rnet
sp varies more significantly than ∆n. Since the radiative carrier lifetime is inversely related

to Rnet
sp , its value decreases with a gradually raised excitation power density. An average value

of 1.56 ns is extracted from these data. This value is within the same order of magnitude as
that reported in cubic Ge [195].

Besides, equation (3.50) is also verified using the different parameters extracted from the
fitting process. Indeed, the bimolecular recombination coefficient B is computed from the
extracted values of Rsp and ∆n and presented in figure 5.13. Rather than being constant,
coefficient B decreases with ∆n, as suggested in [133, 134]. However, the variation of the
coefficient B in the as-grown Ge0.83Sn0.17 is not as linear as presented by Olshansky et al.
for InGaAsP and AlGaAs light sources [135]. Using a polynomial fit, equation (5.4) is
extracted with B0 = (6.366± 0.003) × 10−9 cm3/s, B1 = (−5.71± 0.04) × 10−26 cm6/s and
B2 = (3.27± 0.09) × 10−43 cm9/s. On top of that, the values extracted are two orders of
magnitude lower than the value of 7.1972× 10−7 cm3/s computed using equation (3.52) which
assumes parabolic band dispersion and non-degenerate semiconductor.

B = B0 +B1∆n+B2∆n2 (5.4)

Furthermore, a theoretical analysis is performed for the temperature-dependent PL. Using the
bandgap energy extracted in [5], the behavior of the steady-state radiative carrier lifetime τrad
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Figure 5.13 Extracted B coefficient from the fitting process of the 4 K power-dependent
photoluminescence for the -1.27% biaxially strained Ge0.83Sn0.17.

is extracted for both the as-grown and the relaxed Ge0.83Sn0.17 samples and displayed in figure
5.14. In this figure, panel (a) highlights the results for the as-grown Ge0.83Sn0.17 material
with a minimum R2 factor of about 97% observed throughout the range 4-255 K. The results
are somehow different for the relaxed Ge0.83Sn0.17. Indeed, as presented in panel (b), the
fit accuracy decreases with the temperature. The differences between the experimental and
theoretical data are more visible starting from T = 80 K. There are, even more pronounced
above 220 K (not shown). They could be attributed to the noises observed in the experimental
data but also to the uncertainties in material parameters. Indeed, with the sample patterned
into microdisks, one would expect the material parameters to be different from those of thin
films.

Figure 5.15 presents the evolution of the steady-state radiative carrier lifetime τrad with
the temperature. Given the previous observations, the results in the principal figure are
limited to the range 4-80 K while the inset plot goes up to 220 K. τrad evolves with the
temperature following the power-law a+ bT c for both the as-grown and the strain-relaxed
materials. However, the evolution is much more pronounced for the strain-relaxed case with
c ≈ 2.27 (1.97 for the as-grown). This observation is somehow different from the T 3/2 power
evolution observed in the low-injection regime.
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Figure 5.14 Some results of the fitting process of the temperature-dependent photolumines-
cence for both the as-grown and the relaxed Ge0.83Sn0.17.
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Figure 5.15 Extracted radiative carrier lifetime as function of temperature for both the
as-grown and the relaxed Ge0.83Sn0.17.

Regarding the evolution of τrad with the lattice strain, a counterintuitive behavior is observed.
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Indeed, with the decrease of the bandgap resulting from the relaxation of the material, one
would expect the carriers to recombine more rapidly, and therefore τrad to decrease. However,
the radiative lifetime is shown to be higher for the relaxed Ge0.83Sn0.17. The most obvious
explanation would be the emission degradation by the surface roughness and the etching
steps, but all these concepts are not explicitly included in our framework. It is therefore
very unlikely to be able to perceive their impact with this model. Besides this explanation,
one could also look for the impact of the effective masses on the radiative carrier lifetime.
The effective masses of the as-grown material are estimated to be greater than those of the
strain-relaxed Ge0.83Sn0.17. This behavior is observed throughout the 4-300 K temperature
range. In that case, the carrier mobility should be higher in the strain-relaxed material. The
carriers should therefore drift faster and slowly recombine radiatively in the strain-relaxed
material. This explanation is only speculation, and more investigation should be done to
understand better the evolution of τrad with the lattice strain in this GeSn material.

5.2 Fabrication and characterization of GeSn DH based LEDs

GeSn-based light emitters have been attracting a great deal of interest in recent years because
of their relevance for biomedical and gas sensing applications [196,197]. LEDs with Ge1−xSnx
alloys as active materials have been investigated in the literature based predominantly on
theoretical studies. Approaches using GeSn p-n and GeSn/Ge p-i-n heterostructures with
Sn composition up to 12 at.% resulted in increased emissions compared to Ge diodes. EL
from GeSn/SiGeSn MQWs based LEDs were also demonstrated [82,83]. These MQW-based
devices were reported to have a better efficiency compared to homojunction devices. However,
their efficiency at room temperature is still low compared to that of bulk GeSn LEDs with
higher Sn content. In this section, the fabrication and characterization of GeSn DH based
LEDs are discussed.

5.2.1 Growth and characterization of p-i-n GeSn sample

The GeSn multilayer heterostructures (panel (a) of figure 5.16) used for the LED processing
were grown on a 4-in. Si (100) wafer in an LP-CVD reactor [61,69,159,198]. Ultrapure H2

was used as a carrier gas, while 10% monogermane diluted in H2 (GeH4) and tin-tetrachloride
(SnCl4) were employed as gas precursors. First, a 600–700 nm-thick Ge-VS was grown at
450◦C, followed by thermal cyclic annealing (> 800◦C) and additional Ge deposition. To
ensure uniform composition and avoid Sn segregation in the utmost p-i-n stacking, the
composition of each Ge1−xSnx layer was controlled by the growth temperature [198]. The
temperature was decreased from 335◦C to 305◦C to increase the Sn content from ∼ 4 at.% (#1)
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to 8.3 at.% (i-layer). Diborane (B2H6) and arsine (AsH3) were used as precursors for doping
the 4.3 at. % p (335◦C) and 5.0 at. % n (345◦C) layers, respectively. Two thin, heavily doped
n-layers were grown on top of the p-i-n stacking to further decrease the contact resistance of
the final device and enhance the performance [199]. The thicknesses of different layers are
listed in table 5.4. The composition and strain in each layer were extracted from RSM around
the (224) asymmetrical XRD peak in figure 5.16b. A small compressive strain lower than
−0.3% was estimated for all layers, except for the n-layer, where a small tensile strain (0.3%)
was observed. This result originates from the lower Sn content in the n layer as compared to
the fully-relaxed i-layer.

Figure 5.16 (a) Schematic illustration of the p-i-n heterostructure with Ge0.906Sn0.094 as
i-layer. (b) XRD-RSM around the asymmetrical (224) reflection of the same sample. The
materials growth in addition to the XRD-RSM data acquisition were performed by Simone
Assali.

Table 5.4 – Thicknesses of the Ge1−xSnx p-i-n layers and the heavily-doped n-type doped layers

Material Thickness (nm)

p-layer 291
i-layer 795
n-layer 327
n+ layer 6
n++ layer 30

5.2.2 Fabrication of GeSn-based light emitting diodes

The light-emitting devices were fabricated following a Corbino geometry. For the sake of
simplification, the four GeSn layers underneath the p-doped layer are grouped into one layer
in the illustration presented in figure 5.17a. The sample was firstly cleaned with solvents
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and later patterned by photolithography with a spin-coated positive photoresist. The mesa
structure was etched from the top n layers down to the Ge-VS in an ICP-RIE system with a
gas combination of Cl2/Ar/O2. Subsequently, the photoresist was stripped using acetone and
isopropyl alcohol (IPA). Then, another photolithography step was performed, followed by an
etching process in an ICP RIE system down to the p-GeSn, which serves as the bottom contact
layer. Following these steps, a SiO2 passivation layer was deposited, by plasma-enhanced
chemical vapor deposition (PECVD), for electrical isolation of the sample. Thereafter, the
passivation layer was patterned using photolithography and later etched in a Buffered Oxide
Etch (BOE) solution to define the electrical contact windows. An E-beam metal deposition
process was later performed as the last step with 10nm/100nm/100nm/800nm of Ti/Au/Ti/Au
to form the p and n contacts. Figure 5.17 presents a summary of the overall process, and a
top view image of the fabricated device is depicted in figure 5.18. The devices have varying
diameters in the 20-160 µm range.

(a) (b) (c) (d)

(e)(f)(g)

Metallic contacts

Figure 5.17 Process flow for the microfabrication of the GeSn-based light-emitting device.
(a) Initial sample from figure 5.16a modified to reduce the number of layers. (b)&(c) Mesa
patterning and etching after application of resist. (d)&(e) p-layer patterning and etching of
the mesa until the p-layer is reached. (f) SiO2 deposition and etching. (g) Metal deposition.
The devices were fabricated by Mahmoud Attala.

Figure 5.18 Top view image of the device seen through a microscope.
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5.2.3 Characterization of GeSn-based light emitting diodes

The device performance was investigated by examining first the current-voltage (I-V) charac-
teristics of the devices under dark conditions at 300 K. These measurements were performed
using a Keithley 4200a parameter analyzer connected to a probe station, and the results
are presented in panel (a) of figure 5.19. In reverse bias, an increase of the current with
the diameter is observed. This behavior is expected since the growth defects become more
significant for larger devices. The results also suggest a breakdown to be reached at just 11 V
for the 40 µm diameter device.
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Figure 5.19 GeSn p-i-n LED. (a) I-V for dark current for various devices diameters. (b-d)
Power dependent EL spectra for 40 µm(b), 80 µm (c), and 120 µm (d) device diameter. These
data were acquired by Mahmoud Attala.

The panels (b), (c), and (d) of figure 5.19 show the power dependence of the light emission
collected at 300 K for the 40 µm, 80 µm, and 120 µm diameter devices, respectively. These data
were recorded using an FTIR-based EL setup with a lock-in technique. A clear emission peak
is observed close to 2.48 µm at a current density as low as 45 A/cm2. This observation is quite
similar to PL emission reported for Ge0.895Sn0.105 materials, with an in-plane compressive
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strain of −0.4% [86]. It should most likely come from the direct-band gap Ge0.906Sn0.094

i-layer. Moreover, a shoulder is observed around 0.54 eV over the entire range of current
densities. Its origin will be investigated later in the document using PL measurements.

Besides, as expected, the EL intensities increase with the current densities. The emission
peaks also shift to slightly longer wavelengths as the current density increases. For instance,
at the current density of 500 A/cm2, the EL peak red-shift and reaches ∼ 2.53 µm in the
120 µm LED. These red-shifts of the emission peaks could be the results of Joule heating of
the devices, but more studies would be needed to confirm this hypothesis.

To further study the band-to-band transitions in the GeSn DH, temperature-dependent PL
measurements were carried out. The results are summarized in figure 5.20.
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Figure 5.20 Photoluminescence measurements of GeSn p-i-n DH. (a) Comparison of the EL
spectrum (d = 40 µm, 846 A/cm2) with the PL spectra from both the as-grown sample and
the LED. (b) Temperature-dependent PL spectra for the as-grown sample. (c) Deconvolution
of the emission peaks at different temperatures. (d) Integrated intensity as a function of the
temperature.
The data from panel (a) were acquired by Mahmoud Attala.

Panel (a) shows the PL spectra at 300 K of both the as-grown sample and the LED. These
spectra are superimposed to the EL spectrum of the 40 µm diameter device. The peaks of
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the PL and EL spectra coincide with each other. This observation confirms that the EL
peak is intrinsic to material properties and not affected by the device fabrication process.
The shoulder is also observed in the PL spectra, even though less pronounced. At this point,
different ideas could be proposed to explain its origin. For instance, the slight difference
between the position of the peaks may suggest the shoulder to be the result of the transitions
from the Γ valley conduction band to the light holes valence band. The L valley conduction
band could also be part of the equation. Additionally, the contributions from the other layers
should not be excluded since the carriers could leak to them in case of smaller band-offsets.

Panel (b) displays the PL spectra for various temperatures ranging from 80 K to 285 K.
In this figure, the dominant emission peak and the shoulder can be observed. Both peaks
blue-shift as the temperature decreases even though the evolution of the shoulder position is
not so visible. This variation is further highlighted in panel (c). Indeed, this figure displays
the results of the peak deconvolution process at different temperatures. At each temperature,
the spectrum was decomposed into two Gaussian spectra related to the 2.5um emission and
the shoulder, respectively. This qualitative analysis was performed to mainly analyze the
evolution of the integrated PL intensities as a function of the temperature. As depicted in
panel (d) of figure 5.20, the integrated intensity related to the 2.5 µm emission spectrum
decrease with increasing temperature. This observation is an indication that the emission
is coming from the direct-band gap Ge0.906Sn0.094 i-layer [200]. The same behavior is also
observed for the shoulder. Nonetheless, it is still not enough to establish its origin. Indeed, if
the contribution from the Ge0.906Sn0.094 L valley is excluded, the possible involvement of the
other layers remains to be elucidated.

With the eight-bands k.p formalism and the material parameters from table 3.1, the
Ge0.906Sn0.094 i-layer is expected to have a direct bandgap of 530.82 meV at 300 K. This
value is higher than the peak positions observed in both the PL and EL spectra. It is
the opposite of what is expected from band-to-band spontaneous emission recombination.
Therefore, the bandgap energy is overestimated. This overestimation is not surprising since
the bandgap bowing parameter bG has been reported to depend on the lattice strain, the
Sn composition in addition to temperature [36, 201–203]. Regarding the eight-bands k.p
fitting process presented in the previous chapters, it is tricky to add EG as a fitting parameter
besides the excess carrier concentration ∆n and γ the FWHM of the broadening function.
Indeed, EG is implicitly linked to the injected carrier concentration ∆n and, therefore, to the
quasi-Fermi levels µe and µh. Given this link, a value of EG close to the emission peak posi-
tion would minimize the value of ∆n (1014 cm−3, for example) and force the non-degenerate
semiconductor approximation regardless of the value of the background doping. On the other
hand, when EG is relatively far from the peak position, ∆n is adjusted to compensate for the
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energy difference through the values of the quasi-Fermi levels. One could use equation (3.11)
in chapter 3 to fit the emission spectrum and extract EG. However, if this method can be
used as a first approximation, the background doping in the i-layer might be a problem since
it could invalidate the non-degenerate semiconductor approximation required in the equation
(3.10).

To evaluate the accuracy of the eventual non-degenerate semiconductor approximation, let
us assume the background doping to be 1016 cm−3, which is in line with what has been
measured and reported for similar materials (mid-1016 cm−3 to mid-1017 cm−3) [86]. With
this value, the energy difference between the band edge (CB or VB) and the Fermi levels
(µe, µh) is estimated for different values of ∆n by varying the bandgap EG from 0.45 eV to
0.5 eV. Figure 5.21 presents the results of this analysis. At thermal equilibrium (∆n = 0),
both (Ec − µe)/kBT and (µh − Ev)/kBT are above 4. In that case, the Ge0.906Sn0.094 i-layer
is a non-degenerately doped semiconductor, based on the comparison presented in figure 3.1.
This layer remains non-degenerate until the excess carrier density becomes comparable to
the doping density NA. In fact, for ∆n ≥ 1016 cm−3, at least one of the energy differences is
below 4. In this case, the Boltzmann distribution cannot replace the Fermi-Dirac distribution,
and the non-degenerate semiconductor approximation is not valid anymore. If the excess
carrier concentration is assumed to be small enough for the non-degenerate semiconductor
approximation to be fulfilled, the bandgap of the i-layer should be around 479.21 meV.
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This chapter presented the different parameters extracted from the PL analysis of the
TL/ML/BL heterostructure using the theoretical framework developed in chapter 3. From the
quasi-Fermi levels to the steady-state radiative carrier lifetime, the framework was proved to
be accurate to fit the experimental results and explain some physical behaviors of the carriers
inside the GeSn material. Besides, its accuracy was also assessed by going through different
comparisons with the SBEMA and the JDOS model at each step of the computations. The
multi-bands k.p formalism was proved to be essential for more general study with a restrictive
number of approximations. Furthermore, the evolutions of both the envelope functions and
the momentum matrices with ~k are relevant for a more accurate estimation of the absorption
and emission spectrum.

In addition to the Ge0.83Sn0.17 material, GeSn DH based LEDs were demonstrated and
discussed. The analyses presented in section 5.2 were performed to explain the different
features observed in the luminescence spectra of both the planar p-i-n sample and the
fabricated LED. At room temperature, a clear EL emission peak at around 2.5 µm was
observed. This emission was also noticeable for current density as low as 45 A/cm2 for the
120 µm diameter device. The power-dependence analysis of the light emission highlighted a
possible Joule heating of the devices. Besides, the appearance of the shoulder at ∼ 0.54 eV
in the spectra was investigated using temperature-dependent PL. However, no concrete
explanation was found. In the end, more investigations should be done to understand the
origin of this shoulder along with the device’s performance and efficiency.
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CHAPTER 6 CONCLUSION AND PERSPECTIVES

In the scope of this thesis, Ge1−xSnx alloys were investigated for the development of Si-
integrated mid-infrared emitters. The fabrication of these devices requires the availability
of high-quality materials in addition to accurate estimations of their optical and electrical
properties. To that end, rigorous theoretical models and simulations must be established. The
first task of the thesis has been the implementation of a theoretical framework to study the
fundamental physics underlying the GeSn absorption and luminescence properties. This task
involved the evaluation of the spontaneous emission, absorption, and optical gain spectra. In
chapter 3, we detailed each step of the methodology used for our framework while establishing
a comparison with the SBEMA usually used in literature. In this vein, we presented an
explicit evaluation of the momentum matrix elements for a (001) oriented material. This
approach should offer more flexibility in the computation of the intravalence band absorption
in addition to the spontaneous emission intensity. It could also be easily generalized to
different crystallographic orientations with some additional mathematical tips. We also found
that the strain value impacts the computation of the integrals over the BZ, and therefore, the
evaluation of the quasi-Fermi levels as well as the emission and absorption spectrum. In that
case, a trade-off is made between computation time and accuracy.

The accuracy of our framework was assessed in chapter 5 by analyzing the PL emission spectra
of a Ge0.83Sn0.17 material. For this purpose, the band structures resulting from the SBEMA
and the eight bands k.p formalism were compared. As expected, there was a relatively small
region of the first BZ where a perfect match was observed. Regarding the differences, we
found them to be more pronounced for the valence bands and dependent on the strain value
in addition to the temperature. Furthermore, their impacts have been directly observed
in the calculation of the charge carrier densities. They were even more visible when the
quasi-Fermi levels were located inside the bands. The number of “special” directions needed
for computing the integrals over the BZ was found to go from seventy-four to eight for this
specific material. Indeed, multiple directions were found to be degenerate for the values of
strain used in this study. The impact of Kane’s Y stars on the whole computation process
has also been shown to be negligible for this material. Besides, the optical strengths of the
transitions have been shown to vary with the wave vector ~k. These variations result from
the evolution of momentum matrix elements Mµν

l and the envelope functions, both with
~k. We also found them to depend on the polarization of the incident electromagnetic field
and the direction of the wave vector ~k. This result is different from the isotropy usually
claimed for these quantities in bulk semiconductors. We, therefore, think that the variation
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of the envelope functions should be considered to study the luminescence and the absorption
properties of Ge1−xSnx alloys.

By bringing all these observations together, we succeeded in accurately fitting both the
power- and temperature-dependent PL data for the as-grown Ge0.83Sn0.17 sample. From these
analyses, a steady-state radiative carrier lifetime τrad in the ns range was extracted. This
quantity was shown to decrease with the excitation power, and an average value of ∼ 1.56 ns
was extracted at 4 K. Moreover, the increase of τrad with temperature was reported. In fact,
from a value of ∼ 1.5 ns at 4 K, τrad was estimated at ∼ 3.5 ns at 80 K in the as-grown
Ge0.83Sn0.17. As for the relaxed sample, higher values were reported over the range 4-80 K
with a value of ∼ 9.5 ns at 80 K. An accurate interpretation of this behavior would require
more investigations.

After studying the PL from the Ge0.83Sn0.17 samples, LEDs were fabricated from GeSn p-i-n
DH with an i-layer of 9.4 at.% Sn. EL emission at ∼ 2.5 µm at 300 K was demonstrated.
This emission was shown to be the result of the carrier recombination inside the Ge0.906Sn0.094

direct bandgap i-layer. Additionally, a shoulder has been observed around 0.54 eV in both the
EL and the PL spectra. By analyzing its evolution with the temperature, we succeeded in
excluding the transitions involving the L valley as a possible origin of this feature. However,
more investigation would be required for an effective description of this shoulder.

As summarized above, compared to the SBEMA/JDOS formalism, our theoretical framework
allows for a more accurate description of the optical properties of single bulk GeSn materials.
However, there are still some limitations that need to be addressed. The theoretical framework
was initially supposed to describe both QW and bulk systems, with the key objective of finding
the optimal Sn and Si compositions required to enhance the efficiencies of (Si)GeSn-based
light emitters. For that purpose, in a study not detailed in this thesis, we investigated
the thresholdless coaxial nanolaser structure presented in [204] by replacing the InGaAsP
QW with (Si)GeSn QW. Our goal was to highlight the impact of Si/Sn compositions and
the strain on the efficiency of the nanolaser by computing the absorption and spontaneous
emission spectra for different values of Sn and Si compositions. This task was found to be
inaccurate with the (Si)GeSn material parameters currently available. Indeed, due to the
lack of compelling and systematic experimental studies, one has to rely on the non-optimized
material parameters presented in the literature. The bandgap bowing parameter bGeSn

G is, for
example, an important parameter for the estimation of the bandgap energy. Usually assumed
to be constant, this parameter has been shown to vary with the Sn content, the temperature,
and the strain in the material [36, 201–203]. Given this information, we found it wise to
investigate the impact of the lattice strain and Sn composition on the optical properties of
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Ge1−xSnx materials with more or less optimized parameters. It should be noted that the
constraint imposed by the material parameters limited our framework to the description of
single bulk materials, for instance, the top layer of a sample in an experiment or a wide enough
intrinsic layer of a DH as suggested in theory studies by Sun et al. and also Chuang [88, 205].
That being said, the investigation of Ge0.83Sn0.17 homojunction should be possible even though
some additional parameters would be required (diffusion coefficient and mobility, for instance).

The effective carrier lifetime τ is the quantity usually reported in the literature. It is defined
by equation (6.1), with τAuger and τSRH being the lifetimes associated with Auger and SRH
recombination, respectively.

τ =
(

1
τrad

+ 1
τAuger

+ 1
τSRH

)−1

(6.1)

As mentioned in section 3.5, we were not able to include the description of the non-radiative
recombination mechanisms in our framework. The reasons for that were the limitations of the
eight-bands k.p and the lack of compelling experimental data. Future research directions
should focus, for example, on the description of the Auger recombination mechanism using
Green’s function theory [206–208]. A similar approach was reported in the literature for
unstrained Ge0.91Sn0.09 and Ge0.82Sn0.18 materials [209]. In that study, the Ge1−xSnx full
electronic bandstructure was determined through an empirical pseudopotential method. In
our case, we could rely on the thirty bands k.p formalism already developed in the group.
This formalism could also be used to improve the accuracy of the theoretical framework
developed throughout this work. As for the SRH recombination mechanism, an accurate
theoretical description would require prior knowledge of the density of trapping centers and
the capture cross-sections of the Ge1−xSnx material system.

Regarding the LEDs, the next obvious step would be to perform thorough optical and electrical
characterization. The main goal of these analyses would be to assess their efficiency and clarify
the different observations made in chapter 5. For instance, the devices could be operated
using a modulated rectangular voltage rather than a DC voltage to investigate the impact of
Joule heating [83,210]. As for the shoulder in the emission spectra, PL measurements could
be performed using different excitation lasers to study the possible contribution from the
different layers of the samples. Compared to the 532 nm laser, a laser with a wavelength of
either 976 or 1550 nm should have reasonable penetration depths for that purpose.
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APPENDIX A SPONTANEOUS EMISSION SPECTRUM AND JOINT
DENSITY OF STATES

Here, we only consider the ~k-conserving transitions. The bands are also considered to be
spin-degenerated. In that case, the spontaneous emission spectrum is given by

rspon(~ω) = 2
V

(~ω)
(
nre

2M2
b

πc3ε0~4

)∑
v

∑
~k

δ
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(A.1)

For a function g, the Dirac delta function δ (g(x)) is given by [211]

δ
(
g(x)

)
=

n∑
i=1

1
|g′(xi)|

δ (x− xi) with g(xi) = 0 and g′(xi) 6= 0 (A.2)

In our case, g
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where H is the Heaviside step-function.
When we take the equations (A.2) and (A.3) into account, (A.1) becomes
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ε the joint density of states,

• εc(~ω) = Ec + mc,v
m∗c

(
~ω − Ec,v

)
, εv(~ω) = Ev − mc,v

m∗v

(
~ω − Ec,v

)



87

APPENDIX B CARRIER DENSITIES, QUASI-FERMI LEVELS AND
LOW INJECTION REGIME

For a non-degenerately doped semiconductor at thermal equilibrium, the quasi-Fermi level
lies within the bandgap and away from the different band edges by several kBT . In that case,
the electrons charge density n in a semiconductor material is given by

n = 2
V

∑
~k

∫
δ
(
ε− εc(~k)

)
exp

(
−ε− Ef

kBT

)
dε (B.1)

With the SBEMA, εc(~k) is written as presented in equation (3.3). We can also turn the
summation over the wavevector k into an integral over the BZ. In that case, the equation
above becomes
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The integral inside the bracket is nothing more than the gamma function Γ evaluated on 3/2
and, the result is

√
π/2. We, therefore, get

n = 2
(
mckBT

2π~2

)3/2

exp
(
Ef − Ec
kBT

)
(B.3)

Using the same method as above, we show that the hole’s charge density p is also given by
equation (B.4), in which we have ignored the contribution from the split-off band.

p = 2
(
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When the semiconductor is exposed to an external excitation so that a sufficiently weak
injection is performed, the thermal equilibrium Fermi level Ef is replaced by the newly formed
quasi-Fermi levels which, will also lie within the bandgap and away from the different band
edges by several kBT . In that case, the carriers charge densities are still defined by the same
formulas as before with Ef replaced by µe in equation (B.3) and by µh in equation (B.4).
The coefficients Dhh and Dlh from equation (3.7) can therefore be written as

Dhh =
(2mc,hh

mc

)3/2 np

Khh(T )~ω

Dlh =
(2mc,lh

mc

)3/2 np

Klh(T )~ω
(B.5)

where we have
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Based on these equations, we can write equation (3.7) as

rspon(~ω) ≈ ~ω

∑
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The total spontaneous emission rate Rsp can in general be calculated by [88]

Rsp =
∫ +∞

0
rspon(~ω) d~ω (B.8)

With the spontaneous emission spectrum defined by equation (B.7) we have
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In equation (B.9), the integral can be split into two contributions by substituting x =
(~ω − Ec,v)/kBT . In that case, we obtain
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APPENDIX C STEADY-STATE RADIATIVE CARRIER LIFETIME AND
NON-DEGENERATE SEMICONDUCTOR

The steady-state radiative carrier lifetime for a non-degenerate semiconductor in weak optical
injection regime is given by (see appendix B)

τrad = 1
B(n0 + p0) (C.1)

For the sake of simplification, we consider an unstrained semiconductor with the assumption
that 3kBT

2Eg � 1. In that case, we have

Khh(T ) =
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BT
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b
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π

2 (kBT )3/2
(C.2)

• For a n-doped semiconductor, p0 is negligible in front of n0 and if we denote by B1 the
result of the summation in the previous expression of B, we have

τrad(T ) = 1
√
π
(
mc

2π~2

)3/2
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Eg
Khh(T )(kBT )3 exp
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Ef−Ec
kBT

) ∝ 1
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(
Ec − Ef
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)
(C.3)

• For a p-doped semiconductor, n0 is negligible in front of p0 and we have

p0

Khh(T ) =
2
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kBT
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exp
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)
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b
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which leads us to

τrad(T ) ∝ 1
B1Eg

p0
Khh(T )

√
π

2 (kBT )3/2
∝ 1
Eg(T ) exp

(
Ef − Ehh
kBT

)
(C.5)

We could have use n0 ≈ ND or p0 ≈ NA during the calculations but these approximations
would help only if we consider the doping concentrations to be independent of the temperature.
In the case where this condition is verified, the steady-state radiative lifetime is τrad ∝ T 3/2.
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APPENDIX D COMPUTATION OF THE SHOCKLEY-READ-HALL
RECOMBINATION RATE

The different steps presented here are based on the well-developed approach from Shockley
and Read article [147]. Here, this approach is just extended to the case of degenerate
semiconductors. The total rate of electron capture in the trap level of energy Et is represented
by the symbol Ucn and given by [147]

Ucn = fptNt

[
1− exp

(
µt − µe
kBT

)] ∫ ∞
Ec

f(E)N(E)cn(E)dE (D.1)

In this equation, f represents the Fermi-Dirac distribution, and fpt = 1 − f(Et) is the
probability that a trap is empty. µe and µt are the quasi-Fermi levels for the electrons in the
conduction band and the traps level, respectively. N(E)dE is the total number of quantum
states in the energy range dE and Nt the density of trapping centers per unit volume. cn(E)
is defined as the average probability per unit time for an electron in the range dE to be
captured by an empty trap. Ec is, as usual, the conduction band edge.

Let us write the electron carrier density n as Nc exp
(
µe−Ec
kBT

)
with Nc given in equation (D.2).

Nc =
∫ ∞
Ec

f(E)N(E) exp
(
Ec − µe
kBT

)
dE (D.2)

With this definition, we have

Ucn = n

n
fptNt

[
1− exp
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)] ∫ ∞
Ec

f(E)N(E)cn(E)dE

= n

Nc exp
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1− exp
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Ec
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1− exp
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)][ 1
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Ec

f(E) exp
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1− exp
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〈cn〉
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[
1− exp
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µt − µe
kBT

)]
fptnCn

(D.3)

As mentioned above, the quantity fpt is linked to the function ft, and the relation between
them is
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fpt = 1− ft = ft exp
(
Et − µe
kBT

)
(D.4)

.

After injecting equation (D.4) in equation (D.3), we find

Ucn = Cn(fptn− ftn1) (D.5)

, where n1 = Nc exp [(Et − Ec)/kBT ], is the electrons charge concentration in the conduction
band for the case in which the Fermi level falls at Et.

Equation (D.5) is the same as equation (3.8) in [147]. This equation has the merit of not
relying on a specific type of band structure. It was derived with arbitrary band structures.
We showed that no specific assumption has to be made on the semiconductor to establish it.
All the complexities in this equation are hidden behind the estimation of the quantities Cn,
Nc, Nt, and Et. For non-degenerate semiconductors, equation (D.2) becomes equation (D.6),
and the quantities mentioned before are estimated the same way as in [147].

Nc =
∫ ∞
Ec

N(E) exp
(
Ec − E
kBT

)
dE (D.6)
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