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RÉSUMÉ 

Ce mémoire de maîtrise, intitulé «PROCESSUS DE VÉRIFICATION ET DE 

VALIDATION DES ANALYSES MÉCANIQUES DES ROUES DE TURBINES 

HYDRAULIQUES AVEC CODE-ASTER», présente le développement d’une méthodologie de 

validation du code Aster pour les analyses mécaniques des roues des turbines hydroélectriques. 

Le sujet tire son origine du besoin d’un industriel de vérifier s’il est envisageable d’utiliser le 

code libre ‘’code Aster’’ dans le but de simuler le comportement d’une turbine hydraulique 

soumise à des efforts fluidiques. La méthodologie utilisée est principalement une comparaison 

entre deux codes, et avec la solution analytique simplifiée. Le code utilisé comme base de 

comparaison est Workbench d’Ansys, qui est un code généraliste ayant déjà été validé. 

Les concepts de vérification et de validation de codes sont expliqués, avec un résumé de 

certaines méthodes particulières. Une brève description du fonctionnement des roues de turbines 

Francis est donnée, avec un résumé des principes physiques utilisés ainsi que le développement 

d’un modèle analytique simplifié. Les modèles  physiques résolues par les solveurs sont données 

avec un résumé qualitatif des modèles numériques utilisés. 

Différents cas tests sont analysés et comparés entre les deux codes et la solution analytique 

quand le cas le permet. Ces cas tests ont pour but de simuler des cas simples faisant ressortir 

séparément chacune des caractéristiques physiques présentes dans une roue de turbine Francis. 

Les caractéristiques physiques importantes sont donc vérifiées une à la fois. Une tentative de 

calcul sur une situation plus réaliste a finalement été effectuée. 
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ABSTRACT 

This master’s thesis, entitled « verification and validation of low-head hydropower runners 

structural analysis with Aster» presents a mechanical based design code validation methodology 

applied to low head hydropower runners. The goal of the project is to verify the possibility of 

using Aster an open source code for mechanical simulations of low head hydropower runners.  

The method used for the verification is mainly a code to code comparison, and with 

analytical solutions, when allowed. The code used as comparison basis is Ansys Workbench, 

which has already been validated. 

The code verification and validation concepts are explained, with a summary of some 

particular methods. A brief description of low head hydropower runners operation is given, with 

a summary of physical principles used for its modeling. A simplified model was developed. The 

physical models solved by the computer codes are given, with a qualitative summary of 

numerical models used. 

Different test cases used are described, with analytical solution when possible. The results of 

these test cases are analyzed and compared between the two codes and the analytical solution. 

The goal of theses test cases is to simulate simple cases showing separately each physical 

characteristics present in a Francis turbine runners. The physical characteristics of importance are 

then verified one by one. An attempt on a more realistic and complex situation was finally done. 
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INTRODUCTION 

Contexte du projet 

Le projet de recherche présenté dans ce mémoire s'inscrit dans le cadre d'un vaste projet de 

développement d'outils automatiques de simulation numérique dans le domaine de la mécanique 

des fluides. Plus particulièrement, le projet vise à automatiser et à optimiser les processus de 

génération et d'adaptation de maillage afin d'améliorer la qualité des simulations numériques. Ce 

projet est mené conjointement par le GRMIAO (Groupe de Recherche en Mathématiques de 

l'Ingénierie Assistée par Ordinateur de l'École Polytechnique de Montréal), et Andritz Hydro 

anciennement General Electric-Hydro qui est une multinationale qui se spécialise dans la 

conception, la fabrication et la vente de turbines hydrauliques destinées à des projets hydro-

électriques à travers le monde. Dans le monde de la ‘’grande’’ hydraulique (projets de plus de 

50MW) chaque projet est unique. Cela nécessite la fabrication de turbines qui sont conçues et 

optimisées de manière spécifique au site en tenant compte des paramètres particuliers de celui-ci 

(hauteur de chute, débit d'eau, . . .). Le but essentiel du projet est de vérifier l’adaptabilité du code 

Aster pour la validation de la tenue mécanique des roues hydrauliques. Code Aster est un logiciel 

libre de simulation numérique en mécanique des structures, développé par EDF (électricité de 

France). Différentes méthodes ont été élaborées et existent dans la littérature pour la vérification 

des codes. Dans le cadre du présent projet, la méthode utilisée est principalement la comparaison 

entre deux codes, et une comparaison avec une solution analytique après une simplification de la 

géométrie. Le code utilisé comme base de comparaison est le Code commercial Ansys 

Multiphysics qui est le module mécanique de la suite logicielle Ansys. Ce module est un logiciel 

de calcul numérique tridimensionnel se basant sur la méthode des éléments finis. 

Définition et concepts de base  

a. Turbine et concepts  

Le mot turbine trouve sa source  dans le mot latin turbino ou turbinis  c'est-à-dire un 

mouvement circulaire. En mécanique, une turbine est un dispositif  dans lequel l’énergie d’un 

fluide moteur (eau, vapeur, gaz)  fait tourner une roue mobile. Toute machine alors capable de 

transformer l’énergie d’un fluide en énergie mécanique est appelée ainsi turbine. Le couple créé 

par cette rotation peut être transmis et entrainera ainsi un autre dispositif (alternateur ou pompe) 

au moyen d’un arbre.  En hydraulique, les turbines sont des machines qui transforment l’énergie 
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potentielle et cinétique d’un courant d’eau  en énergie mécanique au niveau de l’arbre. Cette 

énergie mécanique sera transformée en énergie électrique par un alternateur.  La turbine 

transforme ainsi la différence de pression entre l’amont et l’aval d’un barrage en énergie 

électrique. En général, la différence de pression est exprimée en hauteur (mètres, pieds, ou autre) 

de colonne d'eau. On a 1 mH2O =  Pa, avec  la masse volumique de l'eau et g l'accélération 

de la pesanteur. On parlera ainsi de < hauteur de chute >. La figure suivante illustre la hauteur en 

question 

 

Figure 1: Hauteur de chute (source Wikipédia) 

Il existe différents types de turbines adaptées pour des  hauteurs de chute et des débits 

différents: 

 Turbine de type à action et à réaction : Ce sont des turbines qui transforment la pression 

hydraulique en énergie cinétique par un dispositif injecteur (statique). Ce jet  actionnera 

une partie mobile (roue de la turbine). C’est le cas des turbines Pelton qui sont adaptées 

aux hautes chutes (> 400 m) avec un faible débit d’eau  < 15 /s 

 Turbine à réaction : Ce sont des turbines dans lesquelles la partie mobile engendre une 

différence de pression entre l’entrée et la sortie. 

o La turbine Kaplan est une turbine adaptée pour des faibles chutes (entre 10 et 30 

mètres) et des grands débits (jusqu’à 100 /s). Ses pales sont orientables ce qui 

permet un réglage de la roue en fonction des conditions d’opérations de la turbine.  
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o La turbine Francis, dont il est principalement question dans ce mémoire est la 

turbine la plus utilisée dans le parc d’utilisation mondiale. Elle doit son nom à 

l’ingénieur américain James Bicheno Francis (1815-1892). Elle est adaptée pour 

des hauteurs de chute moyennes (entre 20 et 350 mètres), et des puissances et 

débits moyens (de quelques kilowatts à plusieurs centaines de mégawatts avec des 

débits jusqu'à 30 /s). 

b. Turbine Francis  

Comme déjà décrit plus haut, une turbine Francis est une turbine utilisée pour son rendement 

élevé, variant entre 80% à 95% pour les hauteurs de chute moyennes. La turbine Francis est celle 

dont le domaine d’utilisation est le plus vaste. Ces turbines, si placées sur des immenses 

réservoirs d'eau, arrivent à développer une puissance régulière et forte couvrant les demandes 

d'électricité. Du point de vue mécanique, une turbine Francis  comporte une conduite forcée en 

colimaçon ou bâche spirale qui met l'eau sous pression dans les directrices (aubage).  Ensuite ces 

directrices orientent le flux d’eau sur les pales de la roue. L’eau est aspirée dans l’aspirateur au-

dessous de la turbine entrainant ainsi le mouvement de rotation de la roue. La rotation de la roue 

est transmise à un alternateur électrique via un arbre (Figure 2). Une turbine Francis est adaptée à 

des hauteurs de charges entre 40m et 800m.
1
 

 

Figure 2: Schéma de l’ensemble d’une turbine Francis 

                                                 

1
 André L. JAUMOTTE, Technique de l’ingénieur B4-407 
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Le présent mémoire traitera en particulier  de la validation du Code ASTER pour le 

processus de design des roues des turbines Francis. En effet, l’importance de la roue dans le 

processus de design réside dans le fait qu’elle est l’élément central dimensionnant qui influence 

le design des différents éléments que l’ensemble comporte. Ce qui nous préoccupe à ce niveau est 

la validation des contraintes mécaniques sur la roue et le besoin de prédire ces contraintes 

mécaniques avec un outil validé. Bien que la question du design fluide n’est pas centrale au 

projet, l’étude fluidique fournit les premiers paramètres de dimensionnement de la roue. L’angle 

d’aubage d’entrée est un des paramètres de dimensionnement (Figure 4). 

 

Figure 3: Dessin 3D d’une roue de turbine Francis (source Hydro-Québec) 

La vitesse du fluide à l’entrée dépend ainsi de l’angle d’aubage. D’après l’équation de 

Bernoulli, l'énergie spécifique  par unité de poids d'un fluide non visqueux (l'eau pour les turbines 

hydrauliques) dans un écoulement  sans pertes de charges est constante. 

                      (1) 

La roue récupère le maximum d'énergie après avoir fait passer l'eau en modifiant  les 

paramètres Pression (P) et Vitesse (V), de telle manière qu'à une énergie maximale à l'entrée 

correspond une énergie de l’eau à la sortie aussi faible que possible. La hauteur joue  

généralement un rôle  important : la vitesse à l’entrée de la roue et la pression en dépendent 

fortement. 

La vitesse ne peut être nulle à la sortie car il faut garder un peu de vitesse pour que l'eau 

puisse rejoindre le canal de fuite. On s'efforcera cependant d'avoir une vitesse faible. La pression 

joue un rôle essentiel : grande à l’entrée, faible ou même négative (dépression) à la sortie. 
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Figure 4: Angle d’aubage à l’entrée d’une roue 

c. Processus de simulation numérique en design hydraulique  

Pour concevoir une turbine hydraulique, la technique employée consiste à concevoir un 

premier design à  partir d’une conception existante ‘’proche’’, à valider ce design préliminaire  et 

à y apporter les corrections nécessaires. C'est un processus itératif, où les étapes de conception et 

de validation se succèdent jusqu'à ce que les résultats soient satisfaisants. Avant l’essor des 

simulations numériques, lors de la validation du design, la principale technique employée 

consistait à construire des prototypes en modèles réduits et à faire des tests en laboratoire pour 

évaluer les performances de la turbine. Ce qui fait que le procédé était très coûteux en temps et 

nécessitait des ressources considérables. Les simulations numériques représentent une alternative 

avantageuse à ce procédé puisqu'elles sont beaucoup moins coûteuses et plus rapides. 

Malheureusement, ces simulations restent pour le moment moins précises que les tests en 

laboratoire. Dans le cas d’Andritz, les simulations numériques sont principalement utilisées lors 

de la phase de design et les résultats sont ensuite validés par des tests en laboratoire sur des 

modèles avant de passer à la phase de fabrication. 

Le projet mené en collaboration avec l'École Polytechnique de Montréal vise à améliorer la 

performance des simulations numériques et à réduire la nécessité du recours aux tests en 

laboratoire. La Figure 5 présente le schéma global de simulation numérique. On y voit les 

différents modules utilisés au cours du processus ainsi que les entrées et les sorties de ces 

modules. 
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Figure 5: Schéma global du Processus de simulation numérique 

 

Le point de départ de toute simulation numérique mécanique ou fluidique  est naturellement 

la conception du modèle géométrique. À l'aide d'un modeleur géométrique comme I-DEAS ou 

CATIA par exemple, le concepteur modélise la géométrie du domaine sur lequel la simulation 

numérique sera faite. Chez Andritz, les designers utilisent des outils de modélisations spécialisés 

développés à l’interne. La géométrie sera ensuite maillée à l'aide d'un générateur de maillage, 

aussi appelé un mailleur. Le maillage obtenu permettra ensuite de résoudre le problème par la 

méthode des éléments finis, des volumes finis ou des différences finies, selon le type de solveur 

utilisé et selon le cas étudié. Ces trois différentes méthodes ont toutes un point en commun. Elles 

utilisent un maillage, donc une discrétisation de l'espace, afin de résoudre numériquement le 

problème. La solution dépend également des conditions initiales et aux limites imposées lors de 

la résolution numérique. On obtient donc une solution numérique dont la précision dépendra du 

maillage utilisé, des conditions limites et du modèle. Or, comment peut-on prévoir à l'avance la 

solution de façon à générer un maillage adéquat pour cette solution ? L'approche préconisée pour 

résoudre ce problème est une approche itérative qui consiste à adapter le maillage en fonction de 

la solution obtenue. Ceci permet ensuite de calculer une nouvelle solution plus précise à l'aide 

d'un maillage mieux adapté au problème. Cependant l’aspect adaptif du processus n’est pas 
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utilisé en pratique par les industriels. Les notions d’automatisation de raffinement sont 

essentiellement académiques. Ce processus peut se répéter jusqu'à ce qu'on atteigne un certain 

degré de convergence.  

Besoin d’intégration des disciplines dans le cycle de conception 

a. Le processus actuel  

Lors de la validation du design, pour éviter la rupture mécanique de la roue, il est important 

de classer les différents designs selon leur coefficient de sécurité mécanique. Les coefficients de 

sécurité sont calculés grâce à une démarche classique, impliquant d’abord un calcul fluidique 

puis un calcul mécanique séparé. Cette méthodologie de travail demande des interfaces entre les 

équipes de calcul de fluide et les équipes de mécanique et complique la vérification des critères 

de sécurité. Les interactions entre départements sont multiples au niveau du design. En effet, le 

travail se déroule en 2 étapes pour chaque design, tel qu’illustré à la Figure 6: 

 Calcul hydraulique : plusieurs calculs fluide utilisant plusieurs méthodes (système 1D, 

CFD 3D..) puis un post traitement est effectué pour déterminer une forme optimale qui est 

ensuite transférée aux ingénieurs de structure avec des  données d’entrée pour le calcul 

mécanique (débit Q, pression P,H hauteur de charge); 

 Le calcul mécanique : un calcul de contraintes est déduit des données fluide. 

 Le calcul des facteurs de sécurité en fonction des contraintes calculées et de la ténacité 

critique des matériaux. 
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Figure 6: Circuit actuel de design CFD des turbines
2
 

b. Le besoin d’intégration et de validation de design simplifié 

Le point faible de ce processus est la nécessité de traiter plusieurs designs par le cycle 

complet de calcul pour les classer et déterminer le design le plus performant du point de vue 

hydraulique et puis mécanique. Ce circuit est long et coûteux à cause de la multiplication des 

interactions entre les calculs fluide et structure. Cependant c’est le calcul hydraulique qui 

détermine le calcul mécanique. 

De là vient l’intérêt de prédiction du calcul mécanique et le besoin de développer un outil 

simplifié qui éviterait ainsi un calcul lourd en ressource. Ainsi la méthodologie développée dans 

le cadre de ce projet de maîtrise permet de vérifier si le code Aster permet de faire les calculs 

requis en utilisant les concepts de la V&V (vérification et validation). À terme, cette 

simplification du cycle de conception permettra la vérification mécanique d’une turbine en cours 

                                                 

2
 Graphe tiré de CFD-Based optimisation for Hydro turbines (Wu & al 2007) 
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de design hydraulique. La prédiction approchée du calcul mécanique nécessite l’intégration d’un 

code d’analyse mécanique validé dans le design hydraulique. 

Éléments de la problématique  

Nous procéderons dans cette section à la description des différents aspects du problème 

étudié ainsi que ses différentes implications. 

a. Les besoins du partenaire  

Pour des raisons de simplification et de minimisations des interfaces d’échange de données, 

il serait utile de développer une méthodologie de design en utilisant un code à source libre vérifié. 

b. Objectifs de l’étude  

L'objectif principal de la recherche dans laquelle s'inscrit ce travail est d'aboutir à valider le 

processus d’analyse de contraintes statiques dans les pales de roue sur un outil à code source 

libre, et utilisable par les concepteurs de turbines chez Andritz, permettant de valider le design 

des roues et d'optimiser les turbines Francis en fonction des différents paramètres et des 

conditions de fonctionnement. Dans ce contexte, la présente étude vise à apporter une 

contribution à la validation du logiciel open source Code Aster pour l’analyse de contraintes 

statiques et l’aspect résistance à la rupture fragile. Pour ce faire, les objectifs secondaires suivants 

doivent être réalisés :  

 Vérifier  Code ASTER par une approche de comparaison des codes; 

o Développer un modèle mécanique Ansys permettant de reproduire les résultats des 

simulations du modèle de la turbine fourni par Andritz; 

o Développer un modèle ‘’Équivalent’’ ASTER; 

 Documenter le processus d’analyse mécanique et développer une connaissance experte 

documentée; 
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Plan du mémoire 

Ce présent mémoire comporte 5 chapitres sans compter l’introduction et la conclusion. 

 En introduction, le processus de simulation numérique en design numérique a été 

présenté ainsi que les besoins de simplification de l’industrie.  

 Dans le premier chapitre la théorie de vérification et validation sera présentée 

basée sur plusieurs travaux de la littérature. 

 Le deuxième chapitre présente les aspects techniques de la simulation par la 

méthode des éléments finis ainsi que les deux plateformes de simulation 

numérique utilisées. 

 Dans le troisième chapitre un modèle mathématique simplifié  approximant le 

problème physique du processus de design des roues de turbines hydrauliques sera 

développé. Les différents cas test de validation seront élaborés.  Cette démarche 

permet de présenter tout le processus d’analyse des roues de turbines hydrauliques 

dans l’objectif de développer des connaissances experts. les résultats des cas test 

préliminaires seront également présentés. 

 Le quatrième chapitre présente les cas industriels de vérification du cas test 

BM2v011 d’Andritz sur Ansys et code Aster qui est le nouvel outil à implémenter 

pour les besoins d’Andritz. 

 Le cinquième chapitre présente les résultats de la vérification des cas industriels  

 Finalement, en conclusion, une revue du travail fait et du travail à faire dans le 

futur est présentée. Est-ce que le nouveau code permet réellement de résoudre les 

problèmes? 

 

. 
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CHAPITRE 1 NOTIONS DE VÉRIFICATION ET VALIDATION 

1.1 Le concept de Vérification et de validation (V&V) 

Avec l’émergence du calcul numérique et de l’ingénierie assistée par ordinateur, et avec la 

complexité des outils connexes au calcul numérique (maillage, visualisation), le besoin de 

vérification des méthodes de calcul numérique et de simulation est de plus en plus critique 

surtout dans des domaines où le risque d’utilisation est élevé (énergie nucléaire, aéronautique). 

Les questions d’estimation et de caractérisation de l’erreur de prédiction des solutions et de 

contrôle de qualité des algorithmes et des codes de calculs ont pris de plus en plus d’importance. 

Ainsi, un nouveau domaine de la vérification et validation
3
 a vu le jour en réponse à ce besoin. 

1.1.1 Terminologie  

Dans l’usage courant, les termes vérification et validation peuvent souvent être considérés 

comme des synonymes. Cependant dans le contexte de la V&V, les mots ‘’Vérification’’ et 

‘’Validation’’ deviennent des termes techniques représentant deux concepts différents. Le terme 

vérification [1] désigne la démarche de comparaison des résultats obtenus par un code à vérifier 

avec soit une solution analytique, ou avec un autre code préalablement vérifié. Cette démarche 

vise à s’assurer que le modèle numérique implémenté dans le code correspond à la description 

formelle de la méthode numérique. La vérification du code a pour objectif de détecter les erreurs 

d’implémentation. Il s’agit alors uniquement d’une vérification de la cohérence mathématique 

entre le code et le modèle analytique ou numérique.  

La comparaison entre le phénomène réel et le code est du ressort de la validation qui désigne 

plutôt la comparaison des résultats obtenus par un code à valider avec des résultats de mesures 

expérimentales. Ainsi le but de la validation est de vérifier si le code résout le bon système 

d’équations physiques pour le problème étudié.  

                                                 

3
 Pour désigner le processus global de qualification des codes de calcul numérique, différentes appellations ont été 

proposées : Certification (Aeschliman et al. 1995), Validation science (Oberkampf & Trucano, 2002) ou encore le 

symbole V2V (Roache, 2004). Cependant l’appellation la plus répondu dans la littérature est Verification and 

Validation (V&V) 
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Les deux concepts de bases ‘’erreur’’ et ‘’incertitude’’ auxquels fait appel la V&V sont 

souvent confondus. En pratique dans le contexte de la V&V, les concepts sont bien définis
4
. 

 Une erreur est la différence entre le résultat d’une mesure et la vraie valeur du mesurande 

(grandeur physique objet de la mesure); 

  Une incertitude est une grandeur associée au résultat d’une mesure, qui caractérise la 

dispersion des valeurs qui pourraient être attribuées au mesurande. 

Bien que l’appellation V&V ‘’Vérification et Validation’’ ne nomme que deux activités, en 

réalité elle englobe trois activités distinctes de quantification d’erreurs et d’incertitudes
5
. 

 La vérification des codes : elle consiste à évaluer si le code converge bien vers la solution 

du modèle. Une procédure d’évaluation d’erreur est requise à partir d’une solution 

connue; 

 La vérification des calculs : cette démarche utilise l’estimation d’erreur numérique afin 

d’associer un intervalle de confiance au résultat d’une simulation. Pour ce faire 

l’estimation d’erreur est faite, la plupart du temps dans un contexte où la solution exacte 

est inconnue, à partir de deux solutions de précisions différentes. Cette estimation 

numérique nécessite une vérification préalable du code et que le bon fonctionnement du 

code soit assuré; 

 La validation : une démarche qui vise à évaluer dans quelle mesure le résultat de la 

simulation concorde avec la valeur réelle. Elle nécessite une comparaison avec les 

données expérimentales. 

Comme la validation de code exige la comparaison avec des données expérimentales, 

l’emphase sera sur la vérification du code dans le cadre du présent projet. 

                                                 

4
 L’usage le plus courant des termes se rapprochent des concepts utilisés en sciences expérimentales dans des sources 

comme  Eça & Hoekstra, Coleman(2003), Pelletier & Roache (2006). La définition est selon Coleman (2003) d’après 

ISO(1993,1995). Ces définitions ont été étendues au calcul numérique par Coleman & Stern (1997) 

5
 Ceci a été souligné dans Roache(2004) et Pelletier & Roache (2006) 



13 

 

1.1.2 Vérification du code  

Comme expliqué, l’objectif de la vérification de code est de s’assurer que le code représente 

correctement le modèle analytique dont il doit permettre la résolution. Il s’agit alors d’une 

démarche théorique totalement indépendante de l’expérimentation. La littérature relative à la 

vérification de code
6
 met l’emphase sur la nécessité de  vérification de code en deux étapes : 

 Le contrôle de la qualité du logiciel ou SQA (software quality assement)): le sujet est 

assez vaste et son usage en simulation numérique est, pour des raisons historiques, peu 

répandu comparativement à d’autres secteurs (le risque jugé moins important en cas de 

défaillance par rapport à d’autres domaines comme la finance). La SQA couvre l’analyse 

statique, dynamique et formelle des codes. Même les codes les plus éprouvés peuvent 

contenir des failles qui peuvent être révélées par la SQA (Hatton, 1997) 

 La vérification de l’algorithme numérique
7
: où l’accent est mis généralement sur la 

vérification des codes d’éléments finis, de différences finies ou de volumes finis. 

Cependant, ceci implique  le concept d’évaluation d’erreur qui nécessite la connaissance 

d’une solution exacte. 

1.2 Les sources d’erreur dans la modélisation numérique 

De nombreux facteurs peuvent affecter la précision d’une solution numérique d’un 

problème
8
 : 

 Les erreurs de modélisation; 

 Les erreurs de discrétisations (EDP, les conditions limites,  le maillage, etc.); 

 Les erreurs d’arrondis;  

 Les erreurs de troncature; 

                                                 

6
 (Oberkampf & Turcano, 2002, Oberkampf et al., 2002) 

7
 L’appellation d’Oberkampf & Trucano (2002), reprise également dans le document de l’AIAA (1998) : Numerical 

algorith verification 

8
 Aeschliman et al. 1995, ERCOFTAC, 2000 
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 Les erreurs de programmation. 

1.2.1 Erreur de modélisation  

Dans une approche d’ingénierie classique, l’ingénieur est amené à choisir un modèle 

formalisant les équations d’un problème physique et de s’assurer que le modèle numérique est 

bien défini en admettant une solution unique. En calcul numérique, la modélisation exige 

l’utilisation des lois d’équilibre, de comportement et d’énergie. Pour des raisons de simplification 

de résolution, l’ingénieur élabore des modèles avec des hypothèses simplificatrices qui ne 

représentent que partiellement la réalité physique du problème à modéliser. D’autre part, les 

paramètres qui interviennent dans la modélisation peuvent provenir de mesures expérimentales 

ou d’approximation qui représentent une autre source d’erreur incontrôlable. 

1.2.2 Erreur de discrétisation  

Généralement, la source d’erreur la plus importante pour des codes ne comportant pas 

d’erreurs de programmation réside dans la nature discrète de la modélisation du domaine spatial 

et temporel. Pour cette raison, l’activité centrale de la vérification de code est l’étude de 

convergence de la discrétisation. Une des solutions pour traiter ce problème est le raffinement de 

maillage. Dans le cas des milieux continus, une méthode de calcul très bien adaptée est la 

méthode des éléments finis. Comme dans toute autre méthode de discrétisation, le calcul est 

effectué sur un maillage (domaine de calcul et de résolution) qui contient des données 

géométriques et influence le calcul. Dans le cas simple présenté sur le graphe suivant, les 

contraintes présentent un saut à la traversée de chaque arête et sont uniformes dans chaque 

élément. En raffinant le maillage, il est possible de réduire l'erreur due à la discrétisation; le 

rythme (ordre de convergence) avec lequel l’erreur diminue est un élément majeur de la 

vérification. 

 

Figure 1-1 : Effet du raffinement sur le champ des contraintes 
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Théoriquement, une convergence d’une solution ne signifie en aucun cas que l’erreur de 

discrétisation de maillage est nulle après raffinement. Le terme Convergence renvoie à une zone 

asymptotique
9
 de convergence de la solution. Cependant, une convergence complète en pratique 

est difficile à atteindre mais peut être approchée en utilisant les méthodes adaptives de maillages 

(Turgeon & pelletier, 2002, Pelletier et al., 2004) . 

1.2.3 Erreur de résolution  

Les trois dernières erreurs peuvent être regroupées sous l’appellation d’erreur de résolution. 

Les erreurs de résolution sont liées à la machine de calcul utilisée et aux algorithmes itératifs qui 

sont le cœur des codes de calcul. Les erreurs liées à la machine ont pour origine les troncatures et 

les arrondis effectués sur la représentation des nombres en mémoire: selon l’IEEE754
10

 , un 

ordinateur ne peut représenter, avec un nombre fini de chiffre, les nombres réels. Les algorithmes 

itératifs de simulation numérique peuvent propager les erreurs et les amplifier. Dans certains cas, 

le critère de convergence qui est un compromis entre coût de calcul et précision peut conduire la 

solution numérique très loin de la solution approchée.  

Ce projet de maitrise tiendra compte du contrôle de ces erreurs et de l’investigation sur leur 

nature en s’assurant que la convergence des algorithmes de résolution réduit suffisamment le 

résidu. 

1.3 Méthode de validation de code 

Pour vérifier ou valider un logiciel, plusieurs méthodes ont été développées et publiées [1-2]. 

1.3.1 Méthode de la solution exacte  

C’est une méthode de comparaison avec une solution analytique exacte : quand une solution 

exacte d’un problème EDP étudié peut être obtenue analytiquement, il est possible de calculer 

facilement la différence entre la solution numérique et la solution exacte sur le domaine. 

                                                 

9
 Dans la zone asymptotique, le comportement de la convergence est monotone; l’évolution de la solution numérique 

et l’erreur liée à la solution deviennent prévisibles 

10
 Un standard de représentation des nombres en binaire 
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L’avantage de  cette méthode est la possibilité de vérifier si les équations sont résolues 

correctement par le solveur vérifiant ainsi toutes les erreurs du code qui peuvent affecter la 

solution ou la convergence de la solution. Cependant, il n’est pas toujours facile d’obtenir une 

solution exacte car les solutions analytiques ne s’appliquent qu’à un nombre limité de problèmes. 

Dans la majorité des cas, la solution analytique n’est possible qu’après plusieurs approximations 

simplificatrices.
11

 Dans la littérature on peut trouver des tests de vérifications de codes avec des 

solutions exactes. 

Cette méthode est très fiable lors de la programmation ou comme première approche à la 

vérification : elle réduit l’aspect suggestif lors de l’analyse des résultats et permet un calcul 

d’estimation d’erreur simple qui est l’écart entre la solution analytique et la solution numérique. 

Elle est également très pertinente lors d’une prise en main d’un nouveau code pour la formation 

des usagers. Les tests ont pour but de s’assurer du bon comportement du modèle numérique par 

rapport au modèle symbolique en vérifiant entre autres, pour un code de dynamique des fluides : 

la conservation de masse, la quantité de mouvement, la continuité de déplacement ou la 

conservation d’énergie sur tout le domaine et de l’utilisation adéquates des conditions frontières 

imposées. 

1.3.2 Comparaison à deux des solutions connues d’EDP 

Pour des problèmes plus complexes où il est impossible d’obtenir analytiquement des 

solutions, cette méthode fut développée. La littérature
12

 suggère l’utilisation de la comparaison 

avec des sources confirmées à partir de méthodes numériques différentes. C’est une méthode de 

comparaison avec des solutions largement documentées dans la littérature. Les résultats 

numériques peuvent être comparés à des solutions vérifiées et approuvées, augmentant ainsi la 

confiance dans les solutions numériques trouvées. Cependant cette méthode, qui se base sur des 

études de similitude, implique la multiplication des variables qui peuvent être sources de 

différence (différence des modèles symboliques, géométriques, et des conditions limites). Cette 

méthode peut être considérée d’avantage comme une méthode de comparaison des modèles 

                                                 

11
 (Abanto et al. 2005, Cadafalch et al.,2002) 

12
 AIAA, 1998 ,Oberkampf & Trucano, 2002 
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numériques pour déterminer le modèle le plus approprié au besoin de la simulation plutôt qu’une 

méthode de vérification du code. La littérature suggère également de coupler cette méthode à une 

autre méthode de vérification. 

1.3.3 Méthode des solutions manufacturées  

Cette approche (MMS : method of manufactured solutions) est la méthode la plus rigoureuse 

de vérification de code. Elle consiste à faire une vérification inverse c.à.d, à effectuer une 

résolution d’EDP en remontant d’un résultat. On fixe une solution simple à obtenir en définissant 

des fonctions analytiques quelconques pour les variables de la solution : 

           (1-1) 

Puis on considère un opérateur G symbolisant le système d’équation du modèle 

mathématique à résoudre. Ainsi on peut exprimer le problème sous cette forme indépendamment 

de la complexité du système d’EDP : 

            (1-2) 

avec φ la solution exacte du problème. En appliquant l’opérateur (G) à la solution (w), on obtient 

le système suivant : 

           (1-3) 

où Q est le terme source. 

Le terme Q peut être déterminé analytiquement. Enfin un calcul numérique avec le code à 

vérifier est effectué en imposant le terme source trouvé symboliquement.  

La MMS se révèle la méthode la plus robuste d’après la littérature
13

. Toutefois il est difficile 

de l’utiliser sur des géométries complexes comme dans le présent projet. 

 

                                                 

13
 Abanto et al., 2005, Roache, 1998, 2002,2004, Salari & Knupp, 2000, pelletier & Roache, 2006 
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1.3.4 Méthode de comparaison des codes  

Comme son nom l’indique, cette méthode est une méthode plutôt intuitive de vérification des 

résultats numériques où un code à vérifier est comparé à un autre code semblable pouvant 

résoudre  des cas test similaires.  Le code de référence doit être vérifié et validé rigoureusement 

au préalable. Cette approche est utilisée quand la complexité du problème ne peut permettre une 

résolution analytique impliquant que les autres méthodes ne sont pas applicables. Cette approche 

nécessite également une procédure de comparaison rigoureuse pour s’assurer de l’utilisation des 

mêmes paramètres. Selon Trucano et al. (2003), si  la solution convergée du code à vérifier et 

 la solution convergée du code de référence, et M la solution exacte du problème, la 

comparaison doit valider l’inéquation suivante : 

        (1-4) 

Théoriquement, lors de la convergence des deux solutions numériques après un raffinement 

du maillage, les deux solutions doivent concorder. Néanmoins l’inconvénient de cette méthode 

est qu’elle requiert des preuves de la validation et vérification du code de référence avant même 

de procéder à la comparaison. 

1.4 Méthode d’estimation d’erreur et de quantification de 

l’incertitude  

La méthode des éléments finis contribue, de par son principe même de solution approchée, à 

l'écart entre le résultat des simulations et la réponse de la réalité. D’où l’intérêt pour le 

développement de procédures quantitatives rigoureuses, permettant de chiffrer les écarts obtenus. 

Ces travaux ont débouché sur le développement d'outils nommés estimateurs d'erreur, intégrés 

aux solveurs éléments finis modernes. Il en existe deux types
14

 : 

                                                 

14
 BANGERTH, W, RANNACHER, R. (2003). Adaptive finite element methods for differential equations, 

Birkhäuser. 
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 les estimateurs a priori qui permettent, avant tout calcul, de "prédire" l'ordre de 

grandeur de l'écart entre la solution que l'on obtiendra et la solution continue. Ils 

découlent directement des propriétés de convergence de la méthode des éléments 

finis : ils indiquent l’évolution de l'écart en fonction de la taille h des éléments 

(proportionnellement à h, à son carré...).  ils sont donc utilisés pour contrôler les 

modèles précisément  les maillages ; 

 les estimateurs a posteriori qui permettent d'estimer cet écart une fois la simulation 

réalisée; ils reposent sur l'analyse des anomalies d'une solution discrète donnée 

(cas des "sauts" des contraintes par exemple) pour chiffrer l'écart par rapport à la 

solution continue. ils sont donc très utiles pour contrôler les résultats.  

Les deux types d’estimateurs sont couplés pour maitriser les erreurs : les premiers permettent 

de prédire les raffinements à apporter à un maillage pour obtenir la précision souhaitée, et les 

secondes permettent de contrôler de la précision à atteindre. 

En pratique, l’étude de convergence du maillage permet une vérification d’erreur rigoureuse  

car  l’étude peut être menées jusqu’à un niveau de précision arbitraire
15

 (limitée par par la 

représentation de l’ordinateur). Il s’agit également d’une procédure directe et probablement la 

technique d’estimation d’erreur la plus fiable
16

. 

En ce sens, la méthode de la Grid-Convergence index (GCI) et ses dérivées puisent leur 

logique dans la capacité d’estimation d’erreur des études de convergences pour déduire une 

estimation quantitative d’incertitude .Trois variantes de la GCI peuvent être utilisées dans le 

cadre de l’analyse : 

 Analyse globale sur un triplé (trois maillages de résolutions différentes) 

 Analyse globale en utilisant la méthode des moindres carrés (MMC) 

 Analyse locale par la méthode de Cadafalch et al. (2002). 

                                                 

15
 Roache, 1998b 

16
 illinca et al.2000,oberkampf et al, 2002, Pelletier & Roache ,2006 
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1.4.1 Théorie de la convergence  

Les études de convergence de maillage (ou de discrétisation) s’appuie sur le principe que la 

précision d’un résultat numérique d’une simulation augmente en raffinant le maillage ou la 

discrétisation. L’ordre de convergence p  qui correspond au rythme de cette augmentation est 

propre à l’algorithme numérique utilisé. On désigne l’erreur comme étant la différence entre la 

solution discrète φ(h) et la solution exacte de l’EDP : 

            (1-5) 

L’erreur E devrait tendre vers zéro de façon asymptotique, proportionnellement au terme  

pour une méthode numérique d’ordre p (Roache,1998b). Le terme h est la longueur 

caractéristique de la finesse de la discrétisation (taille du maillage). La relation asymptotique 

suivante est ainsi observée pour un maillage suffisamment fin : 

           (1-6) 

Au lieu d’utiliser la longueur h caractéristique du maillage pour décrire la discrétisation, il 

est possible d’employer le nombre de mailles caractéristiques N dans une direction en 1D. la 

relation de la zone asymptotique de convergence devient alors : 

           (1-7) 

où : La constante de proportionnalité C peut différer selon la formulation. 

En pratique la dernière formulation a l’avantage de faire intervenir des exposants entiers. 

1.4.2 Le Grid Convergence Index 

Le Grid-Convergence Index (GCI) fut introduit pour comparer toutes les études de 

convergence sur un même pied (Roache, 1994). Cet index peut être appliqué autant sur des 

résultats locaux que sur des normes fonctionnelles issues de différents maillages. Il est basé, 

comme toutes les méthodes apparentées, sur l’extrapolation de Richardson (Roache, 1998b), qui 
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nous fournit un estimé de la solution exacte. L’estimateur d’erreur  est donné par la différence 

entre la solution du maillage fin et la solution extrapolée. 

           (1-8) 

La grandeur |E1| peut être perçue  comme un estimateur d’incertitude U50 c.à.d. la solution a 

une chance sur deux (50 %) de se retrouver à l’intérieur de cette intervalle et autant pour 

l’extérieur de l’intervalle. Le GCI vise à obtenir un intervalle de confiance de 95%. Dans cette 

optique, |E1| est majorée par un facteur de sécurité Fs. 

           (1-9)  

À partir des maillages utilisés pour le calcul du GCI, on détermine l’ordre de convergence 

(p) de l’algorithme. Cette étape de détermination de l’ordre de convergence observé est 

primordiale lors de la vérification du code en permettant une comparaison avec l’ordre de 

convergence théorique. Il s’agit là de vérifier systématiquement si le code suit bien le 

comportement prévu théoriquement. 

Toutefois il faut noter que certains facteurs peuvent dégrader l’ordre de convergence observé 

sans remettre en cause la qualité de l’algorithme
17

 : 

• Manque de similarité géométrique des maillages utilisés; 

• Présence de discontinuités ou de singularités dans la géométrie ou dans la solution; 

• Impossibilité technique d’atteindre la zone de convergence asymptotique; 

• Phénomènes apparaissant seulement à partir d’un certain niveau de raffinement 

(multi-scale problems); 

• Utilisation de techniques numériques d’interpolation ou de quadrature. 

Comme indiqué, le GCI est proposé comme une méthode pratique de quantification de 

l’incertitude U95. Son comportement a été observé sur une multitude de problèmes, où les 

                                                 

17
 Voir Oberkampf & Trucano (2002) , Pelletier & Roache (2006) 
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suppositions nécessaires à l’extrapolation de Richardson n’étaient pas nécessairement rencontrées 

(solution lisse, ordre de convergence observé correspondant à l’ordre théorique de la méthode, 

convergence monotone de la solution). Le facteur de sécurité Fs et sa valeur font encore l’objet 

des recherches. Cependant, la littérature actuelle préconise l’utilisation de Fs=1.25, proposée par 

Roache (1998b) pour le calcul du GCI à partir de trois maillages ou plus. Cette valeur représente 

aujourd’hui la meilleure valeur pour obtenir une estimation de l’intervalle U95. En effet,
 
des 

études sur le sujet
18

  confirment le bien fondé et la robustesse de cette recommandation. 

1.4.3 Méthode des moindres carrés  

La détermination d’une courbe de convergence  est permise par la méthode des 

moindres carrés. Cette courbe de convergence, une fois appliquée à toutes les solutions obtenues, 

minimise la dispersion des résultats (Eça & Hoekstra 2003). 

Pour définir la dispersion des données autour de la courbe de convergence, on utilise la 

méthode MMC (moindres carrés). On pose : 

       (1-10) 

Où S est une mesure d’écart entre les données ( ) et la courbe exponentielle définie par 

 (qui correspond à l’estimé de la fonction exacte obtenu par la généralisation de 

l’extrapolation de Richardson), par C (constante de proportionnalité), et par l’ordre de 

convergence observé p. On effectue une sommation sur le nombre de mailles utilisées ( ). 

Pour obtenir la dispersion minimale, on pose les dérivées de S par rapport à , C et p 

égales à zéro. On obtient alors le système suivant : 

                                                 

18
 Eca & Hoekstra, (2002) ; Cadafalch et al., (2002) 
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         (1-11) 

          (1-12) 

   (1-13) 

Comme le système est non linéaire pour p, on procède à la résolution en effectuant en 

premier lieu un balayage de valeurs de p entre 0 et 10 pour détecter un changement de signe du 

résidu de la dernière équation du système. La racine est trouvée ainsi par la méthode de la 

sécante. Puis l’estimation de la fonction exacte  peut être utilisée pour l’estimation d’erreur 

sur le maillage fin. À partir de ce point, d’après Eça & Hoekstra (2000), le calcul d’un GCI avec 

Fs=1.25 ‘’semble être viable et robuste’’ même avec les limites de la convergence. Ainsi, la 

convergence est rarement monotone ; l’ordre de convergence observé peut différer de l’ordre de 

convergence théorique et varier selon des échantillons (même pour des échantillons voisins). 

Pelletier & Roache (2006) stipulent que cette situation est représentative du calcul assisté par 

ordinateur en ingénierie.  

Bien que la MMC ait été développée pour effectuer des analyses sur quatre maillages ou 

plus, en l’appliquant à trois maillages, la courbe pourra passer par les trois points et donner une 

dispersion des résultats nulle. L’estimé de la fonction exacte utilisé pour le calcul du GCI sur un 

triplé est ainsi retrouvé. Il est intéressant d’utiliser les deux variantes conjointement car les 

défauts de l’une sont comblés par la seconde. Ainsi la MMC permet de rendre compte de la 

dispersion des résultats autour d’une courbe de convergence sans pouvoir caractériser l’approche 

de la zone asymptotique de convergence. Cependant le calcul du GCI triplet par triplet est 

laborieux dès qu’il s’agit d’un grand nombre de maillages. La comparaison des triplets 

consécutifs par le ratio RGCI
19

 facilite l’appréciation de l’approche de la zone asymptotique. 

                                                 

19
 D’après Roache (1998b) 
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           (1-14) 

où p est l’ordre de convergence observé sur le maillage le plus fin (Roache, 1995, Slater,2005). 

Le ratio RGCI doit tendre vers l’unité à l’approche de la zone asymptotique de convergence, car 

 est alors constante. 

1.4.4 Méthode de Cadafalch et al 

L’intérêt de la méthode de Cadafalch (2002) est de permettre la cueillette d’information sur 

les valeurs locales  difficiles à analyser avec les autres méthodes. La méthode de Cadafalch suit 

une démarche séquentielle : 

i. Construction d’un maillage d’analyse : à partir du même maillage d’analyse (post-

processing-grid) on rapporte des solutions obtenues pour trois discrétisations 

différentes sur ce même maillage. Généralement, ce maillage est le maillage le 

plus grossier avec une interpolation des résultats. 

ii. Classification des résultats locaux : un tri des résultats est nécessaire  avec 

l’approche de Cadafalch afin d’utiliser l’extrapolation de Richardson aux nœuds 

où elle serait valide. Les nœuds sont ainsi classés en trois catégories distinctes : 

 Nœuds de Richardson :  

 Nœuds oscillatoires :  

 Nœuds convergés :  

L’astérisque (*) renvoie à une solution normalisé par le plus grand  en 

valeur absolue. C0 correspond à la précision maximale du code fournit par 

. 

L’approche permet d’extraire la tendance générale de la solution  en 

utilisant une bonne proportion de nœuds de Richardson, malgré les limites 
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de cette méthode : les nœuds peuvent ne pas remplir toutes les conditions 

nécessaires à l’extrapolation de Richardson (solution en dehors de la zone 

de convergence asymptotique); les nœuds convergés peuvent être des 

simples points d’inflexion d’une solution oscillatoire.
20

 

iii. Calcul de l’ordre de convergence local : après un raffinement , 

l’ordre de convergence p est déterminé sur les nœuds de Richardson : 

 

L’approche de la zone de convergence asymptotique peut être analysée par la 

valeur moyenne de la dispersion
21

 de l’ordre de convergence sur le domaine. 

iv. Ordre de convergence global : La convergence globale p est estimée à partir de la 

moyenne des p(x) sur un domaine contenant des nœuds de Richardson  en nombre 

suffisant.  

v. Calcul du GCI Local : le GCI local est calculé sur les nœuds de Richardson dont 

l’ordre P(x) observé est positif. 

 

On utilise un Fs égal à 1.25. 

vi. Calcul du GCI global : Sans prendre en compte les nœuds oscillatoires, le GCI 

global est évalué à partir de la moyenne pondérée des GCI locaux  

 

                                                 

20
 REID, T. (2007). Méthodes pour la vérification d’un code de mécanique des fluides. Mémoire de maîtrise, École 

Polytechnique de Montréal. 

21
 Cadafalch et al, 2002 
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Dans le cadre de ce mémoire, notre but principal est la vérification du logiciel code ASTER 

pour le  processus de design des roues de turbines Francis. La vérification est possible avec la 

théorie de convergence asymptotique à moindre coût et avec une précision supérieure aux  

normes de l’industrie. Pour cette raison, il a été décidé de procéder par la théorie de convergence 

pour vérifier code ASTER ainsi que toute simulation numérique dans le cadre de ce projet de 

mémoire et de procéder également par la méthode de comparaison des codes quand il sera 

possible.   
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CHAPITRE 2 ASPECTS TECHNIQUES 

2.1 Méthode des éléments finis  

Pour résoudre numériquement un comportement physique complexe, on utilise très souvent 

la méthode des éléments finis. Cette méthode consiste en la transformation du problème à 

résoudre en un problème équivalent. Ceci nécessite la mise sous forme variationnelle ou faible du 

problème d’équations aux dérivés partielles (ou EDP). Dans cette dernière formulation, le 

problème est posé dans un espace de dimension infinie. La méthode des éléments finis consiste à 

poser un problème analogue en dimension finie, à partir d’une « triangulation » du domaine Ω où 

est définie l’EDP. Cet outil des mathématiques appliquées conduit à l’obtention d’une solution 

approchée d’une EDP définie sur un domaine, comportant des conditions aux bords permettant 

d'assurer l’existence et l’unicité d'une solution (d’après le théorème de Lax-Milgram). 

2.1.1 Approche variationnelle 

On considère ƒ une fonction continue sur Ω et u la solution de l'équation aux dérivées 

partielles suivante sur Ω (  est l'opérateur laplacien) : 

           (2-1) 

Avec une condition au bord u = 0 sur δΩ. Ceci peut également se réécrire u ∈ V0.  

Soit v ∈  V0 quelconque. On multiplie les deux parties de l'équation précédente par v puis on 

somme sur le domaine Ω, puisque v et ƒ sont tous deux de carré sommable sur ce domaine. On 

obtient l'équation : 

      (2-2) 

On utilise pour le premier terme une intégration par parties : 

    (2-3) 

Dans cette formulation, v est nulle sur le bord (v ∈  V0) ce qui permet d'obtenir la 

formulation faible du problème : 
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     (2-4) 

On reformule le système sous la forme suivante  

         (2-5) 

où 

 

avec a un opérateur bilinéaire symétrique (de V
2
 dans ) ; 

  

avec un opérateur linéaire (de V dans ). 

La méthode des éléments finis permet la résolution de toute équation aux dérivées partielles 

dont la forme faible se met sous la forme de l’équation (2-5).  

2.1.2 Principe général de la méthode des éléments finis  

La démarche globale de la méthode des éléments finis est la suivante. On dispose d’une EDP 

sur un domaine Ω. On écrit la formulation variationnelle de cette EDP (voir l’équation 2-5). On 

cherche à approximer u par une approximation interne. On définit un maillage du domaine Ω qui 

permet de de définir un espace d’approximation  Vh de V de dimension finie Nh. Le problème 

approché devient alors : 

        (2-6) 

Soit (  une base de  . En décomposant  sur cette base sous la forme 

           (2-7) 

Le problème devient alors de trouver ,…,  tel que  



29 

 

        (2-8) 

par linéarité de a et l : 

trouver ,…,  tel que      (2-9) 

Ceci revient à résoudre le système linéaire suivant : 

     (2-10) 

Soit Aµ=B. 

La matrice A est a priori pleine. Toutefois, pour limiter le volume de calculs, il faut définir 

des fonctions de base  qui permettent une réduction de la complexité du système. Chaque 

fonction de base sera nulle partout sauf sur quelques mailles. Ainsi les termes a('i;'j) seront le plus 

souvent nuls, car correspondant à des fonctions  et  de supports disjoints. La matrice A sera 

donc une matrice creuse, et on ordonnera les  de telle sorte que A soit à structure bande, avec 

une largeur de bande la plus réduite possible. Cette opération se base sur trois idées principales : 

 Le principe d’unisolvance : il faut trouver des degrés de liberté (ddl) tels que la 

donnée de ces ddl détermine de façon univoque toute fonction de Vh. Déterminer 

une fonction reviendra alors à déterminer les valeurs de cette fonction sur ces ddl. 

 Définition des : on définit les fonctions de base par sur le ième ddl et 

=0 sur les autres ddl. les  auront un support réduit à quelques mailles 

simplifiant ainsi leur manipulation. 

 La notion de famille affine d’éléments : Le maillage sera tel que toutes les mailles 

soient identiques à une transformation affine près. Ainsi, tous les calculs 
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d'intégrales se résumeront à des calculs sur une seule maille de référence par un 

simple changement de variable 

2.1.3 Éléments finis de Lagrange 

Un élément finis de Lagrange est le type d’élément le plus simple et le plus classique utilisé 

dans la méthode des éléments finis. C’est un triplet (K, ∑, P)  tel que : 

 K est un élément géométrique de  (n=1,2,ou 3), compact, convexe et d’intérieur 

non vide. 

 ∑=  est un ensemble fini de N points distincts de K. 

 P est un espace vectoriel de dimension finie de fonction réelles définies sur k, et tel 

que ∑ soit P-unisolvant (dimP=N) 

 Les fonctions de base locales de l’élément sont telles que 

 

Du point pratique, l’avantage de travailler avec une famille affine d’éléments finis est de 

ramener tous les calculs d’intégrales à des calculs sur des éléments de référence. Tous les 

logiciels de simulations numériques permettent l’utilisation des éléments de référence (Figure 

2-1): 

 1D : le segment [0,1]; 

 En 2D rectangulaire : le carré unité [0,1] x [1,0]; 

 En 2D triangulaire : le triangle unité de sommets (0,0), (0,1) et (1,0); 

 En 3D parallélépipédique : le cube unité  [0,1] x [0,1] x [0,1]; 

 En 3D tétraédrique : le tétraèdre unité de sommets (0,0,0), (1,0,0), (0,1,0) et 

(0,0,1); 

 en 3D prismatique : le prisme unité de sommets (0,0,0), (1,0,0), (0,1,0) et (0,0,1), 

(0,1,1), (1,0,1). 
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Figure 2-1 : Exemples d’éléments finis classiques 

Le nombre de nœuds d’un élément des fonctions d’interpolation définies précédemment 

linéaire, quadratique ou cubique (voir Figure 2-2). On ne s’attardera pas sur l’étude des 

transformations géométriques car ceci n’est pas le but de ce travail de maîtrise. 

 

Figure 2-2 : Transformations géométriques d’éléments à une dimension avec en 

haut, l’élément réel et en bas, l’élément parent 

2.2 Une suite logicielle SalomeMeca et un calculateur Code Aster  

Comme toute firme d’ingénierie, EDF doit garantir dans le temps la maîtrise technique et 

économique de ses moyens de production et de transport d'électricité. La sûreté et la disponibilité 

de ces installations mécaniques et de génie civil nécessitent d’étayer les décisions relatives à leur 

exploitation, réparation ou remplacement par des études mécaniques. Code Aster  (Analyse de 

structures et thermomécanique pour des études et des recherches) est un outil de simulation 

numérique qui fut développé en interne pour capitaliser le savoir-faire d’EDF en matière des 

analyses avancées en mécanique. Il bénéficie des compétences et des processus qualité de 

l’ingénierie nucléaire. 
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2.2.1 Présentation générale  

L’objectif de ce paragraphe est de présenter le code à valider et son architecture générale. 

Une documentation exhaustive est fournie sur le site internet http://www.code-aster.org 

 

Figure 2-3: Exemple d’étude réalisé avec la suite SalomeMeca 

Le Code Aster fut développé par l’équipe EDF R&D en 1989 comme un outil généraliste de 

calcul des structures par élément finis. Son domaine d’application essentiel est la mécanique des 

solides déformables. Il permet également la modélisation des phénomènes  hydrauliques, 

acoustiques, et thermiques dont les effets peuvent induire des déformations mécaniques. 

Code_ASTER peut effectuer en 3D les analyses multi-physiques ou multi-échelles (un couplage 

thermo-hydro-mécanique) couvrant toute une panoplie de méthodes d’analyse et de 

modélisations multi-physiques: de l’analyse sismique aux milieux poreux en passant par 

l’acoustique, la fatigue, la dynamique stochastique. La version 11 de Code Aster permet à ses 

algorithmes et ses solveurs de gagner en robustesse (environ 1,4 millions de lignes de code, 200 

opérateurs) en se reposant sur un gestionnaire de mémoire (JEVEUX), un superviseur de 

commandes et un moteur de calcul éléments finis. Le code source est composé de fonctions C, de 

catalogues python, de routines Fortran et d’une base conséquente de cas tests (environ 1600). Le 

http://www.code-aster.org/
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rôle des fonctions ‘C’ est la réalisation des taches ‘’système’’ impossibles en Fortran77 

(allocation dynamique et mesure de temps). Le gestionnaire de mémoire gère la manipulation des 

structures de données (création, copie, destruction, sauvegarde, libération de mémoire) qui sont 

échangées ensuite par les commandes. Le superviseur permet d’enchainer les différentes 

commandes tandis que les algorithmes sont exécutés par le moteur de calcul indépendamment de 

la formulation des éléments. 

 

Figure 2-4: Architecture informatique globale du code ASTER 

Pour réaliser une étude avec Code Aster il faut enchainer un certain nombre de commandes 

s’appuyant sur le langage python. Les paramètres d’entrée de toute étude sont un fichier de 

commandes et un maillage d’éléments finis. Le fichier de commandes comporte la séquence des 

différentes étapes nécessaires à la résolution : la lecture du maillage, la définition du problème 

physique étudié, la résolution numérique et le post traitement du calcul. En sortie, un fichier 

résultat et un fichier de messages sont fournis. Le fichier résultat comporte les champs de 

résultats tandis que le fichier de messages fournit les messages d’erreur générés lors de 

l’exécution des commandes la durée en temps CPU de chaque commande et la durée totale du 

calcul. 
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2.2.2 Un code industriel vivant  

Pour mieux accompagner le code, EDF a co-développé en partenariat avec d’autres 

industriels la plateforme Salomé
22

. Cette plateforme offre des outils simplifiés et faciles d’emploi 

de génération de maillage, de réalisation d’étude et de post traitement. Pour la conception du 

fichier commande, l’outil Efficas (Éditeur de Fichier de commandes et analyse sémantique) 

assure la vérification des fautes de syntaxe en simplifiant la phase de conception du fichier de 

commandes. Ainsi l’utilisateur n’est pas forcé de connaitre la syntaxe exacte de toutes les 

commandes. D’autre part, l’outil de maillage adaptif HOMARD peut être utilisé en couplage 

pour l’estimation de l’erreur  

 En évolution constante et soumis à des règles d’Assurance qualité (AQ), Code_Aster est 

résolument ouvert, couplé et encapsulé de mille façons. Une équipe d’EDF assure 

l’amélioration continue des fonctionnalités du code et le développement de nouvelles 

modélisations et techniques numériques en se basant sur des partenariats universitaires ou 

industriels. Le code est diffusé librement sous licence GNU-GPL. Le code est proposé 

sous 4 formats:  

 une version d’exploitation qualifiée (sous AQ) : documentée abondamment et validée 

indépendamment; 

 Une version de développement : de cette version nait une version d’exploitation tous les 

deux ans; 

 Une version libre est éditée en code source, et exécutable sous Linux disponible sur le site 

internet. Elle provient de la version de développement du moment après un 

conditionnement; 

 Une version intégrée développée par CAE linux est également disponible sur site internet 

de computer aided engineering Linux distribution
23

. La dernière version CAElinux2011 

est fournie sur une base de Ubuntu 10.04.3 LTS 64bit et donne accès à Salome_Meca 

                                                 

22
 Pour les infos supplémentaires : http://www.salome-plateform.org 

23
 Pour les infos supplémentaires : http://www.caelinux.com/CMS/ 
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2011.2, Code-Aster 11.0, Code-Saturne 2.0.2, OpenFOAM 2.0.1, Elmer 6.2 et d’autres 

logiciels d’ingénierie numérique à code source libre. 

Dans le cadre de ce projet, la version libre sera utilisée pour évaluer le code seulement car 

pour insérer des chaines de calculs dans Aster il faut commencer par comprendre le code source. 

La plateforme fournie par CAELinux allège le calcul et facilite l’intégration du processus de 

simulation. C’est cette plateforme qui sera installée sur l’ordinateur de simulation.  

2.2.3 Approche de simulation  

L’approche de simulation avec la plateforme SalomeMeca intégrant Code-Aster est assez 

simple et se base sur une démarche répétitive et séquentielle.  

 

Figure 2-5 : L’approche de simulation intégrée de Salomé-Meca et Code-Aster (source 

documentation Edf) 

Tel que la Figure 2-5 le montre, la simulation de tout problème numérique avec Salome-meca 

s’échelonne sur plusieurs étapes séquentielles. La première est la définition ou de l’acquisition de 

la géométrie avec les protocoles de transfert STEP ou IGES. Puis on définit le maillage ou les 

groupes de maillage dans le mailleur intégré de Salomé (il est possible également d’utiliser 

GMSH ou Netgen). Un fichier de format standard MED est généré par  Salome à  cette étape. 

L’étape suivante est l’étape capitale de définition des conditions limites et des chargements. Un 

fichier de commandes est primordial à l’étape suivante de calcul. La plateforme propose deux 

possibilités : 
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 Utiliser l’outil wizard de génération des fichiers de commandes de Salome. Sauf  

que les fonctionnalités limitées du wizard nécessite la manipulation du fichier de 

commande par un outil plus complexe comme Eficas pour les cas  physiques 

complexes.  

 Utiliser l’outil Eficas (Editeur de FIchier de Commandes et Analyseur 

Sémantique) qui est une application destinée à permettre l'écriture d'un fichier de 

commandes de tout code à langage de commandes. Un chainage est ainsi créé 

entre salome et Aster à travers cet outil (voir les graphes suivants) 

 

Figure 2-6 : Interaction Salomé et Aster à travers l’outil Eficas (source EDF) 

Enfin, l’étape finale est de post-traiter le fichier résultat.med avec les outils de post-traitement 

de Salomé.  
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Figure 2-7 : Chainage entre Salomé fichier de commande Aster 

2.2.4 Modélisation mécanique 3D 

D’après le Fascicule U3.14-Éléments finis mécaniques 3D (Document U3.14.01 disponible 

sur le site internet de code aster), Les modélisations 3D (Phénomène : MECANIQUE) 

correspondent à des éléments finis dont les mailles supports sont volumiques. Les degrés de 

liberté disponible à chaque nœud sommet sont les déplacements Dx, Dy et Dz seulement. Les 

mailles support des éléments finis peuvent être des tétraèdres, des pyramides, des prismes ou des 

hexaèdres. Les éléments sont iso-paramétriques. Les figures suivantes présentent le détail des 

mailles support. 

 

Figure 2-8 : Maille support des matrices de rigidité 
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Pour ce qui est de la discrétisation spatiale utilisée pour le calcul de chargement, les mailles 

utilisées différèrent de celles utilisées pour le calcul de rigidité (Voir Figure 2-9). 

 

Figure 2-9 : Maille support des chargements 

2.3 La plateforme Ansys Workbench 

La plupart des simulations dans ANSYS Workbench sont définies par trois caractéristiques 

principales: type physique, type d'analyse, et type du solveur. La méthode utilisée pour lancer 

l'application de maillage détermine les paramètres par défaut de l’analyse et du solveur. Dans le 

cadre de ce projet on définit les paramètres d’une analyse structurale statique. Le solveur ‘’ 

Mechanical APDL‘’ sera définit par défaut. 

2.3.1 Type de maillage 

Choisir un type d'élément de la grande bibliothèque d'éléments dans ANSYS peut être une 

chose intimidant pour un débutant. Sur près de 200 lequel devrais-je choisir? Pourquoi y a-t-il un 

si grand nombre? Le tableau ci-dessous montre les types d'éléments les plus couramment utilisés 

pour une analyse structurale. 

 

Figure 2-10 : Les éléments finis courants dans Ansys 
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Dans le cadre de projet de mémoire, on procédera à la simulation des modèles par les 

éléments mécaniques les plus stables. Pour les géométries complexes issues des fichiers CAO 

(conception assistée par ordinateurs) qui présentent des maillages irréguliers, on a choisi 

d’utiliser un élément 3D quadratique ‘’Solid187’’. Cet élément est défini par 10 nœuds avec trois 

degrés de liberté disponibles à chaque nœud (Dx, Dy, Dz). Cet élément est validé par Ansys pour 

la simulation des phénomènes mécaniques instables et complexes.  

 

Figure 2-11 : Géométrie de l’élément Solid187 dans Ansys (source : Ansys Element Reference) 
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CHAPITRE 3 CAS DE VALIDATION 

3.1 Introduction 

Dans le contexte des analyses mécaniques de turbines hydrauliques, les études de la littérature 

montrent que les contraintes les plus élevées sont localisées au niveau des jonctions pale-

couronne (partie supérieure) et pale-ceinture (partie inférieure). Il est prouvé également que la 

région du bord de fuite de la pale au niveau de la couronne est la région pénalisante lors du 

processus de design. Elle représente la région critique où il y a amorce et propagation de fissures. 

L’analyse faite par Saeed & al.
24

 confirme que le maximum des contraintes simulées est localisé 

à la transition entre la pale et la couronne au niveau de la face intérieure de la pale. 

 

Figure 3-1: Fissures au niveau d’une pale de la roue 2 de la centrale Derbendikhan 

Étant donné que la pale lie la couronne et la ceinture, elle peut être simulée par une poutre 

courbée encastrée. Saeed conseille de modéliser la bande au bord de fuite de la pale par une 

poutre courbée. 

                                                 

24
 SAEED R.A., GALYBIN, A.N. (2009). Simplified model of the turbine runner blade. Engineering failure analysis, 

16, 2473-2484. 
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Figure 3-2: Vue de section d’une turbine Francis 

À la Figure 3-2, on distingue clairement que le bord de fuite d’une pale de turbine peut être 

approximé par un arc de cercle limité par deux lignes qui forment un angle θ (de 70 degré entre 

eux dans le cas précis de cette roue). En général, cet angle dépend du design de la roue. Pour 

simplifier, on simulera une poutre courbée (entre la couronne et la ceinture) soumise à une charge 

uniforme. Cette poutre courbée est fixée à une extrémité avec une déviation angulaire imposée à 

l'autre bout, également fixé. Elle pourrait être considérée comme la moitié d'une poutre courbée 

fixée aux deux extrémités avec l’angle totale de 140 comme indiqué ci-dessous 

 

Figure 3-3: Poutre courbée encastrée 

Se basant sur le modèle suggéré dans la littérature par Saeed, le modèle développé servira à la 

validation des contraintes maximales et des zones susceptibles d’être les plus contraignantes en 

design. Étant donné que le modèle suggéré par Saeed est une poutre courbée bi-encastrée; au 
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cours de ce chapitre on traitera en première étape d’un cas académique d’une poutre simple bi-

encastrée. Ce modèle simple sera par la suite comparé au modèle courbée. Chaque modèle sera 

analysé avec les deux codes de simulation dont on dispose : Ansys workbench 13.0 et 

SalomeMeca 2011.2 qui englobe CodeAster11.0. Pour les deux cas tests de poutre, on étudie une 

géométrie qui reproduit les dimensions de la pale de roue de turbine Francis dont on dispose. 

Ensuite, il est nécessaire d’analyser et de vérifier la réduction cyclique de la turbine  car le 

modèle de la roue de turbine est réduit à une pale. Enfin, on effectue une analyse mécanique d’un 

modèle de pale de roue Francis fournie par Andritz. On se servira de ce modèle comme référence  

lors de la vérification des deux codes. 

3.2 Configurations du Calcul numérique 

Dans le cadre de ce projet, on dispose de deux configurations matérielles de calcul : 

 La première est utilisée lors de tous les calculs avec le logiciel Ansys. Elle consiste 

en un ordinateur dual core disposant d’un processeur i7-2600 à 3.40GHz et de 

16Go de RAM. 

 La deuxième est utilisée lors de tous les calculs avec code ASTER. Elle consiste 

en un ordinateur portable dual core disposant d’un processeur i7-2630QM à 

2.00GHz et de 6Go de RAM. Le calcul est lancé sur une machine virtuelle 

Ubuntu 10.04.3 LTS 64 bit en utilisant le logiciel de simulation de machine VM 

player 4.0.2. La machine virtuelle simulée dispose de 2Go de RAM et d’un core 

du processeur. 

3.3 Étude de convergence et de l’influence des maillages 

L’étude de convergence de la solution numérique est primordiale dans le cadre de notre 

démarche de vérification. Il sera possible de valider le comportement du code numérique selon la 

théorie de convergence expliquée précédemment. La solution approchée est donnée par 

l’équation suivante : 

        (3-1) 
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où :   est l’erreur ; 

 est la solution exacte. 

Les différents paramètres inconnus (U0, C, P) peuvent être calculés par la résolution de 

l’équation se basant sur la théorie de convergence; 

          (3-2) 

où P est l’ordre de convergence  

Dans le cadre de toutes les études de convergence des différents cas test on procède de la 

même façon. On considère un premier maillage où h est la taille maximale des éléments et on 

divise à chaque fois cette valeur par deux. À partir de ces données, on détermine le quotient de 

convergence du modèle numérique pour le déplacement et la contrainte Von mises maximale. Un 

des buts de ces analyses de convergence est de comparer le comportement des différents modèles 

selon la nature du maillage. On décide alors de comparer l’influence des maillages hexaédriques 

et tétraédriques quand la géométrie nous le permet (c.à.d. les cas tests simples). 

3.4 Analyse du modèle de la poutre simple bi-encastrée 

3.4.1 Conditions théoriques et lien avec l’étude simplifié 

La poutre est encastrée en A et en B, sans charge en porte-à-faux. La force qu'exerce 

l'encastrement sur la poutre est appelée , celle de l'appui de droite est appelée . Par 

simplicité, on note  et  . Les moments d'encastrement sont notés MA et 

MB. La charge q uniformément  répartie est calculée à partir de la pression moyenne des fichiers 

de pressions fournis par Andritz. 

Le tableau suivant résume l’analyse des efforts pour une charge unitaire (N/m)  
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Tableau 3-1: Analyse statique d’une poutre simple bi-encastrée 

Sollicitation  Actions aux 

liaisons  

Effort tranchant  Moment fléchissant  

 

 

  
 

Pour trouver les résultats correspondants à une charge absolue (N) on multiplie par la largeur 

de la poutre. 

On aura alors : 

        (3-3) 

Le calcul de flèche pour une charge répartie est donné par l’équation suivante : 

          (3-4) 

Avec : 

f = flèche en m 

P = charge en N  

p = charge unitaire (cas 2) en N/m 

L = longueur entre appuis en m 

E = module d'Young en N/m² 

I = moment d'inertie de la section de la poutre en m^4. 

Dans le cadre de ce mémoire, le modèle analytique 1D est une référence pour s’assurer de 

l’ordre de grandeur des résultats numériques. En appliquant une pression répartie de valeur 

353900 Pa, la contrainte maximale théorique atteint 144,2MPa tel que illustrée dans La Figure 

3-4. Cette pression imposée correspond à la moyenne du champ de pression fournie par l’étude 

fluide d’Andritz. Pour tous les cas tests ‘’Poutre’’ on utilisera cette valeur tout en négligeant la 
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pression appliquée sur l’autre bord de la pale. Ainsi, la pression de 187718Pa appliquée sur la 

face basse pression de la pale sera négligée. La flèche atteint 3,99mm. Ce résultat théorique nous 

laisse supposer qu’un modèle de calcul numérique linéaire sera suffisant pour  la résolution. La 

déformation théorique de 3,99mm est négligeable pour la taille de la poutre. Ainsi tout au long de 

ce mémoire on choisira de traiter uniquement de modèles numériques linéaires. 

 

Figure 3-4: Résultats du calcul analytique d’une poutre bi-encastrée soumise à une force répartie 

3.4.2 Étude du modèle de la Poutre simple (Ansys) 

3.4.2.1 Modèle géométrique et modèle de calcul 

Comme discuté, pour se rapprocher du modèle de pale de roue physique on simule une poutre 

simple avec les dimensions suivantes : 

Tableau 3-2 : Dimension de la poutre simple bi-encastrée 

 Dimension (m) 

Longueur 2.95 

Largeur 0.2 

Epaisseur 0.1 
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Les dimensions reprennent grossièrement les dimensions de la pale : c.à.d. la longueur 

correspond à la hauteur de la pale (la distance entre le point supérieur de la couronne et le point 

inférieur de la ceinture); l’épaisseur correspond à l’épaisseur de la pale; par contre pour que le 

modèle développé représente une poutre et non pas une plaque, on prend une largeur très petite 

par rapport à la première dimension. Comme nous utilisons le code commercial ANSYS 

Workbench 13.0, il nous est très simple de choisir le modèle mécanique intégré au code : Analyse 

structurelle statique. Tout au long de ce mémoire le matériau utilisé est le matériau est le CA-

6NM
25

. 

3.4.2.2 Maillage 

Vu la simplicité du modèle, on utilise un maillage structuré hexaédrique qui est plus 

performant pour la réduction des erreurs numériques et la convergence, exigeant néanmoins une 

géométrie simple (ANSYS Inc. 2010
26

). On impose une taille d’éléments de 0.05m représentant 

la moitié de l’épaisseur de la poutre. On se limitera à un maillage régulier hexaédrique de 472 

éléments et 3105 nœuds pour un premier calcul de vérification. 

3.4.2.3 Conditions limites et chargement 

Deux conditions limites de même nature ont été utilisées. Un support fixe simulant un 

encastrement a été simulé sur les deux extrémités de la poutre. Une pression répartie de valeur 

353900 Pa a été appliquée sur une des faces des poutres pour simuler le champ de pression exercé 

par l’écoulement de l’eau sur la pale. Ce choix est une simplification d’un cas réaliste fourni par 

Andritz.  

3.4.2.4 Analyse des Résultats du modèle de la Poutre simple (Ansys)  

Après le calcul, on s’intéresse à la localisation des contraintes maximales ainsi qu’au 

déplacement. La figure ci-dessous valide le modèle théorique simple élaboré dans le Tableau 3-1: 

La contrainte maximale (144,56 MPa) est localisée au niveau des encastrements de la poutre, où 

l’effort tranchant est le plus élevé, en accord avec la théorie des poutres. D’autre part la 

                                                 

25
 un acier  tiré de 1998 ASME BPV Code, Section 8, Div 2, Table 5-110.1 

26
 AM-intro13.0-L02 meshing methods (Ansys customers portal) 
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déformation maximale (4,1mm) est localisée au niveau du milieu de la poutre, où le moment 

fléchissant est le plus élevé (Ma=2.5644  Nm). 

 

Figure 3-5: Contraintes et déformation de la poutre simple 

Si on compare avec le modèle théorique on trouve les résultats suivants :  

Tableau 3-3 : Vérification par comparaison du modèle numérique 

 Modèle théorique (1D) Modèle numérique Écart (%) 

Déformation (mm) 3.99 4.1 2.68% 

Moment fléchissant MA (Nm) 51330 51486 0.30% 

Réaction RA (N) 1.044+05 1.044+005 0% 

Contrainte maximale (MPa) 144.12 144.56 0.30% 

Cependant, la poutre étant courbée, les réactions ne seront pas unidirectionnelles; ce qui 

implique que le modèle 1D de référence ne peut valider à lui seul le modèle 3D. Il s’agit de deux 

modèles physiques légèrement différents, même si on a tendance à les considérer équivalents. Les 

écarts du Tableau 3-3, qui sont présentés à titre comparatifs, sont très faibles et ne dépassent pas 

les 2,7%. Par contre, le calcul numérique 3D ne peut être validé par comparaison à un modèle 

analytique 1D. Dans le cadre de ce mémoire, les modèle analytiques 1D ne sont que des points de 

référence pour s’assurer de l’ordre de grandeur des résultats numériques. Une étude de 

convergence est nécessaire pour s’assurer du comportement du code commercial dans ce cas test. 
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3.4.2.5 Étude de convergence numérique du modèle ‘’Simple-Ansys’’  

La Figure 3-6 schématise les résultats de l’étude de convergence. On constate que le modèle 

numérique assure une convergence rapide du déplacement avec un ordre de convergence 

minimum égal à deux. Cependant la convergence de contraintes maximales est moins 

performante avec un quotient de convergence de 0,4 tel que illustré dans le tableau A de l’annexe 

1. Ceci nous laisse à croire que le code Ansys calcule la contrainte maximale comme un 

paramètre secondaire. 

 

Figure 3-6 : Étude de convergence du cas test de la poutre simple avec un maillage 

d’hexaèdres sous Ansys 

Les temps de calcul sont consignés au Tableau 3-4 et leur variation est illustrée à la Figure 3-7. 

Tableau 3-4 : Temps de calcul en fonction de la taille des éléments 

Taille d’éléments(m) Temps de calcul (s) 

0.1 6.1 

0.05 13.7 

0.025 19.5 

0.0125 115.4 

0.00625 130.2 
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Figure 3-7 : Étude de l’évolution du temps de calcul du cas de poutre simple sous 

Ansys avec un maillage d’hexaèdres 

3.4.2.6 Analyse de l’influence du maillage  

On décide de comparer le premier maillage hexaédrique (taille 0.05m) à un deuxième 

maillage tétraédrique de taille identique tout en maintenant les autres paramètres inchangés. Le 

Tableau 3-5 présente les détails du calcul.  

Tableau 3-5 Étude comparative des maillages pour le modèle ‘’Simple-Ansys’’ 

Type de maillage hexaédrique Tétraédrique  

Nombre de nœuds 3105 7314 

Nombre d’éléments 472 4299 

Déformation (mm) 4.1959 4.1952 

Moment fléchissant MA (Nm) 51486 51486 

Réaction RA (N) 1.044+005 1.0441+005 

Contrainte maximale (MPa) 144.56 141.45 

Temps de calcul 13.7 16.3 
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Les résultats montrent une légère augmentation du coût de calcul avec le maillage 

tétraédrique. On décide alors d’effectuer une analyse de convergence numérique du modèle sous 

raffinement spatial avec un maillage tétraédrique (voir les annexes pour le détail).  Le premier 

constat est que les contraintes convergent plus rapidement avec un maillage tétraédrique. On 

obtient des quotients de convergence en contrainte entre 0.4 et 1.2 comparativement au 0.4 de 

moyenne pour le maillage hexaédrique. Pour ce qui est de la déformation, le comportement est 

globalement similaire. 

 

Figure 3-8 : Étude de convergence du cas test de la poutre simple sous Ansys avec 

un maillage de tétraèdres 

 

Figure 3-9 : Étude de l’évolution du temps de calcul du cas test de la poutre 

simple sous Ansys avec un maillage de tétraèdres 
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Les résultats concordent avec la documentation technique d’Ansys : le maillage hexaédrique 

est plus performant en convergence et temps de calcul mais nécessite des géométries simples. 

3.4.3 Analyse du modèle de la poutre simple avec Aster 

3.4.3.1 Modèle de calcul 

Pour des raisons de simplification on procédera à l’écriture automatique des fichiers de 

commande et la génération de maillage nécessaire pour Code-ASTER en utilisant la suite 

logicielle SALOME-MECA. Une fois le maillage généré et le fichier de commande édité 

automatiquement, on procèdera au calcul proprement dit sur un serveur de calcul. On commence 

par créer la géométrie dans le modeleur géométrique de SALOME. On reprend les dimensions de 

la poutre simple bi-encastrée développées au Tableau 3-2. Il faut également créer des groupes 

géométriques auxquels on associera les contraintes de pression et de déplacement. Ainsi on 

définit un groupe géométrique ‘’pression’’ qui correspond à la face droite de la poutre et un 

deuxième groupe géométrique ‘’déplacement’’ qui englobe la face supérieure et inférieure de la 

poutre. Par la suite, on passe, à l’étape de maillage. Sur Salome, la méthodologie de maillage est 

séquentielle, c’est-à-dire qu’il faut mailler en 1D puis 2D pour aboutir à la 3D. Pour comparer 

avec les résultats d’ANSYS, il sera nécessaire de mailler en se basant sur la méthodologie utilisée 

précédemment. On choisit de mailler en premier lieu avec une routine automatique intégrée avec 

des éléments hexaédriques. On maintient également la taille des mailles à 50mm pour pouvoir 

comparer sur la même base. Le Tableau 3-6 présente les différents paramètres utilisés lors du 

maillage de la géométrie. 

Tableau 3-6 : Paramètres de maillage de la poutre bi-encastré simple 

dimension Hypothèse algorithme 

1D Quadratic meshing / max size (0.05m) Wire discretization 

2D  Quadrangle (Mapping) 

3D - Hexahedron  

Le maillage est exporté en format unv (compatible avec GMSh). Ainsi il est possible de 

joindre ce maillage au fichier de commande lors du calcul sur un serveur de calcul dans les 

situations où la complexité du modèle l’exige. La Figure 3-10 présente les statistiques du 

maillage cubique. Les dimensions du maillage sont identiques à celles du maillage utilisé avec 

Ansys soit un maillage hexaédrique de 3105 nœuds et 472 éléments. 
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Figure 3-10 : Algorithme et statistique du maillage poutre simple sur Salome 

À la suite de cette étape de maillage, on définit une étude de cas mécanique statique avec le 

module ASTER intégré de Salomé. Ainsi il est possible de générer automatiquement un fichier 

de commande. On définit les propriétés de matériaux (module de Young E=2.11 GPa, module de 

cisaillement=0.3). Et on impose un déplacement nul en (x,y,z) sur le sous-groupe géométrique 

déplacement correspondant à l’encastrement; de même pour la pression, on associe au sous-

groupe pression la valeur exacte de la contrainte surfacique appliqué sur la poutre (le fluide qui 

exerce une pression sur la pale de la turbine). On reprend les mêmes valeurs des cas tests 

effectués avec Ansys (0.3539 MPa). Ainsi, nous pouvons effectuer une première vérification du 

code ASTER. Le fichier de commande est fourni en annexe pour plus de détail. 

3.4.3.2 Analyse des résultats  

Avec la deuxième configuration et pour le modèle simulé, le calcul et la préparation des 

résultats post-traités ne durent que 18,53 secondes. Le calcul proprement dit nécessite 8,01 

secondes. Après le calcul, on s’intéresse à la localisation des contraintes maximales ainsi qu’au 

déplacement. Le module de post processing de SALOME ne permet d’afficher que ces résultats. 

Les figures suivantes appuient le modèle théorique simple élaboré au Tableau 3-1. Ainsi, la 

contrainte maximale (141,48 MPa) est localisée au niveau des encastrements de la poutre où 

l’effort tranchant est le plus élevé en accord avec la théorie des poutres.  
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Figure 3-11: Contraintes Von mises du modèle poutre simple calculées avec SALOME-MECA 

D’autre part la déformation maximale (3,99mm) est localisée au niveau du milieu de la poutre 

où théoriquement le moment fléchissant est le plus élevé (voir Figure 3-12). 

Outre les zones critiques du modèle qui ont été validées; on constate un écart avec les 

résultats de la simulation ANSYS qui néanmoins valide la simulation. Cela peut s’expliquer par 

l’impact de l’algorithme et les hypothèses de maillage utilisé par SALOME. Cet aspect sera 

analysé plus tard lors de l’analyse de convergence. 

 

Figure 3-12 : Déplacement du modèle Poutre simple calculé avec SALOME-MECA 
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On s’intéresse à ce niveau de l’étude à l’analyse d’écart entre les deux modèles simulés. Le 

Tableau 3-7 présente les résultats de la simulation. 

Tableau 3-7 : Résultats des simulations de la poutre simple sous ASTER et ANSYS 

 Modèle ANSYS Modèle SALOME écart Modèle théorique 

Contrainte max (MPa) 144,56 141,48 -2,13% 144.12 

Déplacement max (mm) 4,1 3,99 -2,68% 3.99 

On constate que le code Aster reproduit avec une erreur inférieure à 0.01% les solutions du 

modèle analytique.  

3.4.3.3 Étude de convergence numérique du modèle ‘’Simple-Aster’’ 

La même méthodologie est appliquée. Le maillage de départ se base sur une taille des 

éléments h égale à 0.2m. Ce maillage de départ est raffiné lors de l’étude par des divisions 

successives par deux. Il a été impossible de commencer avec une taille d’éléments égale à 0.1 

comme lors du cas ‘’simple-Ansys’’ car le calcul devenait de plus en plus long à force de 

raffiner. Ainsi il a été impossible d’atteindre la dernière étape de raffinement faite avec Ansys. 

Dans l’autre sens il a été impossible de commencer avec une taille d’éléments égale à 0.2m sur 

Ansys car celle-ci correspondait à la plus petite dimension de la poutre. À partir de ces données 

on a déterminé le quotient de convergence du modèle numérique pour le déplacement et la 

contrainte Von mises maximale. Les données sont fournies en détail en annexe. 

La Figure 3-13 schématise les résultats de l’étude de convergence. On constate que le modèle 

numérique assure une convergence du déplacement d’ordre 1,6. Cependant la convergence de 

contraintes maximales est moins performante avec un quotient de convergence de 0,8 (voir 

tableau B de l’annexe A). Il faut noter que le code Aster permet une convergence et une précision 

beaucoup plus élevée que celles fournies par le code Ansys. On conclut que le modèle numérique 

converge et est validé pour le code Aster avec un comportement amélioré au niveau des 

contraintes par rapport à Ansys. 
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Figure 3-13 : Étude de convergence du cas test ‘’Simple Salomé’’ avec maillage d’hexaèdres 

Les temps de calcul sont consignés au tableau ci-dessous et leur variation est dessinée à la 

Figure 3-14. L’étude de ces temps de calcul avec le code Aster est très intéressante. On constate 

que le temps de calcul d’Aster évolue rapidement comparativement au temps de simulation avec 

Ansys présentés au Tableau 3-8. Le calcul devient très couteux pour un maillage très fin. À 

l’avant dernier maillage (h=0.0125) le coût de calcul est 10 fois plus élevé qu’avec Ansys. Ce qui 

explique l’impossibilité de pouvoir simuler le dernier maillage (h=0.00625). L’évolution du 

temps de calcul schématisée à la Figure 3-14 montre clairement l’explosion du temps de calcul.  

Tableau 3-8 : Temps de calcul en fonction de la taille des éléments 

Taille d’éléments(m) Temps de calcul (s) 

0.2 7.6 

0.1 11.24 

0.05 18.53 

0.025 102.52 

0.0125 1252.96 
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Figure 3-14 : Étude de l’évolution du temps de calcul ‘’Simple-Salome’’ 

3.4.3.4 Analyse de l’influence du maillage  

 

Figure 3-15 : Étude de convergence du cas test ‘’Simple Salomé’’ en maillage tétraédrique 

L’influence du maillage tétraédrique est prononcée avec ce modèle sous Aster. À la 

convergence, la déformation maximale est de 3.6mm or qu’elle est 4.0 mm avec un maillage 

hexaédrique sous le même code de calcul. On s’écarte légèrement ainsi de la solution théorique. 

La convergence est réduite par rapport à la convergence avec le maillage hexaédrique. La Figure 

3-15 illustre un comportement chaotique de la convergence du déplacement ainsi que la 

contrainte maximale. L’ordre de convergence de 6,4 des contraintes Vonmises est dû à des 

résultats numériques éloignés de la solution théorique qui est égale à 144MPa. Avec le premier 

maillage la contrainte maximale est égale à 70,67MPa (Voir le tableau D de l’annexe 1). Suite au 

dernier raffinement elle n’atteint que 121,95MPa. 
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3.5 Analyse du modèle de la poutre courbée bi-encastrée  

3.5.1 Développement théorique 

La poutre curviligne est supposée être relativement mince avec une aire de section constante 

avec une charge répartie appliquée de façon normale à la poutre. Sur la poutre, à partir de la 

poutre à droite de la Figure 3-3, deux modèles de poutre courbées peuvent être développés pour 

l'évaluation de la contrainte maximale à l’extrémité de la poutre au niveau du bord de fuite. 

Le premier modèle est une poutre courbée de rayon R qui est rigidement fixée aux deux 

extrémités comme indiqué. Dans ce cas, il est supposé que les moments de flexion sont égaux 

aux deux extrémités (MA = MB). 

Le deuxième modèle est similaire au  premier, mais il est supposé que le moment de flexion 

au point B est égale à la moitié du moment de flexion au point A (MA = 2MB). Il fut suggéré par 

Saeed également pour modéliser la différence en valeur des moments sur les jonctions couronne 

pale et ceinture-pale. En pratique, l’hypothèse du premier modèle est suffisante. 

3.5.1.1 Étude des forces internes  

La force interne, le moment de flexion et de la force axiale sont développés dans une poutre 

sous charge. Lorsque le moment de flexion est superposé sur la poutre courbée, les contraintes 

longitudinales sont directement mises en place, et d'autres contraintes longitudinales sont induites 

par les forces axiales. La contrainte maximale est ainsi calculée à partir de la combinaison des 

trois chargements. La poutre est considérée comme mince si son épaisseur est faible par rapport 

au rayon de courbure.  

 

Figure 3-16: Modèle de poutre mince encastrée 
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Les réactions aux points A et B sont décomposées en composantes verticales et horizontales. 

Vu que la charge externe w est répartie uniformément selon la normale le long de l'arc de cercle 

(AB), les réactions horizontales et verticales aux points A et B sont égales. 

Le moment de flexion est déterminé par la méthode de la section (voir Figure 3-16b). En tout 

point P, la force de cisaillement F est normale à l'axe et la force axiale T est tangentielle à l'axe. 

Considérant l'équilibre de la poutre courbée AP, le moment de flexion est donnée sur toute la 

poutre par l'équation suivante : 

        (3-5) 

Avec : 

 : le moment de flexion sur une poutre horizontale non encastrée supportant les mêmes 

charges; 

 , : les moments aux extrémités A et B ; 

 H : la réaction horizontale ; 

 X : l’abscisse du point de calcul du moment de flexion ; 

 L : longueur de la poutre. 

On considère un élément de longueur  effectuant une rotation d’un angle : si le point A 

est fixé, le point B effectuera un déplacement au point B’ (voir Figure 3-17). Le calcul du 

déplacement est donné par : 

 ; 

et  

Prenons en compte que   

où le terme entre parenthèse représente la courbure à P ; 
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on trouve :  

 

Avec E et I respectivement le module de Young et le moment d’inertie de la poutre 

 

Figure 3-17 : Notation pour le calcul d’équilibre de la poutre courbe 

À partir des équations précédentes et l’équation (3-5), on calcule les inconnues MA, MB et H 

en supposant les hypothèses suivantes : 

 Le total des changements sur toute la longueur de l'arc est nul lorsque les 

extrémités sont solidement fixées. 

   (3-6) 

 Si A et B sont fixes 

  (3-7) 

 Si A et B demeurent au même niveau  

  (3-8) 

Les équations (3-6 à 3-8) sont suffisantes pour déterminer les trois inconnues MA, MB et H. 

En cas de chargement symétrique (MA=MB), l’équation (3-8) devient non nécessaire. Dans le 

cas de ce premier modèle, (3-6) et (3-7) deviennent : 
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      (3-9) 

      (3-10) 

Où on suppose que le module de Young E et le moment d’inertie I sont constants. Les 

réactions au point A sont les suivantes : 

          (3-11) 

où les paramètres α et β sont des coefficients de réactions en fonctions des rapports de la 

flèche f par rapport à la longueur L de la poutre (voir Figure 3-18) 

En substituant l’équation (3-11) dans l’équation (3-5), et pour  on trouve le moment 

de flexion: 

   (3-12) 

Pour le deuxième modèle,  et le moment de flexion est donné par : 

 (3-13) 

où  est la courbure de la poutre au point A. 

 

Figure 3-18 : coefficient de réaction d’une poutre encastrée-encastrée
27

 

                                                 

27
 La figure est tirée des travaux de  R.A Saeed et concorde avec les résultats de Parcel et Moorman, Gimena et Al. 
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On considère le cas ( ) pour calculer le moment de flexion au point A et B : 

 1
er

 modèle :  

 2
ème

  modèle :  

La force axiale interne est donnée par : 

    (3-14) 

Pour le calcul de la pression répartie, on suppose que le modèle de la roue de turbine  tourne à 

une vitesse angulaire constante ω qui coïncide avec la direction du débit d'eau. La vitesse de l'eau 

V est la différence de la vitesse périphérique de l’eau  v et la vitesse de la roue . La pression 

d'eau P est calculée à partir de l'équation de l'énergie entre la surface du réservoir libre, où la 

pression est atmosphérique, et la pression d'eau sur le modèle simplifié: 

        (3-15) 

Où ρ est la densité de l’eau et g l’accélération de la gravité. 

La pression de l’eau sert à calculer le chargement réparti sur la pale de la roue pour tous les 

modes d’opération : (w=pb). Ce développement mathématique suppose que la pression est 

constante sur tout le bord de fuite. 

3.5.1.2 Calcul des contraintes 

Pour les deux modèles développés, la pale, assimilée à une poutre, est soumise à une 

combinaison d’un moment de flexion et d’une force axiale. La contrainte maximale est trouvée 

en superposant les charges : 

        (3-16) 
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Où : I est le moment d’inertie de la surface A et u la distance maximale par rapport à l’axe de 

cisaillement. Théoriquement, la contrainte maximale se situe au bout de la poutre courbée qui 

correspond à la zone de transition entre la pale et la couronne. 

3.5.2 Étude du modèle ‘’Poutre courbée Ansys’’ 

3.5.2.1 Modèle géométrique et modèle de calcul  

Lors de cette analyse, on reprend le modèle de calcul de la poutre simple. Cependant, on 

prend soin de mettre à jour la géométrie. Le modèle de la poutre courbée schématisé dans la 

figure suivante est modélisé selon les dimensions de la poutre simple (Tableau 3-2) en imposant 

un rayon  d’arc de 0.2m (voir graphe ci-dessous). 

 

Figure 3-19 : modèle géométrique de la poutre courbée 

3.5.2.2 Maillage et conditions limites  

La même méthodologie est reprise au niveau de la génération de maillage. On obtient un 

maillage régulier hexaédrique de 480 éléments et 3157 nœuds pour un premier calcul de 

validation. Pour le calcul, on reprend les mêmes conditions limites et le même chargement pour 

comparer le comportement des deux modèles. La poutre est ainsi doublement encastrée.  

3.5.2.3 Calcul  

La poutre étant courbée, les réactions ne seront pas unidirectionnelles. Les calculs donnent : 
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          (3-17) 

On note h la hauteur de l'arc et L sa portée. 

Ces réactions d'appuis horizontales s'appellent la poussée de l'arc. Contrairement à une poutre 

droite, l'arc crée des poussées horizontales qui devront être reprises par les massifs de fondation. 

          (3-18) 

Où la direction Y correspond à la réaction verticale. 

 

Figure 3-20 : Composantes bidirectionnelles des réactions aux encastrements de la poutre 

Le moment fléchissant est donné par : 

          (3-19) 

On calcule la flèche à la position où le moment s’annule. Le moment s’annule si :  

           (3-20) 

3.5.2.4 Analyse des résultats 

Le premier constat de l’étude statique est que le modèle apporte une petite correction au 

précédent modèle ‘’poutre simple’’ dans les valeurs des déformations et des contraintes 

maximales. D’autre part le modèle valide le modèle théorique en ce qui concerne les localisations 

de la flèche maximale et des contraintes et l’effort tranchant maximal. La déformation maximale 

réduite de moitié (2.1mm) coïncide avec la zone où le moment fléchissant est le plus important 
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c.à.d. le milieu de la poutre. De même, la contrainte maximale (89MPa) est localisée au niveau 

des encastrements là où l’effort tranchant est le plus élevé (MA= 3.0869 Nm) 

 

Figure 3-21: Contraintes et déformation du modèle poutre courbée bi-encastrée 

Si on compare avec le modèle théorique (voir le paragraphe 3.5.1.1 ) on trouve les résultats 

suivants : 

Tableau 3-9 : Vérification du modèle de poutre courbée par comparaison du modèle numérique 

 Modèle théorique Modèle numérique Écart (%) 

Déformation (mm) 1.99 2.1 5.52% 

Réaction RAx (N) 1.044+05 1.044+05 0% 

Réaction RAy (N) -3.849+05 -3.9723+05 3.2% 

Réaction RA (N) 3.988+05 4.107+05 2.97% 

Réaction RBx (N) 1.044+05 1.044+05 0% 

Réaction RBy (N) 3.849+05 3.9723+05  

Réaction RB (N) 3.988+05 4.107+5 3.2% 

Moment fléchissant MA (Nm) - 25039 % 

Moment fléchissant MB (Nm) - -25093 % 

Contrainte maximale (MPa) - 89.32 % 

Un effet de voute ou de déviation de force est perçue sur le modèle de la poutre courbée. Cet 

effet utilisé depuis l’antiquité dans les constructions réduit les déformations. Ainsi, les déformées 

de deux poutres, une droite et la deuxième en arc, qui possèdent la même section et la même 



65 

 

portée sont totalement différentes. Comme expliqué précédemment, une comparaison avec les 

modèles théoriques est insuffisante. Une étude de convergence est nécessaire.  

3.5.2.5 Étude de convergence numérique du cas ‘’Poutre Courbée-Ansys’’  

Se basant sur l’équation         

  (3-2), une étude de convergence a été menée pour ce cas. On considère la même 

méthodologie. Un premier maillage où h est égale à 0.1m est raffiné lors de l’étude par des 

divisions successives par deux. À partir de ces données on a déterminé le quotient de 

convergence du modèle numérique pour le déplacement et la contrainte Von mises maximale. 

Les données sont fournies en détail en annexe A (tableau E) 

La Figure 3-22 schématise les résultats de l’étude de convergence. On constate que le modèle 

numérique assure une convergence rapide du déplacement avec un ordre de convergence 

minimum égal à deux. Cependant la convergence des contraintes maximales est moins 

performante avec un quotient de convergence de 0,4. Le modèle numérique converge et est validé 

pour le code commercial Ansys en dépit du comportement de la contrainte maximale.  

 

Figure 3-22 : Étude de convergence du cas test ‘’Poutre Courbée –Ansys’’ avec 

maillage d’hexaèdres 

On s’intéresse, comme lors de l’étude comparative précédente, à l’évolution du temps de 

calcul en fonction de la taille des éléments. Le tableau 3-10 présente les temps de calcul pour 
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chaque maillage lors de l’étude de convergence qui a été faite. On constate que pour une division 

par 16 de la taille des éléments, le temps de calcul a été multiplié par 60.  

La Figure 3-23 schématise l’évolution du temps de calcul. On constate la tendance à la hausse 

du temps de calcul par rapport au modèle de la Poutre simple. Le temps de calcul demeure 

néanmoins raisonnable et ne dépasse pas les quatre minutes pour le maillage le plus fin 

(h=0.00625). 

Tableau 3-10 : Temps de calcul en fonction de la taille des éléments ‘’Courbée-Ansys’’ 

Taille d’éléments(m) Temps de calcul (s) 

0.1 4.3 

0.05 12.1 

0.025 18 

0.0125 120.9 

0.00625 239 

 

 

Figure 3-23 : Étude de l’évolution du temps de calcul ‘’Courbée-Ansys’’ avec 

maillage d’hexaèdres 
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3.5.2.6 Analyse de l’influence du maillage  

En imposant un maillage tétraédrique, une étude de convergence similaire est effectuée  sur 

le même cas test. Les graphes suivants exposent les résultats (voir annexe1 tableau F pour le 

détail).  

 

Figure 3-24 : Étude de convergence du cas test ‘’Poutre Courbée –Ansys’’ avec 

maillage de tétraèdres 

 

Figure 3-25 : Étude de l’évolution du temps de calcul ‘’Courbée-Ansys’’ avec 

maillage de tétraèdres 

On constate que le maillage tétraédrique est plus performant en convergeant plus rapidement 

vers le déplacement et la contrainte cible. Cela est dû à la nature courbée de la poutre. Par contre 

la résolution par maillage tétraédrique occasionne un temps de calcul supérieur. 
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3.5.3 Étude du modèle ‘’Poutre courbée Aster’’ 

3.5.3.1 Modèle de calcul 

La même démarche est effectuée pour ce cas test. On reprend la même géométrie du cas test 

poutre en arc effectué avec Ansys dans le but de comparer le comportement des deux codes dans 

ces deux cas tests. La démarche et les paramètres de simulation sont les mêmes que ceux utilisés 

pour la simulation poutre simple sur la suite logicielle SALOME-Meca (Tableau 3-6).  

À la suite de l’étape de maillage, on définit une étude de cas mécanique statique en imposant 

les mêmes paramètres de l’étude précédente. Le fichier de commande est fourni en annexe pour 

plus de détail. 

3.5.3.2 Analyse des résulats 

La contrainte maximale (88,33 MPa) est localisée au niveau des encastrements de la poutre 

où l’effort tranchant est le plus élevé en accord avec la théorie des poutres (ci-dessous).  

 

Figure 3-26 : Contraintes Von mises du modèle poutre en arc calculées avec SALOME-MECA 

La déformation maximale (2,00mm) est localisée au niveau du milieu de la poutre où 

théoriquement le moment fléchissant est le plus élevé (Figure 3-27). 
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Les zones critiques du modèle ont été validées qualitativement. Les écarts minimes, avec les 

résultats de la simulation ANSYS, valide la simulation. Cet aspect sera analysé plus tard lors de 

l’adaptation de maillage. 

 

Figure 3-27 : Déplacement du modèle Poutre en arc calculé avec SALOME-MECA 

 Le tableau suivant présente les résultats de la simulation. 

Tableau 3-11 : Résultats des simulations de la poutre en arc sous SALOME et ANSYS 

 Modèle ANSYS Modèle SALOME écart 

Contrainte max (MPa) 89,32 88,33 -1,10% 

Déplacement max (mm) 2,1 2,0 -4,76% 

On considère que l’écart de -4,76% est accepté pour un déplacement de cet ordre de grandeur. 

L’écart de déplacement n’est que de 0,1mm pour un élément ayant une épaisseur de 100mm. 

3.5.3.3 Analyse de convergence  

 La figure suivante schématise les résultats de l’étude de convergence (les données sont 

fournies au tableau G de l’annexe A). On constate que le modèle numérique assure une 

convergence du déplacement d’ordre 1,69. Cependant la convergence des contraintes maximales 

est moins performante avec un quotient de convergence de 0,8. Cela confirme le constat que le 
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code Aster permet une convergence et une précision beaucoup plus élevée que celles fournies par 

le code Ansys pour des géométries simples. On conclut que le modèle numérique converge et est 

validé pour le code Aster avec un comportement amélioré au niveau des contraintes. 

On s’intéresse comme lors de l’étude précédente à l’évolution du temps de calcul en fonction 

de la taille des éléments. Le Tableau 3-12 présente les temps de calcul pour chaque maillage lors 

de l’étude de convergence qui a été faite. 

 

Figure 3-28 : Étude de convergence du cas test ‘’Poutre Courbée Salomé’’ avec 

maillage d’hexaèdres 

Tableau 3-12 : Temps de calcul en fonction de la taille des éléments ‘’Courbée-Salomé’’ 

Taille d’éléments(m) Temps de calcul (s) 

0.2 11.74 

0.1 17.82 

0.05 25.2 

0.025 83.03 

0.0125 1267.4 
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On constate que pour une division par 16 de la taille des éléments le temps de calcul a été 

multiplié par 108 comparé à 60 pour Ansys sur le même ordinateur. On constate la tendance 

rapide à la hausse du temps de calcul. Le temps de calcul demeure néanmoins dans le même 

ordre de grandeur que pour le modèle ‘’Simple Salomé’’ comme expliqué précédemment, il est 

impossible de simuler le  maillage le plus fin (h=0.00625). La simulation s’interrompt à cause de 

la limitation de mémoire. 

En conclusion de cette deuxième étude comparative, on confirme les résultats de la première 

étude concernant la convergence des codes de calcul pour les deux méthodes. On a constaté 

également une convergence d’ordre supérieure et un temps  de calcul beaucoup plus élevé avec le 

code Aster. 

 

Figure 3-29 : Étude de l’évolution du temps de calcul ‘’Courbée-Salomé’’ 

3.5.3.4 Analyse de l’influence du maillage  

Confirmant les résultats de l`analyse d’influence précédente sous Aster, l’influence du 

maillage tétraédrique est prononcée. À la convergence, la déformation maximale est de 1.8mm or 

qu’elle est 2.1mm avec un maillage hexaédrique sous le même code de calcul. La convergence 

est également réduite par rapport à la convergence avec le maillage hexaédrique pour ce modèle. 

Le choix de maillage est déterminant pour le calcul sur Aster. Il est conseillé d’adapter le 

maillage au type de problème à résoudre. 
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Figure 3-30 : Étude de convergence du cas test ‘’Poutre Courbée Salomé’’ avec 

maillage de tétraèdres 

3.6 Interprétation des résultats  

Les modèles utilisés dans ces deux études comparatives approximent la solution par le choix 

des conditions limites et de l’imposition d’une pression répartie constante au lieu d’imposer un 

champ de pression qui varie en fonction des coordonnées. Cependant, on constate que le 

deuxième modèle de poutre simple courbée produit une déformation et une contrainte maximale 

réduite par rapport au modèle de la poutre droite bi-encastrée dues à un effet de voute simulé. La 

courbure de la deuxième poutre réduit la déformation au milieu de la poutre (endroit où le 

moment fléchissant est le plus contraignant). Elle relaxe ainsi les encastrements aux extrémités de 

la poutre où la contrainte est maximale. 

Tableau 3-13 : Comparaison du comportement de la poutre simple et la poutre courbée 

 Poutre simple 

rectiligne (Ansys) 

Poutre simple 

(Aster) 

Poutre courbée 

(Ansys) 

Poutre courbée 

(Aster) 

Déformation (mm) 4.1 3.99 2.1 2.0 

Contrainte maximale 

(MPa) 

144.56 141.48 89.32 88.33 

Moment fléchissant 

maximal(Nm) 

51486  25039  

Les études de convergences ont démontré l’existence d’une zone de confort numérique pour 

les deux codes. Lors de la vérification de la convergence des contraintes on a constaté une 

convergence assez lente et surtout une divergence avec le code Ansys une fois sorti de cette zone. 
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Avec Ansys, un maillage fin (à partir de h=0.0125) implique forcément une divergence au niveau 

du calcul des contraintes de Von mises. Ce comportement est corrigé avec Aster impliquant un 

coût de calcul plus élevé. Comme expliqué précédemment la convergence des contraintes 

maximales de Von mises avec Aster montre que potentiellement ces contraintes représentent une 

variable primaire pour le code numérique. 

3.7 Analyse de la réduction cyclique de la turbine  

3.7.1 Caractéristique du modèle  

La roue de turbine Francis dont on dispose, comme toutes les turbines, est de taille  

imposante. Elle comporte 13 pales qui sont fixées entre la couronne et la ceinture qui 

maintiennent l’ensemble. Le diamètre maximal de l’ensemble avoisine les 8 mètres. De même, la 

hauteur de l’ensemble atteint 7.35 mètres. Maillé, ce modèle comportera plus de 1 millions de 

nœuds et quelques centaines de milliers d’éléments finis de type tétraédrique ou hexaédrique. Cet 

ensemble constitue donc un modèle de grande taille qui devra être réduit. 

Les pales sont disposées d’une manière cyclique autour d’un axe concentrique à la couronne 

et la ceinture. On utilise alors cette caractéristique pour imposer une symétrie cyclique en 

réduisant la taille du modèle de simulation. Le modèle réduit ne comportera alors qu’une pale et 

le 1/13 de la couronne et la ceinture qui lui sont rattachées (voir  Figure 3-31). Cette structure est 

encastrée au niveau d’une arête de la couronne pour simuler l’anneau de serrage qui relie la roue 

à l’arbre de transmission qui transmet la rotation à l’alternateur.  

 

Figure 3-31 : Transformation géométrique du modèle de turbine 
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Pour que le modèle réduit simule le comportement de la roue au complet (13 aubes), il faut 

que la symétrie cyclique impose que les degrés de liberté des faces latérales libres de la couronne 

et de la ceinture soient liés entre eux. Ainsi tout déplacement d’un nœud de la face maître 

implique un déplacement identique du nœud correspondant de la face esclave. 

3.7.2 Validation de la cyclicité numérique 

A ce niveau  on s’intéresse à la validation du comportement des deux codes de calcul lors 

d’un problème simple de symétrie cyclique.  

3.7.2.1 Spécification du cas test   

Dans ce cas de cyclicité, un disque troué apparenté à la couronne est choisi comme modèle de 

validation du comportement des deux codes numériques. Sur Ansys, une première simulation est 

effectuée avec le disque au complet; puis une deuxième est effectuée avec le 1/6 du modèle (on 

impose alors une symétrie cyclique de 60 degrés). De même avec code Aster, on définit les 

mêmes modèles. Pour le maillage, on a choisi de mailler tous les modèles avec des éléments 

tétraédriques de la taille de l’épaisseur du disque.   

Les conditions limites définies pour les quatre simulations sont identiques: 

 Un encastrement à la surface inférieure du disque; 

 Une pression de  390490 Pa appliquée sur la face latérale ceinture du disque 

 Une symétrie cyclique de 60 degrés liant les deux surfaces coupées du 1/6 du 

disque dans le cas du deuxième modèle 

 

Figure 3-32 : Modèle de validation de la réduction cyclique 
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3.7.2.2 Analyse des résultats  

On procède par analyse comparative des deux modèles simulés sur chacun des codes. Le 

Tableau 3-14 présente les résultats des simulations en utilisant Ansys. 

Tableau 3-14 : Résultats du cas test validation cyclique sous Ansys 

cas Nombre 

d’éléments de 

maillage 

Temps de 

calcul (s) 

Déplacement max 

(mm) 

Contrainte max 

(MPa) 

Disque complet 2790 2.8 0.00062879 0.68779 

1/6 disque  220 0.4 0.00063931 0.69874 

écart   1.69% 1.6% 

On constate que le temps de calcul est réduit par 7 pour des écarts de calcul négligeable de 

l’ordre de 1.69% pour la contrainte maximale et de 1.6%. Pour ce qui est du déplacement. L’écart 

relativement élevé des déplacements est justifié par l’ordre de grandeur du déplacement dans ce 

cas. La même analyse comparative est menée pour les simulations sous Code-Aster (voir le 

tableau ci-dessous).  

Tableau 3-15 : Résultats du cas test validation cyclique sous Code-Aster 

cas Nombre 

d’éléments de 

maillage 

Temps de 

calcul (s) 

Déplacement max 

(mm) 

Contrainte max 

(MPa) 

Disque complet 8014 5.6 0.000592102 0.741 

1/6 disque 1839 4.6 0.000592101 0.741 

écart   0.01% 0.0% 

Avec Code-Aster, on constate un comportement amélioré de la condition de symétrie 

cyclique avec des erreurs de l’ordre de 0.01%. Le code open source performe mieux que le code 
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commercial validé Ansys. Pourtant le gain en temps avec Aster n’est pas à la hauteur du gain 

réalisé avec Ansys, confirmant ainsi le constat que le code aster est plus couteux au niveau du 

temps de calcul.  

Le résultat obtenu valide ainsi la réduction cyclique avec les codes Ansys et Code-ASTER 

avec une réduction conséquente des tailles des modèles. Cette réduction sera très utile lors de la 

validation du cas test ‘’turbine’’ sous les deux codes. 

3.7.2.3 Analyse de l’influence du maillage 

On effectue une analyse de convergence en fonction de la nature du maillage (tétraédrique ou 

hexaédrique) et la taille des éléments. On effectue cette analyse que pour  le modèle 1/6 du 

disque avec symétrie cyclique. Le graphe suivant schématise les résultats sous Ansys.  

 

Figure 3-33 : Analyse de convergence du modèle ‘’1/6 disque’’ sous Ansys. 

On constate que pour cette géométrie simple la convergence des deux maillages est identique. 

On effectue également cette analyse de convergence sous Aster pour valider le comportement du 

code. Cependant, l’outil de génération de maillage de la plateforme ne peut générer un maillage 

hexaédrique à cause de la forme cylindrique du modèle. On se limite ainsi à l’analyse de 

convergence du modèle avec un maillage tétraédrique. Les résultats de simulation montrent que 

pour ce modèle simple, le code aster converge dès le premier maillage. Comparativement au code 
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commercial Ansys, le code open source Aster confirme ses performances malgré un outil de 

génération de maillage moins robuste et qui offre moins de possibilité que le mailleur d’Ansys.  

 

Figure 3-34 : Analyse de convergence du modèle ‘’1/6 disque’’ sous Code-Aster 
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CHAPITRE 4 CAS INDUSTRIELS- TESTS PALE 

4.1 Cas Andritz 

4.1.1 Présentation des paramètres du cas 

Dans le cadre de ce travail de maîtrise, la compagnie Andritz fournit les résultats d’une 

analyse mécanique d’une pale de turbine Francis comme référence pour la validation et la 

vérification des différents modèles. En utilisant le logiciel NX (Unigraphics), l’analyse est 

effectuée sur la géométrie de pale qui sera utilisée par la suite pour les simulations sous Ansys et 

Aster. Le modèle Andritz simule les conditions suivantes  

 La gravité terrestre ( lepoids de la turbine est loin d’être négligeable); 

 La vitesse de rotation de la roue de la turbine (90rpm dans ce cas); 

 La symétrie cyclique: dans le but de simuler le comportement des 13 aubes tout en 

allégeant le calcul en ne simulant qu’une aube; 

 Blocage d’un cercle sur la partie supérieure de la roue, ce qui aura pour effet de 

simuler l’effet du boulonnage; 

 Des champs de pressions sur les deux faces de la pale. 

Ces conditions limites et de chargement seront reprises et implémentées dans les modèles de 

vérifications qui ont été développé dans le cadre de ce travail. 

Les calculs statiques effectués par Andritz avec l’outil donnent les résultats suivants:  

Tableau 4-1 : Résultats des calculs d’Andritz 

 Cas puissance maximale 

Moment [N·m] -4.5165e+006 

Puissance (MW) 553.37 

Contrainte max (MPa) 152,5 

 



79 

 

 

Figure 4-1: Localisation de la contrainte maximale calculée 

Cependant il faut préciser qu’on ne dispose d’aucune information sur le type de maillage 

utilisé. Ainsi, l’interprétation de l’analyse comparative de ces résultats avec les résultats des 

autres simulations devrait être couplée à des analyses de convergences. 

4.1.2 Calcul de puissance de la turbine  

Une des méthodes de vérification du calcul est de retrouver la puissance théorique ou 

réelle de la turbine. En théorie, la puissance peut être calculée en se basant sur les caractéristiques 

de la chute selon les équations suivantes. 

       (4-1) 

          (4-2) 

Ne disposant pas des données fluide, les deux équations précédentes sont d’aucune utilité  lors de 

la vérification de l’analyse mécanique de la pale de turbine. Or connaissant le moment
28

 d’une 

pale, la puissance délivrée par cette pale peut être calculé selon l’équation suivante : 

           (4-3) 

                                                 

28
 La composante de moment à utiliser pour ce calcul est la composante z du moment trouvé. Etant donné que 

seulement  ce moment  sera transmis à l’arbre liant la turbine à l’alternateur. 
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La puissance trouvée ainsi ne représente que 1/13 de la puissance de la roue (la roue comporte 13 

pales). En utilisant la composante z du moment multiplié par 13 on retrouve la puissance générée 

par la turbine. 

          (4-4) 

Étant donné qu’on dispose uniquement de la puissance de la turbine, cette démarche est utile pour 

la vérification du résultat de calcul par une étude comparative des résultats fournis par Andritz. 

4.2 Modèles de la pale avec Ansys 

À cette étape on dispose d’un fichier standard IGES englobant une pale de la roue de turbine. 

Comme expliqué précédemment, le modèle géométrique ne contient que le 1/13 de la roue pour 

alléger les calculs (la pale est fixée en bas sur la ceinture et en haut sur la couronne. La couronne 

transmet le moment via une surface boulonnée à l’arbre liant la roue et l’alternateur. Le fichier 

IGES est importé dans le modeleur géométrique d’Ansys Workbench 13.0. 

4.2.1 Modèle de calcul  

Comme pour les deux premiers modèles, le modèle de calcul le plus approprié est le modèle 

d’analyse structurelle statique intégré à ANSYS 13.0. Ce mode de calcul d’ANSYS est adapté 

pour le calcul de déplacement, contraintes et forces sur des structures où les effets 

d’amortissement et d’inertie transitionnelle sont négligeables. D’autre part, on ne schématise 

qu’une pale c.à.d. 1/13 de la roue comme expliqué précédemment. Ainsi le couplage cyclique 

sera un élément central du modèle de calcul vu la principale hypothèse de géométrie 

axisymétrique.  

4.2.2 Maillage  

Vu la complexité du modèle géométrique, on a choisi d’utiliser en premier lieu le mode de 

maillage tétraédrique conforme aux surfaces paramétriques (patch conforming). Ce mode de 

maillage a pour avantage de procéder au maillage des arêtes, des faces et des frontières du 

domaine en premier puis de procéder par la suite au maillage du volume. Ainsi toutes les faces 

sont respectées. Cette étape est cruciale pour l’étape suivante d’application des conditions limites 

et des chargements. Un contrôle de correspondance est imposé également entre les faces de haute 
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pression et basse pression de la couronne et la ceinture. Ceci implique que le maillage d’une face 

est projeté sur la deuxième. Ainsi les nœuds de la surface esclave seront liés dans leurs degrés de 

libertés à ceux de la surface maitresse. Cette opération n’est nécessaire que pour la condition de 

symétrie cyclique  

La figure suivante présente le modèle de maillage utilisé pour la validation du cas test (pale, 

partie de la couronne et la ceinture correspondante). Le modèle a été maillé avec des éléments 

tétraédriques en imposant une taille des éléments h égale à 0.2m. Un raffinement d’ordre 2 a été 

imposé aux extrémités de la pale, c.à.d. au niveau des jonctions avec la couronne (partie 

supérieure) et la ceinture (partie inférieure). Le maillage comporte 289487 nœuds et 203912 

éléments. Les caractéristiques du maillage seront fournies en annexe. 

 

 

Figure 4-2: Maillage d’une pale de turbine avec Ansys 

Lors de l’étude de convergence, d’autres maillages seront utilisés pour mesurer l’impact des 

différents paramètres sur l’erreur et la validation des différents modèles.  
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4.2.3 Conditions limites et chargements  

Pour reproduire le modèle physique, il est indispensable de simuler : 

 La gravité terrestre (poids de la turbine est loin d’être négligeable); 

 La vitesse de rotation de la roue de la turbine (90rpm dans ce cas); 

 La symétrie cyclique : dans le but de simuler le comportement des 13 aubes tout 

en allégeant le calcul en ne simulant qu’une aube; 

 Blocage d’un cercle sur la partie supérieure de la roue ce qui aura pour effet de 

simuler l’effet du boulonnage. 

 

Figure 4-3 : Conditions aux frontières appliquées sur la pale 

Ensuite, les champs de pression distribuée sont appliqués seulement sur les faces haute 

pression et basse pression de la pale selon la méthode basse chute (voir Figure 4-4). En basse 

chute, les pressions exercées sur la couronne et la ceinture sont négligées. Les champs de 

pression appliqués proviennent des fichiers contenant une distribution de la pression sur les faces 

en fonction de coordonnées cylindriques.  
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Figure 4-4 : Champs de pression appliqués sur les faces haute et basse pression de la pale 

Une deuxième simulation est effectuée à titre de vérification, en considérant une pression 

répartie constante. On considéra la moyenne des pressions issue des fichiers de distribution de 

pression dont on dispose. La pression répartie sur la face haute pression de la pale est égale à 

353900 Pa; tandis que celle sur la face basse pression est égale à 187718Pa. 

4.3 Modèle de la pale avec ASTER  

4.3.1 Modèle géométrique de calcul  

En plus du fichier standard IGES de départ englobant une pale de la roue de turbine (1/13 de 

la turbine), on dispose d’un fichier géométrique généré par le modeleur d’Ansys 13.0. Dans la 

perspective de gain de temps, on procède à la conversion du fichier géométrique en format STEP 

qui est plus facile à récupérer sur Salome-Meca. Avec le format IGES on serait obligé de 

retravailler la géométrie. On définit des groupes géométriques qui seront très utiles lors de 

l’écriture du fichier de commandes. Quatre groupes géométriques essentiels ont été définis : 

 Un groupe nommé ‘’encas1’’ qui englobe l’arrête de la couronne où on simule le 

cercle de serrage; 

 Les faces de côté droit de la couronne et la ceinture qu’on nomme ‘’FaMast’’ pour 

faces maitres. Ces faces sont essentielles pour le couplage cyclique; 
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 Les faces opposées de la couronne et la ceinture qu’on nomme ‘’FsSlav’’ pour faces 

esclaves. De même que les faces maitresses ces faces sont essentielles à la condition 

de couplage cyclique;  

 La face extérieure de la pale où sera appliqué le champ de pression correspondant 

est nommée ‘’Press’’. 

 La face basse pression de la pale où sera appliqué le deuxième champ de pression, 

est nommée ‘’Preback’’ 

 

Figure 4-5 : Groupes géométriques définis sur Salomé 

4.3.2 Maillage  

À cette étape, on procède à la discrétisation spatiale du domaine avec le générateur de 

maillages de Salome-Meca. À cause de la complexité du modèle, l’algorithme le plus robuste a 

été choisi pour mailler. L’algorithme Netgen 1D-2D-3D épargne à l’utilisateur l’obligation de 

mailler séquentiellement les arêtes, les surfaces puis les volumes. L’algorithme le fait 

automatiquement. Le tableau suivant présente les différents paramètres utilisés lors du maillage 

de la géométrie (Voir annexe pour le détail). 
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Tableau 4-2 : Paramètres de maillage du modèle de la pale en Salomé. 

Algorithme Netgen 1D-2D-3D 

Hypothèses Netgen 3D paramètres 

Max size 1 

Finesse moyenne 

Growth rate 0.7 

On obtient un maillage de départ avec 20631 éléments tétraédriques. 

 

Figure 4-6 : Statistique du maillage Pale sur Salomé 

À la suite de cette étape de maillage, on définit une étude de cas mécanique statique avec le 

module ASTER intégré à Salomé. Ainsi il est possible de générer automatiquement un fichier de 

commande qu’on manipulera par la suite avec l’application Eficas. On définit les propriétés de 

matériaux (module de Young E=2.11 GPa, module de cisaillement=0.3). Et on impose un 

déplacement nul en (x,y,z) sur le sous-groupe géométrique ‘’encas1’’ correspondant à 

l’encastrement. On associe aux sous-groupes ‘’Press’’ et ‘’Preback’’ les champs de pression 

exercés par le fluide sur les deux faces de la pale. Pour le premier calcul, on impose 

respectivement 0.3539 MPa et 0.1877 MPa comme les valeurs moyennes des deux champs de 

pression. On impose également une contrainte de couplage cyclique entre ‘’FaMast’’ et 
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‘’FsSlav’’ avec la commande LIAISON_MAIL, qui permet de lier les DDL des noeuds de deux 

faces, en tenant compte d'un changement de référentiel. Autrement dit, cette commande permet 

d'obtenir sur les deux faces les mêmes déplacements en coordonnées cylindrique, ce qui 

correspond à une condition de symétrie cyclique. Ainsi il est permis d’effectuer une première 

vérification du modèle avec le code ASTER. Le fichier de commande est fourni en Annexe pour 

plus de détail. 
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CHAPITRE 5 RÉSULTATS DES CAS TESTS PALE 

Dans un premier temps, nous analyserons les résultats de l’implémentation du cas test sur le 

code commercial ANSYS. Puis dans un second temps, une analyse des résultats sera faite pour 

vérifier le comportement du modèle sur le code open source ASTER. Pour le premier cas test, 

comme présenté précédemment, deux sous cas seront validés : le premier‘’Turbine-Ansys’’ 

reproduit les champs de pression répartis sur les deux faces de la pale; le deuxième ‘’Turbine-

Ansys-cst’’ ne simule que deux pressions moyennes appliquées sur les faces haute et basse 

pression de la pale. Le deuxième sous cas permettra de valider le cas test avec le code Aster étant 

donné qu’actuellement il est impossible de simuler des champs de pressions variables avec Aster. 

5.1 Modèle de la pale avec Ansys 

5.1.1 Modèle ‘’Turbine-Ansys’’ 

Avec la première configuration et pour l’actuel modèle de la pale de turbine, le calcul et la 

préparation des résultats post-traités durent 183.3 secondes. Le calcul proprement dit ne demande 

que 178.1 secondes. Après simulation, on effectue un post processing avec les outils d’Ansys. 

Les figures et les tableaux suivants présentent les résultats de la simulation. Comme démontré par 

le modèle développé par Saeed, la zone de la jonction entre la pale et la couronne (partie 

supérieure de la roue) est la zone la plus critique du point de vue de la contrainte Von mises 

maximale. La déformation maximale est localisée au niveau de la jonction entre la ceinture et la 

pale. Cette zone correspond à la zone de la face Haute pression où la pression de l’eau est la plus 

élevée. La localisation de la déformation maximale schématisée à la droite de la Figure 5-1 

correspond à la localisation schématisée à la Figure 4-4. 
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Figure 5-1: Déplacements et contraintes sur la pale avec Ansys 

Tableau 5-1: Contraintes et déplacements de la pale après chargement 

Contrainte Von Mises maximale (MPa) Déplacement maximum (mm) 

156.75 5.195 

Un autre résultat nécessaire à la validation est le moment produit par la réaction due à la 

condition frontière de boulonnage. Le moment est calculé par rapport au centre du système de 

coordonnés cylindrique imposé au début de la simulation. La figure suivante schématise cette 

force dans le système cylindrique. Les données numériques sont données au Tableau 5-2. 

 

Figure 5-2: Réaction due à la force de boulonnage 
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Tableau 5-2: Composantes cylindrique du moment de boulonnage 

Réaction du 

moment-de 

boulonnage (r) 

[N·m] 

Réaction du 

moment-de 

boulonnage (θ) 

[N·m] 

Réaction du 

moment-de 

boulonnage (Z) 

[N·m] 

Réaction de 

moment-boulonnage 

(Total) [N·m] 

-8.3266e+006 1.6286e+006 -4.4716e+006 9.5906e+006 

Seule la composante en z sera considérée pour la validation étant donné que le calcul de 

puissance de la roue nécessite le moment délivré par la roue selon l’axe de rotation de 

l’ensemble. On élaborera le détail du calcul de la puissance de la turbine dans le prochain 

paragraphe. 

5.1.1.1 Analyse comparative  

Dans le présent paragraphe, une analyse comparative est effectuée. On s’intéressera à 

comparer les résultats fournis par Andritz et les résultats du modèle développé au cours de cette 

étude. Le tableau suivant résume les résultats des deux modèles. On y expose les résultats des 

différents paramètres de la turbine ainsi que l’écart ou l’erreur entre les deux calculs. 

Tableau 5-3: Analyse comparative entre le modèle d’Andritz et le modèle Ansys. 

 Modèle Andritz Modèle développé 

Ansys 

Erreur (%) 

Déformation (mm) NA 5.03 NA 

Moment (N.m) -4.5165e+006 -4.4716e+006 -0.99% 

Puissance (MW) 553.37 547.87 -0.99% 

Contrainte max 

(MPa) 

152,5 156.75 2.1% 

On constate des écarts inférieurs à 1% pour le moment et la puissance des deux modèles. 

Cependant, les valeurs de la contrainte maximale des deux modèles présentent un écart de 2%.  

Malheureusement, on ne dispose ni des caractéristiques du maillage utilisé par Andritz ni des 

résultats d’une étude de convergence faite par l’entreprise. On ne peut conclure sur l’origine de 

l’écart. 

Bien que le modèle soit globalement représentatif, les écarts constatés montrent que 

probablement la convergence n’est pas atteinte. La même démarche est effectuée lors de 

l’analyse d’erreur et de convergence. 
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5.1.1.2 Analyse d’erreur et de convergence  

Une étude de convergence a été menée pour le cas ‘Turbine Ansys’’ en reprenant la 

méthodologie des études de convergences. Un maillage de départ où h maximale est égale à 1 

mètre est raffiné lors de l’étude par des divisions successives par deux. À partir de ces données 

on a déterminé le quotient de convergence du modèle numérique pour le déplacement et la 

contrainte Von mises maximale. Les données sont fournies en détail en annexe 1 au tableau I. 

La Figure 5-3 schématise les résultats de l’étude de convergence. On constate que le modèle 

numérique assure une convergence du déplacement d’ordre 0,8. Cependant la convergence des 

contraintes maximales est moins performante avec un quotient de convergence de 0,2 (un ordre 

de convergence de -1,4 tel qu’illustré). On conclut que le modèle numérique converge pour le 

déplacement et est validé pour le code commercial Ansys. Cependant on constate que la 

convergence n’est pas assurée au niveau des contraintes de VonMises. En raffinant la taille du 

maillage, on quitte une certaine zone de confiance. 

 

Figure 5-3 : Étude de convergence du cas test ‘’Turbine–Ansys’’ 

La Figure 5-4 schématise l’évolution du temps de calcul en fonction de la finesse du maillage. 
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Figure 5-4 : Étude de l’évolution du temps de calcul ‘’Turbine-Ansys’’ 

On constate que le temps de calcul, même pour le cas complexe de la turbine reste 

relativement peu élevé relativement aux autres cas simples traités avec Aster.  

5.1.2 Modèle ‘’Turbine-Ansys-cst’’ 

Comme expliqué, ce cas test servira de référence de validation pour le cas test de la turbine 

avec Aster. La figure suivante illustre le déplacement et les contraintes maximales. 

 

Figure 5-5 Déplacements et contraintes du modèle ‘’Turbine-Ansys-cst’’ 
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La zone de la jonction entre la pale et la couronne est la zone la plus critique du point de vue 

de la contrainte Von mises maximale. La déformation maximale est localisée au niveau de la face 

haute pression de la pale (schématisée à droite de la Figure 5-5). Cette zone correspond à la zone 

où la pression de l’eau est la plus élevée et le moment fléchissant est le plus élevé. On constate 

que la modification des conditions de chargements et l’application des pressions moyennes 

modifie amplement les résultats du calcul. Le Tableau 5-4 compare les résultats des deux 

modèles développés sous Ansys et illustre la variation des paramètres. 

Tableau 5-4: Analyse comparative entre les modèles ‘’Turbine Ansys’’ et ‘’Turbine Ansys-cst’’ 

 Modèle 

Andritz 

Modèle Turbine 

Ansys 

Modèle Turbine 

cst 

Écart 

Déformation (mm) NA 5.03 4.23 15.9% 

Moment z (N.m) -4.5165e+006 -4.4716e+006 -3.7014e+006 17.22% 

Puissance (MW) 553.37 547.87 453.5 17.22% 

Contrainte max 

(MPa) 

152,5 156.75 130.36 16.8% 

En moyenne on constate une réduction de 16% par rapport aux résultats de la simulation du 

cas test ‘’Turbine Ansys’’ justifié par la réduction du moment fléchissant auquel est soumise la 

pale de turbine. La Figure 5-6 schématise les résultats de l’étude de convergence. Le détail est 

fourni au tableau J de l’annexe A. 

 

Figure 5-6 Étude de convergence du cas test ‘’Turbine–Ansys-cst’’ 
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Le modèle numérique assure une convergence du déplacement d’ordre 1,2 et un quotient de 

convergence des contraintes Von Mises de 0,5 (un ordre de convergence de -0.9 tel qu’illustré). 

Pour les deux paramètres, les valeurs sont légèrement supérieures aux valeurs de convergences 

du cas test précédant (Turbine-Ansys) à cause de l’uniformité des champs de pression dans le 

deuxième cas test. Cette uniformité réduit la complexité le modèle numérique et améliore 

relativement la convergence numérique. 

5.2 Modèle de la pale avec ASTER 

Disposant des résultats du cas test ‘’Turbine-Ansys-cst’’ qui servira de référence, on étudie 

les résultats du cas ‘’Turbine-Aster’’. La contrainte maximale (104,44 MPa) est localisée au 

niveau des zones de jonction pale-couronne et pale–ceinture en accord avec le modèle de Saeed. 

La déformation maximale (2,14mm) est localisée au niveau du milieu de la pale où 

théoriquement le moment fléchissant est le plus élevé.  

 

Figure 5-7 : Contraintes Von mises du modèle Pale cst calculées avec Aster 

Dans le premier cas Ansys on traite d’un champ de pression variable or qu’il est constant 

dans cette première simulation Salomé. Pour valider le modèle aster, Il est nécessaire de 

comparer le modèle Salomé à un modèle Ansys avec des pressions constantes appliquées aux 

faces basse et haute pression de la pale (voir annexe pour les résultats du modèle ‘’Turbine-

Ansys-cst’’. 



94 

 

 

Figure 5-8 : Déplacement du modèle pale cst calculé avec Aster 

Outre les zones critiques du modèle qui ont été validées (Figure 5-7); on constate des écarts 

avec les résultats de la simulation ANSYS qui ne valident pas la simulation (voir Tableau 5-5). 

Cependant, le profil de déplacement dû à des champs de pression constants concorde avec le 

même modèle simulé avec Ansys (voir Figure 5-5).  

Tableau 5-5 : Résultats des simulations de la pale cst sous SALOME et ANSYS 

 Modèle ANSYS Modèle SALOME écart 

Contrainte max (MPa) 127.02 104,44 -17.76% 

Déplacement max (mm) 4.238 2.114 -50.06% 

 

Une analyse de convergence numérique est nécessaire alors pour valider le comportement du 

modèle simulé avec Salomé. 

5.2.1 Analyse de convergence numérique du cas ‘’Pale Aster’’ 

La méthode présentée au chapitre 3 est reprise. Les données sont fournies en détail au tableau 

K de l’annexe 1. 
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Figure 5-9 : Étude de convergence du cas test ‘’Turbine–cst-Aster ’’ 

La figure ci-dessus schématise les résultats de l’étude de convergence. On constate que le 

modèle numérique assure une convergence du déplacement avec un ordre de convergence négatif 

égal à -0.37. Ceci est dû à une oscillation des valeurs pour les maillages de taille 0,25 et 0,5. Le 

déplacement est compris entre 1,85mm et 2.1mm. De même la convergence des contraintes 

maximales est négative avec un ordre de convergence de -2,21. Les contraintes maximales 

varient entre 90MPa et 166MPa. Comparativement, le modèle ‘’Turbine-Ansys-cst’’ assure une 

convergence des déplacements d’ordre 1,22 et une convergence négative d’ordre -0,92 pour les 

contraintes VonMises. (Figure 5-6)  

Pour le code Aster, on constate une convergence chaotique malgré la non prise en compte du 

champ de pression variable. 

5.3 Comparaison des codes pour les différents cas test : 

Ne disposant pas d’une solution exacte pour la solution du problème mécanique, on a procédé 

au cours de ce mémoire de maitrise à des comparaisons successives des différents cas test 

approximant une pale de turbine soumis à un chargement hydraulique. Le comportement de 

chacun des codes varie d’un cas test à un autre. Le tableau suivant illustre la variation des 

résultats selon le maillage utilisé et le code utilisé pour les cas test ‘’turbine-cst’’. 
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Tableau 5-6 : Tableau comparatif des cas test ‘’Turbine-cst’’ 

Taille du maillage (m)  1 0.5 0.25 0.125 0.00625 

Turbine cst Aster Déplacement max (mm) 1.856 1.846 1.917 2.114 2.12 

Contrainte max (MPa) 98.95 99.6 99.9 122.23 150.65 

Turbine cst Ansys Déplacement max (mm) 3.94 4.23 4.49 4.56 4.58 

Contrainte max (MPa) 99.5 130.36 127.02 155.87 283.61 

On constate que le comportement de la convergence numérique sur Aster et Ansys est 

globalement similaire pour les contraintes Von mises. L’ordre de grandeur de la contrainte Von 

mises maximale concorde avec les résultats des modèles ‘Turbine-Ansys’’ et ‘’Turbine-Andritz’’ 

(voir Tableau 5-3). Néanmoins, les deux codes sont sensibles aux singularités numériques: À 

partir d’une taille des mailles inférieures à 125mm, la valeur maximale de la contrainte maximale 

explose au niveau des jonctions couronne-pale et ceinture-pale. Ces deux zones sont soumises à 

des concentrations de contrainte au voisinage d'un défaut de forme elliptique ou un angle 

rentrant, c'est-à-dire un angle inférieur à 180° entre deux faces extérieures à la matière (voir 

Figure 5-10). 

 

Figure 5-10 : Quelques exemples de modèles provoquant des singularités : (a) 

géométrie comportant un angle rentrant, (b) modèle de 

comportement discontinu, (c) force ponctuelle. 

Même si les arrondis ont tendance à corriger et lisser le comportement des contraintes aux 

alentours de ces  zones, le problème persiste dans notre cas.  
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Il faut mentionner également que la présence de l’encastrement simulant la force de serrage 

ou les déplacements imposés dans cette configuration géométrique particulière peut entraîner des 

singularités. D’ailleurs, on le remarque au niveau du cercle de boulonnage du cas test ‘’turbine–

Ansys-cst’’. Ces singularités proviennent de limitations intrinsèques de la mécanique des milieux 

continus impliquant dans certaines configurations géométriques des résultats non valides (voir 

Figure 5-10). En effet, un solveur éléments finis ne calcule les contraintes et déformations qu'aux 

points d'intégration (ou points de Gauss) des éléments, qui sont situés à l'intérieur des éléments. 

Or, dans une simulation par éléments finis, les points singuliers sont toujours des nœuds du 

maillage, et sont donc situés au bord des éléments. Les contraintes ne sont donc jamais calculées 

aux points singuliers, et ne présentent pas de valeurs infinies qui permettraient de détecter la 

singularité. Ce que l'on observe ressemble plutôt à une simple concentration de contraintes et les 

valeurs obtenues n'ont souvent rien de choquant à première vue mais leur valeur n'est pas 

pertinente pour autant: elle dépend uniquement de la taille et de la forme des éléments et 

augmente indéfiniment lorsque l'on raffine le maillage.  

Pour ce qui est de la convergence numérique des déplacements sur Ansys et Aster, on 

constate une légère différence. Le déplacement calculé avec Aster correspond au déplacement du 

modèle approximatif ‘’poutre courbée’’. Celui calculé avec Ansys reproduit le résultat du modèle 

‘’poutre simple’’. (voir ci-dessous) 

Tableau 5-7 Tableau comparatif des déplacements maximales en mm en fonction du cas test 

Taille de la maille (m) 1 0.5 0.25 0.125 0.00625 

Turbine cst Aster 1.856 1.846 1.917 2.114 2.12 

Turbine cst Ansys 3.94 4.23 4.49 4.56 4.58 

Poutre simple Ansys 4.172 4.1952 4.2038 4.2061 4.2069 

Poutre simple Aster 3.8776 3.952 3.99 4.002 4.005 

Poutre courbée Ansys 2.098 2.104 2.1053 2.1058 2.106 

Poutre courbée Aster 1.977 1.994 2.003 2.004 2.005 
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Cette particularité est surprenante : Aster a tendance à amplifier l’effet de voute en réduisant 

les valeurs du déplacement maximal. 

Théoriquement, les théories des poutres, plaques présentent généralement moins de cas 

singuliers que la mécanique des milieux continus tridimensionnels. Cependant, on constate que 

les résultats dépendent également de la taille et de la forme des éléments. Les valeurs de 

déplacements dépendent énormément de la nature  du maillage (tétra ou héxa). Il faut noter que 

dans le tableau ci-dessus on n’illustre que les résultats obtenus par des maillages hexaédriques 

pour les cas test des Poutres car le comportement d’ASTER est chaotique lorsqu’on choisit un 

maillage hexaédrique pour les cas simples de poutres (voir Annexe). Par contre, le comportement 

d’Ansys est relativement stable pour ces cas. 

Même si on n’a pas réussi à simuler le problème complet de la pale de turbine  sur Aster, on 

peut conclure que  le cas test ‘’Turbine-Ansys’’ a été validé en le comparant aux résultats fournis 

par Andritz même si on ne dispose pas du résultat du déplacement. Cependant, il est suggéré 

d’imposer une limite inférieure lors du raffinement du maillage pour contourner ainsi les 

problèmes de singularité. 

Enfin, il faut souligner que les résultats de la simulation ‘’turbine-cst-Aster’’ sont en partie 

inexplicables. Bien que les résultats des contraintes aient été validés qualitativement, un écart 

persiste au niveau des déplacements. 
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CONCLUSION 

Synthèse des travaux  

Dans un premier temps, la présente  étude a établi les expressions analytiques décrivant le 

comportement mécanique d’une pale de turbine, en se basant sur des hypothèses simplificatrices 

importantes, telles celle du double encastrement développé par Al Saeed. En se basant sur ce 

modèle théorique, plusieurs simulations numériques ont été menées et ont permis la validation et 

la vérification des deux codes utilisés ‘’Ansys’’ et ‘’Aster’ pour ces cas test simples. Ensuite, des 

simulations numériques ont ensuite été menées en se basant sur un premier cas test fourni par 

Andritz. On est ainsi parvenu à reproduire virtuellement les résultats du modèle de ‘’référence’’ 

avec une précision acceptable, puisque l'écart moyen entre résultats numériques Ansys et la 

solution Andritz sur les tests considérés est d'environ 3.5 %. Le comportement du solveur mis en 

œuvre par la suite a également été investigué, afin d'identifier les points sensibles nécessitant une 

attention particulière. Finalement, une étude d’erreur est menée pour valider le modèle de la 

turbine avec Code Aster permettant d'obtenir une estimation relativement valide des résultats de 

références sans atteindre une convergence et une validation du solveur pour ce cas test. 

Malheureusement, les résultats du dernier cas de validation n’ont pas été concluants contre toute 

attente. La différence au niveau des déplacements est inexpliquée. Elle est probablement due à 

des erreurs multiples (modélisation, discrétisation et de résolution). 

Limite de la démarche proposée 

Cette étude prouve qu'il est possible, pour un problème de design bien défini et en disposant 

de données de référence permettant la validation des simulations numériques, de développer une   

méthodologie de validation d’autres codes numériques à la fois simple et précise capable 

d'estimer l’ordre de grandeur des contraintes et les déformations maximales de la pale. 

Cependant, il faut faire bien attention aux limites de ces résultats qui sont détaillées ci-dessous : 

 L'espace de design considéré est très spécifique. Par conséquent, notre étude, n’est 

valide que pour les cas de turbines Francis basse chute. 

 Notre étude étant structurelle statique ne permet en aucun de valider des modèles 

dynamiques. 
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 Code aster ne permettant pas l’intégration des champs de pression variable à moins 

de disposer du maillage fluide du modèle, le dernier cas test ‘’Pale-Aster’’ ne 

reproduit pas fidèlement le modèle de référence. Ceci modifie légèrement 

l’emplacement des déplacements et des contraintes maximales de la pale. Pour 

cette raison, le dernier modèle ne peut être validé par étude comparative. 

 Ne disposant pas d’une valeur de référence de déplacement maximale, on ne peut 

malheureusement valider les déplacements des cas test impliquant la pale de 

turbine. 

Améliorations possibles 

Cette étude montre qu'il est possible d'évaluer le comportement mécanique d’une pale de 

turbine Francis à la fois numériquement et algébriquement et de valider les outils numériques 

utilisés. Les futurs travaux, alors conscients de ce fait, pourront l'enrichir et élargir son champ 

d'application, pour parvenir un jour à un outil efficace de pré validation mécanique qui sera mis 

en œuvre par les concepteurs fluidiques de turbines. De nombreuses améliorations peuvent être 

apportées dans cette optique, parmi lesquelles : 

 Investiguer des cas de validation intermédiaires qui permettraient éventuellement 

d’expliquer les sources d’erreur des résultats obtenus sous Aster  

 Intégrer le maillage fluide au code Aster en le couplant au maillage structure pour 

pouvoir projeter les pressions aux nœuds du maillage fluide sur le maillage 

structure. On pourra simuler ainsi des efforts aux nœuds et de s’approcher du 

modèle ‘’Pale Ansys’’. Ne disposant pas du maillage fluide jusqu’aux dernières 

semaines, ceci n’a pas pu être fait dans le cadre de ce projet de maitrise. 

Cependant, un fichier de commande à implémenter suite à ce projet  est fourni en 

annexe; 

 Intégrer et tester des éléments quadratiques dans Aster pour s’assurer de la 

validation numérique du modèle de pale avec ce code numérique; 



101 

 

 Proposer des outils analytiques d’estimation des erreurs de discrétisation adaptés 

aux problèmes mécaniques des turbines en complément à la méthodologie de 

validation et de vérification. 
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ANNEXE 1 – Étude de convergence 

Cette annexe détaille les résultats des études de convergence des différents modèles 

A. Modèle Poutre simple Ansys hexa 

Taille maillage h 

(m) 

0.1 0.05 0.025 0.0125 0.00625 

Log(h) -1 

 

-1.30103 -1.602059 

 

-1.9030899 

 

-2.2041199 

Nombre 

d’éléments 

60 

 

472 

 

3900 

 

30540 

 

241664 

Déformation 

 (m) 

0.0041548 

 

0.0041959 0.0042033 

 

0.0042058 

 

0.004206 

 

Contrainte 

Maximale 

 (MPa) 

138.72 

 

144.56 162.09 202.18 325.71 

RA (N) 104410 104410 104410 104410 104410 

MA(N.m) 51590 51486 51465 51458 51455 

 

4.11E-05 

 

7.4E-06 2.5E-06 2E-07 NA 

 

5840000 

 

17530000 

 

40090000 

 

123530000 

 

NA 

 

5.55405405 

 

2.96 

 

12.5 

 

NA NA 

Ordre de 2.47354122 

 

1.56559718 3.64385619 NA NA 
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convergence 

 

0.33314 

 

0.43727 

 

0.32454 

 

NA NA 

Ordre de 

convergence 

-1.5858 

 

-1.1934 -1.6235   

Temps de calcul 

CPU (s) 

6.1 

 

13.7 

 

19.5 

 

115.4 

 

130 

 

 

B. Modèle poutre simple Ansys tétra 

Taille maillage h 

(m) 

0.1 0.05 0.025 0.0125 0.00625 

Log(h) -1 

 

-1.30103 -1.602059 

 

-1.9030899 

 

-2.2041199 

Nombre 

d’éléments 

720 

 

4299 

 

32641 

 

262387 

 

2090050 

Déformation 

 (m) 

0.0041728 

 

0.0041952 0.0042038 

 

0.0042061 

 

0.0042069 

 

Contrainte 

Maximale 

 (MPa) 

125.13 

 

141.45 156.51 193.85 237.76 

RA (N) 104410 104410 104410 104410 104410 

MA(N.m) 51542 51486 51462 51458 51455 
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2.24E-05 

 

8.6E-06 2.3E-06 8E-07 NA 

 

16320000 

 

15060000 

 

37340000 

 

42910000 

 

NA 

 

2.604651163 

 

3.73 

 

2.875 

 

NA NA 

Ordre de 

convergence 

1.381090167 

 

1.90270279

9 

1.52356195

6 

NA NA 

 

1.0837 

 

0.40332 

 

0.87019 

 

NA NA 

Ordre de 

convergence 

1.1592 

 

-1.31 -0.20059   

Temps de calcul 

CPU (s) 

6.1 

 

16.4 

 

59.4 

 

115.4 

 

768 

 

 

C. Modèle Poutre simple Salome hexa 

Taille maillage h 

(m) 

0.2 0.1 0.05 0.025 0.0125 

Log(h) -0.69897 

 

-1 -1.30103 

 

-1.602059 

 

-1.9030899 

Nombre 

d’éléments 

28 

 

60 

 

472 

 

3776 

 

30208 

Déformation 0.0038776 

  

0.00395201 0.0039929

6 

 

0.0040023 

 

0.0040052

1 
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 (m) 

Contrainte 

Maximale 

 (MPa) 

59.424 

  

72.431 141.48 146.52 184.64 

 

7.441E-05 

  

4.095E-05 9.34E-06 2.91E-06 NA 

 

13007500 

  

69050000 

 

5035000 

 

38128000 

  

NA 

 

1.81709402 

  

4.3843683 

 

3.2096219 

 

NA NA 

Ordre de 

convergence 

0.86163307 

  

2.132369 1.6824034 NA NA 

 

0.18837799 

  

13.714002 

 

0.132055 

 

NA NA 

Ordre de 

convergence 

-2.4082977 

  

3.77757773 -2.920787 

 

NA NA 

Temps de calcul 

CPU (s) 

7.6 

  

11.24 

 

18.53 

 

102.52 

 

1252.96 

 

 

D. Modèle Poutre simple Salome tetra 

Taille maillage h 

(m) 

0.2 0.1 0.05 0.025 0.0125 
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Log(h) -0.69897 

 

-1 -1.30103 

 

-1.602059 

 

-1.9030899 

Nombre 

d’éléments 

199 

 

437 

 

2794 

 

32402 

 

264550 

Déformation 

 (m) 

0.001257 

  

0.001483 0.00259 

 

0.0036019 

 

0.0036019 

 

Contrainte 

Maximale 

 (MPa) 

70.675 

  

76.680 82.223 121.95 121.95 

 

22.626E-

05 

  

11.0609E-

04 

10.119 E-04 1.71E-06 NA 

 

60004600 

  

5543200 

 

39729800 

 

0 

  

NA 

 

0.2045584 

  

1.09308 

 

-591.754 

 

NA NA 

Ordre de 

convergence 

-2.2894 

  

0.1284 - NA NA 

 

1.08323 

  

0.1395 

 

 

 NA NA 

Ordre de 

convergence 

0.11534908 

  

-2.8414 

 

 NA NA 

Temps de calcul 

CPU (s) 

2.08 

  

2.19 

 

2.45 

 

5.18 

 

8.23 
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E. Modèle Poutre Courbée Ansys hexa 

Taille maillage h 

(m) 

0.1 0.05 0.025 0.0125 0.00625 

Log(h) -1 

 

-1.30103 -1.602059 

 

-1.9030899 

 

-2.2041199 

Nombre 

d’éléments 

60 

 

480 

 

3808 

 

32240 

 

1045808 

Déformation 

 (m) 

0.0020964 

  

0.002104 0.0021053 

 

0.0021058 

 

0.002106 

 

Contrainte 

Maximale 

 (MPa) 

90.651 

  

89.323 101.44 125.01 

 

156.18 

RA (N) 408340 410720 411150 411290 411350 

MA(N.m) 25307 25093 25052 25039 25034 

 

7.6E-06 

  

1.3E-06 5E-07 2E-07 NA 

 

1328000 

  

12117000 

 

23570000 

 

31170000 

 

NA 

 

5.84615385 

  

2.6 

 

2.5 

 

NA NA 

Ordre de 

convergence 

2.5474878 

  

1.37851162 1.32192809 NA NA 
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-0.10960 

  

0.51409 

 

0.75618 

 

NA NA 

Ordre de 

convergence 
 

 -0.95992 

 
 

-0.40321 NA NA 

Temps de calcul 

CPU (s) 

4.3 

  

12.1 

 

18 

 

120.9 

 

239 

 

 

F. Modèle Poutre Courbée Ansys tetra 

Taille maillage h 

(m) 

0.1 0.05 0.025 0.0125 0.00625 

Log(h) -1 

 

-1.30103 -1.602059 

 

-1.9030899 

 

-2.2041199 

Nombre 

d’éléments 

720 

 

4225 

 

32745 

 

261206 

 

2127299 

Déformation 

 (m) 

0.0020986 

  

0.0021041 0.0021053 

 

0.0021058 

 

0.002106 

 

Contrainte 

Maximale 

 (MPa) 

83.733 

  

88.864 93.525 117.90 

 

156.18 

RA (N) 409490 410860 411200 411320 411350 

MA(N.m) 25202 25080 25047 25037 25034 

 

5.5E-06 

  

1.2E-06 5E-07 2E-07 NA 
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5131000 

  

4661000 

 

24375000 

 

38280000 

 

NA 

 

4.58333 

  

2.4 

 

2.5 

 

NA NA 

Ordre de 

convergence 

2.19639 

  

1.263034 1.32192809 NA NA 

 

1.100 

  

0.1922 

 

0.6367 

 

NA NA 

Ordre de 

convergence 

0.1386 

 

-2.386 

 
 

-0.6511 NA NA 

Temps de calcul 

CPU (s) 

4.3 

  

12.1 

 

18 

 

120.9 

 

560 

 

 

G. Modèle poutre courbée salomé hexa 

Taille maillage h 

(m) 

0.2 0.1 0.05 0.025 0.0125 

Log(h) -0.69897 

 

-1 -1.30103 

 

-1.602059 

 

-1.9030899 

Nombre 

d’éléments 

15 

 

60 

 

472 

 

3776 

 

30208 

Déformation 

 (m) 

0.00197774 

  

0.00199435 0.00200305 

 

0.0020048

9 

 

0.0020054

4 

 

Contrainte 63.061 

   

69.274 88.337 92.761 115.62 
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Maximale 

 (MPa) 

 

1.661E-05 

   

8.7E-06 1.84E-06 5.5E-07 NA 

 

6212600 

 

  

19063100 

 

 

4424500 

 

 

22858600 

  

NA 

 

1.90919540

2 

  

4.72826087 

 

3.34545454

5 

 

NA NA 

Ordre de 

convergence 

0.93296476

7 

  

2.241309635 1.742202243 NA NA 

 

0.32589662

8 

  

4.30853203

8 

 

0.19355953

6 

 

NA NA 

Ordre de 

convergence 

-

1.61751367 

  

2.107196412 

 

-

2.36915071 

 

NA NA 

Temps de calcul 

CPU (s) 

11.74 

  

17.82 

 

25 

 

83.03 

 

1267.4 

 

H. Modèle poutre courbée salomé tetra 

Taille maillage h 

(m) 

0.2 0.1 0.05 0.025 0.0125 

Log(h) -0.69897 

 

-1 -1.30103 

 

-1.602059 

 

-1.9030899 

Nombre 

d’éléments 

360 

 

444 

 

2967 

 

30993 

 

264968 



  115 

 

Déformation 

 (m) 

0.000979 

  

0.000989 0.001581 

 

0.0018962 

 

0.001869 

 

Contrainte 

Maximale 

 (MPa) 

51.753 

   

52.237 54.258 83.426 83.426 

 

1.0E-05 

   

5.92 E-04 3.152E-04 7.8E-07 NA 

 

484000 

 

  

2021100 

 

 

291681000 

 

 

0 

  

NA 

 

0.016891 

  

1.87817 

 

404.1025 

 

NA NA 

Ordre de 

convergence 

-5.8875 

  

0.90932 8.65857 NA NA 

 

0.23947 

  

0.06929 

 

 

 NA NA 

Ordre de 

convergence 

-2.062 

  

0.0692 

 
 

 NA NA 

Temps de calcul 

CPU (s) 

2.21 

  

2.16 

 

2.42 

 

6.25 

 

14.9 
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I. Modèle Turbine Ansys 

Taille maillage h 

(m) 

1 0.5 0.25 0.125 0.0625 

Log(h) 0 

 

-

0.30102999

6 

-

0.60205999

1 

 

-

0.90308998

7 

 

-

1.20411998

3 

Nombre 

d’éléments 

18714 

 

35833 

 

77459 

 

122669 

 

225021 

Déformation 

 (m) 

0.0046915 

  

0.0050515 0.0051604 

 

0.0052248 

 

0.0052904 

 

Contrainte 

Maximale 

 (MPa) 

99.5 

  

110.81 121.35 190.50 

 

345.50 

 

3.60E-04 

  

1.089E-04 6.440E-05 6.560E-05 NA 

 

11284000 

  

10540000 

 

69150000 

 

155000000 

 

NA 

 

3.3058E+0

0 

  

1.6910E+0

0 

 

9.8171E-

01 

 

NA NA 

Ordre de 

convergence 

1.7250E+0

0 

  

7.5787E-01 -2.6635E-02 NA NA 

 

1.0706E+0

0 

  

1.5242E-

01 

 

4.4613E-

01 

 

NA NA 
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Ordre de 

convergence 

0.098403704 

 

-2.71385438 -

1.164467059 

NA NA 

RA (N) 4.10E+06 4.0710E+06 4.0606E+06 4.0697E+06 4.0571E+06 

MA(N.m) 9.67E+06 9.6164E+06 9.5924E+06 9.6071E+06 9.5864E+06 

Temps de calcul 

CPU (s) 

10.3 

  

20.9 

 

70.3 

 

101.3 

 

158.1 

 

 

J. Modèle Turbine Ansys Cst 

Taille maillage h 

(m) 

1 0.5 0.25 0.125 0.0625 

Log(h) 0 

 

-

0.30102999

6 

-

0.60205999

1 

 

-

0.90308998

7 

 

-

1.20411998

3 

Nombre 

d’éléments 

22327 

 

110833 

 

204711 

 

272231 

 

405627 

Déformation 

 (m) 

0.00394 

  

0.0042388 0.0044935 

 

0.0045624 

 

0.004589 

 

Contrainte 

Maximale 

 (MPa) 

99.5 

  

130.36 127.02 155.87 

 

283.61 

 

2.941E-04 

  

2.547E-04 6.89E-05 2.660E-05 NA 
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308344000 

  

3340000 

 

28850000 

 

127740000 

 

NA 

 

1.1547+00 

  

3.6967E+0

0 

 

13731E+0 

 

NA NA 

Ordre de 

convergence 

2.0751E+0

0 

  

1.8862E+01 1.3731E+00 NA NA 

 

-

9.237E+00 

  

-1.1577E-

01 

 

2.2585E-

01 

 

NA NA 

Ordre de 

convergence 

- 

 

- -2.14656 NA NA 

RA (N) 3.340E+06 3.3110E+06 3.3105E+06 3.3108E+06 3.3015E+06 

MA(N.m) 7.90E+06 7.825E+06 7.822E+06 7.8184E+06 7.804E+06 

Temps de calcul 

CPU (s) 

14.9 

  

73.9 

 

120.3 

 

191.3 

 

215.8 

 

 

K. Modèle Turbine Salomé 

Taille maillage h 

(m) 

1 0.5 0.25 0.125 0.0625 

Log(h) 0 

 

-

0.30102999

6 

-

0.60205999

1 

 

-

0.90308998

7 

 

-

1.20411998

3 

Nombre 

d’éléments 

94538 

 

93641 

 

94756 

 

96865 

 

120638 
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Déformation 

 (m) 

0.00185629 

  

0.00184684 0.00191776 

 

0.00211448 

 

0.0021288 

 

Contrainte 

Maximale 

 (MPa) 

98.95 

  

99.6 99.92 122.23 

 

166.75 

 

4.319E-05 

  

1.882E-05 5.0513E-04 3.9014E-04 NA 

 

1474000 

  

13160600 

 

32196600 

 

44525000 

 

NA 

 

-

2.294E+00 

  

3.625E-01 

 

1.372E+01 

 

NA NA 

Ordre de 

convergence 

NA 

  

-1.48E+00 3.779E+0 NA NA 

 

2.0860E+0  

  

1.487E-02 

 

7.8411E-

01 

 

NA NA 

Ordre de 

convergence 

1.6584 

 

-6.15 -0.3477 NA NA 

Temps de calcul 

CPU (s) 

51.98 

  

56.51 

 

56.23 

 

84.1 

 

165.76 
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ANNEXE 2 – Validation de la symétrie cyclique  

Cette annexe détaille les résultats des études de convergence des différents modèles de 

validation de la symétrie cyclique  

A. Modèle 1/6 Disque Ansys tetra 

Taille maillage h 

(m) 

0.8 0.4 0.2 0.1 0.05 

Log(h) -0.0969 

 

-0.3979 -0.69897 

 

-1 

 

-1.30103 

Nombre 

d’éléments 

192 

 

408 

 

2311 

 

18435 

 

139908 

Déformation 

 (m) 

6.59E -07 

  

6.42E-07 7.7E-07 

 

7.19E-07 

 

7.19E-07 

 

Contrainte 

Maximale 

 (MPa) 

0.742 

  

0.7397 0.74485 1.0151 

 

1.1555 

 

1.722E-08 

  

6.528E-08 1.183E-08 2.2E-10 NA 

 

1750 

  

980 

 

266250 

 

140400 

 

NA 

 

-0.2637 

  

5.5182 

 

-53.773 

 

NA NA 

Ordre de 

convergence 
 

 2.4642  NA NA 
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-0.19273 

  

0.0341 

 

1.8964 

 

NA NA 

Ordre de 

convergence 
 

 -4.873 

 
 

-0.923 NA NA 

Temps de calcul 

CPU (s) 

0.1 

  

0.1 

 

1.5 

 

2.5 

 

22.6 

 

 

B. Modèle 16 Disque Ansys hexa 

Taille maillage h 

(m) 

0.8 0.4 0.2 0.1 0.05 

Log(h) -0.0969 

 

-0.3979 -0.69897 

 

-1 

 

-1.30103 

Nombre 

d’éléments 

123 

 

141 

 

492 

 

3058 

 

19108 

Déformation 

 (m) 

7.51E -07 

  

7.22E-07 7.48E-07 

 

9.52E-07 

 

1.209E-07 

 

Contrainte 

Maximale 

 (MPa) 

0.578 

  

0.571 0.726 0.952 

 

1.209 

 

2.928-08 

  

2.485E-08 7.29E-09 1.28E-8 NA 

 

7070 

  

155030 

 

226260 

 

256580 

 

NA 
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1.178 

  

-3.408 

 

0.566 

 

NA NA 

Ordre de 

convergence 

0.236 

 

 -0.82 NA NA 

 

-0.0456 

  

0.685 

 

0.881 

 

NA NA 

Ordre de 

convergence 
 

 -0.545 

 
 

-0.181 NA NA 

Temps de calcul 

CPU (s) 

0.1 

  

0.1 

 

0.2 

 

1.1 

 

7.6 

 

 

C. Modèle 1/6 Disque Aster tetra 

Taille maillage h 

(m) 

0.8 0.4 0.2 0.1 0.05 

Log(h) -0.0969 

 

-0.3979 -0.69897 

 

-1 

 

-1.30103 

Nombre 

d’éléments 

959 

 

1012 

 

1839 

 

8993 

 

75502 

Déformation 

 (m) 

5.92E -07 

  

5.92E -07 

  

5.92E -07 

  

5.92E -07 

 

5.92E -07 

 

Contrainte 

Maximale 

 (MPa) 

0.7418 

  

0.7418 0.7418 0.7418 

 

0.7418 
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0 

  

0 0 0 NA 

 

0 

  

0 

 

0 

 

0 

 

NA 

 

- 

  

- 

 

- 

 

NA NA 

Ordre de 

convergence 
 

 -  NA NA 

 

- 

  

- 

 

- 

 

NA NA 

Ordre de 

convergence 
 

 

 
 

 

 NA NA 

Temps de calcul 

CPU (s) 

4.52 

  

8.73 

 

8.9 

 

11.8 

 

19.8 
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ANNEXE 3 – Fichiers de commande Code-ASTER 

A. Modèle Poutre simple  

DEBUT(); 

MA=DEFI_MATERIAU(ELAS=_F(E=210000000000.0, 

                         NU=0.3,),); 

MAIL=LIRE_MAILLAGE(FORMAT='MED',); 

MAIL=MODI_MAILLAGE(reuse=MAIL, 

                   MAILLAGE=MAIL, 

                   ORIE_PEAU_3D=_F(GROUP_MA=('pres',),), 

                   ); 

MODE=AFFE_MODELE(MAILLAGE=MAIL, 

                 AFFE=_F(TOUT='OUI', 

                         PHENOMENE='MECANIQUE', 

                         MODELISATION='3D',),); 

MATE=AFFE_MATERIAU(MAILLAGE=MAIL, 

                   AFFE=_F(TOUT='OUI', 

                           MATER=MA,),); 

CHAR=AFFE_CHAR_MECA(MODELE=MODE, 

                    DDL_IMPO=( 

                        _F(GROUP_MA='depl', 

                           DX=0.0, 

                           DY=0.0, 

                           DZ=0.0,), 

                        ), 
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                    PRES_REP=( 

                        _F(GROUP_MA='pres', 

                           PRES=353900.0,), 

                        ), 

                    ); 

RESU=MECA_STATIQUE(MODELE=MODE, 

                   CHAM_MATER=MATE, 

                   EXCIT=_F(CHARGE=CHAR,),); 

RESU=CALC_ELEM(reuse=RESU, 

               MODELE=MODE, 

               CHAM_MATER=MATE, 

               RESULTAT=RESU, 

               OPTION=('SIGM_ELNO','SIEQ_ELNO',), 

               EXCIT=_F( 

               CHARGE=CHAR,),); 

RESU=CALC_NO(reuse=RESU, 

             RESULTAT=RESU, 

             OPTION=('SIGM_NOEU', 'SIEQ_NOEU', ),); 

IMPR_RESU(FORMAT='MED', 

          UNITE=80, 

          RESU=_F(MAILLAGE=MAIL, 

                  RESULTAT=RESU, 

                  NOM_CHAM=('SIGM_NOEU','SIEQ_NOEU','DEPL',),),); 

FIN(); 
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B. Modèle Poutre courbée 

DEBUT(); 

MA=DEFI_MATERIAU(ELAS=_F(E=210000000000.0, 

                         NU=0.3,),); 

MAIL=LIRE_MAILLAGE(FORMAT='MED',); 

MAIL=MODI_MAILLAGE(reuse=MAIL, 

                   MAILLAGE=MAIL, 

                   ORIE_PEAU_3D=_F(GROUP_MA=('Pression',),), 

                   ); 

MODE=AFFE_MODELE(MAILLAGE=MAIL, 

                 AFFE=_F(TOUT='OUI', 

                         PHENOMENE='MECANIQUE', 

                         MODELISATION='3D',),); 

MATE=AFFE_MATERIAU(MAILLAGE=MAIL, 

                   AFFE=_F(TOUT='OUI', 

                           MATER=MA,),); 

CHAR=AFFE_CHAR_MECA(MODELE=MODE, 

                    DDL_IMPO=( 

                        _F(GROUP_MA='deplac', 

                           DX=0.0, 

                           DY=0.0, 

                           DZ=0.0,), 

                        ), 

                    PRES_REP=( 
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                        _F(GROUP_MA='Pression', 

                           PRES=353900.0,), 

                        ), 

                    ); 

RESU=MECA_STATIQUE(MODELE=MODE, 

                   CHAM_MATER=MATE, 

                   EXCIT=_F(CHARGE=CHAR,),); 

RESU=CALC_ELEM(reuse=RESU, 

               MODELE=MODE, 

               CHAM_MATER=MATE, 

               RESULTAT=RESU, 

               OPTION=('SIGM_ELNO','SIEQ_ELNO',), 

               EXCIT=_F( 

               CHARGE=CHAR,),); 

RESU=CALC_NO(reuse=RESU, 

             RESULTAT=RESU, 

             OPTION=('SIGM_NOEU', 'SIEQ_NOEU', ),); 

IMPR_RESU(FORMAT='MED', 

          UNITE=80, 

          RESU=_F(MAILLAGE=MAIL, 

                  RESULTAT=RESU, 

                  NOM_CHAM=('SIGM_NOEU','SIEQ_NOEU','DEPL',),),); 

FIN(); 
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C. Modèle Turbine 

 

DEBUT(); 

 

MA=DEFI_MATERIAU(ELAS=_F(E=210000000000.0, 

                         NU=0.3, 

                         RHO=7850,),); 

 

MAIL=LIRE_MAILLAGE(FORMAT='MED',); 

 

MAIL=MODI_MAILLAGE(reuse =MAIL, 

                   MAILLAGE=MAIL, 

                   ORIE_PEAU_3D=_F(GROUP_MA='Press',),); 

 

MODE=AFFE_MODELE(MAILLAGE=MAIL, 

                 AFFE=_F(TOUT='OUI', 

                         PHENOMENE='MECANIQUE', 

                         MODELISATION='3D',),); 

 

MATE=AFFE_MATERIAU(MAILLAGE=MAIL, 

                   AFFE=_F(TOUT='OUI', 

                           MATER=MA,),); 

 

CHAR=AFFE_CHAR_MECA(MODELE=MODE, 

                    PESANTEUR=_F(GRAVITE=9.8, 
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                                 DIRECTION=(0,0,-1,),), 

                    ROTATION=_F(VITESSE=9.4248, 

                                AXE=(0,0,1,),), 

                    DDL_IMPO=_F(GROUP_MA='encas', 

                                DX=0.0, 

                                DY=0.0, 

                                DZ=0.0,), 

                    LIAISON_MAIL=(_F(GROUP_MA_MAIT='FAMAST2', 

                                     GROUP_MA_ESCL='FASLAV2', 

                                     TYPE_RACCORD='MASSIF', 

                                     ANGL_NAUT=-27.692307, 

                                     CENTRE=(0,0,0,),), 

                                  _F(GROUP_MA_MAIT='Fm', 

                                     GROUP_MA_ESCL='Fs', 

                                     TYPE_RACCORD='MASSIF', 

                                     ANGL_NAUT=-27.692307, 

                                     CENTRE=(0,0,0,),),), 

                    PRES_REP=(_F(GROUP_MA='Press', 

                                 PRES=390490.0,), 

                              _F(GROUP_MA='Preback', 

                                 PRES=187718,),),); 

 

RESU=MECA_STATIQUE(MODELE=MODE, 

                   CHAM_MATER=MATE, 
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                   EXCIT=_F(CHARGE=CHAR,),); 

 

RESU=CALC_ELEM(reuse =RESU, 

               MODELE=MODE, 

               CHAM_MATER=MATE, 

               RESULTAT=RESU, 

               OPTION=('SIGM_ELNO','SIEQ_ELNO',), 

               EXCIT=_F(CHARGE=CHAR,),); 

 

RESU=CALC_NO(reuse =RESU, 

             RESULTAT=RESU, 

             OPTION=('SIGM_NOEU','SIEQ_NOEU',),); 

 

IMPR_RESU(FORMAT='MED', 

          UNITE=80, 

          RESU=_F(MAILLAGE=MAIL, 

                  RESULTAT=RESU, 

                  NOM_CHAM=('SIGM_NOEU','SIEQ_NOEU','DEPL',),),); 

 

FIN(); 
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ANNEXE 4 – Paramètres de maillage 

 

A. Modèle pale-Salomé  

 

Algorithme  Netgen 1D-2D-3D 

Hypothèses  Netgen 3D paramètres 

Max size 1 

Finesse  moderate 

Growth rate  0.5 

Nb segs per edge 0.3 

Nb segs per radius  1 

 

 


