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RESUME

Ce mémoire de maitrise, intitulé «PROCESSUS DE VERIFICATION ET DE
VALIDATION DES ANALYSES MECANIQUES DES ROUES DE TURBINES
HYDRAULIQUES AVEC CODE-ASTER», présente le développement d’une méthodologie de
validation du code Aster pour les analyses mécaniques des roues des turbines hydroélectriques.
Le sujet tire son origine du besoin d’un industriel de vérifier s’il est envisageable d’utiliser le
code libre “’code Aster’’ dans le but de simuler le comportement d’une turbine hydraulique
soumise a des efforts fluidiques. La méthodologie utilisée est principalement une comparaison
entre deux codes, et avec la solution analytique simplifiée. Le code utilisé comme base de

comparaison est Workbench d’Ansys, qui est un code généraliste ayant déja été validé.

Les concepts de Vérification et de validation de codes sont expliqués, avec un résume de
certaines methodes particuliéres. Une bréve description du fonctionnement des roues de turbines
Francis est donnée, avec un résumé des principes physiques utilisés ainsi que le développement
d’un modé¢le analytique simplifié. Les modeles physiques résolues par les solveurs sont données

avec un résumé qualitatif des modéles numériques utilisés.

Différents cas tests sont analysés et comparés entre les deux codes et la solution analytique
quand le cas le permet. Ces cas tests ont pour but de simuler des cas simples faisant ressortir
séparément chacune des caractéristiques physiques présentes dans une roue de turbine Francis.
Les caractéristiques physiques importantes sont donc vérifiées une a la fois. Une tentative de

calcul sur une situation plus réaliste a finalement été effectuée.
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ABSTRACT

This master’s thesis, entitled « verification and validation of low-head hydropower runners
structural analysis with Aster» presents a mechanical based design code validation methodology
applied to low head hydropower runners. The goal of the project is to verify the possibility of

using Aster an open source code for mechanical simulations of low head hydropower runners.

The method used for the verification is mainly a code to code comparison, and with
analytical solutions, when allowed. The code used as comparison basis is Ansys Workbench,

which has already been validated.

The code verification and validation concepts are explained, with a summary of some
particular methods. A brief description of low head hydropower runners operation is given, with
a summary of physical principles used for its modeling. A simplified model was developed. The
physical models solved by the computer codes are given, with a qualitative summary of

numerical models used.

Different test cases used are described, with analytical solution when possible. The results of
these test cases are analyzed and compared between the two codes and the analytical solution.
The goal of theses test cases is to simulate simple cases showing separately each physical
characteristics present in a Francis turbine runners. The physical characteristics of importance are

then verified one by one. An attempt on a more realistic and complex situation was finally done.
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Exposants
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INTRODUCTION

Contexte du projet

Le projet de recherche présenté dans ce mémoire s'inscrit dans le cadre d'un vaste projet de
développement d'outils automatiques de simulation numérique dans le domaine de la mécanique
des fluides. Plus particulierement, le projet vise a automatiser et a optimiser les processus de
génération et d'adaptation de maillage afin d'améliorer la qualité des simulations numeriques. Ce
projet est mené conjointement par le GRMIAO (Groupe de Recherche en Mathématiques de
I'lngénierie Assistée par Ordinateur de I'Ecole Polytechnique de Montréal), et Andritz Hydro
anciennement General Electric-Hydro qui est une multinationale qui se spécialise dans la
conception, la fabrication et la vente de turbines hydrauliques destinées a des projets hydro-
électriques a travers le monde. Dans le monde de la “’grande’’ hydraulique (projets de plus de
50MW) chaque projet est unique. Cela nécessite la fabrication de turbines qui sont congues et
optimisées de maniere spécifique au site en tenant compte des parametres particuliers de celui-ci
(hauteur de chute, débit d'eau, . . .). Le but essentiel du projet est de vérifier I’adaptabilité du code
Aster pour la validation de la tenue mécanique des roues hydrauliques. Code Aster est un logiciel
libre de simulation numérique en mécanique des structures, développé par EDF (électricité de
France). Différentes méthodes ont été élaborees et existent dans la littérature pour la vérification
des codes. Dans le cadre du présent projet, la méthode utilisée est principalement la comparaison
entre deux codes, et une comparaison avec une solution analytique aprés une simplification de la
géométrie. Le code utilisé comme base de comparaison est le Code commercial Ansys
Multiphysics qui est le module mécanique de la suite logicielle Ansys. Ce module est un logiciel

de calcul numérique tridimensionnel se basant sur la méthode des éléments finis.
Définition et concepts de base
a. Turbine et concepts

Le mot turbine trouve sa source dans le mot latin turbino ou turbinis c'est-a-dire un
mouvement circulaire. En mécanique, une turbine est un dispositif dans lequel I’énergie d’un
fluide moteur (eau, vapeur, gaz) fait tourner une roue mobile. Toute machine alors capable de
transformer 1’énergie d’un fluide en énergie mecanique est appelée ainsi turbine. Le couple créé
par cette rotation peut étre transmis et entrainera ainsi un autre dispositif (alternateur ou pompe)

au moyen d’un arbre. En hydraulique, les turbines sont des machines qui transforment 1’énergie



potentielle et cinétique d’un courant d’eau en énergie mécanique au niveau de I’arbre. Cette
énergie mécanique sera transformée en énergie électrique par un alternateur. La turbine
transforme ainsi la différence de pression entre I’amont et 1’aval d’un barrage en énergie

électrique. En général, la différence de pression est exprimée en hauteur (metres, pieds, ou autre)

de colonne d'eau. On a 1 mH20 = pg Pa, avec p la masse volumique de I'eau et g l'accélération

de la pesanteur. On parlera ainsi de < hauteur de chute >. La figure suivante illustre la hauteur en

question

Hauteur

Figure 1: Hauteur de chute (source Wikipédia)

Il existe différents types de turbines adaptées pour des hauteurs de chute et des débits

différents:

e Turbine de type a action et a réaction : Ce sont des turbines qui transforment la pression
hydraulique en énergie cinétique par un dispositif injecteur (statique). Ce jet actionnera

une partie mobile (roue de la turbine). C’est le cas des turbines Pelton qui sont adaptées
aux hautes chutes (> 400 m) avec un faible débit d’eau < 15 m3/s
e Turbine a réaction : Ce sont des turbines dans lesquelles la partie mobile engendre une

différence de pression entre I’entrée et la sortie.

o La turbine Kaplan est une turbine adaptée pour des faibles chutes (entre 10 et 30
métres) et des grands débits (jusqu’a 100 m?3/s). Ses pales sont orientables ce qui

permet un réglage de la roue en fonction des conditions d’opérations de la turbine.



o La turbine Francis, dont il est principalement question dans ce mémoire est la
turbine la plus utilisée dans le parc d’utilisation mondiale. Elle doit son nom a
I’ingénieur américain James Bicheno Francis (1815-1892). Elle est adaptée pour
des hauteurs de chute moyennes (entre 20 et 350 metres), et des puissances et

débits moyens (de quelques kilowatts a plusieurs centaines de mégawatts avec des

débits jusqu'a 30 m3/s).

b. Turbine Francis

Comme déja décrit plus haut, une turbine Francis est une turbine utilisée pour son rendement
élevé, variant entre 80% a 95% pour les hauteurs de chute moyennes. La turbine Francis est celle
dont le domaine d’utilisation est le plus vaste. Ces turbines, si placées sur des immenses
réservoirs d'eau, arrivent a développer une puissance réguliere et forte couvrant les demandes
d'électricité. Du point de vue mécanique, une turbine Francis comporte une conduite forcée en
colimacon ou bache spirale qui met I'eau sous pression dans les directrices (aubage). Ensuite ces
directrices orientent le flux d’eau sur les pales de la roue. L’eau est aspirée dans 1’aspirateur au-
dessous de la turbine entrainant ainsi le mouvement de rotation de la roue. La rotation de la roue
est transmise a un alternateur électrique via un arbre (Figure 2). Une turbine Francis est adaptée a

des hauteurs de charges entre 40m et 800m.*

Vannage
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Figure 2: Schéma de I’ensemble d’une turbine Francis

! André L. JAUMOTTE, Technique de Iingénieur B4-407



Le présent mémoire traitera en particulier de la validation du Code ASTER pour le
processus de design des roues des turbines Francis. En effet, 'importance de la roue dans le
processus de design réside dans le fait qu’elle est I’élément central dimensionnant qui influence
le design des différents éléments que 1’ensemble comporte. Ce qui nous préoccupe a ce niveau est
la validation des contraintes mécaniques sur la roue et le besoin de prédire ces contraintes
mécaniques avec un outil validé. Bien que la question du design fluide n’est pas centrale au
projet, I’étude fluidique fournit les premiers paramétres de dimensionnement de la roue. L’angle

d’aubage d’entrée est un des paramétres de dimensionnement (Figure 4).

Figure 3: Dessin 3D d’une roue de turbine Francis (source Hydro-Québec)

La vitesse du fluide a I’entrée dépend ainsi de ’angle d’aubage. D’aprés 1’équation de
Bernoulli, I'énergie spécifique par unité de poids d'un fluide non visqueux (I'eau pour les turbines

hydrauliques) dans un écoulement sans pertes de charges est constante.
Vz
P+H+ rri cte 1)

La roue récupére le maximum d'énergie aprés avoir fait passer I'eau en modifiant les
parameétres Pression (P) et Vitesse (V), de telle maniere qu'a une énergie maximale a I'entrée
correspond une énergie de I’cau a la sortie aussi faible que possible. La hauteur joue
généralement un réle important : la vitesse a I’entrée de la roue et la pression en dépendent

fortement.

La vitesse ne peut étre nulle a la sortie car il faut garder un peu de vitesse pour que l'eau
puisse rejoindre le canal de fuite. On s'efforcera cependant d'avoir une vitesse faible. La pression

joue un rdle essentiel : grande a I’entrée, faible ou méme négative (dépression) a la sortie.
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Figure 4: Angle d’aubage a I’entrée d’une roue
c. Processus de simulation numérique en design hydraulique

Pour concevoir une turbine hydraulique, la technique employée consiste a concevoir un
premier design a partir d’une conception existante ’proche’’, a valider ce design préliminaire et
a 'y apporter les corrections nécessaires. C'est un processus itératif, ou les étapes de conception et
de validation se succedent jusqu'a ce que les résultats soient satisfaisants. Avant 1’essor des
simulations numériques, lors de la validation du design, la principale technique employée
consistait a construire des prototypes en modeles réduits et a faire des tests en laboratoire pour
évaluer les performances de la turbine. Ce qui fait que le procédé était tres colteux en temps et
nécessitait des ressources considérables. Les simulations numériques représentent une alternative
avantageuse a ce procédé puisqu'elles sont beaucoup moins codteuses et plus rapides.
Malheureusement, ces simulations restent pour le moment moins précises que les tests en
laboratoire. Dans le cas d’Andritz, les simulations numériques sont principalement utilisées lors
de la phase de design et les résultats sont ensuite validés par des tests en laboratoire sur des

modeles avant de passer a la phase de fabrication.

Le projet mené en collaboration avec I'Ecole Polytechnique de Montréal vise & améliorer la
performance des simulations numériques et a réduire la nécessité du recours aux tests en
laboratoire. La Figure 5 présente le schéma global de simulation numérique. On y voit les
différents modules utilisés au cours du processus ainsi que les entrées et les sorties de ces

modules.



Solveur
Modeleur géométrique Mailleur

géomeétrie Maillage solution

— Schéma global du Processus de simulation numérigue

Figure 5: Schéma global du Processus de simulation numérique

Le point de départ de toute simulation numérique mécanique ou fluidique est naturellement
la conception du modéle géométrique. A l'aide d'un modeleur géométrique comme 1-DEAS ou
CATIA par exemple, le concepteur modélise la géométrie du domaine sur lequel la simulation
numérique sera faite. Chez Andritz, les designers utilisent des outils de modélisations spécialisés
développés a I’interne. La géométrie sera ensuite maillée a l'aide d'un générateur de maillage,
aussi appelé un mailleur. Le maillage obtenu permettra ensuite de résoudre le probleme par la
méthode des éléments finis, des volumes finis ou des différences finies, selon le type de solveur
utilisé et selon le cas étudié. Ces trois différentes méthodes ont toutes un point en commun. Elles
utilisent un maillage, donc une discrétisation de l'espace, afin de résoudre numériquement le
probléme. La solution dépend également des conditions initiales et aux limites imposées lors de
la résolution numérique. On obtient donc une solution numérique dont la précision dépendra du
maillage utilisé, des conditions limites et du modéle. Or, comment peut-on prévoir a l'avance la
solution de facon a générer un maillage adéquat pour cette solution ? L'approche préconisee pour
résoudre ce probléme est une approche itérative qui consiste a adapter le maillage en fonction de
la solution obtenue. Ceci permet ensuite de calculer une nouvelle solution plus précise a l'aide

d'un maillage mieux adapté au probleme. Cependant 1’aspect adaptif du processus n’est pas



utilisé en pratique par les industriels. Les notions d’automatisation de raffinement sont
essentiellement académiques. Ce processus peut se répéter jusqu'a ce qu'on atteigne un certain

degré de convergence.
Besoin d’intégration des disciplines dans le cycle de conception
a. Le processus actuel

Lors de la validation du design, pour éviter la rupture mécanique de la roue, il est important
de classer les différents designs selon leur coefficient de sécurité mécanique. Les coefficients de
sécurité sont calculés grace a une démarche classique, impliquant d’abord un calcul fluidique
puis un calcul mécanique séparé. Cette méthodologie de travail demande des interfaces entre les
équipes de calcul de fluide et les équipes de mécanique et complique la vérification des criteres
de sécurité. Les interactions entre départements sont multiples au niveau du design. En effet, le

travail se déroule en 2 étapes pour chaque design, tel qu’illustré a la Figure 6:

e Calcul hydraulique : plusieurs calculs fluide utilisant plusieurs méthodes (systéeme 1D,
CFD 3D..) puis un post traitement est effectué pour déterminer une forme optimale qui est
ensuite transférée aux ingénieurs de structure avec des données d’entrée pour le calcul

mécanique (débit Q, pression P,H hauteur de charge);
e Le calcul mécanique : un calcul de contraintes est déduit des données fluide.

e Le calcul des facteurs de sécurité en fonction des contraintes calculées et de la ténacité

critique des matériaux.
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Figure 6: Circuit actuel de design CFD des turbines®
b. Le besoin d’intégration et de validation de design simplifié

Le point faible de ce processus est la nécessité de traiter plusieurs designs par le cycle
complet de calcul pour les classer et déterminer le design le plus performant du point de vue
hydraulique et puis mécanique. Ce circuit est long et colteux a cause de la multiplication des
interactions entre les calculs fluide et structure. Cependant c’est le calcul hydraulique qui

détermine le calcul mécanique.

De la vient 'intérét de prédiction du calcul mécanique et le besoin de développer un outil
simplifié qui éviterait ainsi un calcul lourd en ressource. Ainsi la méthodologie développée dans
le cadre de ce projet de maitrise permet de Vvérifier si le code Aster permet de faire les calculs
requis en utilisant les concepts de la V&V (vérification et validation). A terme, cette

simplification du cycle de conception permettra la vérification mécanique d’une turbine en cours

2 Graphe tiré de CFD-Based optimisation for Hydro turbines (Wu & al 2007)



de design hydraulique. La prédiction approchée du calcul mécanique nécessite 1’intégration d’un

code d’analyse mécanique validé dans le design hydraulique.
Eléments de la problématique

Nous procederons dans cette section a la description des différents aspects du probléme

étudié ainsi que ses différentes implications.
a. Les besoins du partenaire

Pour des raisons de simplification et de minimisations des interfaces d’échange de données,

il serait utile de développer une méthodologie de design en utilisant un code a source libre Vérifié.
b. Objectifs de I’¢tude

L'objectif principal de la recherche dans laquelle s'inscrit ce travail est d'aboutir & valider le
processus d’analyse de contraintes statiques dans les pales de roue sur un outil a code source
libre, et utilisable par les concepteurs de turbines chez Andritz, permettant de valider le design
des roues et d'optimiser les turbines Francis en fonction des différents parametres et des
conditions de fonctionnement. Dans ce contexte, la présente étude vise a apporter une
contribution a la validation du logiciel open source Code Aster pour 1’analyse de contraintes
statiques et I’aspect résistance a la rupture fragile. Pour ce faire, les objectifs secondaires suivants

doivent étre réalisés :
e Veérifier Code ASTER par une approche de comparaison des codes;

o Développer un modéle mécanique Ansys permettant de reproduire les résultats des

simulations du modéle de la turbine fourni par Andritz;
o Développer un modéle “’Equivalent’> ASTER;

e Documenter le processus d’analyse mécanique et développer une connaissance experte

documentée;
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Plan du mémoire
Ce présent mémoire comporte 5 chapitres sans compter 1’introduction et la conclusion.

— En introduction, le processus de simulation numérique en design numérique a été

présenté ainsi que les besoins de simplification de I’industrie.

— Dans le premier chapitre la théorie de Vérification et validation sera présentée

basée sur plusieurs travaux de la littérature.

— Le deuxiéme chapitre présente les aspects techniques de la simulation par la
méthode des éléments finis ainsi que les deux plateformes de simulation

numérique utilisées.

— Dans le troisieme chapitre un modele mathématique simplifié approximant le
probleme physique du processus de design des roues de turbines hydrauliques sera
développé. Les différents cas test de validation seront élaborés. Cette démarche
permet de présenter tout le processus d’analyse des roues de turbines hydrauliques
dans I’objectif de développer des connaissances experts. les résultats des cas test

préliminaires seront également présentes.

— Le quatrieme chapitre présente les cas industriels de vérification du cas test
BM2v011 d’Andritz sur Ansys et code Aster qui est le nouvel outil a implémenter

pour les besoins d’Andritz.
— Le cinquieme chapitre présente les résultats de la vérification des cas industriels

— Finalement, en conclusion, une revue du travail fait et du travail a faire dans le
futur est présentée. Est-ce que le nouveau code permet réellement de résoudre les

problémes?
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CHAPITRE1 NOTIONS DE VERIFICATION ET VALIDATION

1.1 Le concept de Veérification et de validation (V&V)

Avec I’émergence du calcul numérique et de 1I’ingénierie assistée par ordinateur, et avec la
complexité des outils connexes au calcul numérique (maillage, visualisation), le besoin de
veérification des meéthodes de calcul numérique et de simulation est de plus en plus critique
surtout dans des domaines ou le risque d’utilisation est élevé (énergie nucléaire, aéronautique).
Les questions d’estimation et de caractérisation de I’erreur de prédiction des solutions et de
contrble de qualité des algorithmes et des codes de calculs ont pris de plus en plus d’importance.

Ainsi, un nouveau domaine de la vérification et validation® a vu le jour en réponse a ce besoin.

1.1.1 Terminologie

Dans 1’usage courant, les termes vérification et validation peuvent souvent étre considéres
comme des synonymes. Cependant dans le contexte de la V&V, les mots ‘’Vérification’’ et
“’Validation’’ deviennent des termes techniques représentant deux concepts différents. Le terme
vérification [1] désigne la démarche de comparaison des résultats obtenus par un code a verifier
avec soit une solution analytique, ou avec un autre code préalablement veérifié. Cette démarche
vise & s’assurer que le modele numérique implémenté dans le code correspond a la description
formelle de la méthode numérique. La vérification du code a pour objectif de détecter les erreurs
d’implémentation. Il s’agit alors uniquement d’une vérification de la cohérence mathématique

entre le code et le modéle analytique ou numérique.

La comparaison entre le phénomeéne réel et le code est du ressort de la validation qui désigne
plutdt la comparaison des résultats obtenus par un code a valider avec des résultats de mesures
expérimentales. Ainsi le but de la validation est de vérifier si le code résout le bon systeme

d’équations physiques pour le probléme étudié.

® Pour désigner le processus global de qualification des codes de calcul numérique, différentes appellations ont été
proposées : Certification (Aeschliman et al. 1995), Validation science (Oberkampf & Trucano, 2002) ou encore le
symbole V2V (Roache, 2004). Cependant ’appellation la plus répondu dans la littérature est Verification and
Validation (V&V)
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Les deux concepts de bases “’erreur’” et “’incertitude’” auxquels fait appel la V&V sont

souvent confondus. En pratique dans le contexte de la V&V, les concepts sont bien définis®.

Une erreur est la différence entre le résultat d’une mesure et la vraie valeur du mesurande

(grandeur physique objet de la mesure);

Une incertitude est une grandeur associée au résultat d’une mesure, qui caractérise la

dispersion des valeurs qui pourraient étre attribuées au mesurande.

Bien que I’appellation V&V ¢’Vérification et Validation’” ne nomme que deux activités, en

réalité elle englobe trois activités distinctes de quantification d’erreurs et d’incertitudes”.

La vérification des codes : elle consiste a évaluer si le code converge bien vers la solution
du modéele. Une procédure d’évaluation d’erreur est requise a partir d’une solution

connue,

La vérification des calculs : cette démarche utilise 1’estimation d’erreur numérique afin
d’associer un intervalle de confiance au résultat d’une simulation. Pour ce faire
I’estimation d’erreur est faite, la plupart du temps dans un contexte ou la solution exacte
est inconnue, a partir de deux solutions de précisions différentes. Cette estimation
numeérique nécessite une vérification préalable du code et que le bon fonctionnement du

code soit assuré;

La validation : une démarche qui vise a évaluer dans quelle mesure le résultat de la
simulation concorde avec la valeur réelle. Elle nécessite une comparaison avec les

données expérimentales.

Comme la validation de code exige la comparaison avec des données expérimentales,

I’emphase sera sur la vérification du code dans le cadre du présent projet.

* L’usage le plus courant des termes se rapprochent des concepts utilisés en sciences expérimentales dans des sources

comme Eca & Hoekstra, Coleman(2003), Pelletier & Roache (2006). La définition est selon Coleman (2003) d’apres

1SO(1993,1995). Ces définitions ont été étendues au calcul numérique par Coleman & Stern (1997)

> Ceci a été souligné dans Roache(2004) et Pelletier & Roache (2006)
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1.1.2 Vérification du code

Comme expliqué, 1I’objectif de la vérification de code est de s’assurer que le code représente
correctement le modéle analytique dont il doit permettre la résolution. Il s’agit alors d’une
démarche théorique totalement indépendante de I’expérimentation. La littérature relative a la

vérification de code® met I’emphase sur la nécessité de Vvérification de code en deux étapes :

— Le controle de la qualité du logiciel ou SQA (software quality assement)): le sujet est
assez vaste et son usage en simulation numérique est, pour des raisons historiques, peu
répandu comparativement a d’autres secteurs (le risque jugé moins important en cas de
défaillance par rapport a d’autres domaines comme la finance). La SQA couvre 1’analyse
statique, dynamique et formelle des codes. Méme les codes les plus éprouvés peuvent

contenir des failles qui peuvent étre révélées par la SQA (Hatton, 1997)

— La vérification de I’algorithme numérique’: ou accent est mis généralement sur la
vérification des codes d’éléments finis, de différences finies ou de volumes finis.
Cependant, ceci implique le concept d’évaluation d’erreur qui nécessite la connaissance

d’une solution exacte.

1.2 Les sources d’erreur dans la modélisation numérique

De nombreux facteurs peuvent affecter la précision d’une solution numérique d’un

probléme® :
— Les erreurs de modélisation;
— Les erreurs de discrétisations (EDP, les conditions limites, le maillage, etc.);
— Les erreurs d’arrondis;

— Les erreurs de troncature;

® (Oberkampf & Turcano, 2002, Oberkampf et al., 2002)

’ L’appellation d’Oberkampf & Trucano (2002), reprise également dans le document de I’AIAA (1998) : Numerical

algorith verification

8 Aeschliman et al. 1995, ERCOFTAC, 2000
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— Les erreurs de programmation.

1.2.1 Erreur de modélisation

Dans une approche d’ingénierie classique, 1’ingénieur est amené a choisir un modele
formalisant les équations d’un probléme physique et de s’assurer que le modéle numérique est
bien défini en admettant une solution unique. En calcul numérique, la modélisation exige
I’utilisation des lois d’équilibre, de comportement et d’énergie. Pour des raisons de simplification
de résolution, I’ingénieur ¢labore des modeles avec des hypothéses simplificatrices qui ne
représentent que partiellement la réalité physique du probléme a modéliser. D’autre part, les
parametres qui interviennent dans la modélisation peuvent provenir de mesures expérimentales

ou d’approximation qui représentent une autre source d’erreur incontrolable.

1.2.2 Erreur de discrétisation

Généralement, la source d’erreur la plus importante pour des codes ne comportant pas
d’erreurs de programmation réside dans la nature discréete de la modélisation du domaine spatial
et temporel. Pour cette raison, 1’activité centrale de la vérification de code est 1’étude de
convergence de la discrétisation. Une des solutions pour traiter ce probleme est le raffinement de
maillage. Dans le cas des milieux continus, une méthode de calcul tres bien adaptée est la
méthode des éléments finis. Comme dans toute autre méthode de discrétisation, le calcul est
effectué sur un maillage (domaine de calcul et de résolution) qui contient des données
géométriques et influence le calcul. Dans le cas simple présenté sur le graphe suivant, les
contraintes présentent un saut a la traversée de chaque aréte et sont uniformes dans chaque
élément. En raffinant le maillage, il est possible de réduire l'erreur due & la discrétisation; le

rythme (ordre de convergence) avec lequel I’erreur diminue est un élément majeur de la

= B

A Tivtises -

vérification.

Figure 1-1 : Effet du raffinement sur le champ des contraintes



15

Théoriquement, une convergence d’une solution ne signifie en aucun cas que I’erreur de
discrétisation de maillage est nulle aprés raffinement. Le terme Convergence renvoie a une zone
asymptotique® de convergence de la solution. Cependant, une convergence compléte en pratique
est difficile a atteindre mais peut étre approchée en utilisant les méthodes adaptives de maillages
(Turgeon & pelletier, 2002, Pelletier et al., 2004) .

1.2.3 Erreur de résolution

Les trois dernieres erreurs peuvent étre regroupées sous 1’appellation d’erreur de résolution.
Les erreurs de résolution sont liées & la machine de calcul utilisée et aux algorithmes itératifs qui
sont le coeur des codes de calcul. Les erreurs liées a la machine ont pour origine les troncatures et
les arrondis effectués sur la représentation des nombres en mémoire: selon ’'IEEE754™ | un
ordinateur ne peut représenter, avec un nombre fini de chiffre, les nombres réels. Les algorithmes
itératifs de simulation numérique peuvent propager les erreurs et les amplifier. Dans certains cas,
le critere de convergence qui est un compromis entre co(t de calcul et précision peut conduire la

solution numeérique tres loin de la solution approchée.

Ce projet de maitrise tiendra compte du contrdle de ces erreurs et de I’investigation sur leur
nature en s’assurant que la convergence des algorithmes de résolution réduit suffisamment le

résidu.

1.3 Méthode de validation de code

Pour vérifier ou valider un logiciel, plusieurs méthodes ont été développées et publiées [1-2].

1.3.1 Méthode de la solution exacte

C’est une méthode de comparaison avec une solution analytique exacte : quand une solution
exacte d’un probléme EDP étudié peut étre obtenue analytiquement, il est possible de calculer

facilement la différence entre la solution numérique et la solution exacte sur le domaine.

% Dans la zone asymptotique, le comportement de la convergence est monotone; 1’évolution de la solution numérique

et erreur liée a la solution deviennent prévisibles

19 Un standard de représentation des nombres en binaire
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L’avantage de cette méthode est la possibilit¢ de vérifier si les équations sont résolues
correctement par le solveur vérifiant ainsi toutes les erreurs du code qui peuvent affecter la
solution ou la convergence de la solution. Cependant, il n’est pas toujours facile d’obtenir une
solution exacte car les solutions analytiques ne s’appliquent qu’a un nombre limité de problémes.
Dans la majorité des cas, la solution analytique n’est possible qu’aprés plusieurs approximations
simplificatrices."* Dans la littérature on peut trouver des tests de vérifications de codes avec des

solutions exactes.

Cette méthode est tres fiable lors de la programmation ou comme premiére approche a la
vérification : elle réduit I’aspect suggestif lors de 1’analyse des résultats et permet un calcul
d’estimation d’erreur simple qui est 1’écart entre la solution analytique et la solution numérique.
Elle est également trés pertinente lors d’une prise en main d’un nouveau code pour la formation
des usagers. Les tests ont pour but de s’assurer du bon comportement du modele numérique par
rapport au modele symbolique en Vérifiant entre autres, pour un code de dynamique des fluides :
la conservation de masse, la quantité de mouvement, la continuité de déplacement ou la
conservation d’énergie sur tout le domaine et de I’utilisation adéquates des conditions frontieres

imposées.

1.3.2 Comparaison a deux des solutions connues d’EDP

Pour des problémes plus complexes ou il est impossible d’obtenir analytiquement des
solutions, cette méthode fut développée. La littérature'? suggére I’utilisation de la comparaison
avec des sources confirmées a partir de méthodes numériques différentes. C’est une méthode de
comparaison avec des solutions largement documentées dans la littérature. Les resultats
numériques peuvent étre comparés a des solutions vérifiées et approuvées, augmentant ainsi la
confiance dans les solutions numériques trouvées. Cependant cette méthode, qui se base sur des
études de similitude, implique la multiplication des variables qui peuvent étre sources de
différence (différence des modeles symboliques, géométriques, et des conditions limites). Cette

méthode peut étre considérée d’avantage comme une méthode de comparaison des modeles

1 (Abanto et al. 2005, Cadafalch et al.,2002)

12 AIAA, 1998 ,Oberkampf & Trucano, 2002
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numeériques pour déterminer le modele le plus approprié au besoin de la simulation plutot qu’une
méthode de vérification du code. La littérature suggere également de coupler cette méthode a une

autre méthode de vérification.

1.3.3 Méthode des solutions manufacturées

Cette approche (MMS : method of manufactured solutions) est la méthode la plus rigoureuse
de verification de code. Elle consiste a faire une vérification inverse c.a.d, a effectuer une
résolution d’EDP en remontant d’un résultat. On fixe une solution simple a obtenir en définissant

des fonctions analytiques quelconques pour les variables de la solution :
w=f(x,y,zt) (1-1)

Puis on considére un opérateur G symbolisant le systéme d’équation du modéele
mathématique a résoudre. Ainsi on peut exprimer le probléme sous cette forme indépendamment

de la complexité du systéme d’EDP :
Gle] = 0 (1-2)

avec ¢ la solution exacte du probléme. En appliquant 1’opérateur (G) a la solution (w), on obtient

le systéme suivant :
Glw]l = Q(x,y,21) (1-3)

ol Q est le terme source.

Le terme Q peut étre déterminé analytiqguement. Enfin un calcul numérique avec le code a

vérifier est effectué en imposant le terme source trouvé symboliquement.

La MMS se révéle la méthode la plus robuste d’aprés la littérature™. Toutefois il est difficile

de Iutiliser sur des géométries complexes comme dans le présent projet.

13 Abanto et al., 2005, Roache, 1998, 2002,2004, Salari & Knupp, 2000, pelletier & Roache, 2006
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1.3.4 Méthode de comparaison des codes

Comme son nom I’indique, cette méthode est une méthode plutdt intuitive de vérification des
résultats numériques ou un code a Vvérifier est comparé a un autre code semblable pouvant
résoudre des cas test similaires. Le code de référence doit étre vérifié et valide rigoureusement
au prealable. Cette approche est utilisée quand la complexité du probléme ne peut permettre une
résolution analytique impliquant que les autres méthodes ne sont pas applicables. Cette approche

nécessite également une procédure de comparaison rigoureuse pour s’assurer de 1’utilisation des

mémes parametres. Selon Trucano et al. (2003), si ¢, la solution convergée du code a vérifier et

Crgr la solution convergée du code de référence, et M la solution exacte du probléme, la

comparaison doit valider I’inéquation suivante :
IC; —M| = |C; — Cggpl + [Crgr — M| (1-4)

Théoriquement, lors de la convergence des deux solutions numériques apres un raffinement
du maillage, les deux solutions doivent concorder. Néanmoins 1’inconvénient de cette méthode
est qu’elle requiert des preuves de la validation et vérification du code de référence avant méme

de procéder a la comparaison.

1.4 Méthode d’estimation d’erreur et de quantification de

Pincertitude

La méthode des éléments finis contribue, de par son principe méme de solution approchée, a
I'écart entre le résultat des simulations et la réponse de la réalité. D’ou l’intérét pour le
développement de procédures quantitatives rigoureuses, permettant de chiffrer les écarts obtenus.
Ces travaux ont débouché sur le développement d'outils nommés estimateurs d'erreur, intégrés

aux solveurs éléments finis modernes. Il en existe deux types™ :

4 BANGERTH, W, RANNACHER, R. (2003). Adaptive finite element methods for differential equations,

Birkhauser.
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— les estimateurs a priori qui permettent, avant tout calcul, de "prédire” I'ordre de
grandeur de I'écart entre la solution que I'on obtiendra et la solution continue. lls
découlent directement des propriétés de convergence de la méthode des éléments
finis : ils indiquent 1’évolution de 1'écart en fonction de la taille h des éléments
(proportionnellement a h, a son carré...). ils sont donc utilisés pour controler les

modeles précisement les maillages ;

— les estimateurs a posteriori qui permettent d'estimer cet écart une fois la simulation
réalisée; ils reposent sur l'analyse des anomalies d'une solution discréte donnée
(cas des "sauts" des contraintes par exemple) pour chiffrer I'écart par rapport a la

solution continue. ils sont donc tres utiles pour controler les résultats.

Les deux types d’estimateurs sont couplés pour maitriser les erreurs : les premiers permettent
de prédire les raffinements a apporter a un maillage pour obtenir la précision souhaitée, et les
secondes permettent de contrbler de la précision a atteindre.

En pratique, 1’étude de convergence du maillage permet une vérification d’erreur rigoureuse
car 1’étude peut étre menées jusqu’a un niveau de précision arbitraire™ (limitée par par la
représentation de I’ordinateur). Il s’agit également d’une procédure directe et probablement la

technique d’estimation d’erreur la plus fiable®,

En ce sens, la méthode de la Grid-Convergence index (GCI) et ses dérivées puisent leur

logique dans la capacité d’estimation d’erreur des études de convergences pour déduire une
estimation quantitative d’incertitude U, .Trois variantes de la GCI peuvent étre utilisées dans le
cadre de I’analyse :

— Analyse globale sur un triplé (trois maillages de résolutions différentes)

— Analyse globale en utilisant la méthode des moindres carrés (MMC)

— Analyse locale par la méthode de Cadafalch et al. (2002).

15 Roache, 1998b

% jllinca et al.2000,0berkampf et al, 2002, Pelletier & Roache ,2006
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1.4.1 Théorie de la convergence

Les études de convergence de maillage (ou de discrétisation) s’appuie sur le principe que la
précision d’un résultat numérique d’une simulation augmente en raffinant le maillage ou la
discrétisation. L’ordre de convergence p qui correspond au rythme de cette augmentation est

propre a 1’algorithme numérique utilisé. On désigne 1’erreur comme étant la différence entre la

solution discréte @(h) et la solution exacte de ’EDP @, qcte:

E=@h) — @axact (1-5)

L’erreur E devrait tendre vers zéro de fagon asymptotique, proportionnellement au terme h?

pour une méthode numérique d’ordre p (Roache,1998b). Le terme h est la longueur
caractéristique de la finesse de la discrétisation (taille du maillage). La relation asymptotique

suivante est ainsi observée pour un maillage suffisamment fin :
E+=C.h? (1-6)

Au lieu d’utiliser la longueur h caractéristique du maillage pour décrire la discrétisation, il
est possible d’employer le nombre de mailles caractéristiques N dans une direction en 1D. la

relation de la zone asymptotique de convergence devient alors :
E+=C.N7P (1-7)

ou : La constante de proportionnalité C peut différer selon la formulation.

En pratique la derniére formulation a I’avantage de faire intervenir des exposants entiers.

1.4.2 Le Grid Convergence Index

Le Grid-Convergence Index (GCI) fut introduit pour comparer toutes les études de
convergence sur un méme pied (Roache, 1994). Cet index peut étre appliqué autant sur des
résultats locaux que sur des normes fonctionnelles issues de différents maillages. 1l est basé,

comme toutes les méthodes apparentées, sur I’extrapolation de Richardson (Roache, 1998b), qui
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nous fournit un estimé de la solution exacte. L’estimateur d’erreur E, est donné par la différence

entre la solution du maillage fin et la solution extrapolée.
Ey=0; — Dgg (1-8)

La grandeur |E1| peut étre percue comme un estimateur d’incertitude U50 c.a.d. la solution a
une chance sur deux (50 %) de se retrouver a l’intéricur de cette intervalle et autant pour
I’extérieur de I’intervalle. Le GCI vise a obtenir un intervalle de confiance de 95%. Dans cette

optique, |E1| est majorée par un facteur de sécurité Fs.
GCI = F.. |E,| (1-9)

A partir des maillages utilisés pour le calcul du GCI, on détermine I’ordre de convergence
(p) de l’algorithme. Cette étape de détermination de I’ordre de convergence observé est
primordiale lors de la vérification du code en permettant une comparaison avec 1’ordre de
convergence théorique. Il s’agit la de vérifier systématiquement si le code suit bien le

comportement prévu théoriquement.

Toutefois il faut noter que certains facteurs peuvent dégrader I’ordre de convergence observé

sans remettre en cause la qualité de ’algorithme” :

. Manque de similarité géométrique des maillages utilisés;

. Présence de discontinuités ou de singularités dans la géométrie ou dans la solution;
. Impossibilité technique d’atteindre la zone de convergence asymptotique;

. Phénomeénes apparaissant seulement a partir d’un certain niveau de raffinement

(multi-scale problems);
. Utilisation de techniques numériques d’interpolation ou de quadrature.

Comme indique, le GCI est proposé comme une méthode pratique de quantification de

I’incertitude U95. Son comportement a été observé sur une multitude de problémes, ou les

" \/oir Oberkampf & Trucano (2002) , Pelletier & Roache (2006)
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suppositions nécessaires a 1’extrapolation de Richardson n’étaient pas nécessairement rencontrées
(solution lisse, ordre de convergence observé correspondant a 1’ordre théorique de la méthode,
convergence monotone de la solution). Le facteur de sécurité Fs et sa valeur font encore 1’objet
des recherches. Cependant, la littérature actuelle préconise 1’utilisation de Fs=1.25, proposee par
Roache (1998b) pour le calcul du GCI a partir de trois maillages ou plus. Cette valeur représente
aujourd’hui la meilleure valeur pour obtenir une estimation de I’intervalle U95. En effet, des

études sur le sujet'® confirment le bien fondé et la robustesse de cette recommandation.
1.4.3 Méthode des moindres carres

La détermination d’une courbe de convergence E = C.N~P est permise par la méthode des

moindres carrés. Cette courbe de convergence, une fois appliquée a toutes les solutions obtenues,

minimise la dispersion des résultats (Eca & Hoekstra 2003).

Pour définir la dispersion des données autour de la courbe de convergence, on utilise la
méthode MMC (moindres carrés). On pose :

S(Osr,C.) = S50, -~ (Dn + N, )Y (1-10)

Ou S est une mesure d’écart entre les données (;,N;) et la courbe exponentielle définie par

Dgr (qui correspond a D’estimé de la fonction exacte obtenu par la généralisation de

I’extrapolation de Richardson), par C (constante de proportionnalit¢), et par ’ordre de

convergence observé p. On effectue une sommation sur le nombre de mailles utilisees ( ng).

Pour obtenir la dispersion minimale, on pose les dériveées de S par rapport & @gg, C et p

égales a zéro. On obtient alors le systéme suivant :

'8 Eca & Hoekstra, (2002) ; Cadafalch et al., (2002)
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n —_ n n —_
g 5. p_ g aq 12
ngzizllﬁlwi {:Zizlgl}ﬁzizlwi )

¢= ngz?fi N;zp—(zzlflwi_p}(z?iw;lil} (2-11)
"F o vt TP
@ER :Zi:lgIl Czi=1N1 (1_12)
g
Oss L2, N, " log(W) + C T2, N log(N) — X2, O,N, log(Wy) = 0 (1-13

Comme le systéeme est non linéaire pour p, on procéde a la résolution en effectuant en
premier lieu un balayage de valeurs de p entre 0 et 10 pour détecter un changement de signe du
résidu de la derniére équation du systéme. La racine est trouvée ainsi par la méthode de la

sécante. Puis 1’estimation de la fonction exacte @5 peut étre utilisée pour I’estimation d’erreur

sur le maillage fin. A partir de ce point, d’aprés Eca & Hoekstra (2000), le calcul d’un GCI avec
Fs=1.25 “’semble étre viable et robuste’” méme avec les limites de la convergence. Ainsi, la
convergence est rarement monotone ; 1’ordre de convergence observé peut différer de 1’ordre de
convergence théorique et varier selon des échantillons (méme pour des échantillons voisins).
Pelletier & Roache (2006) stipulent que cette situation est représentative du calcul assisté par

ordinateur en ingénierie.

Bien que la MMC ait été développée pour effectuer des analyses sur quatre maillages ou
plus, en I’appliquant & trois maillages, la courbe pourra passer par les trois points et donner une
dispersion des résultats nulle. L’estimé de la fonction exacte utilisé pour le calcul du GCI sur un
triplé est ainsi retrouvé. Il est intéressant d’utiliser les deux variantes conjointement car les
défauts de 1’'une sont comblés par la seconde. Ainsi la MMC permet de rendre compte de la
dispersion des résultats autour d’une courbe de convergence sans pouvoir caractériser 1’approche
de la zone asymptotique de convergence. Cependant le calcul du GCI triplet par triplet est
laborieux des qu’il s’agit d’un grand nombre de maillages. La comparaison des triplets

1
| 9

consécutifs par le ratio RGCI™ facilite I’appréciation de I’approche de la zone asymptotique.

9 Daprés Roache (1998b)
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€l Xayp (1-14)

Rorr —
GCl ™ gery “Ny

ou p est ’ordre de convergence observé sur le maillage le plus fin (Roache, 1995, Slater,2005).

Le ratio RGCI doit tendre vers 1’unité a I’approche de la zone asymptotique de convergence, car

|E; . NI." est alors constante.

1.4.4 Méthode de Cadafalch et al

L’intérét de la méthode de Cadafalch (2002) est de permettre la cueillette d’information sur
les valeurs locales difficiles a analyser avec les autres méthodes. La méthode de Cadafalch suit

une démarche séquentielle :

i.  Construction d’un maillage d’analyse : a partir du méme maillage d’analyse (post-
processing-grid) on rapporte des solutions obtenues pour trois discrétisations
différentes sur ce méme maillage. Généralement, ce maillage est le maillage le

plus grossier avec une interpolation des résultats.

ii.  Classification des résultats locaux : un tri des résultats est nécessaire avec
I’approche de Cadafalch afin d’utiliser 1’extrapolation de Richardson aux nceuds

ou elle serait valide. Les nceuds sont ainsi classés en trois catégories distinctes :

— Nceuds de Richardson : (@5 — @3)(@; — 03) = G,
— Noeuds oscillatoires : | (@5 — 03)(@; — 03)] < G
— Nceuds convergés : (@5 — 03)(0; — 03) = —C,

L’astérisque (*) renvoie a une solution normalisé par le plus grand @; en
valeur absolue. CO correspond a la précision maximale du code fournit par
(@5 — 93)(01 — 03).

L’approche permet d’extraire la tendance générale de la solution en

utilisant une bonne proportion de nceuds de Richardson, malgré les limites
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de cette méthode : les nceuds peuvent ne pas remplir toutes les conditions
nécessaires a I’extrapolation de Richardson (solution en dehors de la zone
de convergence asymptotique); les nceuds convergés peuvent étre des

simples points d’inflexion d’une solution oscillatoire.?

iii.  Calcul de I’ordre de convergence local : aprés un raffinement r = hg/hl = hS/hz,

I’ordre de convergence p est déterminé sur les nceuds de Richardson :

D, —

p(x) = (In NG =

)/ In (r)
L’approche de la zone de convergence asymptotique peut &tre analysée par la

valeur moyenne de la dispersion?! de ’ordre de convergence sur le domaine.

iv.  Ordre de convergence global : La convergence globale p est estimée a partir de la
moyenne des p(x) sur un domaine contenant des nceuds de Richardson en nombre

suffisant.

V. Calcul du GCI Local : le GCI local est calculé sur les nceuds de Richardson dont

I’ordre P(x) observé est positif.

D41(x) — D3(x)

1—7vP

GCI(x) =F,

On utilise un Fs égal a 1.25.

vi. Calcul du GCI global : Sans prendre en compte les nceuds oscillatoires, le GCI

global est évalué a partir de la moyenne pondérée des GCI locaux

0 REID, T. (2007). Méthodes pour la vérification d’un code de mécanique des fluides. Mémoire de maitrise, Ecole

Polytechnique de Montréal.

2! Cadafalch et al, 2002
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Dans le cadre de ce mémoire, notre but principal est la vérification du logiciel code ASTER
pour le processus de design des roues de turbines Francis. La vérification est possible avec la
théorie de convergence asymptotique a moindre colt et avec une précision supérieure aux
normes de I’industrie. Pour cette raison, il a été décidé de procéder par la théorie de convergence
pour verifier code ASTER ainsi que toute simulation numérique dans le cadre de ce projet de
mémoire et de procéder également par la méthode de comparaison des codes quand il sera

possible.
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CHAPITRE 2 ASPECTS TECHNIQUES

2.1 Meéthode des éléements finis

Pour résoudre numériquement un comportement physique complexe, on utilise trés souvent
la méthode des éléments finis. Cette méthode consiste en la transformation du probléeme a
résoudre en un probleme équivalent. Ceci nécessite la mise sous forme variationnelle ou faible du
probléme d’équations aux dérivés partielles (ou EDP). Dans cette derniére formulation, le
probleme est posé dans un espace de dimension infinie. La méthode des éléments finis consiste a
poser un probléme analogue en dimension finie, a partir d’une « triangulation » du domaine Q ou
est définie ’EDP. Cet outil des mathématiques appliquées conduit a 1’obtention d’une solution
approchée d’une EDP définie sur un domaine, comportant des conditions aux bords permettant

d'assurer 1’existence et 1’unicité d'une solution (d’aprés le théoréme de Lax-Milgram).

2.1.1 Approche variationnelle

On considere f une fonction continue sur et u la solution de 1'équation aux dérivées

partielles suivante sur Q (£ est 'opérateur laplacien) :

2
—Au+k'u=f (2-1)
Avec une condition au bord u = 0 sur 6Q. Ceci peut également se réécrire U € V.

Soit v € VO quelconque. On multiplie les deux parties de I'équation précédente par v puis on
somme sur le domaine Q, puisque v et f sont tous deux de carré sommable sur ce domaine. On

obtient I'équation :

—/t}.&udw—l—kgfaudw:/t!fdw
Q Q Q (2-2)

On utilise pour le premier terme une intégration par parties :
ou
— [ vAudw=—- | —vds+ [ (Vu-Vv)dw
0 a0 On 0 (2-3)

Dans cette formulation, v est nulle sur le bord (v € VO0) ce qui permet d'obtenir la
formulation faible du probleme :
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/?u-?vdw+szuudw:/t)fdw
0 0 0 (2-4)

On reformule le systeme sous la forme suivante
Yo € Vo, alu,v) = L(v) (2-5)

ou
alu,v) = / (Vu - Vv + k*uv) dw
2
avec a un opérateur bilinéaire symétrique (de V2 dans IR) ;

L(v) = Lfv dw

avec Lun opérateur linéaire (de V dans ).

La méthode des éléments finis permet la résolution de toute équation aux dérivées partielles

dont la forme faible se met sous la forme de 1’équation (2-5).

2.1.2 Principe général de la méthode des elements finis

La démarche globale de 1a méthode des éléments finis est la suivante. On dispose d’'une EDP
sur un domaine Q. On écrit la formulation variationnelle de cette EDP (voir 1’équation 2-5). On
cherche a approximer u par une approximation interne. On définit un maillage du domaine € qui
permet de de définir un espace d’approximation Vh de V de dimension finie Nh. Le probléme
approché devient alors :

U, €V, tel que a(up,vy)=1(vy),V v,€EV, (2-6)
Soit (¢4, ..... @yp) UNe base de V7, . En décomposant w,, sur cette base sous la forme

— vVh
Up = Zizl Hi@; (2-7)

Le probléme devient alors de trouver gg,..., uyy tel que
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T wa(e;,vy) = Uvy) Vv, € Vy (2-8)
par linéarité de aet | :

trouver py,..., iy tel que o2 wale;, 0,) =1(g;) Vj=1,.,N, (2-9)

Ceci revient a résoudre le systeme linéaire suivant :

= (2-10)

a(‘iﬂll;‘iﬂl) a(ﬁﬂwﬁ;‘iﬂl) (4”1) f(({h)
[(on,)

a(ﬁﬂljﬁﬂw,ﬁ) a(@wh;ﬁﬂwh) Ky,
Soit Ap=B.
La matrice A est a priori pleine. Toutefois, pour limiter le volume de calculs, il faut définir

des fonctions de base ¢; qui permettent une réduction de la complexité du systéme. Chaque

fonction de base sera nulle partout sauf sur quelques mailles. Ainsi les termes a('i;']) seront le plus

souvent nuls, car correspondant a des fonctions ¢; et ¢; de supports disjoints. La matrice A sera

donc une matrice creuse, et on ordonnera les ¢; de telle sorte que A soit a structure bande, avec
une largeur de bande la plus réduite possible. Cette opération se base sur trois idées principales :

— Le principe d’unisolvance : il faut trouver des degrés de liberté (ddl) tels que la
donnée de ces ddl détermine de fagcon univoque toute fonction de VVh. Déterminer

une fonction reviendra alors a déterminer les valeurs de cette fonction sur ces ddl.
— Définition des ¢; : on définit les fonctions de base par ¢; = 1sur le iéme ddl et

@;=0 sur les autres ddl. les ¢; auront un support réduit a quelques mailles
simplifiant ainsi leur manipulation.

— La notion de famille affine d’éléments : Le maillage sera tel que toutes les mailles

soient identiqgues a une transformation affine prés. Ainsi, tous les calculs
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d'intégrales se résumeront a des calculs sur une seule maille de référence par un

simple changement de variable

2.1.3 Eléments finis de Lagrange

Un élément finis de Lagrange est le type d’élément le plus simple et le plus classique utilisé

dans la méthode des éléments finis. C’est un triplet (K, >, P) tel que :

K est un élément géométrique de R™ (n=1,2,0u 3), compact, convexe et d’intérieur

non vide.

Y={ay, ..., ay} est un ensemble fini de N points distincts de K.

P est un espace vectoriel de dimension finie de fonction réelles définies sur k, et tel
que Y soit P-unisolvant (dimP=N)

Les fonctions de base locales de [1’élément sont telles que

pi(q)=6;1<ij<N

Du point pratique, 1’avantage de travailler avec une famille affine d’¢éléments finis est de

ramener tous les calculs d’intégrales a des calculs sur des éléments de référence. Tous les

logiciels de simulations numériques permettent 1’utilisation des éléments de référence (Figure

2-1):

1D : le segment [0,1];

En 2D rectangulaire : le carré unité [0,1] x [1,0];

En 2D triangulaire : le triangle unité de sommets (0,0), (0,1) et (1,0);
En 3D parallélépipédique : le cube unité [0,1] x [0,1] x [0,1];

En 3D tétraedrique : le tétraedre unité de sommets (0,0,0), (1,0,0), (0,1,0) et
(0,0,1);

en 3D prismatique : le prisme unité de sommets (0,0,0), (1,0,0), (0,1,0) et (0,0,1),
0,1,2), (1,0,2).
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1& Linéaire Quadratique incomplet

Figure 2-1 : Exemples d’éléments finis classiques

Le nombre de nceuds d’un élément des fonctions d’interpolation définies précédemment
linéaire, quadratique ou cubique (voir Figure 2-2). On ne s’attardera pas sur 1’étude des

transformations géométriques car ceci n’est pas le but de ce travail de maitrise.

o~

o————————0 o———©0——0 o—o0—0——0
(a) élément lin&aire (b) élément quadratique (c) élément cubigue

Figure 2-2 : Transformations géométriques d’éléments a une dimension avec en

haut, I’élément réel et en bas, 1’élément parent

2.2 Une suite logicielle SalomeMeca et un calculateur Code Aster

Comme toute firme d’ingénierie, EDF doit garantir dans le temps la maitrise technique et
économique de ses moyens de production et de transport d'électricité. La sOreté et la disponibilité
de ces installations mécaniques et de génie civil nécessitent d’étayer les décisions relatives a leur
exploitation, réparation ou remplacement par des études mécaniques. Code Aster (Analyse de
structures et thermomécanique pour des études et des recherches) est un outil de simulation
numerique qui fut développé en interne pour capitaliser le savoir-faire d’EDF en matiére des
analyses avancées en meécanique. Il bénéficie des compétences et des processus qualité de

I’ingénierie nucléaire.
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2.2.1 Présentation générale

L’objectif de ce paragraphe est de présenter le code a valider et son architecture générale.

Une documentation exhaustive est fournie sur le site internet http://www.code-aster.org
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Figure 2-3: Exemple d’étude réalisé avec la suite SalomeMeca

Le Code Aster fut développé par 1’équipe EDF R&D en 1989 comme un outil généraliste de
calcul des structures par élément finis. Son domaine d’application essentiel est la mécanique des
solides déformables. Il permet également la modélisation des phénomenes hydrauliques,
acoustiques, et thermiques dont les effets peuvent induire des déformations mécaniques.
Code_ASTER peut effectuer en 3D les analyses multi-physiques ou multi-échelles (un couplage
thermo-hydro-mécanique) couvrant toute une panoplie de méthodes d’analyse et de
modelisations multi-physiques: de 1’analyse sismique aux milieux poreux en passant par
I’acoustique, la fatigue, la dynamique stochastique. La version 11 de Code Aster permet a ses
algorithmes et ses solveurs de gagner en robustesse (environ 1,4 millions de lignes de code, 200
opérateurs) en se reposant sur un gestionnaire de mémoire (JEVEUX), un superviseur de
commandes et un moteur de calcul éléments finis. Le code source est composé de fonctions C, de

catalogues python, de routines Fortran et d’une base conséquente de cas tests (environ 1600). Le


http://www.code-aster.org/
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role des fonctions ‘C’ est la réalisation des taches ’systéme’” impossibles en Fortran77
(allocation dynamique et mesure de temps). Le gestionnaire de mémoire gére la manipulation des
structures de données (création, copie, destruction, sauvegarde, libération de mémoire) qui sont
échangées ensuite par les commandes. Le superviseur permet d’enchainer les différentes
commandes tandis que les algorithmes sont exécutés par le moteur de calcul indépendamment de

la formulation des éléments.

1 . 1 .
I Opérateurs | Moteur de caleul 1] cg1cu] d’options |
(un par commande) II éléments finis 11 par élément fini
J

/120003

Calcul "L

Interface graphique Superviseur

(programme principal)

RS

|
|
)
\ iy =
\ l (0599
I,
1|
| te0600

JEVEUX

Gestion de la

mémoire

Figure 2-4: Architecture informatique globale du code ASTER

Pour réaliser une étude avec Code Aster il faut enchainer un certain nombre de commandes
s’appuyant sur le langage python. Les paramétres d’entrée de toute étude sont un fichier de
commandes et un maillage d’éléments finis. Le fichier de commandes comporte la séquence des
différentes étapes nécessaires a la résolution : la lecture du maillage, la définition du probléme
physique étudié, la résolution numérique et le post traitement du calcul. En sortie, un fichier
résultat et un fichier de messages sont fournis. Le fichier résultat comporte les champs de
résultats tandis que le fichier de messages fournit les messages d’erreur générés lors de
I’exécution des commandes la durée en temps CPU de chaque commande et la durée totale du

calcul.
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2.2.2 Un code industriel vivant

Pour mieux accompagner le code, EDF a co-développé en partenariat avec d’autres
industriels la plateforme Salomé?. Cette plateforme offre des outils simplifiés et faciles d’emploi
de génération de maillage, de réalisation d’étude et de post traitement. Pour la conception du
fichier commande, 1’outil Efficas (Editeur de Fichier de commandes et analyse sémantique)
assure la verification des fautes de syntaxe en simplifiant la phase de conception du fichier de
commandes. Ainsi I’utilisateur n’est pas forcé de connaitre la syntaxe exacte de toutes les
commandes. D’autre part, I’outil de maillage adaptift HOMARD peut étre utilisé en couplage

pour I’estimation de I’erreur

— En évolution constante et soumis a des régles d’Assurance qualité (AQ), Code Aster est
résolument ouvert, couplé et encapsulé de mille fagons. Une équipe d’EDF assure
I’amélioration continue des fonctionnalités du code et le développement de nouvelles
modeélisations et techniques numériques en se basant sur des partenariats universitaires ou
industriels. Le code est diffusé librement sous licence GNU-GPL. Le code est proposé

sous 4 formats:

— une version d’exploitation qualifiée (sous AQ) : documentée abondamment et validée

indépendamment;

— Une version de développement : de cette version nait une version d’exploitation tous les

deux ans;

— Une version libre est éditée en code source, et exécutable sous Linux disponible sur le site
internet. Elle provient de la version de développement du moment aprés un

conditionnement;

— Une version intégrée développée par CAE linux est également disponible sur site internet
de computer aided engineering Linux distribution?®. La derniére version CAEIlinux2011
est fournie sur une base de Ubuntu 10.04.3 LTS 64bit et donne acces a Salome_Meca

22 pour les infos supplémentaires : http://www.salome-plateform.org

2 Pour les infos supplémentaires : http://www.caelinux.com/CMS/
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2011.2, Code-Aster 11.0, Code-Saturne 2.0.2, OpenFOAM 2.0.1, Elmer 6.2 et d’autres

logiciels d’ingénierie numérique a code source libre.

Dans le cadre de ce projet, la version libre sera utilisée pour évaluer le code seulement car
pour inserer des chaines de calculs dans Aster il faut commencer par comprendre le code source.
La plateforme fournie par CAELinux allége le calcul et facilite I’intégration du processus de

simulation. C’est cette plateforme qui sera installée sur 1’ordinateur de simulation.

2.2.3 Approche de simulation

L’approche de simulation avec la plateforme SalomeMeca intégrant Code-Aster est assez

simple et se base sur une démarche répétitive et sequentielle.
Modeling Approach

#

MED file

MED fﬂ&

Figure 2-5: L’approche de simulation intégrée de Salomé-Meca et Code-Aster (source

documentation Edf)

Tel que la Figure 2-5 le montre, la simulation de tout probleme numérique avec Salome-meca
s’échelonne sur plusieurs étapes séquentielles. La premiére est la définition ou de I’acquisition de
la géomeétrie avec les protocoles de transfert STEP ou IGES. Puis on définit le maillage ou les
groupes de maillage dans le mailleur intégré de Salomé (il est possible également d’utiliser
GMSH ou Netgen). Un fichier de format standard MED est généré par Salome a cette étape.
L’étape suivante est I’étape capitale de définition des conditions limites et des chargements. Un
fichier de commandes est primordial a 1’étape suivante de calcul. La plateforme propose deux

possibilités :
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— Utiliser I’outil wizard de génération des fichiers de commandes de Salome. Sauf
que les fonctionnalités limitées du wizard nécessite la manipulation du fichier de
commande par un outil plus complexe comme Eficas pour les cas physiques

complexes.

— Utiliser 1’outil Eficas (Editeur de FIchier de Commandes et Analyseur
Sémantique) qui est une application destinée a permettre I'écriture d'un fichier de
commandes de tout code a langage de commandes. Un chainage est ainsi crée

entre salome et Aster a travers cet outil (voir les graphes suivants)

DaOxa | BREH mE

“_'-" ;li‘é\&'deii:"‘.

FomLB@r o Jdc™

Figure 2-6 : Interaction Salomé et Aster a travers 1’outil Eficas (source EDF)

Enfin, I’étape finale est de post-traiter le fichier résultat.med avec les outils de post-traitement
de Salomé.
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Figure 2-7 : Chainage entre Salomé fichier de commande Aster

2.2.4 Modélisation mécanique 3D

D’aprés le Fascicule U3.14-Eléments finis mécaniques 3D (Document U3.14.01 disponible
sur le site internet de code aster), Les modélisations 3D (Phénoméne : MECANIQUE)
correspondent a des éléments finis dont les mailles supports sont volumiques. Les degrés de
liberté disponible a chaque nceud sommet sont les déplacements Dx, Dy et Dz seulement. Les
mailles support des éléments finis peuvent étre des tétraedres, des pyramides, des prismes ou des
hexaédres. Les éléments sont iso-paramétriques. Les figures suivantes présentent le détail des

mailles support.

Modélisation Maille Interpolation Remarques
3D, 3D SI TETRA4 Linéaire
3D, 3D ST TETRA10 Quadratique
3D, 3D SI PYRAMS Linéaire
3D, 3D SI PYRAMI1 3 Quadratique
3D, 3D SI PENTAG Bi-linéaire
3D, 3D SI PENTRZ1S Serendip
3D, 3D SI HEXASB Tri-linéaire
3D HEXAZ0 Serendip intégration compléte
3D SI HEXAZ0 Serendip intégration réduite
3D, 3D _SI HEXA27 Tri-Quadratique

Figure 2-8 : Maille support des matrices de rigidité
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Pour ce qui est de la discrétisation spatiale utilisée pour le calcul de chargement, les mailles

utilisées différérent de celles utilisées pour le calcul de rigidité (Voir Figure 2-9).

Modélisation Maille Interpolation Remarques
3D, 3D s3I TRIA3 Linéaire ou
Bi-Linéaire
TRIAE Quadratique ou
Serendip

QUAD4 Bi-linéaire
ADS Serendip
QUADY Quadratique

Figure 2-9 : Maille support des chargements

2.3 La plateforme Ansys Workbench

La plupart des simulations dans ANSYS Workbench sont définies par trois caracteristiques
principales: type physique, type d'analyse, et type du solveur. La méthode utilisee pour lancer
I'application de maillage détermine les paramétres par défaut de I’analyse et du solveur. Dans le

cadre de ce projet on deéfinit les paramétres d’une analyse structurale statique. Le solveur

Mechanical APDL*’ sera définit par défaut.

2.3.1 Type de maillage

Choisir un type d'élément de la grande bibliotheque d'éléments dans ANSYS peut étre une
chose intimidant pour un débutant. Sur pres de 200 lequel devrais-je choisir? Pourquoi y a-t-il un
si grand nombre? Le tableau ci-dessous montre les types d'éléments les plus couramment utilisés

pour une analyse structurale.

Element
Order

PLANE42 —s SOLID45 SHELLG63 / BEAM3/44
Linear B . <>
“—3" SOLID1S8S

PLANEIS2 SHELL181 / BEAMIS8

E PLANES2/183 |{=[ SOLID95/186 Q SHELL93 |~ J BEAMISO
Quadratic N
A PLANE2 @, SOLID92/187

Figure 2-10 : Les éléments finis courants dans Ansys

2D Solid 3D Solid 3D Shell Line Elements
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Dans le cadre de projet de mémoire, on procédera & la simulation des modéles par les
éléments mécaniques les plus stables. Pour les géométries complexes issues des fichiers CAO
(conception assistée par ordinateurs) qui présentent des maillages irréguliers, on a choisi
d’utiliser un élément 3D quadratique ’Solid187°’. Cet élément est défini par 10 nceuds avec trois
degrés de liberté disponibles a chaque nceud (Dx, Dy, Dz). Cet élément est validé par Ansys pour

la simulation des phénoménes mécaniques instables et complexes.

Figure 2-11 : Géométrie de 1’élément Solid187 dans Ansys (source : Ansys Element Reference)
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CHAPITRE3 CASDE VALIDATION

3.1 Introduction

Dans le contexte des analyses mécaniques de turbines hydrauliques, les études de la littérature
montrent que les contraintes les plus élevées sont localisées au niveau des jonctions pale-
couronne (partie supérieure) et pale-ceinture (partie inférieure). Il est prouvé également que la
région du bord de fuite de la pale au niveau de la couronne est la région pénalisante lors du
processus de design. Elle représente la région critique ou il y a amorce et propagation de fissures.

1'24

L’analyse faite par Saced & al.”" confirme que le maximum des contraintes simulées est localisé

a la transition entre la pale et la couronne au niveau de la face intérieure de la pale.
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Figure 3-1: Fissures au niveau d’une pale de la roue 2 de la centrale Derbendikhan

Etant donné que la pale lie la couronne et la ceinture, elle peut étre simulée par une poutre
courbée encastrée. Saeed conseille de modéliser la bande au bord de fuite de la pale par une

poutre courbée.

* SAEED R.A., GALYBIN, A.N. (2009). Simplified model of the turbine runner blade. Engineering failure analysis,
16, 2473-2484.
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Figure 3-2: Vue de section d’une turbine Francis

A la Figure 3-2, on distingue clairement que le bord de fuite d’une pale de turbine peut étre
approximé par un arc de cercle limité par deux lignes qui forment un angle 6 (de 70 degré entre
eux dans le cas précis de cette roue). En général, cet angle dépend du design de la roue. Pour
simplifier, on simulera une poutre courbée (entre la couronne et la ceinture) soumise a une charge
uniforme. Cette poutre courbée est fixée a une extrémité avec une déviation angulaire imposée a
l'autre bout, également fixé. Elle pourrait étre considérée comme la moitié d'une poutre courbée

fixée aux deux extrémités avec I’angle totale de 140 comme indiqué ci-dessous

-
e
-
——

Figure 3-3: Poutre courbée encastrée

Se basant sur le modele suggéré dans la littérature par Saeed, le modele développé servira a la
validation des contraintes maximales et des zones susceptibles d’étre les plus contraignantes en

design. Etant donné que le modéle suggéré par Saeed est une poutre courbée bi-encastrée; au
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cours de ce chapitre on traitera en premicre étape d’un cas académique d’une poutre simple bi-
encastrée. Ce modele simple sera par la suite comparé au modéle courbée. Chaque modéle sera
analysé avec les deux codes de simulation dont on dispose : Ansys workbench 13.0 et
SalomeMeca 2011.2 qui englobe CodeAster11.0. Pour les deux cas tests de poutre, on étudie une
géométrie qui reproduit les dimensions de la pale de roue de turbine Francis dont on dispose.
Ensuite, il est nécessaire d’analyser et de vérifier la réduction cyclique de la turbine car le
modeéle de la roue de turbine est réduit a une pale. Enfin, on effectue une analyse mécanique d’un
modele de pale de roue Francis fournie par Andritz. On se servira de ce modele comme référence

lors de la vérification des deux codes.

3.2 Configurations du Calcul numérique

Dans le cadre de ce projet, on dispose de deux configurations matérielles de calcul :

e La premiere est utilisée lors de tous les calculs avec le logiciel Ansys. Elle consiste
en un ordinateur dual core disposant d’un processeur i7-2600 a 3.40GHz et de
16Go de RAM.

e La deuxieme est utilisée lors de tous les calculs avec code ASTER. Elle consiste
en un ordinateur portable dual core disposant d’un processeur i7-2630QM a
2.00GHz et de 6Go de RAM. Le calcul est lancé sur une machine virtuelle
Ubuntu 10.04.3 LTS 64 bit en utilisant le logiciel de simulation de machine VM
player 4.0.2. La machine virtuelle simulée dispose de 2Go de RAM et d’un core

du processeur.

3.3 Etude de convergence et de ’influence des maillages

L’étude de convergence de la solution numérique est primordiale dans le cadre de notre
démarche de vérification. Il sera possible de valider le comportement du code numérique selon la
théorie de convergence expliquée préecédemment. La solution approchée est donnée par

I’équation suivante :

U(k) = Uy + Ch? (3-1)
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ou: ChP esterreur ;

U, est la solution exacte.

Les différents parametres inconnus (UO, C, P) peuvent étre calculés par la résolution de

I’équation se basant sur la théorie de convergence;

Uk, —U
2 " _oF (3-2)

Uh,.' _U,F]..'
4 2

ou P est I’ordre de convergence

Dans le cadre de toutes les études de convergence des différents cas test on procéde de la
méme fagcon. On considére un premier maillage ou h est la taille maximale des éléments et on
divise a chaque fois cette valeur par deux. A partir de ces données, on détermine le quotient de
convergence du modéle numérique pour le déplacement et la contrainte Von mises maximale. Un
des buts de ces analyses de convergence est de comparer le comportement des différents modéles
selon la nature du maillage. On décide alors de comparer 1’influence des maillages hexaédriques

et tétraédriques quand la géométrie nous le permet (c.a.d. les cas tests simples).

3.4 Analyse du modele de la poutre simple bi-encastrée

3.4.1 Conditions théoriques et lien avec I’étude simplifié
La poutre est encastrée en A et en B, sans charge en porte-a-faux. La force qu'exerce

I'encastrement sur la poutre est appelée Ra, celle de I'appui de droite est appelée Rg. Par

simplicité, on note Ry = ||R4|| et Rg = ||Rz]| . Les moments d'encastrement sont notés MA et

MB. La charge q uniformément repartie est calculée a partir de la pression moyenne des fichiers

de pressions fournis par Andritz.

Le tableau suivant résume 1’analyse des efforts pour une charge unitaire (N/m)
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Tableau 3-1: Analyse statique d’une poutre simple bi-encastrée

Sollicitation Actions aux | Effort tranchant Moment fléchissant
liaisons

i L T

| q Ry=Rp=27 | ™

pV VY ¥ ¥ Y YBY a2 o —x

\ ] 77 My = —Mp = T3 |

Pour trouver les résultats correspondants a une charge absolue (N) on multiplie par la largeur

de la poutre.

On aura alors :

RA:RB:I_——

2 2
(3-3)

Le calcul de fléche pour une charge répartie est donné par I’équation suivante :

5PL3
f= 384E1
SpL4 (3-4)
f= 384E]
Avec :

f = fleche en m

P =chargeen N

p = charge unitaire (cas 2) en N/m

L = longueur entre appuis en m

E = module d"Young en N/m2

I = moment d'inertie de la section de la poutre en m”4.

Dans le cadre de ce mémoire, le modele analytique 1D est une référence pour s’assurer de
I’ordre de grandeur des résultats numériques. En appliquant une pression répartie de valeur
353900 Pa, la contrainte maximale théorique atteint 144,2MPa tel que illustrée dans La Figure
3-4. Cette pression imposée correspond a la moyenne du champ de pression fournie par I’étude

fluide d’ Andritz. Pour tous les cas tests ‘’Poutre’” on utilisera cette valeur tout en négligeant la
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pression appliquée sur 1’autre bord de la pale. Ainsi, la pression de 187718Pa appliquée sur la
face basse pression de la pale sera négligée. La fleche atteint 3,99mm. Ce résultat théorique nous
laisse supposer qu’un mode¢le de calcul numérique linéaire sera suffisant pour la résolution. La
déformation theorique de 3,99mm est négligeable pour la taille de la poutre. Ainsi tout au long de

ce mémoire on choisira de traiter uniquement de modéles numériques linéaires.

Chargement (daM ou daM/m ou m.dabl}
T80

[

™,
{ +-m44nn daM -=a44:a‘:m* Y

-51330 m.cdaN

Efforts tranchant {daN}
104400

J _._.._.______.___.__..____ g

L] TR

Moments Néchissant (m.daM}

«51330 51330

o a—

Hx=oges | i T

i
4

A
z x= distance par rapport a I'origine de la travée enm

Figure 3-4: Résultats du calcul analytique d’une poutre bi-encastrée soumise a une force répartie

3.4.2 Etude du modéle de la Poutre simple (Ansys)

3.4.2.1 Modele géométrique et modele de calcul

Comme discuté, pour se rapprocher du modéle de pale de roue physique on simule une poutre

simple avec les dimensions suivantes :

Tableau 3-2 : Dimension de la poutre simple bi-encastrée

Dimension (m)
Longueur | 2.95
Largeur | 0.2
Epaisseur | 0.1
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Les dimensions reprennent grossierement les dimensions de la pale: c.a.d. la longueur
correspond a la hauteur de la pale (la distance entre le point supérieur de la couronne et le point
inférieur de la ceinture); 1’épaisseur correspond a 1’épaisseur de la pale; par contre pour que le
modele développé représente une poutre et non pas une plaque, on prend une largeur trés petite
par rapport a la premiére dimension. Comme nous utilisons le code commercial ANSYS
Workbench 13.0, il nous est tres simple de choisir le modele mécanique intégré au code : Analyse
structurelle statique. Tout au long de ce mémoire le matériau utilisé est le matériau est le CA-
6NM?,

3.4.2.2 Maillage

Vu la simplicité du modele, on utilise un maillage structuré hexaédrique qui est plus
performant pour la réduction des erreurs numériques et la convergence, exigeant néanmoins une
géométrie simple (ANSYS Inc. 2010%°). On impose une taille d’¢léments de 0.05m représentant
la moitié de I’épaisseur de la poutre. On se limitera a un maillage régulier hexaedrique de 472

éléments et 3105 nceuds pour un premier calcul de vérification.

3.4.2.3 Conditions limites et chargement

Deux conditions limites de méme nature ont été utilisées. Un support fixe simulant un
encastrement a été simulé sur les deux extrémités de la poutre. Une pression répartie de valeur
353900 Pa a €té appliquée sur une des faces des poutres pour simuler le champ de pression exercé

par I’écoulement de 1’eau sur la pale. Ce choix est une simplification d’un cas réaliste fourni par

Andritz.

3.4.2.4 Analyse des Résultats du modele de la Poutre simple (Ansys)

Apres le calcul, on s’intéresse a la localisation des contraintes maximales ainsi qu’au
déplacement. La figure ci-dessous valide le modeéle théorique simple élaboré dans le Tableau 3-1:
La contrainte maximale (144,56 MPa) est localisée au niveau des encastrements de la poutre, ou

I’effort tranchant est le plus élevé, en accord avec la théorie des poutres. D’autre part la

% un acier tiré de 1998 ASME BPV Code, Section 8, Div 2, Table 5-110.1

% AM-intro13.0-L02 meshing methods (Ansys customers portal)
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déformation maximale (4,1mm) est localisée au niveau du milieu de la poutre, ou le moment

fléchissant est le plus élevé (Ma=2.5644 x 10> Nm).

ANSYS ANSYS

,,a Noncommercial use only (| Noncommercial use only

1

0.0018648
L] 0.0013936
L 0.00093242
0.00046621
0 Min

N 4.8292e7
L 3.2247e7
1.6202e7
1.5732e5 Min

1000 (rr)
=1

Figure 3-5: Contraintes et déformation de la poutre simple
Si on compare avec le modéle théorique on trouve les résultats suivants :

Tableau 3-3 : Veérification par comparaison du modele numérique

Modele théorique (1D) | Modéle numérique | Ecart (%)
Déformation (mm) 3.99 4.1 2.68%
Moment fléchissant MA (Nm) | 51330 51486 0.30%
Réaction RA (N) 1.044+05 1.044+005 0%
Contrainte maximale (MPa) 144.12 144.56 0.30%

Cependant, la poutre étant courbée, les réactions ne seront pas unidirectionnelles; ce qui
implique que le modele 1D de référence ne peut valider a lui seul le mod¢le 3D. 11 s’agit de deux
modeles physiques Iégerement différents, méme si on a tendance a les considérer équivalents. Les
écarts du Tableau 3-3, qui sont présentés a titre comparatifs, sont tres faibles et ne dépassent pas
les 2,7%. Par contre, le calcul numérique 3D ne peut étre validé par comparaison a un modele
analytique 1D. Dans le cadre de ce mémoire, les modele analytiques 1D ne sont que des points de
référence pour s’assurer de 1’ordre de grandeur des résultats numériques. Une étude de

convergence est nécessaire pour s’assurer du comportement du code commercial dans ce cas test.



3.4.2.5 Etude de convergence numérique du modéle “’Simple-Ansys’’

La Figure 3-6 schématise les résultats de 1’étude de convergence. On constate que le modele
numérique assure une convergence rapide du déplacement avec un ordre de convergence
minimum égal a deux. Cependant la convergence de contraintes maximales est moins
performante avec un quotient de convergence de 0,4 tel que illustré dans le tableau A de I’annexe

1. Ceci nous laisse a croire que le code Ansys calcule la contrainte maximale comme un

parametre secondaire.

Convergence pour raffinement spatial
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Figure 3-6 : Etude de convergence du cas test de la poutre simple avec un maillage

Les temps de calcul sont consignés au Tableau 3-4 et leur variation est illustrée a la Figure 3-7.

d’hexac¢dres sous Ansys

Tableau 3-4 : Temps de calcul en fonction de la taille des éléments

Taille d’éléments(m) | Temps de calcul (S)
0.1 6.1
0.05 13.7
0.025 19.5
0.0125 1154
0.00625 130.2
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temps de calcul pour raffinement

spatial
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Figure 3-7 : Etude de I’évolution du temps de calcul du cas de poutre simple sous
Ansys avec un maillage d’hexaédres
3.4.2.6 Analyse de ’influence du maillage

On décide de comparer le premier maillage hexaédrique (taille 0.05m) a un deuxieme
maillage tétraédrique de taille identique tout en maintenant les autres parameétres inchangés. Le

Tableau 3-5 présente les détails du calcul.

Tableau 3-5 Etude comparative des maillages pour le modéle <’Simple-Ansys’’

Type de maillage hexaédrique | Tétraédrique
Nombre de nceuds 3105 7314
Nombre d’¢léments 472 4299
Déformation (mm) 4.1959 4.1952
Moment fléchissant MA (Nm) | 51486 51486
Réaction RA (N) 1.044+005 | 1.0441+005
Contrainte maximale (MPa) 144.56 141.45
Temps de calcul 13.7 16.3
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Les résultats montrent une légere augmentation du colt de calcul avec le maillage
tétraé¢drique. On décide alors d’effectuer une analyse de convergence numérique du modéle sous
raffinement spatial avec un maillage tétraédrique (voir les annexes pour le détail). Le premier
constat est que les contraintes convergent plus rapidement avec un maillage tétraédrique. On
obtient des quotients de convergence en contrainte entre 0.4 et 1.2 comparativement au 0.4 de
moyenne pour le maillage hexaédrique. Pour ce qui est de la déformation, le comportement est

globalement similaire.

Convergence sous raffinement spatial
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Figure 3-8 : Etude de convergence du cas test de la poutre simple sous Ansys avec
un maillage de tétraedres

temps de calcul sous raffinement
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Figure 3-9: Etude de I’évolution du temps de calcul du cas test de la poutre

simple sous Ansys avec un maillage de tétraédres
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Les résultats concordent avec la documentation technique d’Ansys : le maillage hexaédrique

est plus performant en convergence et temps de calcul mais nécessite des géométries simples.
3.4.3 Analyse du modele de la poutre simple avec Aster

3.4.3.1 Modéle de calcul

Pour des raisons de simplification on procédera a 1’écriture automatique des fichiers de
commande et la génération de maillage nécessaire pour Code-ASTER en utilisant la suite
logicielle SALOME-MECA. Une fois le maillage généré et le fichier de commande édité
automatiquement, on procedera au calcul proprement dit sur un serveur de calcul. On commence
par créer la géométrie dans le modeleur géométrique de SALOME. On reprend les dimensions de
la poutre simple bi-encastrée développées au Tableau 3-2. Il faut également créer des groupes
géométriques auxquels on associera les contraintes de pression et de déplacement. Ainsi on
définit un groupe géométrique ‘’pression’’ qui correspond a la face droite de la poutre et un
deuxiéme groupe géométrique ‘’déplacement’’ qui englobe la face supérieure et inférieure de la
poutre. Par la suite, on passe, a 1’étape de maillage. Sur Salome, la méthodologie de maillage est
séquentielle, ¢’est-a-dire qu’il faut mailler en 1D puis 2D pour aboutir a la 3D. Pour comparer
avec les résultats d’ANSYS, il sera nécessaire de mailler en se basant sur la méthodologie utilisée
précédemment. On choisit de mailler en premier lieu avec une routine automatique intégrée avec
des eléments hexaédriques. On maintient également la taille des mailles @ 50mm pour pouvoir
comparer sur la méme base. Le Tableau 3-6 présente les différents parametres utilisés lors du

maillage de la géométrie.

Tableau 3-6 : Paramétres de maillage de la poutre bi-encastré simple

dimension | Hypothese algorithme

1D Quadratic meshing / max size (0.05m) | Wire discretization

2D Quadrangle (Mapping)
3D - Hexahedron

Le maillage est exporté en format unv (compatible avec GMSh). Ainsi il est possible de
joindre ce maillage au fichier de commande lors du calcul sur un serveur de calcul dans les
situations ou la complexité du modéle I’exige. La Figure 3-10 présente les statistiques du
maillage cubique. Les dimensions du maillage sont identiques a celles du maillage utilisé avec

Ansys soit un maillage hexaédrique de 3105 nceuds et 472 éléments.
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Figure 3-10 : Algorithme et statistique du maillage poutre simple sur Salome

A la suite de cette étape de maillage, on définit une étude de cas mécanique statique avec le
module ASTER intégré de Salomé. Ainsi il est possible de générer automatiquement un fichier
de commande. On définit les propriétés de matériaux (module de Young E=2.11 GPa, module de
cisaillement=0.3). Et on impose un déplacement nul en (X,y,z) sur le sous-groupe géométrique
déplacement correspondant a 1’encastrement; de méme pour la pression, on associe au sous-
groupe pression la valeur exacte de la contrainte surfacique appliqué sur la poutre (le fluide qui
exerce une pression sur la pale de la turbine). On reprend les mémes valeurs des cas tests
effectués avec Ansys (0.3539 MPa). Ainsi, nous pouvons effectuer une premiere vérification du
code ASTER. Le fichier de commande est fourni en annexe pour plus de détail.

3.4.3.2 Analyse des résultats

Avec la deuxieme configuration et pour le modéle simulé, le calcul et la préparation des
résultats post-traités ne durent que 18,53 secondes. Le calcul proprement dit nécessite 8,01
secondes. Apres le calcul, on s’intéresse a la localisation des contraintes maximales ainsi qu’au

déplacement. Le module de post processing de SALOME ne permet d’afficher que ces résultats.

Les figures suivantes appuient le modéle théorique simple élaboré au Tableau 3-1. Ainsi, la
contrainte maximale (141,48 MPa) est localisée au niveau des encastrements de la poutre ou

I’effort tranchant est le plus €levé en accord avec la théorie des poutres.
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Figure 3-11: Contraintes Von mises du modele poutre simple calculées avec SALOME-MECA

D’autre part la déformation maximale (3,99mm) est localisée au niveau du milieu de la poutre

ou théoriquement le moment fléchissant est le plus élevé (voir Figure 3-12).

Outre les zones critiques du modéle qui ont été validées; on constate un écart avec les
résultats de la simulation ANSYS qui néanmoins valide la simulation. Cela peut s’expliquer par
I’impact de I’algorithme et les hypotheses de maillage utilis¢é par SALOME. Cet aspect sera

analysé plus tard lors de ’analyse de convergence.

RESU____DEFL O, -
0.000975240 0.007199548 0.00379295

Figure 3-12 : Déplacement du modele Poutre simple calculé avec SALOME-MECA
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On s’intéresse a ce niveau de I’étude a I’analyse d’écart entre les deux modeles simulés. Le

Tableau 3-7 présente les résultats de la simulation.

Tableau 3-7 : Résultats des simulations de la poutre simple sous ASTER et ANSYS

Modéle ANSYS | Modele SALOME | écart Modeéle théorique

Contrainte max (MPa) | 144,56 141,48 -2,13% | 144.12

Déplacement max (mm) | 4,1 3,99 -2,68% | 3.99

On constate que le code Aster reproduit avec une erreur inférieure a 0.01% les solutions du

modele analytique.

3.4.3.3Etude de convergence numérique du modéle >Simple-Aster’

La méme meéthodologie est appliquée. Le maillage de départ se base sur une taille des
¢léments h égale a 0.2m. Ce maillage de départ est raffiné lors de 1’étude par des divisions
successives par deux. Il a été impossible de commencer avec une taille d’éléments égale a 0.1
comme lors du cas “’simple-Ansys’’ car le calcul devenait de plus en plus long a force de
raffiner. Ainsi il a été¢ impossible d’atteindre la derniére étape de raffinement faite avec Ansys.
Dans I’autre sens il a été impossible de commencer avec une taille d’éléments égale a 0.2m sur
Ansys car celle-ci correspondait a la plus petite dimension de la poutre. A partir de ces données
on a déterminé le quotient de convergence du modele numérique pour le déplacement et la

contrainte Von mises maximale. Les données sont fournies en détail en annexe.

La Figure 3-13 schématise les résultats de 1’étude de convergence. On constate que le modéle
numérique assure une convergence du déplacement d’ordre 1,6. Cependant la convergence de
contraintes maximales est moins performante avec un quotient de convergence de 0,8 (voir
tableau B de I’annexe A). Il faut noter que le code Aster permet une convergence et une précision
beaucoup plus élevée que celles fournies par le code Ansys. On conclut que le modéle numérique
converge et est validé pour le code Aster avec un comportement amélioré au niveau des

contraintes par rapport a Ansys.
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Figure 3-13 : Etude de convergence du cas test <’Simple Salomé’’ avec maillage d’hexaédres

Les temps de calcul sont consignés au tableau ci-dessous et leur variation est dessinée a la
Figure 3-14. L’étude de ces temps de calcul avec le code Aster est trés intéressante. On constate
que le temps de calcul d’Aster évolue rapidement comparativement au temps de simulation avec
Ansys présentés au Tableau 3-8. Le calcul devient trés couteux pour un maillage trés fin. A
I’avant dernier maillage (h=0.0125) le cofit de calcul est 10 fois plus élevé qu’avec Ansys. Ce qui
explique I’'impossibilité de pouvoir simuler le dernier maillage (h=0.00625). L’évolution du

temps de calcul schématisée a la Figure 3-14 montre clairement 1’explosion du temps de calcul.

Tableau 3-8 : Temps de calcul en fonction de la taille des éléments

Taille d’éléments(m) | Temps de calcul ()

0.2 7.6
0.1 11.24
0.05 18.53
0.025 102.52

0.0125 1252.96
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Figure 3-14 : Etude de I’évolution du temps de calcul “’Simple-Salome’’

3.4.3.4 Analyse de I’influence du maillage
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Figure 3-15 : Etude de convergence du cas test <’Simple Salomé’” en maillage tétraédrique

L’influence du maillage tétraédrique est prononcée avec ce modéle sous Aster. A la
convergence, la déformation maximale est de 3.6mm or qu’elle est 4.0 mm avec un maillage
hexaédrique sous le méme code de calcul. On s’écarte 1égérement ainsi de la solution théorique.
La convergence est réduite par rapport a la convergence avec le maillage hexaédrique. La Figure
3-15 illustre un comportement chaotique de la convergence du déplacement ainsi que la
contrainte maximale. L’ordre de convergence de 6,4 des contraintes Vonmises est dii a des
résultats numériques éloignés de la solution théorique qui est égale a 144MPa. Avec le premier
maillage la contrainte maximale est égale a 70,67MPa (Voir le tableau D de I’annexe 1). Suite au

dernier raffinement elle n’atteint que 121,95MPa.
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3.5 Analyse du modeéle de la poutre courbée bi-encastrée

3.5.1 Développement théorique

La poutre curviligne est supposée étre relativement mince avec une aire de section constante
avec une charge répartie appliquée de facon normale a la poutre. Sur la poutre, & partir de la
poutre a droite de la Figure 3-3, deux modeles de poutre courbées peuvent étre développés pour

I'évaluation de la contrainte maximale a I’extrémité de la poutre au niveau du bord de fuite.

Le premier modéle est une poutre courbée de rayon R qui est rigidement fixée aux deux
extrémités comme indiqué. Dans ce cas, il est supposé que les moments de flexion sont égaux

aux deux extrémités (MA = MB).

Le deuxiéme modele est similaire au premier, mais il est supposé que le moment de flexion
au point B est égale a la moitié du moment de flexion au point A (MA = 2MB). Il fut suggéré par
Saeed également pour modéliser la différence en valeur des moments sur les jonctions couronne

pale et ceinture-pale. En pratique, I’hypothése du premier mode¢le est suffisante.

3.5.1.1 Etude des forces internes

La force interne, le moment de flexion et de la force axiale sont développés dans une poutre
sous charge. Lorsque le moment de flexion est superposé sur la poutre courbée, les contraintes
longitudinales sont directement mises en place, et d'autres contraintes longitudinales sont induites
par les forces axiales. La contrainte maximale est ainsi calculée a partir de la combinaison des
trois chargements. La poutre est considérée comme mince si son épaisseur est faible par rapport

au rayon de courbure.

Ya' 'Yb A 1N X Q

Figure 3-16: Modeéle de poutre mince encastrée
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Les réactions aux points A et B sont décomposées en composantes verticales et horizontales.
Vu que la charge externe w est répartie uniformément selon la normale le long de I'arc de cercle

(AB), les réactions horizontales et verticales aux points A et B sont égales.

Le moment de flexion est déterminé par la méthode de la section (voir Figure 3-16b). En tout
point P, la force de cisaillement F est normale a I'axe et la force axiale T est tangentielle a I'axe.
Considerant I'équilibre de la poutre courbée AP, le moment de flexion est donnée sur toute la

poutre par I'équation suivante :
M =My + My —H+7 (Mg — My) (3-5)
Avec:

— M, le moment de flexion sur une poutre horizontale non encastrée supportant les mémes

charges;
— M,, Mg : les moments aux extrémités A et B ;

— H: laréaction horizontale ;
— X I’abscisse du point de calcul du moment de flexion ;

— L : longueur de la poutre.

On considére un élément de longueur 8 effectuant une rotation d’un angle 84 : si le point A

est fixé, le point B effectuera un déplacement au point B’ (voir Figure 3-17). Le calcul du

déplacement est donné par :

BB' =PB.§,

et BD = BB'cosB'BD = BB'.cosQPB = §,PBcosQPB = y§,

Prenons en compte que 8, = &s(R™* — Ry1)

ou le terme entre parenthése représente la courbure a P ;
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on trouve : BD = y6,(R™* — Ry1) = 2%

EI

M(L — )8,

B'D = PB.8,.5inB'BD = PB.5,.sinBPQ = (I —x)8p = ——

Avec E et I respectivement le module de Young et le moment d’inertie de la poutre

e
ds il f
A

Figure 3-17 : Notation pour le calcul d’équilibre de la poutre courbe

A partir des équations précédentes et 1’équation (3-5), on calcule les inconnues MA, MB et H

en supposant les hypotheses suivantes :

— Le total des changements sur toute la longueur de l'arc est nul lorsque les

extrémités sont solidement fixées.

B My B ds Mgp—Mg
jAEdS+MAJAE+ . AE! —HJ S—D (3'6)

— Si A et B sont fixes

E My.y y Mg—My rBxy B y? _
Js 7 ds -I—MAJ ds+——2[ ' —ds—H[ .ds=0 (3-7)

— Si A et B demeurent au méme niveau

B My.x Mg —Mg xy
Sy ——ds +MAJA5; ds +— AEd —HJA .ds (3-8)

Les équations (3-6 a 3-8) sont suffisantes pour déterminer les trois inconnues MA, MB et H.
En cas de chargement symétrique (MA=MB), 1’équation (3-8) devient non nécessaire. Dans le
cas de ce premier modele, (3-6) et (3-7) deviennent :
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[ Mods + My [ ds—H [ yds = 0 (3-9)

_]:f Myyds + M, JAB vds — H JAB vids =0 (3-10)

Ou on suppose que le module de Young E et le moment d’inertie I sont constants. Les

réactions au point A sont les suivantes :

Y, = 0.5wL
Hy = awl (3-11)
MA = ﬁWLz

ou les paramétres a et B sont des coefficients de réactions en fonctions des rapports de la

fleche f par rapport a la longueur L de la poutre (voir Figure 3-18)

En substituant 1’équation (3-11) dans 1’équation (3-5), et pour M, = My on trouve le moment

de flexion:
M= WTLz(Sin'yz —sinf?) + pwl? — a(cosf — cosy)wl? (3-12)
Pour le deuxieme modéle, M, = 2Mj et le moment de flexion est donné par :
M= WTLZ(Sin}'Z — sin6?) + pwl? — a(cost — cosy)wl? + B(siny — sinf)wl? (3-13)

ou y est la courbure de la poutre au point A.

0.03 3%
0.025 3
0.02 25
= 0015 B
0.01 2

0.005 05

0 0.2 04 06 0 0.2 04 06
f/L f/L

Figure 3-18 : coefficient de réaction d’une poutre encastrée-encastrée®’

2" La figure est tirée des travaux de R.A Saeed et concorde avec les résultats de Parcel et Moorman, Gimena et Al.
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On considere le cas (y = 35°) pour calculer le moment de flexion au point A et B :
1% modeéle :M, = My = 2.815 x 10 3wl?

M, = 3.997 x 10 3wl?
My = 1.998 x 10 3wi?

Zéme

modéle : {

La force axiale interne est donnée par :
T, = Heosf + (Y, — wR(siny — sinf) )sin(m — 6) (3-14)

Pour le calcul de la pression répartie, on suppose que le modeéle de la roue de turbine tourne a

une vitesse angulaire constante @ qui coincide avec la direction du débit d'eau. La vitesse de l'eau

V est la différence de la vitesse périphérique de I’eau v et la vitesse de la roueVy,. La pression

d'eau P est calculée a partir de I'équation de I'énergie entre la surface du réservoir libre, ou la

pression est atmosphérique, et la pression d'eau sur le modele simplifié:

P =hpg =5 (v = Vi) (3-15)

Ou p est la densité de 1’eau et g I’accélération de la gravité.

La pression de I’eau sert a calculer le chargement réparti sur la pale de la roue pour tous les
modes d’opération : (w=pb). Ce développement mathématique suppose que la pression est

constante sur tout le bord de fuite.

3.5.1.2 Calcul des contraintes

Pour les deux modeéles développés, la pale, assimilée a une poutre, est soumise a une
combinaison d’un moment de flexion et d’une force axiale. La contrainte maximale est trouvée
en superposant les charges :

Mu
I

T
+5 (3-16)

g =0p+ 0y =
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Ou : I est le moment d’inertie de la surface A et u la distance maximale par rapport a I’axe de
cisaillement. Théoriquement, la contrainte maximale se situe au bout de la poutre courbée qui

correspond a la zone de transition entre la pale et la couronne.
3.5.2 Etude du modéle ’Poutre courbée Ansys”’

3.5.2.1 Modele géométrique et modele de calcul

Lors de cette analyse, on reprend le modele de calcul de la poutre simple. Cependant, on
prend soin de mettre a jour la géométrie. Le modele de la poutre courbée schématisé dans la
figure suivante est modélisé selon les dimensions de la poutre simple (Tableau 3-2) en imposant

un rayon d’arc de 0.2m (voir graphe ci-dessous).

I"T'

Figure 3-19 : modéle géométrique de la poutre courbée

3.5.2.2 Maillage et conditions limites

La méme méthodologie est reprise au niveau de la génération de maillage. On obtient un
maillage régulier hexaédrique de 480 éléments et 3157 nceuds pour un premier calcul de
validation. Pour le calcul, on reprend les mémes conditions limites et le méme chargement pour

comparer le comportement des deux modeles. La poutre est ainsi doublement encastree.

3.5.2.3 Calcul

La poutre étant courbée, les réactions ne seront pas unidirectionnelles. Les calculs donnent :
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XA — _XB e — (3'17)

On note h la hauteur de I'arc et L sa portée.

Ces réactions d'appuis horizontales s'appellent la poussée de I'arc. Contrairement a une poutre

droite, I'arc crée des poussées horizontales qui devront étre reprises par les massifs de fondation.

v, =V =2% (3-18)

Figure 3-20 : Composantes bidirectionnelles des réactions aux encastrements de la poutre

Le moment fléchissant est donné par :

_ax .y al?
M—Z(L x) vl (3-19)

On calcule la fleche a la position ou le moment s’annule. Le moment s’annule si :

}J' = w (3_20)

L2

3.5.2.4 Analyse des résultats

Le premier constat de I’étude statique est que le modele apporte une petite correction au
précédent modele “’poutre simple’” dans les valeurs des déformations et des contraintes
maximales. D’autre part le modele valide le modéle théorique en ce qui concerne les localisations
de la fleche maximale et des contraintes et I’effort tranchant maximal. La déformation maximale

réduite de moitié (2.1mm) coincide avec la zone ou le moment fléchissant est le plus important
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c.a.d. le milieu de la poutre. De méme, la contrainte maximale (89MPa) est localisée au niveau

des encastrements 1a ou I’effort tranchant est le plus élevé (MA= 3.0869 x 10°Nm)

0.00023377
0 Min

|

FANSYS

Noncommercial use only

1.0508e7
6.555e5 Min

i

o
1.000 (m)

CANSYS

Noncommercial use only

L1000 {m)

0.500 0.500
Figure 3-21: Contraintes et déeformation du modéle poutre courbée bi-encastrée

Si on compare avec le modele théorique (voir le paragraphe 3.5.1.1 ) on trouve les résultats

suivants :

Tableau 3-9 : Vérification du modeéle de poutre courbée par comparaison du modéle numérique

Modgle théorique | Modéle numérique | Ecart (%)
Déformation (mm) 1.99 2.1 5.52%
Réaction RAX (N) 1.044+05 1.044+05 0%
Reaction RAy (N) -3.849+05 -3.9723+05 3.2%
Réaction RA (N) 3.988+05 4.107+05 2.97%
Réaction RBx (N) 1.044+05 1.044+05 0%
Réaction RBy (N) 3.849+05 3.9723+05
Reaction RB (N) 3.988+05 4.107+5 3.2%
Moment fléchissant MA (Nm) | - 25039 %
Moment fléchissant MB (Nm) | - -25093 %
Contrainte maximale (MPa) - 89.32 %

Un effet de voute ou de déviation de force est percue sur le modele de la poutre courbée. Cet
effet utilisé depuis 1’antiquité dans les constructions réduit les déformations. Ainsi, les déformées

de deux poutres, une droite et la deuxieme en arc, qui possédent la méme section et la méme
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portée sont totalement différentes. Comme expliqué précédemment, une comparaison avec les

modéles théoriques est insuffisante. Une étude de convergence est nécessaire.

3.5.2.5 Etude de convergence numérique du cas ‘’Poutre Courbée-Ansys”’

Un, -U
hy,~Un _ e

Ukh; —Uny o
Se basant sur I’équation o
(3-2), une étude de convergence a été menée pour ce cas. On considére la méme
méthodologie. Un premier maillage ou h est égale a 0.1m est raffiné lors de I’étude par des
divisions successives par deux. A partir de ces données on a déterminé le quotient de
convergence du modele numérique pour le déplacement et la contrainte Von mises maximale.

Les données sont fournies en détail en annexe A (tableau E)

La Figure 3-22 schématise les résultats de 1’étude de convergence. On constate que le modéle
numerique assure une convergence rapide du déplacement avec un ordre de convergence
minimum égal a deux. Cependant la convergence des contraintes maximales est moins
performante avec un quotient de convergence de 0,4. Le modéle numérique converge et est validé

pour le code commercial Ansys en dépit du comportement de la contrainte maximale.

Convergence sous raffinement spatial

— =demvergence-déplace

= H*‘L g P
r E ment
SYE -1,4618%+4,8962 2 o
= R2- (837 == convergence VonMises
% 0
=
%2 -1 e 05 ®  —Linéaire (convergence-
§ .——-0———*’&’1,7122»3 5159 ° déplacement)
2 R2=10,971 10 —— Linéaire (convergence

log(h) VonMises)

Figure 3-22 : Etude de convergence du cas test “’Poutre Courbée —Ansys’’ avec

maillage d’hexaédres

On s’intéresse, comme lors de 1’étude comparative précédente, a 1’évolution du temps de

calcul en fonction de la taille des éléments. Le tableau 3-10 présente les temps de calcul pour
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chaque maillage lors de 1’étude de convergence qui a été faite. On constate que pour une division

par 16 de la taille des élements, le temps de calcul a été multiplié par 60.

La Figure 3-23 schématise 1’évolution du temps de calcul. On constate la tendance a la hausse
du temps de calcul par rapport au modéle de la Poutre simple. Le temps de calcul demeure
néanmoins raisonnable et ne dépasse pas les quatre minutes pour le maillage le plus fin
(h=0.00625).

Tableau 3-10 : Temps de calcul en fonction de la taille des éléments <’Courbée-Ansys’’

Taille d’éléments(m) | Temps de calcul (s)
0.1 4.3
0.05 121
0.025 18
0.0125 120.9
0.00625 239

temps de calcul sous raffinement
spatial
__ 300
= N - 0,1251x L4t
3 200 R 30,9627 =fli—temps Courbée-ansys
S 100 -
Y]
o 0 - —— Puissance (temps
§' Courbée-ansys)
o) 0 0,05 0,1 0,15
h{m)

Figure 3-23: Etude de 1’évolution du temps de calcul <’Courbée-Ansys’’ avec

maillage d’hexaedres
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3.5.2.6 Analyse de ’influence du maillage

En imposant un maillage tétraédrique, une étude de convergence similaire est effectuée sur
le méme cas test. Les graphes suivants exposent les résultats (voir annexel tableau F pour le
détail).

Convergence sous raffinement spatial

— [ — —&—convergence-

= = déplacement

£ [y=+1,1085x+5,4782 > _

2 R2=0lg524 == convergence VonMises

T 0

%’2 15 - 05 O Linéaire (convergence-

— C ’

B et 71,5607x-3,7797 déplacement)

R*=0,9806 o —— Linéaire (convergence

log(h) - VonMises)

Figure 3-24 : Etude de convergence du cas test “’Poutre Courbée —Ansys’’ avec

maillage de tétraedres

temps de calcul sous raffinement
spatial
600 - W = 0,067x1688
= ks R?=0,9469
= 400 =li—temps Courhée-
% 200 ansys
E 0 A i —— Puissance (temps
a 0 0,05 0,1 0,15 Courbée-ansys)
g h{m)

Figure 3-25: Etude de I’évolution du temps de calcul “’Courbée-Ansys’’ avec

maillage de tétraédres

On constate que le maillage tétraédrique est plus performant en convergeant plus rapidement
vers le déplacement et la contrainte cible. Cela est d0 a la nature courbée de la poutre. Par contre

la résolution par maillage tétraedrique occasionne un temps de calcul supérieur.
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3.5.3 Etude du modéle ’Poutre courbée Aster’’

3.5.3.1 Modele de calcul

La méme démarche est effectuée pour ce cas test. On reprend la méme géométrie du cas test
poutre en arc effectué avec Ansys dans le but de comparer le comportement des deux codes dans
ces deux cas tests. La demarche et les parameétres de simulation sont les mémes que ceux utilises

pour la simulation poutre simple sur la suite logicielle SALOME-Meca (Tableau 3-6).

A la suite de Iétape de maillage, on définit une étude de cas mécanique statique en imposant
les mémes paramétres de 1’étude précédente. Le fichier de commande est fourni en annexe pour

plus de détail.

3.5.3.2 Analyse des résulats

La contrainte maximale (88,33 MPa) est localisée au niveau des encastrements de la poutre

ou I’effort tranchant est le plus élevé en accord avec la théorie des poutres (Ci-dessous).

Posiion: (0,15 -0:2; 0)
Size i (0,199024;012;2.95)

iyl

=3
RESU____SIEQ_NOEU 0, -
-2.11795e+06 ,,,2.049589‘07 4.31095e+07 = 3 8833690407

Figure 3-26 : Contraintes VVon mises du modele poutre en arc calculées avec SALOME-MECA

La déformation maximale (2,00mm) est localisée au niveau du milieu de la poutre ou
théoriquement le moment fléchissant est le plus élevé (Figure 3-27).



69

Les zones critiques du modele ont été validées qualitativement. Les écarts minimes, avec les
résultats de la simulation ANSYS, valide la simulation. Cet aspect sera analysé plus tard lors de

I’adaptation de maillage.

W

w

RESU____DEPLO, -
1.08400e-22 0,000500763 0.00T00753 A 22| 0.00200305

Figure 3-27 : Déplacement du modéle Poutre en arc calculé avec SALOME-MECA
Le tableau suivant présente les résultats de la simulation.

Tableau 3-11 : Résultats des simulations de la poutre en arc sous SALOME et ANSYS

Modeéle ANSYS | Modéle SALOME | écart

Contrainte max (MPa) 89,32 88,33 -1,10%

Déplacement max (mm) 2,1 2,0 -4,76%

On considere que 1’écart de -4,76% est accepté pour un déplacement de cet ordre de grandeur.

L’écart de déplacement n’est que de 0,1mm pour un élément ayant une épaisseur de 100mm.

3.5.3.3 Analyse de convergence

La figure suivante schématise les résultats de 1I’é¢tude de convergence (les données sont
fournies au tableau G de I’annexe A). On constate que le modéle numérique assure une
convergence du déplacement d’ordre 1,69. Cependant la convergence des contraintes maximales

est moins performante avec un quotient de convergence de 0,8. Cela confirme le constat que le
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code Aster permet une convergence et une précision beaucoup plus élevée que celles fournies par
le code Ansys pour des géomeétries simples. On conclut que le modéle numérique converge et est

validé pour le code Aster avec un comportement amélioré au niveau des contraintes.

On s’intéresse comme lors de I’étude précédente a 1’évolution du temps de calcul en fonction

de la taille des éléments. Le Tableau 3-12 présente les temps de calcul pour chaque maillage lors

de I’étude de convergence qui a été faite.

Convergence sous raffinement spatial

(=59
D

."'"."'L- ——convergence-

£ 5 ,
2 y=-0,3531x+6,6133 déplacement
E R*=0,151 o ——convergence VonMises
=P -1;5 I -0,5 {
2 — 5
g > v =1,6991x-3,5039 —— Linéaire (convergence-
- R2=0,9778—10 déplacement)
Log(h)

Figure 3-28 : Etude de convergence du cas test “’Poutre Courbée Salomé’’ avec

maillage d’hexaédres

Tableau 3-12 : Temps de calcul en fonction de la taille des éléments “’Courbée-Salomé’’

Taille d’éléments(m) | Temps de calcul (S)

0.2 11.74
0.1 17.82
0.05 25.2
0.025 83.03

0.0125 1267.4
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On constate que pour une division par 16 de la taille des éléments le temps de calcul a été
multiplié par 108 comparé a 60 pour Ansys sur le méme ordinateur. On constate la tendance
rapide a la hausse du temps de calcul. Le temps de calcul demeure néanmoins dans le méme
ordre de grandeur que pour le modele <’Simple Salomé’’ comme expliqué précédemment, il est

impossible de simuler le maillage le plus fin (h=0.00625). La simulation s’interrompt a cause de
la limitation de mémoire.

En conclusion de cette deuxiéme étude comparative, on confirme les résultats de la premiére
étude concernant la convergence des codes de calcul pour les deux méthodes. On a constaté

également une convergence d’ordre supérieure et un temps de calcul beaucoup plus élevé avec le
code Aster.

temps de calcul sous
raffinement spatial

1500
1000 \ v=0,5
500

=fl=temps
Courbée-Salome

Puissance (temps
Courbée-Salome)

-500

temps de calcul (s) |
o
~{]
i I 2
i
¥k
o]
(¥ ]

Figure 3-29 : Etude de I’évolution du temps de calcul “’Courbée-Salomé”’

3.5.3.4 Analyse de ’influence du maillage

Confirmant les résultats de 1'analyse d’influence précédente sous Aster, I’influence du
maillage tétraédrique est prononcée. A la convergence, la déformation maximale est de 1.8mm or
qu’elle est 2.1mm avec un maillage hexaédrique sous le méme code de calcul. La convergence
est également réduite par rapport a la convergence avec le maillage hexaédrique pour ce modele.
Le choix de maillage est déterminant pour le calcul sur Aster. Il est conseillé d’adapter le

maillage au type de probleme a résoudre.
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Convergence sous raffinement spatial

= /.\’L.q _ —4—convergence-
3 \7&8@; 10,939 déplacement
E R* 03808 0 == convergence YonMises
= -1,5 -0,5 (
2 5
a0 y=11,195x-3,0843 —— Linéaire (convergence-
- RT=0,01188 44 déplacement)
Log(h)

Figure 3-30 : Etude de convergence du cas test “’Poutre Courbée Salomé’’ avec

maillage de tétraedres

3.6 Interpreétation des résultats

Les modeles utilisés dans ces deux études comparatives approximent la solution par le choix
des conditions limites et de I’imposition d’une pression répartie constante au lieu d’imposer un
champ de pression qui varie en fonction des coordonnées. Cependant, on constate que le
deuxiéme modele de poutre simple courbée produit une déformation et une contrainte maximale
réduite par rapport au modeéle de la poutre droite bi-encastrée dues a un effet de voute simulé. La
courbure de la deuxieme poutre réduit la déformation au milieu de la poutre (endroit ou le
moment fléchissant est le plus contraignant). Elle relaxe ainsi les encastrements aux extrémités de

la poutre ou la contrainte est maximale.

Tableau 3-13 : Comparaison du comportement de la poutre simple et la poutre courbée

Poutre simple Poutre simple Poutre courbée | Poutre courbée
rectiligne (Ansys) (Aster) (Ansys) (Aster)
Déformation (mm) 4.1 3.99 2.1 2.0
Contrainte maximale 144.56 141.48 89.32 88.33
(MPa)
Moment fléchissant 51486 25039
maximal(Nm)

Les études de convergences ont démontré 1’existence d’une zone de confort numérique pour
les deux codes. Lors de la Vvérification de la convergence des contraintes on a constaté une

convergence assez lente et surtout une divergence avec le code Ansys une fois sorti de cette zone.




73

Avec Ansys, un maillage fin (a partir de h=0.0125) implique forcément une divergence au niveau
du calcul des contraintes de Von mises. Ce comportement est corrigé avec Aster impliquant un
colt de calcul plus élevé. Comme expliqué précédemment la convergence des contraintes
maximales de VVon mises avec Aster montre que potentiellement ces contraintes représentent une

variable primaire pour le code numérique.

3.7 Analyse de la réduction cyclique de la turbine

3.7.1 Caractéristique du modele

La roue de turbine Francis dont on dispose, comme toutes les turbines, est de taille
imposante. Elle comporte 13 pales qui sont fixées entre la couronne et la ceinture qui
maintiennent I’ensemble. Le diamétre maximal de I’ensemble avoisine les 8 métres. De méme, la
hauteur de I’ensemble atteint 7.35 métres. Maillé, ce modele comportera plus de 1 millions de
nceuds et quelques centaines de milliers d’éléments finis de type tétraédrique ou hexaédrique. Cet

ensemble constitue donc un modeéle de grande taille qui devra étre réduit.

Les pales sont disposées d’une maniére cyclique autour d’un axe concentrique a la couronne
et la ceinture. On utilise alors cette caractéristique pour imposer une symétrie cyclique en
réduisant la taille du modele de simulation. Le modele réduit ne comportera alors qu’une pale et
le 1/13 de la couronne et la ceinture qui lui sont rattachées (voir Figure 3-31). Cette structure est
encastrée au niveau d’une aréte de la couronne pour simuler I’anneau de serrage qui relie la roue

a ’arbre de transmission qui transmet la rotation a I’alternateur.

3.000 (m)

0.750 2250

Figure 3-31 : Transformation géométrique du modéle de turbine
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Pour que le modele réduit simule le comportement de la roue au complet (13 aubes), il faut
que la symétrie cyclique impose que les degrés de liberté des faces latérales libres de la couronne

et de la ceinture soient liés entre eux. Ainsi tout déplacement d’un nceud de la face maitre

implique un déplacement identique du nceud correspondant de la face esclave.

3.7.2 Validation de la cyclicité numérique
A ce niveau on s’intéresse a la validation du comportement des deux codes de calcul lors

d’un probléme simple de symétrie cyclique.

3.7.2.1 Spécification du cas test

Dans ce cas de cyclicité, un disque troué apparenté a la couronne est choisi comme modeéle de
validation du comportement des deux codes numeriques. Sur Ansys, une premiéere simulation est
effectuée avec le disque au complet; puis une deuxieme est effectuée avec le 1/6 du modele (on
impose alors une symétrie cyclique de 60 degrés). De méme avec code Aster, on définit les

mémes modéles. Pour le maillage, on a choisi de mailler tous les modéles avec des éléments
tétraédriques de la taille de I’épaisseur du disque.
Les conditions limites définies pour les quatre simulations sont identiques:
— Un encastrement a la surface inférieure du disque;
— Une pression de 390490 Pa appliquée sur la face latérale ceinture du disque

— Une symétrie cyclique de 60 degrés liant les deux surfaces coupées du 1/6 du

disque dans le cas du deuxieme modéle
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Figure 3-32 : Modele de validation de la réduction cyclique
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On procede par analyse comparative des deux modéles simulés sur chacun des codes. Le

Tableau 3-14 présente les résultats des simulations en utilisant Ansys.

Tableau 3-14 : Résultats du cas test validation cyclique sous Ansys

cas Nombre Temps de | Déplacement max | Contrainte ~ max
d’éléments de | calcul (s) (mm) (MPa)
maillage

Disque complet | 2790 2.8 0.00062879 0.68779

1/6 disque 220 0.4 0.00063931 0.69874

écart 1.69% 1.6%

On constate que le temps de calcul est réduit par 7 pour des écarts de calcul négligeable de

I’ordre de 1.69% pour la contrainte maximale et de 1.6%. Pour ce qui est du déplacement. L’écart

relativement élevé des déplacements est justifié par 1’ordre de grandeur du déplacement dans ce

cas. La méme analyse comparative est menée pour les simulations sous Code-Aster (voir le

tableau ci-dessous).

Tableau 3-15 : Résultats du cas test validation cyclique sous Code-Aster

cas Nombre Temps de Déplacement max | Contrainte max
d’éléments de calcul (s) (mm) (MPa)
maillage
Disque complet 8014 5.6 0.000592102 0.741
1/6 disque 1839 4.6 0.000592101 0.741
écart 0.01% 0.0%

Avec Code-Aster, on constate un comportement amélioré de la condition de symeétrie

cyclique avec des erreurs de I’ordre de 0.01%. Le code open source performe mieux que le code
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commercial validé Ansys. Pourtant le gain en temps avec Aster n’est pas a la hauteur du gain
réalisé avec Ansys, confirmant ainsi le constat que le code aster est plus couteux au niveau du

temps de calcul.

Le résultat obtenu valide ainsi la réduction cyclique avec les codes Ansys et Code-ASTER
avec une réduction conséquente des tailles des modéles. Cette réduction sera tres utile lors de la

validation du cas test “’turbine’’ sous les deux codes.

3.7.2.3 Analyse de I’influence du maillage

On effectue une analyse de convergence en fonction de la nature du maillage (tétraédrique ou
hexaédrique) et la taille des éléments. On effectue cette analyse que pour le modéle 1/6 du

disque avec symeétrie cyclique. Le graphe suivant schématise les résultats sous Ansys.
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Figure 3-33 : Analyse de convergence du modele <’1/6 disque’’ sous Ansys.

On constate que pour cette géométrie simple la convergence des deux maillages est identique.
On effectue également cette analyse de convergence sous Aster pour valider le comportement du
code. Cependant, I’outil de génération de maillage de la plateforme ne peut générer un maillage
hexaédrique a cause de la forme cylindrique du modele. On se limite ainsi a I’analyse de
convergence du modele avec un maillage tétraédrique. Les résultats de simulation montrent que

pour ce modele simple, le code aster converge des le premier maillage. Comparativement au code
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commercial Ansys, le code open source Aster confirme ses performances malgré un outil de

génération de maillage moins robuste et qui offre moins de possibilité que le mailleur d’ Ansys.
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Figure 3-34 : Analyse de convergence du modele “’1/6 disque’” sous Code-Aster
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CHAPITRE4  CAS INDUSTRIELS- TESTS PALE

4.1 Cas Andritz

4.1.1 Présentation des parametres du cas

Dans le cadre de ce travail de maitrise, la compagnie Andritz fournit les résultats d’une
analyse mécanique d’une pale de turbine Francis comme référence pour la validation et la
veérification des différents modeles. En utilisant le logiciel NX (Unigraphics), I’analyse est
effectuée sur la géométrie de pale qui sera utilisée par la suite pour les simulations sous Ansys et
Aster. Le modele Andritz simule les conditions suivantes

La gravité terrestre ( lepoids de la turbine est loin d’étre négligeable);

La vitesse de rotation de la roue de la turbine (90rpm dans ce cas);

— La symétrie cyclique: dans le but de simuler le comportement des 13 aubes tout en

allégeant le calcul en ne simulant qu’une aube;

— Blocage d’un cercle sur la partie supérieure de la roue, ce qui aura pour effet de

simuler I’effet du boulonnage;
— Des champs de pressions sur les deux faces de la pale.

Ces conditions limites et de chargement seront reprises et implémentées dans les modéles de
vérifications qui ont été développé dans le cadre de ce travail.

Les calculs statiques effectués par Andritz avec 1’outil donnent les résultats suivants:

Tableau 4-1 : Résultats des calculs d’ Andritz

Cas puissance maximale
Moment [N-m] -4.5165e+006
Puissance (MW) 553.37

Contrainte max (MPa) 152,5
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Figure 4-1: Localisation de la contrainte maximale calculée

Cependant il faut préciser qu’on ne dispose d’aucune information sur le type de maillage
utilisé. Ainsi, I’interprétation de 1’analyse comparative de ces résultats avec les résultats des

autres simulations devrait étre couplée a des analyses de convergences.

4.1.2 Calcul de puissance de la turbine

Une des méthodes de veérification du calcul est de retrouver la puissance théorique ou
réelle de la turbine. En théorie, la puissance peut étre calculée en se basant sur les caractéristiques
de la chute selon les équations suivantes.

2_ .2 _
nia = g(21 —22) + ulg U2 4 Pabsi pPabsz w

P=mn.p.Q.ena (4-2)

Ne disposant pas des données fluide, les deux équations précédentes sont d’aucune utilité¢ lors de
la vérification de I’analyse mécanique de la pale de turbine. Or connaissant le moment® d’une

pale, la puissance délivrée par cette pale peut étre calculé selon 1’équation suivante :

P=Mw (4-3)

% La composante de moment a utiliser pour ce calcul est la composante z du moment trouvé. Etant donné que

seulement ce moment sera transmis a I’arbre liant la turbine a I’alternateur.
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La puissance trouvée ainsi ne représente que 1/13 de la puissance de la roue (la roue comporte 13
pales). En utilisant la composante z du moment multiplié par 13 on retrouve la puissance générée

par la turbine.
P=Mz=+13*w (4-4)

Etant donné qu’on dispose uniquement de la puissance de la turbine, cette démarche est utile pour
la vérification du résultat de calcul par une étude comparative des résultats fournis par Andritz.

4.2 Modeles de la pale avec Ansys

A cette étape on dispose d’un fichier standard IGES englobant une pale de la roue de turbine.
Comme expliqué précédemment, le modele géométrique ne contient que le 1/13 de la roue pour
alléger les calculs (la pale est fixée en bas sur la ceinture et en haut sur la couronne. La couronne
transmet le moment via une surface boulonnée a 1’arbre liant la roue et 1’alternateur. Le fichier

IGES est importé dans le modeleur géométrique d’Ansys Workbench 13.0.

4.2.1 Modeéle de calcul

Comme pour les deux premiers modeles, le modéle de calcul le plus approprié est le modéle
d’analyse structurelle statique intégré a ANSYS 13.0. Ce mode de calcul d’ANSYS est adapté
pour le calcul de déplacement, contraintes et forces sur des structures ou les effets
d’amortissement et d’inertie transitionnelle sont négligeables. D’autre part, on ne schématise
qu’une pale c.a.d. 1/13 de la roue comme expliqué précédemment. Ainsi le couplage cyclique
sera un élément central du modele de calcul vu la principale hypothése de géométrie

axisymeétrique.

4.2.2 Maillage

Vu la complexité du modéle géométrique, on a choisi d’utiliser en premier lieu le mode de
maillage tétraédrique conforme aux surfaces paramétriques (patch conforming). Ce mode de
maillage a pour avantage de procéder au maillage des arétes, des faces et des frontiéres du
domaine en premier puis de procéder par la suite au maillage du volume. Ainsi toutes les faces
sont respectées. Cette étape est cruciale pour 1’étape suivante d’application des conditions limites

et des chargements. Un contréle de correspondance est imposé également entre les faces de haute
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pression et basse pression de la couronne et la ceinture. Ceci implique que le maillage d’une face
est projeté sur la deuxieme. Ainsi les nceuds de la surface esclave seront liés dans leurs degrés de
libertés a ceux de la surface maitresse. Cette opération n’est nécessaire que pour la condition de

symétrie cyclique

La figure suivante présente le modéle de maillage utilisé pour la validation du cas test (pale,
partie de la couronne et la ceinture correspondante). Le modéle a été maillé avec des éléments
tétraédriques en imposant une taille des éléments h égale a 0.2m. Un raffinement d’ordre 2 a été
imposé aux extrémités de la pale, c.a.d. au niveau des jonctions avec la couronne (partie
supérieure) et la ceinture (partie inférieure). Le maillage comporte 289487 nceuds et 203912

éléments. Les caractéristiques du maillage seront fournies en annexe.
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Figure 4-2: Maillage d’une pale de turbine avec Ansys

Lors de I’étude de convergence, d’autres maillages seront utilisés pour mesurer I’impact des

différents parametres sur ’erreur et la validation des différents mod¢les.
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4.2.3 Conditions limites et chargements

Pour reproduire le modéle physique, il est indispensable de simuler :

La gravité terrestre (poids de la turbine est loin d’étre négligeable);

La vitesse de rotation de la roue de la turbine (90rpm dans ce cas);

La symétrie cyclique : dans le but de simuler le comportement des 13 aubes tout

en allégeant le calcul en ne simulant qu’une aube;

Blocage d’un cercle sur la partie supérieure de la roue ce qui aura pour effet de

simuler 1’effet du boulonnage.

& f 3,000 (m)
- I ..
L4 0.750 2.250

Figure 4-3 : Conditions aux frontiéres appliquées sur la pale

Ensuite, les champs de pression distribuée sont appliqués seulement sur les faces haute
pression et basse pression de la pale selon la méthode basse chute (voir Figure 4-4). En basse
chute, les pressions exercées sur la couronne et la ceinture sont négligées. Les champs de
pression appliqués proviennent des fichiers contenant une distribution de la pression sur les faces

en fonction de coordonnées cylindriques.
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Figure 4-4 : Champs de pression appliqués sur les faces haute et basse pression de la pale

Une deuxieme simulation est effectuée a titre de Vérification, en considérant une pression
répartie constante. On considéra la moyenne des pressions issue des fichiers de distribution de
pression dont on dispose. La pression répartie sur la face haute pression de la pale est égale a

353900 Pa; tandis que celle sur la face basse pression est égale a 187718Pa.
4.3 Modele de la pale avec ASTER

4.3.1 Modele géométrique de calcul

En plus du fichier standard IGES de départ englobant une pale de la roue de turbine (1/13 de
la turbine), on dispose d’un fichier géométrique généré par le modeleur d’Ansys 13.0. Dans la
perspective de gain de temps, on procede a la conversion du fichier géométrique en format STEP
qui est plus facile a récupérer sur Salome-Meca. Avec le format IGES on serait obligé de
retravailler la géométrie. On définit des groupes géométriques qui seront tres utiles lors de

I’écriture du fichier de commandes. Quatre groupes géométriques essentiels ont été¢ définis :

— Un groupe nommé “’encasl’’ qui englobe I’arréte de la couronne ou on simule le

cercle de serrage;

— Les faces de coté droit de la couronne et la ceinture qu’on nomme ’FaMast’’ pour

faces maitres. Ces faces sont essentielles pour le couplage cyclique;
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— Les faces opposées de la couronne et la ceinture qu’on nomme “’FsSlav’’ pour faces
esclaves. De méme que les faces maitresses ces faces sont essentielles a la condition

de couplage cyclique;

— La face extérieure de la pale ou sera appliqué le champ de pression correspondant

est nommée ‘’Press’’.

— La face basse pression de la pale ou sera appliqué le deuxiéme champ de pression,

est nommée ’Preback”’

Figure 4-5 : Groupes géometriques définis sur Salomé

4.3.2 Maillage

A cette étape, on procéde a la discrétisation spatiale du domaine avec le générateur de
maillages de Salome-Meca. A cause de la complexité du modéle, 1’algorithme le plus robuste a
été choisi pour mailler. L’algorithme Netgen 1D-2D-3D épargne a I'utilisateur 1’obligation de
mailler séquentiellement les arétes, les surfaces puis les volumes. L’algorithme le fait
automatiquement. Le tableau suivant présente les différents paramétres utilisés lors du maillage

de la géométrie (Voir annexe pour le détail).



Tableau 4-2 : Paramétres de maillage du modele de la pale en Salomé.

On obtient un maillage de départ avec 20631 éléments tétraédriques.

Algorithme | Netgen 1D-2D-3D
Hypothéses | Netgen 3D paramétres
Max size 1
Finesse moyenne
Growth rate 0.7

© Mesh computation succeed

oF- |

Mesh_1

Mesh Infos »

Nodes :

Linear Quadratic

0D Elements :

Edges :

2142

Faces :
Triangles :
Quadrangles :
Polygons :

13210
13210

o oo |

Volumes :

| Tetrahedrons :
Hexahedrons :
Pyramids :
Prisms :
Polyhedrons :

20631
20631

(=]
o o oo o

Close

Figure 4-6 : Statistique du maillage Pale sur Salomé
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A la suite de cette étape de maillage, on définit une étude de cas mécanique statique avec le

module ASTER intégré a Salomé. Ainsi il est possible de générer automatiquement un fichier de

commande qu’on manipulera par la suite avec I’application Eficas. On définit les propriétés de

matériaux (module de Young E=2.11 GPa, module de cisaillement=0.3). Et on impose un

déplacement nul en (x,y,z) sur le sous-groupe geomeétrique ‘’encasl’’ correspondant a

I’encastrement. On associe aux sous-groupes ‘’Press’’ et “’Preback’ les champs de pression

exercés par le fluide sur les deux faces de la pale. Pour le premier calcul, on impose

respectivement 0.3539 MPa et 0.1877 MPa comme les valeurs moyennes des deux champs de

pression. On impose également une contrainte de couplage cyclique entre ‘’FaMast’ et
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“’FsSlav’’ avec la commande LIAISON MAIL, qui permet de lier les DDL des noeuds de deux
faces, en tenant compte d'un changement de référentiel. Autrement dit, cette commande permet
d'obtenir sur les deux faces les mémes déplacements en coordonnées cylindrique, ce qui
correspond a une condition de symétrie cyclique. Ainsi il est permis d’effectuer une premiére
vérification du modeéle avec le code ASTER. Le fichier de commande est fourni en Annexe pour

plus de détail.
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CHAPITRES5 RESULTATS DES CAS TESTS PALE

Dans un premier temps, nous analyserons les résultats de 1’implémentation du cas test sur le
code commercial ANSYS. Puis dans un second temps, une analyse des résultats sera faite pour
verifier le comportement du modele sur le code open source ASTER. Pour le premier cas test,
comme présenté précédemment, deux sous cas seront validés: le premier’Turbine-Ansys”’
reproduit les champs de pression répartis sur les deux faces de la pale; le deuxieéme “’Turbine-
Ansys-cst’’ ne simule que deux pressions moyennes appliquées sur les faces haute et basse
pression de la pale. Le deuxieme sous cas permettra de valider le cas test avec le code Aster étant

donné qu’actuellement il est impossible de simuler des champs de pressions variables avec Aster.

5.1 Modele de la pale avec Ansys

5.1.1 Modéle “Turbine-Ansys”’

Avec la premicre configuration et pour I’actuel modele de la pale de turbine, le calcul et la
préparation des résultats post-traités durent 183.3 secondes. Le calcul proprement dit ne demande
que 178.1 secondes. Aprés simulation, on effectue un post processing avec les outils d’Ansys.
Les figures et les tableaux suivants présentent les résultats de la simulation. Comme démontré par
le modéle développé par Saeed, la zone de la jonction entre la pale et la couronne (partie
supérieure de la roue) est la zone la plus critique du point de vue de la contrainte VVon mises
maximale. La déformation maximale est localisée au niveau de la jonction entre la ceinture et la
pale. Cette zone correspond a la zone de la face Haute pression ou la pression de I’eau est la plus
élevée. La localisation de la déformation maximale schématisée a la droite de la Figure 5-1

correspond a la localisation schématisée a la Figure 4-4.
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Figure 5-1: Déplacements et contraintes sur la pale avec Ansys

Tableau 5-1: Contraintes et déplacements de la pale apres chargement

Contrainte Von Mises maximale (MPa) Déplacement maximum (mm)

156.75 5.195

Un autre résultat nécessaire a la validation est le moment produit par la réaction due a la
condition frontiere de boulonnage. Le moment est calculé par rapport au centre du systeme de
coordonnés cylindrique imposé au début de la simulation. La figure suivante schématise cette
force dans le systéme cylindrique. Les données numériques sont données au Tableau 5-2.
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Figure 5-2: Réaction due a la force de boulonnage
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Tableau 5-2: Composantes cylindrique du moment de boulonnage

Réaction du Réaction du Réaction du Réaction de
moment-de moment-de moment-de moment-boulonnage
boulonnage (r) boulonnage (0) boulonnage (2) (Total) [N-m]
[N-m] [N-m] [N-m]
-8.3266e+006 1.6286e+006 -4.4716e+006 9.5906e+006

Seule la composante en z sera considérée pour la validation étant donné que le calcul de

puissance de la roue nécessite le moment délivré par la roue selon 1’axe de rotation de

I’ensemble. On ¢élaborera le détail du calcul de la puissance de la turbine dans le prochain

paragraphe.

5.1.1.1 Analyse comparative

Dans le présent paragraphe, une analyse comparative est effectuée. On s’intéressera a

comparer les résultats fournis par Andritz et les résultats du modéle développé au cours de cette

étude. Le tableau suivant résume les résultats des deux modeles. On y expose les résultats des

différents paramétres de la turbine ainsi que I’écart ou I’erreur entre les deux calculs.

Tableau 5-3: Analyse comparative entre le modéle d’ Andritz et le modé¢le Ansys.

Modéle Andritz Modéle développeé Erreur (%)
Ansys
Déformation (mm) NA 5.03 NA
Moment (N.m) -4.5165e+006 -4.4716e+006 -0.99%
Puissance (MW) 553.37 547.87 -0.99%
Contrainte max 152,5 156.75 2.1%
(MPa)

On constate des écarts inférieurs a 1% pour le moment et la puissance des deux modeéles.
Cependant, les valeurs de la contrainte maximale des deux modeéles présentent un écart de 2%.
Malheureusement, on ne dispose ni des caractéristiques du maillage utilisé par Andritz ni des
résultats d’une étude de convergence faite par 1’entreprise. On ne peut conclure sur I’origine de
I’écart.

Bien que le modele soit globalement représentatif, les écarts constatés montrent que
probablement la convergence n’est pas atteinte. La méme démarche est effectuée lors de

I’analyse d’erreur et de convergence.
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5.1.1.2 Analyse d’erreur et de convergence

Une étude de convergence a ét¢é menée pour le cas ‘Turbine Ansys’ en reprenant la
méthodologie des études de convergences. Un maillage de départ ou h maximale est égale a 1
métre est raffiné lors de I’étude par des divisions successives par deux. A partir de ces données
on a determiné le quotient de convergence du modele numérique pour le déplacement et la

contrainte Von mises maximale. Les données sont fournies en détail en annexe 1 au tableau I.

La Figure 5-3 schématise les résultats de 1’étude de convergence. On constate que le modele
numérique assure une convergence du déplacement d’ordre 0,8. Cependant la convergence des
contraintes maximales est moins performante avec un quotient de convergence de 0,2 (un ordre
de convergence de -1,4 tel qu’illustré). On conclut que le modéle numérique converge pour le
déplacement et est validé pour le code commercial Ansys. Cependant on constate que la
convergence n’est pas assurée au niveau des contraintes de VonMises. En raffinant la taille du

maillage, on quitte une certaine zone de confiance.
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Figure 5-3 : Etude de convergence du cas test “’Turbine—Ansys”’

La Figure 5-4 schématise 1’évolution du temps de calcul en fonction de la finesse du maillage.
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Figure 5-4 : Etude de I’évolution du temps de calcul “>Turbine-Ansys’’

On constate que le temps de calcul, méme pour le cas complexe de la turbine reste

relativement peu élevé relativement aux autres cas simples traités avec Aster.

5.1.2 Modéle “Turbine-Ansys-cst”’

Comme expliqué, ce cas test servira de référence de validation pour le cas test de la turbine

avec Aster. La figure suivante illustre le déplacement et les contraintes maximales.
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Figure 5-5 Déplacements et contraintes du modele “’Turbine-Ansys-cst”’
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La zone de la jonction entre la pale et la couronne est la zone la plus critique du point de vue
de la contrainte Von mises maximale. La déformation maximale est localisée au niveau de la face
haute pression de la pale (schématisée a droite de la Figure 5-5). Cette zone correspond a la zone
ou la pression de I’eau est la plus élevée et le moment fléchissant est le plus élevé. On constate
que la modification des conditions de chargements et I’application des pressions moyennes
modifie amplement les résultats du calcul. Le Tableau 5-4 compare les résultats des deux

modeles développes sous Ansys et illustre la variation des parametres.

Tableau 5-4: Analyse comparative entre les modéles “’Turbine Ansys’’ et “’Turbine Ansys-cst’’

Modéle Modéle Turbine Modéle Turbine Ecart
Andritz AnNsys cst
Déformation (mm) NA 5.03 4.23 15.9%
Moment z (N.m) -4.5165e+006 -4.4716e+006 -3.7014e+006 17.22%
Puissance (MW) 553.37 547.87 453.5 17.22%
Contrainte max 152,5 156.75 130.36 16.8%
(MPa)

En moyenne on constate une réduction de 16% par rapport aux résultats de la simulation du
cas test “’Turbine Ansys’’ justifi¢ par la réduction du moment fléchissant auquel est soumise la
pale de turbine. La Figure 5-6 schématise les résultats de 1’étude de convergence. Le détail est

fourni au tableau J de ’annexe A.

Convergence sous raffinement spatial

10
Ay

i — 3 eonvergence-déplacem
- ‘N.?T#r ent
= y=-0,9263x+6,9766 —fli—convergence VonMises
= RE 03041 4
Al 5
: y=1,2287%-3,4108 < —— Linéaire (convergence-
g. RZ=10,9287 0 déplacement)
ol 0,8 -0,6 -0,4 02 5 0 ——Linéaire (convergence
VonMises)
— T = N

(=)

Log(h)

Figure 5-6 Etude de convergence du cas test <’ Turbine—Ansys-cst’’
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Le mod¢le numérique assure une convergence du déplacement d’ordre 1,2 et un quotient de
convergence des contraintes Von Mises de 0,5 (un ordre de convergence de -0.9 tel qu’illustré).
Pour les deux paramétres, les valeurs sont lIégérement supérieures aux valeurs de convergences
du cas test précédant (Turbine-Ansys) a cause de I’uniformité des champs de pression dans le
deuxiéme cas test. Cette uniformité reéduit la complexité le modele numérique et améliore

relativement la convergence numérique.

5.2 Modéle de la pale avec ASTER

Disposant des résultats du cas test “’Turbine-Ansys-cst’” qui servira de référence, on étudie
les résultats du cas “’Turbine-Aster’’. La contrainte maximale (104,44 MPa) est localisée au
niveau des zones de jonction pale-couronne et pale—ceinture en accord avec le modéle de Saeed.
La déformation maximale (2,14mm) est localisée au niveau du milieu de la pale ou

théoriquement le moment fléchissant est le plus élevé.

Fosition: (01748549, -0,528722; -3,111614)

Size; (3124356, 4,43082; 4,76539)

SU____SIEQ_NOEU 0, -
100462, 2.60916e+07. _ 5.208278+07. / 1.04065e+08

i il

Figure 5-7 : Contraintes VVon mises du modéle Pale cst calculées avec Aster

Dans le premier cas Ansys on traite d’un champ de pression variable or qu’il est constant
dans cette premiere simulation Salomé. Pour valider le modéle aster, Il est nécessaire de
comparer le modele Salomé a un modéle Ansys avec des pressions constantes appliquées aux
faces basse et haute pression de la pale (voir annexe pour les résultats du modéle *’Turbine-

Ansys-cst’’.



94

POsIn: (07491915 -0/525415;-3,11559)
51761 (3/24765; 4,4287:3, 474701

RESU. DEPLO, -
3,709714e-22 J 000105724 ) 0.00217448

Figure 5-8 : Déplacement du modeéle pale cst calculé avec Aster

Outre les zones critiques du modéle qui ont été validées (Figure 5-7); on constate des écarts
avec les résultats de la simulation ANSY'S qui ne valident pas la simulation (voir Tableau 5-5).
Cependant, le profil de déplacement di a des champs de pression constants concorde avec le

méme modele simulé avec Ansys (voir Figure 5-5).

Tableau 5-5 : Résultats des simulations de la pale cst sous SALOME et ANSY'S

Modeéle ANSYS | Modéle SALOME | écart

Contrainte max (MPa) 127.02 104,44 -17.76%

Déplacement max (mm) 4.238 2.114 -50.06%

Une analyse de convergence numérique est nécessaire alors pour valider le comportement du
modéle simulé avec Salome.
5.2.1 Analyse de convergence numérique du cas ‘’Pale Aster”’

La méthode présentée au chapitre 3 est reprise. Les données sont fournies en détail au tableau
K de I’annexe 1.
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Convergence sous raffinement spatial
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Figure 5-9 : Etude de convergence du cas test <’ Turbine—cst-Aster *’

La figure ci-dessus schématise les résultats de 1’étude de convergence. On constate que le
modeéle numérique assure une convergence du déplacement avec un ordre de convergence négatif
égal a -0.37. Ceci est d0 a une oscillation des valeurs pour les maillages de taille 0,25 et 0,5. Le
déplacement est compris entre 1,85mm et 2.1mm. De méme la convergence des contraintes
maximales est négative avec un ordre de convergence de -2,21. Les contraintes maximales
varient entre 90MPa et 166MPa. Comparativement, le modele “’Turbine-Ansys-cst’’ assure une
convergence des déplacements d’ordre 1,22 et une convergence négative d’ordre -0,92 pour les

contraintes VonMises. (Figure 5-6)

Pour le code Aster, on constate une convergence chaotique malgré la non prise en compte du

champ de pression variable.

5.3 Comparaison des codes pour les différents cas test :

Ne disposant pas d’une solution exacte pour la solution du probléme mécanique, on a procédé
au cours de ce memoire de maitrise a des comparaisons successives des différents cas test
approximant une pale de turbine soumis a un chargement hydraulique. Le comportement de
chacun des codes varie d’un cas test a un autre. Le tableau suivant illustre la variation des

résultats selon le maillage utilisé et le code utilisé pour les cas test “’turbine-cst”’.
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Tableau 5-6 : Tableau comparatif des cas test <’Turbine-cst’’

Taille du maillage (m) 1 0.5 0.25 | 0.125 | 0.00625

Turbine cst Aster Déplacement max (mm) | 1.856 | 1.846 | 1.917 | 2.114 2.12

Contrainte max (MPa) | 98.95 | 99.6 99.9 | 122.23| 150.65

Turbine cst Ansys | Déplacement max (mm) | 3.94 | 4.23 | 4.49 | 456 4.58

Contrainte max (MPa) | 99.5 | 130.36 | 127.02 | 155.87 | 283.61

On constate que le comportement de la convergence numérique sur Aster et Ansys est
globalement similaire pour les contraintes Von mises. L’ordre de grandeur de la contrainte Von
mises maximale concorde avec les résultats des modeles ‘Turbine-Ansys’’ et ’Turbine-Andritz’’
(voir Tableau 5-3). Néanmoins, les deux codes sont sensibles aux singularités numériques: A
partir d’une taille des mailles inférieures a 125mm, la valeur maximale de la contrainte maximale
explose au niveau des jonctions couronne-pale et ceinture-pale. Ces deux zones sont soumises a
des concentrations de contrainte au voisinage d'un défaut de forme elliptique ou un angle
rentrant, c'est-a-dire un angle inférieur a 180° entre deux faces extérieures a la matiere (voir
Figure 5-10).

F
(€)

(@) (b)

Figure 5-10 : Quelques exemples de modeles provoquant des singularités : (a)
géométrie comportant un angle rentrant, (b) modéle de

comportement discontinu, (c) force ponctuelle.

Méme si les arrondis ont tendance a corriger et lisser le comportement des contraintes aux

alentours de ces zones, le probléme persiste dans notre cas.
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I faut mentionner également que la présence de 1’encastrement simulant la force de serrage
ou les déplacements imposés dans cette configuration géométrique particuliére peut entrainer des
singularités. D’ailleurs, on le remarque au niveau du cercle de boulonnage du cas test “’turbine—
Ansys-cst’’. Ces singularités proviennent de limitations intrinséques de la mécanique des milieux
continus impliquant dans certaines configurations géométriques des resultats non valides (voir
Figure 5-10). En effet, un solveur éléments finis ne calcule les contraintes et déformations qu'aux
points d'intégration (ou points de Gauss) des éléments, qui sont situés a l'intérieur des éléments.
Or, dans une simulation par €léments finis, les points singuliers sont toujours des nceuds du
maillage, et sont donc situés au bord des éléments. Les contraintes ne sont donc jamais calculées
aux points singuliers, et ne présentent pas de valeurs infinies qui permettraient de détecter la
singularité. Ce que l'on observe ressemble plutdt a une simple concentration de contraintes et les
valeurs obtenues n‘ont souvent rien de choquant a premiéere vue mais leur valeur n'est pas
pertinente pour autant: elle dépend uniquement de la taille et de la forme des éléments et

augmente indéfiniment lorsque I'on raffine le maillage.

Pour ce qui est de la convergence numérique des déplacements sur Ansys et Aster, on
constate une légere différence. Le déplacement calculé avec Aster correspond au déplacement du
modele approximatif ’poutre courbée’’. Celui calculé avec Ansys reproduit le résultat du modele

“’poutre simple”’. (voir ci-dessous)

Tableau 5-7 Tableau comparatif des déplacements maximales en mm en fonction du cas test

Taille de la maille (m) 1 0.5 0.25 | 0.125 | 0.00625

Turbine cst Aster 1.856 | 1.846 | 1.917 | 2.114 2.12

Turbine cst Ansys 3.94 4.23 4.49 4.56 4.58

Poutre simple Ansys | 4.172 | 4.1952 | 4.2038 | 4.2061 | 4.2069

Poutre simple Aster | 3.8776 | 3.952 | 3.99 | 4.002 | 4.005

Poutre courbée Ansys | 2.098 | 2.104 | 2.1053 | 2.1058 | 2.106

Poutre courbée Aster | 1.977 | 1.994 | 2.003 | 2.004 2.005
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Cette particularité est surprenante : Aster a tendance a amplifier I’effet de voute en réduisant

les valeurs du déplacement maximal.

Théoriquement, les théories des poutres, plaques présentent généralement moins de cas
singuliers que la mécanique des milieux continus tridimensionnels. Cependant, on constate que
les résultats dépendent également de la taille et de la forme des élements. Les valeurs de
déplacements dépendent énormément de la nature du maillage (tétra ou héxa). Il faut noter que
dans le tableau ci-dessus on n’illustre que les résultats obtenus par des maillages hexaédriques
pour les cas test des Poutres car le comportement d’ASTER est chaotique lorsqu’on choisit un
maillage hexaédrique pour les cas simples de poutres (voir Annexe). Par contre, le comportement

d’ Ansys est relativement stable pour ces cas.

Méme si on n’a pas réussi a simuler le probléme complet de la pale de turbine sur Aster, on
peut conclure que le cas test “’Turbine-Ansys’’ a été validé en le comparant aux résultats fournis
par Andritz méme si on ne dispose pas du résultat du déplacement. Cependant, il est suggéré
d’imposer une limite inférieure lors du raffinement du maillage pour contourner ainsi les

problemes de singularité.

Enfin, il faut souligner que les résultats de la simulation ‘’turbine-cst-Aster’’ sont en partie
inexplicables. Bien que les résultats des contraintes aient été validés qualitativement, un écart

persiste au niveau des déplacements.
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CONCLUSION

Synthese des travaux

Dans un premier temps, la présente étude a établi les expressions analytiques décrivant le
comportement mécanique d’une pale de turbine, en se basant sur des hypothéses simplificatrices
importantes, telles celle du double encastrement développé par Al Saeed. En se basant sur ce
modele théorique, plusieurs simulations numériques ont été meneées et ont permis la validation et
la vérification des deux codes utilisés ’Ansys’’ et “’Aster’ pour ces cas test simples. Ensuite, des
simulations numériques ont ensuite été menées en se basant sur un premier cas test fourni par
Andritz. On est ainsi parvenu a reproduire virtuellement les résultats du modele de “’référence”’
avec une précision acceptable, puisque I'écart moyen entre résultats numériques Ansys et la
solution Andritz sur les tests considérés est d'environ 3.5 %. Le comportement du solveur mis en
ceuvre par la suite a également été investigué, afin d'identifier les points sensibles nécessitant une
attention particuliére. Finalement, une étude d’erreur est menée pour valider le modéle de la
turbine avec Code Aster permettant d'obtenir une estimation relativement valide des résultats de
références sans atteindre une convergence et une validation du solveur pour ce cas test.
Malheureusement, les résultats du dernier cas de validation n’ont pas été concluants contre toute
attente. La différence au niveau des déplacements est inexpliquée. Elle est probablement due a
des erreurs multiples (modélisation, discrétisation et de résolution).

Limite de la démarche proposée

Cette étude prouve qu'il est possible, pour un probléme de design bien défini et en disposant
de données de référence permettant la validation des simulations numériques, de développer une
méthodologie de validation d’autres codes numériques a la fois simple et précise capable
d'estimer 1’ordre de grandeur des contraintes et les déformations maximales de la pale.

Cependant, il faut faire bien attention aux limites de ces résultats qui sont détaillées ci-dessous :

— L'espace de design considére est tres spécifique. Par conséquent, notre étude, n’est

valide que pour les cas de turbines Francis basse chute.

— Notre étude étant structurelle statique ne permet en aucun de valider des modeles

dynamiques.
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— Code aster ne permettant pas 1’intégration des champs de pression variable & moins

de disposer du maillage fluide du modéle, le dernier cas test ‘’Pale-Aster’” ne
reproduit pas fidelement le modéle de référence. Ceci modifie légérement
I’emplacement des déplacements et des contraintes maximales de la pale. Pour

cette raison, le dernier modele ne peut étre validé par étude comparative.

— Ne disposant pas d’une valeur de référence de déplacement maximale, on ne peut

malheureusement valider les déplacements des cas test impliquant la pale de

turbine.

Ameéliorations possibles

Cette étude montre qu'il est possible d'évaluer le comportement mécanique d’une pale de

turbine Francis a la fois numériquement et algébriquement et de valider les outils numériques

utilisés. Les futurs travaux, alors conscients de ce fait, pourront I'enrichir et élargir son champ

d'application, pour parvenir un jour a un outil efficace de pré validation mécanique qui sera mis

en ceuvre par les concepteurs fluidiques de turbines. De nombreuses améliorations peuvent étre

apportées dans cette optique, parmi lesquelles :

Investiguer des cas de validation intermédiaires qui permettraient éventuellement

d’expliquer les sources d’erreur des résultats obtenus sous Aster

Intégrer le maillage fluide au code Aster en le couplant au maillage structure pour
pouvoir projeter les pressions aux nceuds du maillage fluide sur le maillage
structure. On pourra simuler ainsi des efforts aux nceuds et de s’approcher du
modele “’Pale Ansys’’. Ne disposant pas du maillage fluide jusqu’aux dernicres
semaines, ceci n’a pas pu étre fait dans le cadre de ce projet de maitrise.
Cependant, un fichier de commande a implémenter suite a ce projet est fourni en

annexe;

Intégrer et tester des éléments quadratiques dans Aster pour s’assurer de la

validation numérique du modeéle de pale avec ce code numérique;
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— Proposer des outils analytiques d’estimation des erreurs de discrétisation adaptés
aux probléemes mécaniques des turbines en complément a la méthodologie de

validation et de vérification.
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ANNEXE 1 — Etude de convergence
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Cette annexe détaille les resultats des études de convergence des différents modeéles

A. Modele Poutre simple Ansys hexa

Taille maillage h | 0.1 0.05 0.025 0.0125 0.00625
(m)
Log(h) -1 -1.30103 -1.602059 -1.9030899 | -2.2041199
Nombre 60 472 3900 30540 241664
d’éléments
Déformation 0.0041548 0.0041959 0.0042033 0.0042058 0.004206
U(hy) (m)
Contrainte 138.72 144.56 162.09 202.18 325.71
Maximale
amax(hk) (MPa)
RA (N) 104410 104410 104410 104410 104410
MA(N.m) 51590 51486 51465 51458 51455
U (hyess) — Uhy)| 4.11E-05 7.4E-06 2.5E-06 2E-07 NA
5840000 17530000 40090000 123530000 | NA

|U(hk+1) - U(hk)|

U, U 5.55405405 2.96 12.5 NA NA

(k+1) R

Unk+2) — Unk+1)
Ordre de | 2.47354122 1.56559718 | 3.64385619 | NA NA
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convergence
Oy, = On 0.33314 0.43727 0.32454 NA NA
Thyy Oy,
Ordre de | -1.5858 -1.1934 -1.6235
convergence
Temps de calcul | 6.1 13.7 195 115.4 130
CPU (s)

B. Modele poutre simple Ansys tétra
Taille maillage h | 0.1 0.05 0.025 0.0125 0.00625
(m)
Log(h) -1 -1.30103 -1.602059 -1.9030899 | -2.2041199
Nombre 720 4299 32641 262387 2090050
d’¢léments
Déformation 0.0041728 0.0041952 0.0042038 0.0042061 0.0042069
U(hy) (m)
Contrainte 125.13 141.45 156.51 193.85 237.76
Maximale
Omax(hy) (MP2)
RA (N) 104410 104410 104410 104410 104410
MA(N.m) 51542 51486 51462 51458 51455
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U (hyesy) — U ()l 2.24E-05 8.6E-06 2.3E-06 8E-07 NA
16320000 15060000 37340000 42910000 | NA
o (Ris1) — o (R
Unces 1) — Un 2.604651163 | 3.73 2.875 NA NA
Unk+2) — Unes1)
Ordre de | 1.381090167 | 1.90270279 | 1.52356195 | NA NA
convergence 9 6
Tny = On 1.0837 0.40332 0.87019 NA NA
12
Thyy Oy,
Ordre de | 1.1592 -1.31 -0.20059
convergence
Temps de calcul | 6.1 16.4 59.4 115.4 768
CPU (s)
C. Modele Poutre simple Salome hexa
Taille maillage h | 0.2 0.1 0.05 0.025 0.0125
(m)
Log(h) -0.69897 -1 -1.30103 -1.602059 -1.9030899
Nombre 28 60 472 3776 30208
d’¢léments
Déformation 0.0038776 0.00395201 | 0.0039929 | 0.0040023 0.0040052
6 1




109

(m)

U(hg) (M)
Contrainte 59.424 72.431 141.48 146.52 184.64
Maximale
Omax(hy) (MPa)
U (hysr) — UChy)| 7.441E-05 4.095E-05 | 9.34E-06 2.91E-06 NA
13007500 69050000 | 5035000 38128000 | NA

o (Rys1) — o ()l

U, _U 1.81709402 4.3843683 | 3.2096219 | NA NA

(k+1) h

Unk+2) — Unes1)
Ordre de | 0.86163307 | 2.132369 1.6824034 NA NA
convergence

Oy, ~ On 0.18837799 13.714002 | 0.132055 NA NA
Thyy Oy,
Ordre de | -2.4082977 3.77757773 | -2.920787 | NA NA
convergence
Temps de calcul | 7.6 11.24 18.53 102.52 1252.96
CPU (s)

D. Modele Poutre simple Salome tetra
Taille maillage h | 0.2 0.1 0.05 0.025 0.0125
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Log(h) -0.69897 -1 -1.30103 -1.602059 -1.9030899
Nombre 199 437 2794 32402 264550
d’éléments

Déformation 0.001257 0.001483 0.00259 0.0036019 0.0036019
U(hy) (m)
Contrainte 70.675 76.680 82.223 121.95 121.95
Maximale

U (hysr) — UChy)| 22.626E- 11.0609E- 10.119 E-04 | 1.71E-06 NA

05 04
16 (Rry) — 0 (ki) 60004600 5543200 39729800 0 NA
Unces 1) — Un 0.2045584 1.09308 -591.754 NA NA

Unk+2) — Unes1)
Ordre de | -2.2894 0.1284 - NA NA
convergence

Tny = On 1.08323 0.1395 NA NA
2
Ohyy = Ony,
Ordre de | 0.11534908 -2.8414 NA NA
convergence
Temps de calcul | 2.08 2.19 2.45 5.18 8.23

CPU (s)




E. Modele Poutre Courbée Ansys hexa
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Taille maillage h | 0.1 0.05 0.025 0.0125 0.00625
(m)
Log(h) -1 -1.30103 -1.602059 -1.9030899 | -2.2041199
Nombre 60 480 3808 32240 1045808
d’éléments
Déformation 0.0020964 0.002104 0.0021053 0.0021058 0.002106
U(hy) (m)
Contrainte 90.651 89.323 101.44 125.01 156.18
Maximale
amax(hk) (Mpa)
RA (N) 408340 410720 411150 411290 411350
MA(N.m) 25307 25093 25052 25039 25034
U(hysy) — Uhy)l 7.6E-06 1.3E-06 5E-07 2E-07 NA
10 (Ress) — o (o)l 1328000 12117000 23570000 31170000 NA

U, U 5.84615385 2.6 25 NA NA

(k+1) R

Unk+2) — Unk+1)
Ordre de | 2.5474878 1.37851162 | 1.32192809 | NA NA

convergence
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Ony, = On -0.10960 0.51409 0.75618 NA NA

Ty T O,

Ordre de -0.95992 -0.40321 NA NA
convergence

Temps de calcul | 4.3 12.1 18 120.9 239
CPU (s)

F. Modéle Poutre Courbée Ansys tetra

Taille maillage h | 0.1 0.05 0.025 0.0125 0.00625
(m)

Log(h) -1 -1.30103 -1.602059 -1.9030899 | -2.2041199
Nombre 720 4225 32745 261206 2127299
d’¢éléments

Déformation 0.0020986 0.0021041 0.0021053 0.0021058 0.002106
U(hy) (m)

Contrainte 83.733 88.864 93.525 117.90 156.18
Maximale

RA (N) 409490 410860 411200 411320 411350
MA(N.m) 25202 25080 25047 25037 25034

5.5E-06 1.2E-06 5E-07 2E-07 NA

U (hy+1) — U (hy)l
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16 (Riesy) — 0 () 5131000 4661000 24375000 38280000 NA
Ungies 1y — Un 4.58333 2.4 2.5 NA NA

Unk+2) — Unk+1)

Ordre de | 2.19639 1.263034 1.32192809 | NA NA
convergence

On) —On 1.100 0.1922 0.6367 NA NA
2

Ty T Ny

Ordre de | 0.1386 -2.386 -0.6511 NA NA
convergence
Temps de calcul | 4.3 12.1 18 120.9 560
CPU (s)

G. Modeéle poutre courbée salomé hexa

Taille maillage h | 0.2 0.1 0.05 0.025 0.0125
(m)

Log(h) -0.69897 -1 -1.30103 -1.602059 | -1.9030899
Nombre 15 60 472 3776 30208
d’¢léments

Déformation 0.00197774 | 0.00199435 0.00200305 | 0.0020048 0.0020054
U(hy) (m) ? 4
Contrainte 63.061 69.274 88.337 92.761 115.62
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Maximale

Omax(hy) (MPa)

U (hysr) — Uhy) 1.661E-05 8.7E-06 1.84E-06 5.5E-07 NA
16 (Rry) — 0 (ki) 6212600 19063100 4424500 22858600 | NA
Unces 1) — Un 1.90919540 4.72826087 | 3.34545454 | NA NA

Unk+2) — Unen) | 2 5
Ordre de | 0.93296476 | 2.241309635 | 1.742202243 | NA NA
convergence 7

Ony, = On 0.32589662 4.30853203 | 0.19355953 | NA NA
ljh({d- — Uhfz 8 8 6
Ordre de | - 2.107196412 | - NA NA
convergence 1.61751367 2.36915071
Temps de calcul | 11.74 17.82 25 83.03 1267.4
CPU (s)

H. Modele poutre courbée salomé tetra

Taille maillage h | 0.2 0.1 0.05 0.025 0.0125
(m)
Log(h) -0.69897 -1 -1.30103 -1.602059 -1.9030899
Nombre 360 444 2967 30993 264968
d’¢éléments
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CPU (s)

Déformation 0.000979 0.000989 0.001581 0.0018962 0.001869
U(hy) (M)

Contrainte 51.753 52.237 54.258 83.426 83.426
Maximale

Omax(hx) (MPa)

U (hyess) — Uhy)| 1.0E-05 5.92 E-04 3.152E-04 7.8E-07 NA

16 (hress) — 0 (Bl 484000 2021100 291681000 0 NA

Ungies 1y — Un 0.016891 1.87817 404.1025 NA NA

Unk+2) — Unk+1)
Ordre de | -5.8875 0.90932 8.65857 NA NA
convergence

On) —On 0.23947 0.06929 NA NA
2
Ty T O,
Ordre de | -2.062 0.0692 NA NA
convergence
Temps de calcul | 2.21 2.16 2.42 6.25 14.9




I. Modele Turbine Ansys
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Taille maillage h |1 0.5 0.25 0.125 0.0625
(m)
Log(h) 0 - - - -
0.30102999 | 0.60205999 | 0.90308998 | 1.20411998
6 1 7 3
Nombre 18714 35833 77459 122669 225021
d’éléments
Déformation 0.0046915 0.0050515 0.0051604 0.0052248 0.0052904
U(hy) (m)
Contrainte 99.5 110.81 121.35 190.50 345.50
Maximale
Umax(hk) (Mpa)
U (hyess) — Uhy)| 3.60E-04 1.089E-04 6.440E-05 6.560E-05 NA
11284000 10540000 69150000 155000000 | NA
o (Ris1) — o (R
U U 3.3058E+0 1.6910E+0 | 9.8171E- NA NA
h{k+1) h
Unk+2) — Unrsny | 0 0 01
Ordre de | 1.7250E+0 7.5787E-01 | -2.6635E-02 | NA NA
convergence 0
Ony, = On 1.0706E+0 1.5242E- 4.4613E- NA NA
0 01 01

Onsy = 01y,
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Ordre de | 0.098403704 |-2.71385438 | - NA NA
convergence 1.164467059
RA (N) 4.10E+06 4.0710E+06 | 4.0606E+06 | 4.0697E+06 | 4.0571E+06
MA(N.m) 9.67E+06 9.6164E+06 | 9.5924E+06 | 9.6071E+06 | 9.5864E+06
Temps de calcul | 10.3 20.9 70.3 101.3 158.1
CPU (s)
J. Modeéle Turbine Ansys Cst

Taille maillage h |1 0.5 0.25 0.125 0.0625
(m)
Log(h) 0 - - - -

0.30102999 | 0.60205999 | 0.90308998 | 1.20411998

6 1 7 3
Nombre 22327 110833 204711 272231 405627
d’¢léments
Déformation 0.00394 0.0042388 0.0044935 0.0045624 0.004589
U(hy) (m)
Contrainte 99.5 130.36 127.02 155.87 283.61
Maximale
Omax(hy) (MP2)

2.941E-04 2.547E-04 6.89E-05 2.660E-05 NA

|U(hys1) — Ul
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d’éléments

308344000 3340000 28850000 127740000 | NA
o (Rys1) — o ()l
U U 1.1547+00 3.6967E+0 | 13731E+0 NA NA
h{k+1) h
Unk+2) — Unk+1) 0
Ordre de | 2.0751E+0 1.8862E+01 | 1.3731E+00 | NA NA
convergence 0
Tny, = On - -1.1577E- 2.2585E- NA NA
Oh, — Oh 9.237E+00 01 01
/a /2
Ordre de | - - -2.14656 NA NA
convergence
RA (N) 3.340E+06 3.3110E+06 | 3.3105E+06 | 3.3108E+06 | 3.3015E+06
MA(N.m) 7.90E+06 7.825E+06 | 7.822E+06 7.8184E+06 | 7.804E+06
Temps de calcul | 14.9 73.9 120.3 191.3 215.8
CPU (s)
K. Modeéle Turbine Salomé
Taille maillage h | 1 0.5 0.25 0.125 0.0625
(m)
Log(h) 0 - - - -
0.30102999 | 0.60205999 | 0.90308998 | 1.20411998
6 1 7 3
Nombre 94538 93641 94756 96865 120638
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CPU (s)

Déformation 0.00185629 | 0.00184684 | 0.00191776 0.00211448 0.0021288
UChg) (M)
Contrainte 98.95 99.6 99.92 122.23 166.75
Maximale
Omax(hy) (MPa)
U (hyess) — Uhy)| 4.319E-05 1.882E-05 5.0513E-04 3.9014E-04 NA
1474000 13160600 32196600 44525000 NA
|U(hk+1) - U(hk)|
Unces — Un - 3.625E-01 | 1.372E+01 | NA NA
Ordre de | NA -1.48E+00 3.779E+0 NA NA
convergence
gnf — gy, 2.0860E+0 1.487E-02 7.8411E- NA NA
2
C"h)z4 — ahfz 01
Ordre de | 1.6584 -6.15 -0.3477 NA NA
convergence
Temps de calcul | 51.98 56.51 56.23 84.1 165.76




ANNEXE 2 — Validation de la symétrie cyclique
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Cette annexe détaille les résultats des etudes de convergence des différents modeles de

validation de la symétrie cyclique

A. Modeéle 1/6 Disque Ansys tetra

Taille maillage h | 0.8 0.4 0.2 0.1 0.05
(m)
Log(h) -0.0969 -0.3979 -0.69897 -1 -1.30103
Nombre 192 408 2311 18435 139908
d’éléments
Déformation 6.59E -07 6.42E-07 7.7E-07 7.19E-07 7.19E-07
U(hy) (m)
Contrainte 0.742 0.7397 0.74485 1.0151 1.1555
Maximale
amax(hk) (MPa)
U (hyesy) — U ()l 1.722E-08 6.528E-08 1.183E-08 2.2E-10 NA
16 (hress) — 0 (Bl 1750 980 266250 140400 NA
U, U -0.2637 5.5182 -53.773 NA NA
(k+1) h
Unk+2) — Unes1)
Ordre de 2.4642 NA NA

convergence
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Ony, = On -0.19273 0.0341 1.8964 NA NA

Ty T O,

Ordre de -4.873 -0.923 NA NA
convergence
Temps de calcul | 0.1 0.1 1.5 2.5 22.6
CPU (s)

B. Modéle 16 Disque Ansys hexa

Taille maillage h | 0.8 0.4 0.2 0.1 0.05
(m)

Log(h) -0.0969 -0.3979 -0.69897 -1 -1.30103
Nombre 123 141 492 3058 19108
d’¢éléments
Déformation 7.51E -07 7.22E-07 7.48E-07 9.52E-07 1.209E-07
U(hy) (m)
Contrainte 0.578 0.571 0.726 0.952 1.209
Maximale

U (hyesy) — U ()l 2.928-08 2.485E-08 | 7.29E-09 1.28E-8 NA

7070 155030 226260 256580 NA

|6 (his1) — o ()
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Omax (hk) (M Pa)

Unces — Un 1.178 -3.408 0.566 NA NA

Unk+2) — Unes1)

Ordre de | 0.236 -0.82 NA NA
convergence

Tny = On -0.0456 0.685 0.881 NA NA

2

Thyy Oy,

Ordre de -0.545 -0.181 NA NA
convergence
Temps de calcul | 0.1 0.1 0.2 1.1 7.6
CPU (s)

C. Modele 1/6 Disque Aster tetra

Taille maillage h | 0.8 0.4 0.2 0.1 0.05
(m)

Log(h) -0.0969 -0.3979 -0.69897 -1 -1.30103
Nombre 959 1012 1839 8993 75502
d’¢éléments

Déformation 5.92E -07 5.92E -07 5.92E -07 5.92E -07 5.92E -07
U(hy) (m)

Contrainte 0.7418 0.7418 0.7418 0.7418 0.7418
Maximale
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UChiss) — URI| © 0 0 0 NA

o (hier) — o ()l | © 0 0 0 NA
Unk+1) — Un ) ) ) NA NA

Unk+2) — Unes1)

Ordre de - NA NA

convergence

Crhfz — Jp = = = NA NA

Ony, — Ony,

Ordre de NA NA

convergence

Temps de calcul | 4.52 8.73 8.9 11.8 19.8

CPU (s)
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ANNEXE 3 — Fichiers de commande Code-ASTER

A. Modele Poutre simple
DEBUT();
MA=DEFI_MATERIAU(ELAS=_F(E=210000000000.0,
NU=0.3)),);
MAIL=LIRE_MAILLAGE(FORMAT='MED");
MAIL=MODI_MAILLAGE(reuse=MAIL,
MAILLAGE=MAIL,
ORIE_PEAU_3D=_F(GROUP_MA=('pres',)),),
)i
MODE=AFFE_MODELE(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI,
PHENOMENE=MECANIQUE/,
MODELISATION="3D"),);
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI',
MATER=MA,),);
CHAR=AFFE_CHAR_MECA(MODELE=MODE,
DDL_IMPO=(
_F(GROUP_MA="depl’,
DX=0.0,
DY=0.0,

DZ=0.0,),



FINQ);
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PRES_REP=(
_F(GROUP_MA="pres',
PRES=353900.0,),
),
);
RESU=MECA_STATIQUE(MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=_F(CHARGE=CHAR)),);
RESU=CALC_ELEM(reuse=RESU,
MODELE=MODE,
CHAM_MATER=MATE,
RESULTAT=RESU,
OPTION=('SIGM_ELNO','SIEQ_ELNO"),
EXCIT=_F(
CHARGE=CHAR)),);
RESU=CALC_NO(reuse=RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU', 'SIEQ_NOEU', ),);
IMPR_RESU(FORMAT=MED',
UNITE=80,
RESU=_F(MAILLAGE=MAIL,
RESULTAT=RESU,

NOM_CHAM=('SIGM_NOEU',SIEQ_NOEU' 'DEPL"),),):
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B. Modele Poutre courbée
DEBUTY();
MA=DEFI_MATERIAU(ELAS=_F(E=210000000000.0,
NU=0.3),);
MAIL=LIRE_MAILLAGE(FORMAT=MED');
MAIL=MODI_MAILLAGE(reuse=MAIL,
MAILLAGE=MAIL,
ORIE_PEAU_3D= F(GROUP_MA=("Pression’,),),
)i
MODE=AFFE_MODELE(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI',
PHENOMENE=MECANIQUE/,
MODELISATION="3D"),);
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI',
MATER=MA,),);
CHAR=AFFE_CHAR_MECA(MODELE=MODE,
DDL_IMPO=(
_F(GROUP_MA='"deplac’,
DX=0.0,
DY=0.0,
DZ=0.0,),

)l
PRES_REP=(



FINQ);
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_F(GROUP_MA-="Pression’,

PRES=353900.0,),

)i
RESU=MECA_STATIQUE(MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=_F(CHARGE=CHAR)),);
RESU=CALC_ELEM(reuse=RESU,
MODELE=MODE,
CHAM_MATER=MATE,
RESULTAT=RESU,
OPTION=('SIGM_ELNO''SIEQ_ELNO'),
EXCIT=_F(
CHARGE=CHAR),);
RESU=CALC_NO(reuse=RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU', 'SIEQ_NOEU', ),);
IMPR_RESU(FORMAT="MED",
UNITE=80,
RESU=_F(MAILLAGE=MAIL,
RESULTAT=RESU,

NOM_CHAM=('SIGM_NOEU','SIEQ_NOEU''DEPL"),),);
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C. Modeéle Turbine

DEBUTY():;

MA=DEFI_MATERIAU(ELAS=_F(E=210000000000.0,
NU=0.3,

RHO=7850,),);

MAIL=LIRE_MAILLAGE(FORMAT='MED");

MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,

ORIE_PEAU_3D=_F(GROUP_MA="Press',),);

MODE=AFFE_MODELE(MAILLAGE=MAIL,
AFFE=_F(TOUT='0UI',
PHENOMENE='MECANIQUE',

MODELISATION="3D",)),);

MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI',

MATER=MA,),);

CHAR=AFFE_CHAR_MECA(MODELE=MODE,

PESANTEUR=_F(GRAVITE=9.8,
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DIRECTION=(0,0,-1,),),
ROTATION=_F(VITESSE=9.4248,
AXE=(0,0,1,),),
DDL_IMPO=_F(GROUP_MA="encas,,
DX=0.0,
DY=0.0,
DZ=0.0,),
LIAISON_MAIL=(_F(GROUP_MA_MAIT="FAMAST?'
GROUP_MA_ESCL='FASLAV?'
TYPE_RACCORD='"MASSIF,
ANGL_NAUT=-27.692307,
CENTRE=(0,0,0,),),
_F(GROUP_MA_MAIT="Fm,
GROUP_MA_ESCL='Fs,,
TYPE_RACCORD='MASSIF,
ANGL_NAUT=-27.692307,
CENTRE=(0,0,0,),),),
PRES_REP=(_F(GROUP_MA="Press,
PRES=390490.0,),
_F(GROUP_MA="Preback’,

PRES=187718)),).);

RESU=MECA_STATIQUE(MODELE=MODE,

CHAM_MATER=MATE,
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EXCIT=_F(CHARGE=CHAR)),);

RESU=CALC_ELEM(reuse =RESU,
MODELE=MODE,
CHAM_MATER=MATE,
RESULTAT=RESU,
OPTION=('SIGM_ELNO','SIEQ_ELNOQO',),

EXCIT=_F(CHARGE=CHAR,),);

RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,

OPTION=('SIGM_NOEU','SIEQ_NOEU")),);

IMPR_RESU(FORMAT='MED',
UNITE=80,
RESU=_F(MAILLAGE=MAIL,

RESULTAT=RESU,

NOM_CHAM=('SIGM_NOEU','SIEQ_NOEU',DEPL'),),);

FIN();



ANNEXE 4 — Parametres de maillage

A. Modeéle pale-Salomé
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Algorithme Netgen 1D-2D-3D
Hypothéses Netgen 3D parametres
Max size 1

Finesse moderate

Growth rate 0.5

Nb segs per edge 0.3

Nb segs per radius 1




