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RÉSUMÉ 

Modelica est un langage orienté objet conçu pour la modélisation des systèmes cyber-physiques à 

partir de systèmes d'équations. Le langage permet le développement de bibliothèques de 

composants facilement composables et réutilisables.  Modelica s’appuie sur une représentation 

standard qui permet une compréhension commune et précise de modèle. Modelica est entièrement 

compatible avec l’interface de maquette fonctionnelle (FMI). L’FMI est une norme industrielle qui 

permet de combiner les modules de code de simulation (FMU) provenant de n’importe quel outil 

de modélisation. La norme a été largement utilisé pour l'échange de modèles et la cosimulation. La 

tendance à utiliser Modelica se développe de plus en plus dans la modélisation des systèmes 

électriques et la normalisation des modèles. Par exemple, il a déjà été utilisé pour unifier les 

modèles des réseaux électriques dans domaine de phaseur dans le cadre du projet iTesla. 

Les outils classiques de modélisation en régime transitoires électromagnétiques (EMT), par 

exemple EMTP®, sont souvent écrits dans des langages impératifs, FORTRAN ou C, ce qui est 

bien adapté aux calculs numériques avec une architecture fermée, dont le modèle et le solveur sont 

intégrés. Des tentatives ont également été faites pour développer un outil de modélisation en régime 

transitoire en utilisant le langage de haut niveau MATLAB. Bien que cette approche élève le niveau 

d'abstraction, il reste que la modélisation se focalise sur les méthodes numériques. 

La principale contribution de ce travail est de construire une librairie EMT basée sur Modelica (soi-

disant MSEMT) y compris les modèles avancés de machine synchrone, la ligne de transport (les 

modèles WB et CP), les charges statiques, les modèles non linéaire (l’arc, le parafoudre), etc.  

D'autre part, la librairie s’utilise dans DynaꞶo (l’environnement hybride Modelica/C++). DynaꞶo 

est un outil développé par RTE, pour la simulation des phénomènes transitoires. Il permet de 

bénéficier des avantages de ces deux langages et de contourner les problèmes existants de Modelica 

en simulation.  

Préliminairement, les lignes de transport ont été modélisée dans Modelica ; ensuite, le circuit de 

IEEE 13-bus, y compris des lignes non transposées et des charges déséquilibrées, a été utilisée pour 

la validation.  Ensuite, les réseaux d’IEEE 118-bus et d’IEEE 39-bus sont utilisés pour vérifier les 

résultats et comparer les performances de simulation. Dans les tests, on également compare la 
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performance de Modelica avec SPS. Dans tous les cas, Il est démontré que les résultats des 

simulations obtenus par Modelica sont identiques à EMTP® (logiciel de référence.). Au niveau de 

performance, dans la plupart des cas, EMTP® surpasse le Modelica.  Toutefois, lorsque les 

transitoires à très haute fréquence résultant de la foudre ou de la simulation de circuits électroniques 

de puissance à haute fréquence sont traités, le solveur à pas variable dans Modelica montre une 

meilleure performance que l'EMTP®. De plus, Modelica montre une meilleure performance que 

Simscape Electrical Specialized Power System (SPS) dans tous les cas ; l'écart entre les deux 

simulateurs augmente avec le nombre d'éléments non linéaires. 

Par ailleurs, traitement des discontinuités et la modélisation des non-linéarités, qui sont des enjeux 

majeurs dans les modélisations en régime transitoire, sont des contributions de la thèse. Dans le 

volet, les modèles d'arc, inductance non linéaire, parafoudre ont été élaboré. Les résultats 

démontrent une précision parfaite et bonne performance. 
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ABSTRACT 

Modelica is an object-oriented and equation-based language. The advent of high-level languages 

and their intrinsic features created a new paradigm for modeling and simulation to focus on the 

equations instead of solutions. Consequently, there is a motivation for employing a modeling 

environment where the solvers can be selective, and equations representing the model are expressed 

declaratively and in high-level formalism. Modelica is fully compatible with FMI, a standard 

widely used for dynamic model exchange and co-simulation via FMU, a combination of XML 

files, binaries, and C code. 

Classical electromagnetic transient (EMT) simulation tools, i.e., EMTP®, are often written in 

traditional imperative languages, i.e., FORTRAN or C, which is well suited for numeric 

computations with a closed architecture, whose model and solver are tightly integrated. Although 

this approach yields a good performance, there are limitations in power electronic and control 

system modeling. Besides, many code lines are necessary to satisfy requirements from low-level 

data management. Efforts have also been made to develop an EMT-type simulator using the higher-

level MATLAB language in an open-source-code approach. Although this approach elevates the 

abstraction level, the models must be programmed using given numerical methods. 

Modelica as a standardized language for modeling physical systems has previously been considered 

to unify the electric power models in the phasor domain study of electrical grids in the iTesla 

project. The tendency to use Modelica is increasingly growing in power system modeling and 

standardization of models. Moreover, the language leads to having a consistent model exchange 

among EMT-type simulation tools. 

The main contribution of this proposal is to develop a Modelica-based EMT-detailed library. The 

library includes advanced linear and nonlinear models such as transmission lines, synchronous 

generators (including magnetic saturation), static loads, controllers, arc models, surge arresters, 

etc. The models are constructed according to the EMTP® models and validated with the software 

one by one. The library is used in DynaꞶo, which is a Modelica/C++ hybrid environment. DynaꞶo 

helps to benefit from the advantages of both languages and skirting the existing problems of 

Modelica in time-domain simulation.  
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As a preliminary case, the transmission line (constant parameter and wideband models) was 

modeled in Modelica; then, the IEEE 13-bus platform, which consists of untransposed lines and 

unbalanced loads, was used for validation. The IEEE 39-bus and IEEE 118-bus networks are used 

to verify results and compare simulation performance in the following steps. In all cases, it is 

demonstrated that the results obtained from Modelica are identical to the EMTP®. Regarding the 

performance, in most cases, EMTP® outperforms the Modelica. However, when very high-

frequency transients resulted from lightning or simulation of high-frequency power electronic 

circuits are addressed, the variable step solver in Modelica shows a better performance than 

EMTP®. In all cases, Modelica has a better performance than Simscape Electrical Specialized 

Power System (SPS) in MATLAB; the performance gap between the two simulators increases with 

the number of nonlinear elements.  

Moreover, the thesis's contribution is to explore discontinuity handling and modeling of 

nonlinearities, which are significant issues in EMT simulations.  In this regard, the models of arc, 

nonlinear inductance, surge arrester have been addressed.  The results demonstrate perfect accuracy 

and high performance.  
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 INTRODUCTION 

Circuit modeling and simulation are well recognized in electrical engineering. Simulation of an 

electric circuit includes 1) mathematical expression of the circuit elements (i.e., modeling), 2) 

formulation of the circuit equations, and 3) methods for the solution of these equations. The thesis 

concerns, for the first time, the problems, challenges and limitations of EMT-detailed modeling 

and formulation of electrical network equations in a high-level computer language, i.e., Modelica.  

The rest of the chapter is organized as follows: 

• First, we give the background of modeling and simulation in Section 1.1. We speak about 

computational software paradigms together with an overview of equation-based object-

oriented languages in Section 1.2 and Section 1.3. 

• In Section 1.4, Modelica language is outlined briefly. 

• We give an overview of EMT simulation goals, approaches, and the main simulation tools 

in Section 1.5. 

• We discuss the problem area and state the research motivations in Section 1.6, the research 

method used, and the challenges in Section 1.7. 

• Finally, the scientific contribution is described in Section 1.8. 

1.1 Modeling and Simulation 

Modeling is an interesting subject of research in computer science as well as in most disciplines of 

engineering. Recently, languages that can support modeling in specific domains such as power 

systems have been considered. 

It should be distinguished between modeling and simulations. Simulation is an experiment 

accomplished on a model, while Modeling means “the process of organizing knowledge about a 

given system" [1]. Modeling is a solution to create a virtual image of a real-world system, while in 

simulation, it is possible to experiment with the virtual representation under a wide range of 

conditions to see how it behaves. 
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In this thesis, the term model means a mathematical representation describing the dynamic 

properties of a continuous-time or discrete-time power electric system. This thesis primarily 

concern is the EMT modeling and simulation with the high-level language of Modelica. 

Designing Continuous System Simulation Languages (CSSL) [1] is not new and goes back to 1967. 

The CSSL are all based on state-space descriptions where the underlying mathematical description 

is an ordinary differential equation (ODE) [2]. General-purpose simulation tools, e.g., Simulink 

[4], using block diagrams and/or causal connections. In the block diagram approach, it is possible 

to graphically model ODEs, and a software tool is then used for performing the numerical 

simulation. 

ODEs can describe many physical systems in the explicit form: 

�̇� = 𝐟(𝐱, 𝐮, 𝑡) (1-1) 

where 𝐱 ∈ ℝ𝑛 is the unknown state vector to be solved for, 𝐮 ∈ ℝ𝑚 the vector of input signals, and 

𝑡 the independent variable representing time. 

In actual electric power systems, the algebraic equations describe the system relying on 

conservative energy laws, e.g., KVL and KCL [5][6]. The differential-algebraic equations (DAEs) 

are generalizations of ODEs such that certain algebraic equations constrain the system's dynamical 

behavior.  In DAEs, one or more derivatives of dependent variables are not present in the equations 

[7]. A model is called “consistent” if the number of DAE system equations is equal to the number 

of model variables. The consistency of the model is a necessary condition for DAE solvability. 

An electrical network can be defined by a set of implicit DAEs [5]. A general implicit nonlinear 

form of DAEs is given by: 

𝐅(�̇�(𝑡), 𝐱(𝑡), 𝑡) = 𝟎 (1-2) 

where 𝐱(𝑡) = (x1(𝑡), x2(𝑡), … , x𝑛(𝑡)) is a vector of dependent variables, 𝑡 denotes the independent 

variable of time. 𝐅 with the dimension of n is assumed to be sufficiently smooth. The main 

distinction between DAEs and ODEs is that the Jacobian matrix 
𝜕𝐅

𝜕�̇�
 is non-singular [2].  
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Often the solution of a DAE system depends on the derivatives of the input signal and not just the 

signal itself, as in the case of ODEs [8]. That is why they can not be solved directly; the best way 

to solve a high index DAE problem is to convert it to a lower index system first. Applying analytical 

differentiations as needed to the given system and eliminating the algebraic equations will yield an 

explicit ODE system in the form of (1-1). The number of differentiations required for this 

transformation is called the index of the DAE. As such, ODEs have an index 0. DAE-index 0 

contains neither algebraic loops nor structural singularities. An index–1 DAE contains algebraic 

loops but no structural singularities. 

DAEs play a key role in nonlinear circuit modeling, mainly because of the chance to automatically 

set up the circuit equations in semi-explicit index-1 DAE form (1-3).  

�̇� = 𝐟(𝑡, 𝐱, 𝒛) 

𝟎 = 𝐠(𝑡, 𝐱, 𝒛) 
(1-3) 

where 
𝑑𝐠

𝑑𝐳
 is non-singular.  

Some DAEs can easily be converted to ODE forms by simple sorting algorithms, whereas others 

contain big algebraic loops or even structural singularities.  

As an example of linear DAE, consider the equation (1-4) given by:  

ẏ1 = y2 

y1 = g(x) 
(1-4) 

Differentiating the algebraic equation with respect to x once, we obtain: 

ẏ1 = y2 = ġ(x) (1-5) 

another differentiation to obtain an ODE: 

ẏ2 = g̈(x) (1-6) 

so this equation has a differentiation index = 2 because two differentiations of g(x) were needed to 

obtain an ODE. 
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ẏ1 = y2 

y1 = g(x) 
(1-7) 

Equation (1-8) shows a DAE index 0, because it can be converted to ODE form (1-9) without 

differentiation. 

ẋ = −x + y 

𝑥2 + 𝑦2 = 10 

(1-8) 

ẋ = −x + √10 − x2 (1-9) 

It should be noted that initial conditions shall be consistent for variables x and y such that the 

algebraic equation is satisfied, e.g., x(0) = 3, y(0) = 1. 

1.2 Programming Paradigms 

Figure 1.1 shows the classification of programming paradigms. In computer science, programming 

languages are generally characterized into two approaches. 

Imperative languages such as Fortran, C, Pascal, Java, MATLAB, or Python in which the 

concentration is on the solution of a problem, the statements, and control flows are specified and 

executed in sequential order (so-called procedural languages), i.e., algorithms. In other words, the 

computer is treated as a device that obeys orders. Everything that is computed must have every 

detail of that computation spelled out. The procedural approach divides the tasks a program is 

supposed to perform into smaller sub-tasks, which are individually described in the code. This 

results in programming modules that can also be used in other programs. The use of imperative 

languages limits the applicability and extensibility of models. Moreover, in simulation 

applications, the numerical solution is often tightly integrated into the models. 

Declarative languages are the so-called logic programming or very high-level languages. The 

programmer indicates what goals are to be accomplished but not how specific methods are applied 

to attain those goals. This paradigm focuses on the declaration of computation logic rather than 

assignments and describing the control flow in detail [9]. The distinction is that the computer 
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system must determine how the result is to be computed. The syntax of declarative languages is 

remarkably different from that of the imperative languages. The main notion of this paradigm is 

that there is a straightforward way to understand each statement and code, and the solution does 

not depend on how the statement might be used for solving a problem. 

Declarative languages encounter severe problems of execution efficiency. If the list of declarative 

codes is long, the number of code manipulations required for causalization is enormous. 

 

Imperative Programming Declarative Programming

Structured 

Programming

Procedural 

Programming

Modular 

Programming

Logic 

Programming

Functional 

Programming

 

Figure 1.1  Programming paradigms [9] 

1.3 Equation-Based Object-Oriented Languages 

1.3.1 Equation-based Modeling 

Earlier in this section, we introduced programming paradigms. In equation-based modeling [10], 

[11], the modeler only describes the model or system in terms of DAEs. Equations describe 

relations between components of a model. This is the compiler's duty to sort the equations in a 

solvable order. This procedure is called causalization. This is an excellent property for CSSLs 

because the modeler can focus his energy on the actual model creation without worrying about the 

underlying simulation engine.  
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1.3.2 Object-Oriented Programming 

In the 1960s, Simula [12], the first object-oriented language, was designed with the initial purpose 

of discrete event-based modeling and simulation.  

The Object-Oriented Programming (OOP) is viewed as a structuring concept that is used to handle 

the complexity of large system descriptions. The computer scientists labeled the main features of 

OOP as encapsulation, inheritance, and polymorphism.   

Encapsulation is the most vital concept in OOP. It describes the idea of bundling data and methods 

that work on that data within one unit, e.g., a class or package in Modelica. It is primarily used to 

hide complexity and to build up a hierarchy of sub-models. Encapsulation also enables that model 

from one paradigm can be transformed into another paradigm. 

Inheritance is a feature that allows to import the properties of one class to another class. 

Polymorphism simply means that objects with an identical or compatible interface may own 

different functionalities.  In many imperative languages with a nominal type system, polymorphism 

is strongly entangled with inheritance. Modelica owns a structural type system [13], and hence 

polymorphism is decoupled from inheritance. 

From the computer science viewpoint, the essential object-oriented concepts are reflected in 

Modelica, but due to the declarative character, they are implemented in a different fashion [11].  

1.3.3 Mathematical Equations and Acausality 

In equation-based languages, the main advantage is that the equations are expressed in an acausal 

form. It means that the causality of how to solve the equations and to sort the equations in terms of 

knowns and unknowns is not determined during modeling.  The procedure is carried out during the 

simulation. In Modelica, acausality is defined at two abstraction levels:  

• equation-level  

• level of model connections 

As an example of an acausal equation, assume Faraday’s law: 
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v(𝑡) = L(𝑡) 
di(𝑡)

dt
 (1-10) 

where v(𝑡) is the instantaneous voltage, L(𝑡) denotes the inductance in the term of time, and i(𝑡) 

represents the inductor instantaneous current. In the above equation, “=” defines a relation between 

the right and left sides of the equation. Depending on which variable is unknown, (1-10) can be 

translated into four different assignments. The assignment is denoted by “∶=”. 

v(𝑡) ∶= L(𝑡)
di(𝑡)

dt
 (1-11) 

di(𝑡)

dt
∶=

v(𝑡)

L(𝑡)
 (1-12) 

L(𝑡) ∶=
v(𝑡)

di(𝑡)
dt

 (1-13) 

v(𝑡) − L(𝑡)
di(𝑡)

dt
∶= 0 (1-14) 

Therefore, the causality of equation-based models is unspecified during the mathematical 

representation of the model, and it is determined only when the corresponding system equations 

are solved based on other variables of system. 

The connection between two or more models is also defined as the second level of acausality, for 

example, a node in an electrical system. This concept refers to physical modeling [14][15]. In 

physical systems, the system is described as a container of functional components that interact by 

exchanging energy through their interface ports. The physical connection of components is 

analogous to connecting real components. Therefore, there exists an exchange of energy between 

components; there is no input and output relationship. In other words, these connection ports are 

nondirectional.  

In this method, interfacing variables for connecting the components in a Physical System are 

primarily defined by its non-flow and flow properties [14][15]. It is not required to specify flow 

directions and information flow when connecting the components, just as it is not needed to fix this 
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information when real physical components are interconnected. The number of ports for each 

model is defined by the number of energy flows it exchanges with other models in the system. For 

instance, in an electrical system, a resistor has two ports, called pins, e.g. positive and negative 

pins. Each pin has two variables: voltage, non-flow, and current, flow. The two variables operate 

as an interface through the connection of two electrical components. Thus, each component pin is 

associated with unique types of variables and can be connected only to pins related to the same 

types of variables. 

Therefore, the connections are translated into a set of algebraic equations. These equations, in 

combination with equations describing the component models, form the DAEs. The DEAs need to 

be sorted in a solvable order and reformulated in the form of assignments [16]. Tarjans algorithm 

[17] is used to categorize the knowns and unknowns in each equation. This procedure is called 

matching. During the procedure, it is needed to break the algebraic loops. Algebraic loop or coupled 

equations is resulted from the conditions that two or more equations are strongly connected, and 

the system of equations must be solved simultaneously. These equations can be linear or nonlinear 

algebraic equations. It is required to apply an algebraic solver at each time step to solve the 

algebraic loops. For nonlinear loops, iterative solution methods, such as Newton’s method, must 

be used [21].  

The generated DAEs should be transformed into an explicit ODE representation. Structurally 

singular system or higher–index problem is another challenge in this procedure [22]. Pantelide’s 

algorithm [23] and dummy-derivatives [24][25] are two main solutions.  

Finally, the output of this solution method is the block lower triangular (BLT) matrix  [26][27]. 

There exist packages for solving ODEs such as SUNDIALS [78]. Depending on the selected solver, 

the equations are discretized and solved.  

1.4 Modelica 

Several languages have been developed with the common properties of physical modeling using 

equation systems. Today’s state of the art within multidomain physical modeling (e.g., containing 

mechanical, electrical, hydraulic, thermal, fluid, and control components) is Modelica.  
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Modelica1 [14],[28] is a powerful standardized object-oriented declarative equation-based 

language. The language is widely used to model and simulate continuous and discrete physical 

systems through physical connections [15],[16].  

The power system consists of a set of devices that can be described by continuous dynamics as 

well as discrete events [29]. For example, electrical machines can be modeled using a set of 

nonlinear ODEs, and transmission lines are molded using the ODEs and delay operators for the 

calculation of history terms. Control systems, i.e., exciters and governors, are a combination of 

adders, gains, limiters, and integrator blocks. Discrete events are an essential part of electric 

systems. The status of a circuit breaker, the tap position of voltage regulating transformers are 

examples of this type.  KCL and KVL are the main conservation laws governing electrical circuits. 

Object-oriented modeling of an electrical system always leads to implicit DAE descriptions [15]. 

Modelica is a language specialized in the handling of hybrid DAEs. In this term, hybrid means a 

combination of continuous and discrete variables [14]. 

Modelica libraries are built in an object-oriented approach, and every connection can be performed 

with the corresponding Modelica components, such as interconnection of two capacitors in parallel. 

This feature often leads to higher index systems.  

Modelica has been previously used for power system simulation, especially in the phasor domain. 

As per the author’s knowledge, there is a lack of research on the simulation of EMTs with 

Modelica. 

Several commercial and non-commercial environments support the Modelica language; 

OpenModelica [30] is the most well-known tool among the non-commercial tools. Dymola [31], 

Wolfram SystemModeler [32][33], MathModelica [34], MapleSim [35], and JModelica [36] are 

among the commercial tools designed for Modelica.  

More details on the specification of Modelica and formulation of electrical equations in the 

language will be presented in Chapter 2. 

 

1 Modelica® is a registered trademark of the Modelica Association. 
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1.5 EMT Modeling and Simulation 

Electric power studies are classified into three categories. The first one is the sinusoidal steady-

state, in which the components are specified by their equations in phasor domain; thus, a circuit is 

represented by a system of complex numbers. The Load-flow study usually precedes the steady-

state solution. The second category relates to electromechanical transients, which are perturbations 

of low frequencies related to the interactions between generators and the grid.  The last category is 

electromagnetic transients which deal with fast transients in the range of 0 to 100 MHz or higher. 

The transients are physically explained by the energy exchange between the electrical components 

such as inductors and capacitors.  The EMT approach contains the vast majority of subjects, such 

as harmonic studies, overvoltage, switching effects, corona effects, skin effects, distributed-

parameter modeling, etc. [37]. In fact, electromechanical transients are also included in EMT-type 

of studies and can be conducted using EMT-type solution methods. Off-line EMT simulators, the 

results of which are not in synchronism with a real-time clock, have no computing time constraints 

and can be made as precise as needed within the available data, models, and related mathematics. 

The method by which electric circuit equations are formulated is significant to computer-aided 

circuit analysis. It directly influences the network computation time, memory allocations, and 

simulation speed. In modern power system simulators, the systematic formulation of the electric 

circuit equations can be divided into state variable analysis and modified augmented nodal analysis 

[48]-[50] (MANA).  The summary of each method for “EMT simulation” is explained below: 

1.5.1 State Space Analysis 

State-space analysis (also known as state variable analysis) is a popular multi-domain technique 

for modeling physical systems as vectors of input, output, and state variables related by first-order 

ODEs [38]. A linear dynamic system with 𝑝 inputs, 𝑞 outputs and 𝑛 states can be represented in 

the implicit matrix form as given by:  

                                                �̇� = 𝐀𝐱 + 𝐁𝐮 ⟹ State differential equation 
(1-15) 

                                                      𝐲 = 𝐂𝐱 + 𝐃𝐮 ⟹ Output equation 
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where 𝐱 ∈ ℝ𝑛 is the state vector, 𝐮 ∈ ℝ𝑝 the vector of inputs and 𝐲 ∈ ℝ𝑞 is the output vector, 𝐀𝑛×𝑛 

is the system matrix, 𝐁𝑛×𝑝 denotes the input matrix, 𝐂𝑞×𝑛 is the output matrix and 𝐃𝑞×𝑝 represents 

the feedthrough matrix. The system is called continuous linear time-invariant (LTI) if, in (1-15), 

the 𝐀, 𝐁, 𝐂, and 𝐃 matrices are not time-dependent; otherwise, the system is called continuous 

time-variant.  

The main advantages of this method for the LTI systems lie in its lack of overhead when changing 

numerical integration step size. This is because the discretization of such a system does not affect 

the contents of state matrices. 

One advantage of the state-space method is that it can be easily extended to the analysis of nonlinear 

systems [39]. The generic form of a state-space model for the representation of a nonlinear system 

is defined by: 

�̇� = 𝐟(𝐱, 𝐮, 𝑡) 

𝐲 = 𝐠(𝐱, 𝐮, 𝑡) 
(1-16) 

where 𝐟 is for nonlinear state equations and 𝐠 is for output equations. 

In electric power systems, the state-space representation gives the option to the modeler to select 

the integration technique after formulating a problem, simplifying the programming of variable 

time-step integration methods. 

The main disadvantage is more longer computing times for formulating the initial set of equations. 

It is also much inefficient for updating switching devices and nonlinear models. Compared to 

classic nodal analysis or MANA (discussed in Section1.5.2), there is a dramatic loss of efficiency 

when solving very large-scale systems. The state-space nodal (SSN) [40] method is a simulation 

engine based on the combination of state-space and nodal-analysis formulations of circuit equations 

to alleviate the numerical disadvantages of state-space analysis. 

In the following, we introduce two simulation tools working based on the state-space method. 
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1.5.1.1 Simscape Electrical 

Simscape Electrical is a part of the multi-domain Simscape package for modeling and simulating 

electric systems in the Simulink environment. Simscape is a physical modeling language designed 

to emulate physical systems [41]. It supports acausal and equation-based modeling. An example of 

a resistor model in Simscape is shown in Figure 1.2. More explanation of this model can be found 

in [42].   

component resistor

% Linear Resistor

% The voltage-current (V-I) relationship for a linear resistor is V=I*R,

% where R is the constant resistance in ohms.

%

% The positive and negative terminals of the resistor are denoted by the

% + and - signs respectively.

nodes

p = foundation.electrical.electrical; % +:left

n = foundation.electrical.electrical; % -:right

end

variables

i = { 0, 'A' }; % Current

v = { 0, 'V' }; % Voltage

end

parameters

R = { 1, 'Ohm' }; % Resistance

end

branches

i : p.i -> n.i;

end

equations

assert(R>0)

v == p.v - n.v;

v == i*R;

end

end

 

Figure 1.2  A Simscape file that implements a linear resistor 

1.5.1.2 Specialized Power System Library 

The Simscape Electrical Specialized Power System (SPS) is a library in Simscape Electrical 

developed by Hydro-Quebec to simulate power systems. SPS belongs to the family of physical 

system modeling and uses a similar block and connection line interface. It employs a state-space 

block to describe the linear parts of a system, e.g., a circuit. Once the simulation begins, the 

system's topology is analyzed, the linear blocks are separated from nonlinear blocks. Then, the 
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state-space model (A, B, C, D matrices) of the linear part of the circuit is computed. All steady-

state calculations and initializations are performed at this stage. Nonlinear models, such as switch 

devices, motors, and machines, are simulated by current sources driven by the voltages across the 

nonlinear element terminals. Figure 1.3 represents the interconnections between the different parts 

of the complete Simulink model. The nonlinear models are connected in feedback between voltage 

outputs and current inputs of the linear model [43]. It is highlighted that both in Simscape and SPS, 

nonlinear elements are not represented in the state-space matrices. 

 

 

Figure 1.3  Workflow of Simscape electrical [43] 

SPS presents some restrictions to circuit system modeling; for example, it is impossible to simulate 

a capacitor in a loop with an ideal voltage source (as illtreated in Figure 1.4) or connect an inductor 

in parallel with an ideal current source. It can be mathematically justified that the voltage across 

the capacitor cannot be chosen as an independent state variable; consequently, it is not possible to 

write the equations in the linear form of state space. Putting a small resistance (snubber) in series 

with the capacitor is required to alleviate the problem. 

 

Figure 1.4  The parallel connection of a capacitor and ideal voltage source in the SPS 
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As other examples of topological constraints in the SPS, it is impossible to connect in series the 

nonlinear components modeled by a current source to an inductor, or two nonlinear blocks 

implemented by controlled current source, e.g., a circuit breaker and a nonlinear inductor for inrush 

current study. 

1.5.2 Modified Augmented Nodal Analysis  

Nodal analysis (NA), also known as the branch current method, was subsequently introduced as 

the topological dual of mesh analysis and is identified with Kirchhoff’s current law (KCL) in the 

form of 𝐀𝐈 = 𝟎, where matrix A describing the incidence between branches and nodes in the circuit 

[44]-[46]. The current passing through each branch is written in terms of the circuit node voltages. 

This method has several limitations, including the inability to process voltage sources and current-

dependent circuit elements efficiently. 

The backbone of Modified Nodal Analysis (MNA) is the nodal analysis. In this method, the nodal 

voltage and the current of some branches are determined [47]. Therefore, an electric circuit can be 

formulated by:  

[
𝐘 𝟎
𝟎 𝐒

] [
𝐕
𝐈
] = [

𝐁𝑰

𝐁𝑽
] (1-17) 

where 𝐘 is the nodal admittance matrix, 𝐒 is the augmented matrix for including the connectivity 

of voltage sources, 𝐕 and 𝐈  are the unknown nodal voltages and source current vectors, 

respectively, the vectors 𝐁𝑰 and 𝐁𝑽 are the current and voltage sources.  

Modified Augmented Nodal Analysis (MANA) is an extension of MNA to eliminate the limitations 

of NA and MNA. The solution method in EMTP® is based on MANA. This method offers several 

advantages [50], [51] over classical nodal analysis and is formulated as below.  

[

𝐘𝑛 𝐕𝑐 𝐃𝑐 𝐒𝑐

𝐕𝑟 𝐕𝑑 𝐃𝑣𝑑 𝐒𝑣𝑠

𝐃𝑟 𝐃𝑣𝑑 𝐃𝑑 𝐒𝑑𝑠

𝐒𝑟 𝐒𝑠𝑣 𝐒𝑠𝑑 𝐒𝑑

] [

𝐯𝑛

𝐢𝑣
𝐢𝑑
𝐢𝑠

] = [

𝐢𝑛
𝐯𝑏

𝐝𝑏

𝐬𝑏

] (1-18) 
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where submatrix 𝐘𝑛 is the linear network admittance of network, and other submatrices represent 

network elements that can not be modeled as an admittance branch. Equation (1-18) can be 

represented in the generic forms of 𝐀𝐱 = 𝐛. The below examples demonstrate the approach [48], 

[49]. 

Assume an ideal voltage source is connected between two nodes, k, and m. Therefore, the 

mathematical representation is given by: 

𝑣𝑘 − 𝑣𝑚 = 𝑣𝑘𝑚 (1-19) 

Equation (1-19) is directly inserted into the main system by placing 1 and −1 in columns k and m, 

respectively, of 𝐕𝑟. The source current condition is considered by transposition in the submatrix 

𝐕𝑐.  Similarly, it is possible to implement the model of an ideal switch using the submatrices 𝐒. 

Let’s assume an ideal switch is between nodes k and m. when the switch is closed, then 𝑣𝑘 − 𝑣𝑚 =

0 and the switch is open 𝑖𝑘𝑚 = 0 and the corresponding diagonal cell in 𝐒𝑑 is set to 1. 

For nonlinear component modeling [50],[51], EMTP® employs an iterative solution for nonlinear 

branches. For this purpose, first, the nonlinear equation is linearized around a candidate solution 

point to solve the circuit for this solution point to obtain a better result. The procedure is iterated 

until the pre-defined tolerance is reached. For example, assume a nonlinear resistor defined by 𝑖 =

𝑓(𝑣) as illustrated in Figure 1.5.a. The linearized equation at point (𝑣0, 𝑖0) is: 

𝑖 = 𝑓′(𝑣0)𝑣 + 𝐼𝑒𝑞 (1-20) 

The Norton equivalent of (1-20) is shown in Figure 1.5.b. 

 

Figure 1.5  (a): An i -v characteristic for a nonlinear resistor. (b): Norton equivalent at the 

operating point 
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1.5.2.1 EMTP® 

There are presently four EMT-type simulation tools; EMTP® [49], ATP [52], EMTDC (PSCAD) 

[54] and PowerFactory [55]. The electromagnetic transients program (EMTP®) is a widely used 

simulation tool. The main idea in these tools is the discretization of components based on a fixed 

step second-order trapezoidal rule. A Norton equivalent circuit is composed only of a resistance 

and a current source to represent any circuit element in a power system [45], [53]. EMTP® has 

great distinguishing features such as handling nonlinear functions, initialization, steady-state 

studies, frequency scan in phasor domain, implementation of control systems, etc. In EMTP®, the 

numerical oscillations resulting from the truncation error are suppressed by the Critical Damping 

Adjustment (CDA) scheme [56].  

In the EMTP® solution method, power electronic devices such as thyristors or transistors can be 

modeled as ideal switches with a resistor to account for losses. Currently, the nonlinear properties 

of components are modeled with monotonically increasing curves [37].  

1.5.2.2 XTAP 

XTAP (eXpandable Transient Analysis Program) is also an EMT-type simulator. The numerical 

integration method of XTAP is based on the 2-Stage Diagonally Implicit Runge-Kutta (2S-DIRK) 

[57] instead of the trapezoidal method [58],[59]. The 2S-DIRK method has a second-order 

accuracy and is A-stable like the trapezoidal method but does not produce sustained numerical 

oscillation at discontinuities. 

The 2S-DIRK method, besides the increased computation burden, has some limitations such as 

potential order reduction phenomenon when applied to very stiff and differential-algebraic 

problems, where the classical order of the method offers a poor indication of occurred numerical 

error [60]. 

1.6 Motivation and Objectives 

The classical EMT simulators use imperative languages such as Fortran and C.  According to the 

author's knowledge, no EMT simulator has been developed based on declarative languages, and 

the abilities and advantages of these languages have never been investigated. This research is 
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conducted to explore the benefits and drawbacks of Modelica as a powerful example of the 

declarative languages in EMT simulation. 

One of the aims of this research is to create and validate a Modelica-based library, the so-called 

Modelica Simulator of Electromagnetic Transients (MSEMT). The library, which includes the 

EMT-detailed model of main electrical components, shows the comparative advantages and 

disadvantages of simulating with Modelica and finally offers solutions for removing the constraints 

of Modelica-based EMT simulation.   

Analysis of simulation accuracy for high-frequency switching devices and examination of event-

handling in Modelica are important subjects in Modelica. 

Creating sophisticated models such as transmission line (wideband model), synchronous machine 

(with saturation), machine controls, and ultimately exploring the simultaneous solution of control 

systems and power networks are the objectives of this reseach thesis.  

1.7 Methodology 

The methodology used in this thesis is to start by implementing EMT-detailed models in the 

Modelica language. The advanced linear and nonlinear models such as wideband line model, 

synchronous generator including saturation, surge arrester, etc., will be examined. Models are 

programmed on a high-level code and based on model equations. This work is followed by research 

on new solutions algorithms and modeling approaches. All models are implemented and validated 

with EMTP®. The second task is to test the performance of the models from the aspects of accuracy 

and speed in large-scale networks. For this purpose, the performances and results obtained from 

IEEE 39-bus and IEEE 118-bus test cases will be compared with the EMTP®.  

To evaluate the accuracy of different numerical solutions, the relative error between the reference 

solution trajectory 𝑥𝐸𝑀𝑇𝑃 and the given numerical solution is calculated using: 

𝜀 = |
𝑥𝑀𝑜𝑑𝑒𝑙𝑖𝑐𝑎 − 𝑥𝐸𝑀𝑇𝑃

𝑥𝐸𝑀𝑇𝑃
| 

The errors are calculated and presented for each time point. A base-ten logarithmic scale on the y-

axis is used to have a better demonstration. 
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Simulation performance is one of the essential characteristics of a simulator. In our studies, the 

simulation performance is compared with EMTP® and, if possible, with Simscape Electrical 

Specialized Power System [43]. It should be noted that the performance Simscape Electrical 

Specialized Power System is decreased severely with the increase of nonlinear components. 

Currently, EMT simulation speed via Modelica-based simulators is not as efficient as EMTP®. On 

the contrary, the efficiency of modeling, especially for complicated models, is considerably 

improved. For example, it is demonstrated that we can modify a synchronous machine model 

modularly to include the magnetic saturation effects.  

1.8 Contributions 

The following are the contributions of this thesis: 

• Development of an EMT-detailed library in Modelica. 

• Investigation and analysis of advantages/disadvantages, challenges, and limitations of 

Modelica for EMT-type simulations. 

• Investigation of efficiency and flexibility of modeling with Modelica. 

• Investigation of EMT nonlinear models in Modelica from the aspects of accuracy and 

efficiency. 

• Investigation of advantages/disadvantages of variable-step solvers for EMT simulations. 

• Investigation of discontinuity handling in Modelica simulators. 

• Comparison of simulation speed between Modelica-based simulators and Simscape SPS. 

• Developing the DynaꞶo for EMT simulations. 

The workflow of pure Modelica simulators such as OpenModelica is to compile a model at run-

time before launching the simulation itself. This process is an obstacle for large-scale power system 

simulations. Dynaωo [61], [62] is a hybrid C++/Modelica open-source simulation tool for power 

systems, initially designed for phasor domain simulation and long-term and short-term stability 

studies. The simulator engine is changed to allow EMT-type simulations. The Dynaωo strategy for 

increasing performances for compilation and simulation is to compile non squared Modelica 
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models individually before simulation. The compiled models are then only instantiated during the 

simulation. In Dynaωo, like in Modelica, the solver is decoupled from the model. Currently, 

variable step backward Euler [63] and IDA [64] solvers are available in the simulation suite. The 

simulation tool, along with some test cases, will be presented in Chapter 6. 

1.9 Thesis Outline 

The thesis describes the EMT modeling and simulation of electric circuits using the Modelica 

language. This thesis is composed of seven chapters. 

• Chapter 1 gives a literature review on programming languages, electromagnetic transient 

modeling, and simulation tools. Then, it explains the background motivating this Ph.D. 

project and summarizes its goals and contributions. 

• Chapter 2 is dedicated to studying the Modelica language from mathematical formulations 

and compilation perspectives, along with examples. In this chapter, an overview of solvers 

integrated with main Modelica compilers will be given. Then simulation modes, i.e., DAE 

or ODES modes, are presented as well.  

• Implementation of EMT models is the focus of Chapter 3. The coverage of this chapter 

includes the models for transmission lines, nonlinear inductor, surge arrester, arc models, 

synchronous machine, control systems, etc.  

• Chapter 4 presents the numerical tests and results to compare both the precision and 

efficiency of the transmission line models in Modelica with the reference software EMTP®.  

This chapter investigates the accuracy of line models, e.g., constant parameter and 

wideband line models in the IEEE 13-bus distributed network. The network includes short-

length and untransposed overhead transmission lines and underground cables. The  

• Chapter 5 investigates the accuracy of developed models in the MSEMT library and the 

efficiency of simulations through the IEEE39-bus network. Both linear and nonlinear 

components, along with the control systems, are simulated in this test. Issues of accuracy 

and stability of variable-step methods are covered.  
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• Chapter 6 introduces a hybrid C++/Modelica simulation tool, called Dynaωo, to accelerate 

simulations in Modelica. In this chapter, the accuracy and performance of Dynaωo are 

compared with OpenModelica and EMTP® through nonlinear and high-frequency transient 

examples. 

• Chapter 7 investigates the Modelica models in the larger scale IEEE 118-bus network. In 

this test case, the accuracy of the synchronous machine model, including saturation and 

surge arrester, is validated with EMTP®. The validation of arc models is also examined in 

Section 7.5. 
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 A REVIEW ON MODELICA AND BASIC CONCEPTS  

This section gives an introduction to basic concepts necessary to understand the problems 

demonstrated in this thesis. This includes some background to Modelica, which provides a quick 

overview of the circumstances under which Modelica was invented and illustrates the basic 

motivation and goals behind this language. Additionally, clarifying the adopted models is 

necessary to appreciate how the models are handled and solved. Finally, quick and basic elementary 

language constructs are illustrated through electrical examples. For more details, a comprehensive 

introduction can be found in [14]. 

2.1 Introduction 

Continuous System Simulation Languages (CSSL) are a set of very high-level programming 

languages aimed to simplify the modeling and simulation of physical systems characterized by 

ordinary and partial differential equations.  

Modelica is a declarative, object-oriented language aimed primarily to model and simulate multi-

domain complex systems, such as mechanical, electrical, hydraulic, thermal, and electric power. 

The first language specification 1.0 [65] was released in September 1997. Since then, the 

specification has been evolved to version 3.5 [28] with many complex constructs. Modelica 

Association [66] is responsible for language specification and the Modelica Standard Library 

(MSL). MSL is a free library containing basic models in various disciplines. 

The most important features of Modelica are: 

• Modelica language relies on equations. It permits acausal modeling. 

• Modelica is a multidomain modeling language; it means models corresponding to physical 

objects from several domains such as electrical, mechanical, etc. 

• Modelica is an object-oriented language. It facilitates the reuse of components and the 

evolution of models. 

• Modelica supports C-code generation. 

• Modelica has a strong construct for creating and connecting components, subcomponents. 
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• Modelica has interoperability with other languages such as MATLAB, C, Julia [67]-[69], 

and Python. 

• Modelica is fully compatible with FMI [70], [71], a standard that allows co-simulation and 

exchange of dynamic models [72]. 

• Modelica can be used for model-to-model transformation through a common information 

model (CIM) [73], [74]. 

2.2 Object-Oriented Mathematical Modeling in Modelica 

Modelica is a declarative language; therefore, the distinction between classes and objects 

disappears and inheritance is directly copied in the models. It represents a pure mechanism of type 

generation. This means that the type of hierarchy of models is in principle independent from the 

inheritance. For example, the resistor model extends from a partial model OnePort, which 

includes two variables v for voltage and i for current. Furthermore, the classes of p and n of 

connector Pin are public elements of OnePort. Since Resistor extends from OnePort, all 

elements v, i, p, and n are "copied" to class Resistor. 

Modelica offers the features of object-oriented modeling at a higher level of abstraction than the 

usual object-oriented programming. For instance, it is not required to write code for transporting 

data between objects using assignment statements. Such code is automatically generated by the 

Modelica compiler based on the given equations. 

2.3 Equation-based Modeling 

As already said, Modelica is an equation-based language. Equations are more flexible than 

assignments since they do not prescribe a specific data flow direction or execution order. This is 

the key to physical modeling and increases the reusability of Modelica classes. In Modelica, 

connections between components generate equations. 



    23 

 

2.4 Symbolic Workflow of Modelica Models 

The Modelica Language Specification [28] defines how a Modelica model shall be mapped into a 

mathematical description as a mixed system of DAE and discrete equations with Real, Integer, and 

Boolean variables as unknowns.  

Let’s assume we have built a Modelica model with high-level abstraction in graphical notations 

packaged in pure mathematical representation; Figure 2.1 outlines a typical compilation and 

simulation process. It is noted that this procedure might slightly change for different Modelica 

environments.  

• Block 1: In the top-level, the system is modeled with Modelica codes or using the Graphical 

User Interface (GUI) developed in Modelica. The selected components from the pre-

constructed libraries, such as iPSL [112], MSEMT [75], are dragged and dropped on the 

simulation page. They can be easily connected by linking the pins of components.  

• Block 2: The Modelica codes are translated and parsed into a flat Modelica structure. In the 

Block, firstly, a type checking of models is carried out to make sure that parametrized 

models conform to the type rules of Modelica. For example, a plus (+) operator cannot have 

a string and an integer as its left and right operand. 

Secondly, the inherited classes are collapsed hierarchically. For each sub-components of a 

model, one copy of all equations is generated with distinguished identifiers. For example, 

if our model is composed of two resistors, R1 and R2 whose resistances are 5 and 10 ohms, 

two equations are generated:  v1=5*i1 and v2=5*i2. 

Thirdly, for each connection between two or more nodes, potential variables are set to be 

equal, and flow variables are summed to zero.  

As a result, the output of this Block is a set of flat implicit DAEs in the form of abstract 

syntax tree (AST) consisting of:  

1. Declaration of variables, e.g., parameter Real v=5. 

2. Equations in the equation section. 

3. Invoking of functions. 
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4. Algorithms specified in algorithm section. 

5. When, if -clauses for triggering discrete-time behavior. 

• Block 3: The behavior of a Modelica model is defined in terms of genuine equations, and a 

Modelica analyzer must assign an equation for each variable as part of the sorting 

procedure, which also identifies algebraic loops. The idea to process problems with a 

hundred thousand unknowns is to focus on the structural properties, i.e., which variables 

are in each equation. Structure Jacobian or incident matrix is used for extracting this 

information. For a system of equations, 𝐉(𝒙) = 𝟎, each element i, j, is zero if 𝑥𝑗 does not 

existe in the expression 𝐽𝑖 ; otherwise, it is one.  

The sorting procedure is to sort out unknowns and equations to transform the structure 

Jacobian to Block Lower Triangular (BLT). The BLT is an approach specialized in 

permuting the matrix to have non-zero elements of the matrix lower of the main diagonal.  

A BLT matrix demonstrates the structure of a problem. It decomposes a problem into 

subproblems, which can be solved in sequence. Each non-scalar block on the diagonal of 

BLT forms an algebraic loop. All algebraic loops are identified in the sorting procedure in 

their unique minimal form. The basic algorithm was given by Tarjan [17]. 

• Block 4: It is imperative to reduce the size of the problem sent to a numerical solver to 

obtain efficient simulation. The computational cost for solving a system of equations grows 

rapidly with the number of unknowns because the number of operations is related to the 𝑛3, 

where n is the number of unknowns. A Modelica model has many trivial equations typically 

in the form of 𝑣1  = 𝑣2 or 𝑣1  = −𝑣2 which are the result of connections and object-oriented 

properties. From the BLT partition, it is relatively straightforward to find unknowns that 

are constant and can be calculated and substituted at translation. This may considerably 

reduce the complexity of the problem that has to be solved numerically. 

• Block 5: in this stage, the explicit equations are converted to C code for execution.  

• Block 6: the selected solver will solve the system of equations during the simulation time.  

• Block 7: Output from the simulation process is typically a file (. mat or .csv file) including 

simulation data for the variables. The data can be later visualized using a GUI. 
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The process of Block 2 to Block 5 is typically performed at compile-time, and in Block 6, when 

the model is executed, it is often called the run time process.  
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Figure 2.1  Typical workflow of Modelica 

2.5 Matching Algorithm 

In the previous section, we have discussed the process of causalization of equations in Modelica as 

one of the time-consuming steps in the compilation. In this section, we would like to have a review 

of the mathematical aspects of this process. 

Graph theory is very popular for symbolically handling the DAEs in Modelica. The first step is to 

construct the incidence matrix using a directed graph. A directed graph or digraph consists of a set 

of nodes (called vertices) and directed edges between nodes. An edge is defined as an ordered pair 

of nodes. The bipartite graph can be used to represent the relation between equations and variables 

in the incidence matrix. Assuming graph 𝐆, the nodes are divided into two sets, one representing 



    26 

 

the rows and the other the columns, such that a row node, i is joined to a column node, j, if and 

only if 𝑎𝑖𝑗 is 1 in the incidence matrix [18]. Mathematically, for a set of DAEs, with 𝑒𝑖 equations 

and 𝑥𝑗 variables, we can say: 

𝐆 = {𝐕, 𝐄} (2-1) 

where, the vertices, 𝐕, is the set of equations, and is given by: 

𝐕 = {𝑒𝑖}   ∀𝑖 ∈ ℕ (2-2) 

and the edge, 𝐄, is the pairs of relations between equations and variables, is given by: 

𝐄 = {(𝑒𝑖 , 𝑥𝑗)}     ∀𝑖, 𝑗 ∈ ℕ (2-3) 

Now, we should find a matching, i.e., independent edge sets for the constructed bipartite graph 𝐆 

using a recursive algorithm. For this purpose. there exist several algorithms in Modelica 

environments, such as DFS (Depth First Search algorithm.) [17], PR (push-relabel mechanism) 

[19]. A comparison of appropriate matching algorithms for large-scale DAEs is given in [20]. 

For example, suppose a system of equations is defined by: 

f1(x3)     = 0

f2(x1, x2) = 0

f3(x2, x3) = 0

f4(x1, x2, x4) = 0

 (2-4) 

The vertices 𝐕, and the edge, 𝐄, are defined by: 

𝐕 = {f1, f2, f3, f4} (2-5) 

𝐄 = {(f1, x3), (f2, x1), (f2, x2), (f3, x2), (f3, x3), (f4, x1), (f4, x2), (f4, x3), (f4, x4)} (2-6) 

Figure 2.2 shows the bipartite graph describing the equations (2-4). The general rule for 

causalization of equations is as below: 

• Step 1: The equations which are connected to only one unknown variable are identified and 

causalized. In our example, this is the pair (f1, x3).  
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• Step 2: Now, the variable x3 is known, and it should be identified as a known variable in 

other equations. This is illustrated by a dashed line. 

Now step 1 is repeated by checking the remained acausal equations; we find that f3 has only 

“one” unknown variable, e.g., (f3, x2). Therefore, the variable x2 changes to known variable, 

and we identify it in other equations. By iterating the procedure,  x1 and x4 are respectively 

causalized. Each iteration has been marked in Figure 2.2 by a pink number.  

f1 x1

f2 x2

f3 x3

f4 x4

1

2

3

4

 

Figure 2.2  Bipartite graph of equation (2-4) 

The incident matrix of equations (2-4) is given by: 

f1
f2
f3
f4

[
 
 
 
 
x1 x2 x3 x4

0 0 1 0
1 1 0 0
0 1 1 0
1 1 0 1 ]

 
 
 
 

 (2-7) 

the equations are vertically and horizontally sorted using the algorithm described above, and 

finally, they are transformed to the BLT matrix, given by:  

f1
f3
f2
f4

[
 
 
 
 
x3 x2 x1 x4

1 0 0 0
1 1 0 0
0 1 1 0
0 1 1 1 ]

 
 
 
 

 (2-8) 

Now the equations are in the form of assignments, and the order of each assignment for solving is 

known. Matching and causalization for large-scale circuits are not as easy as demonstrated in the 

example. As earlier mentioned, two challenges are often encountered, algebraic loops and 

structural singularity. We examine these issues in Section 2.7 and Section 2.8, respectively. 
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2.6 Analysis of an RLC Circuit 

This section intends to demonstrate the modeling and simulation (with OpenModelica workflow) 

of an RLC circuit. The circuit schematic is illustrated in Figure 2.3. There are five electrical 

components in this circuit, four passive devices, plus one sinusoidal voltage source. First, the 

modeling of an inductor is explained, then the procedure is extended to other models, e.g., 

capacitor, resistor, etc. Finally, we show how the components are connected, and the circuit 

equations are constructed and causalized.  In the simulation procedure, we will demonstrate how 

these equations are prepared for solving. 

AC1
Vm=120

R1

R=10   

C1
C=50 µF 

L1
L=350 mH 

R2
R=5   

 

Figure 2.3  Schematic of RLC circuit 

2.6.1 Linear Inductor Model  

Let us discuss how modeling in Modelica works, using a linear inductor as an example. A linear 

inductor is a simple electrical component, described by (2-9): 

v = L
𝑑i

𝑑𝑡
 (2-9) 

where: 

v The voltage across the inductor 

i The current through the inductor 

L Inductance 
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From the viewpoint of object-oriented programming, a linear inductor model, denoted by 

Inductor, can be subdivided into several modules with a hierarchal layer. Foremost, it is needed 

to identify the variables and parameters of the model. In this example, voltage, v, and current, i, 

are the variables, and the inductance, L, is a parameter of the model. All variabilities in Modelica 

are defined in a specialized class type, then package them and recall them when required. Figure 

2.4 shows the definition of three types used in the inductor model. For example, we have defined 

a type and named it Voltage, then we have declared that Voltage is a Real value. quantity 

is a description of what the variable represents. In Modelica, variables can have physical units. it 

is indicated that the unit for the type voltage is V. 

type Voltage =

Real(quantity="Voltage",

unit ="V");

type Current =

Real(quantity="Current",

unit ="A");

type Inductance =

Real(quantity="Inductance", 

unit ="H");

 

Figure 2.4  Definition of the types for variables of inductor model 

 The next step is to define the pin. It is the primary component and external communication 

interface of electrical models. Figure 2.5 shows the implementation of pin in Modelica. There is 

a specific class, i.e., connector, for defining the component interfaces. The electrical pin 

contains two variables, Voltage denoted by v and Current denoted by i. We recall that Voltage 

and Current both are earlier defined in type. The prefix flow on the second variable indicates 

that this variable represents a flow quantity, which has special significance for connections. Based 

on the conservative law of energy, the sum of all flows coming into or out of a specific node is 

zero. These equations are automatically generated during the parsing of models in Block 1. 

p.v

p.i

p connector Pin 

 Voltage v; 

 flow Current i; 

end Pin;

+

 

Figure 2.5  Implementation of pin model in Modelica 
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The next step is to program the partial model OnePort, which contains the common properties of 

a one-port device. Each one-port device is recognized with two pins, i.e., a positive pin denoted by 

p and a negative pin denoted by n and a set of equations as illustrated in Figure 2.6. The first 

equation, p.v - n.v = v implies the relationship between the component non-flow variables. It 

defines the voltage drop across the inductor pins as the difference between the pin voltages. The 

second equation, p.i + n.i = 0 establishes the relationship between the component flow 

variables, denoting that the current comes into the device equals the current comes out. It is 

assumed that the positive direction of current is into the pin throughout the thesis. The third 

equation is a trivial equation to make the model more understandable.  

partial model OnePort

 Voltage v;

 Current i;

 Pin  p, n;

 equation

 p.v - n.v = v; 

 p.i + n.i = 0;

 p.i = i;

end OnePort

p.v

p.i

n.v

n.i

p n

i

+ -
v

OnePort

 

Figure 2.6  Implementation of partial model OnePort 

Now we can proceed to complete the model, as can be seen in Figure 2.7.  Parameter 

Inductance L specifies the inductance value in model L. This parameter appears in the block's 

dialog box generated from the component file and can be modified when building and simulating 

a model. The comment immediately following the parameter declaration, Inductance, 

specifies the type of L. The statement Inductance determines how the name of the block 

parameter appears in the dialog box. The properties of partial model OnePort are extended into 

the model using the keyword extends. 

In the equation section, L * der(i) = v, describes the operation of a linear inductor based 

on Faraday’s law. It establishes the mathematical relationship between the component non-flow 

and flow variables, current i and voltage v, and the parameter L. 
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The operand = used in these equations specifies continuous mathematical equality between the left- 

and right-hand side expressions. This establishes a symmetric mathematical relationship between 

the left- and right-hand operands.  

Inductor 

p.v

p.i

n.v

n.i

p n

i

+ -v

model Inductor  Linear inductor 

   parameter Inductance L  Inductance  

   extends OnePort;

   equation

   L * der(i) = v;

end Inductor 

Partial model 
 OnePort Model name Model description

 

Figure 2.7  Inductor model in Modelica 

 

Figure 2.8 illustrates the resulting graphical user interface (GUI), generated from this component 

file in OpenModelica. It is possible to group the parameters or create tabs for different types of 

parameters. For the state variables, we can define initial values in the GUI. 

Component name

Component address in the 
library

Description of component

Unit of parmaeter

Description parameter

Inserting the initial value of 
component

It is possible to define other 
tabs for categorizing the 

parameters

 

Figure 2.8  Graphical user interface of linear inductor model 

It should be emphasized that constructing the models of a resistor or a capacitor is entirely similar 

to the inductor model by replacing the inductor equation with the appropriate equation, e.g., Ohm’s 

law for the resistor. 
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2.6.2 Interconnection of Models 

Interconnection of models in Modelica language is carried out by the connect statement. When 

the statement is used to connect two models, based on the definition of variables in connecting 

interface, e.g., pin, some equations are constructed based on the following law: The sum-to zero 

for flow variables and equality of coupling for the non-flow variable.  

In Figure 2.9, the wire labeled 1 is represented in the model as connect (L1.p, R1.p) In the 

electrical cases, the variables voltage and current are defined as non-flow and flow variables, 

respectively, in the interface pin. Therefore, Interconnection of the positive pin of resistor (R1), 

R1.p, to the positive pin of the inductor (L1), L1.p, by the code  

connect(L1.p, R1.p); 

generates two equations automatically. 

R1.p.v = L1.p.v; 

R1.p.i + L1.p.i = 0; 

These equations are inserted into the set of equations describing the circuit components and shall 

be solved. 

 

AC1
Vm=120

R1

R=10   

C1
C=50 µF 

L1
L=350 mH 

R2
R=5   

model RLC  RLC Example 

RLC_Branches.Ground G;

RLC_Branches.R R1(R = 10);

RLC_Branches.R R2(R = 5);

RLC_Branches.L L1(L = 350e-3);

RLC_Branches.C C1(C = 50e-6);

Sources.CosineVoltage AC(Vm = 120, f = 60);

equation

connect(L1.p, R1.p);

connect(R1.p, AC.p);

connect(R1.n, C1.p);

connect(R1.n, R2.p);

connect(R2.n, G.p);

connect(AC.n, G.p);

connect(L.n, G.p);

connect(C.n, G.p);

end RLC;

1

 

Figure 2.9  Implementation of RLC circuit with GUIs (left side) and Modelica codes describing 

the circuit (right side) 
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2.6.3 Model Compilation 

Figure 2.10 shows the parsed models and equations describing the current and voltage at each point 

for the electrical circuit. For this purpose, the Modelica compiler copies the properties of each 

model, including its parameters and equations. For the connection point, the required equations 

which describe the KVL and KCL are generated.  For instance, nodes N1 and N2 are defined by 

three equations, and five equations characterize node N3. The dimension of such automatically 

generated DAE systems is usually large due to the connect statements corresponding to many 

equations of the form 𝑢 = 𝑣 and 𝑢 + 𝑣 = 0.  

The complete set of equations (see Figure 2.10) generated from the RLC circuit consists of 32 

DAEs and 32 variables, as well as time and several parameters and constants. 

 

AC
Vm=120

R1

R=10   

C1
C=50 µF 

L1
L=350 mH 

R2
R=5   

R1.v = R1.R * R1.i;

R1.v = R1.p.v – R1.n.v;

0.0 = R1.p.i + R1.n.i;

R1.i = R1.p.i;

R1.p.i + L1.p.i + AC.p.i = 0.0;

AC.p.v = L1.p.v;

AC.p.v = R1.p.v;

L1.L * der(L1.i) = L1.v;

L1.v = L1.p.v - L1.n.v;

0.0 = L1.p.i + L1.n.i;

L1.i = L1.p.i;
C1.i = C1.C * der(C1.v);

C1.v = C1.p.v - C1.n.v;

0.0 = C1.p.i + C1.n.i;

C1.i = C1.p.i;G.p.i + L1.n.i + C1.n.i + AC.n.i + R2.n.i = 0.0;

AC.n.v = C1.n.v;

AC.n.v = G.p.v;

AC.n.v = L1.n.v;

AC.n.v = R2.n.v;

G.p.v = 0.0;

if time < AC.StartTime or time > AC.StopTime then

    AC.v = 0.0;

  else

AC.v = AC.Vm * cos(6.283185307179586 * AC.f * 

time + AC.Phase);

end if;

AC.v = AC.p.v - AC.n.v;

0.0 = AC.p.i + AC.n.i;

AC.i = AC.p.i;

R2.v = R2.R * R2.i;

R2.v = R2.p.v – R2.n.v;

0.0 = R2.p.i + R2.n.i;

R2.i = R2.p.i;

  R1.n.i + C1.p.i + R2.p.i = 0.0;

  C1.p.v = R1.n.v;

  C1.p.v = R2.p.v;

N1 N2

N3

 

Figure 2.10  Parsed equations of RLC circuit 

 

Table 2.1 presents the 32 variables in the system of equations, of which 30 are algebraic variables 

since their derivatives do not appear. Two variables, C1.v and L1.i, are state variables since their 

derivatives exist in the equations.  
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Table 2.1  The variables in the RLC circuit model 

AC.v L1.v R1.v C1.v R2.v G.p.v 

AC.i L1.i R1.i C1.i R2.i G.p.i 

AC.p.v L1.p.v R1.p.v C1.p.v R2.p.v  

AC.n.v L1.n.v R1.n.v C1.n.v R2.n.v  

AC.p.i L1.p.i R1.p.i C1.p.i R2.p.i  

AC.n.i L1.n.i R1.n.i C1.n.i R2.n.i  

2.6.4 Transformation to State-Space Form 

The implicit DAE system described in Figure 2.10 should be further simplified before applying a 

numerical solver. The next step is to identify the kind of variables in the DAE system. We have the 

following four groups: 

1. All constant and parameters, which are declared with the keyword constant, parameter 

are gathered into a vector p. All other constants can be replaced with their values. 

2. Variables declared with the input attribute, prefixed by the input keyword, are collected 

into an input vector u. 

3. Variables whose derivatives appear in the model, the der() operator, are grouped in a state 

vector x.  

4. All other variables are collected into a vector of algebraic variables, y. 

For our simple circuit model these four groups of variables are the following: 

p = [L1.L, R1.R, R2.R, C1.C, AC.f, AC.vm, AC.Phase]T 

u = [AC.v]T 

x = [L1.i, C1.v]T 

y = [L1.v, L1.p.v, L1.n.v, L1.p.i, L1.n.i, R1.v, R1.i, R1.p.v, R1.n.v, 
R1.p.i, R1.n.i, C1.i, C1.p.v, C1.n.v, C1.p.i, C1.n.i, R2.v, R2.i, R2.p.v, 

R2.n.v, R2.p.i, R2.n.i, G.p.v, G.p.i]T 
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The system of equations should preferably be in explicit state-space. Derivative of the state vector 

is computed from the state vector at the current point in time using an iterative numerical solution 

method for the ordinary differential equations at each iteration step. 

2.6.5 Solution Method 

Equations illustrated in Figure 2.10 should be causalized as a primary step. There are systematic 

causalization procedures. For demonstrating how it is done, we come back to our example. First, 

we must optimize the equations and remove the trivial equations. It helps us to understand the 

procedure better. Equations (2-10) to (2-18) show the minimal equations describing the system. 

There are nine equations and unknowns. 𝑓(𝑡) is a time-dependent equation representing the 

sinusoidal voltage source of circuit. Time and state variables are considered known variables, for 

which no equations need to be found. 

In contrast, the inputs of the integrators, der(L1.i) and der(C1.v), are unknowns, for which 

equations must be found. These are the state equations of the state–space description. An iterative 

numerical solution method is used to find the solution. 

v𝐿1
= 𝒇(𝒕) (2-10) 

v𝐿1
= L1𝑑i𝐿1/𝑑𝑡 (2-11) 

v𝑅1
= R1i𝑅1

 (2-12) 

𝐯𝐶1
= R2i𝑅2

 (2-13) 

i𝐶1
= C1

𝑑v𝐶1

𝑑𝑡
 (2-14) 

v𝑅1
= v𝐿1

− 𝐯𝑪𝟏
 (2-15) 

i𝐴𝐶 + i𝑅1
+ 𝐢𝑳𝟏 = 0 (2-16) 

−i𝑅1
+ i𝐶1

+ i𝑅2
= 0 (2-17) 

i𝑔 − 𝐢𝑳𝟏 − i𝐴𝐶 − iC1
− i𝑅2

= 0 (2-18) 
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For the first iteration, the known variables, 𝑓(𝑡), v𝐶1
 and 𝑖𝐿1, are colored in green and if no other 

knowns remained for the corresponding equations, they are causalized. For example, v𝐿1 and iR2
 

in (2-10) and (2-13). Then these variables are considered known in other equations and colored in 

green. The below equations illustrate the procedure. The operand “:=” represents the assignments. 

v𝐿1
: = 𝑓(𝑡) (2-19) 

i𝑅2
: = vC1

/R2 (2-20) 

𝐯𝐿1
= 𝐿1

𝑑i𝐿1

𝑑𝑡
 (2-21) 

v𝑅1
= R1i𝑅1

 (2-22) 

i𝐶1
= C1

𝑑vC1

𝑑𝑡
 (2-23) 

v𝑅1
= 𝐯𝐿1

− v𝐶1
 (2-24) 

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-25) 

−i𝑅1
+ i𝐶1

+ 𝐢𝑅2
= 0 (2-26) 

i𝑔 − i𝐿1 − i𝐴𝐶 − iC1
− i𝑅2

= 0 (2-27) 

By looking at the equations (2-21)-(2-27), it is possible to determine the new assignments in the 

next iteration. In the next iteration, the equations (2-21) and (2-24) are causalized, and the variables 

𝑑i𝐿1

𝑑𝑡
 and 𝑣𝑅1

became known; therefore, these two variables are colored and distinguished by bold 

character to show it is causalized in the new iteration. Equations (2-28)-(2-36) show the product of 

the procedure. 

v𝐿1
: = 𝑓(𝑡) (2-28) 

i𝑅2
: =

v𝐶1

R2
 (2-29) 

𝑑i𝐿1

𝑑𝑡
≔

𝑣𝐿1

𝐿1
 (2-30) 

v𝑅1
: = v𝐿1

− v𝐶1
 (2-31) 



    37 

 

𝐯𝑅1
= R1i𝑅1

 (2-32) 

i𝐶1
= C1

𝑑v𝐶1

𝑑𝑡
 (2-33) 

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-34) 

−i𝑅1
+ i𝐶1

+ i𝑅2
= 0 (2-35) 

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝐶1
− 𝑖𝑅2

= 0 (2-36) 

By looking at the above equations, we can find iR1
in (2-32), and distinguish it in the remaining 

acausal equations. Equations (2-37)-(2-45) show the product of this iteration.   

v𝐿1
: = 𝑓(𝑡) (2-37) 

i𝑅2
: =

v𝐶1

R2
 (2-38) 

𝑑i𝐿1

𝑑𝑡
≔

v𝐿1

L1
 (2-39) 

v𝑅1
: = v𝐿1

− v𝐶1
 (2-40) 

i𝑅1
≔

v𝑅1

R1
 (2-41) 

i𝐶1
= C1

𝑑v𝐶1

𝑑𝑡
 (2-42) 

i𝐴𝐶 + 𝐢𝑅1
+ i𝐿1 = 0 (2-43) 

−𝐢𝑅𝟏
+ iC1

+ i𝑅2
= 0 (2-44) 

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝐶1
− i𝑅2

= 0 (2-45) 

By knowing the variable of i𝑅1
, as can be observed in (2-43) and (2-44), we can compute the i𝐴𝐶 

and i𝐶1
.  These two variables are distinguished as well. The (2-46)-(2-54) show the assignments in 

this iteration.  

v𝐿1
: = 𝑓(𝑡) (2-46) 
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i𝑅2
: =

v𝐶1

R2
 (2-47) 

𝑑i𝐿1

𝑑𝑡
≔

v𝐿1

L1
 (2-48) 

v𝑅1
: = v𝐿1

− v𝐶1
 (2-49) 

i𝑅1
≔

v𝑅1

R1
 (2-50) 

i𝐴𝐶: = −i𝑅1
− i𝐿1 (2-51) 

i𝐶1
: = i𝑅1

− i𝑅2
 (2-52) 

𝐢𝐶𝟏
= C1

𝑑v𝐶1

𝑑𝑡
 (2-53) 

i𝑔 − i𝐿1 − 𝐢𝐴𝐶 − i𝐶1
− i𝑅2

= 0 (2-54) 

Observing the (2-46)-(2-54)shows that only two equations, (3-53) and (2-54), and two variables, 

𝑑v𝐶1

𝑑𝑡
 and i𝑔, have remained. There is no priority for them because there is no data dependency 

between them. Thus, we can causalized them in the last iteration as observed in (2-55)-(2-63). 

v𝐿1
: = 𝑓(𝑡) (2-55) 

i𝑅2
: =

v𝐶1

R2
 (2-56) 

𝑑i𝐿1

𝑑𝑡
≔

v𝐿1

L1
 (2-57) 

v𝑅1
: = v𝐿1

− v𝐶1
 (2-58) 

i𝑅1
≔

v𝑅1

R1
 (2-59) 

i𝐴𝐶: = −i𝑅1
− i𝐿1 (2-60) 

i𝐶1
: = i𝑅1

− i𝑅2
 (2-61) 

𝑑vC1

𝑑𝑡
:=

i𝐶1

𝐶1
 (2-62) 
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i𝑔: = i𝐿1 + i𝐴𝐶 + i𝐶1
+ i𝑅2

 (2-63) 

 

we arrive at the above set of assignment statements to be computed at each iteration, given values 

of C1.v, L1.i, and t at the same iteration: 

These assignment statements can be converted to code in some programming language, for 

example, C, and executed with an appropriate ODE solver, usually using implicit schemes. The 

algebraic transformations and sorting procedure that we somewhat painfully performed on the 

simple circuit example can be performed automatically and is known as BLT partitioning, 

converting the equation system coefficient matrix into block lower triangular form (see Figure 

2.11). 

code # Assignment L1
.v

R
2.

i 

d
er

(L
1.

i)

R
1.

v

R
1.

i

A
C

.i

C
1.

i

d
er

(C
1.

v)

G
.p

.i

1 L1.v := f(t);

2 R2.i := C1.v / R2.R;

3 der(L1.i) := L1.v / L1.L;

4 R1.v := L1.v - C1.v;

5 R1.i := R1.v / R1.R;

6 AC.i := (-L1.i) - R1.i;

7 C1.i := R1.i - R2.i;

8 der(C1.v) := C1.i / C1.C;

9 G.p.i := L1.i - ((-AC.i) - R2.i - C1.i);  

Figure 2.11  Block lower triangular for of RLC circuit 

The remaining 22 algebraic variables in the equation system of the circuit model that are not part 

of the minimal 9-variable kernel ODE system solved above can be computed at leisure for those 

iterations where their values are desired. This is not necessary for solving the kernel ODE system.  

There are many algorithms for sorting the equations in data-dependency order and converting the 

equations to assignment statements. This is possible since all variable values can now be computed 

in order. One of the most popular algorithms is Tarjan’s method, which captures the same 

information in a graphical data structure called the structure digraph. The structure digraph depicts 

on the left-hand side the equations as a column of nodes. On the right-hand side, the unknowns are 
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also displayed as a column of nodes. Since the number of equations must always equal the number 

of unknowns, the two-column vectors are of equal length. A straight line connects an equation with 

an unknown if that unknown appears in the equation.  

The symbolic transformations and reductions of equation systems performed by a real Modelica 

compiler are much more complicated than shown in this example, including index reduction of 

equations and tearing of subsystems of equations. 

2.7 Example of Algebraic Loop 

This section aims to show how an algebraic loop is formed and how it can be eliminated. Let’s 

slightly change the RLC circuit of the previous section and replace the capacitor, C1, with a resistor, 

R3. The configuration of the new circuit is designed in Figure 2.12. During the procedure of 

causalization, a strong dependency is observed for voltage and current of R2 and R3, in which it is 

not possible to specify the priorities for solving them.  

AC
Vm=120

R1

R=10   

L1
L=350 mH 

R2
R=5   

R3
R=5   

 

Figure 2.12  RLC circuit with algebraic loop 

Equations (2-118)-(2-126) show the main equations of the system (the trivial equations have been 

removed). As described earlier, the time and state variables (𝑓(𝑡) and 𝑖𝐿1) are considered known 

variables and colored as shown below. 

v𝐿1
= 𝒇(𝒕) (2-64) 

v𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-65) 

v𝑅1
= R1i𝑅1

 (2-66) 
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v𝑅2
= R2i𝑅2

 (2-67) 

v𝑅2
= R3i𝑅3

 (2-68) 

v𝑅1
= v𝐿1

− v𝑅3
 (2-69) 

i𝐴𝐶 + i𝑅1
+ 𝐢𝐿1 = 0 (2-70) 

−i𝑅1
+ i𝑅3

+ i𝑅2
= 0 (2-71) 

i𝑔 − 𝐢𝐿1 − i𝐴𝐶 − i𝑅3
− i𝑅2

= 0 (2-72) 

The first iteration of causalization is given as below. Now the variable v𝐿1
 is known; therefore, we 

color the other variables which are dependent to v𝐿1
. 

 v𝐿1
: = 𝑓(𝑡) (2-73) 

𝐯𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-74) 

v𝑅1
= R1i𝑅1

 (2-75) 

v𝑅2
= R2i𝑅2

 (2-76) 

v𝑅2
= R3i𝑅3

 (2-77) 

v𝑅1
= 𝐯𝑳𝟏

− v𝑅3
 (2-78) 

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-79) 

−i𝑅1
+ i𝑅3

+ i𝑅2
= 0 (2-80) 

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝑅3
− i𝑅2

= 0 (2-81) 

The second iteration of causalization is given as below. By looking at the equations (2-84)-(2-90), 

we see that the causalization algorithm stops because a strong correlation is seen between the 

variables of these equations.  

v𝐿1
: = 𝑓(𝑡) (2-82) 
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𝑑i𝐿1

𝑑𝑡
:=

v𝐿1

L1
 (2-83) 

v𝑅1
= R1i𝑅1

 (2-84) 

v𝑅2
= R2i𝑅2

 (2-85) 

v𝑅2
= R3i𝑅3

 (2-86) 

v𝑅1
= 𝐯𝑳𝟏

− v𝑅2
 (2-87) 

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-88) 

−i𝑅1
+ i𝑅3

+ i𝑅2
= 0 (2-89) 

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝑅3
− i𝑅2

= 0 (2-90) 

A glance at the acausal equations gives a clue to us that the equations (2-84)-(2-87) and (2-89) 

form a system of equations that should be solved simultaneously. These equations can be written 

as: 

(

 
 

1 −R1 0 0 0
0 0 1 −R2 0
0 0 1 0 −R3

1 0 1 0 0
0 −1 0 1 1 )

 
 

(

 
 

v𝑅1

i𝑅1

v𝑅2

i𝑅2

i𝑅3 )

 
 

=

(

 
 

0
0
0

v𝐿1

0 )

 
 

 (2-91) 

This is a system composed of five equations and five variables. The tearing algorithm allows us to 

reduce the size of the system. The generic idea is to assume some variables are known, e.g., i𝑅3
. 

The variable is called the tearing variable, and its selection is a complete NP problem. Using the 

assumption, remained equations, inner equations, are causalized. Applying the algorithm to (2-91) 

yields: 

v𝑅2
: = R3i𝑅3

 

i𝑅2
: =

v𝑅2

R2
 

v𝑅1
: = 𝐯𝑳𝟏

− v𝑅2
 

(2-92) 
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i𝑅1
: =

v𝑅1

R1
 

i𝑅3,𝑁𝐸𝑊
= i𝑅1

− i𝑅2
 

where i𝑅3
 is an initial guess, and i𝑅3,𝑁𝐸𝑊

 is an improved version of that same variable. The following 

residual function can be formulated: 

F = i𝑅3,𝑁𝐸𝑊
− i𝑅3

= 0 (2-93) 

Equation (2-93) is a scalar linear function in our example. The function is a system of nonlinear 

equations for the large advanced circuits, where many nonlinear components are used; therefore, a 

convenient numerical method, algebraic differentiation [76], is used. For example, if we 

differentiate equation (2-92) with respect to i𝑅3
, we have: 

𝑑v𝑅2
: = R3 

𝑑i𝑅2
: =

𝑑v𝑅2

R2
 

𝑑v𝑅1
: = 𝑑𝐯𝑳𝟏

− 𝑑v𝑅2
 

𝑑i𝑅1
: =

𝑑v𝑅1

R1
 

𝑑i𝑅3,𝑁𝐸𝑊
= 𝑑i𝑅1

− 𝑑i𝑅2
 

(2-94) 

and the Jacobian function, J, is defined as: 

J =
𝑑F

𝑑i𝑅3

= 𝑑i𝑅3,𝑁𝐸𝑊
− 1 = 0 (2-95) 

we can calculate i𝑅3,𝑁𝐸𝑊
by: 

i𝑅3,𝑁𝐸𝑊
= i𝑅3

− J−1F (2-96) 

After finding the solution of the algebraic loop equation, (2-91), equations (2-88), and (2-90) are 

solved. Figure 2.13 shows the BLT matrix of the circuit. In this matrix, rows 3 to 7 show an 
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algebraic loop that needs to be solved simultaneously. Since our models are linear, a linear solver 

shall solve these equations separately, e.g., Gaussian elimination.  

 

code # Assignment L1
.v

d
er

(L
1.

i)

R
2.

i

R
3.

i 

R
1.

i

R
1.

v

R
2.

v

A
C

.i

G
.p

.i

1 L1.v := f(t);

2 der(L1.i) := L1.v / L1.L;

3  R2.i := R2.v / R2.R;

4  R3.i := R2.v / R3.R;

5  R1.i := R3.i + R2.i;

6  R1.v := R1.i * R1.R;

7  L1.v + (-R2.v) + R1.v := 0;

8 AC.i := (-L1.i) - R1.i;

9 G.p.i := L1.i - ((-AC.i) - R2.i - R3.i);
 

Figure 2.13  The assignments and BLT form of RLC circuit with algebraic loop 

 

Now, let’s increase the complexity of our example by adding an inductor in parallel with R3. Given 

the electrical circuit shown in Figure 2.14. Like the previous example, first, we should write the 

equations of this circuit. At the first iteration, we color the known variables (time, 𝑓(𝑡) and state 

variables, i𝐿1, i𝐿2). 

 

AC
Vm=120

R1

R=10   

L1
L=350 mH 

R2
R=5   

R3
R=5   

L2
L=350 mH 

vL2vAC

 

Figure 2.14  RLC circuit with algebraic loop 
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v𝐿1
= 𝒇(𝒕) (2-97) 

v𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-98) 

v𝑅1
= R1i𝑅1

 (2-99) 

v𝐿2
= R2i𝑅2

 (2-100) 

v𝐿2
= R3i𝑅3

 (2-101) 

v𝐿2
= L2

𝑑i𝐿2

𝑑𝑡
 (2-102) 

v𝑅1
= 𝐯𝐿1

− v𝐿2
 (2-103) 

i𝐴𝐶 + i𝑅1
+ 𝐢𝐿1 = 0 (2-104) 

−i𝑅1
+ i𝑅3

+ i𝑅2
+ 𝐢𝐿2 = 0 (2-105) 

i𝑔 − 𝐢𝐿1 − i𝐴𝐶 − 𝐢𝐿2
− i𝑅2

− i𝑅3
= 0 (2-106) 

In the iteration, the equations (2-97) is causalized for variable v𝐿1
, therefore the variable is colored 

in as shown below:  

v𝐿1
: = 𝑓(𝑡) (2-107) 

𝐯𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-108) 

v𝑅1
= R1i𝑅1

 (2-109) 

v𝐿2
= R2i𝑅2

 (2-110) 

v𝐿2
= R3i𝑅3

 (2-111) 

v𝐿2
= L2

𝑑i𝐿2

𝑑𝑡
 (2-112) 

v𝑅1
= 𝐯𝐿1

− v𝐿2
 (2-113) 

i𝐴𝐶 + i𝑅1
+ 𝑖𝐿1 = 0 (2-114) 
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−i𝑅1
+ i𝑅3

+ i𝑅2
+ i𝐿2 = 0 (2-115) 

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝐿2
− i𝑅2

− i𝑅3
= 0 (2-116) 

In this iteration, equation (2-108) can be causalized. By examining the other equations, a strong 

connection is found between equations (2-109)-(2-111),(2-113), and (2-115). These five equations 

construct a set of equations with 5 variables. The equation system is formulated as (2-117). 

(

 
 

1 −R1 0 0 0
0 0 1 −R2 0
0 0 1 0 −R3

1 0 1 0 0
0 −1 0 1 1 )

 
 

(

 
 

v𝑅1

i𝑅1

v𝐿2

i𝑅2

i𝑅3 )

 
 

=

(

 
 

0
0
0

v𝐿1

−i𝐿2)

 
 

 (2-117) 

The tearing algorithm is a general rule and can be applied to linear and nonlinear algebraic 

equations. The relaxation algorithm or Gaussian elimination can be employed for solving the linear 

system such as (2-117). The equations (2-114) and (2-116) are causalized, followed by solving 

(2-117). 

2.8 Example of Structural Singularities 

In this section, the problem of structural singularities, or so-mathematically called high-index DAE, 

is introduced. When solving an ODE raised by an electrical system, the problem is to calculate the 

states when the derivatives are given. Therefore, solving a DAE may also include differentiation. 

Such a DAE is called high index.  

As a standard procedure in Modelica IDEs, the higher index problems are transformed by 

differentiating equations analytically. The standard algorithm by Pantelides [23] is used to 

determine how many times each equation must be differentiated. The dummy derivatives [24] 

method is used in Dymola as well. 

It is possible to avoid higher index DAEs by restricting the connection of components and/or using 

manually differentiated equations for the most common connection structures. 

As an example of high index DAE caused by replacing the inductor, L1, with the capacitor, C1, in 

the RLC circuit example as indicated in Figure 2.15. This circuit leads to a DAE with index 1. 
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AC
Vm=120

R1

R=10   

C1
C=50 µF 

L1
L=350 mH 

R2
R=5   

vAC vL1

 

Figure 2.15  RLC circuit with structurally singularity (DAE index 1) 

we obtain the following equation by applying KCL and KVL: 

i𝐴𝐶 = i𝑐1 +
v𝐴𝐶 − v𝐿1

R1
 (2-118) 

v𝐴𝐶 − v𝐿1

R1
= i𝐿1 +

v𝐿1

R2
 (2-119) 

v𝐿1 = 𝐿1

𝑑i𝐿1

𝑑𝑡
 (2-120) 

i𝑐1 = 𝐶1

𝑑v𝐶1

𝑑𝑡
 (2-121) 

v𝐴𝐶 = v𝐶1 (2-122) 

By inserting  (2-120) in (2-119) and (2-121) in (2-118), we obtain the equation  in terms of  i𝐿1 and 

i𝐴𝐶. The new set of equations are given by: 

𝐿1 (
1

R1
+

1

R2
)
𝑑i𝐿1

𝑑𝑡
=

v𝐴𝐶

R1
− i𝐿1 (2-123) 

i𝐴𝐶 = 𝐶1

𝑑v𝐶1

𝑑𝑡
+

v𝐴𝐶

R1
−

𝐿1

R1

𝑑i𝐿1

𝑑𝑡
 (2-124) 

v𝐴𝐶 = v𝐶1 (2-125) 

Equations (2-123)-(2-125) form a DAE system of index 1. For solving (2-124), it is required to 

symbolically differentiate the constraint equation (2-125) and replace the original constrain with 

the differentiated one in (2-124). It is recalled  v𝐶1 is not an independent state, because its value is 
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dependent to source voltage, which is known.  These manipulations yield a new set of ODE system 

as: 

𝐿1 (
1

R1
+

1

R2
)
𝑑i𝐿1

𝑑𝑡
=

v𝐴𝐶

R1
− i𝐿1 (2-126) 

i𝐴𝐶 = 𝐶1

𝑑v𝐴𝐶

𝑑𝑡
+

v𝐴𝐶

R1
−

𝐿1

R1

𝑑i𝐿1

𝑑𝑡
 (2-127) 

The above algorithm, called Pantelides algorithm, is defined as instead of replacing the constraint 

equation by its derivative, we add the differentiated constraint equation as an additional equation 

to the set. 

Figure 2.16 shows the BLT matrix defined by OpenModelica. Code lines 4-7 construct a linear 

algebraic loop. 

 

code # Assignment

C
1

.v

d
e

r(
C

1
.v

)

C
1

.i

R
2

.i

R
2

.v

R
1

.i

R
1

.v

d
e

r(
L1

.i
)

A
C

.i

G
.p

.i

1 C1.v := v(t);

2 der(C1.v) := v'(t);

3 C1.i := C1.C * der(C1.v)

4  R2.v := R2.i * R2.R;

5  R1.i := L1.i + R2.i;

6  R1.v := R1.i * R1.R;

7  C1.v + (-R2.v) - R1.v := 0;

8 der(L1.i) := R2.v / L1.L;

9 AC.i := (-C1.i) - R1.i;

10 G.p.i := R2.i - ((-AC.i) - L1.i - C1.i);
 

Figure 2.16:  The assignments and BLT form of RLC circuit with structural singularity 

2.9 Solver 

DAE systems generated from Modelica models are usually stiff and sparse associated with events 

and discontinuities. Consequently, Modelica simulation environments opt to employ generalized 

implicit DAE solvers. The BDF-methods are frequently used because of the wider stability region 

for stiff systems [16]. BDF-methods can be used for solving the DAE of index 1.  
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Two famous DAE solvers used in the Modelica community are DASSL [71] and IDA from the 

open-source SUite of Nonlinear and Differential/Algebraic Equation Solvers (SUNDIALS) [78]. 

In this research, we review the functionality of the IDA solver because it was frequently used for 

EMT simulation throughout this research. In EMT computations, IDA showed a lower CPU time 

compared to the DASSL. Since both solvers are using the Backward Differentiation Formula 

(BDF) method, therefore an overview will be helpful.  

2.9.1 BDF-methods 

The BDF-methods are a group of multi-step methods in the general form of (2-128) in which the 

function value only will be calculated in the point that is going to be found.  

1

ℎ
∑𝛼𝑗𝐲𝑛−𝑗

𝑘

𝑗=0

= ∑𝛽𝑗

𝑘

𝑗=0

𝐟(x𝑛−𝑗 , 𝐲𝑛−𝑗) (2-128) 

ℎ refers to the step-size used, 𝛼𝑗 and 𝛽𝑗 are coefficients for respectively the number of backward 

steps and the function value at the backward steps. 𝑘 is called the order of the method and denotes 

how many backward steps are used. The technique is implicit if 𝛽0 ≠ 0 and if so, it will be 

necessary to calculate the function value in the point iteratively [2][8]. BDF-method is an implicit 

multi-step method where 𝛽0 ≠ 0 but 𝛽1,…,𝑘 = 0. Numerical solvers treating the BDF methods are 

usually associated with a modified Newton method to solve nonlinear systems at each time step. 

The simplest BDF-method is the implicit Backward Euler method of order 1 (i.e., BDF 1). 

𝐲𝑛+1 = 𝐲𝑛 + ℎ𝐟(𝑡𝑛+1, 𝐲𝑛+1 ) (2-129) 

The backward Euler method is an A-stable integration method with stiff decay. The latter has an 

unfavorite impact on high-frequency transient simulations and makes it inappropriate for the EMT 

computations. 

Assuming the semi-explicit form of DAEs as given by: 

�̇� = 𝐟(𝑡, 𝐲, 𝒛) (2-130) 
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𝟎 = 𝐠(𝑡, 𝐲, 𝒛) (2-131) 

According to the implicit function theorem [79], the equation (2-131) can be reformulated as: 

𝒛 = �̅�(𝑡, 𝐲) (2-132) 

Therefore, equation (2-130) can be re-written as: 

�̇� = 𝐟(𝑡, 𝐲, �̅�(𝑡, 𝐲)) (2-133) 

Now, if equation (2-133)  is discretized using the Backward Euler method, (2-129), we will have: 

𝐲𝑛+1 = 𝐲𝑛 + ℎ 𝐟(𝑡𝑛, 𝐲𝒏, �̅�(𝑡𝑛,  𝐲𝒏)) (2-134) 

In conclusion, Backward Euler is the simplest first-order method, convergent for semi-explicit 

index 1 DAE. 

2.9.2 IDA solver 

The IDA solver is designed to address the initial value problem (IVP) for a DAE of the form: 

𝐅(𝑡, 𝐲, �̇�) = 0,          𝐲(𝑡0) = 𝐲0,           �̇�(𝑡0) = �̇�0 (2-135) 

where 𝐲 and �̇�  are vectors in 𝐑𝑁, 𝑡 is the independent time variable and 𝒚0, �̇�0 are given initial 

values. 

The IDA uses the variable-order, variable-coefficient BDF integration method in fixed-leading-

coefficient form. The order used in IDA ranges from 1 to 5, with the BDF of order q given by the 

multistep formula (2-136). 

∑𝛼𝑛,𝑖

𝑞

𝑖=0

y𝑛−𝑖 = ℎ𝑛ẏ𝑛 (2-136) 

Where y𝑛 and ẏ𝑛 are the approximation of y(𝑡𝑛) and ẏ(𝑡𝑛), ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1is the step size. The 

coefficient  𝛼𝑛,𝑖 are uniquely computed for each q. The insertion of (2-136) in the DAE system 

(2-135) yields the nonlinear algebraic system (2-137) to be solved at each step. 
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𝐆(𝒚𝒏) = 𝐅(𝑡𝑛, 𝐲𝑛, ℎ𝑛
−1 ∑𝛼𝑛,𝑖

𝑞

𝑖=0

𝐲𝑛−𝑖) = 0 (2-137) 

The nonlinear system (2-137) is solved with Newton iteration. For each Newton correction, this 

leads to a linear system of the form: 

𝐉[𝐲𝑛
 (𝑚+1) − 𝐲𝑛

 (𝑚)] = −𝐆(𝐲𝑛)(𝑚) (2-138) 

where 𝐲𝑛
 (𝑚) is the 𝑚𝑡ℎ approximation to 𝐲𝑛. Here 𝐉 is the Jacobian, where defined as: 

𝐉 =
𝜕𝐆

𝜕𝐲
=

𝜕𝐅

𝜕𝐲
+ 𝛼

𝜕𝐅

𝜕�̇�
 (2-139) 

The scalar  𝛼 = 𝛼𝑛,0ℎ𝑛
−1

 and it changes whenever the step size or method order changes [80].  

For the solution of the linear systems, IDA has two options; first, a direct family comprising direct 

linear solvers for dense matrixes, and second, scaled preconditioned iterative (Krylov) linear 

solvers [80]. For large-scale stiff systems, where direct methods are not feasible, the combination 

of a BDF and any of the preconditioned Krylov methods (SPGMR, SPBCG, or SPTFQMR) is used 

[80]. 

In controlling errors at various levels, IDA uses a weighted root-mean-square norm for all error-

like quantities. The multiplicative weights are based on the current solution and the relative and 

absolute tolerances defined by the user. 

𝑊𝑖 = [𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝑂𝑙 |𝑦𝑖| + 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑜𝑙𝑖]
−1 (2-140) 

 

When using direct linear solvers, the nonlinear iteration (2-138) is a Modified Newton iteration, in 

the sense that the Jacobian 𝐉 is fixed throughout the nonlinear iterations and approximated by:  

J𝑖𝑗 = [F𝑖(𝑡, y + 𝜎𝑗𝑒𝑗 , ẏ + 𝛼𝜎𝑗𝑒𝑗) − F𝑖(𝑡, y, ẏ)]/𝜎𝑗 (2-141) 

knowing that: 
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𝜎𝑗 = √𝑈 𝑚𝑎𝑥 {|y𝑗|, |ℎẏ𝑗|,
1

𝑊𝑗
} 𝑠𝑖𝑔𝑛(ℎẏ𝑗) (2-142) 

where 𝑈 is the unit roundoff. 

For the case of Krylov methods as the linear solver, the iteration (2-138) is an Inexact Newton 

iteration [82], in which  𝐉 is obtained through a matrix-free products 𝐉𝑣. These products are 

approximated by: 

𝐉𝑣 = [𝐅(𝑡, 𝐲 + 𝜎𝑣, �̇� + 𝛼𝜎𝑣) − 𝐅(𝑡, 𝐲, �̇�)]/𝜎 (2-143) 

where 𝜎 = 1/‖𝑣‖. 

Solving (2-138) using the Krylov methods rarely converge if preconditioning is not used.  

Assuming a linear system 𝐀𝐱 = 𝐛 , it can be preconditioned on the left by preconditioning matrix 

𝐏, using: 

𝐏−1𝐀𝐱 = 𝐏−1𝐛 (2-144) 

Then, Krylov methods are applied to (2-144) instead of 𝐀𝐱 = 𝐛. In IDA, the matrix 𝐏 is 

approximated by: 

𝐏 ≈
𝜕𝐅

𝜕𝐲
+ 𝛼

𝜕𝐅

𝜕�̇�
 (2-145) 

2.9.3 ODE mode 

The typical workflow of Modelica is to convert the flattened DAEs to explicit ODEs, as illustrated 

in Figure 2.17. This procedure requires removing the algebraic loops and index reduction, which 

are time-consuming and increase the simulation time.  

A numerical integration method and linear and non-linear system solvers for the implicit equations 

are needed to solve the ODE function. Since EMT models give rise to stiff problems, an implicit 

solver is selected. Applying an implicit solver yield a nonlinear system of equations G for each 

time point as: 
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F(x(t), z(t), u(t), t) = 0   & z(t) =         
x(t)

y(t) 

F(x(t), x(t), y(t), u(t), t) = 0

x(t)
z(t) =         

y(t) =  G (x(t), u(t), p, t )         

x(t)  =  H (x(t), u(t), p, t )

y(t)  =  K (x(t), u(t), p, t )

 

Figure 2.17  The transformation of implicit DAE to explicit ODE 

 

𝐱(𝑡 + ∆𝑡) = 𝐆(𝐱(𝑡 + ∆𝑡), 𝐮(𝑡), 𝐩, ∆𝑡, 𝑡) (2-146) 

Newton’s method is the principal method for finding the roots of one such system.  

𝐉. [𝐱(𝑡 + ∆𝑡) − 𝐱(𝑡)] = 𝐑 (2-147) 

where 𝐑 denotes the residual form of equation (2-146), and 𝐉 is the corresponding Jacobian matrix. 

Numerical computation of Jacobian is the most time-consuming part of solving an ODE. Several 

methods are implemented in OpenModelica, such as finite-difference approximations, finite 

difference approximations with coloring, symbolical Jacobian, and symbolical Jacobian with 

coloring [84]-[86]. 

For example, in the widely used finite difference method, a numerical approximation of the 

directional derivative of a vector-valued function 𝐟 is calculated using the formula (2-148). 



    54 

 

𝐉𝑖,𝑗 =
𝜕𝐟𝒊
𝜕x𝑗

=
𝑓𝑖(x𝑗 + 𝑒𝑗ℎ𝑗) − 𝑓𝑖(x𝑗)

ℎ𝑗
 (2-148) 

where ℎ𝑗 is the increment. 

2.9.4 DAE mode 

As explained in previous sections, engineering applications usually lead to DAEs.  Solving the 

DAEs directly has been considered by mathematicians since several decades ago [2], [7], [8].  For 

achieving this goal, numerical solvers have been developed in MATLAB based on mass matrix 

solvers [87].  The main approach is to reduce the differential index and convert the DAEs into 

semi-explicit (index 1). BDF method, Runge–Kutta [3] methods, RADAU5 [3] can be used for 

solving the implicit DAEs index 1[2]. The main challenge for handling the DAEs is finding a 

consistent initial value to satisfy all equations. 

 The main advantage of solving the DAEs directly remains in skipping of elimination of algebraic 

loops, tearing, and the generation of symbolic Jacobians. This, in turn, improves the CPU time for 

large-scale networks drastically [88].  

2.9.5 Exploring of Events Handling and Zero Crossings. 

Event or discontinuity handling is an important and very common problem for EMT simulations. 

Many examples of event and discontinuous models exist, such as the opening and closing of a 

circuit breaker and high-frequency switching of power electronic devices.  

In traditional EMT-type simulators, e.g., EMTP®, discontinuities such as current interruption in an 

RL circuit may lead to numerical oscillations of the trapezoidal rule of integration. Elimination of 

the oscillations for some models, e.g., machine, is carried out by adding a parallel damping 

resistance with the RL series circuit [89]. The critical damping adjustment (CDA) method [56] has 

also been implemented to alleviate the problem. The concept of the CDA method is to use the 

backward Euler method with halved step for two consecutive time points [89] for some predefined 

discontinuities.  

Event handling in Modelica, i.e., OpenModelica and Dymola, is different and is based on finding 

the exact time of the event. This feature is ideal for high-frequency switching components with the 
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penalty of computational cost and higher runtime. Discontinuity handling is possible with step-size 

control in variable step solvers, i.e., IDA.  

Conditional expressions, e.g., if, when, etc., or built-in functions like ceil, floor, div, etc., 

generate the events. They are categorized as time events and state events: (1) Time events refer to 

those discontinuities that involve the time, the built-in global variable that is handled as an input to 

all models, and we know in advance when it occurs. For example, the closing time of a switch or 

a thyristor. We know that a thyristor switches on precisely at the firing angle of 𝛼 at each period. 

Treatment of the time events is relatively easy, and it is required only to program the timings in the 

algorithm. (2): sometimes events are generated because of conditional expressions that involve 

solution variables (e.g., zero-crossing current of a thyristor) and include the discontinuities that we 

do not know when they occur. The type of discontinuities is called “state events.”  For example, 

the opening of the ideal switch occurs when the simulation clock is larger than 𝑇𝑜𝑝𝑒𝑛𝑖𝑛𝑔 and the 

current passing the switch is zero. In the thyristor model, it is not known in advance when the 

thyristor will open. We just know that it will open when the current passes through zero. For the 

state event, we know the event condition rather than the event time.  

For both examples, it is required to implement a root-finding algorithm (zero-crossing function). 

The zero-crossing function should be monitored continuously during simulation. Since the event 

time is unknown, it is impossible to reduce the step size to hit them accurately. Instead, we need 

some sort of iteration (or interpolation) mechanism to locate the event time. 

Figure 2.18 demonstrates the typical event handling in the OpenModelica compiler. The simulation 

starts by finding consistent initial values for the model variables. Event conditions are continuously 

monitored during the simulation. Variables to be tested for zero-crossing are placed in a vector.  

When an event is alerted during a time step, it affects the step–size control of the integration 

algorithm by forcing the simulation to iterate to the earliest zero–crossing within the current 

integration step. This procedure is called event iteration. The iteration process for state events can 

slow down the simulation. During the event iteration, after handling each event, the entire model 

is re-evaluated [91].  

After the event is treated, the solver needs to find consistent restart values (re-initialization) for the 

variables of the hybrid DAE model before resuming the integrator for the continuous-time part.  
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Figure 2.18  Typical event handling algorithm of Hybrid DAE [91] 

 

The algorithm for multi zero-crossing function occurred in a time step is like above. The goal is to 

reduce the time step in so far as the zero-crossing point is isolated. 

For piecewise linear functions y = f(𝑥), where y is used in a state-space model, step-size control 

should be applied to reduce the step size whenever x passes through the breaking points within an 

integration step. 

To show the discontinuity treatment of Modelica solver (i.e., DASSL) compared with EMTP®, 

consider the buck-booster converter [92] extracted from EMTP® examples. Figure 2.19 shows the 

schematic diagram of a converter designed by the GUIs of the MSEMT library. This converter is 

designed to work in discontinuous mode; therefore, the inductor is completely discharged at the 

end of the commutation cycle. In this circuit, the pulse generator provides a pulse with a period of 

10 𝜇𝑠 (switching frequency= 100 𝑘𝐻𝑧) with the duty cycle of 75%. The diode has been modeled 

with a highly nonlinear resistance. Figure 2.20 shows the voltage and current characteristics of the 
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diode, which are constructed by 15 piece-wise linear curves.  This circuit represents a very stiff 

system of equations.  
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Figure 2.19  Buck-Boost converter for demonstrating simultaneous switching with controls 

Table 2.2 shows the parameter of simulation in the two software. It should be noted that the option 

of “simultaneous switching” has been activated in EMTP®. 

 

Table 2.2  Parameters of simulators and performance comparison 

Characteristics Modelica (Dymola) EMTP® 

Solver DASSL Trapezoidal/BE 

∆𝑡  ∆𝑡: 0.1 𝜇𝑠 ∆𝑡: 0.01 𝜇𝑠 

Tolerance 1e-6 

- ∆𝑡𝑀𝐼𝑁 8.84e-13 s 

∆𝑡𝑀𝐴𝑋 3.75e-06 

f-evaluations 302 190 - 

J-evaluations 125 976 - 

CPU time (s) 6.34 4.22656 26.31 

Number of time-steps 162 894 156 490 1 507 705 

CPU-time for one grid interval 0.0422 ms 0.027 ms 17 𝜇𝑠 

Performance ratio 1 0.66 4.14 
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Figure 2.20  The i-v characteristics of the diode 

 

Figure 2.21 shows the inductor current graphs obtained by Modelica and EMTP®. In the zoomed 

view, a point-to-point comparison of solutions can be observed.  
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Figure 2.21  (a): Inductor current in the discontinuous mode of Buck-Booster convertor. (b): the 

close-up view of the inductor current 

As it can be seen, both solutions have an excellent agreement even though they have two different 

solution methods. As we can observe in Table 2.2, the CPU time obtained by Modelica is nearly 
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close to the one we have from EMTP®. Since two distinct solvers have carried out simulations, 

comparing the one-grid interval CPU time may be better, introducing a fair comparison. 

To show more details on discontinuity handling, let us compare the curves of current passing 

through the switch accompanied with the pulse waveforms. Figure 2.22.(a) illustrate the Modelica 

solution for current depicted by blue curve and the pulse waveform distinguished by the red curve. 

As observed at t = 9.6475 ms, there is a discontinuity, and the pulse waveform changes its status 

from 1 to 0. The switch, controlled by the pulse generator, changes its “closing” status to open 

immediately and at the same time point, t = 9.6475 ms. It means Modelica calculates the equations 

once before the discontinuity is triggered at t = 9.6475−ms and once after the discontinuity 

happens at t = 9.6475+ms. 

Let’s see what EMTP® executes when the clock approaches the discontinuity point. The problem 

is solved twice in EMTP®: (1) with using simultaneous switching, which is depicted by the blue 

graph, and (2) without selection of this option plotted by the magenta graph.  

Simultaneous switching acts on switches as nonlinear functions and recalculates the network 

equations without advancing the timepoint. This is distinguishable in Figure 2.22.b. However, 

EMTP® for the handling of discontinuity at t = 9.6475 ms, gives two timepoints whose the solution 

with using the simultaneous switching is closer to the Modelica results; one timepoint before the 

discontinuity is triggered at t = 9.6474 ms and next time point when the discontinuity occurs, at t 

= 9.6475 ms. Therefore, as it can be observed in Figure 2.22.b., the raise is not fully vertical. This 

is while we know the abrupt change of switch occurs precisely at the instant of t = 9.6475 ms. 
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Figure 2.22  Switch current (a): in Modelica (b): in EMTP® 
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Figure 2.23 sketches the voltage waveform of resistance. The red and magenta curves show the 

results obtained from EMTP®, respectively, for step sizes of 0.1𝜇𝑠 and 0.01𝜇𝑠. The blue curve 

shows the results obtained from Modelica. It can be observed that the EMTP®’s results with the 

step size of 0.01𝜇𝑠 gives the best precision, which is close to Modelica solutions. The CPU time 

measured in EMTP® for these resolutions is 26.31 s, which gives the ratio 4.14:1 compared to 

Modelica. 
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Figure 2.23 The curves of resistance voltage in Modelica and EMTP® 

2.10 Exploring of Switch Equation 

In Modelica, the status of an ideal switch, that is, zero current in switch-off mode and zero voltage 

drop in switch-on mode can be defined as: 

Boolean Switch "Indicates off-state"; 

If Switch then i=0 else v=0; 

Modelica compiler translates the above equation into the algebraic form, given by: 

𝑚𝑖 + (1 − 𝑚)𝑣 = 0 (2-149) 

where 𝑚 is a Boolean variable and indicates the switch status, 𝑚 is “1” when the switch is off, and 

“0” when the switch status is on. Equation (2-149) can be causalized in two different ways: 

𝑖 = (𝑚 − 1)𝑣/𝑚 (2-150) 
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𝑣 = −𝑚𝑖/(1 − 𝑚) (2-151) 

Equations (2-150) and (2-151) become undefined (i.e., division by zero) when the switch is closed, 

i.e., 𝑚 = 0 or open, i.e., 𝑚 = 1, respectively. As such, ideal switch should be implemented by a 

snubber circuit for some cases. 

2.11 Exploring of Control Systems Modeling 

In traditional EMT-type simulators, EMTP®, EMTDC, etc., control systems equations are solved 

separately from the main power electric network.  The main drawback is that the circuit and the 

controls are separately solved, resulting in one time-step delay between the solutions. An iterative 

method has been proposed and validated in [93] to offer a simultaneous solution for control circuits 

in EMTP® as well.  

As described earlier, the solution method in Modelica is such that the entire electrical network, 

including the equations describing the electric power system and the ones representing the dynamic 

behavior of control systems, is formulated in DAE form, then, the system is solved together and 

simultaneously without any delay between linear and nonlinear components.   

The accuracy of Modelica control system models is validated in Chapter 5 and Chapter 7. 

2.12 Exploring of Nonlinear Models 

The solution method of traditional EMT-type simulators working based on nodal analysis was 

described in Section 1.5.2. There are usually two main categories for solving nonlinear functions: 

with solution delays (as in EMTP) and without solution delays. In Modelica's main solvers, IDA 

and DASSL, a fully iterative method is used, and all solution delays are suppressed by solving all 

nonlinear functions of a DAE system simultaneously. Typical examples are the surge arrester 

model, nonlinear inductor, power transformer (STC model), and magnetic saturation of 

synchronous machine. These models are tested in Chapter 5, Chapter 6, and Chapter 7. 

2.13 Interfacing to Other Software 

Modelica models can interface with many other languages such as C, Julia, MATLAB, and Python 

[94]. On the other hand, Modelica models are fully compatible with the FMI standard. This 
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interface allows model exchange and co-simulation with other simulating tools. FMI allows to 

export of pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool 

and vice versa. The FMI standard is Modelica independent. Import and export work both between 

different Modelica tools or between specific non-Modelica tools. 
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 MSEMT: AN ADVANCED MODELICA LIBRARY FOR 

ELECTROMAGNETIC TRANSIENT SIMULATIONS 

The first step for EMT simulation in Modelica is to create a library with EMT-detailed electrical 

elements, including the main components such as transmission line, generator, controllers, etc. For 

this purpose, the Modelica Simulator of Electromagnetic Transient (MSEMT) has been developed 

to solve practical power system transient problems. In this chapter, mathematical representation 

and implementation of each model will be provided.  

The library is constructed in stand-alone mode and independent from Modelica Standard Library 

(MSL)[14]. The MSL is a free library developed by the Modelica Association [66] and includes 

the fundamental components for modeling mechanical, electrical, thermal, fluid, and control 

systems. In the electrical branch, it consists of the simplified models of some electrical components. 

The available models in the electrical branch are different from the EMT-detailed models 

developed in the MSEMT. For example, there are no wideband or constant parameter models for 

transmission lines/cables, surge arrestor, nonlinear inductor, detailed models of the synchronous 

machine with saturation and control, power transformer (STC model), coupled RL, arc models, 

exciter, governor, etc. Moreover, the synchronous machine model in the MSL, for example, uses 

space phasors which is less accurate than EMT-type machine modeling applicable to generic 

unbalanced systems. 

All developed models of the MSEMT library comply with the EMTP® models. This is because the 

results obtained from the library must be validated against the EMTP® software.  The following 

chapters will discuss the results obtained from IEEE 13-Bus, IEEE 39-Bus, or IEEE 118-Bus 

benchmarks. 

3.1 Overview of the MSEMT Library 

Figure 3.1 presents an overview of a subset of a simplified implementation of the MSEMT library. 

This structure is inspired from EMTP®. MSEMT contains two top-level branches: Electrical and 

NonElectrical. The advanced blocks of electric power components exist in the Electrical branch, 

making it possible to simulate the electric power benchmarks such as IEEE 118-bus. The 

NonElectrical branch defines the type of variable, functions, blocks (adder, integrator, etc.), 
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Boolean algebra (AND, OR, flip-flops, etc.), and consists of icons, symbols, etc. required to have 

a comprehensive simulation [75]. 

MSEMT

Electrical

Exciter & governer

Lines

Load Models

Machines

Nonlinear

RLC Branches

Switches

Transformers

Connectors

Interfaces

NonElectrical

Examples

User guide

Sources

Nonlinear Inductor
Polynomial Inductor
Nonlinear Resistor
Surge arrester
Arc models

Functions 
Blocks
Units
Constants

+
-

+
+
+
+

+
-

+
+
+
+
+
+
+

-

Meters+

CP+

+ WB

ST1
ST1A
IEEEG1
IEEEG2
IEEEG0
PSS1A 

 

Figure 3.1  Structure of MSEMT library 

3.2 Controllers 

An excitation control system is a feedback control system that includes the synchronous machine 

and excitation system. An excitation system is defined as the source of the field current for exciting 

a synchronous machine. 

The developed controllers include the static exciters (types ST1 and ST1A), Governors (types 

IEEEG1, IEESGO), and the power stabilizer type PSS1A.  

The controllers are programmed in block-oriented modeling, as a combination of pre-defined block 

diagrams, such as adders, multipliers, first-order integrators, lead-lag compensators, etc. These 

blocks are defined in the branch MSEMT.NonElectrical.Blocks. 
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In Modelica, block diagrams are defined under a specialized class block. A block is a class 

with fixed causality (data flow direction is known); each part of its interface must have causality 

equal to input or output. All variables used in a block should be declared by one of the prefixes 

input or output, and this is the main restriction of a block, 

3.2.1 Exciter ST1 

Figure 3.2 illustrates the implementation of the excitation system type ST1 excitation system 

model, which is a controlled rectifier exciter with a potential source. It means the required DC 

power is provided through a transformer and rectifier. This device is implemented as described in 

[95], [96], and complies with the EMTP® model. It allows the modeler to compare the obtained 

results with EMTP®. As one can see in this diagram, when VREF is not connected, the reference 

voltage is internally found from the steady-state parameter. Initialization of model is performed 

from the values obtained from steady-state solution in EMTP®. The parameters of the component 

are given in Table 3.1. 

Table 3.1 The parameters of Exciter ST1 

 Name Description Type 

D
a

ta
 t

a
b

 

Time constant TB lead-lag time constant second 

Time constant TC lead-lag time constant second 

Gain KF excitation control system stabilizer gain pu 

Time constant TF excitation control system stabilizer time 

constant 
second 

E
x
ci

te
r 

ta
b

 

Gain KA voltage regulator gain pu 

Time constant TA voltage regulator time constant second 

Rectifier loading 

factor KC 

rectifier loading factor pu 
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Maximum 

regulator output 

VImax 

maximum regulator voltage input pu 

Maximum 

regulator output 

VImin 

minimum regulator voltage input pu 

Maximum 

regulator output 

VRmax 

maximum regulator voltage output pu 

Maximum 

regulator output 

VRmin 

minimum regulator voltage output pu 
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Figure 3.2  Implementation of Exciter ST1 in Modelica 

 

3.2.2 Governor IEEEG1 

Figure 3.3 shows the implementation of governor type IEEEG1 and represents a steam governor 

model. The model is implemented in Modelica as per the definitions and diagram in [97] and in 

compliance with the EMTP® model. It senses changes in the turbine speed and adjusts the steam 
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input accordingly. Its response time is generally in the order of seconds. Initialization of model is 

performed from the values obtained from steady-state solution in EMTP®. 
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Figure 3.3  Implementation of governor IEEEG1 in Modelica 

 

3.2.3 Governor IEESGO 

Figure 3.4 shows the component model of the governor/turbine IEESGO [97] implemented in 

Modelica and compliance with the EMTP® model. Table 3.2 shows the parameter of the model. 

The accuracy of this model has been validated in IEEE 118-bus network.  
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Figure 3.4  Implementation of governor IEESGO in Modelica 
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Table 3.2  The parameters of Exciter IEESGO 

 Name Description Type 

 

 G
o

v
er

n
o

r 
ta

b
 

Governor gain K1 Governor gain pu 

Lag time constant 

T1 
governor lag time constant  

second 

Lead time constant 

T2 
governor lead time constant 

second 

Lag time constant 

T3 
governor lag time constant 

second 

Maximum power 

limit PMAX 
maximum power limit 

pu 

Minimum power 

limit PMIN 
minimum power limit 

pu 

T
u

rb
in

e 
ta

b
 

Time constant T4 steam flow time constant second 

Time constant T5 reheater time constant second 

Time constant T6 IP-LP reheater time constant second 

Reheater fraction 

of shaft power K2 
reheater fraction of power shaft 

pu 

IP-LP fraction of 

shaft power K3: 

IP-LP power fraction pu 

3.3 Transmission Line 

The transmission line (TL) is one of the main components of a power system. In EMT studies, two 

types of models are mainly introduced for transmission lines. These are the PI-section model and 

the distributed parameter models. The PI-section is a basic model that does not represent 

propagation delay. The distributed parameter models are more accurate and represent propagation 
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delay. The models include the constant parameter (CP)-line model, the frequency-dependent (FD)-

line model, and the wideband (WB)-line model.  The latter is sometimes called the Universal Line 

Model (ULM). 

The CP-line model is the simplest and most efficient one, where the model parameters are 

frequency independent. The FD-line model [98] evaluates multi-conductor line propagation in the 

modal domain and considers effects due to frequency dependence of line parameters. However, 

because modal transformations are approximated by real and constant matrices, its accuracy is best 

for cases of aerial lines which are continuously transposed. 

The WB-line model [99] considers the full-frequency dependency of line parameters and works 

directly in the phase domain, thus, avoiding simplifying assumptions regarding modal–to–phase 

transformations. 

This section aims at providing a clear and complete description of the theoretical basis for the PI-

section, CP-, and WB-line models associated with the implementation of models in Modelica. 

3.3.1 PI-section Line Model 

In the PI-section model, as depicted in Figure 3.5, mutually coupled RLC elements are used to 

construct a linear model with a finite number of states. The PI-section model is generally not the 

best choice for transient solutions because traveling waves on lines can not be reproduced 

accurately in the model. 
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Figure 3.5  Three-phase nominal PI-section model of the transmission line 
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The linear state-space representation of the PI-section line model is defined by equations (3-1)-

(3-3).  

𝐯𝑘 − 𝐑𝐢𝑅𝐿 − 𝐋
𝑑𝐢𝑅𝐿

𝑑𝑡
= 𝐯𝑚 (3-1) 

𝐢𝑘 =
𝐂

2

𝑑𝐯𝑘

𝑑𝑡
+ 𝐢𝑅𝐿 (3-2) 

𝐢𝑚 =
𝐂

2

𝑑𝐯𝑚

𝑑𝑡
− 𝐢𝑅𝐿 (3-3) 

where 𝐑 , 𝐋 and 𝐂 indicate the total resistance, inductance, and capacitance of transmission line, 

respectively. 𝐢𝑘 and 𝐢𝑚 are the current vectors in k- and m- ends respectively, and 𝐢𝑅𝐿 denotes the 

vector of current flowing into the coupled RL branch. The implementation of this model in 

Modelica is presented in Figure 3.6. The RLC line section parameters can be given either by a 3-

by-3 matrix or 2-by-1 matrix representing the balanced transmission line's positive and zero 

sequences.  

model PI3ph "Three-phase pI line model"

 parameter MSEMT.NonElectrical.Units.Resistance R[:,:] 

 (each displayUnit="Ohm") "R3x3 or R2*1=[R0, R1]";

 parameter MSEMT.NonElectrical.Units.Inductance L[:,:] 

 (each displayUnit="mH")  "L3x3 or L2*1=[L0, L1]";

 parameter MSEMT.NonElectrical.Units.Capacitance C[:,:]

 (each displayUnit="uF")  "C3x3 or C2*1=[C0, C1]";

 MSEMT.Connectors.PosPlug Pk ;  // k-end port

 MSEMT.Connectors.negPlug Pm ;  // m-end port

protected

 final parameter Integer iR=size(R,1); // Identification of row dimension of R

 final parameter Integer jR=size(R,2); // Identification of column dimension of R

 parameter Real Rp[:,:] = if iR==jR then R else

         [(2*R[1,2] + R[1,1])/3,     (R[1,1]   - R[1,2])/3,     (R[1,1]   - R[1,2])/3;

          (R[1,1]   - R[1,2])/3      (2*R[1,2] + R[1,1])/3,     (R[1,1]   - R[1,2])/3;

          (R[1,1]   - R[1,2])/3,     (R[1,1]   - R[1,2])/3,     (2*R[1,2] + R[1,1])/3];

 parameter Real Lp[:,:] = if iR==jR then L else

         [(2*L[1,2] + L[1,1])/3,     (L[1,1]   - L[1,2])/3,     (L[1,1]   - L[1,2])/3;

          (L[1,1]   - L[1,2])/3,     (2*L[1,2] + L[1,1])/3,     (L[1,1]   - L[1,2])/3;

          (L[1,1]   - L[1,2])/3      (L[1,1]   - L[1,2])/3,     (2*L[1,2] + L[1,1])/3];

 parameter Real Cp[:,:] = if iR==jR then C else

         [(2*C[1,2] + C[1,1])/3,     (C[1,1]   - C[1,2])/3,     (C[1,1]   - C[1,2])/3;

          (C[1,1]   - C[1,2])/3,     (2*C[1,2] + C[1,1])/3,     (C[1,1]   - C[1,2])/3;

          (C[1,1]   - C[1,2])/3,     (C[1,1]   - C[1,2])/3,     (2*C[1,2] + C[1,1])/3];

 Real  iRL[3];

equation

 Pm.pin.v = Pk.pin.v – Rp * iRL – Lp * der(iRL);

 Pk.pin.i = Cp / 2 * der(Pk.pin.v) + iRL;

 Pm.pin.i = Cp / 2 * der(Pm.pin.v) - iRL;

end PI3ph;
 

Figure 3.6  Implementation of PI-section line model in Modelica 
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3.3.2 Distributed Parameter Line Model Equations 

The distributed parameter line models rely on the traveling wave theory. Figure 3.7 illustrates an 

N-conductor transmission line with the length of 𝑥 = ℓ. The frequency-domain equations 

describing the line at each point 𝑥 are: 

𝑑𝐈(𝑥, 𝑗𝜔)

𝑑𝑥
= −𝐘′(𝑗𝜔)𝐕(𝑥, 𝑗𝜔) (3-4) 

𝑑𝐕(𝑥, 𝑗𝜔)

𝑑𝑥
= −𝐙′(𝑗𝜔)𝐈(𝑥, 𝑗𝜔) (3-5) 

where 𝐈(𝑥, 𝑗𝜔) is the vector of phase currents, 𝐕(𝑥, 𝑗𝜔)  is the vector of line phase voltages, 𝐙′ =

𝐑′(𝜔) + 𝑗𝜔𝐋′(𝜔) is the series impedance matrix in per unit length and 𝐘′ = 𝐆′(𝜔) + 𝑗𝜔𝐂′(𝜔) is 

the shunt admittance matrix also in per unit length.  

x=0 x=  

vk vm

+

ik im+

+

1

2

N

 

Figure 3.7 N-phase transmission line 

The differentiation of (3-4) and (3-5) with respect to 𝑥 leads to below equations. 

𝑑2𝐈(𝑥, 𝑗𝜔)

𝑑𝑥2
= 𝐘′(𝑗𝜔)𝐙′(𝑗𝜔)𝐈(𝑥, 𝑗𝜔) (3-6) 

In the same way, the procedure is repeated for (3-5), then we have: 

𝑑2𝐕(𝑥, 𝑗𝜔)

𝑑𝑥2
= 𝐙′(𝑗𝜔)𝐘′(𝑗𝜔)𝐕(𝑥, 𝑗𝜔) (3-7) 

The resulting equations are a second-order matrix ODE involving only unknown voltages and 

currents. Equation (3-8) establishes the general solution of (3-6) and is given by: 

𝐈(𝑥, 𝑗𝜔) = 𝐈𝐹𝑒−𝚪(𝑗𝜔)𝑥 + 𝐈𝐵𝑒𝚪(𝑗𝜔)𝑥 (3-8) 
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where the propagation matrix, 𝚪(𝑗𝜔) is: 

𝚪(𝑗𝜔) = √𝐘′(𝑗𝜔)𝐙′(𝑗𝜔) (3-9) 

Using (3-4) and (3-8), we obtain the general solution (3-10) for equation (3-7). It is given by: 

𝐕(𝑥, 𝑗𝜔) = 𝐘𝑐(𝑗𝜔)−1[𝐈𝐹𝑒−𝚪(𝑗𝜔)𝑥 − 𝐈𝐵𝑒𝚪(𝑗𝜔)𝑥] (3-10) 

where 𝐈𝐹 and 𝐈𝐵 are integration constants determined by the line boundary conditions and 

physically represent the vectors of forward traveling wave (or in the positive 𝑥-direction) and 

backward traveling wave (or negative 𝑥-direction). Characteristic admittance matrix, 𝐘𝑐(𝑗𝜔), is 

defined as: 

𝐘𝑐(𝑗𝜔) = 𝚪(𝑗𝜔)−1𝐘′(𝑗𝜔) (3-11) 

If (3-10) is multiplied by 𝐘𝑐(𝜔) and summed by (3-8), we will have: 

𝐘𝑐(𝑗𝜔)𝐕(𝑥, 𝑗𝜔) + 𝐈(𝑥, 𝑗𝜔) = 𝐈𝐹𝑒−𝚪(𝑗𝜔)𝑥 (3-12) 

 

Figure 3.8  Schematic of transmission line with length ℓ and boundary conditions 

 

Figure 3.8 shows the schematic diagram of a transmission line. It is assumed the voltage and current 

at 𝑥 = 0  are denoted by 𝐕𝑘 and 𝐈𝑘and at 𝑥 = ℓ are represented by 𝐕𝑚 and 𝐈𝑚. It is additionally 

supposed the direction of the end currents flow into the line. Applying the boundary conditions to 

(3-12) yields the following equations: 
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At node k 

𝐈𝐹 = 𝐈𝑘𝑟 (3-13) 

𝑥 = 0 𝐘𝑐𝐕𝑘 + 𝐈𝑘 = 2𝐈𝑘𝑟 (3-14) 

𝑥 = ℓ 𝐘𝑐𝐕𝑚 − 𝐈𝑚 = 2𝑒−𝚪(𝑗𝜔)ℓ𝐈𝑘𝑟 (3-15) 

 

At node m 

𝐈𝐹 = 𝐈𝑚𝑟 (3-16) 

 𝑥 = 0 𝐘𝑐𝐕𝑚 + 𝐈𝑚 = 2𝐈𝑚𝑟 (3-17) 

 𝑥 = ℓ 𝐘𝑐𝐕𝑘 − 𝐈𝑘 = 2𝑒−𝚪(𝑗𝜔)ℓ𝐈𝑚𝑟 (3-18) 

We can redefine the equations as: 

At node k 

𝐘𝑐𝐕𝑘 − 𝐈𝑘 = 2𝐈𝑘𝑖 (3-19) 

𝐈𝑘𝑖 = 𝐇𝐈𝑚𝑟 (3-20) 

𝐈𝑚𝑟 = 𝐈𝑚𝑖 + 𝐈𝑚 (3-21) 

where the propagation matrix function is defined as: 

𝐇 = 𝑒−𝚪(𝑗𝜔)ℓ (3-22) 

In another way, the vector of phase currents 𝐈𝑘 at k-end is related to the vector of phase voltages 

𝐕𝑘 and the incident current wave 𝐈𝑘𝑖 given by (3-19). The incident wave is equal to the reflected 

wave from the m-end, 𝐈𝑚𝑟, propagated to the k-end as represented by (3-20). 

Like k-end, the equations for the m-end are given by: 

At node m 

𝐘𝑐𝐕𝑚 − 𝐈𝑚 = 2𝐈𝑚𝑖 (3-23) 

𝐈𝑚𝑖 = 𝐇𝐈𝑘𝑟 (3-24) 

𝐈𝑘𝑟 = 𝐈𝑘𝑖 + 𝐈𝑘 (3-25) 

Manipulation of the above equations yields the following equations as well. 

𝐈𝑘 − 𝐘𝑐𝐕𝑘 = −𝐇(𝐈𝑚 + 𝒀𝑐𝐕𝑚) = −𝐇𝐈𝑚,𝑓𝑤 (3-26) 

𝐈𝑚 − 𝐘𝑐𝐕𝑚 = −𝐇(𝐈𝑘 + 𝐘𝑐𝐕𝑘) = −𝐇𝐈𝑘,𝑓𝑤 (3-27) 
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The terms 𝐘𝑐𝐕𝑘 and 𝐘𝑐𝐕𝑘 are considered as shunt currents in m- and k- ends. The vectors of 𝐈𝑚,𝑓𝑤 

and 𝐈𝑘,𝑓𝑤 represent the forward traveling current-wave from m- and k- ends. These equations are 

valid for both underground cables and aerial TLs. 

3.3.3 Constant Parameter Line Model 

As earlier mentioned, the CP-line model is the simplest form of the distributed parameter line 

model with the minimum computational burden. The main challenge in the CP-line model is the 

computation of delay for voltage and current of each end, with delay value of propagation time.  

3.3.3.1 Formulation and theoretical aspects 

The CP-line model considers that the TL parameters are not frequency-dependent; consequently, 

the matrices 𝐙′ and 𝐘′are constant. For the formulation of the CP-line model, first, we drive the 

equations for the single-phase lossless transmission line, that is R′ = G′ = 0. Therefore, we can 

write the equations (3-26) and (3-27) for single-phase line as: 

I𝑘 − Y𝑐V𝑘 = −H(I𝑚 + 𝑌𝑐V𝑚) (3-28) 

I𝑚 − Y𝑐V𝑚 = −H(I𝑘 + Y𝑐V𝑘) (3-29) 

By multiplying (3-28) and (3-29) by Y𝑐
−1 and some mathematical manipulations, we can re-write 

these equations as below: 

Z𝑐I𝑘 − V𝑘 = −H(Z𝑐I𝑚 + V𝑚) (3-30) 

Z𝑐I𝑚 − V𝑚 = −H(Z𝑐I𝑘 + V𝑘) (3-31) 

where the characteristic (surge) impedance (Z𝑐 = Y𝑐
−1) and propagation constant are respectively 

defined as: 

Z𝑐 = √
L′

C′
 (3-32) 

H = 𝑒−𝑗𝜔ℓ√L′C′
 (3-33) 
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where L′ and C′ are the inductance and capacitance of transmission line in unit per length. 

Therefore, the equations (3-30) and (3-31) are transformed into time domain as given by (3-34)-

(3-35). 

v𝑘(𝑡) − Z𝑐i𝑘(𝑡) = v𝑚(𝑡 − 𝜏) + Z𝑐i𝑚(𝑡 − 𝜏) (3-34) 

v𝑚(𝑡) − Z𝑐i𝑚(𝑡) = v𝑘(𝑡 − 𝜏) + Z𝑐i𝑘(𝑡 − 𝜏) (3-35) 

knowing that propagation (or travel) time 𝜏 is: 

𝜏 = ℓ√L′C′ (3-36) 

Equations (3-34) and (3-35) can be shown by two Norton equivalents, as illustrated in Figure 3.9. 

The Norton current sources (called history terms) are defined by:  

𝑖𝑘
ℎ𝑖𝑠𝑡 =

v𝑚(𝑡 − 𝜏)

Z𝑐
+ i𝑚(𝑡 − 𝜏) (3-37) 

𝑖𝑚
ℎ𝑖𝑠𝑡 =

v𝑘(𝑡 − 𝜏)

Z𝑐
+ i𝑘(𝑡 − 𝜏) (3-38) 

Zc ik
hist

im
hist Zcvk vm

ik im

 

Figure 3.9  Norton equivalent of single-phase lossless CP-line model 

For incorporating the losses, the CP-line model is characterized by two lossless line sections, each 

with a halved propagation time (𝜏/2) connected in series with lumped resistors R/4 at each end as 

illustrated in Figure 3.10. 

Lossless TLR  /4 R/2 R/4

x=0 x=  

τ/2 

vk vm

τ/2 

Lossless TL

+ +

ik im

R=R'  Distributed L' , C' Distributed L' , C' 

 

Figure 3.10  Schematic of single-phase CP-line model 
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In this figure, the prime in R′, L′ and C′ is used to indicate distributed resistance, inductance, and 

capacitance, i.e., parameters per unit length. The model is accurate as long as R is small compared 

to the surge impedance. Now let’s assume the line is constructed by an N-conductor. Modal 

transformation is used to formulate a multiconductor transmission line to produce diagonal 

matrices, thereby transforming from N-coupled equations in the phase domain to N-decoupled 

equations in the modal domain (mode). The computation of modal matrix for the transposed 

transmission line is simple, i.e., Clark’s transformation matrix, but Eigenvalue analysis is required 

for the untransposed line. Generally, the transformation matrices for current and voltage are 

dependent on frequency, and the matrix elements are complex. For the CP-line model, the modal 

transformation matrix is calculated at a given frequency. The real part of the modal transmission 

matrix is used for time-domain computations. Each equation is solved for a single-phase line in the 

modal domain by using modal traveling time and modal surge impedance. The relation between 

the phase and modal variables are defined as: 

𝐯𝑝ℎ𝑎𝑠𝑒 = 𝐓𝑣𝐯𝑚𝑜𝑑𝑒 (3-39) 

𝐢𝑝ℎ𝑎𝑠𝑒 = 𝐓𝑖𝐢𝑚𝑜𝑑𝑒. 
(3-40) 

where 𝐯𝑝ℎ𝑎𝑠𝑒and 𝐢𝑝ℎ𝑎𝑠𝑒 are the vectors of voltage and current in phase domain, 𝐯𝑚𝑜𝑑𝑒 and 𝐢𝑚𝑜𝑑𝑒 

are the same vectors in modal domain. 𝐓𝑣, 𝐓𝑖 are the N-by-N matrices of model transformation 

where  𝐓𝑖 = [𝐓𝑣
𝑡]−1 and t indicates the transposition. Applying the technique to the equation (3-34) 

yields the following modal scalar equations for the k-end 

v𝑘,𝑚𝑜𝑑𝑒 = Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒(i𝑘,𝑚𝑜𝑑𝑒 + i𝑘,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 ) (3-41) 

i𝑘,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 (𝑡)        = +k𝑣1v𝑘,𝑚𝑜𝑑𝑒(𝑡 − τ𝑚𝑜𝑑𝑒) − k𝑖1i𝑘,𝑚𝑜𝑑𝑒

ℎ𝑖𝑠𝑡 (𝑡 − τ𝑚𝑜𝑑𝑒) 

                                 +k𝑣2v𝑚,𝑚𝑜𝑑𝑒(𝑡 − τ𝑚𝑜𝑑𝑒) − k𝑖2i𝑚,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 (𝑡 − τ𝑚𝑜𝑑𝑒) 

(3-42) 

knowing that: 

k𝑣1 =
1 − h𝑚𝑜𝑑𝑒

2

1 + h𝑚𝑜𝑑𝑒

Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒
 (3-43) 

k𝑣2 =
1 + h𝑚𝑜𝑑𝑒

2

1 + h𝑚𝑜𝑑𝑒

Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒
 (3-44) 
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k𝑖1 =
1 − h𝑚𝑜𝑑𝑒

2
h𝑚𝑜𝑑𝑒 (3-45) 

k𝑖2 =
1 + h𝑚𝑜𝑑𝑒

2
h𝑚𝑜𝑑𝑒 (3-46) 

h𝑚𝑜𝑑𝑒 =
Z𝑐,𝑚𝑜𝑑𝑒 −

R𝑚𝑜𝑑𝑒
4⁄

Z𝑐,𝑚𝑜𝑑𝑒 +
R𝑚𝑜𝑑𝑒

4⁄
 (3-47) 

τ𝑚𝑜𝑑𝑒 = ℓ√L𝑚𝑜𝑑𝑒
′ . C𝑚𝑜𝑑𝑒

′  (3-48) 

Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒 = Z𝑐,𝑚𝑜𝑑𝑒 +
R𝑚𝑜𝑑𝑒

4
. (3-49) 

Z𝑐,𝑚𝑜𝑑𝑒 = √
L𝑚𝑜𝑑𝑒
′

C𝑚𝑜𝑑𝑒
′  (3-50) 

 

In the above equations, Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒 is the modified surge impedance, Z𝑐,𝑚𝑜𝑑𝑒 the modal surge 

impedance for lossless TL, L𝑚𝑜𝑑𝑒
′  and C𝑚𝑜𝑑𝑒

′  respectively represent the modal inductance and 

capacitance of TL in per unit length,  R𝑚𝑜𝑑𝑒 is the modal resistance of TL and i𝑘,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 (𝑡) denotes 

the modal history current at the k-end. τ𝑚𝑜𝑑𝑒 represents the modal traveling time from one end (k) 

to the other end (m). Replacing the index k to m gives the same equations at the m-end of TL.  

Figure 3.11 shows the time-domain model of an N-phase transmission line. As one can see, there 

is no direct connection between the two terminals, and the voltage and current at one end are seen 

indirectly, and with time delays, τ𝑚𝑜𝑑𝑒, at the other through the current sources. The history terms 

are stored in a ring buffer, and hence the maximum traveling time that can be represented is the 

time-step multiplied by the number of locations in the buffer. Because the time delay is not a 

multiple of the time-step, the history terms on either side of the actual traveling time are 

interpolated to give the correct traveling time. 
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Figure 3.11  Multiconductor transmission line model as two Norton equivalents 

3.3.3.2 Implementation in Modelica 

The input parameters of the CP-line model are the equivalent modal values of characteristic 

impedance (Zc) and propagation delay (tau), modal transformation (Ti)for untransposed line, 

and the length of line (d). Figure 3.12 represents the Norton equivalent of CP-line model in 

Modelica. To decrease the computational burden, only history currents are computed in modal 

domain, then other calculations are done in the phase domain. Figure 3.13 presents the 

implementation of the model in Modelica. The codes consist of calculations for Norton equivalent 

and history currents, as shown in Figure 3.12. 

• Norton equivalent: the related codes are distinguished by the blue dotted outline and aimed 

to calculate phase domain voltage and current vectors at each end of the line. The voltage 

and current at k- and m- ends are denoted by Plug_k.pin.v, Plug_m.pin.v, 

Plug_k.pin.i, Plug_m.pin.i respectively. The Norton equivalent equations for k- 

and m- ends in phase domain are obtained by applying the inverse modal transformation to 

(3-41): 

𝐯𝑘 = 𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒(𝐢𝑘 + 𝐢𝑘
ℎ𝑖𝑠𝑡) (3-51) 

𝐯𝑚 = 𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒(𝐢𝑚 + 𝐢𝑚
ℎ𝑖𝑠𝑡) (3-52) 
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Figure 3.12: Norton equivalent of N-conductor CP-line in Modelica 

The N × N Norton resistance matrix, 𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒, is calculated by (3-53) in phase domain. 

𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒 = 𝐓𝑖
−1𝐙𝑚𝑑𝑓,𝑚𝑜𝑑𝑒𝐓𝑖 (3-53) 

𝐙𝑚𝑑𝑓,𝑚𝑜𝑑𝑒is a diagonal matrix involving the contribution of line resistance to the characteristic 

impedance of lossless line; both in modal domain. 

• History Current: The code for calculating history currents is distinguished by the red dotted 

outline in  Figure 3.13. The history current, Ik_hist, and Im_hist are computed in the 

modal domain, then transformed into phase domain. It is noteworthy that the calculation of 

history terms includes solving an implicit algebraic equation at each time point [107]. In 

the pieces of code, the Modelica built-in function delay(), computes the voltages and history 

currents by interpolating linearly in a buffer containing past values of these variables. 
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model TL_CP

  parameter Integer m(min = 1) = 3 "Number of phases" ;

  parameter Real Zc[m] "Characteristic impedance{Zc1,Zc2,...,Zcm} in mode" ;

  parameter Real r[m]( each unit = "ohm/km") "{r1,r2,...,rm} in mode" ;

  parameter MSEMT.NonElectrical.Units.Length d( displayUnit="km") "length of line" ;

  parameter MSEMT.NonElectrical.Units.Time tau[m] "tau ={tau1,tau2,...,taum} in mode" ;

  parameter Real Ti[m,m]=MSEMT.NonElectrical.Functions.Clark_Transformation(m);

  //Final Paramters

  final parameter Real R[m]=r*d/1000 ;

  final parameter Real h[m]=(Zc.-R./4)./(Zc.+R./4) ;

  final parameter Real Zmod[m]=(Zc.+R./4) ;

  final parameter Real Zmdf_phase[m,m]=inv(transpose(Ti)) * diagonal(Zmod) * inv(Ti);

  final parameter Real kv1[m] = +((1 .- h)/2).*((1 .+ h)./Zmod) ;

  final parameter Real kv2[m] = +((1 .+ h)/2).*((1 .+ h)./Zmod) ;

  final parameter Real ki1[m] = -((1 .- h)/2).*h ;

  final parameter Real ki2[m] = -((1 .+ h)/2).*h ;

  final parameter Real Tit[m, m] = transpose(Ti) "Ti transposed" ;  

  MSEMT.Connectors.PosPlug Plug_k(m = m)    

  MSEMT.Connectors.negPlug Plug_m(m = m)  

  Real Ik_hist[m],Im_hist[m]; // History current for k-,m-end 

  Real Vk_md[m],Vm_md[m];     // Modal Terminal voltage for k-,m-end

  Real dvk_md[m],dvm_md[m];   // Delayed Modal Terminal voltage for k-,m-end

  Real dIk_hist_md[m],dIm_hist_md[m]; // Delayed Modal History current for k-,m-end

  Real Ik_hist_md[m],Im_hist_md[m]; // Modal History current for k-,m-end

equation

// Calculation of Terminal voltage

  Plug_k.pin.v = Zmdf_phase * (Plug_k.pin.i + Ik_hist);

  Plug_m.pin.v = Zmdf_phase * (Plug_m.pin.i + Im_hist);

// Calculation of History current

  for i in 1:m loop

    if time < tau[i] then

      dvk_md[i]  = 0;

      dvm_md[i]  = 0;

      dIk_hist_md[i] = 0;

      dIm_hist_md[i] = 0;

    else

      dvk_md[i]  = delay(Vk_md[i],  tau[i]);

      dvm_md[i]  = delay(Vm_md[i],  tau[i]);

      dIk_hist_md[i] = delay(Ik_hist_md[i], tau[i]);

      dIm_hist_md[i] = delay(Im_hist_md[i], tau[i]);

    end if;

  end for;

  Vk_md = Tit * Plug_k.pin.v;

  Vm_md = Tit * Plug_m.pin.v;

  Ik_hist_md = kv1 .* dvk_md + ki1 .* dIk_hist_md + kv2 .* dvm_md + ki2 .* dIm_hist_md;

  Im_hist_md = kv1 .* dvm_md + ki1 .* dIm_hist_md + kv2 .* dvk_md + ki2 .* dIk_hist_md;

  Ik_hist = Ti  * Ik_hist_md;

  Im_hist = Ti  * Im_hist_md;

end TL_CP;

 

Figure 3.13  Implementation of multiphase CP-line model in Modelica 
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3.3.4 Wideband Line Model 

The WB-line model [99][100] is a phase domain model that gives highly accurate results for aerial 

lines and underground cables. It considers the full frequency dependency of line/cable parameters. 

3.3.4.1 Formulation and theoretical aspects 

Suppose the impedance and admittance of the transmission line are functions of frequency; 

therefore, the time-domain solutions of equation (3-19)-(3-21) are obtained by applying the inverse 

frequency-domain transformation.    

𝐢𝑘 = 𝐲𝑐 ∗ 𝐯𝑘 − 2𝐢𝑘𝑖 (3-54) 

𝐢𝑘𝑖 = 𝐡 ∗ 𝐢𝑚𝑟 (3-55) 

𝐢𝑚𝑟 = 𝐢𝑚𝑖 + 𝐢𝑚 (3-56) 

In these equations, the symbol ∗ indicates convolution. Like k-end, we can write the equations for 

m-end as: 

𝐢𝑚 = 𝐲𝑐 ∗ 𝐯𝑚 − 2𝐢𝑚𝑖 (3-57) 

𝐢𝑚𝑖 = 𝐡 ∗ 𝐢𝑘𝑟 (3-58) 

𝐢𝑘𝑟 = 𝐢𝑘𝑖 + 𝐢𝑘 (3-59) 

Numerical calculation of convolution creates a significant computational burden since it accounts 

for all history values. The most cost-effective technique is to use the recursive convolution 

algorithm. In this approach, the propagation and the characteristic admittance matrices are directly 

fitted in phase domain using the vector fitting tool [99]. The approximation of these two matrices 

in a partial fraction form is given by (3-60) and (3-61). 

𝐘𝑐 = 𝐆0 + ∑
𝐆𝑖

𝑠 − 𝑞𝑖

𝑁𝑦

𝑖=1

 (3-60) 

𝐇 = ∑ ∑
𝐑𝑘,𝑖

𝑠 − 𝑝𝑘,𝑖

𝑁ℎ(𝑘)

𝑖=1

𝑁𝑔

𝑘=1

𝑒−𝑠𝜏𝑘 (3-61) 
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where 𝐆0 is a constant residue at the infinite frequency, 𝑞𝑖 represents ith pole, 𝐆𝑖 is the 

corresponding matrix of residues, 𝑁𝑦 is the order of fitting, 𝑁𝑔 is the number of modes, 𝑁ℎ(𝑘) 

denotes the number of poles used to fit the kth modal propagation matrix, 𝑝𝑘,𝑖 is the fitting pole, 𝜏𝑘 

is the time delay of the kth mode and 𝐑𝑘,𝑖 is the matrix of residues. The state-space form of shunt 

and incident current for the k-end are represented by (3-64) and (3-65). The same equations hold 

for the m-end of the line. 

𝐈𝑠ℎ,𝑘 = 𝐆0𝐕𝑘 + ∑𝐖𝑖

𝑁𝑦

𝑖=1

 (3-62) 

𝐖𝑖 =
𝐆𝑖

𝑠 − 𝑞
𝑖

𝐕𝑘 (3-63) 

and 

𝐈𝑘𝑖 = ∑ ∑ 𝐗𝑘,𝑖

𝑁ℎ(𝑘)

𝑖=1

𝑁𝑔

𝑘=1

 (3-64) 

𝐗𝑘,𝑖 =
𝐑𝑘,𝑖

𝑠 − 𝑝𝑘,𝑖
𝐈𝑚𝑟𝑒

−𝑠𝜏𝑘 (3-65) 

Therefore, the time-domain solution of (3-64)-(3-65) can be evaluated by applying a fast-recursive 

algorithm to state space methods. 

𝐢𝑠ℎ,𝑘 = 𝐆0𝐯𝑘 + ∑𝐖𝑖

𝑁𝑦

𝑖=1

 (3-66) 

𝑑𝐰𝑖

𝑑𝑡
= 𝑞𝑖𝐰𝑖 + 𝐆𝑖𝐯𝑘 (3-67) 

and 

𝐢𝑘𝑖 = ∑ ∑ 𝐱𝑘,𝑖

𝑁ℎ(𝑘)

𝑖=1

𝑁𝑔

𝑘=1

 (3-68) 

𝑑𝐱𝑘,𝑖

𝑑𝑡
= 𝑝𝑘,𝑖𝐱𝑘,𝑖 + 𝐑𝑘,𝑖𝐢𝑚𝑟(𝑡 − 𝜏𝑘) (3-69) 

In EMT-type programs, (3-67) and (3-69) need to be discretized using the trapezoidal integration 

method. This work sets focus on the evaluation of these equations in time domain using declarative 

language. 
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3.3.4.2 Implementation of WB-line model 

Figure 3.14 represents the Norton equivalent of WB-line model, which is used for configuration of 

the model in Modelica. Figure 3.15 illustrates the implementation of the WB-line model in 

Modelica. The model is composed of two pieces of code. (1) to compute the voltage and current at 

line terminal, which is distinguished by red dotted frame, and shunt current using (3-66) and (3-67), 

which is distinguished by blue dotted frame. (2) the codes for calculations of the incident and 

reflected currents as formulated by (3-68) and (3-69). The yellow dotted frame shows the 

appropriate code. 

The fitting parameters of model are currently calculated by EMTP® and are imported automatically 

into Modelica readable file.  
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Figure 3.14  Norton equivalent of WB-line model 
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model WideBand

  import MSEMT.NonElectrical.Functions.ComplexMath.real;

  import MSEMT.NonElectrical.Functions.ComplexMath.imag;

  constant Complex j = Complex(0,1);

  parameter Integer m( final min=1) = 3  "Number of phases" ;

  parameter Real G0[:,:] "G0 is a constant matrixi_fitting Yc";

  parameter Real G[:,:,:] "Zeros of fitting Yc" ;

  parameter Real q[:] "poles of fitting Yc" ;

  parameter Real tau[:]  "propagation time" ;

  parameter Complex Pm_H[:,:] "poles of fitting H";

  parameter Complex Rm_H[:,:,:,:] "zeros of fitting H";

  final parameter Integer Ny = size(G, 1) "Order of fitting of Yc" ; 

  final parameter Integer Ng=size(Rm_H,1)    "Number of groups" ;

  final parameter Integer No_H=size(Rm_H,2)  "Order of Fitting" ;

// Definition of Pk and Pm terminals

  MSEMT.Connectors.PosPlug Pk(m = m) ;

  MSEMT.Connectors.PosPlug Pm(m = m) ;

// varaibles of shunt current k-side

  Real wk[m, Ny](start=zeros(m,Ny),each fixed=false) ;

  Real sum_wk[m] ;

  Real i_shk[m]  ;

// varaibles of shunt current m-side

  Real wm[m, Ny](start=zeros(m,Ny),each fixed=false) ;

  Real sum_wm[m] ;

  Real i_shm[m] ;

// incident current

 Real i_ki[m],i_mi[m];

 Real i_kr[m] ; // i_kr:  reflected current-wave vector from k-end

 Real i_mr[m] ; // i_mr:  reflected  current-wave vector from m-end

 Real xk_Re[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ;  // States convolution of propagation function xR: Real 

Part, k-end

 Real xk_Im[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ;

// States convolution of propagation function  xI: Imaginary Part, k-end

 Real xm_Re[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ;  // States convolution of propagation function xR: Real 

Part, m-end

 Real xm_Im[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ;

// States convolution of propagation function  xI: Imaginary Part, m-end

 Real i_hkr[m, Ng]   // i_hkr: i_kr with delay

 Real i_hmr[m, Ng]   // i_hmr: i_mr with delay

equation

// Calculation of Termian current 

  Pk.pin.i = i_shk - 2 * i_ki;

  Pm.pin.i = i_shm - 2 * i_mi;

  for p in 1:Ny loop

    for k in 1:m loop

      der(wk[k, p]) = q[p] * wk[k, p] + G[p, k, :] * Pk.pin.v;

      der(wm[k, p]) = q[p] * wm[k, p] + G[p, k, :] * Pm.pin.v;

    end for;

  end for;

// sum of all columns for each phase

  for k in 1:m loop

    sum_wk[k] = sum(wk[k, :]);

    sum_wm[k] = sum(wm[k, :]);

  end for;

  i_shk = G0 * Pk.pin.v + sum_wk; // Calculation of shunt current, k-end

  i_shm = G0 * Pm.pin.v + sum_wm; // Calculation of shunt current, m-end

// Calculation of Incident Current

 i_kr = i_ki + Pk.pin.i;

 i_mr = i_mi + Pm.pin.i;

  for k in 1:Ng loop

    if time<tau[k] then

      i_hmr[:, k] =zeros(m);

      i_hkr[:, k] =zeros(m);

      else

      i_hmr[:, k] = delay(i_mr, tau[k]);

      i_hkr[:, k] = delay(i_kr, tau[k]);

    end if;

    for p in 1:No_H loop

      for i in 1:m loop

// calc of History cuurent k-end

    der(xk_Re[k, p, i])=real(Pm_H[k, p])*xk_Re[k, p, i]-imag(Pm_H[k, p])*xk_Im[k, p, i]+real(Rm_H[k, p, i, :])* i_hmr[:, k];

    der(xk_Im[k, p, i])=imag(Pm_H[k, p])*xk_Re[k, p, i]+real(Pm_H[k, p])*xk_Im[k, p, i]+imag(Rm_H[k, p, i, :])* i_hmr[:, k];

// calc of History cuurent m-end

    der(xm_Re[k, p, i])=real(Pm_H[k, p])*xm_Re[k, p, i]-imag(Pm_H[k, p])*xm_Im[k, p, i]+real(Rm_H[k, p, i, :])* i_hkr[:, k];

    der(xm_Im[k, p, i])=imag(Pm_H[k, p])*xm_Re[k, p, i]+real(Pm_H[k, p])*xm_Im[k, p, i]+imag(Rm_H[k, p, i, :])* i_hkr[:, k];

      end for;

    end for;

  end for;

//summation of fitting orders for each phase

  for i in 1:m loop

    i_ki[i] = sum(xk_Re[:, :, i]);

    i_mi[i] = sum(xm_Re[:, :, i]);

  end for;

end WideBand;  

Figure 3.15  Codes for implementation of WB-line model 
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3.4 Load Models 

The three-phase parallel or series RL load implements a three-phase balanced or unbalanced load 

as a parallel or series combination of RL elements. At the specified frequency, the load exhibits a 

constant impedance.  

As one can see in Figure 3.16, the parameters of the model are the load nominal line-line voltage 

(V) in kV, the load active and reactive power (P[3]={Pa, Pb, Pc} in MW and Q[3]={Qa, 

Qb, Qc} in Mvar respectively) and frequency (f) in Hz. 

model PQLoad "Three-phase parallel/series Yg-connected PQ load "

  import MSEMT.NonElectrical.Constants.pi;

  Boolean ParallelConfig=true;

  parameter Real V(unit = "kV RMSLL") = 25 "Nominal Voltage";

  parameter Real P[3](each unit = "MW") "Active powers {Pa,Pb,Pc}";

  parameter Real Q[3](each unit = "MAVR") "Rective powers {Qa,Qb,Qc}";

  parameter Modelica.SIunits.Frequency f = 60 "Nominal frequency";

protected

 Real R1 = if ParallelConfig then V ^ 2 / 3 / P[1] else  V ^ 2 *P[1]/ 3 / (P[1]^2+Q[1]^2);

 Real R2 = if ParallelConfig then V ^ 2 / 3 / P[2] else  V ^ 2 *P[2]/ 3 / (P[2]^2+Q[2]^2);

 Real R3 = if ParallelConfig then V ^ 2 / 3 / P[3] else  V ^ 2 *P[3]/ 3 / (P[3]^2+Q[3]^2);

 Real L1 = if ParallelConfig then V ^ 2 / 3 / (2 * pi * f * Q[1]) else V ^ 2 *Q[1]/ 3 / (P[1]^2+Q[1]^2)/(2 * pi * f);

 Real L2 = if ParallelConfig then V ^ 2 / 3 / (2 * pi * f * Q[2]) else V ^ 2 *Q[2]/ 3 / (P[2]^2+Q[2]^2)/(2 * pi * f);

 Real L3 = if ParallelConfig then V ^ 2 / 3 / (2 * pi * f * Q[3]) else V ^ 2 *Q[3]/ 3 / (P[3]^2+Q[3]^2)/(2 * pi * f);

 MSEMT.Connectors.PosPlug Pk; 

 Real IL[3],IR[3]; // Inductor and resistor current

 Real VL[3],VR[3]; // Inductor and resistor voltage

equation

 {L1,L2,L3}.* der(IL) =VL ;

 {R1,R2,R3}.* IR = VR;

if ParallelConfig then

 Pk.pin.i=IL.+IR;

 Pk.pin.v=VR;

 Pk.pin.v=VL;

 else

 Pk.pin.v=VR+VL;

 Pk.pin.i=IL;

 Pk.pin.i=IR;

 end if;

end PQLoad;

 

Figure 3.16  Implementation of PQ load in Modelica 

Similar models for three/single-phase capacitive loads are available in the MSEMT library. 

3.5  Synchronous Machine 

This section implements the classical dq model of a balanced wye-grounded synchronous machine 

(SM). Figure 3.17 shows a two-pole SM in which damper winding effects are represented with 

three damper windings: one on the d-axis, kd, and two on the q-axis, kq1, and kq2. The q-axis is 

assumed to be leading the d-axis by 90 deg, and the direction of the positive stator current is out of 

the terminals [101]. 
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Figure 3.17  Two-pole, three-phase, wye-connected salient-pole synchronous machine 

 

The sixth-order state-space model and the mechanical equations based on a single mass sorted from 

(3-70) to (3-87) are implemented. In these equations, bold uppercase represents matrices, bold 

lowercase denotes vector, and operator p is d/dt. The per-unit (pu) electrical equations are 

expressed in the rotor reference-frame as following: 

𝐯𝑑𝑞0 = 𝐏(θ)𝐯𝑎𝑏𝑐 (3-70) 

𝑝𝛙 = ω𝑏(𝐀𝛙 + 𝐮) (3-71) 

𝐀 = −(𝐑𝐋−1 + 𝐖) (3-72) 

𝐢 = 𝐋−1𝛙 (3-73) 

𝐢𝑎𝑏𝑐 = 𝐏−𝟏(θ)𝐢𝑑𝑞𝑧 (3-74) 

𝐢𝑎𝑏𝑐,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐢𝑎𝑏𝑐 . I𝑠𝑡𝑎𝑡𝑜𝑟,𝑏𝑎𝑠𝑒 (3-75) 
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The mechanical equations in the per-unit form that describes the dynamics of a single mass rotor 

are given as: 

T𝑒 = ψ𝑑i𝑞 − ψ𝑞i𝑑 

 
(3-76) 

T𝑛𝑒𝑡 = T𝑚 − T𝑒 − DΔω𝑟 (3-77) 

T𝑚 = P𝑚/ω𝑟 (3-78) 

𝑝Δω = T𝑛𝑒𝑡

1

2H
 (3-79) 

ω𝑟 = 1 + Δω (3-80) 

𝑝Δθ = ω𝑏Δω (3-81) 

θ = Δθ + ω𝑏𝑡 (3-82) 

where 

𝐮 = [v𝑞, v𝑑 , v𝑓𝑑 , 0, 0, 0]
𝑇
 (3-83) 

𝛙 = [ψ𝑞, ψ𝑑 , ψ𝑓𝑑 , ψ𝑘𝑑 , ψ𝑘𝑞1, ψ𝑘𝑞2]
𝑇
 (3-84) 

𝐢 = [i𝑞, i𝑑, i𝑓𝑑 , i𝑘𝑑 , i𝑘𝑞1, i𝑘𝑞2]
𝑻
 (3-85) 

𝐢𝑑𝑞0 = [−i𝑞, − i𝑑, 0]
𝑻
 (3-86) 

𝐑 = diag(R𝑎, R𝑎, R𝑓𝑑 , R𝑘𝑑 , R𝑘𝑞1, R𝑘𝑞2) (3-87) 

The vector 𝐯𝑎𝑏𝑐 is the pin voltage, 𝐯𝑑𝑞0 is the pin voltage in dq frame, 𝐏(θ) is the Park 

transformation defined in a specific class function and reused here, vectors 𝐮, 𝐢, and 𝛙 denote stator 

and rotor voltages, currents, and flux linkages in dq frame and 𝐢𝑎𝑏𝑐 is the stator current. 𝐖6×6  is 

the rotor speed-dependent matrix where all elements are zero except 𝑤(1,2) = 𝜔𝑟 and 𝑤(2,1) =

−𝜔𝑟, 𝐋6×6 is a symmetrical matrix of self and mutual inductances in the rotor reference frame, 

𝐑6×6 is stator and rotor resistance matrix, Δω is rotor speed deviation in pu, Δθ denotes rotor angle 

deviation in pu, θ is electrical rotor angle in radians, ω𝑏 is base rotor speed in radians per second 

and H represents inertia constant in s. The mechanical, electrical torque and the damping factor in 

pu are denoted respectively by T𝑚, T𝑒 and D.  
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3.5.1 Magnetic Saturation 

The following assumptions are made for magnetic saturation modeling: The leakage flux saturation 

and cross saturation are ignored. It means that only the magnetizing inductances, L𝑚𝑑 and L𝑚𝑞 are 

saturable. The air-gap flux linkage determines magnetic saturation. The sinusoidal distribution of 

the magnetic field on the pole face is not affected by magnetic saturation. 

Since the saturation relationship between the total air-gap flux, 𝛙𝑇, and the magnetomotive force 

under loaded conditions is supposed to be the same as at no-load conditions; thus, magnetic 

saturation of stator and rotor can be modeled by the no-load saturation curve, which is 

characterized by a piecewise linear function [102]. 

Therefore, the mathematical model of saturation is given by [102]: 

ψ𝑇 = 𝑓(ψ𝑇,𝑢𝑠) = 𝑓 (√ψ𝑚𝑑,𝑢𝑠
2 + ψ𝑚𝑞,𝑢𝑠

2 ) (3-88) 

ψ𝑚𝑑,𝑢𝑠 = L𝑚𝑑,𝑢𝑠i𝑚𝑑 (3-89) 

             i𝑚𝑑 = i𝑑 + i𝑓𝑑 + i𝑘𝑑 (3-90) 

ψ𝑚𝑞,𝑢𝑠 = L𝑚𝑞,𝑢𝑠i𝑚𝑞 (3-91) 

i𝑚𝑞 = i𝑞 + i𝑘𝑞1 + i𝑘𝑞2 (3-92) 

where ψ𝑇,𝑢𝑠 is the total unsaturated air-gap flux, ψ𝑚𝑑,𝑢𝑠 and ψ𝑚𝑞,𝑢𝑠 are the unsaturated 

magnetizing flux linkages respectively, L𝑚𝑑,𝑢𝑠 and L𝑚𝑞,𝑢𝑠 are the unsaturated magnetizing 

inductances, and i𝑚𝑑 and i𝑚𝑞 are the magnetizing currents. Throughout the thesis, the subscripts 

sat and us mean saturated and unsaturated, respectively. 

As illustrated in Figure 3.18, the saturated magnetizing flux linkages on dq axis (ψ𝑚𝑑,𝑠𝑎𝑡 and 

ψ𝑚𝑑,𝑠𝑎𝑡) can be adjusted by a ratio of corresponding unsaturated values. 
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Figure 3.18  Saturated and unsaturated magnetizing flux linkages in dq axes of a synchronous 

machine 

In EMTP®, a piecewise-linear function is used for representation of the magnetic saturation as 

shown in Figure 3.19. 
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Figure 3.19  Magnetic saturation characteristic (piecewise-linear approximation) 

For the jth operating segment, ψ𝑇 is given by: 

ψ𝑇 = ψ𝑘𝑗 + b𝑗ψ𝑇𝑢 (3-93) 

= ψ𝑘𝑗 + b𝑗L𝑚𝑑,𝑢𝑠i𝑇 (3-94) 

i𝑇 = √i𝑚𝑑
2 + (

L𝑚𝑞,𝑢𝑠

L𝑚𝑑,𝑢𝑠
)

2

i𝑚𝑞
2  (3-95) 
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b𝑗 =
L𝑚𝑑,𝑠𝑎𝑡𝑗

L𝑚𝑑,𝑢𝑠
 (3-96) 

where b𝑗 is the saturation factor and ψ𝑘𝑗 is the residual flux. The saturated values L𝑚𝑑,𝑠𝑎𝑡 and 

L𝑚𝑞,𝑠𝑎𝑡 are computed as: 

L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠 

L𝑚𝑞,𝑠𝑎𝑡 = b𝑗L𝑚𝑞,𝑢𝑠 
(3-97) 

For a salient pole machine, because of large airgap path along the q-axis, it is only required to 

correct the ψ𝑚𝑑; thus: 

L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠 

L𝑚𝑞,𝑠𝑎𝑡 = L𝑚𝑞,𝑢𝑠 
(3-98) 

Figure 3.20 demonstrates the solution procedure for the electrical equations of SM. In the case of 

no saturation, the relationship between field current, i𝑓𝑑 and terminal voltage v𝑡, is linear. 

Therefore, magnetizing inductances in matrix 𝐋 (equation (3-99) are constant (q𝑗 = d𝑗 = 1). If 

saturation is selected, it is required to compute the magnetizing inductances for each time point. 

The matrix 𝐋 is time-variable (q𝑗 = d𝑗 = b𝑗 for round rotor and q𝑗 = 0, d𝑗 = b𝑗 for salient pole 

machine).  

 

𝐋 =

(

 
 
 
 

L𝑙𝑠 + q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠

0 L𝑙𝑠 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑓𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑘𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 0 0

q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 L𝑙𝑘𝑞1 + q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠

q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 L𝑙𝑘𝑞2 + q𝑗L𝑚𝑞,𝑢𝑠)

 
 
 
 

 (3-99) 

3.5.2 Implementation of Synchronous Machine Model in Modelica 

Implementation of the SM model in Modelica is based directly on its equations without providing 

solution procedures, predictions, and supplementary codes as in traditional EMT-type tools. The 

dq model equations are linked to the main network equation with the interface of Park’s 

transformation and provide a simultaneous solution. It is demonstrated that this method is 

numerically stable and yields the same results as EMTP®.  
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Figure 3.20  Solution procedure of synchronous machine with/without magnetic saturation in 

Modelica 

Figure 3.21 shows the GUI of the synchronous machine model designed in Modelica language. 

The different parameters of the model are categorized according to their functionalities. 

Operational parameters are used as input parameters of the model; then, fundamental parameters 

are computed using the classical method [101] in the Modelica model. The model discussed above 

has been implemented for the first time in Modelica.  

Figure 3.22 illustrates the Modelica codes for the implementation of SM. The terminal voltages are 

represented by Pk.pin[1].v, Pk.pin[2].v and Pk.pin[3].v for the phases a, b and c 
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respectively. P(theta) represents a pre-defined function for the Park’s transformation 

calculations.  

Equation (3-71) is used as a differential equation for the implemented model. The state vector Phi 

represents fluxes, and the input vector u the voltages. The system matrix A is a time-dependent 

matrix computed as per (3-72). 

The matrix of parameters for representation of saturation, SD, is given by a 2-by-n matrix, where n 

is the number of points taken from the no-load saturation curve. The first row of this matrix contains 

the values of field currents (actual value), while the second row contains values of corresponding 

terminal voltages (per unit). LinearInterplate(SD1PU, SD2PU, iT) is a function coded to 

interpolate the iT by the two vectors of field current (SD1PU) and voltage (SD2PU) which both are 

calculated in the non-reciprocal per unit [103]. The function returns the total flux (PhiT) and 

Lmdsat, which is used to calculate coefficient b as per (3-96). The stator currents are represented 

by Pk.pin[1].i, Pk.pin[2].i and Pk.pin[3].i for the phases, a, b and c, respectively [75], 

[124].  

The input pins for field voltage and output pin for field current are based on the non-reciprocal per 

unit. Figure 3.23 shows the relation between the reciprocal and non-reciprocal per-unit systems. 

The equations mentioned above are based on L𝑚𝑑-based reciprocal per unit system, i.e., the per-

unit field current required to produce 1 pu terminal voltage in open-circuit test equals to X𝑚𝑑
𝑝𝑢

. In 

non-reciprocal per unit 1 pu field current is required to generate 1 pu terminal voltage in the open-

circuit test; therefore, the field base current equals to field no-load current. 

For the initialization of SM, the initial flux and rotor angle are calculated from given steady-state 

values of terminal voltage and current. The steady-state voltage and currents at the terminal of SM 

can be read from EMTP®. 

It is observed that the code structure is entered exactly as above equations without any further 

consideration of order, solution procedures, sequences, and other lower-level details. Moreover, it 

indicates that only a few code lines are needed to elaborate state-space equations through readily 

available Modelica functions and constructs. This is a drastic improvement and distinctive 

advantage over classical coding for performing similar tasks [75].  
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Figure 3.21 The GUI of the synchronous machine model implemented in Modelica 
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model SM "Synchronous Machine 6 order including saturation"

equation

// Conversion of terminal voltage to pu 

 vabc= {Pk.pin[1].v,Pk.pin[2].v,Pk.pin[3].v} /Vsbase;

// Conversion from abc frame to dq0 frame

   vdq0  = P(theta)*vabc;

// State space electrical equations

   der(Phi)  = Wb * (A * Phi + u);

   A         = -(R * inv(L) + W);

   i         =  inv(L) * Phi; 

// Implementation of magnetic saturation

   imd = Ip[2] + Ip[3] + Ip[4]; //imd = id + ifD + ikd

   imq = Ip[1] + Ip[5] + Ip[6]; //imq = iq + ikq1+ ikq2

   iT  = sqrt(imd^2 + (Lmqus/Lmdus)^2 * imq^2);

  (PhiT,Lmdsat) =  LinearInterpolation(SD1pu,SD2pu, iT);

   b  = Lmdsat / Lmdus;

   if Sauration then

     if RoundRotor then

       q=b;

       d=b;

     else

       q=0;

       d=b;

     end if;

   else

     q=1;

     d=1;

   end if;

    Lq      = Lls   + q * Lmqus;

    Ld      = Lls   + d * Lmdus;

    Lffd    = Llfd  + d * Lmdus;

    Lkdkd   = Llkd  + d * Lmdus;

    Lkq1kq1 = Llkq1 + q * Lmqus;

    Lkq2kq2 = Llkq2 + q * Lmqus; 

   L= [  Lq    ,   0    ,    0   ,   0    ,q*Lmqus ,q*Lmqus ; 

          0    , Ld     , d*Lmdus, d*Lmdus,   0    ,   0    ; 

          0    , d*Lmdus, Lffd   , d*Lmdus,   0    ,   0    ; 

          0    , d*Lmdus, d*Lmdus, Lkdkd  ,   0    ,   0    ;

       q*Lmqus ,   0    ,    0   ,   0    ,Lkq1kq1 , q*Lmqus;

       q*Lmqus ,   0    ,    0   ,   0    , q*Lmqus, Lkq2kq2];

 // Conversion from dq0 to abc frame

   iabc         =  inv(P(theta))* idq0;

// Calculations of actual Terminal current

   Pk.pin[1].i  = -iabc[1] * Isbase;

   Pk.pin[2].i  = -iabc[2] * Isbase;

   Pk.pin[3].i  = -iabc[3] * Isbase;  

// Mechanical equations  

   Te          = Phi[2] * idq0[1] - Phi[1] * idq0[2];  

   Tnet        = Tm - Te - D * dw;  

   Tm          = Pm_pu / Wr;     

   der(dw)     = Tnet * (1 / 2 / H);   

   Wr          = 1 + dw;          

   der(d_theta)= dw * Wb;

   theta       = d_theta + Wb * time;

// where

// u = {Vq      , Vd      , Vfd   , Vkd   , Vkq1   , Vkq2 }

  u = {vdq0[1], vdq0[2], vfd , 0    , 0     ,  0  }; 

// Phi = {Phiq  , Phid  , Phifd , Phikd , Phikq1,Phikq2 }

  Phi = {Phi[1], Phi[2], Phi[3], Phi[4], Phi[5] , Phi[6]}; 

// i = {iq     , id     , ifd   , ikd   , ikq1   , ikq2  }      

  i = {i[1]  , i[2]  , i[3] , i[4] , i[5] , i[6] }; 

// Change of sign due to generating mode 

   idq0    = {-i[1], -i[2], 0}; 

   W[6, 6] = [ 0   , Wr  , 0  , 0  , 0  , 0  ;

              -Wr  , 0   , 0  , 0  , 0  , 0  ; 

               0   , 0   , 0  , 0  , 0  , 0  ;

               0   , 0   , 0  , 0  , 0  , 0  ;

               0   , 0   , 0  , 0  , 0  , 0  ;

               0   , 0   , 0  , 0  , 0  , 0  ];

  R[6, 6] = diagonal({Rs, Rs, Rfd, Rkd, Rkq1, Rkq2});

end SM;  

Figure 3.22  Synchronous machine Modelica codes 
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Figure 3.23  Relation between reciprocal and non-reciprocal per unit system 

 

3.6 Nonlinear Component Models 

Modeling of nonlinear components is fundamental in the analysis of electromagnetic transients. 

Phenomena, such as ferro-resonance, harmonic overvoltages, and inrush currents in transformers, 

require nonlinear inductance and arrester models. The Modelica language allows nonlinear 

components modeling without any topological or numerical restrictions. The is no limit to 

mathematically expressions of nonlinearity in polynomial, exponential, piece-wise linear 

functions, or a combination of them.  

 

3.6.1 Nonlinear Inductor 

The characteristics of the nonlinear inductor in EMT-type tools are expressed by monotonically 

increasing piecewise linear curves. A nonlinear inductor is mathematically defined as: 

φ = 𝑓(i) (3-100) 

v =
𝑑φ

𝑑𝑡
 (3-101) 

where φ, v and i are the flux, voltage, and current of the nonlinear inductor, respectively, and 𝑓 

represents a piecewise linear function as depicted in Figure 3.24. The Modelica code describing a 

nonlinear inductor is shown in Figure 3.25. 
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Figure 3.24  Piecewise linear representation of current-flux relation 

 

In a similar procedure to the linear inductor model (see Section 2.6.12.6.1), it is first required to 

identify and declare the variables. The import statement is used to import the predefined 

mathematical functions, e.g., sort, interpolate, and physical type of MagneticFlux. These 

functions are available in the MSEMT library in the branch of NonElectrical. This spares the 

developer from having to describe things in the local model constantly. By contrast, the modeler 

can place definitions in packages and then recall those packages. The keyword extends is 

employed to specify inheritance from the pre-defined partial model OnePort into the model. The 

piecewise linear relationship of current versus flux is represented as a parameter of the model by a 

2D array 𝐓𝑁×2. it is possible to partition the curve in n-sections. Flux is a state variable in this 

model and is declared by the type MagneticFlux. Its initial value is set to zero by default, but it 

is possible to change the initial value in the GUI of the model (see Figure 3.26). The array elements 

are sorted and arranged in the protected section to define a symmetric variable (i_vec and 

flux_vec). Only equations (3-96) and (3-97) are directly expressed in the equation section. The 

function interpolate(i_vec, flux_vec, i), which represents (3-100), interpolates linearly 

in the vectors (i_vec, flux_vec) and returns the value flux that corresponds to the i. This 

function defines a causal relation between flux and current of the model. The second equation 

implies  (3-101) and is an acausal relation. As one can see, the modeler has absolutely nothing to 

do with how the simulation engine will use that model. There is not any input/output orientation. 

There is no need to define how the model equations are inserted into the main network equations. 
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model L_Nonlinear "Nonlinear electrical inductor"

 import MSEMT.NonElectrical.Functions.sort;

 import MSEMT.NonElectrical.Functions.interpolate;

 import MSEMT.NonElectrical.Units.MagneticFlux;

 //Recalling partial class OnePort

 extends MSEMT.Interfaces.OnePort;      

 parameter Real T[:,2]=[0.0015,200;1.0015,1200] 

  "piecewise linear current versus flux relation";

 MagneticFlux flux(start=0);

protected

 final parameter Real[:] i_vec    = 

 sort(cat(1,-T[:, 1],{0},T[:, 1]));

 final parameter Real[:] flux_vec = 

 sort(cat(1,-T[:, 2],{0},T[:, 2]));

equation

 // Nonlinear function Phi=f(i)

 flux = interpolate(i_vec, flux_vec, i); 

 v = der(flux);  // Faraday's Law

end L_Nonlinear;

Importing the predefined functions and Types

Inheritance from predefined partial model  Oneport 

Declaration of model equations

 

Figure 3.25  Nonlinear inductor model implemented in Modelica 
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Figure 3.26  GUI of a nonlinear inductor in Modelica simulator 

3.6.2 Nonlinear Resistor 

Voltage-dependent resistors are widely used for various applications, such as modeling of 

electronic switches. 

3.6.2.1 Piecewise Linear Resistor Model 

 The nonlinear resistor block represents a time-varying resistor working on a piecewise linear 

representation of the voltage-current resistance characteristic, as depicted in Figure 3.27. A 

monotonically increasing voltage-current characteristic specifies the resistance. The first and last 

voltage points are extended to negative and positive infinity, respectively. Linear interpolation is 

used between the data points.  
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Figure 3.27 The piecewise linear current-voltage characteristics of resistance 

Figure 3.28 shows the Modelica implementation of the nonlinear resistance model. As one can see, 

it is only required to program the function interpolation for finding the current passing through 

the component (i) corresponding to its terminal voltage (v) using the 2D table T. The function 

interpolation has been predefined and is available in the branch of 

MSEMT>NonElectrical>Functions. It is noted that the relation between current and voltage of the 

model is causal and is defined by a function. It is once again observed that modeling using high-

level codes is very similar to the model's equations. Implementation of one such model in an 

imperative language such as MATLAB imposes hundreds of lines of code, which is complicated 

to understand.  

model R_Nonlinear "Nonlinear resistance"

  parameter Real T[:,2]=[-9,-20; -6,-8; -3,-1; 3,1; 6,8; 9,20] 

  "piecewise linear current versus voltage relation";

  extends MSEMT.Interfaces.OnePort;

Equation

 

i = interpolate(T[:,2], T[:,1], v);

end R_Nonlinear;

name 

Declaration of model equations

Voltage-Current characteristics [(V);(A)] — Resistance characteristic, R

 

Figure 3.28  Modelica codes for the implementation of the piecewise linear resistor model 
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3.6.2.2 Polynomial Model 

The polynomial nonlinear behavior of the resistor R, is described through the following relation: 

v𝑘𝑚 = R1i𝑘𝑚 + R2i𝑘𝑚
2 + R3i𝑘𝑚

3 (3-102) 

where v𝑘𝑚 and i𝑘𝑚 denote the voltage and current of the resistor, respectively, 

and R1, R2 and R3 are the parameters of the model. The model imposes a heavy computational 

burden during simulation rather than the piecewise linear resistance model, because in the second 

one, the number of nonlinearities is limited to the finite number of linear sections 

model R_Nonlinear "Nonlinear resistance"

  parameter Real R1 "Parameter R1";

  parameter Real R2 "Parameter R2";

  parameter Real R3 "Parameter R3";

  extends MSEMT.Interfaces.OnePort;

equation

 

  V = R1 * i + R2 * i^2 + R3 * i^3 ;

end R_Nonlinear;

name 

Declaration of model equations

Resistance parameters

 

Figure 3.29  Modelica codes for the implementation of the polynomial resistor model 

 

3.6.2.3 Surge Arrester Model 

Surge arresters protect the insulation of equipment, e.g., transformers in electrical systems against 

overvoltage transients caused by lightning or switching surges. The voltage and current 

characteristic of a gapless metal-oxide surge arrester (ZnO), as illustrated in Figure 3.30, is a 

severely nonlinear resistor with an infinite slope in the normal operation region and an almost 

horizontal slope in the protection region (temporary and lightning overvoltages). The following 

power function in EMTP® represents the nonlinear resistance: 
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i𝑘𝑚 = 𝑝𝑗 (
v𝑘𝑚

V𝑟𝑒𝑓
)

𝑞𝑗

 (3-103) 

where i𝑘𝑚 and v𝑘𝑚 are arrester current and voltage, 𝑗 is the segment number starting at the voltage 

V𝑚𝑖𝑛𝑗
, multiplier 𝑝𝑗 and exponent 𝑞𝑗 are coefficients defined for each V𝑚𝑖𝑛𝑗

 and V𝑟𝑒𝑓 is the arrester 

reference voltage. A linear function is used for the first segment. 
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Figure 3.30 Voltage-current characteristic of ZnO surge arrester 

 

The procedure for modeling a nonlinear resistance (arrester function) is similar to the technique 

used for the nonlinear inductance. Figure 3.31  illustrates the codes for the implementation of the 

surge arrester. The parameters of 𝑝𝑗, 𝑞𝑗 and V𝑚𝑖𝑛𝑗
 are defined by n -by-3 matrix T. Figure 3.32 

shows the ExponentialInterpolate()function defined by the specific class function, 

where the operating voltage is searched for the appropriate segment, 𝑗. Then, using (3-103), the 

value of i𝑘𝑚 is interpolated. The properties of partial class OnePort are inherited to apply the 

appropriate equations of one-port devices [124]. It is noted that the relation between current and 

voltage of the model is causal and is defined by a function.  

As one can see, the implementation of the model is straightforward, and there are no limitations 

for connections of this model in arbitrary network conditions.  
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model ZnoArrester  ZnO arrester model in Modelica 

  extends MSEMT.Interfaces.OnePort;

  parameter Real Vref = 516000  Reference voltage  

  //Exponential segments before flashover

  parameter Real T[:, 3]  "multiplier p, Exponent q, Vmin_pu";

protected

  final parameter Real[:] p = T[:, 1];

  final parameter Real[:] q = T[:, 2];

  final parameter Real[:] V_min = T[:, 3]*Vref;  

equation

  i_km = ExponentialInterpolate(V_min, p, q, Vref, v_km);

end ZnoArrester;

 

Inheritance of  OnePort  partial class 

Constructive equation of surge arrester 

Internal parameters of model 

Parameters of model 

Zno

vkm

ikm

vk vm

 

Figure 3.31  Codes used for implementation of the ZnO surge arrester model in Modelica 
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function ExponentialInterpolate "Interpolate exponentially in a vector"

  extends UserGuide.Icons.Function;

  input Real y[:] "Abscissa table vector (strict monotonically increasing values required)"; //Vj

  input Real p[size(y, 1)] "Ordinate table vector";

  input Real q[size(y, 1)] "Ordinate table vector";

  input Real Vref;

  input Real u "Desired abscissa value";

  input Integer iLast=1 "Index used in last search";

  output Real yy "Ordinate value corresponding to xi";

  output Integer iNew=1 "xi is in the interval x[iNew] <= xi < x[iNew+1]";

protected

  Integer i;

  Integer nx=size(y, 1);

  Real yi=abs(u),xi;

  Real x1,y1;

  Real m;

algorithm

  assert(nx > 0, "The table vectors must have at least 1 entry.");

// Search point

// search forward

  if yi >= y[nx] then

    i := nx;

  else

    i := 1;

    while i < nx and yi >= y[i] loop

      i := i + 1;

    end while;

    i := i - 1;

  end if;

// Interpolate

  if i == 0 then     //linear  segment

    x1 := p[1] * (y[1] / Vref) ^ q[1];

    m := y[1] / x1;

    xi := 1 / m * yi;

  else

    xi := p[i] * (yi / Vref) ^ q[i];

  end if;

//i=0

//i>1

  iNew := i;

//symetricalization based on odd function f(-x)=-f(X)

  if u >= 0 then

    yy := xi;

  else

    yy := -xi;

  end if;

end ExponentialInterpolate;

 

Figure 3.32  Implementation of function exponentialInterpolation 

3.6.2.4 Arc Models 

Arc models are mathematically modeled as a time-variant resistance or conductance function of 

arc current, voltage, and several time-variant parameters representing arc properties. This section 

introduces the main arc models proposed by Mayr and Cassie [104]. The arc behaves as a nonlinear 

resistance described by a nonlinear ODE.  
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The Mayr arc model [104] equation is defined by (3-104).  

1

g𝑚

𝑑g𝑚

𝑑𝑡
=

1

𝜏𝑚
 (

vi

𝑝0
− 1) =

1

𝜏𝑚
 (

i2

𝑝0g𝑚
− 1) (3-104) 

where g𝑚 is the conductivity of the Mayr arc model,  v and i are the instant values of the arc voltage 

and current in the circuit breaker, 𝜏𝑚 denotes the time constants of the electric arc and 𝑝0 represents 

the dissipated power at current passing through zero. The parameters of 𝜏𝑚and 𝑝0 in the model are 

determined based on the arc conductance[104]. The constants 𝜏𝑚 and 𝑝0 have impact on arc voltage 

behavior during current zero-crossing such as extinguishing voltage, transient recovery voltage, 

and rate of build-up of recovery voltage. The Mayr model shows an increasing arc voltage (the 

extinction peak) close to the current zero-crossing. 

In EMTP®, arc is modeled using the block diagrams approach. The same approach is used in 

Simscape Specilized Power System library[43] as well. In Modelica, arc is completely modeled 

through the explicitly expressing of its equation. Figure 3.33 shows the implementation of the Mayr 

model in Modelica. As one can see, two equations are expressed in equation section. the first is 

arc equation. i.e., (3-104), and other Ohm’s law, which descrive the relation between voltage and 

current in a OnePort component. 

model MayrArc "Mayr model"

 extends MSEMT.Interfaces.OnePort;

 parameter Real tau = 0.3e-6 "arc time constant";

 parameter Real P = 30900 "cooling power constant";

 parameter Real g0 = 1e4 "initial conductance of the arc";

 parameter Real T_trip = 0.02;

 Real g(start = g0);

equation

 

 1 /g * der(g) = if time>= T_trip then 1 /tau * (i^2 / P /g - 1) else 0; // der(x)=0 When the breaker is closed

 i = g * v;

end MayrArc;

Declaration of model equations

Model parameters

 

Figure 3.33  Modelica codes of the Mayr arc model 

 

The Cassie arc [104] model equation is defined by (3-105).  

1

g𝑐

𝑑g𝑐

𝑑𝑡
=

1

𝜏𝑐
 (

v2

𝑣0
− 1) (3-105) 
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where g𝑐 is the conductivity of the Cassie model, v is the instant values of the arc voltage, 𝜏𝑐 

denotes the time constants of the electric arc and 𝑣0 determines the average value of arc voltage. 

Cassie Model assumes that the arc has a constant temperature being cooled by forced convection. 

Current density and electric field strength are considered fixed in the model as well [104]. 

Figure 3.34 illustrates the implementation of the Cassie model in Modelica. As it can be observed, 

the equation (3-105) is directly implemented in Modelica code.  

 

model CassieArc "Cassie model"

 extends MSEMT.Interfaces.OnePort;

 parameter Real tau=1.2e-6 "arc time constant";

 parameter Real Uc=3850 "constant arc voltage";

 parameter Real g0=1e4 "initial conductance of the arc";

 parameter Real T_trip=0.02;

 Real g(start=g0) "conductance of the arc";

equation

1 / g * der(g) = if time>= T_trip then 1 / Tau * (( v / Uc)^2 - 1) else 0;

i = g * v;

end CassieArc;

Declaration of model equations

Model parameters

 

Figure 3.34  Modelica codes of the Cassie arc model 

 

The series combination of both models gives a new model called the Cassie-Mayr model [104], 

which can be defined by: 

1

𝑔
=

1

g𝑐
+

1

g𝑚
 (3-106) 

Figure 3.35 shows the Modelica code of Cassie-Mayr arc model. In the piece of code, the arc 

conductance is reformulated in terms of arc current. The mathematical manipulation has no impact 

on the results in Modelica. All arc models described in this section will be validated in Section 7.5. 
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model CassieMayrModel"Cassie-Mayr model"

extends OpenEMTP.Interfaces.OnePort;

parameter Real tau_m=0.5e-06 "Mayr arc time constant";

parameter Real tau_c=1e-6 "Cassie arc time constant";

parameter Real P=10.0e+04 "cooling power constant";

parameter Real Uc=2000 "constant arc voltage";

parameter Real g0=5e+07 "initial conductance of the arc";

parameter Real T_trip=28e-3;

Real gc(start=2*g0);  // Conductance of Cassie Model

Real gm(start=2*g0);  // Conductance of Mayr Model

Real g; // Arc conductance

Real r; // Arc resistance

equation

der(gm)=if time>= T_trip then 1 / tau_m * (i^2/P - gm) else 0;  

// der(x)=0 When the breaker is closed

der(gc)=if time>= T_trip then 1 / tau_c * ((i / Uc)^ 2/gc - gc) else 0;  

// der(x)=0 When the breaker is closed

1 / g = 1 / gc + 1 / gm;

r = 1 / g;

i = g * v ;

end CassieMayrModel;

 

Figure 3.35 Cassie-Mayr arc model in Modelica 

3.7 Switches 

The modeling of ideal switch is essential for EMT studies. Implementation of the switch with zero 

resistance in the closing condition in Modelica causes numerical problems.  A snubber resistance 

(R=1e-15 Ω) is considered to eliminate the problem. The operating logic of the ideal switch in the 

MSEMT library is as below: 

1) the switch closes when the simulation time is greater or equal to Tclosing. 

2) the switch opens when the simulation time is greater or equal to Topening and the current 

passing the switch crosses zero. 

Figure 3.36 shows the implementation of the ideal switch model in Modelica using the predefined 

block diagrams available in MSMET>NonElectrical>Blocks. 
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Figure 3.36  Block diagram approach for modeling of the ideal switch 

3.8 Transformers 

The saturable transformer component (STC) model has two parts. The first part represents the 

windings resistance and inductance and contains linear elements. The second part models the 

behavior of the transformer core and is described with nonlinear inductance.  

The STC model, which is also known as the star equivalent circuit, is illustrated in Figure 3.37.  

N1:N2

N1:NN

R1 L1 R2L2

RNLN

LmRmWinding 1 Winding 2

Winding N

 

Figure 3.37  Single-phase N-winding STC model 

The STC model can be extended to a three-phase or three-winding transformer model. In EMT-

type programs, the magnetic saturation is represented by a piecewise linear inductor [104]. 
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The implementation of a single-phase transformer in Modelica, as illustrated in Figure 3.38.(b), is 

a combination of pre-defined models linked to each other and then packaged to construct a new 

model. Figure 3.38.(a) illustrates the GUI symbol of the single-phase transformer in Modelica. 

Figure 3.38.(b) shows the implementation of the model. The model is a combination of pre-defined 

models linked to each other, then packaged to construct a new model. The input parameters as 

observed in Figure 3.38.(c) include the RL-branch values (Rp, Lp, Rs,Ls), the turn ratio 

(Ratio), and the magnetizing branch (Rm, Lm). Nonlinear data is entered for Lm. 

RL1

R=Rp L=Lp

L m
ag

R
m

ag

RL2

R=Rs L=Ls

k

mR
=R
m

L=
L
m

i

j n=Ratio

IdealUnit

1 2

i

j

k

m
(a) (b)

(c)  

Figure 3.38  (a): The icon of STC model in MSEMT library, (b): the sub-model of transformer 

model, (c): the GUI of transformer model  

Figure 3.39 illustrates the Modelica codes describing the transformer components depicted in 

Figure 3.38. These codes are based on defining the model parameters, recalling the component 

models of resistance, inductance, nonlinear inductance, and ideal unit transformer, labeling them 
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appropriately, e.g., R1, R2, L1, etc., and finally assigning the proper parameter to them, e.g. (final 

R=Rs).  

model Nonideal_Unit "Nonideal single phase transformer based on STC model"

  import MSEMT.NonElectrical.Units.Resistance;

  import MSEMT.NonElectrical.Units.Inductance;

  parameter Real t "Turns ratio v2/v1";

  parameter Resistance Rp "Resisrance in primary side";

  parameter Inductance Lp "Inductance in primary side";

  parameter Resistance Rs "Resisrance in secondary side";

  parameter Inductance Ls "Inductance in secondary side";

  parameter Resistance Rmag "Magnetization resistance ";

  parameter Real Lmag[:, 2] = [0.225508571E+01, 0.682234741E+03] "Saturation characteristic [ 

i1(A) ,  phi1(V.s) ;  i2 , phi2 ; ... ]";

  MSEMT.Interfaces.PositivePin Pin_i ;

  MSEMT.Interfaces.NegativePin Pin_j ;

  MSEMT.Interfaces.PositivePin Pin_k ;

  MSEMT.Interfaces.NegativePin Pin_m ;

  MSEMT.Electrical.Transformers.IdealUnit IdealUnit1(final g = t) ;

  MSEMT.Electrical.RLC_Branches.R R2(final R = Rs) ;

  MSEMT.Electrical.RLC_Branches.L L2(final L = Ls) ;

  MSEMT.Electrical.RLC_Branches.R R1(final R = Rp) ;

  MSEMT.Electrical.RLC_Branches.L L1(final L = Lp);

  MSEMT.Electrical.RLC_Branches.R Rm(final R = Rmag) ;

  MSEMT.Electrical.Nonlinear.L_Nonlinear Lm(final T = Lmag) ;

equation

  connect(R1.p, Pin_i);

  connect(R1.n, L1.p) ;

  connect(Rm.n, Pin_j);

  connect(Lm.n, Pin_j);

  connect(L1.n, Rm.p) ;

  connect(Lm.p, L1.n) ;

  connect(IdealUnit1.p1, L1.n) ;

  connect(IdealUnit1.n1, Pin_j) ;

  connect(IdealUnit1.p2, R2.p) ;

  connect(L2.p, R2.n) ;

  connect(L2.n, Pin_k) ;

  connect(IdealUnit1.n2, Pin_m);

end Nonideal_Unit;

 

Figure 3.39  Modelica codes for the implementation of single-phase STC model 

3.8.1 Three-phase Transformer 

The existing three-phase transformer models are based on three single-phase transformers as 

described in Section 3.8. The winding data are given in per unit.  The appropriate conversion 

method is based on the actual transformer connections as described below: 

𝑍𝑏1 = V𝑏1
2 /S𝑏 (3-107) 

𝑍𝑏2 = V𝑏2
2 /S𝑏 (3-108) 
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I𝑏1 = 1000S𝑏/V𝑏1 (3-109) 

Where V𝑏1 and V𝑏2 are respectively nominal RMS line-to-line voltages on windings 1 and 2 in kV,  

S𝑏 is the nominal transformer nominal power in MVA and I𝑏1 represents the nominal current in 

winding 1. 

3.8.1.1 Delta-Delta Configuration 

For this configuration, the actual values are computed using (3-110)-(3-116) with  

C1 = 3 and C2 = 3. In these equations,  C1 and C2 are coefficients whose values are defined based 

on the configuration in winding 1 and 2. These coefficients are 1 and 3, respectively, for wye and 

delta connections. D𝑤 is a model parameter which defines the ratio of winding impedance on 

winding 1. 

C1 = 3 (3-110) 

C2 = 3 (3-111) 

R1 = C1R 𝑝𝑢𝑍𝑏1D𝑤 (3-112) 

R2 = C2R𝑝𝑢𝑍𝑏2(1 − D𝑤) (3-113) 

L1 = C1X𝑝𝑢𝑍𝑏1D𝑤/(2𝜋𝑓) (3-114) 

L2 = C2X𝑝𝑢𝑍𝑏2(1 − D𝑤)/(2𝜋𝑓) (3-115) 

R𝑚 = C1R𝑚,𝑝𝑢𝑍𝑏1 (3-116) 

The actual nonlinear characteristic flux and current are computed using: 

φ𝐿,   𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 =
1000√2 V𝑏1

2𝜋𝑓
φ𝐿,   𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟,𝑝𝑢 (3-117) 

I𝐿,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = √
2

3
 I𝑏1I𝑚𝑎𝑔,𝑝𝑢 (3-118) 

where 𝑓 denote the frequency, the ratio is given by: 

𝑛 = V𝑏2/V𝑏1 (3-119) 
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3.8.1.2 Configurations DY +30, DY -30, DYg +30 and DYg -30 

For these configurations, the actual values are computed with (3-112)-(3-116) with  

C1 = 3 and C2 = 1. The equations (3-117) and (3-118) remained unchanged, and the ratio is 

calculated by: 

𝑛 = V𝑏2/√3V𝑏1 (3-120) 

3.8.1.3 Configurations YD +30, YD -30, YgD +30 and YgD -30 

For these configurations, the equations (3-112)-(3-116) are repeated with  

C1 = 1 and C2 = 3. The actual nonlinear characteristic flux and current vectors are computed 

using: 

φ𝐿,   𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 =
1000√2 V𝑏1

√3 2𝜋𝑓
φ𝐿,   𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟,𝑝𝑢 (3-121) 

I𝐿,   𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = √2 I𝑏1I𝑚𝑎𝑔 (3-122) 

The ratio is given by: 

𝑛 = √3 V𝑏2/V𝑏1 (3-123) 

3.8.1.4 Configurations YY and YgYg 

For these configurations, the equations (3-112)-(3-116) are repeated with  

C1 = 1 and C2 = 1. The actual nonlinear characteristic flux and current vectors are computed by 

(3-121) and (3-122). The ratio is given by: 

𝑛 =  V𝑏2/V𝑏1 (3-124) 

Figure 3.40 illustrates the GUI of the three-phase transformer with the configuration of YgD-30. 

The model parameters are defined similarly to the same model in EMTP®. Figure 3.41 shows the 

Modelica codes for the implementation of the transformer as described in Section 3.8.1. The first 

part of the codes is related to the parameters of the model. This part starts with parameter Real. 

The second part computes the actual values of parameters. Nonideal_Unit_A, 

Nonideal_Unit_B, and Nonideal_Unit_C are the single-phase units respectively defined 

for phases a, b and c and reused in the three-phase model. Reusability of models is one of the 
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advantages of the object-oriented modeling approach created in Modelica. In the equation 

compartment, the connections of components are defined.  

 

 

Figure 3.40 The GUI of three-phase transformer type YgD01 
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model YgD01 "YgD01/YgD-30 three phase transformer"

   //3-phase data parameters in PU

  import MSEMT.NonElectrical.Constants.pi;

  parameter Real S(unit = "MVA", start = 200) "Nominal power";

  parameter MSEMT.NonElectrical.Units.Frequency f(start=60) "Nominal frequency";

  parameter Real v1(unit = "kV RMSLL", start = 315) "Winding 1 voltage";

  parameter Real v2(unit = "kV RMSLL", start = 120) "Winding 2 voltage";

  parameter Real R(unit = "PU", start = 0.00375) "Winding R";

  parameter Real X(unit = "PU", start = 0.015) "Winding X";

  parameter Real D(start = 0.9) "Winding impedance on winding 1";

  parameter Real MD[:, 2] = [0.002, 1; 0.01, 1.075; 0.025, 1.15; 0.05, 1.2; 0.1, 1.23; 2., 1.72] 

"Saturation characteristic [ i1(PU) ,  phi1(PU) ;  i2 , phi2 ; ... ]";

  parameter Real Rmg(unit = "PU", start = 500) " Core loss resistance";

  final parameter Integer C1 = 1;

  // Y:C1=1 Delta: C1=3

  final parameter Integer C2 = 3;

  // Y:C2=1 Delta: C2=3

  // base parameters

  final parameter Real Z_b1 = v1 ^ 2 / S "Impedance base side 1";

  final parameter Real Z_b2 = v2 ^ 2 / S "Impedance base side 2";

  final parameter Real i_b1 = 1000 * S / (sqrt(3) * v1) "Base current side 1";

    //Actual parameters

  final parameter Real R1 = C1 * R * Z_b1 * D "Resistance on side 1";

  final parameter Real R2 = C2 * R * Z_b2 * (1 - D) "Resistance on side 2";

  final parameter Real L1 = C1 * X * Z_b1 * D / (2 * pi * f) "Inductance on side 1";

  final parameter Real L2 = C2 * X * Z_b2 * (1 - D) / (2 * pi * f) "Inductance on side 2";

  final parameter Real Ratio = (v2 / v1)* sqrt(3);

  final parameter Real Rm = C1 * Rmg * Z_b1 "Magnetizating resistance on side 1";

  final parameter Real im[:] = sqrt(2) * i_b1 * MD[:, 1];

  final parameter Real Phim[:] = (1000 * sqrt(2) * v1 * MD[:, 2]) / (2 * pi * f * sqrt(3));

  final parameter Real MDD[:, 2] = [im, Phim];

  MSEMT.Connectors.PosPlug k ;

  MSEMT.Connectors.PosPlug m ;

  MSEMT.Connectors.PlugToPin_p Ph_a(k=1, m=3) ;

  MSEMT.Connectors.PlugToPin_p Ph_b(k=2, m=3) ;

  MMSEMT.Connectors.PlugToPin_p Ph_c(k=3, m=3) ;

  MSEMT.Connectors.PlugToPin_p Ph_A(k=1, m=3) ;

  MSEMT.Connectors.PlugToPin_p Ph_B(k=2, m=3) ;

  MSEMT.Connectors.PlugToPin_p Ph_C(k=3, m=3) ;

  MSEMT.Electrical.RLC_Branches.Ground ground1 ;

  MSEMT.Electrical.Transformers.Nonideal_Unit Nonideal_Unit_A(final Lmag = MDD,final Lp = L1, final Ls = 

L2, final Rmag = Rm, final Rp = R1, final Rs = R2, final t = Ratio)  ;

  MSEMT.Electrical.Transformers.Nonideal_Unit Nonideal_Unit_B(final Lmag = MDD,final Lp = L1, final Ls = 

L2, final Rmag = Rm, final Rp = R1, final Rs = R2, final t = Ratio)  ;

  MSEMT.Electrical.Transformers.Nonideal_Unit Nonideal_Unit_C(final Lmag = MDD,final Lp = L1, final Ls = 

L2, final Rmag = Rm, final Rp = R1, final Rs = R2, final t = Ratio)  ;

equation

  connect(Nonideal_Unit_A.Pin_i, Ph_a.pin_p) ;

  connect(Ph_a.plug_p, k) ;

  connect(Nonideal_Unit_B.Pin_i, Ph_b.pin_p) ;

  connect(Ph_b.plug_p, k) ;

  connect(Nonideal_Unit_C.Pin_i, Ph_c.pin_p) ;

  connect(Ph_c.plug_p, k) ;

  connect(Nonideal_Unit_C.Pin_j, ground1.p) ;

  connect(Nonideal_Unit_B.Pin_j, ground1.p) ;

  connect(Nonideal_Unit_A.Pin_j, ground1.p) ;

  connect(Nonideal_Unit_A.Pin_k, Ph_A.pin_p) ;

  connect(Ph_A.plug_p, m) ;

  connect(Nonideal_Unit_C.Pin_m, Nonideal_Unit_A.Pin_k) ;

  connect(Nonideal_Unit_A.Pin_m, Nonideal_Unit_B.Pin_k) ;

  connect(Ph_B.pin_p, Nonideal_Unit_B.Pin_k) annotation ;

  connect(m, Ph_B.plug_p) ;

  connect(Nonideal_Unit_B.Pin_m, Nonideal_Unit_C.Pin_k) ;

  connect(Ph_C.pin_p, Nonideal_Unit_C.Pin_k);

  connect(Ph_C.plug_p, m);

end YgD01;

 

Figure 3.41  Modelica codes for transformer type YgD01 
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3.9 Block Diagrams 

Block diagrams are used in the MSEMT library to model control systems, such as exciters and 

governors for synchronous generators and various other functions required for controlling power 

systems. The models are frequently used in test cases. Some available models are explained in this 

section to demonstrate the branch of NonElectrical>Blocks and the simplicity of adding missing 

control system components in Modelica.  

3.9.1 Lead-Lag Compensator 

Lead and lag compensators are extensively used in control systems. A lead compensator is to 

increase the stability or speed of response of a system. A lag compensator aimes to reducethe 

steady-state error.  

A first-order lead compensator G(𝑠) can be designed using the transfer function given by: 

G(𝑠) = 𝐾𝑐

𝑠 − 𝑧0

𝑠 − 𝑝0
 (3-125) 

where the magnitude of 𝑧0 is less than the magnitude of 𝑝0.  

The equation (3-125) can also be rewritten as: 

G(𝑠) = 𝐾𝑐

𝑇1𝑠 + 1

𝑇2𝑠 + 1
 (3-126) 

where 𝑇1 and 𝑇2 are respectively lead and lag time constants.  

Figure 3.42 shows the Modelica codes for the implementation of the lead-lag compensator.  
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block LeadLagCompensator

  extends Modelica.Blocks.Interfaces.SISO;

  parameter Real K "Gain";

  parameter MSEMT.NonElectrical.Units.Time T1 "Lead time constant";

  parameter MSEMT.NonElectrical.Units.Time T2 "Lag time constant";

  parameter Real y_start "Output start value"

    annotation (Dialog(group="Initialization"));

  parameter Real x_start=0 "Start value of state variable"

    annotation (Dialog(group="Initialization"));

  MSEMT.NonElectrical.Blocks.RealExpression par1(y=T1);

  MSEMT.NonElectrical.Blocks.RealExpression par2(y=T2);

  MSEMT.NonElectrical.Blocks.TransferFunction TF(

    b={K*T1,K},

    a={T2_dummy,1},

    y_start=y_start,

    initType=Modelica.Blocks.Types.Init.InitialOutput,

    x_start={x_start});

protected

  parameter Modelica.Units.SI.Time T2_dummy=if abs(T1 - T2) < Modelica.Constants.eps

       then 1000 else T2 "Lead time constant";

equation

  if abs(par1.y - par2.y) < Modelica.Constants.eps then

    y = K*u;

  else

    y = TF.y;

  end if;

  connect(TF.u, u);  

end LeadLagCompensator;

 

Figure 3.42  Implementation of Lead-Lag Compensator in Modelica 

3.9.2 Hold_to 

 This device captures as output the value presented by the input at 𝑡 = 0. It means for 𝑡 > 0, the 

output value y is calculated as u(0). In the implementation of this block, the Modelica keyword 

initial() is used. This function returns true during the initialization phase and false otherwise. 

 

block Hold_t0

  MSEMT.Connectors.RealInput u;

  MSEMT.Connectors.RealOutput y ;

equation

  when { initial()} then

    y = u;

  end when;

end Hold_t0;

 

Figure 3.43  Implementation of Hold_t0 
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3.9.3 Park’s Transformation 

Figure 3.44 shows the pieces of code for the implementation of ParkTransform block. The 

rotating frame angular position is defined by the input variable theta, in rad. This block 

implements both power-variant and power-invariant transformations. In this block, it is possible 

to align the d-axis or q-axis to phase-a. This function is employed in the synchronous machine 

model. 

 

block ParkTransform "This block implements a rotating reference frame transformation commonly 

known as the Park transform"

//The block implements a power invariant a-phase to d-axis alignment

  import PI=MSEMT.NonElectrical.Constants.pi;

  parameter Integer Type=1 "Phase-a axis alignment"

      annotation(Dialog(group="Parameters"),choices(

      choice=1 " d-axis is aligned to phase a",

      choice=2 " q-axis is aligned to phase a"));

  parameter Boolean PowerInvariant=true

      annotation (Evaluate=true, choices(checkBox=true));

  final parameter Real  K1=if PowerInvariant then sqrt(2/3) else 2/3;

  final parameter Real  K2=if PowerInvariant then sqrt(1/2) else 1/3;

  MSEMT.Connectors.RealInput u[3] ;

  MSEMT.Connectors.RealInput theta ;

  //Y={Yd,Yq,Y0}

  MSEMT.Connectors.RealOutput y[3];

  Real T[3,3] "Transformation matrix";

equation

  if     Type==1 then

  T = K1 * [cos(theta), cos(theta-2*PI/3), cos(theta+2*PI/3);

            sin(theta), sin(theta-2*PI/3), sin(theta+2*PI/3);

             K2       ,         K2       ,         K2      ];

  elseif Type==2 then

  T = K1 * [sin(theta), sin(theta-2*PI/3), sin(theta+2*PI/3);

            cos(theta), cos(theta-2*PI/3), cos(theta+2*PI/3);

             K2       ,         K2       ,          K2     ];

  end if;

  y=T*u;

end ParkTransform;

 

Figure 3.44  Implementation of Park's transformation 

3.10 Functions  

This section includes some functions used in the MSEMT library. Implementation of these 

functions, however, is simple but necessary to have a comprehensive library. 



    117 

 

3.10.1 Clark’s Transform 

Clark’s matrix is used in the modeling of the CP-line for modal transformation. For an m-phase 

balanced transmission line, the matrix is programmed as illustrated in Figure 3.45. This function is 

used in the CP-line model. 

function Clark_Transformation "The alpha-beta transformation (also 

known as the Clark transformation) for m-phase system"

  extends UserGuide.Icons.Function;

  input Integer m = 3; // "Number of phases"

  output Real[m, m] Ti; 

algorithm

  for col in 1:m loop

    for row in 1 : m loop

      if col == 1 then

        Ti[row, col] := 1 / sqrt(m);

      elseif

            ( col < row) then

        Ti[row, col] := 0;

      elseif

            ( col == row) then

        Ti[row, col] := -(col - 1) * (1 / sqrt(col * (col - 1)));

      else

        Ti[row, col] := (1 / sqrt(col * (col - 1)));

      end if;

    end for;

  end for;

end Clark_Transformation;

 

Figure 3.45  Implementation of Clark's transformation 
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 ACCURACY ASSESSMENT OF TRANSMISSION LINE 

MODELS 

In this chapter, two numerical examples are presented for the validation of line/cable models. To 

show the accuracy of the proposed approach, the EMTP® trapezoidal/backward Euler solver is set 

as a reference. The 2-norm cumulative relative error is used to measure the error level against the 

reference software, EMTP®. 

4.1 Test Case for Underground Cable 

Figure 4.1 shows the layout and electrical circuit of a 3-phase, 6-conductor cable intended for 

measuring the accuracy of the Modelica wideband model. The length of the cable is 15 km. The 

cores at the receiving end of the cable are left open, and the shield is grounded at both sides of the 

line through a resistance of 1 Ω. In this example, the matrix 𝐇 has been approximated by 42 

complex poles while 14 real poles are used for fitting of 𝐘𝑐. The fitting parameters are read from 

EMTP®. The simulation is carried out using the trapezoidal solver for 50 ms with a time-step of 10 

μs in EMTP® and OpenModelica. The closing times of each phase are phase-a 0 s, phase-b 0.63 

ms, and phase-c 0.4 ms. The system is energized by a 3-phase, 60 Hz, 169 kV sinusoidal voltage 

source. 

AC
169 kV

a b c

1.1 m

(a)

(b)

0.25 m

0.5 μF

0.25 m

1Ω 1Ω 

1Ω 1Ω 

1Ω 1Ω 

1 k  

RL

r1
r2

r3 r4
r5

SW

 

Figure 4.1  Underground cable system, 169 kV, 3-phase, 6-Conductor (a): Physical layout (b): 

Electrical connection diagram 
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Figure 4.2 shows the core and shield voltages at the receiving end of the cable. A black dashed line 

is used for EMTP® waveforms, and a solid line is for Modelica results. High-frequency oscillations 

are observed in the core and sheath voltages because of the source capacitance. The values obtained 

with the Modelica-based model are perfectly superposed to those obtained with EMTP®. The 2-

norm error during the transient state [0,10] ms is 0.9 %. The simulation CPU time is 14.34 s 

compared to EMTP®, which is 0.57 s. 
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Figure 4.2  Voltage waveforms in receiving-end of WB-line model for (a): 3-core conductor (b) 

Shield conductors, black dashed line is EMTP®, solid line is Modelica 

4.2 Test Case for Aerial Transmission Line 

Figure 4.3 shows the IEEE 13-Bus distribution test circuit [106], used to test accuracy and 

performance with Modelica. The circuit uses the CP-line models. The PQ-loads are modeled with 

RLC circuits using power-flow results obtained from EMTP®. The distribution network is 

operating at 4.16 kV. The network contains 9 three-, two- and single-phase, short-length, 
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untransposed transmission lines, shunt capacitors, a transformer, and unbalanced loads. The mutual 

effects are assumed between the phases of transmission lines [107]. 
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Figure 4.3  Single line diagram of IEEE 13-Node with the CP-line model. Earth fault occurs to 

the bus B675 at 60 ms, CB2 is opened 100 ms after the fault 

 

The switch CB1 is initially open. The simulation time-step is set to 0.2 μs since it is required to be 

smaller than the propagation delay of the shortest TL. The simulation period is 200 ms. For the 
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study of transient performance, a phase a-to-ground fault with the resistance of 1 Ω is applied to 

the bus B675 at 60 ms. After the fault is detected by the protection relays (not simulated here), an 

opening command is immediately sent to the breaker CB2 at t =160 ms. 

In the first scenario, simulation is run using the trapezoidal solver in Modelica and EMTP®; then, 

the results are graphically and quantitatively compared with EMTP®. Figure 4.4.(a) depicts the 

voltage waveforms of phases-a, -b, and -c at bus B675 denoted by red, green, and blue curves. The 

black dashed line represents the EMTP® results. The initial switching leads to distortion on all three 

phases; then, the system reaches steady-state at t = 35 ms. The plots match perfectly. The voltage 

profile is 0.99 pu for phase-a, 1.05 pu for phase-b, and 0.98 pu for phase-c. Figure 4.4.(b) presents 

the voltage waveforms in the interval of fault and post fault. In this case, both curves have an 

excellent agreement as well [107].  
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Figure 4.4  (a) Voltage waveforms at Bus 675 at the interval [0, 40] ms, black dashed line is 

EMTP®, Solid line is Modelica; (b) transient state after the occurrence of fault at 60 ms till the 

line is tripped at 160 ms 
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Figure 4.5.(a) illustrates the current waveforms passing through CB2. The maximum current at 

phase-a reaches 3 kA during the fault. There is a high-frequency transient in the current waveforms 

of phase-b and-c at the moment of fault. A high-frequency transient on current waveforms in the 

interval of [0, 35] ms can be observed in Figure 4.5.(b) as well. The transient components of 

voltages and currents are due to the capacitance charging of two healthy phases and discharging of 

faulted phase capacitance. An excellent superposition is also observed in the current curves. To 

compare with EMTP® results, the 2-norm cumulative relative error is computed for voltage at 

B675: it is 1.6911e-07%, 0.9552e-07% and 3.2600e-07% for phases-a, -b and -c, respectively 

[107]. 

 

Figure 4.5: (a) Phase current waveforms of CB2, black dashed line is EMTP®, solid line is 

Modelica; (b) transient state in the interval [0, 35] ms 

In the second scenario, the simulation is repeated using the variable-order adaptive time-step 

solvers: DASSL [71] and IDA [78] with the following settings: initial step size is 0.2 μs, the 
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maximum step size is 0.02 s, maximum integration order is 2. Due to the strict separation between 

solvers and models in Modelica, it is easy to switch to another numerical integration method and 

observe the results. Adaptive solvers use a local truncation error scheme to adapt the current time-

step to what is going on in the simulation. During transients, the time-step is decreased to catch the 

transient phenomena completely while increasing during the steady-state to increase computational 

performance. The main advantage of the variable time-step solver is that the user does not have to 

set the time step for a specific analysis,e.g., electromagnetic or electromechanical transient studies. 

Table 4.1shows the 2-norm error computed for voltage signals at B675. As can be observed, the 

precision of variable-step solvers is very close to the second-order fixed-step trapezoidal solver 

[107]. 

The CPU time for DASSL and IDA solvers are 83.680 s and 81.576 s, respectively. The value for 

EMTP® is 8.715 s. It shall be noted that the CPU time for simulation in the OpenModelica 

environment includes logging of all variables. All tests are performed on a desktop with Intel(R) 

Xeon(R) CPU E5-2650 v4 @ 2.20GHz, 2201 MHz processor, and 32 GB of RAM. 

Table 4.1  2-norm cumulative relative error comparison 

Phase/Solver Phase a Phase b Phase c 

DASSL 1.8790e-08 % 1.1445e-08% 5.8530e-08% 

IDA 2.6843e-09 % 1.9535e-10% 6.7485e-09% 

4.3 Conclusion 

The proposed WB- and CP-line models provide results identical to those from the EMTP®. 

However, the environment demonstrates several declarative language modeling advantages: 

models are implemented in very few lines of code, are easily reusable, modifiable, and highly 

portable. In addition, the possibility to switch from one solver to another is a native feature. 

Notwithstanding, the conventional EMT-type tools provide faster computation time in the ratio of 

10:1 for our initial test cases provided above. Further analysis on this aspect is conducted next. 

Further developments of the MSEMT library will help assess and identify the potential challenges 

for concrete large-scale transient electromagnetic simulations [107].  
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 IEEE 39-BUS TEST CASE 

5.1 Introduction 

This chapter presents simulation results of the modified IEEE 39-bus benchmark system [108] to 

validate the accuracy of the proposed models. The same test case is also simulated with EMTP® 

[49] as reference software. The results are compared with the wideband line models.  

Figure 5.1.(a) illustrates the IEEE 39-bus network created in the Modelica using the MESEMT 

library. The network includes 34 transmission lines (WB-line model), 10 power plants on buses 

B30-B39, each consists of a synchronous machine, machine controls, and transformer. There are 

19 load transformers with static load models. The voltage ratio of load transformers is 345/25 kV, 

and the winding connection is YgD01. IEEE 39-bus network contains a three-winding 

345/300/12.5kV YgYgD grid transformer which connects buses B19 and B20. The primary 

winding is connected to bus B19, the secondary is coupled to bus B20, and the tertiary is open 

circuit. The short-circuit data of this transformer is given in Table 5.1. 

Table 5.1 IEEE-39 grid transformer data (YgYgD) [108] 

Bus Bus R12 R13 R23 X12 X13 X23 Tap S U1 U2 U3 

19 20 0.0022 0.0058 0.0058 0.193 0.292 0.1 1.06 1400 345 300 12.5 

 

The reactive power compensator used in this benchmark is a 92MVA shunt capacitor on bus B24. 

Load models are based on constant impedance calculated using the voltage obtained by the load-

flow solution (Table 2-13 of [108]) of EMTP®. The models of all three-phase transformers consist 

of single-phase units (STC model). The magnetization branch, including the nonlinear inductor is 

placed on the high-voltage side. The model uses a piecewise linearly interpolated curve to represent 

saturation. 

Figure 5.1.(b) shows the submodel of PowerPlant 03, which contains a single-mass Wye grounded 

configuration synchronous machine, the governor IEEEG1 [97], exciter ST1 [96], a step-up 
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369.15/20 kV,1000MVA transformer with the connection type of YgD01, first-order filter, and 

block for conversion of terminal voltage from dq frame to phase frame.  
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Figure 5.1.(a): IEEE 39-bus network, which is designed in Modelica using the MSEMT library 

incorporating the WB-line model. (b): the submodel of PowerPlant03 
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The transient response scenario is illustrated in Figure 5.2.a. A temporary phase-to-phase fault 

occurs on phases ‘a’ and ‘b’ of TL_14_15 near B15 at t = 100 ms followed by the isolation of the 

line at t = 200 ms (i.e., breakers BRm and BRk open simultaneously after 6 cycles). The fault is 

cleared at t = 300 ms; then, the line is reconnected at t = 450 ms. 

Re-energizing the TL introduces high-frequency transient oscillations and allows us to investigate 

the accuracy of transformer models in nonlinear operation. For this purpose, the curve of flux 

versus current for load transformer 15, which is located near the faulted bus, is compared with 

EMTP®.  

Numerical tests are performed using the variable-step IDA solver with the tolerance of 1e-6 in 

OpenModelica[30] and Trapezoidal/Backward Euler integrator in EMTP® with a step size of 25 

µs. The Modelica network contains 12 648 DAEs. There is no initialization for the simulations 

with Modelica. 
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Figure 5.2  a) Schematic of the faulted zone of IEEE 39-bus network created in Modelica GUIs; 

(b) the sub-circuit of Load15, the circuit contains a three-phase YgD-30 load transformer (STC 

model) and a constant impedance load model 
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5.2 IEEE 39-bus Incorporating WB-Line Models 

The vector fitting parameters of the WB-line model for transmission lines of IEEE 39-bus network 

are calculated in EMTP® for 8 decades starting at 𝑓𝑚𝑖𝑛 = 0.1 Hz. The maximum orders of fitting 

for the propagation matrix, (𝑁𝑖
𝐇) and admittance matrix (𝑁𝐘𝑐

), are 7 and 9 respectively [75]. 

Figure 5.3.(a) shows the simulation results presenting phase voltage waveforms at the m-end of 

TL_14_15. The close-up plot of phase voltages during re-energization of the line after clearing the 

fault is observed in Figure 5.3.(b) As can be seen from the plots, the results obtained with Modelica 

match perfectly the EMTP® results [75]. 
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Figure 5.3  (a) voltage waveforms at the m-end of TL_14_15; (b) close-up view after re-

energization of TL_14_15 

Accuracy assessment is carried out in Figure 5.4 by drawing the graph of relative errors for voltage 

waveforms in Figure 5.3.(a). The slight difference is justified by the different methods of 
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discontinuity handling, control system implementation, and numerical accuracy of the solver in 

each simulation tool.  
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Figure 5.4  Assessment of accuracy for Modelica-based simulation: relative errors of phase 

voltages at the m-end of TL_14_15 

5.3 Solution Evaluation for STC Model 

The simultaneous solution for nonlinear functions in Modelica can be verified by demonstrating 

that all solution points remain on the same nonlinear characteristic segments for both simulations. 

This is carried out in Figure 5.5 for the nonlinear inductor of the LoadTransfo15 (see Figure 

5.2.(b)). It is observed that both solutions are precisely on the magnetization curve of 

LoadTransfo15, and no overshooting or other instabilities are observed in the boundary points of 

linear segments[75].  

In both simulations, the problem is solved through an iterative method, and the need for changing 

the segment is realized before the last point has been within its improper range. Mathematically 

speaking, IDA is an adaptive solver, and when simulation reaches a breakpoint (either state event 

or time event), it reduces the step size; once the last point of the current segment is solved, the 

segment change is accepted [75]. 
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Figure 5.5  Superposition of magnetizing inductance in the LoadTransfo15; zoom-in view of 

knee-point solutions 

5.4 Evaluation of SM Model Accuracy 

In this section, the behavior of the proposed SM model in an unbalanced operation is examined. 

For this purpose, the generator connected to the B32 in the PowerPlant_03 (see Figure 5.1.(b))  is 

selected as the nearest generator to the fault point. The resulting transients of stator current in 

phase-a (𝑖𝑎), is depicted in Figure 5.6. As it can be observed, the transient responses produced by 

Modelica match with the reference solutions. 
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Figure 5.6  Stator current in phase-a (𝑖𝑎), for the generator in PowerPlant_03 

Figure 5.7 illustrates the transient current computed in the damper kq1. One can observe that all 

transients fit the reference solution obtained by EMTP®. 
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Figure 5.7  Damper winding current, 𝑖𝑘𝑞1, for the generator in the PowerPlant_03 

5.5 Evaluation of Accuracy for Controllers 

Figure 5.8 shows the output of the exciter in the PowerPlant_03 (see Figure 5.1.(b)), which controls 

the field voltage of the generator connected to the B32. As one can observe, both solutions are 

indistinguishable. 

Similarly, the mechanical power regulated by the governor in PolwerPlant_03 (see Figure 5.1.(b)) 

is compared in Figure 5.9. It is observed that the governor controls the output power proportionally 

to rotor speed, and both simulation results are in excellent agreement. Figure 5.10 illustrates the 

rotor speed of the same generator. Simulation results are perfectly identical. 
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Figure 5.8  Field voltage 𝐸𝑓𝑑, regulated by the exciter in PowerPlant_03 
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Figure 5.9  Mechanical power 𝑃𝑚𝑒𝑐ℎ, regulated by the governor in PowerPlant_03 
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Figure 5.10  Rotor speed 𝜔𝑟,  for the generator in PowerPlant_03 

5.6 Runtime Benchmark 

The objective is to evaluate the efficiency of the Modelica environment compared with the 

Simscape Electrical Specialized Power Systems (SPS) [43] library in Simulink (R2020b) and 

EMTP®. Simulation in Simulink is carried out in discrete mode [43] with Tustin backward Euler 

solver (∆𝑡 = 25 𝜇𝑠). The variable step solver is ode23tb [109]. It is noted that SPS is comparable 

to Modelica in its usage of state-space solution of network equations. However, the handling of 

nonlinearity is different from the Modelica solution method (see Section 1.5.1.2).  

For the efficiency of a solver, three parameters are considered: total CPU time, the number of 

timesteps, and CPU-time for one grid interval (CGI), i.e., CPU time divided by the number of 

timesteps. Table 5.2 presents the numerical details of the simulation of the IEEE 39-bus network 

employing the WB-line model. The simulation is repeated with the CP-line model; the solver and 
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performance details are given in Table 5.3. As one can see, the CPU time of the Modelica 

environment is not satisfactory compared to EMTP® in both cases; however, the Modelica offers a 

better runtime than Simulink. Modelica has the lowest CPU time per timestep after EMTP® as well 

[75]. 

Although Modelica offers computational speed advantages over existing environments, such as 

Simscape Electrical (Specialized Power System), its performance is not yet comparable to 

specialized simulation packages, such as EMTP®.  

 

Table 5.2  Comparison of simulation performance for IEEE 39-bus network using the WB-model  

Simulator OpenModelica Simulink (SPS) EMTP® 

Solver IDA Trap/BE / ode23tb Trap/BE 

Solver type variable step discrete / variable step fixed step 

Tolerance Tol:1e-3  Tol:1e-6 - 

∆𝑡 - 25 𝜇𝑠 25 𝜇𝑠 

CPU time (s) 9 657 10 620 23.8 

Number of time-steps 317 315 24 000  34 741 

CGI (ms) 30.43 442.5  0.68 

 

Table 5.3  Comparison of simulation performance for IEEE 39-bus network using CP-model 

Simulator OpenModelica Simulink (SPS) EMTP® 

Solver IDA TBE / ode23tb Trap/BE 

Solver type variable step discrete / variable step fixed step 

Tolerance Tol:1e-6  Tol:1e-6 - 

∆𝑡 - 25 𝜇𝑠 25 𝜇𝑠 

CPU time (s) 366 1 801 13 

Number of time-step s 38 945 24 000  34 704 

CGI (ms) 9.39 75.04  0.37 

5.7 Conclusion 

This work contributed a new approach to the simulation of electromagnetic transients. It is based 

on the high-level programming environment of Modelica. The new approach is based on modern 

concepts of programming such as declarative, equation-based, object-oriented paradigms, which 

are all unified in Modelica.  
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In this chapter, MSEMT an EMT-detailed library containing linear and nonlinear power electric 

components was validated. The models yield results identical to those from the EMTP with similar 

numeral stability and accuracy. It was demonstrated that the proposed models are implemented in 

a few lines of code, are simply modifiable, expandable, and highly legible. The formulation of 

models is explicitly based on their true mathematical equations. This achievement has a significant 

impact on model development efficiency and standards. It is also noted that MSEMT is a powerful 

environment for power system transients education. Also, Modelica is compatible with the FMI 

and can be used for co-simulation and model exchange. Although Modelica offers computational 

speed advantages over existing environments, such as Simscape Electrical (Specialized Power 

System), its performance is not yet comparable to specialized simulation packages, such as EMTP. 

Further research is carried out to improve performance. 
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 DYNAꞶO HYBRID C++/MODELICA SOLUTION 

Many techniques have been proposed over the years to accelerate the simulation speed in Modelica 

simulators, such as using FPGA [115], solver manipulation [116], DAE-mode compilation, power 

system-specific solvers [88], or efficient Jacobian calculations [117]. Despite these efforts and 

large improvements, the performance of pure Modelica simulators such as OpenModelica [30], 

Dymola [31] remains a barrier for industrial applications and large-scale systems [122].  

A hybrid C++/Modelica solution called Dynaωo [61], [62], [118] was proposed for simulation in 

the phasor domain to bypass the limitations encountered with complete Modelica tools while 

ensuring the advantages of an equation-based approach. Dynaωo is an open-source simulation 

package primarily designed by RTE for short- and long-term stability analysis. It aims at providing 

a transparent, flexible, interoperable, and robust simulation tool that could ease collaboration and 

cooperation in the power system community. This method improves the performances to levels 

similar to domain-specific simulation tools for phasor-domain simulations [118]. The contribution 

of this section is to draw the status of Modelica-based EMT simulations using Dynaωo.  

6.1 Introduction 

The overall goal of the Dynaωo approach is to bypass the limitations of pure Modelica tools for 

large-scale simulations while keeping the advantages provided by the Modelica approach. It can 

also be summed up in two main principles: The intent is to use the Modelica language as much as 

possible for modeling complex elements while sticking to a strict separation between model and 

solver sides while managing to preserve acceptable performances for industrial use. 

To properly understand the design and architecture choices of Dynaωo, it is necessary to recall 

some characteristics of both the Modelica language and Modelica compilers such as 

OpenModelica. Modelica has been historically developed for complex but rather small physical 

problems. Connectivity or graph analysis is difficult and costly to conduct in a pure Modelica 

approach. Backup solutions using external programming languages, such as C or Fortran, exist but 

are pretty difficult to connect and integrate into Modelica models. Native generic Modelica tools 

do both compiling and simulation at run-time. When going to large systems, the compile-time 

(consisting of different steps such as flattening, sorting, and eventually causalizing the equations – 
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depending on the compiling mode ODE/DAE) becomes too costly for large-scale simulations. 

Besides, one should also remember that compiling must be redone even if only parameters are 

modified. Finally, the generated codes provided by native Modelica compilers remain less efficient 

and less optimized than manually written codes in a classical programming language. To avoid 

some of these limitations, Dynaωo uses a hybrid C++/Modelica approach for modeling and a 

unique method that compiles before run-time partial Modelica models.  

Figure 6.1 depicts the structure of Dynaωo. A model can be either directly written in C++ or 

Modelica. The cunning point in Dynaωo is to temporarily create a square model using fictitious 

equations for pending connections (typically currents), to be able to compile the models, and then 

to remove these fictitious equations from the model structure once compiled. It allows compiling 

models one by one to end up with pre-compiled libraries that are only instantiated at run-time. 

Moreover, each of these libraries can be used as many times as needed with different parameter 

values. Once compiled by the OpenModelica compiler, the models are post-processed by Python 

scripts to provide the same methods and have a single formalism for C++ and Modelica models. 

The origin of the model is thus entirely transparent for the rest of the tool and the solvers. 

Solvers are decoupled from models in Dynaωo. New models can be introduced without further 

modifications in the solvers, and new solvers can be tested and used without requiring any action 

on existing models. Moreover, it is straightforward to compare numerical strategies and to observe 

and analyze the impacts on the results and performances as the modeling side is unchanged. Solvers 

and models only exchange a finite set of information needed for solving the system. The modeling 

part notably exposes the following methods to the solving part [61]: 

1. the residual functions 𝐟(𝑡, 𝑦, 𝑦′), which are the system equations evaluated at each time step. 

2. the Jacobian matrix 𝐉(𝑡, 𝑦, 𝑦′) used for the time-step numerical resolution. 

3. the root functions 𝐠(𝑡, 𝑦, 𝑦′), which are used to detect instants of discrete variable changes 

or mode changes (i.e., a change in the form of an equation from 𝑓1 to 𝑓2, such as a limitation).  

4. the mode functions that give the form of an equation at a time t (between 𝑓1 and 𝑓2, for 

example). 
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Figure 6.1  Dynaωo structure and exchanges between solvers and models 

 

6.2 Native Models and Solvers 

Dynaωo contains a set of models and solvers natively available for any user. The provided models 

in the Dynaωo library consist of phasor and simplified models for stability analysis, but no EMT 

model is available. Any solver can be integrated, as long as it contains a few standard methods such 

as initializing the problem, solving it, or reinitializing it. Currently, two solvers are included in 

Dynaωo. The first is the Backward Euler integrator with a variable time-step strategy [63], 

specifically designed for long-term voltage stability simulation.  

The second solver is a variable time-step, variable order DAE system solver called IDA [80], a part 

of the SUNDIALS suite [78]. The integration method in IDA relies on an approximation of the 
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derivative using the kth order backward differentiation formula (BDF) method given by the multi-

step formula (6-1): 

∑𝛼𝑛,𝑗𝑦𝑛−𝑗 = ℎ𝑛�̇�𝑛

𝑘

𝑗=0

 (6-1) 

where 𝑦𝑛 and �̇�𝑛 are the computed approximations to 𝑦(𝑡𝑛) and �̇�(𝑡𝑛), respectively, and the step 

size is ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1. The coefficients 𝛼𝑛,𝑗 are uniquely determined by the order k, and the history 

of the step sizes. On every step, it chooses the order k and step size to control local errors according 

to user tolerances (relative and absolute): k can, in theory, be selected between 1 and 5 but is limited 

to 1 or 2 in Dynaωo to preserve the A-stability property. Two different LU factorization algorithms, 

i.e., KLU [119] and NICSLU [120] are coupled with the algebraic solvers. Both have proven [121] 

efficiency. The IDA has been augmented to include a root-finding feature for event handling while 

integrating the initial value problem. The scheme is based on checking for sign changes of a set of 

user-defined functions, 𝑔𝑖(𝑡, 𝑦, �̇�) for each time step. This scheme yields a high precision at the 

cost of time [78]. 

6.3 Modifications, Open Questions, and Remaining Challenges for EMT 

Simulations 

To run EMT simulations with Dynaωo, it is necessary to do some modifications in the simulation 

codes. After adding the EMT library, it is required to enrich the range of Modelica structures in the 

tool: indeed, some keywords such as “delay” or some Modelica functions were not adequately 

handled by the tool. Once done, a few adjustments also have to be made on the simulation structure 

and the numerical solver: default values have to be adapted to EMT-type simulations, e.g., time-

step minimal values, strategy to reinitialize the solver after an event, or output management. These 

different changes enable us to compile a large part of the library, and at this stage, no barrier related 

to the use and support of the Modelica language is identified that could compromise the long-term 

development of the approach. 

Nevertheless, there are still open issues that will need further investigation and research to make 

definitive statements.  
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6.4 Simulations and Results 

Three case studies have been used to validate the behavior of Dynaωo, enriched by the 

modifications presented in the last section, in terms of accuracy and performance. The obtained 

results and the simulation time are compared with the reference software EMTP®–with the 

Trapezoidal and Backward Euler (BE) method–and a native open-source Modelica tool – 

OpenModelica. Code generation and simulations were carried out on a laptop with Intel Core i7-

6820HQ 2.7 GHz 4 cores - CPU with HT; 62 GB DDR4 main memory; running on Fedora 29 and 

using OpenModelica 1.14.1 and Dynaωo 1.2. The simulations are performed without initialization. 

6.4.1 Case 1: Capacitor Bank Switching 

The schematic for a capacitor bank switching in a 230 kV substation designed in OpenModelica 

using the MSEMT library [75] is presented in Figure 6.2. This case exhibits both low and high 

natural frequencies. It aims at studying how well the solution method performs for stiff DAE 

systems. The two breakers in Figure 6.2 are initially open. CB1 is closed at t=20 ms, which 

introduces high-frequency transient oscillations. CB1 is then opened at t=125 ms and recloses at 

t=175 ms. The capacitor C2 is energized at t=225 ms. The simulation interval is 500 ms with a 

time-step of 10 µs.   
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Figure 6.2  Test circuit 1: 2-step back-to-back capacitor banks designed using MSEMT in 

OpenModelica 

Figure 6.3.(a) superimposes the voltage curves at C1 from Dynaωo and EMTP® for the first 300 

ms. Close-up views of reclosing of CB1 and closing of CB2 are given in Figure 6.3.(b)-(d). It is 
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observed that Dynaωo results perfectly match the EMTP® during transients. At each switching, 

two transient events are observable: low frequency and high-frequency oscillations. For example, 

energizing C1 causes oscillations with frequencies of 27.26 kHz (it is not observable with th) and 

340 Hz (see Figure 6.3.(c)), respectively. At the instant of closing of CB2, the fast transient is 8220 

Hz, whereas the slower transient is 246 Hz, as observed in Figure 6.3.(d) and Figure 6.3.(b), 

respectively. No numerical instability, e.g., numerical oscillations, are identified during the 

simulation. 
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Figure 6.3  (a): Voltage waveforms on C1; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10 μs, Tol=1e-6; 

EMTP® solver: Trapezoidal/BE, ∆𝑡 = 10 μs. (b): Zoom-in view of voltage curves after reclosing 

of CB1 and closing CB2. (c): Low-frequency oscillations of 340 Hz. (d): High-frequency 

oscillations of 8220 Hz due to energization C2 
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Table 6.1 presents the performances obtained for Dynaωo and OpenModelica when using the IDA 

solver with the following parameters: initial time-step and maximum time-step is 10 µs, relative 

and absolute accuracy are 1e-6, and the maximum order is 2. One should also note that IDA has 

been modified in Dynaωo to introduce a minimum step size: its value is set to 1e-10 s in our case. 

Results are compared with EMTP® performance obtained with a fixed time-step of 10 µs. The 

simulations have been run 5 times, and the average computing time is extracted. It shows that the 

simulation time in both Modelica-based tools is similar, which is logical as the solver properties 

and the models used are identical. OpenModelica performs better on the pure solving aspects: one 

possible explanation is the handling of the Jacobian calculation; in Dynaωo, the Jacobian is 

evaluated using numerical differentiation while it is directly available in the OpenModelica 

environment. Nevertheless, when adding front-end and back-end times and especially the 

compilation time, Dynaωo becomes 1.79 times faster than OpenModelica [122]. 

 

Table 6.1  Case study 1: Performance comparison 

Simulator Dynaωo 
OpenModelica 

EMTP® 
Comp. Sim. Total (C+S+AP) 

CPU-time(s) 2.34 1.59 2.11 4.21 0.5 

 

Table 6.2 presents the characteristics of the simulations carried out in Dynaωo and OpenModelica, 

especially the number of time-steps solved, the number of Jacobian evaluations, and the number of 

residual equations. It confirms that the overall behavior of IDA in OpenModelica and Dynaωo is 

the same, even if slight differences appear due to the precision chosen for event detection and the 

equation simplifications in both tools. 

 

Table 6.2  Case study 1: IDA behavior during simulation 

Simulator Dynaωo OpenModelica EMTP® 

Number of time-steps 90 818  119 749 50 008 

J evaluations 2 963 2 963 - 

F evaluations 121 481 135 394 - 
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To further evaluate the possibilities of the simulation tool, the simulations have been relaunched 

with different sets of parameters. Performances and accuracy sensitivity of results for different 

tolerances with IDA have been assessed. Table 6.3 shows the performance aspects, while Figure 

6.4.(a) focuses on accuracy. This figure depicts the high-frequency oscillations of voltage phase-a 

on C1 during energizing C2. The number of time points, 𝑛∆𝑡, for different solvers is compared in 

Figure 6.4.(b). It is observed in the curves obtained by the IDA solver, the number of time points 

varies depending on the rate of changes on the curve, and tolerance; e.g. 𝑛∆𝑡,   𝑟𝑒𝑑 > 𝑛∆𝑡,   𝑔𝑟𝑒𝑒𝑛 >

𝑛∆𝑡,   𝑏𝑙𝑢𝑒 and also 𝑛∆𝑡,𝑎 > 𝑛∆𝑡,𝑏. The IDA solver with the tolerance of 1e-6 yields the closest results 

to EMTP® with a time-step of 1 µs whose CPU-time is 3.94 s. Thus, user-defined precision is a 

key and determining parameter for selecting the step size.  
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Figure 6.4  (a): Voltage waveforms on C1, phase-a at the instant of C2 energization, Dynaωo 

solver: IDA with different tolerances; EMTP® solver: Trapezoidal/BE, ∆𝑡 =1 and 10 µs. (b): 

Comparison of the number of time points within 20 µs 
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Table 6.3  Performances for different solving strategies 

Solver CPU-time (s) 
Gain (compared to 

IDA, tolerance = 1e-6) 

IDA (tolerance = 1e-6) 2.34 1 

IDA (tolerance = 1e-5) 1.43 1.63 

IDA (tolerance = 1e-4) 1.02 2.29 

6.4.2 Case 2: Parallel Transmission Line Switching 

Figure 6.5 shows a network equivalent (coupled-RL) feeding a balanced three-phase PQ load of 

500 MW and 100 MVAR at 400 kV through two identical parallel lines. 

The breaker BR1 is initially open and closes at t=0 s. TLM1 and TLM2 are constant-parameter 

(CP) line models. In normal conditions, the line breakers are closed. L1 represents a shunt 

compensator. The load is connected to Bus BOR at t=100 ms. A phase-a-to ground fault with a 

resistance of 1 Ω is applied to the TML2 at t=200 ms. Immediately after detection of the fault by 

the protection relays (not simulated here), an opening command is sent to the breakers BRm2 and 

BRk2 at t=300 ms. Then, the fault is cleared at t=350 ms, and finally, the line breakers are reclosed 

at 430 ms. The simulation time and time-step are set to 500 ms and 5 µs, respectively.  

This scenario aims at validating the accuracy of the delay operator developed in Dynaωo and the 

stability of the solver over discontinuities imposed by several state events.   
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Figure 6.5  Test circuit 2, switching of parallel transmission lines (CP-line model) 
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Figure 6.6 depicts the voltage waveforms at the m-end of TLM2. The black curves represent 

EMTP® results. It is observed that both curves are in excellent agreement.  
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Figure 6.6  (a): Voltage waveforms at the m-end of TLM2; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 5 μs, 

Tol=1e-6; EMTP® solver: Trapezoidal/BE, ∆𝑡 = 5 μs. (b): The close-up view of the energization 

of the line. (c): The zoom-in view of voltage at the m-end of TLM2 when disconnected from both 

sides 

Figure 6.7.(a) illustrates the current waveforms passing through the m-end of TLM2. Figure 6.7.(b) 

zoom in the transients after disconnecting the line. It shows the impact of traveling waves in phase-

a and repeats nearly at each 2𝜏. The current continues oscillating and decreasing- due to the 

resistances of line and fault-until the SW is opened. Figure 6.7.(c) shows the transients at the instant 

of re-energizing TLM2. One can observe that the results match the EMTP® curves fully. 
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Figure 6.7  (a): Current waveforms at the m-end of TLM2. (b): The zoom-in view of current at 

the m-end of TLM2 after disconnecting the line. (c): The zoom-in view of current at the m-end of 

TLM2 at the instant of energizing the line 

 

Similar to Case 1, Table 6.4 reports the performances obtained for Dynaωo and OpenModelica 

when using the IDA solver with the following parameters:  initial time-step and maximum time-

step is 5 µs, relative and absolute accuracies are 1e-6, and the maximum order is 2. The same 

network is simulated with EMTP® with the time step of 5 µs. One can see that Dynaωo presents an 

overall better performance of simulations compared to OpenModelica. In this case, the use of a 

variable time-step solver and the number of Jacobian evaluations, 16,042, are the most penalizing 

points. It is noted that 𝑛∆𝑡,   𝐷𝑦𝑛𝑎Ꞷ𝑜 = 209,871 and 𝑛∆𝑡,   𝐸𝑀𝑇𝑃 = 100,010. 

 

Table 6.4  Case study 2: Performance comparison 

Simulator Dynaωo 
OpenModelica 

EMTP® 
Comp. Sim. Total (C+S) 

CPU-time (s) 18.74  5.31 13.6 19.46 1.6 
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6.4.3 Case 3: Nonlinear Circuit of Surge Arrester  

This case study aims to examine the behavior of Dynaωo for the simulation of nonlinear 

components during very fast transients. The solution of nonlinear systems is accomplished with 

Newton iterations in Dynaωo and EMTP® solvers.  

Figure 6.8 shows the frequency-dependent model proposed by the IEEE W.G. 3.4.11[123] for surge 

arrester modeling. The model represents the arrester as two highly nonlinear resistors, ZnO1 and 

ZnO2, separated by an R-L filter. For slow front surges, the R-L filter is negligible. Thus, ZnO1 

and ZnO2 are effectively connected in parallel. For fast-front surges, the impedance of this filter 

becomes more important and causes a current distribution between the two nonlinear branches. 
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Figure 6.8  Test circuit 3; modeling of an Ohio-Brass ZnO Arrester for a 330 kV Network, 

MCOV=209 kV, d=1.8 m, n=1 

 

Simulation is run for 300 µs with ∆𝑡𝑚𝑎𝑥 = 10 𝑛𝑠, 𝑇𝑜𝑙 = 10−6 in Dynaωo and ∆𝑡 = 10 𝑛𝑠 in 

EMTP®. Figure 6.9 illustrates the voltage and current waveforms of ZnO2 compared with EMTP®. 

The graphs are fully superimposed. Figure 6.10 shows the solution points on the non-linear 

characteristic curve of ZnO2. The solution points are not superimposed but are on the same slope. 

The solutions always remain on the actual nonlinear segments; no overshooting is observed. There 

are no numerical oscillations and instability. The simulation time for different simulators is 

presented in Table 6.5. IDA solves the system with the total number of 31 790 solution points while 

in a fixed-step solver, e.g., Trapezoidal/BE 𝑛∆𝑡 = 30,019.  
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Figure 6.9  Residual voltage and discharge current curves in ZnO2. Dynaωo solver: IDA, 

∆𝑡𝑚𝑎𝑥 = 10𝑛𝑠, Tol=1e-6; EMTP®: Trapezoidal/BE, ∆𝑡 = 10𝑛𝑠 
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Figure 6.10  Voltage vs. current curve of ZnO2; Zoom-in view: comparison of solution points in 

the nonlinear segment 2 

 

Table 6.5  Case study 3: Performance comparison 

Simulator Dynaωo 
OpenModelica 

EMTP® 
Comp. Sim. Total (C+S) 

CPU-time (s) 0.19  0.02 0.15 0.17 0.17 
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6.5 Conclusions 

Modelica is a powerful modeling language for power system simulation based on describing the 

models by implicit DAEs. This chapter demonstrated a hybrid approach to EMT simulations using 

Modelica and C++. The new approach contributes to improving the run-time of EMT-type 

simulation in Modelica. 

The method is based on modern programming concepts such as declarative, equation-based, object-

oriented paradigms, where all unified in Modelica. The improved approach has been validated in 

terms of accuracy and solution speed using EMTP®. The results show that the obtained 

performance is better than pure Modelica tools, e.g., OpenModelica. The obtained results for all 

three cases also confirm the numerical stability of IDA for stiff systems, notably including 

components with nonlinear characteristics. 

The advantages of Dynaωo are not in numerical performance when compared to EMTP® but in 

high-level modeling capabilities. However, it is shown that performance improvements are 

possible, and further research is being conducted on this aspect. 
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 ELECTROMAGNETIC TRANSIENT MODELING OF 

LARGE POWER NETWORKS WITH MODELICA  

7.1 Introduction 

This chapter is designed based on two purposes, first analysis of electromagnetic transient 

simulations in a large network. For this goal, the IEEE 118-bus network is proposed. The second 

purpose is to focus on the accuracy and performance of nonlinear models, including the 

synchronous machines with magnetic saturation (see Section 3.5), surge arrester (see Section 

3.6.2.3), and, finally, arc models (see Section 3.6.2.4).  

The IEEE 118-bus benchmark [109] contains the following models: synchronous generators 

(including saturation model) with controls, transformers, transmission lines, nonlinear inductances, 

and nonlinear surge arresters. The basic models, such as resistance, inductance, and advanced 

models, e.g., various models of transmission line, loads, saturable transformers, synchronous 

machine (without saturation), Controls (machine controls), etc., were already presented in previous 

works [107], [122]. This work focuses on the synchronous machine model with saturation and the 

nonlinear arrester. 

This chapter presents simulation results of the modified IEEE 118-bus benchmark [108], which is 

used to validate the accuracy of the proposed models. The same test case is also simulated with 

EMTP®. The results are compared using the PI-section models for transmission lines. Figure 7.1.(a) 

shows the schematic diagram of the IEEE 118-bus network designed using the developed MSEMT 

library in Modelica. A user-friendly graphical user      

interface (GUI) with an illustrative icon is designed for each component model for entering the 

parameters and drawing networks quickly. The physical connection of components is carried out 

by interconnecting the terminals of appropriate components.  

The IEEE 118-bus circuit consists of 54 generating units with controls (a few power plants contain 

more than one SM; the total number of SMs is 69), 177 transmission lines (RL coupled), 9 three-

winding grid transformers, 145 two-winding transformers (91 Yd1-connected load-serving 

transformers+ 54 generator transformers), and 91 three-phase loads. The voltage levels are 345kV 

transmission, 138kV sub-transmission, 25kV distribution, and {20, 15, 10.5} kV generation. The 

lines are modeled using PI sections. It was impossible to use constant parameter line models with 
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propagation delay because of the very high computational cost of the Modelica built-in delay 

operator. Simulation in both simulators, i.e., EMTP® and Modelica, start with zero initial states. 

The network includes 519 nonlinear inductances and 1909 RLC elements. All SMs use a single-

mass Wye-grounded model, including the normalized saturation characteristics. The models of all 

three-phase transformers consist of single-phase units. The nonlinear magnetization branch is 

placed on the high-voltage side. The model uses a piecewise linearly interpolated curve defined by 

8 points to represent saturation. All loads are represented by a constant impedance model. 
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Figure 7.1 (a): IEEE 118-bus Network including 177 PI-section models of TL sketched using the 

Modelica GUI. (b): the faulty zone; a phase-b-to-phase-c fault at k-end of Line_70_75. The 

powerplant “Portsmth_Cond” is selected for validation of SM with saturation in Case 2, Surge 

arrester ZnO1 is inserted in the circuit only for Case 3. (c): the sub-circuit of Load75 including a 

saturable transformer model and constant-impedance model of load 
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7.2 Case 1: Phase-to-Phase Fault Analysis 

For creating a transient disturbance, (see Figure 7.1.(b)), a temporary phase-to-phase fault with a 

fault resistance of 1Ω is applied on the phases ‘b’ and ‘c’ of “Line_70_75” at t =100 ms followed 

by the isolation of the line at t= 200 ms (i.e., the breakers BRm and BRk open simultaneously after 

6 cycles). The fault is cleared at t = 300 ms; then, the line is reconnected at t = 450 ms.  

Re-energizing the TL introduces high-frequency transient oscillations and allows to investigate the 

accuracy of transformer models in nonlinear regions. For this purpose, the curve of flux versus 

current for LoadTransfo75, which is located near the faulty line, is compared with EMTP®. 

Numerical tests are performed using the variable-step DASSL solver [77] in ODE mode with the 

tolerance of 1e-3 and the maximum integration order of 5 in Dymola 2021x. In EMTP®, 

Trapezoidal/backward Euler integrator with the step sizes of 1 µs and 5 µs is employed. The 

simulation time is 500 ms. The network model in Modelica contains 96308 acausal DAEs. The 

total number of network nodes and the size of the main system of equations in EMTP® are 2533 

and 3773, respectively. 

Figure 7.2.(a) depicts the voltage waveforms of phases-a,-b and-c at the k-end of Line_70_75 

obtained by the two simulators with different precisions. An excellent agreement is observed 

between the results. Figure 7.2.(b) shows the simulation results for phases-b and-c in the interval 

of [300, 310] ms, i.e., after the fault is removed. The results produced by Modelica models are 

almost identical to EMTP® when step size is 1 µs (black curve), while the high-frequency transient 

oscillations (f=1820 Hz) are not captured by EMTP® when 𝛥𝑡 = 5 μs (blue curve). Figure 7.2.(c) 

depicts the curves of voltage after the re-energization of TL. The consistent results between 

Modelica and EMTP® are observed in this period once more. The close-up view of the phase a 

voltage waveform at the instant of closing the breakers BRm and BRk shows that Modelica voltage 

waveform rises precisely at t = 450 ms while in EMTP®, it goes up the next time point. The close-

up illustrates the discontinuity treatment discrepancies between the two simulators. This is an 

important issue for the simulation of circuits with high-frequency switching. 
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Figure 7.2. (a): Voltage waveforms of phases-a, -b and -c at the k-end of Line_70_75; (b): 

comparison of results for the phases-b and-c for different solvers’ parameters. (c): voltage 

waveforms after re-energization of Line_70_75; the close-up at the instant of closing the breakers 

BRk and BRm 
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For validating the accuracy of nonlinear components, the magnetization branch curve of 

LoadTransfo75 (see Figure 7.1.(c)) is examined in Figure 7.3. Once again, the results obtained by 

the two models show an excellent agreement, and transformer operating points (depicted by the 

red dashed line) move on the transformer current-flux characteristics (distinguished by the solid 

red line). The iterative solution allows reproducing the nonlinear function accurately in both tools. 

The number of nonlinear components and control closed loops has a significant impact on the 

accuracy and speed of simulation. For example, simulation of the same network, that is IEEE 118-

bus, jams in Simscape Electrical Specialized Power Systems (SPS) package [43], which is 

comparable to the Modelica environment (both are based on state-space modeling approach ). This 

package is based on the state-space representation of the linear network in a loop with external 

current sources denoting the nonlinear components. In Modelica, nonlinear functions are solved 

simultaneously through iterative methods, which gives the most accurate results. 
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Figure 7.3  Current-Flux curve of magnetization branch in the LoadTransfo75 transformer; zoom-

in on the knee-point solutions of Modelica and EMTP® 

Table 7.1 shows the data and run-times of simulations carried out in Dymola and EMTP®. The 

CPU times are extracted from the average of 5-times “re-simulations.” In Dymola, simulation is 

accomplished with 203 034 steps in 371.2 s, yielding 1.83 ms for each step. EMTP® outperforms 

Dymola with the ratio of 3.37:1 when the least error is favorite, i.e., 𝛥𝑡 = 1 μs. Tolerance 

significantly impacts the CPU time and the number of time steps for the DASSL since the local 

error is tightly coupled with the logic for selecting the step size and order of integration. In this 

experiment, the simulation is repeated with the tolerance of 1e-2 as well. It causes a considerable 
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increase in the number of time steps, Jacobian, and function evaluations. Consequently, the CPU 

time increases with the ratio of 4:1, whereas the simulation accuracy does not change effectively 

(see Figure 7.2.(b)). The norm of error between these two simulations is reported 4.8e-3 for phase 

b. In both tolerances, the results are practically identical to EMTP® when 𝛥𝑡 = 1 μs . However, it 

should be noted that the solution methods in Modelica and EMTP® are fundamentally different, 

and a direct comparison of variable step solver with fixed-step one is not so fair. The time steps 

selected in Table 7.1 are for demonstration/comparison purposes; in reality, it is possible to choose 

even higher time steps without a significant loss of accuracy. 

Table 7.1  Case 1: comparison of simulation performance 

Characteristics Dymola EMTP® 

Solver DASSL Trapezoidal /Backward Euler 

Tolerance 1e-3 1e-2 

∆𝑡: 1 𝜇𝑠 ∆𝑡: 5 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.115 𝑓𝑠 0.116 𝑓𝑠 
∆𝑡𝑀𝐴𝑋 5.79 𝜇𝑠 0.16 𝜇𝑠 

No result points 203035 335261 601757 154367 81 661 

No accepted steps 203034 335260 - 

f-evaluations 415437 760052 - 

J-evaluations 7393 337458 - 

CPU time (s) 371.2 1510.6 110.1 44.2 23.5 

CPU-time for 1 step 1.83 𝑚𝑠 4.49 𝑚𝑠 0.18 𝑚𝑠 0.28 𝑚𝑠 0.28 𝑚𝑠 

Performance ratio 1 0.24 3.37 8.39 15.79 

7.3 Case 2: Analysis of Saturation in SM 

This test case aims to verify the validity of the SM model in the saturation region; a large 

disturbance, including a sudden three-phase short-circuit, is applied at t = 50 ms near the terminals 

of SM “Portsmth_Cond” and lasts till t =150 ms. The SM protective relays detect the fault and trip 

the generator breaker at t = 200 ms. The parameters of both solvers are the same as in Case 1. 

Figure 7.4.(a) and (b) depict the graphs of phase-a terminal voltage and field current of the SM 

with and without saturation. As one can see, the results obtained from Modelica are superimposed 

on EMTP® ones.  As time elapses, the difference between saturated and unsaturated curves is more 

distinguishable on the voltage curves (see Figure 7.4.(a)). It is observed from Figure 7.4.(b) that 

inclusion of saturation has an important impact on the excitation current needed for the generator 

operation.  
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Figure 7.4  (a): Waveform of phase-a of stator voltage of SM with and without saturation model; 

the close-up views after load rejection. (b): Field current with and without saturation model; the 

zoomed views during and after the fault 

Figure 7.5 illustrates the phase-a current of the stator. As one can see, the Modelica model yields 

the same results as EMTP® for both cases (with and without saturation). The current with saturation 

is lower than without saturation. It is seen that the effect of saturation on the current under the sub-

transient state is more than the transient state and the difference decreases as time elapses. 
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Figure 7.5  Phase-a stator current with and without saturation model; zoomed view after 

removing the fault and load rejection 
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7.4 Case 3: Lightning 

In this case, it is assumed that lightning with the characteristics of 10kA, 8 /20 µs strikes phase-a 

of the line “TL_70_75” when the network is in steady-state at t = 95 ms. The surge arresters are 

located on the bus “SthPoint_138_075” to protect the high-voltage side of the transformer 

“LoadTransfo75” from transient overvoltages (see Figure 7.1.(b)).  The simulation is run for 130 

ms with the step sizes of 0.1 µs (depicted by black curve) and 10 µs (shown by red curve) in 

EMTP®. Other parameters of solvers in both tools are as the Case 1. Figure 7.6 shows the phase-a 

voltage waveform of the arrester ZnO1. As one can see, the results obtained from the Modelica 

arrester model are identical to EMTP® when 𝛥𝑡 = 0.1 𝜇𝑠. A high frequency transient (1300 Hz) is 

observed due to the strike of lightning. 
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Figure 7.6  Voltage waveform of surge arrester ZnO1 on the bus SthPoint_138_075, DASLL 

solver: Tol=1e-3, EMTP® solver: Trapezoidal /backward Euler with ∆t=0.1 μs and 10 μs 

 

Table 7.2 compares the performances of simulations in both tools. In Dymola, simulation is 

accomplished with 51513 steps in 87.2 s, which yields 1.69 ms for each time step. In this case, 

Dymola outperforms EMTP®’s best result, that is when 𝛥𝑡 = 0.1 μs, with the ratio of 5.56:1. 

This test case is designed to show the potential advantages of variable time step solvers over fixed 

time step ones (like EMTP®). It is intended to illustrate that a very small time step used for the 

short duration of the very high transient has a penalizing effect on EMTP®, but not on Modelica 
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solver. Modelica integrator expectedly reverts to a very small time step only for a short duration. 

It would have been possible to apply lightning in EMTP® at simulation time t = 0 s, and in which 

case the performance results would have been much better; nevertheless, our demonstration 

remains valid. A more practical example is the breaker arc model that also forces the usage of very 

small time steps and may be triggered at any point of time. It will effectively give an advantage to 

Modelica since, in this case, it is required to capture more extended simulation periods. 

Table 7.2  Case 3: comparison of simulation performance 

Characteristics Dymola EMTP® 

Solver DASSL Trapezoidal /BE 

Tolerance 1e-3 

∆𝑡: 0.1 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.623 𝑝𝑠 

∆𝑡𝑀𝐴𝑋 5.56 𝜇𝑠 

No result points 51514 1335308 21637 

No accepted steps 51513 - 

f-evaluations 105576 - 

J-evaluations 1503 - 

CPU time (s) 87.2 485.6 9.9 

CPU-time for 1 step 1.69 𝑚𝑠 0.36 𝑚𝑠 0.45 𝑚𝑠 

Performance ratio 1 0.179 8.8 

7.5 Evaluation of Arc Models 

In this section, the accuracy of arc models developed in MSEMT library will be investigated in 

different circuits. The arc model is a highly nonlinear component that plays an essential role in 

analyzing transient recovery voltage. In the following sections, the models of Cassie, Mayr, and 

combination of both models will be evaluated. 

7.5.1 Comparison of Cassie and Mayr Arc Models  

Arc model was explained in Section 3.6.2.4. In this section, verification of proposed Modelica 

models using the EMTP® is addressed. Figure 7.7 shows two identical circuits reproduced from 

[43] using the MSEMT library to test arc models' accuracy: one with Mayr and one with Cassie 

arc model. The circuit can be a simple representation of a circuit breaker interrupting a short-line 

fault. The circuit is energized with a sinusoidal voltage source with the magnitude of 41.8 kV RMS, 

60 Hz. The circuit at the left side of the circuit breaker reproduces a 2-parameter IEC transient 
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recovery voltage, while the circuit at the right side represents a short transmission line that is short-

circuited. The parameters of the Mayr arc model are given as 𝜏𝑚 = 0.3 µs, 𝑝0 = 30900 W, 𝑔𝑚0 =

1𝑒4 S and 𝑇𝑡𝑟𝑖𝑝 = 20 ms. 

+ 

AC

L1 

L=3.52 mH 

R
=

2
9

.8
  
  
 

L
=

5
.2

8
 m

H
 

C=1.98e-6 F 

R2 

R=450    C=1.93e-9 F 

C2

L3

L=0.6256 mH 

G

G1

G2 

Mayr Arc Model 

R
1
 

L
2

41.8579kVRMS-

+ 

AC

L1 

L=3.52 mH 

R
=

2
9

.8
  
  
 

L
=

5
.2

8
 m

H
 

C=1.98e-6 F 

R2 

R=450    C=1.93e-9 F 

C2

L3

L=0.6256 mH 

G

G1

G2 

Cassie  Arc Model 

ground1 

R
1
 

L
2

41.8579kVRMS-

 

Figure 7.7 The proposed circuit for the verification and comparison of Mayr and Cassie arc 

models 

Simulation is run using trapezoidal/backward Euler integrator with the time step of 0.1 µs and 

simulation time of 400 ms in EMTP®. The same circuit is simulated with IDA solver, Tol=1e-6 in 

Modelica. Figure 7.8 compares the curves of voltage and current of arc model obtained from 

Modelica and EMTP® solutions. As one can see, the results obtained from Modelica are identical 

with the EMTP® solutions.  

Figure 7.9 shows the arc conductance/resistance of the Mayr arc model. It is observed that the arc 

resistance increases from zero to almost infinite quickly at the instant of interruption of current. 

After the interruption, the transient recovery voltage builds up across the circuit breaker contacts; 

hence a high-frequency transient recovery voltage (2-parameter) oscillation is observed over the 

breaker in the Mayr model in Figure 7.8.  
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Figure 7.8 The curves of voltage and current obtained from the Mayr arc model in Modelica and 

EMTP® 
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Figure 7.9 Arc conductance for Mayr model 

Once again, the same circuit is simulated with the same solver parameters, except the Cassie arc 

model is used in this case. The parameters of the Cassie arc model are: 𝜏𝑐 = 1.2 µ𝑠, 𝑣0 = 3850 V, 

𝑔𝑐0 = 1𝑒4 S and 𝑇𝑡𝑟𝑖𝑝 = 20 𝑚s. Figure 7.10 illustrates the results for arc voltage and current 
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obtained from both simulators. In this case, it is also observed that the solutions of both solvers are 

in excellent agreement. 

0 5 10 15 20 25 30 35 40
-6

-4

-2

0

2

4

6

-40

-30

-20

-10

0

10

20

30

40

varc

EMTP{
Modelica{

varc iarc

iarc }
}

V
o

lt
ag

e 
(k

V
)

C
u
rr

en
t 
(k

A
)

Time (ms)  

Figure 7.10 The curves of voltage and current obtained from Cassie arc model in Modelica and 

EMTP® 

Comparing Figure 7.8 and Figure 7.10 shows that: (1) both arc voltage and current passe zero 

simultaneously (because arc behaves as a nonlinear resistor). (2): The Cassie model fails to 

interrupt the short circuit current, while the Mayr arc model has a successful interruption.  

7.5.2 Cassie-Mayr Arc Model 

This section deals with the Cassie-Mayr arc model in a kilometric fault test of a 420-kV CB. The 

test circuit is reproduced from the EMTP® example using the MSEMT library. Figure 7.11 shows 

the schematic of the circuit. The circuit is energized with a voltage source of 420 kV RMS, 60 Hz. 

The circuit at the right side represents a short (d=500 m) untransposed transmission line (CP-line 

model). The parameters of the arc model are given as 𝜏𝑚 = 0.5 µs, 𝜏𝑐 = 1 µ𝑠 𝑝0 = 100 kW, 𝑣0 =

2000 V, 𝑔0 = 5𝑒7 S and 𝑇𝑡𝑟𝑖𝑝 = 28 𝑚s. A single-phase earth fault on phase-a occurs at t = 1 ms 

at the end of TLM. The high voltage circuit breaker, D, trips the phase-a at t = 28 ms. The healthy 

phases remain closed. 
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7.5.2.1 Case 1: Source Inductance, L1=9 mH   

In this case, the simulation is run using the trapezoidal/backward Euler solver with the time step of 

0.1 µs and simulation time of 50 ms in EMTP®. The same circuit is simulated with IDA solver, 

Tol=1e-6 in Modelica. In this simulation, L1, which represents the source inductance, is 9 mH. 
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Figure 7.11 Kilometric fault test of a 420-kV CB 

Figure 7.12 shows the waveforms of voltage and current of the arc model (phase-a of circuit breaker 

D). As one can see, the circuit breaker fails to interrupt the fault current in both simulators. The 

fault current, 90 kA, passes through the contacts of the circuit breaker by the end of simulations. 

This is a catastrophic status for the circuit breaker and may damage it severely.  
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Figure 7.12 The voltage and current curves obtained from the Cassie-Mayr model, L1=9 mH 
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7.5.2.2 Case 2: Source Inductance, L1=10 mH, Δt= 0.1 µs in EMTP® 

In the second attempt, we change the source inductance, L1=10 mH, and repeat the simulation with 

the same parameters as Case 1. As shown in Figure 7.13, the circuit breaker model in the Modelica 

simulation succeeded in breaking the fault current (79kA). A TRV occurs after the interruption of 

current on the terminals of the breaker.  The simulation in EMTP® shows that the fault current 

continues by the end of the simulation. As a result, the selected time step for the simulation in 

EMTP® is not correct. 
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Figure 7.13 The curves of voltage and current obtained from the Cassie-Mayr arc model in 

Modelica and EMTP®, L1=10 mH, Δt= 0.1 µs in EMTP® 

7.5.2.3 Case 3: Source Inductance, L1=10 mH, Δt= 0.01 µs in EMTP® 

In the third attempt, we simulate the same circuit of Case 2 with the time step of 0.01 µs in EMTP®. 

The simulation parameters in Modelica remain the same as in previous cases. Figure 7.14 shows 

the voltage and current of the arc model. As one can see, the results obtained from both simulators 

are identical and illustrates a TRV on the terminal of circuit breaker D. In both simulators, the fault 

current is cleared when it passes zero-crossing after 𝑇𝑡𝑟𝑖𝑝. 
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Table 7.3 shows the performance of simulations in cases 2 and 3. As one can see, the Modelica 

simulator outperforms EMTP® in case 3, where the results are identical, in the ratio of 4.33:1.  
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Figure 7.14  (a): The curves of voltage and current obtained from the Cassie-Mayr arc model in 

Modelica and EMTP®, L1=10 mH, Δt= 0.01 µs in EMTP®, (b); the zoom-in plot of TRV on the 

terminals of the circuit breaker 

 

Table 7.3 Comparison of simulation performance in Cases 2 and 3 

Characteristics Dymola EMTP® 

Solver IDA Trapezoidal /BE 

Tolerance 1e-6 - - 

Δt - 0.1 𝜇𝑠 0.01 𝜇𝑠 

∆𝑡𝑀𝐼𝑁 2.72e-16 s - - 

∆𝑡𝑀𝐴𝑋 2e-05 s - - 

No of steps 41 285 500 003 5 000 003 

f-evaluations 103 768 - - 

J-evaluations 25 930 - - 

CPU time (s) 66.8 24.28 289.36 

CPU-time for 1 step 0.134 𝑚𝑠 0.048 𝑚𝑠 0.057 𝑚𝑠 

Performance ratio 1 0.36 4.33 
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7.6 Conclusion 

Modelica language has been considered for EMT simulations due to its advantages for creating 

models at very high abstraction levels. This chapter emphasizes the software-to-software validation 

of nonlinear models, including synchronous machines with magnetic saturation and the surge 

arrester and arc models. The first two nonlinear models are validated by comparisons with EMTP® 

in a large grid (IEEE 118-bus benchmark). It is shown that high-level modeling in Modelica is very 

accurate as compared to EMTP®. However, the performance is unsatisfactory, except when 

variable time-step is used advantageously for high-frequency transients of short duration in a long 

simulation interval. Comparison of CPU time for the simulation of IEEE 39-bus and IEEE 118-bus 

benchmarks shows that simulation of cases including the WB and CP-line models can be very long 

and scales poorly.  

Concerning the arc models, the comparison of results obtained from both tools demonstrates the 

accuracy of Modelica models. About the simulation efficiency, it was demonstrated that Modelica 

simulator offers better CPU time than EMTP® for high-resolution simulations required for 

simulation of arc models. The MSEMT library created in Modelica is user-friendly. It can be used 

for didactic purposes as well.  

As future work, the existing library can be further developed to cover the models of HVDC system 

and renewable energy sources. The developed EMT models can be used for model exchange and 

co-simulation incorporating FMI. Therefore, co-simulation of Modelica and EMTP® via FMI can 

be considered for future. Parallelization of computations in the equation-based approach can be an 

interesting subject. This is a challenge for improvement of simulation speed in Modelica.  
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 CONCLUSION AND RECOMMANDATIONS 

 

Since the thesis covers various research subjects, therefore the conclusion and recommendation of 

each work have been described in the last section of its dedicated chapter. Refer to Sections 4.3, 

5.7, 6.5 and 7.6. 
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