
Titre:
Title:

High-Level Programming Methods for the Simulation of Power
System Transients

Auteur:
Author:

Alireza Masoom

Date: 2021

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Masoom, A. (2021). High-Level Programming Methods for the Simulation of Power
System Transients [Thèse de doctorat, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/9924/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9924/

Directeurs de
recherche:

Advisors:
Jean Mahseredjian, Adrien Guironnet, & Tarek Ould-Bachir

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9924/
https://publications.polymtl.ca/9924/

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

High-level programming methods for the simulation of power system

transients

ALIREZA MASOOM

Département de génie électrique

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor

Génie électrique

Décembre 2021

© Alireza Masoom, 2021.

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

Cette thèse intitulée:

High-level programming methods for the simulation of power system

transients

présentée par Alireza MASOOM

en vue de l’obtention du diplôme de Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Houshang KARIMI, président

Jean MAHSEREDJIAN, membre et directeur de recherche

Adrien GUIRONNET, membre et codirecteur de recherche

Tarek OULD-BACHIR, membre et codirecteur de recherche

Ilhan KOCAR, membre

George STEFOPOULOS, membre externe

 iii

DEDICATION

Dedicated to my beloved parents, wife, and my son

 iv

ACKNOWLEDGEMENTS

Many friendly people made this work possible, and to whom I want to express my most heartfelt

appreciation.

I want to express my deepest gratitude to my supervisor Prof. Jean Mahseredjian for his guidance,

questioning attitude, encouragement, patience, support, and especially friendship. His innovative,

broad knowledge and real-life experience in the power systems discipline helped me establish a

solid understanding and vision. I learned a lot from him about how to think differently and be

creative. I believe this is the most important asset that one can gain from a Ph.D. program.

Special thanks go to Professor Tarek Ould-Bachir for his help, his advice, and his selfless

availability. Also, I would like to express my great appreciations to Mr. Adrien Guironnet and his

R & D team from “Le réseau de transport de l'électricité (RTE)” for their technical supports.

I want to mention my lab colleagues with whom I shared the lab: Reza Hassani, Sadegh Rahimi

Pourdanjani, Maryam Torabi Milani, Amir Sadati, Nazak Soleimanpour, Willy Arnaud Nzale

Mimbe, Antoine Stepanov, Hossein Chalangar, Danial Jafarigiv, and Reza Pourramezan.

Finally, the Greatest appreciation is reserved for my wife for her patience, support, and

encouragement. Thank you all, and I sincerely apologize to anyone I have left out or omitted

inadvertently.

 v

RÉSUMÉ

Modelica est un langage orienté objet conçu pour la modélisation des systèmes cyber-physiques à

partir de systèmes d'équations. Le langage permet le développement de bibliothèques de

composants facilement composables et réutilisables. Modelica s’appuie sur une représentation

standard qui permet une compréhension commune et précise de modèle. Modelica est entièrement

compatible avec l’interface de maquette fonctionnelle (FMI). L’FMI est une norme industrielle qui

permet de combiner les modules de code de simulation (FMU) provenant de n’importe quel outil

de modélisation. La norme a été largement utilisé pour l'échange de modèles et la cosimulation. La

tendance à utiliser Modelica se développe de plus en plus dans la modélisation des systèmes

électriques et la normalisation des modèles. Par exemple, il a déjà été utilisé pour unifier les

modèles des réseaux électriques dans domaine de phaseur dans le cadre du projet iTesla.

Les outils classiques de modélisation en régime transitoires électromagnétiques (EMT), par

exemple EMTP®, sont souvent écrits dans des langages impératifs, FORTRAN ou C, ce qui est

bien adapté aux calculs numériques avec une architecture fermée, dont le modèle et le solveur sont

intégrés. Des tentatives ont également été faites pour développer un outil de modélisation en régime

transitoire en utilisant le langage de haut niveau MATLAB. Bien que cette approche élève le niveau

d'abstraction, il reste que la modélisation se focalise sur les méthodes numériques.

La principale contribution de ce travail est de construire une librairie EMT basée sur Modelica (soi-

disant MSEMT) y compris les modèles avancés de machine synchrone, la ligne de transport (les

modèles WB et CP), les charges statiques, les modèles non linéaire (l’arc, le parafoudre), etc.

D'autre part, la librairie s’utilise dans DynaꞶo (l’environnement hybride Modelica/C++). DynaꞶo

est un outil développé par RTE, pour la simulation des phénomènes transitoires. Il permet de

bénéficier des avantages de ces deux langages et de contourner les problèmes existants de Modelica

en simulation.

Préliminairement, les lignes de transport ont été modélisée dans Modelica ; ensuite, le circuit de

IEEE 13-bus, y compris des lignes non transposées et des charges déséquilibrées, a été utilisée pour

la validation. Ensuite, les réseaux d’IEEE 118-bus et d’IEEE 39-bus sont utilisés pour vérifier les

résultats et comparer les performances de simulation. Dans les tests, on également compare la

 vi

performance de Modelica avec SPS. Dans tous les cas, Il est démontré que les résultats des

simulations obtenus par Modelica sont identiques à EMTP® (logiciel de référence.). Au niveau de

performance, dans la plupart des cas, EMTP® surpasse le Modelica. Toutefois, lorsque les

transitoires à très haute fréquence résultant de la foudre ou de la simulation de circuits électroniques

de puissance à haute fréquence sont traités, le solveur à pas variable dans Modelica montre une

meilleure performance que l'EMTP®. De plus, Modelica montre une meilleure performance que

Simscape Electrical Specialized Power System (SPS) dans tous les cas ; l'écart entre les deux

simulateurs augmente avec le nombre d'éléments non linéaires.

Par ailleurs, traitement des discontinuités et la modélisation des non-linéarités, qui sont des enjeux

majeurs dans les modélisations en régime transitoire, sont des contributions de la thèse. Dans le

volet, les modèles d'arc, inductance non linéaire, parafoudre ont été élaboré. Les résultats

démontrent une précision parfaite et bonne performance.

 vii

ABSTRACT

Modelica is an object-oriented and equation-based language. The advent of high-level languages

and their intrinsic features created a new paradigm for modeling and simulation to focus on the

equations instead of solutions. Consequently, there is a motivation for employing a modeling

environment where the solvers can be selective, and equations representing the model are expressed

declaratively and in high-level formalism. Modelica is fully compatible with FMI, a standard

widely used for dynamic model exchange and co-simulation via FMU, a combination of XML

files, binaries, and C code.

Classical electromagnetic transient (EMT) simulation tools, i.e., EMTP®, are often written in

traditional imperative languages, i.e., FORTRAN or C, which is well suited for numeric

computations with a closed architecture, whose model and solver are tightly integrated. Although

this approach yields a good performance, there are limitations in power electronic and control

system modeling. Besides, many code lines are necessary to satisfy requirements from low-level

data management. Efforts have also been made to develop an EMT-type simulator using the higher-

level MATLAB language in an open-source-code approach. Although this approach elevates the

abstraction level, the models must be programmed using given numerical methods.

Modelica as a standardized language for modeling physical systems has previously been considered

to unify the electric power models in the phasor domain study of electrical grids in the iTesla

project. The tendency to use Modelica is increasingly growing in power system modeling and

standardization of models. Moreover, the language leads to having a consistent model exchange

among EMT-type simulation tools.

The main contribution of this proposal is to develop a Modelica-based EMT-detailed library. The

library includes advanced linear and nonlinear models such as transmission lines, synchronous

generators (including magnetic saturation), static loads, controllers, arc models, surge arresters,

etc. The models are constructed according to the EMTP® models and validated with the software

one by one. The library is used in DynaꞶo, which is a Modelica/C++ hybrid environment. DynaꞶo

helps to benefit from the advantages of both languages and skirting the existing problems of

Modelica in time-domain simulation.

 viii

As a preliminary case, the transmission line (constant parameter and wideband models) was

modeled in Modelica; then, the IEEE 13-bus platform, which consists of untransposed lines and

unbalanced loads, was used for validation. The IEEE 39-bus and IEEE 118-bus networks are used

to verify results and compare simulation performance in the following steps. In all cases, it is

demonstrated that the results obtained from Modelica are identical to the EMTP®. Regarding the

performance, in most cases, EMTP® outperforms the Modelica. However, when very high-

frequency transients resulted from lightning or simulation of high-frequency power electronic

circuits are addressed, the variable step solver in Modelica shows a better performance than

EMTP®. In all cases, Modelica has a better performance than Simscape Electrical Specialized

Power System (SPS) in MATLAB; the performance gap between the two simulators increases with

the number of nonlinear elements.

Moreover, the thesis's contribution is to explore discontinuity handling and modeling of

nonlinearities, which are significant issues in EMT simulations. In this regard, the models of arc,

nonlinear inductance, surge arrester have been addressed. The results demonstrate perfect accuracy

and high performance.

 ix

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT ... VII

TABLE OF CONTENTS .. IX

LIST OF TABLES ... XIV

LIST OF FIGURES ... XV

LIST OF SYMBOLS AND ABBREVIATIONS .. XXII

 INTRODUCTION ... 1

1.1 Modeling and Simulation ... 1

1.2 Programming Paradigms .. 4

1.3 Equation-Based Object-Oriented Languages ... 5

1.3.1 Equation-based Modeling .. 5

1.3.2 Object-Oriented Programming ... 6

1.3.3 Mathematical Equations and Acausality .. 6

1.4 Modelica ... 8

1.5 EMT Modeling and Simulation .. 10

1.5.1 State Space Analysis .. 10

1.5.2 Modified Augmented Nodal Analysis .. 14

1.6 Motivation and Objectives ... 16

1.7 Methodology .. 17

1.8 Contributions .. 18

 x

1.9 Thesis Outline .. 19

 A REVIEW ON MODELICA AND BASIC CONCEPTS 21

2.1 Introduction .. 21

2.2 Object-Oriented Mathematical Modeling in Modelica .. 22

2.3 Equation-based Modeling .. 22

2.4 Symbolic Workflow of Modelica Models .. 23

2.5 Matching Algorithm ... 25

2.6 Analysis of an RLC Circuit .. 28

2.6.1 Linear Inductor Model ... 28

2.6.2 Interconnection of Models ... 32

2.6.3 Model Compilation .. 33

2.6.4 Transformation to State-Space Form ... 34

2.6.5 Solution Method ... 35

2.7 Example of Algebraic Loop ... 40

2.8 Example of Structural Singularities ... 46

2.9 Solver ... 48

2.9.1 BDF-methods ... 49

2.9.2 IDA solver .. 50

2.9.3 ODE mode .. 52

2.9.4 DAE mode .. 54

2.9.5 Exploring of Events Handling and Zero Crossings. ... 54

2.10 Exploring of Switch Equation .. 60

2.11 Exploring of Control Systems Modeling ... 61

 xi

2.12 Exploring of Nonlinear Models .. 61

2.13 Interfacing to Other Software ... 61

 MSEMT: AN ADVANCED MODELICA LIBRARY FOR

ELECTROMAGNETIC TRANSIENT SIMULATIONS .. 63

3.1 Overview of the MSEMT Library .. 63

3.2 Controllers .. 64

3.2.1 Exciter ST1 ... 65

3.2.2 Governor IEEEG1 .. 66

3.2.3 Governor IEESGO ... 67

3.3 Transmission Line .. 68

3.3.1 PI-section Line Model .. 69

3.3.2 Distributed Parameter Line Model Equations .. 71

3.3.3 Constant Parameter Line Model ... 74

3.3.4 Wideband Line Model .. 81

3.4 Load Models ... 85

3.5 Synchronous Machine .. 85

3.5.1 Magnetic Saturation ... 88

3.5.2 Implementation of Synchronous Machine Model in Modelica 90

3.6 Nonlinear Component Models ... 95

3.6.1 Nonlinear Inductor ... 95

3.6.2 Nonlinear Resistor .. 98

3.7 Switches ... 106

3.8 Transformers .. 107

3.8.1 Three-phase Transformer ... 109

 xii

3.9 Block Diagrams .. 114

3.9.1 Lead-Lag Compensator .. 114

3.9.2 Hold_to ... 115

3.9.3 Park’s Transformation .. 116

3.10 Functions .. 116

3.10.1 Clark’s Transform .. 117

 ACCURACY ASSESSMENT OF TRANSMISSION LINE MODELS 118

4.1 Test Case for Underground Cable .. 118

4.2 Test Case for Aerial Transmission Line ... 119

4.3 Conclusion .. 123

 IEEE 39-BUS TEST CASE .. 124

5.1 Introduction .. 124

5.2 IEEE 39-bus Incorporating WB-Line Models ... 127

5.3 Solution Evaluation for STC Model ... 128

5.4 Evaluation of SM Model Accuracy .. 129

5.5 Evaluation of Accuracy for Controllers ... 130

5.6 Runtime Benchmark ... 131

5.7 Conclusion .. 132

 DYNAꞶO HYBRID C++/MODELICA SOLUTION 134

6.1 Introduction .. 134

6.2 Native Models and Solvers .. 136

6.3 Modifications, Open Questions, and Remaining Challenges for EMT Simulations ... 137

6.4 Simulations and Results ... 138

 xiii

6.4.1 Case 1: Capacitor Bank Switching ... 138

6.4.2 Case 2: Parallel Transmission Line Switching ... 142

6.4.3 Case 3: Nonlinear Circuit of Surge Arrester .. 145

6.5 Conclusions .. 147

 ELECTROMAGNETIC TRANSIENT MODELING OF LARGE POWER

NETWORKS WITH MODELICA ... 148

7.1 Introduction .. 148

7.2 Case 1: Phase-to-Phase Fault Analysis .. 150

7.3 Case 2: Analysis of Saturation in SM .. 153

7.4 Case 3: Lightning ... 155

7.5 Evaluation of Arc Models .. 156

7.5.1 Comparison of Cassie and Mayr Arc Models .. 156

7.5.2 Cassie-Mayr Arc Model ... 159

7.6 Conclusion .. 163

 CONCLUSION AND RECOMMANDATIONS ... 164

REFERENCES .. 165

 xiv

LIST OF TABLES

Table 2.1 The variables in the RLC circuit model .. 34

Table 2.2 Parameters of simulators and performance comparison ... 57

Table 3.1 The parameters of Exciter ST1 .. 65

Table 3.2 The parameters of Exciter IEESGO .. 68

Table 4.1 2-norm cumulative relative error comparison ... 123

Table 5.1 IEEE-39 grid transformer data (YgYgD) [108] ... 124

Table 5.2 Comparison of simulation performance for IEEE 39-bus network using the WB-model

 .. 132

Table 5.3 Comparison of simulation performance for IEEE 39-bus network using CP-model .. 132

Table 6.1 Case study 1: Performance comparison .. 140

Table 6.2 Case study 1: IDA behavior during simulation ... 140

Table 6.3 Performances for different solving strategies ... 142

Table 6.4 Case study 2: Performance comparison .. 144

Table 6.5 Case study 3: Performance comparison .. 146

Table 7.1 Case 1: comparison of simulation performance .. 153

Table 7.2 Case 3: comparison of simulation performance .. 156

Table 7.3 Comparison of simulation performance in Cases 2 and 3 .. 162

 xv

LIST OF FIGURES

Figure 1.1 Programming paradigms [9] .. 5

Figure 1.2 A Simscape file that implements a linear resistor .. 12

Figure 1.3 Workflow of Simscape electrical [43] ... 13

Figure 1.4 The parallel connection of a capacitor and ideal voltage source in the SPS 13

Figure 1.5 (a): An i -v characteristic for a nonlinear resistor. (b): Norton equivalent at the operating

point .. 15

Figure 2.1 Typical workflow of Modelica .. 25

Figure 2.2 Bipartite graph of equation (2-4) ... 27

Figure 2.3 Schematic of RLC circuit .. 28

Figure 2.4 Definition of the types for variables of inductor model ... 29

Figure 2.5 Implementation of pin model in Modelica .. 29

Figure 2.6 Implementation of partial model OnePort .. 30

Figure 2.7 Inductor model in Modelica ... 31

Figure 2.8 Graphical user interface of linear inductor model ... 31

Figure 2.9 Implementation of RLC circuit with GUIs (left side) and Modelica codes describing

the circuit (right side) ... 32

Figure 2.10 Parsed equations of RLC circuit .. 33

Figure 2.11 Block lower triangular for of RLC circuit ... 39

Figure 2.12 RLC circuit with algebraic loop ... 40

Figure 2.13 The assignments and BLT form of RLC circuit with algebraic loop 44

Figure 2.14 RLC circuit with algebraic loop ... 44

Figure 2.15 RLC circuit with structurally singularity (DAE index 1) .. 47

Figure 2.16: The assignments and BLT form of RLC circuit with structural singularity 48

 xvi

Figure 2.17 The transformation of implicit DAE to explicit ODE ... 53

Figure 2.18 Typical event handling algorithm of Hybrid DAE [91] .. 56

Figure 2.19 Buck-Boost converter for demonstrating simultaneous switching with controls 57

Figure 2.20 The i-v characteristics of the diode .. 58

Figure 2.21 (a): Inductor current in the discontinuous mode of Buck-Booster convertor. (b): the

close-up view of the inductor current ... 58

Figure 2.22 Switch current (a): in Modelica (b): in EMTP® ... 59

Figure 2.23 The curves of resistance voltage in Modelica and EMTP® .. 60

Figure 3.1 Structure of MSEMT library .. 64

Figure 3.2 Implementation of Exciter ST1 in Modelica ... 66

Figure 3.3 Implementation of governor IEEEG1 in Modelica .. 67

Figure 3.4 Implementation of governor IEESGO in Modelica ... 67

Figure 3.5 Three-phase nominal PI-section model of the transmission line 69

Figure 3.6 Implementation of PI-section line model in Modelica .. 70

Figure 3.7 N-phase transmission line ... 71

Figure 3.8 Schematic of transmission line with length ℓ and boundary conditions 72

Figure 3.9 Norton equivalent of single-phase lossless CP-line model .. 75

Figure 3.10 Schematic of single-phase CP-line model ... 75

Figure 3.11 Multiconductor transmission line model as two Norton equivalents 78

Figure 3.12: Norton equivalent of N-conductor CP-line in Modelica .. 79

Figure 3.13 Implementation of multiphase CP-line model in Modelica 80

Figure 3.14 Norton equivalent of WB-line model .. 83

Figure 3.15 Codes for implementation of WB-line model .. 84

Figure 3.16 Implementation of PQ load in Modelica .. 85

 xvii

Figure 3.17 Two-pole, three-phase, wye-connected salient-pole synchronous machine 86

Figure 3.18 Saturated and unsaturated magnetizing flux linkages in dq axes of a synchronous

machine .. 89

Figure 3.19 Magnetic saturation characteristic (piecewise-linear approximation) 89

Figure 3.20 Solution procedure of synchronous machine with/without magnetic saturation in

Modelica ... 91

Figure 3.21 The GUI of the synchronous machine model implemented in Modelica 93

Figure 3.22 Synchronous machine Modelica codes .. 94

Figure 3.23 Relation between reciprocal and non-reciprocal per unit system 95

Figure 3.24 Piecewise linear representation of current-flux relation .. 96

Figure 3.25 Nonlinear inductor model implemented in Modelica .. 97

Figure 3.26 GUI of a nonlinear inductor in Modelica simulator .. 98

Figure 3.27 The piecewise linear current-voltage characteristics of resistance 99

Figure 3.28 Modelica codes for the implementation of the piecewise linear resistor model 99

Figure 3.29 Modelica codes for the implementation of the polynomial resistor model 100

Figure 3.30 Voltage-current characteristic of ZnO surge arrester ... 101

Figure 3.31 Codes used for implementation of the ZnO surge arrester model in Modelica 102

Figure 3.32 Implementation of function exponentialInterpolation 103

Figure 3.33 Modelica codes of the Mayr arc model ... 104

Figure 3.34 Modelica codes of the Cassie arc model .. 105

Figure 3.35 Cassie-Mayr arc model in Modelica ... 106

Figure 3.36 Block diagram approach for modeling of the ideal switch 107

Figure 3.37 Single-phase N-winding STC model ... 107

 xviii

Figure 3.38 (a): The icon of STC model in MSEMT library, (b): the sub-model of transformer

model, (c): the GUI of transformer model ... 108

Figure 3.39 Modelica codes for the implementation of single-phase STC model 109

Figure 3.40 The GUI of three-phase transformer type YgD01 .. 112

Figure 3.41 Modelica codes for transformer type YgD01 .. 113

Figure 3.42 Implementation of Lead-Lag Compensator in Modelica ... 115

Figure 3.43 Implementation of Hold_t0 .. 115

Figure 3.44 Implementation of Park's transformation ... 116

Figure 3.45 Implementation of Clark's transformation ... 117

Figure 4.1 Underground cable system, 169 kV, 3-phase, 6-Conductor (a): Physical layout (b):

Electrical connection diagram .. 118

Figure 4.2 Voltage waveforms in receiving-end of WB-line model for (a): 3-core conductor (b)

Shield conductors, black dashed line is EMTP®, solid line is Modelica 119

Figure 4.3 Single line diagram of IEEE 13-Node with the CP-line model. Earth fault occurs to the

bus B675 at 60 ms, CB2 is opened 100 ms after the fault ... 120

Figure 4.4 (a) Voltage waveforms at Bus 675 at the interval [0, 40] ms, black dashed line is

EMTP®, Solid line is Modelica; (b) transient state after the occurrence of fault at 60 ms till

the line is tripped at 160 ms ... 121

Figure 4.5: (a) Phase current waveforms of CB2, black dashed line is EMTP®, solid line is

Modelica; (b) transient state in the interval [0, 35] ms .. 122

Figure 5.1.(a): IEEE 39-bus network, which is designed in Modelica using the MSEMT library

incorporating the WB-line model. (b): the submodel of PowerPlant03 125

Figure 5.2 a) Schematic of the faulted zone of IEEE 39-bus network created in Modelica GUIs;

(b) the sub-circuit of Load15, the circuit contains a three-phase YgD-30 load transformer

(STC model) and a constant impedance load model .. 126

 xix

Figure 5.3 (a) voltage waveforms at the m-end of TL_14_15; (b) close-up view after re-

energization of TL_14_15 .. 127

Figure 5.4 Assessment of accuracy for Modelica-based simulation: relative errors of phase

voltages at the m-end of TL_14_15 .. 128

Figure 5.5 Superposition of magnetizing inductance in the LoadTransfo15; zoom-in view of knee-

point solutions .. 129

Figure 5.6 Stator current in phase-a (𝑖𝑎), for the generator in PowerPlant_03 129

Figure 5.7 Damper winding current, 𝑖𝑘𝑞1, for the generator in the PowerPlant_03 130

Figure 5.8 Field voltage 𝐸𝑓𝑑, regulated by the exciter in PowerPlant_03 130

Figure 5.9 Mechanical power 𝑃𝑚𝑒𝑐ℎ, regulated by the governor in PowerPlant_03 131

Figure 5.10 Rotor speed 𝜔𝑟, for the generator in PowerPlant_03 ... 131

Figure 6.1 Dynaωo structure and exchanges between solvers and models 136

Figure 6.2 Test circuit 1: 2-step back-to-back capacitor banks designed using MSEMT in

OpenModelica .. 138

Figure 6.3 (a): Voltage waveforms on C1; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10 μs, Tol=1e-6;

EMTP® solver: Trapezoidal/BE, ∆𝑡 = 10 μs. (b): Zoom-in view of voltage curves after

reclosing of CB1 and closing CB2. (c): Low-frequency oscillations of 340 Hz. (d): High-

frequency oscillations of 8220 Hz due to energization C2 .. 139

Figure 6.4 (a): Voltage waveforms on C1, phase-a at the instant of C2 energization, Dynaωo

solver: IDA with different tolerances; EMTP® solver: Trapezoidal/BE, ∆𝑡 =1 and 10 µs. (b):

Comparison of the number of time points within 20 µs ... 141

Figure 6.5 Test circuit 2, switching of parallel transmission lines (CP-line model) 142

Figure 6.6 (a): Voltage waveforms at the m-end of TLM2; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 5 μs,

Tol=1e-6; EMTP® solver: Trapezoidal/BE, ∆𝑡 = 5 μs. (b): The close-up view of the

energization of the line. (c): The zoom-in view of voltage at the m-end of TLM2 when

disconnected from both sides ... 143

 xx

Figure 6.7 (a): Current waveforms at the m-end of TLM2. (b): The zoom-in view of current at the

m-end of TLM2 after disconnecting the line. (c): The zoom-in view of current at the m-end of

TLM2 at the instant of energizing the line ... 144

Figure 6.8 Test circuit 3; modeling of an Ohio-Brass ZnO Arrester for a 330 kV Network,

MCOV=209 kV, d=1.8 m, n=1 .. 145

Figure 6.9 Residual voltage and discharge current curves in ZnO2. Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 =

10𝑛𝑠, Tol=1e-6; EMTP®: Trapezoidal/BE, ∆𝑡 = 10𝑛𝑠 .. 146

Figure 6.10 Voltage vs. current curve of ZnO2; Zoom-in view: comparison of solution points in

the nonlinear segment 2 .. 146

Figure 7.1 (a): IEEE 118-bus Network including 177 PI-section models of TL sketched using the

Modelica GUI. (b): the faulty zone; a phase-b-to-phase-c fault at k-end of Line_70_75. The

powerplant “Portsmth_Cond” is selected for validation of SM with saturation in Case 2, Surge

arrester ZnO1 is inserted in the circuit only for Case 3. (c): the sub-circuit of Load75 including

a saturable transformer model and constant-impedance model of load 149

Figure 7.2. (a): Voltage waveforms of phases-a, -b and -c at the k-end of Line_70_75; (b):

comparison of results for the phases-b and-c for different solvers’ parameters. (c): voltage

waveforms after re-energization of Line_70_75; the close-up at the instant of closing the

breakers BRk and BRm .. 151

Figure 7.3 Current-Flux curve of magnetization branch in the LoadTransfo75 transformer; zoom-

in on the knee-point solutions of Modelica and EMTP® ... 152

Figure 7.4 (a): Waveform of phase-a of stator voltage of SM with and without saturation model;

the close-up views after load rejection. (b): Field current with and without saturation model;

the zoomed views during and after the fault .. 154

Figure 7.5 Phase-a stator current with and without saturation model; zoomed view after removing

the fault and load rejection ... 154

Figure 7.6 Voltage waveform of surge arrester ZnO1 on the bus SthPoint_138_075, DASLL

solver: Tol=1e-3, EMTP® solver: Trapezoidal /backward Euler with ∆t=0.1 μs and 10 μs 155

 xxi

Figure 7.7 The proposed circuit for the verification and comparison of Mayr and Cassie arc models

 .. 157

Figure 7.8 The curves of voltage and current obtained from the Mayr arc model in Modelica and

EMTP® ... 158

Figure 7.9 Arc conductance for Mayr model ... 158

Figure 7.10 The curves of voltage and current obtained from Cassie arc model in Modelica and

EMTP® ... 159

Figure 7.11 Kilometric fault test of a 420-kV CB .. 160

Figure 7.12 The voltage and current curves obtained from the Cassie-Mayr model, L1=9 mH . 160

Figure 7.13 The curves of voltage and current obtained from the Cassie-Mayr arc model in

Modelica and EMTP®, L1=10 mH, Δt= 0.1 µs in EMTP® .. 161

Figure 7.14 (a): The curves of voltage and current obtained from the Cassie-Mayr arc model in

Modelica and EMTP®, L1=10 mH, Δt= 0.01 µs in EMTP®, (b); the zoom-in plot of TRV on

the terminals of the circuit breaker ... 162

 xxii

LIST OF SYMBOLS AND ABBREVIATIONS

BE Backward Euler

CDA Critical Damping Adjustment

CP Constant Parameter

CSSL Continuous System Simulation Languages

DAE Differential-Algebraic Equation

EMT Electromagnetic Transient

EMTP Electromagnetic Transient Programme

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

GUI Graphical User Interface

IVP Initial Value Problem

MANA Modified Augmented Nodal Analysis

MSEMT Modelica Simulator of Electromagnetic Transients

ODE Ordinary Differential Equation

OMC OpenModelica Compiler

OOP Object-Oriented Programming

RTE Réseau de transport d'électricité

SM Synchronous Machine

STC Saturation Transformer component

SUNDIALS SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers

TL Transmission Line

TR Transformer

 xxiii

TRV Transient Recovery Voltage

TRAP Trapezoidal

UML Universal Modeling Language

ULM Universal Line Model

WB Wideband

1

 INTRODUCTION

Circuit modeling and simulation are well recognized in electrical engineering. Simulation of an

electric circuit includes 1) mathematical expression of the circuit elements (i.e., modeling), 2)

formulation of the circuit equations, and 3) methods for the solution of these equations. The thesis

concerns, for the first time, the problems, challenges and limitations of EMT-detailed modeling

and formulation of electrical network equations in a high-level computer language, i.e., Modelica.

The rest of the chapter is organized as follows:

• First, we give the background of modeling and simulation in Section 1.1. We speak about

computational software paradigms together with an overview of equation-based object-

oriented languages in Section 1.2 and Section 1.3.

• In Section 1.4, Modelica language is outlined briefly.

• We give an overview of EMT simulation goals, approaches, and the main simulation tools

in Section 1.5.

• We discuss the problem area and state the research motivations in Section 1.6, the research

method used, and the challenges in Section 1.7.

• Finally, the scientific contribution is described in Section 1.8.

1.1 Modeling and Simulation

Modeling is an interesting subject of research in computer science as well as in most disciplines of

engineering. Recently, languages that can support modeling in specific domains such as power

systems have been considered.

It should be distinguished between modeling and simulations. Simulation is an experiment

accomplished on a model, while Modeling means “the process of organizing knowledge about a

given system" [1]. Modeling is a solution to create a virtual image of a real-world system, while in

simulation, it is possible to experiment with the virtual representation under a wide range of

conditions to see how it behaves.

 2

In this thesis, the term model means a mathematical representation describing the dynamic

properties of a continuous-time or discrete-time power electric system. This thesis primarily

concern is the EMT modeling and simulation with the high-level language of Modelica.

Designing Continuous System Simulation Languages (CSSL) [1] is not new and goes back to 1967.

The CSSL are all based on state-space descriptions where the underlying mathematical description

is an ordinary differential equation (ODE) [2]. General-purpose simulation tools, e.g., Simulink

[4], using block diagrams and/or causal connections. In the block diagram approach, it is possible

to graphically model ODEs, and a software tool is then used for performing the numerical

simulation.

ODEs can describe many physical systems in the explicit form:

�̇� = 𝐟(𝐱, 𝐮, 𝑡) (1-1)

where 𝐱 ∈ ℝ𝑛 is the unknown state vector to be solved for, 𝐮 ∈ ℝ𝑚 the vector of input signals, and

𝑡 the independent variable representing time.

In actual electric power systems, the algebraic equations describe the system relying on

conservative energy laws, e.g., KVL and KCL [5][6]. The differential-algebraic equations (DAEs)

are generalizations of ODEs such that certain algebraic equations constrain the system's dynamical

behavior. In DAEs, one or more derivatives of dependent variables are not present in the equations

[7]. A model is called “consistent” if the number of DAE system equations is equal to the number

of model variables. The consistency of the model is a necessary condition for DAE solvability.

An electrical network can be defined by a set of implicit DAEs [5]. A general implicit nonlinear

form of DAEs is given by:

𝐅(�̇�(𝑡), 𝐱(𝑡), 𝑡) = 𝟎 (1-2)

where 𝐱(𝑡) = (x1(𝑡), x2(𝑡), … , x𝑛(𝑡)) is a vector of dependent variables, 𝑡 denotes the independent

variable of time. 𝐅 with the dimension of n is assumed to be sufficiently smooth. The main

distinction between DAEs and ODEs is that the Jacobian matrix
𝜕𝐅

𝜕�̇�
 is non-singular [2].

 3

Often the solution of a DAE system depends on the derivatives of the input signal and not just the

signal itself, as in the case of ODEs [8]. That is why they can not be solved directly; the best way

to solve a high index DAE problem is to convert it to a lower index system first. Applying analytical

differentiations as needed to the given system and eliminating the algebraic equations will yield an

explicit ODE system in the form of (1-1). The number of differentiations required for this

transformation is called the index of the DAE. As such, ODEs have an index 0. DAE-index 0

contains neither algebraic loops nor structural singularities. An index–1 DAE contains algebraic

loops but no structural singularities.

DAEs play a key role in nonlinear circuit modeling, mainly because of the chance to automatically

set up the circuit equations in semi-explicit index-1 DAE form (1-3).

�̇� = 𝐟(𝑡, 𝐱, 𝒛)

𝟎 = 𝐠(𝑡, 𝐱, 𝒛)
(1-3)

where
𝑑𝐠

𝑑𝐳
 is non-singular.

Some DAEs can easily be converted to ODE forms by simple sorting algorithms, whereas others

contain big algebraic loops or even structural singularities.

As an example of linear DAE, consider the equation (1-4) given by:

ẏ1 = y2

y1 = g(x)
(1-4)

Differentiating the algebraic equation with respect to x once, we obtain:

ẏ1 = y2 = ġ(x) (1-5)

another differentiation to obtain an ODE:

ẏ2 = g̈(x) (1-6)

so this equation has a differentiation index = 2 because two differentiations of g(x) were needed to

obtain an ODE.

 4

ẏ1 = y2

y1 = g(x)
(1-7)

Equation (1-8) shows a DAE index 0, because it can be converted to ODE form (1-9) without

differentiation.

ẋ = −x + y

𝑥2 + 𝑦2 = 10

(1-8)

ẋ = −x + √10 − x2 (1-9)

It should be noted that initial conditions shall be consistent for variables x and y such that the

algebraic equation is satisfied, e.g., x(0) = 3, y(0) = 1.

1.2 Programming Paradigms

Figure 1.1 shows the classification of programming paradigms. In computer science, programming

languages are generally characterized into two approaches.

Imperative languages such as Fortran, C, Pascal, Java, MATLAB, or Python in which the

concentration is on the solution of a problem, the statements, and control flows are specified and

executed in sequential order (so-called procedural languages), i.e., algorithms. In other words, the

computer is treated as a device that obeys orders. Everything that is computed must have every

detail of that computation spelled out. The procedural approach divides the tasks a program is

supposed to perform into smaller sub-tasks, which are individually described in the code. This

results in programming modules that can also be used in other programs. The use of imperative

languages limits the applicability and extensibility of models. Moreover, in simulation

applications, the numerical solution is often tightly integrated into the models.

Declarative languages are the so-called logic programming or very high-level languages. The

programmer indicates what goals are to be accomplished but not how specific methods are applied

to attain those goals. This paradigm focuses on the declaration of computation logic rather than

assignments and describing the control flow in detail [9]. The distinction is that the computer

 5

system must determine how the result is to be computed. The syntax of declarative languages is

remarkably different from that of the imperative languages. The main notion of this paradigm is

that there is a straightforward way to understand each statement and code, and the solution does

not depend on how the statement might be used for solving a problem.

Declarative languages encounter severe problems of execution efficiency. If the list of declarative

codes is long, the number of code manipulations required for causalization is enormous.

Imperative Programming Declarative Programming

Structured

Programming

Procedural

Programming

Modular

Programming

Logic

Programming

Functional

Programming

Figure 1.1 Programming paradigms [9]

1.3 Equation-Based Object-Oriented Languages

1.3.1 Equation-based Modeling

Earlier in this section, we introduced programming paradigms. In equation-based modeling [10],

[11], the modeler only describes the model or system in terms of DAEs. Equations describe

relations between components of a model. This is the compiler's duty to sort the equations in a

solvable order. This procedure is called causalization. This is an excellent property for CSSLs

because the modeler can focus his energy on the actual model creation without worrying about the

underlying simulation engine.

 6

1.3.2 Object-Oriented Programming

In the 1960s, Simula [12], the first object-oriented language, was designed with the initial purpose

of discrete event-based modeling and simulation.

The Object-Oriented Programming (OOP) is viewed as a structuring concept that is used to handle

the complexity of large system descriptions. The computer scientists labeled the main features of

OOP as encapsulation, inheritance, and polymorphism.

Encapsulation is the most vital concept in OOP. It describes the idea of bundling data and methods

that work on that data within one unit, e.g., a class or package in Modelica. It is primarily used to

hide complexity and to build up a hierarchy of sub-models. Encapsulation also enables that model

from one paradigm can be transformed into another paradigm.

Inheritance is a feature that allows to import the properties of one class to another class.

Polymorphism simply means that objects with an identical or compatible interface may own

different functionalities. In many imperative languages with a nominal type system, polymorphism

is strongly entangled with inheritance. Modelica owns a structural type system [13], and hence

polymorphism is decoupled from inheritance.

From the computer science viewpoint, the essential object-oriented concepts are reflected in

Modelica, but due to the declarative character, they are implemented in a different fashion [11].

1.3.3 Mathematical Equations and Acausality

In equation-based languages, the main advantage is that the equations are expressed in an acausal

form. It means that the causality of how to solve the equations and to sort the equations in terms of

knowns and unknowns is not determined during modeling. The procedure is carried out during the

simulation. In Modelica, acausality is defined at two abstraction levels:

• equation-level

• level of model connections

As an example of an acausal equation, assume Faraday’s law:

 7

v(𝑡) = L(𝑡)
di(𝑡)

dt
 (1-10)

where v(𝑡) is the instantaneous voltage, L(𝑡) denotes the inductance in the term of time, and i(𝑡)

represents the inductor instantaneous current. In the above equation, “=” defines a relation between

the right and left sides of the equation. Depending on which variable is unknown, (1-10) can be

translated into four different assignments. The assignment is denoted by “∶=”.

v(𝑡) ∶= L(𝑡)
di(𝑡)

dt
 (1-11)

di(𝑡)

dt
∶=

v(𝑡)

L(𝑡)
 (1-12)

L(𝑡) ∶=
v(𝑡)

di(𝑡)
dt

 (1-13)

v(𝑡) − L(𝑡)
di(𝑡)

dt
∶= 0 (1-14)

Therefore, the causality of equation-based models is unspecified during the mathematical

representation of the model, and it is determined only when the corresponding system equations

are solved based on other variables of system.

The connection between two or more models is also defined as the second level of acausality, for

example, a node in an electrical system. This concept refers to physical modeling [14][15]. In

physical systems, the system is described as a container of functional components that interact by

exchanging energy through their interface ports. The physical connection of components is

analogous to connecting real components. Therefore, there exists an exchange of energy between

components; there is no input and output relationship. In other words, these connection ports are

nondirectional.

In this method, interfacing variables for connecting the components in a Physical System are

primarily defined by its non-flow and flow properties [14][15]. It is not required to specify flow

directions and information flow when connecting the components, just as it is not needed to fix this

 8

information when real physical components are interconnected. The number of ports for each

model is defined by the number of energy flows it exchanges with other models in the system. For

instance, in an electrical system, a resistor has two ports, called pins, e.g. positive and negative

pins. Each pin has two variables: voltage, non-flow, and current, flow. The two variables operate

as an interface through the connection of two electrical components. Thus, each component pin is

associated with unique types of variables and can be connected only to pins related to the same

types of variables.

Therefore, the connections are translated into a set of algebraic equations. These equations, in

combination with equations describing the component models, form the DAEs. The DEAs need to

be sorted in a solvable order and reformulated in the form of assignments [16]. Tarjans algorithm

[17] is used to categorize the knowns and unknowns in each equation. This procedure is called

matching. During the procedure, it is needed to break the algebraic loops. Algebraic loop or coupled

equations is resulted from the conditions that two or more equations are strongly connected, and

the system of equations must be solved simultaneously. These equations can be linear or nonlinear

algebraic equations. It is required to apply an algebraic solver at each time step to solve the

algebraic loops. For nonlinear loops, iterative solution methods, such as Newton’s method, must

be used [21].

The generated DAEs should be transformed into an explicit ODE representation. Structurally

singular system or higher–index problem is another challenge in this procedure [22]. Pantelide’s

algorithm [23] and dummy-derivatives [24][25] are two main solutions.

Finally, the output of this solution method is the block lower triangular (BLT) matrix [26][27].

There exist packages for solving ODEs such as SUNDIALS [78]. Depending on the selected solver,

the equations are discretized and solved.

1.4 Modelica

Several languages have been developed with the common properties of physical modeling using

equation systems. Today’s state of the art within multidomain physical modeling (e.g., containing

mechanical, electrical, hydraulic, thermal, fluid, and control components) is Modelica.

 9

Modelica1 [14],[28] is a powerful standardized object-oriented declarative equation-based

language. The language is widely used to model and simulate continuous and discrete physical

systems through physical connections [15],[16].

The power system consists of a set of devices that can be described by continuous dynamics as

well as discrete events [29]. For example, electrical machines can be modeled using a set of

nonlinear ODEs, and transmission lines are molded using the ODEs and delay operators for the

calculation of history terms. Control systems, i.e., exciters and governors, are a combination of

adders, gains, limiters, and integrator blocks. Discrete events are an essential part of electric

systems. The status of a circuit breaker, the tap position of voltage regulating transformers are

examples of this type. KCL and KVL are the main conservation laws governing electrical circuits.

Object-oriented modeling of an electrical system always leads to implicit DAE descriptions [15].

Modelica is a language specialized in the handling of hybrid DAEs. In this term, hybrid means a

combination of continuous and discrete variables [14].

Modelica libraries are built in an object-oriented approach, and every connection can be performed

with the corresponding Modelica components, such as interconnection of two capacitors in parallel.

This feature often leads to higher index systems.

Modelica has been previously used for power system simulation, especially in the phasor domain.

As per the author’s knowledge, there is a lack of research on the simulation of EMTs with

Modelica.

Several commercial and non-commercial environments support the Modelica language;

OpenModelica [30] is the most well-known tool among the non-commercial tools. Dymola [31],

Wolfram SystemModeler [32][33], MathModelica [34], MapleSim [35], and JModelica [36] are

among the commercial tools designed for Modelica.

More details on the specification of Modelica and formulation of electrical equations in the

language will be presented in Chapter 2.

1 Modelica® is a registered trademark of the Modelica Association.

 10

1.5 EMT Modeling and Simulation

Electric power studies are classified into three categories. The first one is the sinusoidal steady-

state, in which the components are specified by their equations in phasor domain; thus, a circuit is

represented by a system of complex numbers. The Load-flow study usually precedes the steady-

state solution. The second category relates to electromechanical transients, which are perturbations

of low frequencies related to the interactions between generators and the grid. The last category is

electromagnetic transients which deal with fast transients in the range of 0 to 100 MHz or higher.

The transients are physically explained by the energy exchange between the electrical components

such as inductors and capacitors. The EMT approach contains the vast majority of subjects, such

as harmonic studies, overvoltage, switching effects, corona effects, skin effects, distributed-

parameter modeling, etc. [37]. In fact, electromechanical transients are also included in EMT-type

of studies and can be conducted using EMT-type solution methods. Off-line EMT simulators, the

results of which are not in synchronism with a real-time clock, have no computing time constraints

and can be made as precise as needed within the available data, models, and related mathematics.

The method by which electric circuit equations are formulated is significant to computer-aided

circuit analysis. It directly influences the network computation time, memory allocations, and

simulation speed. In modern power system simulators, the systematic formulation of the electric

circuit equations can be divided into state variable analysis and modified augmented nodal analysis

[48]-[50] (MANA). The summary of each method for “EMT simulation” is explained below:

1.5.1 State Space Analysis

State-space analysis (also known as state variable analysis) is a popular multi-domain technique

for modeling physical systems as vectors of input, output, and state variables related by first-order

ODEs [38]. A linear dynamic system with 𝑝 inputs, 𝑞 outputs and 𝑛 states can be represented in

the implicit matrix form as given by:

 �̇� = 𝐀𝐱 + 𝐁𝐮 ⟹ State differential equation
(1-15)

 𝐲 = 𝐂𝐱 + 𝐃𝐮 ⟹ Output equation

 11

where 𝐱 ∈ ℝ𝑛 is the state vector, 𝐮 ∈ ℝ𝑝 the vector of inputs and 𝐲 ∈ ℝ𝑞 is the output vector, 𝐀𝑛×𝑛

is the system matrix, 𝐁𝑛×𝑝 denotes the input matrix, 𝐂𝑞×𝑛 is the output matrix and 𝐃𝑞×𝑝 represents

the feedthrough matrix. The system is called continuous linear time-invariant (LTI) if, in (1-15),

the 𝐀, 𝐁, 𝐂, and 𝐃 matrices are not time-dependent; otherwise, the system is called continuous

time-variant.

The main advantages of this method for the LTI systems lie in its lack of overhead when changing

numerical integration step size. This is because the discretization of such a system does not affect

the contents of state matrices.

One advantage of the state-space method is that it can be easily extended to the analysis of nonlinear

systems [39]. The generic form of a state-space model for the representation of a nonlinear system

is defined by:

�̇� = 𝐟(𝐱, 𝐮, 𝑡)

𝐲 = 𝐠(𝐱, 𝐮, 𝑡)
(1-16)

where 𝐟 is for nonlinear state equations and 𝐠 is for output equations.

In electric power systems, the state-space representation gives the option to the modeler to select

the integration technique after formulating a problem, simplifying the programming of variable

time-step integration methods.

The main disadvantage is more longer computing times for formulating the initial set of equations.

It is also much inefficient for updating switching devices and nonlinear models. Compared to

classic nodal analysis or MANA (discussed in Section1.5.2), there is a dramatic loss of efficiency

when solving very large-scale systems. The state-space nodal (SSN) [40] method is a simulation

engine based on the combination of state-space and nodal-analysis formulations of circuit equations

to alleviate the numerical disadvantages of state-space analysis.

In the following, we introduce two simulation tools working based on the state-space method.

 12

1.5.1.1 Simscape Electrical

Simscape Electrical is a part of the multi-domain Simscape package for modeling and simulating

electric systems in the Simulink environment. Simscape is a physical modeling language designed

to emulate physical systems [41]. It supports acausal and equation-based modeling. An example of

a resistor model in Simscape is shown in Figure 1.2. More explanation of this model can be found

in [42].

component resistor

% Linear Resistor

% The voltage-current (V-I) relationship for a linear resistor is V=I*R,

% where R is the constant resistance in ohms.

%

% The positive and negative terminals of the resistor are denoted by the

% + and - signs respectively.

nodes

p = foundation.electrical.electrical; % +:left

n = foundation.electrical.electrical; % -:right

end

variables

i = { 0, 'A' }; % Current

v = { 0, 'V' }; % Voltage

end

parameters

R = { 1, 'Ohm' }; % Resistance

end

branches

i : p.i -> n.i;

end

equations

assert(R>0)

v == p.v - n.v;

v == i*R;

end

end

Figure 1.2 A Simscape file that implements a linear resistor

1.5.1.2 Specialized Power System Library

The Simscape Electrical Specialized Power System (SPS) is a library in Simscape Electrical

developed by Hydro-Quebec to simulate power systems. SPS belongs to the family of physical

system modeling and uses a similar block and connection line interface. It employs a state-space

block to describe the linear parts of a system, e.g., a circuit. Once the simulation begins, the

system's topology is analyzed, the linear blocks are separated from nonlinear blocks. Then, the

 13

state-space model (A, B, C, D matrices) of the linear part of the circuit is computed. All steady-

state calculations and initializations are performed at this stage. Nonlinear models, such as switch

devices, motors, and machines, are simulated by current sources driven by the voltages across the

nonlinear element terminals. Figure 1.3 represents the interconnections between the different parts

of the complete Simulink model. The nonlinear models are connected in feedback between voltage

outputs and current inputs of the linear model [43]. It is highlighted that both in Simscape and SPS,

nonlinear elements are not represented in the state-space matrices.

Figure 1.3 Workflow of Simscape electrical [43]

SPS presents some restrictions to circuit system modeling; for example, it is impossible to simulate

a capacitor in a loop with an ideal voltage source (as illtreated in Figure 1.4) or connect an inductor

in parallel with an ideal current source. It can be mathematically justified that the voltage across

the capacitor cannot be chosen as an independent state variable; consequently, it is not possible to

write the equations in the linear form of state space. Putting a small resistance (snubber) in series

with the capacitor is required to alleviate the problem.

Figure 1.4 The parallel connection of a capacitor and ideal voltage source in the SPS

 14

As other examples of topological constraints in the SPS, it is impossible to connect in series the

nonlinear components modeled by a current source to an inductor, or two nonlinear blocks

implemented by controlled current source, e.g., a circuit breaker and a nonlinear inductor for inrush

current study.

1.5.2 Modified Augmented Nodal Analysis

Nodal analysis (NA), also known as the branch current method, was subsequently introduced as

the topological dual of mesh analysis and is identified with Kirchhoff’s current law (KCL) in the

form of 𝐀𝐈 = 𝟎, where matrix A describing the incidence between branches and nodes in the circuit

[44]-[46]. The current passing through each branch is written in terms of the circuit node voltages.

This method has several limitations, including the inability to process voltage sources and current-

dependent circuit elements efficiently.

The backbone of Modified Nodal Analysis (MNA) is the nodal analysis. In this method, the nodal

voltage and the current of some branches are determined [47]. Therefore, an electric circuit can be

formulated by:

[
𝐘 𝟎
𝟎 𝐒

] [
𝐕
𝐈
] = [

𝐁𝑰

𝐁𝑽
] (1-17)

where 𝐘 is the nodal admittance matrix, 𝐒 is the augmented matrix for including the connectivity

of voltage sources, 𝐕 and 𝐈 are the unknown nodal voltages and source current vectors,

respectively, the vectors 𝐁𝑰 and 𝐁𝑽 are the current and voltage sources.

Modified Augmented Nodal Analysis (MANA) is an extension of MNA to eliminate the limitations

of NA and MNA. The solution method in EMTP® is based on MANA. This method offers several

advantages [50], [51] over classical nodal analysis and is formulated as below.

[

𝐘𝑛 𝐕𝑐 𝐃𝑐 𝐒𝑐

𝐕𝑟 𝐕𝑑 𝐃𝑣𝑑 𝐒𝑣𝑠

𝐃𝑟 𝐃𝑣𝑑 𝐃𝑑 𝐒𝑑𝑠

𝐒𝑟 𝐒𝑠𝑣 𝐒𝑠𝑑 𝐒𝑑

] [

𝐯𝑛

𝐢𝑣
𝐢𝑑
𝐢𝑠

] = [

𝐢𝑛
𝐯𝑏

𝐝𝑏

𝐬𝑏

] (1-18)

 15

where submatrix 𝐘𝑛 is the linear network admittance of network, and other submatrices represent

network elements that can not be modeled as an admittance branch. Equation (1-18) can be

represented in the generic forms of 𝐀𝐱 = 𝐛. The below examples demonstrate the approach [48],

[49].

Assume an ideal voltage source is connected between two nodes, k, and m. Therefore, the

mathematical representation is given by:

𝑣𝑘 − 𝑣𝑚 = 𝑣𝑘𝑚 (1-19)

Equation (1-19) is directly inserted into the main system by placing 1 and −1 in columns k and m,

respectively, of 𝐕𝑟. The source current condition is considered by transposition in the submatrix

𝐕𝑐. Similarly, it is possible to implement the model of an ideal switch using the submatrices 𝐒.

Let’s assume an ideal switch is between nodes k and m. when the switch is closed, then 𝑣𝑘 − 𝑣𝑚 =

0 and the switch is open 𝑖𝑘𝑚 = 0 and the corresponding diagonal cell in 𝐒𝑑 is set to 1.

For nonlinear component modeling [50],[51], EMTP® employs an iterative solution for nonlinear

branches. For this purpose, first, the nonlinear equation is linearized around a candidate solution

point to solve the circuit for this solution point to obtain a better result. The procedure is iterated

until the pre-defined tolerance is reached. For example, assume a nonlinear resistor defined by 𝑖 =

𝑓(𝑣) as illustrated in Figure 1.5.a. The linearized equation at point (𝑣0, 𝑖0) is:

𝑖 = 𝑓′(𝑣0)𝑣 + 𝐼𝑒𝑞 (1-20)

The Norton equivalent of (1-20) is shown in Figure 1.5.b.

Figure 1.5 (a): An i -v characteristic for a nonlinear resistor. (b): Norton equivalent at the

operating point

 16

1.5.2.1 EMTP®

There are presently four EMT-type simulation tools; EMTP® [49], ATP [52], EMTDC (PSCAD)

[54] and PowerFactory [55]. The electromagnetic transients program (EMTP®) is a widely used

simulation tool. The main idea in these tools is the discretization of components based on a fixed

step second-order trapezoidal rule. A Norton equivalent circuit is composed only of a resistance

and a current source to represent any circuit element in a power system [45], [53]. EMTP® has

great distinguishing features such as handling nonlinear functions, initialization, steady-state

studies, frequency scan in phasor domain, implementation of control systems, etc. In EMTP®, the

numerical oscillations resulting from the truncation error are suppressed by the Critical Damping

Adjustment (CDA) scheme [56].

In the EMTP® solution method, power electronic devices such as thyristors or transistors can be

modeled as ideal switches with a resistor to account for losses. Currently, the nonlinear properties

of components are modeled with monotonically increasing curves [37].

1.5.2.2 XTAP

XTAP (eXpandable Transient Analysis Program) is also an EMT-type simulator. The numerical

integration method of XTAP is based on the 2-Stage Diagonally Implicit Runge-Kutta (2S-DIRK)

[57] instead of the trapezoidal method [58],[59]. The 2S-DIRK method has a second-order

accuracy and is A-stable like the trapezoidal method but does not produce sustained numerical

oscillation at discontinuities.

The 2S-DIRK method, besides the increased computation burden, has some limitations such as

potential order reduction phenomenon when applied to very stiff and differential-algebraic

problems, where the classical order of the method offers a poor indication of occurred numerical

error [60].

1.6 Motivation and Objectives

The classical EMT simulators use imperative languages such as Fortran and C. According to the

author's knowledge, no EMT simulator has been developed based on declarative languages, and

the abilities and advantages of these languages have never been investigated. This research is

 17

conducted to explore the benefits and drawbacks of Modelica as a powerful example of the

declarative languages in EMT simulation.

One of the aims of this research is to create and validate a Modelica-based library, the so-called

Modelica Simulator of Electromagnetic Transients (MSEMT). The library, which includes the

EMT-detailed model of main electrical components, shows the comparative advantages and

disadvantages of simulating with Modelica and finally offers solutions for removing the constraints

of Modelica-based EMT simulation.

Analysis of simulation accuracy for high-frequency switching devices and examination of event-

handling in Modelica are important subjects in Modelica.

Creating sophisticated models such as transmission line (wideband model), synchronous machine

(with saturation), machine controls, and ultimately exploring the simultaneous solution of control

systems and power networks are the objectives of this reseach thesis.

1.7 Methodology

The methodology used in this thesis is to start by implementing EMT-detailed models in the

Modelica language. The advanced linear and nonlinear models such as wideband line model,

synchronous generator including saturation, surge arrester, etc., will be examined. Models are

programmed on a high-level code and based on model equations. This work is followed by research

on new solutions algorithms and modeling approaches. All models are implemented and validated

with EMTP®. The second task is to test the performance of the models from the aspects of accuracy

and speed in large-scale networks. For this purpose, the performances and results obtained from

IEEE 39-bus and IEEE 118-bus test cases will be compared with the EMTP®.

To evaluate the accuracy of different numerical solutions, the relative error between the reference

solution trajectory 𝑥𝐸𝑀𝑇𝑃 and the given numerical solution is calculated using:

𝜀 = |
𝑥𝑀𝑜𝑑𝑒𝑙𝑖𝑐𝑎 − 𝑥𝐸𝑀𝑇𝑃

𝑥𝐸𝑀𝑇𝑃
|

The errors are calculated and presented for each time point. A base-ten logarithmic scale on the y-

axis is used to have a better demonstration.

 18

Simulation performance is one of the essential characteristics of a simulator. In our studies, the

simulation performance is compared with EMTP® and, if possible, with Simscape Electrical

Specialized Power System [43]. It should be noted that the performance Simscape Electrical

Specialized Power System is decreased severely with the increase of nonlinear components.

Currently, EMT simulation speed via Modelica-based simulators is not as efficient as EMTP®. On

the contrary, the efficiency of modeling, especially for complicated models, is considerably

improved. For example, it is demonstrated that we can modify a synchronous machine model

modularly to include the magnetic saturation effects.

1.8 Contributions

The following are the contributions of this thesis:

• Development of an EMT-detailed library in Modelica.

• Investigation and analysis of advantages/disadvantages, challenges, and limitations of

Modelica for EMT-type simulations.

• Investigation of efficiency and flexibility of modeling with Modelica.

• Investigation of EMT nonlinear models in Modelica from the aspects of accuracy and

efficiency.

• Investigation of advantages/disadvantages of variable-step solvers for EMT simulations.

• Investigation of discontinuity handling in Modelica simulators.

• Comparison of simulation speed between Modelica-based simulators and Simscape SPS.

• Developing the DynaꞶo for EMT simulations.

The workflow of pure Modelica simulators such as OpenModelica is to compile a model at run-

time before launching the simulation itself. This process is an obstacle for large-scale power system

simulations. Dynaωo [61], [62] is a hybrid C++/Modelica open-source simulation tool for power

systems, initially designed for phasor domain simulation and long-term and short-term stability

studies. The simulator engine is changed to allow EMT-type simulations. The Dynaωo strategy for

increasing performances for compilation and simulation is to compile non squared Modelica

 19

models individually before simulation. The compiled models are then only instantiated during the

simulation. In Dynaωo, like in Modelica, the solver is decoupled from the model. Currently,

variable step backward Euler [63] and IDA [64] solvers are available in the simulation suite. The

simulation tool, along with some test cases, will be presented in Chapter 6.

1.9 Thesis Outline

The thesis describes the EMT modeling and simulation of electric circuits using the Modelica

language. This thesis is composed of seven chapters.

• Chapter 1 gives a literature review on programming languages, electromagnetic transient

modeling, and simulation tools. Then, it explains the background motivating this Ph.D.

project and summarizes its goals and contributions.

• Chapter 2 is dedicated to studying the Modelica language from mathematical formulations

and compilation perspectives, along with examples. In this chapter, an overview of solvers

integrated with main Modelica compilers will be given. Then simulation modes, i.e., DAE

or ODES modes, are presented as well.

• Implementation of EMT models is the focus of Chapter 3. The coverage of this chapter

includes the models for transmission lines, nonlinear inductor, surge arrester, arc models,

synchronous machine, control systems, etc.

• Chapter 4 presents the numerical tests and results to compare both the precision and

efficiency of the transmission line models in Modelica with the reference software EMTP®.

This chapter investigates the accuracy of line models, e.g., constant parameter and

wideband line models in the IEEE 13-bus distributed network. The network includes short-

length and untransposed overhead transmission lines and underground cables. The

• Chapter 5 investigates the accuracy of developed models in the MSEMT library and the

efficiency of simulations through the IEEE39-bus network. Both linear and nonlinear

components, along with the control systems, are simulated in this test. Issues of accuracy

and stability of variable-step methods are covered.

 20

• Chapter 6 introduces a hybrid C++/Modelica simulation tool, called Dynaωo, to accelerate

simulations in Modelica. In this chapter, the accuracy and performance of Dynaωo are

compared with OpenModelica and EMTP® through nonlinear and high-frequency transient

examples.

• Chapter 7 investigates the Modelica models in the larger scale IEEE 118-bus network. In

this test case, the accuracy of the synchronous machine model, including saturation and

surge arrester, is validated with EMTP®. The validation of arc models is also examined in

Section 7.5.

 21

 A REVIEW ON MODELICA AND BASIC CONCEPTS

This section gives an introduction to basic concepts necessary to understand the problems

demonstrated in this thesis. This includes some background to Modelica, which provides a quick

overview of the circumstances under which Modelica was invented and illustrates the basic

motivation and goals behind this language. Additionally, clarifying the adopted models is

necessary to appreciate how the models are handled and solved. Finally, quick and basic elementary

language constructs are illustrated through electrical examples. For more details, a comprehensive

introduction can be found in [14].

2.1 Introduction

Continuous System Simulation Languages (CSSL) are a set of very high-level programming

languages aimed to simplify the modeling and simulation of physical systems characterized by

ordinary and partial differential equations.

Modelica is a declarative, object-oriented language aimed primarily to model and simulate multi-

domain complex systems, such as mechanical, electrical, hydraulic, thermal, and electric power.

The first language specification 1.0 [65] was released in September 1997. Since then, the

specification has been evolved to version 3.5 [28] with many complex constructs. Modelica

Association [66] is responsible for language specification and the Modelica Standard Library

(MSL). MSL is a free library containing basic models in various disciplines.

The most important features of Modelica are:

• Modelica language relies on equations. It permits acausal modeling.

• Modelica is a multidomain modeling language; it means models corresponding to physical

objects from several domains such as electrical, mechanical, etc.

• Modelica is an object-oriented language. It facilitates the reuse of components and the

evolution of models.

• Modelica supports C-code generation.

• Modelica has a strong construct for creating and connecting components, subcomponents.

 22

• Modelica has interoperability with other languages such as MATLAB, C, Julia [67]-[69],

and Python.

• Modelica is fully compatible with FMI [70], [71], a standard that allows co-simulation and

exchange of dynamic models [72].

• Modelica can be used for model-to-model transformation through a common information

model (CIM) [73], [74].

2.2 Object-Oriented Mathematical Modeling in Modelica

Modelica is a declarative language; therefore, the distinction between classes and objects

disappears and inheritance is directly copied in the models. It represents a pure mechanism of type

generation. This means that the type of hierarchy of models is in principle independent from the

inheritance. For example, the resistor model extends from a partial model OnePort, which

includes two variables v for voltage and i for current. Furthermore, the classes of p and n of

connector Pin are public elements of OnePort. Since Resistor extends from OnePort, all

elements v, i, p, and n are "copied" to class Resistor.

Modelica offers the features of object-oriented modeling at a higher level of abstraction than the

usual object-oriented programming. For instance, it is not required to write code for transporting

data between objects using assignment statements. Such code is automatically generated by the

Modelica compiler based on the given equations.

2.3 Equation-based Modeling

As already said, Modelica is an equation-based language. Equations are more flexible than

assignments since they do not prescribe a specific data flow direction or execution order. This is

the key to physical modeling and increases the reusability of Modelica classes. In Modelica,

connections between components generate equations.

 23

2.4 Symbolic Workflow of Modelica Models

The Modelica Language Specification [28] defines how a Modelica model shall be mapped into a

mathematical description as a mixed system of DAE and discrete equations with Real, Integer, and

Boolean variables as unknowns.

Let’s assume we have built a Modelica model with high-level abstraction in graphical notations

packaged in pure mathematical representation; Figure 2.1 outlines a typical compilation and

simulation process. It is noted that this procedure might slightly change for different Modelica

environments.

• Block 1: In the top-level, the system is modeled with Modelica codes or using the Graphical

User Interface (GUI) developed in Modelica. The selected components from the pre-

constructed libraries, such as iPSL [112], MSEMT [75], are dragged and dropped on the

simulation page. They can be easily connected by linking the pins of components.

• Block 2: The Modelica codes are translated and parsed into a flat Modelica structure. In the

Block, firstly, a type checking of models is carried out to make sure that parametrized

models conform to the type rules of Modelica. For example, a plus (+) operator cannot have

a string and an integer as its left and right operand.

Secondly, the inherited classes are collapsed hierarchically. For each sub-components of a

model, one copy of all equations is generated with distinguished identifiers. For example,

if our model is composed of two resistors, R1 and R2 whose resistances are 5 and 10 ohms,

two equations are generated: v1=5*i1 and v2=5*i2.

Thirdly, for each connection between two or more nodes, potential variables are set to be

equal, and flow variables are summed to zero.

As a result, the output of this Block is a set of flat implicit DAEs in the form of abstract

syntax tree (AST) consisting of:

1. Declaration of variables, e.g., parameter Real v=5.

2. Equations in the equation section.

3. Invoking of functions.

 24

4. Algorithms specified in algorithm section.

5. When, if -clauses for triggering discrete-time behavior.

• Block 3: The behavior of a Modelica model is defined in terms of genuine equations, and a

Modelica analyzer must assign an equation for each variable as part of the sorting

procedure, which also identifies algebraic loops. The idea to process problems with a

hundred thousand unknowns is to focus on the structural properties, i.e., which variables

are in each equation. Structure Jacobian or incident matrix is used for extracting this

information. For a system of equations, 𝐉(𝒙) = 𝟎, each element i, j, is zero if 𝑥𝑗 does not

existe in the expression 𝐽𝑖 ; otherwise, it is one.

The sorting procedure is to sort out unknowns and equations to transform the structure

Jacobian to Block Lower Triangular (BLT). The BLT is an approach specialized in

permuting the matrix to have non-zero elements of the matrix lower of the main diagonal.

A BLT matrix demonstrates the structure of a problem. It decomposes a problem into

subproblems, which can be solved in sequence. Each non-scalar block on the diagonal of

BLT forms an algebraic loop. All algebraic loops are identified in the sorting procedure in

their unique minimal form. The basic algorithm was given by Tarjan [17].

• Block 4: It is imperative to reduce the size of the problem sent to a numerical solver to

obtain efficient simulation. The computational cost for solving a system of equations grows

rapidly with the number of unknowns because the number of operations is related to the 𝑛3,

where n is the number of unknowns. A Modelica model has many trivial equations typically

in the form of 𝑣1 = 𝑣2 or 𝑣1 = −𝑣2 which are the result of connections and object-oriented

properties. From the BLT partition, it is relatively straightforward to find unknowns that

are constant and can be calculated and substituted at translation. This may considerably

reduce the complexity of the problem that has to be solved numerically.

• Block 5: in this stage, the explicit equations are converted to C code for execution.

• Block 6: the selected solver will solve the system of equations during the simulation time.

• Block 7: Output from the simulation process is typically a file (. mat or .csv file) including

simulation data for the variables. The data can be later visualized using a GUI.

 25

The process of Block 2 to Block 5 is typically performed at compile-time, and in Block 6, when

the model is executed, it is often called the run time process.

Hybrid implicit DAEs

formulation

M
o
d

e
li

c
a
 E

n
v

ir
n

m
en

t
M

o
d

e
li

c
a
 C

o
m

p
il

er
C

 c
o
m

p
il

er

Executable codes

Modelica Model

Sorted Equations

Operator Level

Explicit ODE

formulation

G
U

I
(1)

(2)

(3)

(4)

(5)

(6)

(7)

Mathematical representation of

model & defining the parameters

Lexical analysis and parsing

Analyzer

Optimizer

C code

Solver

Graphical output

F
ro

n
t-

e
n
d

B
ac

k
-e

n
d

R
u

n
-t

im
e

C
o
m

p
il

e
 t

im
e

Figure 2.1 Typical workflow of Modelica

2.5 Matching Algorithm

In the previous section, we have discussed the process of causalization of equations in Modelica as

one of the time-consuming steps in the compilation. In this section, we would like to have a review

of the mathematical aspects of this process.

Graph theory is very popular for symbolically handling the DAEs in Modelica. The first step is to

construct the incidence matrix using a directed graph. A directed graph or digraph consists of a set

of nodes (called vertices) and directed edges between nodes. An edge is defined as an ordered pair

of nodes. The bipartite graph can be used to represent the relation between equations and variables

in the incidence matrix. Assuming graph 𝐆, the nodes are divided into two sets, one representing

 26

the rows and the other the columns, such that a row node, i is joined to a column node, j, if and

only if 𝑎𝑖𝑗 is 1 in the incidence matrix [18]. Mathematically, for a set of DAEs, with 𝑒𝑖 equations

and 𝑥𝑗 variables, we can say:

𝐆 = {𝐕, 𝐄} (2-1)

where, the vertices, 𝐕, is the set of equations, and is given by:

𝐕 = {𝑒𝑖} ∀𝑖 ∈ ℕ (2-2)

and the edge, 𝐄, is the pairs of relations between equations and variables, is given by:

𝐄 = {(𝑒𝑖 , 𝑥𝑗)} ∀𝑖, 𝑗 ∈ ℕ (2-3)

Now, we should find a matching, i.e., independent edge sets for the constructed bipartite graph 𝐆

using a recursive algorithm. For this purpose. there exist several algorithms in Modelica

environments, such as DFS (Depth First Search algorithm.) [17], PR (push-relabel mechanism)

[19]. A comparison of appropriate matching algorithms for large-scale DAEs is given in [20].

For example, suppose a system of equations is defined by:

f1(x3) = 0

f2(x1, x2) = 0

f3(x2, x3) = 0

f4(x1, x2, x4) = 0

 (2-4)

The vertices 𝐕, and the edge, 𝐄, are defined by:

𝐕 = {f1, f2, f3, f4} (2-5)

𝐄 = {(f1, x3), (f2, x1), (f2, x2), (f3, x2), (f3, x3), (f4, x1), (f4, x2), (f4, x3), (f4, x4)} (2-6)

Figure 2.2 shows the bipartite graph describing the equations (2-4). The general rule for

causalization of equations is as below:

• Step 1: The equations which are connected to only one unknown variable are identified and

causalized. In our example, this is the pair (f1, x3).

 27

• Step 2: Now, the variable x3 is known, and it should be identified as a known variable in

other equations. This is illustrated by a dashed line.

Now step 1 is repeated by checking the remained acausal equations; we find that f3 has only

“one” unknown variable, e.g., (f3, x2). Therefore, the variable x2 changes to known variable,

and we identify it in other equations. By iterating the procedure, x1 and x4 are respectively

causalized. Each iteration has been marked in Figure 2.2 by a pink number.

f1 x1

f2 x2

f3 x3

f4 x4

1

2

3

4

Figure 2.2 Bipartite graph of equation (2-4)

The incident matrix of equations (2-4) is given by:

f1
f2
f3
f4

[

x1 x2 x3 x4

0 0 1 0
1 1 0 0
0 1 1 0
1 1 0 1]

 (2-7)

the equations are vertically and horizontally sorted using the algorithm described above, and

finally, they are transformed to the BLT matrix, given by:

f1
f3
f2
f4

[

x3 x2 x1 x4

1 0 0 0
1 1 0 0
0 1 1 0
0 1 1 1]

 (2-8)

Now the equations are in the form of assignments, and the order of each assignment for solving is

known. Matching and causalization for large-scale circuits are not as easy as demonstrated in the

example. As earlier mentioned, two challenges are often encountered, algebraic loops and

structural singularity. We examine these issues in Section 2.7 and Section 2.8, respectively.

 28

2.6 Analysis of an RLC Circuit

This section intends to demonstrate the modeling and simulation (with OpenModelica workflow)

of an RLC circuit. The circuit schematic is illustrated in Figure 2.3. There are five electrical

components in this circuit, four passive devices, plus one sinusoidal voltage source. First, the

modeling of an inductor is explained, then the procedure is extended to other models, e.g.,

capacitor, resistor, etc. Finally, we show how the components are connected, and the circuit

equations are constructed and causalized. In the simulation procedure, we will demonstrate how

these equations are prepared for solving.

AC1
Vm=120

R1

R=10

C1
C=50 µF

L1
L=350 mH

R2
R=5

Figure 2.3 Schematic of RLC circuit

2.6.1 Linear Inductor Model

Let us discuss how modeling in Modelica works, using a linear inductor as an example. A linear

inductor is a simple electrical component, described by (2-9):

v = L
𝑑i

𝑑𝑡
 (2-9)

where:

v The voltage across the inductor

i The current through the inductor

L Inductance

 29

From the viewpoint of object-oriented programming, a linear inductor model, denoted by

Inductor, can be subdivided into several modules with a hierarchal layer. Foremost, it is needed

to identify the variables and parameters of the model. In this example, voltage, v, and current, i,

are the variables, and the inductance, L, is a parameter of the model. All variabilities in Modelica

are defined in a specialized class type, then package them and recall them when required. Figure

2.4 shows the definition of three types used in the inductor model. For example, we have defined

a type and named it Voltage, then we have declared that Voltage is a Real value. quantity

is a description of what the variable represents. In Modelica, variables can have physical units. it

is indicated that the unit for the type voltage is V.

type Voltage =

Real(quantity="Voltage",

unit ="V");

type Current =

Real(quantity="Current",

unit ="A");

type Inductance =

Real(quantity="Inductance",

unit ="H");

Figure 2.4 Definition of the types for variables of inductor model

 The next step is to define the pin. It is the primary component and external communication

interface of electrical models. Figure 2.5 shows the implementation of pin in Modelica. There is

a specific class, i.e., connector, for defining the component interfaces. The electrical pin

contains two variables, Voltage denoted by v and Current denoted by i. We recall that Voltage

and Current both are earlier defined in type. The prefix flow on the second variable indicates

that this variable represents a flow quantity, which has special significance for connections. Based

on the conservative law of energy, the sum of all flows coming into or out of a specific node is

zero. These equations are automatically generated during the parsing of models in Block 1.

p.v

p.i

p connector Pin

 Voltage v;

 flow Current i;

end Pin;

+

Figure 2.5 Implementation of pin model in Modelica

 30

The next step is to program the partial model OnePort, which contains the common properties of

a one-port device. Each one-port device is recognized with two pins, i.e., a positive pin denoted by

p and a negative pin denoted by n and a set of equations as illustrated in Figure 2.6. The first

equation, p.v - n.v = v implies the relationship between the component non-flow variables. It

defines the voltage drop across the inductor pins as the difference between the pin voltages. The

second equation, p.i + n.i = 0 establishes the relationship between the component flow

variables, denoting that the current comes into the device equals the current comes out. It is

assumed that the positive direction of current is into the pin throughout the thesis. The third

equation is a trivial equation to make the model more understandable.

partial model OnePort

 Voltage v;

 Current i;

 Pin p, n;

 equation

 p.v - n.v = v;

 p.i + n.i = 0;

 p.i = i;

end OnePort

p.v

p.i

n.v

n.i

p n

i

+ -
v

OnePort

Figure 2.6 Implementation of partial model OnePort

Now we can proceed to complete the model, as can be seen in Figure 2.7. Parameter

Inductance L specifies the inductance value in model L. This parameter appears in the block's

dialog box generated from the component file and can be modified when building and simulating

a model. The comment immediately following the parameter declaration, Inductance,

specifies the type of L. The statement Inductance determines how the name of the block

parameter appears in the dialog box. The properties of partial model OnePort are extended into

the model using the keyword extends.

In the equation section, L * der(i) = v, describes the operation of a linear inductor based

on Faraday’s law. It establishes the mathematical relationship between the component non-flow

and flow variables, current i and voltage v, and the parameter L.

 31

The operand = used in these equations specifies continuous mathematical equality between the left-

and right-hand side expressions. This establishes a symmetric mathematical relationship between

the left- and right-hand operands.

Inductor

p.v

p.i

n.v

n.i

p n

i

+ -v

model Inductor Linear inductor

 parameter Inductance L Inductance

 extends OnePort;

 equation

 L * der(i) = v;

end Inductor

Partial model
 OnePort Model name Model description

Figure 2.7 Inductor model in Modelica

Figure 2.8 illustrates the resulting graphical user interface (GUI), generated from this component

file in OpenModelica. It is possible to group the parameters or create tabs for different types of

parameters. For the state variables, we can define initial values in the GUI.

Component name

Component address in the
library

Description of component

Unit of parmaeter

Description parameter

Inserting the initial value of
component

It is possible to define other
tabs for categorizing the

parameters

Figure 2.8 Graphical user interface of linear inductor model

It should be emphasized that constructing the models of a resistor or a capacitor is entirely similar

to the inductor model by replacing the inductor equation with the appropriate equation, e.g., Ohm’s

law for the resistor.

 32

2.6.2 Interconnection of Models

Interconnection of models in Modelica language is carried out by the connect statement. When

the statement is used to connect two models, based on the definition of variables in connecting

interface, e.g., pin, some equations are constructed based on the following law: The sum-to zero

for flow variables and equality of coupling for the non-flow variable.

In Figure 2.9, the wire labeled 1 is represented in the model as connect (L1.p, R1.p) In the

electrical cases, the variables voltage and current are defined as non-flow and flow variables,

respectively, in the interface pin. Therefore, Interconnection of the positive pin of resistor (R1),

R1.p, to the positive pin of the inductor (L1), L1.p, by the code

connect(L1.p, R1.p);

generates two equations automatically.

R1.p.v = L1.p.v;

R1.p.i + L1.p.i = 0;

These equations are inserted into the set of equations describing the circuit components and shall

be solved.

AC1
Vm=120

R1

R=10

C1
C=50 µF

L1
L=350 mH

R2
R=5

model RLC RLC Example

RLC_Branches.Ground G;

RLC_Branches.R R1(R = 10);

RLC_Branches.R R2(R = 5);

RLC_Branches.L L1(L = 350e-3);

RLC_Branches.C C1(C = 50e-6);

Sources.CosineVoltage AC(Vm = 120, f = 60);

equation

connect(L1.p, R1.p);

connect(R1.p, AC.p);

connect(R1.n, C1.p);

connect(R1.n, R2.p);

connect(R2.n, G.p);

connect(AC.n, G.p);

connect(L.n, G.p);

connect(C.n, G.p);

end RLC;

1

Figure 2.9 Implementation of RLC circuit with GUIs (left side) and Modelica codes describing

the circuit (right side)

 33

2.6.3 Model Compilation

Figure 2.10 shows the parsed models and equations describing the current and voltage at each point

for the electrical circuit. For this purpose, the Modelica compiler copies the properties of each

model, including its parameters and equations. For the connection point, the required equations

which describe the KVL and KCL are generated. For instance, nodes N1 and N2 are defined by

three equations, and five equations characterize node N3. The dimension of such automatically

generated DAE systems is usually large due to the connect statements corresponding to many

equations of the form 𝑢 = 𝑣 and 𝑢 + 𝑣 = 0.

The complete set of equations (see Figure 2.10) generated from the RLC circuit consists of 32

DAEs and 32 variables, as well as time and several parameters and constants.

AC
Vm=120

R1

R=10

C1
C=50 µF

L1
L=350 mH

R2
R=5

R1.v = R1.R * R1.i;

R1.v = R1.p.v – R1.n.v;

0.0 = R1.p.i + R1.n.i;

R1.i = R1.p.i;

R1.p.i + L1.p.i + AC.p.i = 0.0;

AC.p.v = L1.p.v;

AC.p.v = R1.p.v;

L1.L * der(L1.i) = L1.v;

L1.v = L1.p.v - L1.n.v;

0.0 = L1.p.i + L1.n.i;

L1.i = L1.p.i;
C1.i = C1.C * der(C1.v);

C1.v = C1.p.v - C1.n.v;

0.0 = C1.p.i + C1.n.i;

C1.i = C1.p.i;G.p.i + L1.n.i + C1.n.i + AC.n.i + R2.n.i = 0.0;

AC.n.v = C1.n.v;

AC.n.v = G.p.v;

AC.n.v = L1.n.v;

AC.n.v = R2.n.v;

G.p.v = 0.0;

if time < AC.StartTime or time > AC.StopTime then

 AC.v = 0.0;

 else

AC.v = AC.Vm * cos(6.283185307179586 * AC.f *

time + AC.Phase);

end if;

AC.v = AC.p.v - AC.n.v;

0.0 = AC.p.i + AC.n.i;

AC.i = AC.p.i;

R2.v = R2.R * R2.i;

R2.v = R2.p.v – R2.n.v;

0.0 = R2.p.i + R2.n.i;

R2.i = R2.p.i;

 R1.n.i + C1.p.i + R2.p.i = 0.0;

 C1.p.v = R1.n.v;

 C1.p.v = R2.p.v;

N1 N2

N3

Figure 2.10 Parsed equations of RLC circuit

Table 2.1 presents the 32 variables in the system of equations, of which 30 are algebraic variables

since their derivatives do not appear. Two variables, C1.v and L1.i, are state variables since their

derivatives exist in the equations.

 34

Table 2.1 The variables in the RLC circuit model

AC.v L1.v R1.v C1.v R2.v G.p.v

AC.i L1.i R1.i C1.i R2.i G.p.i

AC.p.v L1.p.v R1.p.v C1.p.v R2.p.v

AC.n.v L1.n.v R1.n.v C1.n.v R2.n.v

AC.p.i L1.p.i R1.p.i C1.p.i R2.p.i

AC.n.i L1.n.i R1.n.i C1.n.i R2.n.i

2.6.4 Transformation to State-Space Form

The implicit DAE system described in Figure 2.10 should be further simplified before applying a

numerical solver. The next step is to identify the kind of variables in the DAE system. We have the

following four groups:

1. All constant and parameters, which are declared with the keyword constant, parameter

are gathered into a vector p. All other constants can be replaced with their values.

2. Variables declared with the input attribute, prefixed by the input keyword, are collected

into an input vector u.

3. Variables whose derivatives appear in the model, the der() operator, are grouped in a state

vector x.

4. All other variables are collected into a vector of algebraic variables, y.

For our simple circuit model these four groups of variables are the following:

p = [L1.L, R1.R, R2.R, C1.C, AC.f, AC.vm, AC.Phase]T

u = [AC.v]T

x = [L1.i, C1.v]T

y = [L1.v, L1.p.v, L1.n.v, L1.p.i, L1.n.i, R1.v, R1.i, R1.p.v, R1.n.v,
R1.p.i, R1.n.i, C1.i, C1.p.v, C1.n.v, C1.p.i, C1.n.i, R2.v, R2.i, R2.p.v,

R2.n.v, R2.p.i, R2.n.i, G.p.v, G.p.i]T

 35

The system of equations should preferably be in explicit state-space. Derivative of the state vector

is computed from the state vector at the current point in time using an iterative numerical solution

method for the ordinary differential equations at each iteration step.

2.6.5 Solution Method

Equations illustrated in Figure 2.10 should be causalized as a primary step. There are systematic

causalization procedures. For demonstrating how it is done, we come back to our example. First,

we must optimize the equations and remove the trivial equations. It helps us to understand the

procedure better. Equations (2-10) to (2-18) show the minimal equations describing the system.

There are nine equations and unknowns. 𝑓(𝑡) is a time-dependent equation representing the

sinusoidal voltage source of circuit. Time and state variables are considered known variables, for

which no equations need to be found.

In contrast, the inputs of the integrators, der(L1.i) and der(C1.v), are unknowns, for which

equations must be found. These are the state equations of the state–space description. An iterative

numerical solution method is used to find the solution.

v𝐿1
= 𝒇(𝒕) (2-10)

v𝐿1
= L1𝑑i𝐿1/𝑑𝑡 (2-11)

v𝑅1
= R1i𝑅1

 (2-12)

𝐯𝐶1
= R2i𝑅2

 (2-13)

i𝐶1
= C1

𝑑v𝐶1

𝑑𝑡
 (2-14)

v𝑅1
= v𝐿1

− 𝐯𝑪𝟏
 (2-15)

i𝐴𝐶 + i𝑅1
+ 𝐢𝑳𝟏 = 0 (2-16)

−i𝑅1
+ i𝐶1

+ i𝑅2
= 0 (2-17)

i𝑔 − 𝐢𝑳𝟏 − i𝐴𝐶 − iC1
− i𝑅2

= 0 (2-18)

 36

For the first iteration, the known variables, 𝑓(𝑡), v𝐶1
 and 𝑖𝐿1, are colored in green and if no other

knowns remained for the corresponding equations, they are causalized. For example, v𝐿1 and iR2

in (2-10) and (2-13). Then these variables are considered known in other equations and colored in

green. The below equations illustrate the procedure. The operand “:=” represents the assignments.

v𝐿1
: = 𝑓(𝑡) (2-19)

i𝑅2
: = vC1

/R2 (2-20)

𝐯𝐿1
= 𝐿1

𝑑i𝐿1

𝑑𝑡
 (2-21)

v𝑅1
= R1i𝑅1

 (2-22)

i𝐶1
= C1

𝑑vC1

𝑑𝑡
 (2-23)

v𝑅1
= 𝐯𝐿1

− v𝐶1
 (2-24)

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-25)

−i𝑅1
+ i𝐶1

+ 𝐢𝑅2
= 0 (2-26)

i𝑔 − i𝐿1 − i𝐴𝐶 − iC1
− i𝑅2

= 0 (2-27)

By looking at the equations (2-21)-(2-27), it is possible to determine the new assignments in the

next iteration. In the next iteration, the equations (2-21) and (2-24) are causalized, and the variables

𝑑i𝐿1

𝑑𝑡
 and 𝑣𝑅1

became known; therefore, these two variables are colored and distinguished by bold

character to show it is causalized in the new iteration. Equations (2-28)-(2-36) show the product of

the procedure.

v𝐿1
: = 𝑓(𝑡) (2-28)

i𝑅2
: =

v𝐶1

R2
 (2-29)

𝑑i𝐿1

𝑑𝑡
≔

𝑣𝐿1

𝐿1
 (2-30)

v𝑅1
: = v𝐿1

− v𝐶1
 (2-31)

 37

𝐯𝑅1
= R1i𝑅1

 (2-32)

i𝐶1
= C1

𝑑v𝐶1

𝑑𝑡
 (2-33)

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-34)

−i𝑅1
+ i𝐶1

+ i𝑅2
= 0 (2-35)

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝐶1
− 𝑖𝑅2

= 0 (2-36)

By looking at the above equations, we can find iR1
in (2-32), and distinguish it in the remaining

acausal equations. Equations (2-37)-(2-45) show the product of this iteration.

v𝐿1
: = 𝑓(𝑡) (2-37)

i𝑅2
: =

v𝐶1

R2
 (2-38)

𝑑i𝐿1

𝑑𝑡
≔

v𝐿1

L1
 (2-39)

v𝑅1
: = v𝐿1

− v𝐶1
 (2-40)

i𝑅1
≔

v𝑅1

R1
 (2-41)

i𝐶1
= C1

𝑑v𝐶1

𝑑𝑡
 (2-42)

i𝐴𝐶 + 𝐢𝑅1
+ i𝐿1 = 0 (2-43)

−𝐢𝑅𝟏
+ iC1

+ i𝑅2
= 0 (2-44)

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝐶1
− i𝑅2

= 0 (2-45)

By knowing the variable of i𝑅1
, as can be observed in (2-43) and (2-44), we can compute the i𝐴𝐶

and i𝐶1
. These two variables are distinguished as well. The (2-46)-(2-54) show the assignments in

this iteration.

v𝐿1
: = 𝑓(𝑡) (2-46)

 38

i𝑅2
: =

v𝐶1

R2
 (2-47)

𝑑i𝐿1

𝑑𝑡
≔

v𝐿1

L1
 (2-48)

v𝑅1
: = v𝐿1

− v𝐶1
 (2-49)

i𝑅1
≔

v𝑅1

R1
 (2-50)

i𝐴𝐶: = −i𝑅1
− i𝐿1 (2-51)

i𝐶1
: = i𝑅1

− i𝑅2
 (2-52)

𝐢𝐶𝟏
= C1

𝑑v𝐶1

𝑑𝑡
 (2-53)

i𝑔 − i𝐿1 − 𝐢𝐴𝐶 − i𝐶1
− i𝑅2

= 0 (2-54)

Observing the (2-46)-(2-54)shows that only two equations, (3-53) and (2-54), and two variables,

𝑑v𝐶1

𝑑𝑡
 and i𝑔, have remained. There is no priority for them because there is no data dependency

between them. Thus, we can causalized them in the last iteration as observed in (2-55)-(2-63).

v𝐿1
: = 𝑓(𝑡) (2-55)

i𝑅2
: =

v𝐶1

R2
 (2-56)

𝑑i𝐿1

𝑑𝑡
≔

v𝐿1

L1
 (2-57)

v𝑅1
: = v𝐿1

− v𝐶1
 (2-58)

i𝑅1
≔

v𝑅1

R1
 (2-59)

i𝐴𝐶: = −i𝑅1
− i𝐿1 (2-60)

i𝐶1
: = i𝑅1

− i𝑅2
 (2-61)

𝑑vC1

𝑑𝑡
:=

i𝐶1

𝐶1
 (2-62)

 39

i𝑔: = i𝐿1 + i𝐴𝐶 + i𝐶1
+ i𝑅2

 (2-63)

we arrive at the above set of assignment statements to be computed at each iteration, given values

of C1.v, L1.i, and t at the same iteration:

These assignment statements can be converted to code in some programming language, for

example, C, and executed with an appropriate ODE solver, usually using implicit schemes. The

algebraic transformations and sorting procedure that we somewhat painfully performed on the

simple circuit example can be performed automatically and is known as BLT partitioning,

converting the equation system coefficient matrix into block lower triangular form (see Figure

2.11).

code # Assignment L1
.v

R
2.

i

d
er

(L
1.

i)

R
1.

v

R
1.

i

A
C

.i

C
1.

i

d
er

(C
1.

v)

G
.p

.i

1 L1.v := f(t);

2 R2.i := C1.v / R2.R;

3 der(L1.i) := L1.v / L1.L;

4 R1.v := L1.v - C1.v;

5 R1.i := R1.v / R1.R;

6 AC.i := (-L1.i) - R1.i;

7 C1.i := R1.i - R2.i;

8 der(C1.v) := C1.i / C1.C;

9 G.p.i := L1.i - ((-AC.i) - R2.i - C1.i);

Figure 2.11 Block lower triangular for of RLC circuit

The remaining 22 algebraic variables in the equation system of the circuit model that are not part

of the minimal 9-variable kernel ODE system solved above can be computed at leisure for those

iterations where their values are desired. This is not necessary for solving the kernel ODE system.

There are many algorithms for sorting the equations in data-dependency order and converting the

equations to assignment statements. This is possible since all variable values can now be computed

in order. One of the most popular algorithms is Tarjan’s method, which captures the same

information in a graphical data structure called the structure digraph. The structure digraph depicts

on the left-hand side the equations as a column of nodes. On the right-hand side, the unknowns are

 40

also displayed as a column of nodes. Since the number of equations must always equal the number

of unknowns, the two-column vectors are of equal length. A straight line connects an equation with

an unknown if that unknown appears in the equation.

The symbolic transformations and reductions of equation systems performed by a real Modelica

compiler are much more complicated than shown in this example, including index reduction of

equations and tearing of subsystems of equations.

2.7 Example of Algebraic Loop

This section aims to show how an algebraic loop is formed and how it can be eliminated. Let’s

slightly change the RLC circuit of the previous section and replace the capacitor, C1, with a resistor,

R3. The configuration of the new circuit is designed in Figure 2.12. During the procedure of

causalization, a strong dependency is observed for voltage and current of R2 and R3, in which it is

not possible to specify the priorities for solving them.

AC
Vm=120

R1

R=10

L1
L=350 mH

R2
R=5

R3
R=5

Figure 2.12 RLC circuit with algebraic loop

Equations (2-118)-(2-126) show the main equations of the system (the trivial equations have been

removed). As described earlier, the time and state variables (𝑓(𝑡) and 𝑖𝐿1) are considered known

variables and colored as shown below.

v𝐿1
= 𝒇(𝒕) (2-64)

v𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-65)

v𝑅1
= R1i𝑅1

 (2-66)

 41

v𝑅2
= R2i𝑅2

 (2-67)

v𝑅2
= R3i𝑅3

 (2-68)

v𝑅1
= v𝐿1

− v𝑅3
 (2-69)

i𝐴𝐶 + i𝑅1
+ 𝐢𝐿1 = 0 (2-70)

−i𝑅1
+ i𝑅3

+ i𝑅2
= 0 (2-71)

i𝑔 − 𝐢𝐿1 − i𝐴𝐶 − i𝑅3
− i𝑅2

= 0 (2-72)

The first iteration of causalization is given as below. Now the variable v𝐿1
 is known; therefore, we

color the other variables which are dependent to v𝐿1
.

 v𝐿1
: = 𝑓(𝑡) (2-73)

𝐯𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-74)

v𝑅1
= R1i𝑅1

 (2-75)

v𝑅2
= R2i𝑅2

 (2-76)

v𝑅2
= R3i𝑅3

 (2-77)

v𝑅1
= 𝐯𝑳𝟏

− v𝑅3
 (2-78)

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-79)

−i𝑅1
+ i𝑅3

+ i𝑅2
= 0 (2-80)

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝑅3
− i𝑅2

= 0 (2-81)

The second iteration of causalization is given as below. By looking at the equations (2-84)-(2-90),

we see that the causalization algorithm stops because a strong correlation is seen between the

variables of these equations.

v𝐿1
: = 𝑓(𝑡) (2-82)

 42

𝑑i𝐿1

𝑑𝑡
:=

v𝐿1

L1
 (2-83)

v𝑅1
= R1i𝑅1

 (2-84)

v𝑅2
= R2i𝑅2

 (2-85)

v𝑅2
= R3i𝑅3

 (2-86)

v𝑅1
= 𝐯𝑳𝟏

− v𝑅2
 (2-87)

i𝐴𝐶 + i𝑅1
+ i𝐿1 = 0 (2-88)

−i𝑅1
+ i𝑅3

+ i𝑅2
= 0 (2-89)

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝑅3
− i𝑅2

= 0 (2-90)

A glance at the acausal equations gives a clue to us that the equations (2-84)-(2-87) and (2-89)

form a system of equations that should be solved simultaneously. These equations can be written

as:

(

1 −R1 0 0 0
0 0 1 −R2 0
0 0 1 0 −R3

1 0 1 0 0
0 −1 0 1 1)

(

v𝑅1

i𝑅1

v𝑅2

i𝑅2

i𝑅3)

=

(

0
0
0

v𝐿1

0)

 (2-91)

This is a system composed of five equations and five variables. The tearing algorithm allows us to

reduce the size of the system. The generic idea is to assume some variables are known, e.g., i𝑅3
.

The variable is called the tearing variable, and its selection is a complete NP problem. Using the

assumption, remained equations, inner equations, are causalized. Applying the algorithm to (2-91)

yields:

v𝑅2
: = R3i𝑅3

i𝑅2
: =

v𝑅2

R2

v𝑅1
: = 𝐯𝑳𝟏

− v𝑅2

(2-92)

 43

i𝑅1
: =

v𝑅1

R1

i𝑅3,𝑁𝐸𝑊
= i𝑅1

− i𝑅2

where i𝑅3
 is an initial guess, and i𝑅3,𝑁𝐸𝑊

 is an improved version of that same variable. The following

residual function can be formulated:

F = i𝑅3,𝑁𝐸𝑊
− i𝑅3

= 0 (2-93)

Equation (2-93) is a scalar linear function in our example. The function is a system of nonlinear

equations for the large advanced circuits, where many nonlinear components are used; therefore, a

convenient numerical method, algebraic differentiation [76], is used. For example, if we

differentiate equation (2-92) with respect to i𝑅3
, we have:

𝑑v𝑅2
: = R3

𝑑i𝑅2
: =

𝑑v𝑅2

R2

𝑑v𝑅1
: = 𝑑𝐯𝑳𝟏

− 𝑑v𝑅2

𝑑i𝑅1
: =

𝑑v𝑅1

R1

𝑑i𝑅3,𝑁𝐸𝑊
= 𝑑i𝑅1

− 𝑑i𝑅2

(2-94)

and the Jacobian function, J, is defined as:

J =
𝑑F

𝑑i𝑅3

= 𝑑i𝑅3,𝑁𝐸𝑊
− 1 = 0 (2-95)

we can calculate i𝑅3,𝑁𝐸𝑊
by:

i𝑅3,𝑁𝐸𝑊
= i𝑅3

− J−1F (2-96)

After finding the solution of the algebraic loop equation, (2-91), equations (2-88), and (2-90) are

solved. Figure 2.13 shows the BLT matrix of the circuit. In this matrix, rows 3 to 7 show an

 44

algebraic loop that needs to be solved simultaneously. Since our models are linear, a linear solver

shall solve these equations separately, e.g., Gaussian elimination.

code # Assignment L1
.v

d
er

(L
1.

i)

R
2.

i

R
3.

i

R
1.

i

R
1.

v

R
2.

v

A
C

.i

G
.p

.i

1 L1.v := f(t);

2 der(L1.i) := L1.v / L1.L;

3 R2.i := R2.v / R2.R;

4 R3.i := R2.v / R3.R;

5 R1.i := R3.i + R2.i;

6 R1.v := R1.i * R1.R;

7 L1.v + (-R2.v) + R1.v := 0;

8 AC.i := (-L1.i) - R1.i;

9 G.p.i := L1.i - ((-AC.i) - R2.i - R3.i);

Figure 2.13 The assignments and BLT form of RLC circuit with algebraic loop

Now, let’s increase the complexity of our example by adding an inductor in parallel with R3. Given

the electrical circuit shown in Figure 2.14. Like the previous example, first, we should write the

equations of this circuit. At the first iteration, we color the known variables (time, 𝑓(𝑡) and state

variables, i𝐿1, i𝐿2).

AC
Vm=120

R1

R=10

L1
L=350 mH

R2
R=5

R3
R=5

L2
L=350 mH

vL2vAC

Figure 2.14 RLC circuit with algebraic loop

 45

v𝐿1
= 𝒇(𝒕) (2-97)

v𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-98)

v𝑅1
= R1i𝑅1

 (2-99)

v𝐿2
= R2i𝑅2

 (2-100)

v𝐿2
= R3i𝑅3

 (2-101)

v𝐿2
= L2

𝑑i𝐿2

𝑑𝑡
 (2-102)

v𝑅1
= 𝐯𝐿1

− v𝐿2
 (2-103)

i𝐴𝐶 + i𝑅1
+ 𝐢𝐿1 = 0 (2-104)

−i𝑅1
+ i𝑅3

+ i𝑅2
+ 𝐢𝐿2 = 0 (2-105)

i𝑔 − 𝐢𝐿1 − i𝐴𝐶 − 𝐢𝐿2
− i𝑅2

− i𝑅3
= 0 (2-106)

In the iteration, the equations (2-97) is causalized for variable v𝐿1
, therefore the variable is colored

in as shown below:

v𝐿1
: = 𝑓(𝑡) (2-107)

𝐯𝐿1
= L1

𝑑i𝐿1

𝑑𝑡
 (2-108)

v𝑅1
= R1i𝑅1

 (2-109)

v𝐿2
= R2i𝑅2

 (2-110)

v𝐿2
= R3i𝑅3

 (2-111)

v𝐿2
= L2

𝑑i𝐿2

𝑑𝑡
 (2-112)

v𝑅1
= 𝐯𝐿1

− v𝐿2
 (2-113)

i𝐴𝐶 + i𝑅1
+ 𝑖𝐿1 = 0 (2-114)

 46

−i𝑅1
+ i𝑅3

+ i𝑅2
+ i𝐿2 = 0 (2-115)

i𝑔 − i𝐿1 − i𝐴𝐶 − i𝐿2
− i𝑅2

− i𝑅3
= 0 (2-116)

In this iteration, equation (2-108) can be causalized. By examining the other equations, a strong

connection is found between equations (2-109)-(2-111),(2-113), and (2-115). These five equations

construct a set of equations with 5 variables. The equation system is formulated as (2-117).

(

1 −R1 0 0 0
0 0 1 −R2 0
0 0 1 0 −R3

1 0 1 0 0
0 −1 0 1 1)

(

v𝑅1

i𝑅1

v𝐿2

i𝑅2

i𝑅3)

=

(

0
0
0

v𝐿1

−i𝐿2)

 (2-117)

The tearing algorithm is a general rule and can be applied to linear and nonlinear algebraic

equations. The relaxation algorithm or Gaussian elimination can be employed for solving the linear

system such as (2-117). The equations (2-114) and (2-116) are causalized, followed by solving

(2-117).

2.8 Example of Structural Singularities

In this section, the problem of structural singularities, or so-mathematically called high-index DAE,

is introduced. When solving an ODE raised by an electrical system, the problem is to calculate the

states when the derivatives are given. Therefore, solving a DAE may also include differentiation.

Such a DAE is called high index.

As a standard procedure in Modelica IDEs, the higher index problems are transformed by

differentiating equations analytically. The standard algorithm by Pantelides [23] is used to

determine how many times each equation must be differentiated. The dummy derivatives [24]

method is used in Dymola as well.

It is possible to avoid higher index DAEs by restricting the connection of components and/or using

manually differentiated equations for the most common connection structures.

As an example of high index DAE caused by replacing the inductor, L1, with the capacitor, C1, in

the RLC circuit example as indicated in Figure 2.15. This circuit leads to a DAE with index 1.

 47

AC
Vm=120

R1

R=10

C1
C=50 µF

L1
L=350 mH

R2
R=5

vAC vL1

Figure 2.15 RLC circuit with structurally singularity (DAE index 1)

we obtain the following equation by applying KCL and KVL:

i𝐴𝐶 = i𝑐1 +
v𝐴𝐶 − v𝐿1

R1
 (2-118)

v𝐴𝐶 − v𝐿1

R1
= i𝐿1 +

v𝐿1

R2
 (2-119)

v𝐿1 = 𝐿1

𝑑i𝐿1

𝑑𝑡
 (2-120)

i𝑐1 = 𝐶1

𝑑v𝐶1

𝑑𝑡
 (2-121)

v𝐴𝐶 = v𝐶1 (2-122)

By inserting (2-120) in (2-119) and (2-121) in (2-118), we obtain the equation in terms of i𝐿1 and

i𝐴𝐶. The new set of equations are given by:

𝐿1 (
1

R1
+

1

R2
)
𝑑i𝐿1

𝑑𝑡
=

v𝐴𝐶

R1
− i𝐿1 (2-123)

i𝐴𝐶 = 𝐶1

𝑑v𝐶1

𝑑𝑡
+

v𝐴𝐶

R1
−

𝐿1

R1

𝑑i𝐿1

𝑑𝑡
 (2-124)

v𝐴𝐶 = v𝐶1 (2-125)

Equations (2-123)-(2-125) form a DAE system of index 1. For solving (2-124), it is required to

symbolically differentiate the constraint equation (2-125) and replace the original constrain with

the differentiated one in (2-124). It is recalled v𝐶1 is not an independent state, because its value is

 48

dependent to source voltage, which is known. These manipulations yield a new set of ODE system

as:

𝐿1 (
1

R1
+

1

R2
)
𝑑i𝐿1

𝑑𝑡
=

v𝐴𝐶

R1
− i𝐿1 (2-126)

i𝐴𝐶 = 𝐶1

𝑑v𝐴𝐶

𝑑𝑡
+

v𝐴𝐶

R1
−

𝐿1

R1

𝑑i𝐿1

𝑑𝑡
 (2-127)

The above algorithm, called Pantelides algorithm, is defined as instead of replacing the constraint

equation by its derivative, we add the differentiated constraint equation as an additional equation

to the set.

Figure 2.16 shows the BLT matrix defined by OpenModelica. Code lines 4-7 construct a linear

algebraic loop.

code # Assignment

C
1

.v

d
e

r(
C

1
.v

)

C
1

.i

R
2

.i

R
2

.v

R
1

.i

R
1

.v

d
e

r(
L1

.i
)

A
C

.i

G
.p

.i

1 C1.v := v(t);

2 der(C1.v) := v'(t);

3 C1.i := C1.C * der(C1.v)

4 R2.v := R2.i * R2.R;

5 R1.i := L1.i + R2.i;

6 R1.v := R1.i * R1.R;

7 C1.v + (-R2.v) - R1.v := 0;

8 der(L1.i) := R2.v / L1.L;

9 AC.i := (-C1.i) - R1.i;

10 G.p.i := R2.i - ((-AC.i) - L1.i - C1.i);

Figure 2.16: The assignments and BLT form of RLC circuit with structural singularity

2.9 Solver

DAE systems generated from Modelica models are usually stiff and sparse associated with events

and discontinuities. Consequently, Modelica simulation environments opt to employ generalized

implicit DAE solvers. The BDF-methods are frequently used because of the wider stability region

for stiff systems [16]. BDF-methods can be used for solving the DAE of index 1.

 49

Two famous DAE solvers used in the Modelica community are DASSL [71] and IDA from the

open-source SUite of Nonlinear and Differential/Algebraic Equation Solvers (SUNDIALS) [78].

In this research, we review the functionality of the IDA solver because it was frequently used for

EMT simulation throughout this research. In EMT computations, IDA showed a lower CPU time

compared to the DASSL. Since both solvers are using the Backward Differentiation Formula

(BDF) method, therefore an overview will be helpful.

2.9.1 BDF-methods

The BDF-methods are a group of multi-step methods in the general form of (2-128) in which the

function value only will be calculated in the point that is going to be found.

1

ℎ
∑𝛼𝑗𝐲𝑛−𝑗

𝑘

𝑗=0

= ∑𝛽𝑗

𝑘

𝑗=0

𝐟(x𝑛−𝑗 , 𝐲𝑛−𝑗) (2-128)

ℎ refers to the step-size used, 𝛼𝑗 and 𝛽𝑗 are coefficients for respectively the number of backward

steps and the function value at the backward steps. 𝑘 is called the order of the method and denotes

how many backward steps are used. The technique is implicit if 𝛽0 ≠ 0 and if so, it will be

necessary to calculate the function value in the point iteratively [2][8]. BDF-method is an implicit

multi-step method where 𝛽0 ≠ 0 but 𝛽1,…,𝑘 = 0. Numerical solvers treating the BDF methods are

usually associated with a modified Newton method to solve nonlinear systems at each time step.

The simplest BDF-method is the implicit Backward Euler method of order 1 (i.e., BDF 1).

𝐲𝑛+1 = 𝐲𝑛 + ℎ𝐟(𝑡𝑛+1, 𝐲𝑛+1) (2-129)

The backward Euler method is an A-stable integration method with stiff decay. The latter has an

unfavorite impact on high-frequency transient simulations and makes it inappropriate for the EMT

computations.

Assuming the semi-explicit form of DAEs as given by:

�̇� = 𝐟(𝑡, 𝐲, 𝒛) (2-130)

 50

𝟎 = 𝐠(𝑡, 𝐲, 𝒛) (2-131)

According to the implicit function theorem [79], the equation (2-131) can be reformulated as:

𝒛 = �̅�(𝑡, 𝐲) (2-132)

Therefore, equation (2-130) can be re-written as:

�̇� = 𝐟(𝑡, 𝐲, �̅�(𝑡, 𝐲)) (2-133)

Now, if equation (2-133) is discretized using the Backward Euler method, (2-129), we will have:

𝐲𝑛+1 = 𝐲𝑛 + ℎ 𝐟(𝑡𝑛, 𝐲𝒏, �̅�(𝑡𝑛, 𝐲𝒏)) (2-134)

In conclusion, Backward Euler is the simplest first-order method, convergent for semi-explicit

index 1 DAE.

2.9.2 IDA solver

The IDA solver is designed to address the initial value problem (IVP) for a DAE of the form:

𝐅(𝑡, 𝐲, �̇�) = 0, 𝐲(𝑡0) = 𝐲0, �̇�(𝑡0) = �̇�0 (2-135)

where 𝐲 and �̇� are vectors in 𝐑𝑁, 𝑡 is the independent time variable and 𝒚0, �̇�0 are given initial

values.

The IDA uses the variable-order, variable-coefficient BDF integration method in fixed-leading-

coefficient form. The order used in IDA ranges from 1 to 5, with the BDF of order q given by the

multistep formula (2-136).

∑𝛼𝑛,𝑖

𝑞

𝑖=0

y𝑛−𝑖 = ℎ𝑛ẏ𝑛 (2-136)

Where y𝑛 and ẏ𝑛 are the approximation of y(𝑡𝑛) and ẏ(𝑡𝑛), ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1is the step size. The

coefficient 𝛼𝑛,𝑖 are uniquely computed for each q. The insertion of (2-136) in the DAE system

(2-135) yields the nonlinear algebraic system (2-137) to be solved at each step.

 51

𝐆(𝒚𝒏) = 𝐅(𝑡𝑛, 𝐲𝑛, ℎ𝑛
−1 ∑𝛼𝑛,𝑖

𝑞

𝑖=0

𝐲𝑛−𝑖) = 0 (2-137)

The nonlinear system (2-137) is solved with Newton iteration. For each Newton correction, this

leads to a linear system of the form:

𝐉[𝐲𝑛
 (𝑚+1) − 𝐲𝑛

 (𝑚)] = −𝐆(𝐲𝑛)(𝑚) (2-138)

where 𝐲𝑛
 (𝑚) is the 𝑚𝑡ℎ approximation to 𝐲𝑛. Here 𝐉 is the Jacobian, where defined as:

𝐉 =
𝜕𝐆

𝜕𝐲
=

𝜕𝐅

𝜕𝐲
+ 𝛼

𝜕𝐅

𝜕�̇�
 (2-139)

The scalar 𝛼 = 𝛼𝑛,0ℎ𝑛
−1

 and it changes whenever the step size or method order changes [80].

For the solution of the linear systems, IDA has two options; first, a direct family comprising direct

linear solvers for dense matrixes, and second, scaled preconditioned iterative (Krylov) linear

solvers [80]. For large-scale stiff systems, where direct methods are not feasible, the combination

of a BDF and any of the preconditioned Krylov methods (SPGMR, SPBCG, or SPTFQMR) is used

[80].

In controlling errors at various levels, IDA uses a weighted root-mean-square norm for all error-

like quantities. The multiplicative weights are based on the current solution and the relative and

absolute tolerances defined by the user.

𝑊𝑖 = [𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝑂𝑙 |𝑦𝑖| + 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑜𝑙𝑖]
−1 (2-140)

When using direct linear solvers, the nonlinear iteration (2-138) is a Modified Newton iteration, in

the sense that the Jacobian 𝐉 is fixed throughout the nonlinear iterations and approximated by:

J𝑖𝑗 = [F𝑖(𝑡, y + 𝜎𝑗𝑒𝑗 , ẏ + 𝛼𝜎𝑗𝑒𝑗) − F𝑖(𝑡, y, ẏ)]/𝜎𝑗 (2-141)

knowing that:

 52

𝜎𝑗 = √𝑈 𝑚𝑎𝑥 {|y𝑗|, |ℎẏ𝑗|,
1

𝑊𝑗
} 𝑠𝑖𝑔𝑛(ℎẏ𝑗) (2-142)

where 𝑈 is the unit roundoff.

For the case of Krylov methods as the linear solver, the iteration (2-138) is an Inexact Newton

iteration [82], in which 𝐉 is obtained through a matrix-free products 𝐉𝑣. These products are

approximated by:

𝐉𝑣 = [𝐅(𝑡, 𝐲 + 𝜎𝑣, �̇� + 𝛼𝜎𝑣) − 𝐅(𝑡, 𝐲, �̇�)]/𝜎 (2-143)

where 𝜎 = 1/‖𝑣‖.

Solving (2-138) using the Krylov methods rarely converge if preconditioning is not used.

Assuming a linear system 𝐀𝐱 = 𝐛 , it can be preconditioned on the left by preconditioning matrix

𝐏, using:

𝐏−1𝐀𝐱 = 𝐏−1𝐛 (2-144)

Then, Krylov methods are applied to (2-144) instead of 𝐀𝐱 = 𝐛. In IDA, the matrix 𝐏 is

approximated by:

𝐏 ≈
𝜕𝐅

𝜕𝐲
+ 𝛼

𝜕𝐅

𝜕�̇�
 (2-145)

2.9.3 ODE mode

The typical workflow of Modelica is to convert the flattened DAEs to explicit ODEs, as illustrated

in Figure 2.17. This procedure requires removing the algebraic loops and index reduction, which

are time-consuming and increase the simulation time.

A numerical integration method and linear and non-linear system solvers for the implicit equations

are needed to solve the ODE function. Since EMT models give rise to stiff problems, an implicit

solver is selected. Applying an implicit solver yield a nonlinear system of equations G for each

time point as:

 53

F(x(t), z(t), u(t), t) = 0 & z(t) =
x(t)

y(t)

F(x(t), x(t), y(t), u(t), t) = 0

x(t)
z(t) =

y(t) = G (x(t), u(t), p, t)

x(t) = H (x(t), u(t), p, t)

y(t) = K (x(t), u(t), p, t)

Figure 2.17 The transformation of implicit DAE to explicit ODE

𝐱(𝑡 + ∆𝑡) = 𝐆(𝐱(𝑡 + ∆𝑡), 𝐮(𝑡), 𝐩, ∆𝑡, 𝑡) (2-146)

Newton’s method is the principal method for finding the roots of one such system.

𝐉. [𝐱(𝑡 + ∆𝑡) − 𝐱(𝑡)] = 𝐑 (2-147)

where 𝐑 denotes the residual form of equation (2-146), and 𝐉 is the corresponding Jacobian matrix.

Numerical computation of Jacobian is the most time-consuming part of solving an ODE. Several

methods are implemented in OpenModelica, such as finite-difference approximations, finite

difference approximations with coloring, symbolical Jacobian, and symbolical Jacobian with

coloring [84]-[86].

For example, in the widely used finite difference method, a numerical approximation of the

directional derivative of a vector-valued function 𝐟 is calculated using the formula (2-148).

 54

𝐉𝑖,𝑗 =
𝜕𝐟𝒊
𝜕x𝑗

=
𝑓𝑖(x𝑗 + 𝑒𝑗ℎ𝑗) − 𝑓𝑖(x𝑗)

ℎ𝑗
 (2-148)

where ℎ𝑗 is the increment.

2.9.4 DAE mode

As explained in previous sections, engineering applications usually lead to DAEs. Solving the

DAEs directly has been considered by mathematicians since several decades ago [2], [7], [8]. For

achieving this goal, numerical solvers have been developed in MATLAB based on mass matrix

solvers [87]. The main approach is to reduce the differential index and convert the DAEs into

semi-explicit (index 1). BDF method, Runge–Kutta [3] methods, RADAU5 [3] can be used for

solving the implicit DAEs index 1[2]. The main challenge for handling the DAEs is finding a

consistent initial value to satisfy all equations.

 The main advantage of solving the DAEs directly remains in skipping of elimination of algebraic

loops, tearing, and the generation of symbolic Jacobians. This, in turn, improves the CPU time for

large-scale networks drastically [88].

2.9.5 Exploring of Events Handling and Zero Crossings.

Event or discontinuity handling is an important and very common problem for EMT simulations.

Many examples of event and discontinuous models exist, such as the opening and closing of a

circuit breaker and high-frequency switching of power electronic devices.

In traditional EMT-type simulators, e.g., EMTP®, discontinuities such as current interruption in an

RL circuit may lead to numerical oscillations of the trapezoidal rule of integration. Elimination of

the oscillations for some models, e.g., machine, is carried out by adding a parallel damping

resistance with the RL series circuit [89]. The critical damping adjustment (CDA) method [56] has

also been implemented to alleviate the problem. The concept of the CDA method is to use the

backward Euler method with halved step for two consecutive time points [89] for some predefined

discontinuities.

Event handling in Modelica, i.e., OpenModelica and Dymola, is different and is based on finding

the exact time of the event. This feature is ideal for high-frequency switching components with the

 55

penalty of computational cost and higher runtime. Discontinuity handling is possible with step-size

control in variable step solvers, i.e., IDA.

Conditional expressions, e.g., if, when, etc., or built-in functions like ceil, floor, div, etc.,

generate the events. They are categorized as time events and state events: (1) Time events refer to

those discontinuities that involve the time, the built-in global variable that is handled as an input to

all models, and we know in advance when it occurs. For example, the closing time of a switch or

a thyristor. We know that a thyristor switches on precisely at the firing angle of 𝛼 at each period.

Treatment of the time events is relatively easy, and it is required only to program the timings in the

algorithm. (2): sometimes events are generated because of conditional expressions that involve

solution variables (e.g., zero-crossing current of a thyristor) and include the discontinuities that we

do not know when they occur. The type of discontinuities is called “state events.” For example,

the opening of the ideal switch occurs when the simulation clock is larger than 𝑇𝑜𝑝𝑒𝑛𝑖𝑛𝑔 and the

current passing the switch is zero. In the thyristor model, it is not known in advance when the

thyristor will open. We just know that it will open when the current passes through zero. For the

state event, we know the event condition rather than the event time.

For both examples, it is required to implement a root-finding algorithm (zero-crossing function).

The zero-crossing function should be monitored continuously during simulation. Since the event

time is unknown, it is impossible to reduce the step size to hit them accurately. Instead, we need

some sort of iteration (or interpolation) mechanism to locate the event time.

Figure 2.18 demonstrates the typical event handling in the OpenModelica compiler. The simulation

starts by finding consistent initial values for the model variables. Event conditions are continuously

monitored during the simulation. Variables to be tested for zero-crossing are placed in a vector.

When an event is alerted during a time step, it affects the step–size control of the integration

algorithm by forcing the simulation to iterate to the earliest zero–crossing within the current

integration step. This procedure is called event iteration. The iteration process for state events can

slow down the simulation. During the event iteration, after handling each event, the entire model

is re-evaluated [91].

After the event is treated, the solver needs to find consistent restart values (re-initialization) for the

variables of the hybrid DAE model before resuming the integrator for the continuous-time part.

 56

Start

Any

events?

Solving continuous DAE

and advance time until

even or end time

Find event and solve for

consisten initial/restart

values

Stop

YesNo

Find consistent

initial values

Checking event

conditions

End time?

YES

NO

Figure 2.18 Typical event handling algorithm of Hybrid DAE [91]

The algorithm for multi zero-crossing function occurred in a time step is like above. The goal is to

reduce the time step in so far as the zero-crossing point is isolated.

For piecewise linear functions y = f(𝑥), where y is used in a state-space model, step-size control

should be applied to reduce the step size whenever x passes through the breaking points within an

integration step.

To show the discontinuity treatment of Modelica solver (i.e., DASSL) compared with EMTP®,

consider the buck-booster converter [92] extracted from EMTP® examples. Figure 2.19 shows the

schematic diagram of a converter designed by the GUIs of the MSEMT library. This converter is

designed to work in discontinuous mode; therefore, the inductor is completely discharged at the

end of the commutation cycle. In this circuit, the pulse generator provides a pulse with a period of

10 𝜇𝑠 (switching frequency= 100 𝑘𝐻𝑧) with the duty cycle of 75%. The diode has been modeled

with a highly nonlinear resistance. Figure 2.20 shows the voltage and current characteristics of the

 57

diode, which are constructed by 15 piece-wise linear curves. This circuit represents a very stiff

system of equations.

R

G

L L=0.01 mH C=100 uF C

switch

BooleanPulse

10 us

VDC

V=8 V

Diode

Rleak

R=80

R=100 M

Figure 2.19 Buck-Boost converter for demonstrating simultaneous switching with controls

Table 2.2 shows the parameter of simulation in the two software. It should be noted that the option

of “simultaneous switching” has been activated in EMTP®.

Table 2.2 Parameters of simulators and performance comparison

Characteristics Modelica (Dymola) EMTP®

Solver DASSL Trapezoidal/BE

∆𝑡 ∆𝑡: 0.1 𝜇𝑠 ∆𝑡: 0.01 𝜇𝑠

Tolerance 1e-6

- ∆𝑡𝑀𝐼𝑁 8.84e-13 s

∆𝑡𝑀𝐴𝑋 3.75e-06

f-evaluations 302 190 -

J-evaluations 125 976 -

CPU time (s) 6.34 4.22656 26.31

Number of time-steps 162 894 156 490 1 507 705

CPU-time for one grid interval 0.0422 ms 0.027 ms 17 𝜇𝑠

Performance ratio 1 0.66 4.14

 58

-0.5 0 0.5 1 1.5 2 2.5
1015

-10

-8

-6

-4

-2

0

2
104

(2.48988e+15,1.7)

(-1e-8,-50)

(2.427098976e+10,1.4)

(-1e-07,-1e5)

Current (A)

V
o
lt

ag
e

(V
)

Figure 2.20 The i-v characteristics of the diode

Figure 2.21 shows the inductor current graphs obtained by Modelica and EMTP®. In the zoomed

view, a point-to-point comparison of solutions can be observed.

10 10.005 10.01 10.015 10.02 10.025 10.03 10.035 10.04
Time (ms)

-1

0

1

2

3

4

5

6

7
EMTP Dymola

In
d
u
ct

o
r

cu
rr

en
t
(A

)

10.007 10.008 10.009 10.01 10.011
Time (ms)

-1
0

1

2

3

4

5

6

7

In
d
u
ct

o
r

cu
rr

en
t
(A

)

(a)

(b)

Figure 2.21 (a): Inductor current in the discontinuous mode of Buck-Booster convertor. (b): the

close-up view of the inductor current

As it can be seen, both solutions have an excellent agreement even though they have two different

solution methods. As we can observe in Table 2.2, the CPU time obtained by Modelica is nearly

 59

close to the one we have from EMTP®. Since two distinct solvers have carried out simulations,

comparing the one-grid interval CPU time may be better, introducing a fair comparison.

To show more details on discontinuity handling, let us compare the curves of current passing

through the switch accompanied with the pulse waveforms. Figure 2.22.(a) illustrate the Modelica

solution for current depicted by blue curve and the pulse waveform distinguished by the red curve.

As observed at t = 9.6475 ms, there is a discontinuity, and the pulse waveform changes its status

from 1 to 0. The switch, controlled by the pulse generator, changes its “closing” status to open

immediately and at the same time point, t = 9.6475 ms. It means Modelica calculates the equations

once before the discontinuity is triggered at t = 9.6475−ms and once after the discontinuity

happens at t = 9.6475+ms.

Let’s see what EMTP® executes when the clock approaches the discontinuity point. The problem

is solved twice in EMTP®: (1) with using simultaneous switching, which is depicted by the blue

graph, and (2) without selection of this option plotted by the magenta graph.

Simultaneous switching acts on switches as nonlinear functions and recalculates the network

equations without advancing the timepoint. This is distinguishable in Figure 2.22.b. However,

EMTP® for the handling of discontinuity at t = 9.6475 ms, gives two timepoints whose the solution

with using the simultaneous switching is closer to the Modelica results; one timepoint before the

discontinuity is triggered at t = 9.6474 ms and next time point when the discontinuity occurs, at t

= 9.6475 ms. Therefore, as it can be observed in Figure 2.22.b., the raise is not fully vertical. This

is while we know the abrupt change of switch occurs precisely at the instant of t = 9.6475 ms.

9.6471 9.6473 9.6475 9.6477
Time (ms)

0

1

2

3

4

5

6

7

S
w

it
ch

 c
u

rr
en

t
(A

)

Modelica solver

EMTP solver

S
w

it
ch

 c
u

rr
en

t
(A

)

Δt Δt

9.6471 9.6473 9.6475 9.6477
Time (ms)

0

1

2

3

4

5

6

7

SWi without simultaneous switching

9.64755 ms

9.6476 ms

9.64765 ms

SWi with simultaneous switching

Pulse waveformPulse waveform
SWi

EMTP solver

Δt

(a) (b)

Figure 2.22 Switch current (a): in Modelica (b): in EMTP®

 60

Figure 2.23 sketches the voltage waveform of resistance. The red and magenta curves show the

results obtained from EMTP®, respectively, for step sizes of 0.1𝜇𝑠 and 0.01𝜇𝑠. The blue curve

shows the results obtained from Modelica. It can be observed that the EMTP®’s results with the

step size of 0.01𝜇𝑠 gives the best precision, which is close to Modelica solutions. The CPU time

measured in EMTP® for these resolutions is 26.31 s, which gives the ratio 4.14:1 compared to

Modelica.

0 5 10 15
Time (ms)

-50

-40

-30

-20

-10

0

10

R
es

is
ta

n
ce

 V
o

lt
ag

e
(V

)

10 10.01 10.02 10.03 10.04 10.05
38.4

-

38.35

-38.3

-

38.25

EMTP: Δt:0.1us EMTP: Δt:0.01us Dymola

Figure 2.23 The curves of resistance voltage in Modelica and EMTP®

2.10 Exploring of Switch Equation

In Modelica, the status of an ideal switch, that is, zero current in switch-off mode and zero voltage

drop in switch-on mode can be defined as:

Boolean Switch "Indicates off-state";

If Switch then i=0 else v=0;

Modelica compiler translates the above equation into the algebraic form, given by:

𝑚𝑖 + (1 − 𝑚)𝑣 = 0 (2-149)

where 𝑚 is a Boolean variable and indicates the switch status, 𝑚 is “1” when the switch is off, and

“0” when the switch status is on. Equation (2-149) can be causalized in two different ways:

𝑖 = (𝑚 − 1)𝑣/𝑚 (2-150)

 61

𝑣 = −𝑚𝑖/(1 − 𝑚) (2-151)

Equations (2-150) and (2-151) become undefined (i.e., division by zero) when the switch is closed,

i.e., 𝑚 = 0 or open, i.e., 𝑚 = 1, respectively. As such, ideal switch should be implemented by a

snubber circuit for some cases.

2.11 Exploring of Control Systems Modeling

In traditional EMT-type simulators, EMTP®, EMTDC, etc., control systems equations are solved

separately from the main power electric network. The main drawback is that the circuit and the

controls are separately solved, resulting in one time-step delay between the solutions. An iterative

method has been proposed and validated in [93] to offer a simultaneous solution for control circuits

in EMTP® as well.

As described earlier, the solution method in Modelica is such that the entire electrical network,

including the equations describing the electric power system and the ones representing the dynamic

behavior of control systems, is formulated in DAE form, then, the system is solved together and

simultaneously without any delay between linear and nonlinear components.

The accuracy of Modelica control system models is validated in Chapter 5 and Chapter 7.

2.12 Exploring of Nonlinear Models

The solution method of traditional EMT-type simulators working based on nodal analysis was

described in Section 1.5.2. There are usually two main categories for solving nonlinear functions:

with solution delays (as in EMTP) and without solution delays. In Modelica's main solvers, IDA

and DASSL, a fully iterative method is used, and all solution delays are suppressed by solving all

nonlinear functions of a DAE system simultaneously. Typical examples are the surge arrester

model, nonlinear inductor, power transformer (STC model), and magnetic saturation of

synchronous machine. These models are tested in Chapter 5, Chapter 6, and Chapter 7.

2.13 Interfacing to Other Software

Modelica models can interface with many other languages such as C, Julia, MATLAB, and Python

[94]. On the other hand, Modelica models are fully compatible with the FMI standard. This

 62

interface allows model exchange and co-simulation with other simulating tools. FMI allows to

export of pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool

and vice versa. The FMI standard is Modelica independent. Import and export work both between

different Modelica tools or between specific non-Modelica tools.

63

 MSEMT: AN ADVANCED MODELICA LIBRARY FOR

ELECTROMAGNETIC TRANSIENT SIMULATIONS

The first step for EMT simulation in Modelica is to create a library with EMT-detailed electrical

elements, including the main components such as transmission line, generator, controllers, etc. For

this purpose, the Modelica Simulator of Electromagnetic Transient (MSEMT) has been developed

to solve practical power system transient problems. In this chapter, mathematical representation

and implementation of each model will be provided.

The library is constructed in stand-alone mode and independent from Modelica Standard Library

(MSL)[14]. The MSL is a free library developed by the Modelica Association [66] and includes

the fundamental components for modeling mechanical, electrical, thermal, fluid, and control

systems. In the electrical branch, it consists of the simplified models of some electrical components.

The available models in the electrical branch are different from the EMT-detailed models

developed in the MSEMT. For example, there are no wideband or constant parameter models for

transmission lines/cables, surge arrestor, nonlinear inductor, detailed models of the synchronous

machine with saturation and control, power transformer (STC model), coupled RL, arc models,

exciter, governor, etc. Moreover, the synchronous machine model in the MSL, for example, uses

space phasors which is less accurate than EMT-type machine modeling applicable to generic

unbalanced systems.

All developed models of the MSEMT library comply with the EMTP® models. This is because the

results obtained from the library must be validated against the EMTP® software. The following

chapters will discuss the results obtained from IEEE 13-Bus, IEEE 39-Bus, or IEEE 118-Bus

benchmarks.

3.1 Overview of the MSEMT Library

Figure 3.1 presents an overview of a subset of a simplified implementation of the MSEMT library.

This structure is inspired from EMTP®. MSEMT contains two top-level branches: Electrical and

NonElectrical. The advanced blocks of electric power components exist in the Electrical branch,

making it possible to simulate the electric power benchmarks such as IEEE 118-bus. The

NonElectrical branch defines the type of variable, functions, blocks (adder, integrator, etc.),

 64

Boolean algebra (AND, OR, flip-flops, etc.), and consists of icons, symbols, etc. required to have

a comprehensive simulation [75].

MSEMT

Electrical

Exciter & governer

Lines

Load Models

Machines

Nonlinear

RLC Branches

Switches

Transformers

Connectors

Interfaces

NonElectrical

Examples

User guide

Sources

Nonlinear Inductor
Polynomial Inductor
Nonlinear Resistor
Surge arrester
Arc models

Functions
Blocks
Units
Constants

+
-

+
+
+
+

+
-

+
+
+
+
+
+
+

-

Meters+

CP+

+ WB

ST1
ST1A
IEEEG1
IEEEG2
IEEEG0
PSS1A

Figure 3.1 Structure of MSEMT library

3.2 Controllers

An excitation control system is a feedback control system that includes the synchronous machine

and excitation system. An excitation system is defined as the source of the field current for exciting

a synchronous machine.

The developed controllers include the static exciters (types ST1 and ST1A), Governors (types

IEEEG1, IEESGO), and the power stabilizer type PSS1A.

The controllers are programmed in block-oriented modeling, as a combination of pre-defined block

diagrams, such as adders, multipliers, first-order integrators, lead-lag compensators, etc. These

blocks are defined in the branch MSEMT.NonElectrical.Blocks.

 65

In Modelica, block diagrams are defined under a specialized class block. A block is a class

with fixed causality (data flow direction is known); each part of its interface must have causality

equal to input or output. All variables used in a block should be declared by one of the prefixes

input or output, and this is the main restriction of a block,

3.2.1 Exciter ST1

Figure 3.2 illustrates the implementation of the excitation system type ST1 excitation system

model, which is a controlled rectifier exciter with a potential source. It means the required DC

power is provided through a transformer and rectifier. This device is implemented as described in

[95], [96], and complies with the EMTP® model. It allows the modeler to compare the obtained

results with EMTP®. As one can see in this diagram, when VREF is not connected, the reference

voltage is internally found from the steady-state parameter. Initialization of model is performed

from the values obtained from steady-state solution in EMTP®. The parameters of the component

are given in Table 3.1.

Table 3.1 The parameters of Exciter ST1

 Name Description Type

D
a

ta
 t

a
b

Time constant TB lead-lag time constant second

Time constant TC lead-lag time constant second

Gain KF excitation control system stabilizer gain pu

Time constant TF excitation control system stabilizer time

constant
second

E
x
ci

te
r

ta
b

Gain KA voltage regulator gain pu

Time constant TA voltage regulator time constant second

Rectifier loading

factor KC

rectifier loading factor pu

 66

Maximum

regulator output

VImax

maximum regulator voltage input pu

Maximum

regulator output

VImin

minimum regulator voltage input pu

Maximum

regulator output

VRmax

maximum regulator voltage output pu

Maximum

regulator output

VRmin

minimum regulator voltage output pu

-1
+1

+1
-1

Sum

-1
+1

+1

Sum Limiter
Lead/Lag

compensator
1+sTC

1+sTB
k

Fist order

1+sTA

k
-1

Variable
limiter

Umin

Umax

-1

Switch

Hold t0

-1
+1

+1

Sum
Gain

K=1/KA

Const.

K=EFSS

VREF

IFD

VT

VC

VS

Gain

K=VR_MAX

Gain

K=KC

Gain

K=VR_MIN

Derivative

1+sTF

sKF

-1
+1

+1

Sum

EFD

VF

Exciter ST1 (pu)
IEEE Standard 421.5

Filtered terminal voltage Vin
Ve Ve_lim Vef Vr

Efd_min

Vref

Vin_icEFSS

VI_MIN

VI_MAX

Vf

Efd_max
Terminal voltage

VREF_Selection

Figure 3.2 Implementation of Exciter ST1 in Modelica

3.2.2 Governor IEEEG1

Figure 3.3 shows the implementation of governor type IEEEG1 and represents a steam governor

model. The model is implemented in Modelica as per the definitions and diagram in [97] and in

compliance with the EMTP® model. It senses changes in the turbine speed and adjusts the steam

 67

input accordingly. Its response time is generally in the order of seconds. Initialization of model is

performed from the values obtained from steady-state solution in EMTP®.

Governor-Turbine IEEEG1 (pu)

Transfer

Function
b(s)

a(s)

k=K

gain a
d
d
2

+1

+1

-1

+

k=1/T3

g
a
in

1

lim
it
e

r

uMax=U0

F
ir

s
tO

rd
e
r1

PT1

T=T4

k
=

K
2

g
a
in

2

k
=

K
1

g
a
in

3

F
ir
s
tO

rd
e

r2

PT1

T=T5

k
=

K
4

g
a
in

4

k
=

K
3

g
a

in
5

add3
+

+1

+1

lim
it
e

r1

uMax=PMAX

in
te

g
ra

to
r

I

k=1

Cons

k=Pref

W

Pm

PmHP

g_Pos

PmLP

F
ir
s
tO

rd
e
r3

PT1

T=T6

k
=

K
6

g
a
in

6

k
=

K
5

add5
+

+1

+1

F
ir
s
tO

rd
e
r4

PT1

T=T7

k
=

K
8

g
a
in

8

k
=

K
7

add7
+

+1

+1

add9
+

+1

+1

add4

+

+1

+1

add6

+

+1

+1

add8

+

+1

+1

g
a
in

7

g
a
in

9

Cons

k=Pref

add1

+

+1

-1

Figure 3.3 Implementation of governor IEEEG1 in Modelica

3.2.3 Governor IEESGO

Figure 3.4 shows the component model of the governor/turbine IEESGO [97] implemented in

Modelica and compliance with the EMTP® model. Table 3.2 shows the parameter of the model.

The accuracy of this model has been validated in IEEE 118-bus network.

Governor / Turbine IEESGO (pu)

k=1

add1

+

+1

-1

W

Lead/Lag
compensator

1+sTC

1+sTB
k

LimiterFist order

1+sTA

k

Cons

k=Pref

Fist order2

1+sTA

k
Fist order3

1+sTA

k

Fist order4

1+sTA

k

add3

+

+1

-1

+1

Cons add2

+

+1

-1

Ps

Pm

VI_MIN

VI_MAX

Ps_fraction

Pr

Plim

k=1-K2

gain1

k=1-K3

gain1

T=T4 T=T5

T=T6

T=T3

Figure 3.4 Implementation of governor IEESGO in Modelica

 68

Table 3.2 The parameters of Exciter IEESGO

 Name Description Type

 G
o

v
er

n
o

r
ta

b

Governor gain K1 Governor gain pu

Lag time constant

T1
governor lag time constant

second

Lead time constant

T2
governor lead time constant

second

Lag time constant

T3
governor lag time constant

second

Maximum power

limit PMAX
maximum power limit

pu

Minimum power

limit PMIN
minimum power limit

pu

T
u

rb
in

e
ta

b

Time constant T4 steam flow time constant second

Time constant T5 reheater time constant second

Time constant T6 IP-LP reheater time constant second

Reheater fraction

of shaft power K2
reheater fraction of power shaft

pu

IP-LP fraction of

shaft power K3:

IP-LP power fraction pu

3.3 Transmission Line

The transmission line (TL) is one of the main components of a power system. In EMT studies, two

types of models are mainly introduced for transmission lines. These are the PI-section model and

the distributed parameter models. The PI-section is a basic model that does not represent

propagation delay. The distributed parameter models are more accurate and represent propagation

 69

delay. The models include the constant parameter (CP)-line model, the frequency-dependent (FD)-

line model, and the wideband (WB)-line model. The latter is sometimes called the Universal Line

Model (ULM).

The CP-line model is the simplest and most efficient one, where the model parameters are

frequency independent. The FD-line model [98] evaluates multi-conductor line propagation in the

modal domain and considers effects due to frequency dependence of line parameters. However,

because modal transformations are approximated by real and constant matrices, its accuracy is best

for cases of aerial lines which are continuously transposed.

The WB-line model [99] considers the full-frequency dependency of line parameters and works

directly in the phase domain, thus, avoiding simplifying assumptions regarding modal–to–phase

transformations.

This section aims at providing a clear and complete description of the theoretical basis for the PI-

section, CP-, and WB-line models associated with the implementation of models in Modelica.

3.3.1 PI-section Line Model

In the PI-section model, as depicted in Figure 3.5, mutually coupled RLC elements are used to

construct a linear model with a finite number of states. The PI-section model is generally not the

best choice for transient solutions because traveling waves on lines can not be reproduced

accurately in the model.

vk vm
a

b

c

Lab

Lbc

Lac

Laa

Lbb

Lcc

CaCbCc

Cac

Cab

Cbc

R L

C1
2 C1

2

k m

ik im

Figure 3.5 Three-phase nominal PI-section model of the transmission line

 70

The linear state-space representation of the PI-section line model is defined by equations (3-1)-

(3-3).

𝐯𝑘 − 𝐑𝐢𝑅𝐿 − 𝐋
𝑑𝐢𝑅𝐿

𝑑𝑡
= 𝐯𝑚 (3-1)

𝐢𝑘 =
𝐂

2

𝑑𝐯𝑘

𝑑𝑡
+ 𝐢𝑅𝐿 (3-2)

𝐢𝑚 =
𝐂

2

𝑑𝐯𝑚

𝑑𝑡
− 𝐢𝑅𝐿 (3-3)

where 𝐑 , 𝐋 and 𝐂 indicate the total resistance, inductance, and capacitance of transmission line,

respectively. 𝐢𝑘 and 𝐢𝑚 are the current vectors in k- and m- ends respectively, and 𝐢𝑅𝐿 denotes the

vector of current flowing into the coupled RL branch. The implementation of this model in

Modelica is presented in Figure 3.6. The RLC line section parameters can be given either by a 3-

by-3 matrix or 2-by-1 matrix representing the balanced transmission line's positive and zero

sequences.

model PI3ph "Three-phase pI line model"

 parameter MSEMT.NonElectrical.Units.Resistance R[:,:]

 (each displayUnit="Ohm") "R3x3 or R2*1=[R0, R1]";

 parameter MSEMT.NonElectrical.Units.Inductance L[:,:]

 (each displayUnit="mH") "L3x3 or L2*1=[L0, L1]";

 parameter MSEMT.NonElectrical.Units.Capacitance C[:,:]

 (each displayUnit="uF") "C3x3 or C2*1=[C0, C1]";

 MSEMT.Connectors.PosPlug Pk ; // k-end port

 MSEMT.Connectors.negPlug Pm ; // m-end port

protected

 final parameter Integer iR=size(R,1); // Identification of row dimension of R

 final parameter Integer jR=size(R,2); // Identification of column dimension of R

 parameter Real Rp[:,:] = if iR==jR then R else

 [(2*R[1,2] + R[1,1])/3, (R[1,1] - R[1,2])/3, (R[1,1] - R[1,2])/3;

 (R[1,1] - R[1,2])/3 (2*R[1,2] + R[1,1])/3, (R[1,1] - R[1,2])/3;

 (R[1,1] - R[1,2])/3, (R[1,1] - R[1,2])/3, (2*R[1,2] + R[1,1])/3];

 parameter Real Lp[:,:] = if iR==jR then L else

 [(2*L[1,2] + L[1,1])/3, (L[1,1] - L[1,2])/3, (L[1,1] - L[1,2])/3;

 (L[1,1] - L[1,2])/3, (2*L[1,2] + L[1,1])/3, (L[1,1] - L[1,2])/3;

 (L[1,1] - L[1,2])/3 (L[1,1] - L[1,2])/3, (2*L[1,2] + L[1,1])/3];

 parameter Real Cp[:,:] = if iR==jR then C else

 [(2*C[1,2] + C[1,1])/3, (C[1,1] - C[1,2])/3, (C[1,1] - C[1,2])/3;

 (C[1,1] - C[1,2])/3, (2*C[1,2] + C[1,1])/3, (C[1,1] - C[1,2])/3;

 (C[1,1] - C[1,2])/3, (C[1,1] - C[1,2])/3, (2*C[1,2] + C[1,1])/3];

 Real iRL[3];

equation

 Pm.pin.v = Pk.pin.v – Rp * iRL – Lp * der(iRL);

 Pk.pin.i = Cp / 2 * der(Pk.pin.v) + iRL;

 Pm.pin.i = Cp / 2 * der(Pm.pin.v) - iRL;

end PI3ph;

Figure 3.6 Implementation of PI-section line model in Modelica

 71

3.3.2 Distributed Parameter Line Model Equations

The distributed parameter line models rely on the traveling wave theory. Figure 3.7 illustrates an

N-conductor transmission line with the length of 𝑥 = ℓ. The frequency-domain equations

describing the line at each point 𝑥 are:

𝑑𝐈(𝑥, 𝑗𝜔)

𝑑𝑥
= −𝐘′(𝑗𝜔)𝐕(𝑥, 𝑗𝜔) (3-4)

𝑑𝐕(𝑥, 𝑗𝜔)

𝑑𝑥
= −𝐙′(𝑗𝜔)𝐈(𝑥, 𝑗𝜔) (3-5)

where 𝐈(𝑥, 𝑗𝜔) is the vector of phase currents, 𝐕(𝑥, 𝑗𝜔) is the vector of line phase voltages, 𝐙′ =

𝐑′(𝜔) + 𝑗𝜔𝐋′(𝜔) is the series impedance matrix in per unit length and 𝐘′ = 𝐆′(𝜔) + 𝑗𝜔𝐂′(𝜔) is

the shunt admittance matrix also in per unit length.

x=0 x=

vk vm

+

ik im+

+

1

2

N

Figure 3.7 N-phase transmission line

The differentiation of (3-4) and (3-5) with respect to 𝑥 leads to below equations.

𝑑2𝐈(𝑥, 𝑗𝜔)

𝑑𝑥2
= 𝐘′(𝑗𝜔)𝐙′(𝑗𝜔)𝐈(𝑥, 𝑗𝜔) (3-6)

In the same way, the procedure is repeated for (3-5), then we have:

𝑑2𝐕(𝑥, 𝑗𝜔)

𝑑𝑥2
= 𝐙′(𝑗𝜔)𝐘′(𝑗𝜔)𝐕(𝑥, 𝑗𝜔) (3-7)

The resulting equations are a second-order matrix ODE involving only unknown voltages and

currents. Equation (3-8) establishes the general solution of (3-6) and is given by:

𝐈(𝑥, 𝑗𝜔) = 𝐈𝐹𝑒−𝚪(𝑗𝜔)𝑥 + 𝐈𝐵𝑒𝚪(𝑗𝜔)𝑥 (3-8)

 72

where the propagation matrix, 𝚪(𝑗𝜔) is:

𝚪(𝑗𝜔) = √𝐘′(𝑗𝜔)𝐙′(𝑗𝜔) (3-9)

Using (3-4) and (3-8), we obtain the general solution (3-10) for equation (3-7). It is given by:

𝐕(𝑥, 𝑗𝜔) = 𝐘𝑐(𝑗𝜔)−1[𝐈𝐹𝑒−𝚪(𝑗𝜔)𝑥 − 𝐈𝐵𝑒𝚪(𝑗𝜔)𝑥] (3-10)

where 𝐈𝐹 and 𝐈𝐵 are integration constants determined by the line boundary conditions and

physically represent the vectors of forward traveling wave (or in the positive 𝑥-direction) and

backward traveling wave (or negative 𝑥-direction). Characteristic admittance matrix, 𝐘𝑐(𝑗𝜔), is

defined as:

𝐘𝑐(𝑗𝜔) = 𝚪(𝑗𝜔)−1𝐘′(𝑗𝜔) (3-11)

If (3-10) is multiplied by 𝐘𝑐(𝜔) and summed by (3-8), we will have:

𝐘𝑐(𝑗𝜔)𝐕(𝑥, 𝑗𝜔) + 𝐈(𝑥, 𝑗𝜔) = 𝐈𝐹𝑒−𝚪(𝑗𝜔)𝑥 (3-12)

Figure 3.8 Schematic of transmission line with length ℓ and boundary conditions

Figure 3.8 shows the schematic diagram of a transmission line. It is assumed the voltage and current

at 𝑥 = 0 are denoted by 𝐕𝑘 and 𝐈𝑘and at 𝑥 = ℓ are represented by 𝐕𝑚 and 𝐈𝑚. It is additionally

supposed the direction of the end currents flow into the line. Applying the boundary conditions to

(3-12) yields the following equations:

Ik

Vk

Ikr

Iki

Im

Imi

Imr Vm

x=0 x= l

TL

 73

At node k

𝐈𝐹 = 𝐈𝑘𝑟 (3-13)

𝑥 = 0 𝐘𝑐𝐕𝑘 + 𝐈𝑘 = 2𝐈𝑘𝑟 (3-14)

𝑥 = ℓ 𝐘𝑐𝐕𝑚 − 𝐈𝑚 = 2𝑒−𝚪(𝑗𝜔)ℓ𝐈𝑘𝑟 (3-15)

At node m

𝐈𝐹 = 𝐈𝑚𝑟 (3-16)

 𝑥 = 0 𝐘𝑐𝐕𝑚 + 𝐈𝑚 = 2𝐈𝑚𝑟 (3-17)

 𝑥 = ℓ 𝐘𝑐𝐕𝑘 − 𝐈𝑘 = 2𝑒−𝚪(𝑗𝜔)ℓ𝐈𝑚𝑟 (3-18)

We can redefine the equations as:

At node k

𝐘𝑐𝐕𝑘 − 𝐈𝑘 = 2𝐈𝑘𝑖 (3-19)

𝐈𝑘𝑖 = 𝐇𝐈𝑚𝑟 (3-20)

𝐈𝑚𝑟 = 𝐈𝑚𝑖 + 𝐈𝑚 (3-21)

where the propagation matrix function is defined as:

𝐇 = 𝑒−𝚪(𝑗𝜔)ℓ (3-22)

In another way, the vector of phase currents 𝐈𝑘 at k-end is related to the vector of phase voltages

𝐕𝑘 and the incident current wave 𝐈𝑘𝑖 given by (3-19). The incident wave is equal to the reflected

wave from the m-end, 𝐈𝑚𝑟, propagated to the k-end as represented by (3-20).

Like k-end, the equations for the m-end are given by:

At node m

𝐘𝑐𝐕𝑚 − 𝐈𝑚 = 2𝐈𝑚𝑖 (3-23)

𝐈𝑚𝑖 = 𝐇𝐈𝑘𝑟 (3-24)

𝐈𝑘𝑟 = 𝐈𝑘𝑖 + 𝐈𝑘 (3-25)

Manipulation of the above equations yields the following equations as well.

𝐈𝑘 − 𝐘𝑐𝐕𝑘 = −𝐇(𝐈𝑚 + 𝒀𝑐𝐕𝑚) = −𝐇𝐈𝑚,𝑓𝑤 (3-26)

𝐈𝑚 − 𝐘𝑐𝐕𝑚 = −𝐇(𝐈𝑘 + 𝐘𝑐𝐕𝑘) = −𝐇𝐈𝑘,𝑓𝑤 (3-27)

 74

The terms 𝐘𝑐𝐕𝑘 and 𝐘𝑐𝐕𝑘 are considered as shunt currents in m- and k- ends. The vectors of 𝐈𝑚,𝑓𝑤

and 𝐈𝑘,𝑓𝑤 represent the forward traveling current-wave from m- and k- ends. These equations are

valid for both underground cables and aerial TLs.

3.3.3 Constant Parameter Line Model

As earlier mentioned, the CP-line model is the simplest form of the distributed parameter line

model with the minimum computational burden. The main challenge in the CP-line model is the

computation of delay for voltage and current of each end, with delay value of propagation time.

3.3.3.1 Formulation and theoretical aspects

The CP-line model considers that the TL parameters are not frequency-dependent; consequently,

the matrices 𝐙′ and 𝐘′are constant. For the formulation of the CP-line model, first, we drive the

equations for the single-phase lossless transmission line, that is R′ = G′ = 0. Therefore, we can

write the equations (3-26) and (3-27) for single-phase line as:

I𝑘 − Y𝑐V𝑘 = −H(I𝑚 + 𝑌𝑐V𝑚) (3-28)

I𝑚 − Y𝑐V𝑚 = −H(I𝑘 + Y𝑐V𝑘) (3-29)

By multiplying (3-28) and (3-29) by Y𝑐
−1 and some mathematical manipulations, we can re-write

these equations as below:

Z𝑐I𝑘 − V𝑘 = −H(Z𝑐I𝑚 + V𝑚) (3-30)

Z𝑐I𝑚 − V𝑚 = −H(Z𝑐I𝑘 + V𝑘) (3-31)

where the characteristic (surge) impedance (Z𝑐 = Y𝑐
−1) and propagation constant are respectively

defined as:

Z𝑐 = √
L′

C′
 (3-32)

H = 𝑒−𝑗𝜔ℓ√L′C′
 (3-33)

 75

where L′ and C′ are the inductance and capacitance of transmission line in unit per length.

Therefore, the equations (3-30) and (3-31) are transformed into time domain as given by (3-34)-

(3-35).

v𝑘(𝑡) − Z𝑐i𝑘(𝑡) = v𝑚(𝑡 − 𝜏) + Z𝑐i𝑚(𝑡 − 𝜏) (3-34)

v𝑚(𝑡) − Z𝑐i𝑚(𝑡) = v𝑘(𝑡 − 𝜏) + Z𝑐i𝑘(𝑡 − 𝜏) (3-35)

knowing that propagation (or travel) time 𝜏 is:

𝜏 = ℓ√L′C′ (3-36)

Equations (3-34) and (3-35) can be shown by two Norton equivalents, as illustrated in Figure 3.9.

The Norton current sources (called history terms) are defined by:

𝑖𝑘
ℎ𝑖𝑠𝑡 =

v𝑚(𝑡 − 𝜏)

Z𝑐
+ i𝑚(𝑡 − 𝜏) (3-37)

𝑖𝑚
ℎ𝑖𝑠𝑡 =

v𝑘(𝑡 − 𝜏)

Z𝑐
+ i𝑘(𝑡 − 𝜏) (3-38)

Zc ik
hist

im
hist Zcvk vm

ik im

Figure 3.9 Norton equivalent of single-phase lossless CP-line model

For incorporating the losses, the CP-line model is characterized by two lossless line sections, each

with a halved propagation time (𝜏/2) connected in series with lumped resistors R/4 at each end as

illustrated in Figure 3.10.

Lossless TLR /4 R/2 R/4

x=0 x=

τ/2

vk vm

τ/2

Lossless TL

+ +

ik im

R=R' Distributed L' , C' Distributed L' , C'

Figure 3.10 Schematic of single-phase CP-line model

 76

In this figure, the prime in R′, L′ and C′ is used to indicate distributed resistance, inductance, and

capacitance, i.e., parameters per unit length. The model is accurate as long as R is small compared

to the surge impedance. Now let’s assume the line is constructed by an N-conductor. Modal

transformation is used to formulate a multiconductor transmission line to produce diagonal

matrices, thereby transforming from N-coupled equations in the phase domain to N-decoupled

equations in the modal domain (mode). The computation of modal matrix for the transposed

transmission line is simple, i.e., Clark’s transformation matrix, but Eigenvalue analysis is required

for the untransposed line. Generally, the transformation matrices for current and voltage are

dependent on frequency, and the matrix elements are complex. For the CP-line model, the modal

transformation matrix is calculated at a given frequency. The real part of the modal transmission

matrix is used for time-domain computations. Each equation is solved for a single-phase line in the

modal domain by using modal traveling time and modal surge impedance. The relation between

the phase and modal variables are defined as:

𝐯𝑝ℎ𝑎𝑠𝑒 = 𝐓𝑣𝐯𝑚𝑜𝑑𝑒 (3-39)

𝐢𝑝ℎ𝑎𝑠𝑒 = 𝐓𝑖𝐢𝑚𝑜𝑑𝑒.
(3-40)

where 𝐯𝑝ℎ𝑎𝑠𝑒and 𝐢𝑝ℎ𝑎𝑠𝑒 are the vectors of voltage and current in phase domain, 𝐯𝑚𝑜𝑑𝑒 and 𝐢𝑚𝑜𝑑𝑒

are the same vectors in modal domain. 𝐓𝑣, 𝐓𝑖 are the N-by-N matrices of model transformation

where 𝐓𝑖 = [𝐓𝑣
𝑡]−1 and t indicates the transposition. Applying the technique to the equation (3-34)

yields the following modal scalar equations for the k-end

v𝑘,𝑚𝑜𝑑𝑒 = Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒(i𝑘,𝑚𝑜𝑑𝑒 + i𝑘,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡) (3-41)

i𝑘,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 (𝑡) = +k𝑣1v𝑘,𝑚𝑜𝑑𝑒(𝑡 − τ𝑚𝑜𝑑𝑒) − k𝑖1i𝑘,𝑚𝑜𝑑𝑒

ℎ𝑖𝑠𝑡 (𝑡 − τ𝑚𝑜𝑑𝑒)

 +k𝑣2v𝑚,𝑚𝑜𝑑𝑒(𝑡 − τ𝑚𝑜𝑑𝑒) − k𝑖2i𝑚,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 (𝑡 − τ𝑚𝑜𝑑𝑒)

(3-42)

knowing that:

k𝑣1 =
1 − h𝑚𝑜𝑑𝑒

2

1 + h𝑚𝑜𝑑𝑒

Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒
 (3-43)

k𝑣2 =
1 + h𝑚𝑜𝑑𝑒

2

1 + h𝑚𝑜𝑑𝑒

Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒
 (3-44)

 77

k𝑖1 =
1 − h𝑚𝑜𝑑𝑒

2
h𝑚𝑜𝑑𝑒 (3-45)

k𝑖2 =
1 + h𝑚𝑜𝑑𝑒

2
h𝑚𝑜𝑑𝑒 (3-46)

h𝑚𝑜𝑑𝑒 =
Z𝑐,𝑚𝑜𝑑𝑒 −

R𝑚𝑜𝑑𝑒
4⁄

Z𝑐,𝑚𝑜𝑑𝑒 +
R𝑚𝑜𝑑𝑒

4⁄
 (3-47)

τ𝑚𝑜𝑑𝑒 = ℓ√L𝑚𝑜𝑑𝑒
′ . C𝑚𝑜𝑑𝑒

′ (3-48)

Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒 = Z𝑐,𝑚𝑜𝑑𝑒 +
R𝑚𝑜𝑑𝑒

4
. (3-49)

Z𝑐,𝑚𝑜𝑑𝑒 = √
L𝑚𝑜𝑑𝑒
′

C𝑚𝑜𝑑𝑒
′ (3-50)

In the above equations, Z𝑚𝑑𝑓,𝑚𝑜𝑑𝑒 is the modified surge impedance, Z𝑐,𝑚𝑜𝑑𝑒 the modal surge

impedance for lossless TL, L𝑚𝑜𝑑𝑒
′ and C𝑚𝑜𝑑𝑒

′ respectively represent the modal inductance and

capacitance of TL in per unit length, R𝑚𝑜𝑑𝑒 is the modal resistance of TL and i𝑘,𝑚𝑜𝑑𝑒
ℎ𝑖𝑠𝑡 (𝑡) denotes

the modal history current at the k-end. τ𝑚𝑜𝑑𝑒 represents the modal traveling time from one end (k)

to the other end (m). Replacing the index k to m gives the same equations at the m-end of TL.

Figure 3.11 shows the time-domain model of an N-phase transmission line. As one can see, there

is no direct connection between the two terminals, and the voltage and current at one end are seen

indirectly, and with time delays, τ𝑚𝑜𝑑𝑒, at the other through the current sources. The history terms

are stored in a ring buffer, and hence the maximum traveling time that can be represented is the

time-step multiplied by the number of locations in the buffer. Because the time delay is not a

multiple of the time-step, the history terms on either side of the actual traveling time are

interpolated to give the correct traveling time.

 78

ik, mode
hist im, mode

V
k

,
m

o
d
e

τmode

V
m

,
m

o
d

e

Z
m

d
f,
 m

o
d

e

ik, mode im, mode

k m
iph=Tiimode

vph=Tvvmode

+

-

n-decoupled TL

Modal domain

Z
m

d
f,
 m

o
d

e

iph=Tiimode

vph=Tvvmodehist

+

-

Norton equivalent

k-end

Norton equivalent

m-end

Figure 3.11 Multiconductor transmission line model as two Norton equivalents

3.3.3.2 Implementation in Modelica

The input parameters of the CP-line model are the equivalent modal values of characteristic

impedance (Zc) and propagation delay (tau), modal transformation (Ti)for untransposed line,

and the length of line (d). Figure 3.12 represents the Norton equivalent of CP-line model in

Modelica. To decrease the computational burden, only history currents are computed in modal

domain, then other calculations are done in the phase domain. Figure 3.13 presents the

implementation of the model in Modelica. The codes consist of calculations for Norton equivalent

and history currents, as shown in Figure 3.12.

• Norton equivalent: the related codes are distinguished by the blue dotted outline and aimed

to calculate phase domain voltage and current vectors at each end of the line. The voltage

and current at k- and m- ends are denoted by Plug_k.pin.v, Plug_m.pin.v,

Plug_k.pin.i, Plug_m.pin.i respectively. The Norton equivalent equations for k-

and m- ends in phase domain are obtained by applying the inverse modal transformation to

(3-41):

𝐯𝑘 = 𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒(𝐢𝑘 + 𝐢𝑘
ℎ𝑖𝑠𝑡) (3-51)

𝐯𝑚 = 𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒(𝐢𝑚 + 𝐢𝑚
ℎ𝑖𝑠𝑡) (3-52)

 79

ik, mode
hist im, mode

vk

τmode

vm

Z
m

d
f,p

h
a

se

ik imn-decoupled TL

Z
m

d
f,p

h
a

se

hist

Norton equivalent k-end Norton equivalent m-end

iph=Tiimode

vph=Tvvmode

k iph=Tiimode

vph=Tvvmode

m

ik
hist

im
hist

Figure 3.12: Norton equivalent of N-conductor CP-line in Modelica

The N × N Norton resistance matrix, 𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒, is calculated by (3-53) in phase domain.

𝐙𝑚𝑑𝑓,𝑝ℎ𝑎𝑠𝑒 = 𝐓𝑖
−1𝐙𝑚𝑑𝑓,𝑚𝑜𝑑𝑒𝐓𝑖 (3-53)

𝐙𝑚𝑑𝑓,𝑚𝑜𝑑𝑒is a diagonal matrix involving the contribution of line resistance to the characteristic

impedance of lossless line; both in modal domain.

• History Current: The code for calculating history currents is distinguished by the red dotted

outline in Figure 3.13. The history current, Ik_hist, and Im_hist are computed in the

modal domain, then transformed into phase domain. It is noteworthy that the calculation of

history terms includes solving an implicit algebraic equation at each time point [107]. In

the pieces of code, the Modelica built-in function delay(), computes the voltages and history

currents by interpolating linearly in a buffer containing past values of these variables.

 80

model TL_CP

 parameter Integer m(min = 1) = 3 "Number of phases" ;

 parameter Real Zc[m] "Characteristic impedance{Zc1,Zc2,...,Zcm} in mode" ;

 parameter Real r[m](each unit = "ohm/km") "{r1,r2,...,rm} in mode" ;

 parameter MSEMT.NonElectrical.Units.Length d(displayUnit="km") "length of line" ;

 parameter MSEMT.NonElectrical.Units.Time tau[m] "tau ={tau1,tau2,...,taum} in mode" ;

 parameter Real Ti[m,m]=MSEMT.NonElectrical.Functions.Clark_Transformation(m);

 //Final Paramters

 final parameter Real R[m]=r*d/1000 ;

 final parameter Real h[m]=(Zc.-R./4)./(Zc.+R./4) ;

 final parameter Real Zmod[m]=(Zc.+R./4) ;

 final parameter Real Zmdf_phase[m,m]=inv(transpose(Ti)) * diagonal(Zmod) * inv(Ti);

 final parameter Real kv1[m] = +((1 .- h)/2).*((1 .+ h)./Zmod) ;

 final parameter Real kv2[m] = +((1 .+ h)/2).*((1 .+ h)./Zmod) ;

 final parameter Real ki1[m] = -((1 .- h)/2).*h ;

 final parameter Real ki2[m] = -((1 .+ h)/2).*h ;

 final parameter Real Tit[m, m] = transpose(Ti) "Ti transposed" ;

 MSEMT.Connectors.PosPlug Plug_k(m = m)

 MSEMT.Connectors.negPlug Plug_m(m = m)

 Real Ik_hist[m],Im_hist[m]; // History current for k-,m-end

 Real Vk_md[m],Vm_md[m]; // Modal Terminal voltage for k-,m-end

 Real dvk_md[m],dvm_md[m]; // Delayed Modal Terminal voltage for k-,m-end

 Real dIk_hist_md[m],dIm_hist_md[m]; // Delayed Modal History current for k-,m-end

 Real Ik_hist_md[m],Im_hist_md[m]; // Modal History current for k-,m-end

equation

// Calculation of Terminal voltage

 Plug_k.pin.v = Zmdf_phase * (Plug_k.pin.i + Ik_hist);

 Plug_m.pin.v = Zmdf_phase * (Plug_m.pin.i + Im_hist);

// Calculation of History current

 for i in 1:m loop

 if time < tau[i] then

 dvk_md[i] = 0;

 dvm_md[i] = 0;

 dIk_hist_md[i] = 0;

 dIm_hist_md[i] = 0;

 else

 dvk_md[i] = delay(Vk_md[i], tau[i]);

 dvm_md[i] = delay(Vm_md[i], tau[i]);

 dIk_hist_md[i] = delay(Ik_hist_md[i], tau[i]);

 dIm_hist_md[i] = delay(Im_hist_md[i], tau[i]);

 end if;

 end for;

 Vk_md = Tit * Plug_k.pin.v;

 Vm_md = Tit * Plug_m.pin.v;

 Ik_hist_md = kv1 .* dvk_md + ki1 .* dIk_hist_md + kv2 .* dvm_md + ki2 .* dIm_hist_md;

 Im_hist_md = kv1 .* dvm_md + ki1 .* dIm_hist_md + kv2 .* dvk_md + ki2 .* dIk_hist_md;

 Ik_hist = Ti * Ik_hist_md;

 Im_hist = Ti * Im_hist_md;

end TL_CP;

Figure 3.13 Implementation of multiphase CP-line model in Modelica

 81

3.3.4 Wideband Line Model

The WB-line model [99][100] is a phase domain model that gives highly accurate results for aerial

lines and underground cables. It considers the full frequency dependency of line/cable parameters.

3.3.4.1 Formulation and theoretical aspects

Suppose the impedance and admittance of the transmission line are functions of frequency;

therefore, the time-domain solutions of equation (3-19)-(3-21) are obtained by applying the inverse

frequency-domain transformation.

𝐢𝑘 = 𝐲𝑐 ∗ 𝐯𝑘 − 2𝐢𝑘𝑖 (3-54)

𝐢𝑘𝑖 = 𝐡 ∗ 𝐢𝑚𝑟 (3-55)

𝐢𝑚𝑟 = 𝐢𝑚𝑖 + 𝐢𝑚 (3-56)

In these equations, the symbol ∗ indicates convolution. Like k-end, we can write the equations for

m-end as:

𝐢𝑚 = 𝐲𝑐 ∗ 𝐯𝑚 − 2𝐢𝑚𝑖 (3-57)

𝐢𝑚𝑖 = 𝐡 ∗ 𝐢𝑘𝑟 (3-58)

𝐢𝑘𝑟 = 𝐢𝑘𝑖 + 𝐢𝑘 (3-59)

Numerical calculation of convolution creates a significant computational burden since it accounts

for all history values. The most cost-effective technique is to use the recursive convolution

algorithm. In this approach, the propagation and the characteristic admittance matrices are directly

fitted in phase domain using the vector fitting tool [99]. The approximation of these two matrices

in a partial fraction form is given by (3-60) and (3-61).

𝐘𝑐 = 𝐆0 + ∑
𝐆𝑖

𝑠 − 𝑞𝑖

𝑁𝑦

𝑖=1

 (3-60)

𝐇 = ∑ ∑
𝐑𝑘,𝑖

𝑠 − 𝑝𝑘,𝑖

𝑁ℎ(𝑘)

𝑖=1

𝑁𝑔

𝑘=1

𝑒−𝑠𝜏𝑘 (3-61)

 82

where 𝐆0 is a constant residue at the infinite frequency, 𝑞𝑖 represents ith pole, 𝐆𝑖 is the

corresponding matrix of residues, 𝑁𝑦 is the order of fitting, 𝑁𝑔 is the number of modes, 𝑁ℎ(𝑘)

denotes the number of poles used to fit the kth modal propagation matrix, 𝑝𝑘,𝑖 is the fitting pole, 𝜏𝑘

is the time delay of the kth mode and 𝐑𝑘,𝑖 is the matrix of residues. The state-space form of shunt

and incident current for the k-end are represented by (3-64) and (3-65). The same equations hold

for the m-end of the line.

𝐈𝑠ℎ,𝑘 = 𝐆0𝐕𝑘 + ∑𝐖𝑖

𝑁𝑦

𝑖=1

 (3-62)

𝐖𝑖 =
𝐆𝑖

𝑠 − 𝑞
𝑖

𝐕𝑘 (3-63)

and

𝐈𝑘𝑖 = ∑ ∑ 𝐗𝑘,𝑖

𝑁ℎ(𝑘)

𝑖=1

𝑁𝑔

𝑘=1

 (3-64)

𝐗𝑘,𝑖 =
𝐑𝑘,𝑖

𝑠 − 𝑝𝑘,𝑖
𝐈𝑚𝑟𝑒

−𝑠𝜏𝑘 (3-65)

Therefore, the time-domain solution of (3-64)-(3-65) can be evaluated by applying a fast-recursive

algorithm to state space methods.

𝐢𝑠ℎ,𝑘 = 𝐆0𝐯𝑘 + ∑𝐖𝑖

𝑁𝑦

𝑖=1

 (3-66)

𝑑𝐰𝑖

𝑑𝑡
= 𝑞𝑖𝐰𝑖 + 𝐆𝑖𝐯𝑘 (3-67)

and

𝐢𝑘𝑖 = ∑ ∑ 𝐱𝑘,𝑖

𝑁ℎ(𝑘)

𝑖=1

𝑁𝑔

𝑘=1

 (3-68)

𝑑𝐱𝑘,𝑖

𝑑𝑡
= 𝑝𝑘,𝑖𝐱𝑘,𝑖 + 𝐑𝑘,𝑖𝐢𝑚𝑟(𝑡 − 𝜏𝑘) (3-69)

In EMT-type programs, (3-67) and (3-69) need to be discretized using the trapezoidal integration

method. This work sets focus on the evaluation of these equations in time domain using declarative

language.

 83

3.3.4.2 Implementation of WB-line model

Figure 3.14 represents the Norton equivalent of WB-line model, which is used for configuration of

the model in Modelica. Figure 3.15 illustrates the implementation of the WB-line model in

Modelica. The model is composed of two pieces of code. (1) to compute the voltage and current at

line terminal, which is distinguished by red dotted frame, and shunt current using (3-66) and (3-67),

which is distinguished by blue dotted frame. (2) the codes for calculations of the incident and

reflected currents as formulated by (3-68) and (3-69). The yellow dotted frame shows the

appropriate code.

The fitting parameters of model are currently calculated by EMTP® and are imported automatically

into Modelica readable file.

G
0

,T
L

1

G
0

,T
L

1

ik im

k-end m-end

vk vm2iki 2imi

Figure 3.14 Norton equivalent of WB-line model

 84

model WideBand

 import MSEMT.NonElectrical.Functions.ComplexMath.real;

 import MSEMT.NonElectrical.Functions.ComplexMath.imag;

 constant Complex j = Complex(0,1);

 parameter Integer m(final min=1) = 3 "Number of phases" ;

 parameter Real G0[:,:] "G0 is a constant matrixi_fitting Yc";

 parameter Real G[:,:,:] "Zeros of fitting Yc" ;

 parameter Real q[:] "poles of fitting Yc" ;

 parameter Real tau[:] "propagation time" ;

 parameter Complex Pm_H[:,:] "poles of fitting H";

 parameter Complex Rm_H[:,:,:,:] "zeros of fitting H";

 final parameter Integer Ny = size(G, 1) "Order of fitting of Yc" ;

 final parameter Integer Ng=size(Rm_H,1) "Number of groups" ;

 final parameter Integer No_H=size(Rm_H,2) "Order of Fitting" ;

// Definition of Pk and Pm terminals

 MSEMT.Connectors.PosPlug Pk(m = m) ;

 MSEMT.Connectors.PosPlug Pm(m = m) ;

// varaibles of shunt current k-side

 Real wk[m, Ny](start=zeros(m,Ny),each fixed=false) ;

 Real sum_wk[m] ;

 Real i_shk[m] ;

// varaibles of shunt current m-side

 Real wm[m, Ny](start=zeros(m,Ny),each fixed=false) ;

 Real sum_wm[m] ;

 Real i_shm[m] ;

// incident current

 Real i_ki[m],i_mi[m];

 Real i_kr[m] ; // i_kr: reflected current-wave vector from k-end

 Real i_mr[m] ; // i_mr: reflected current-wave vector from m-end

 Real xk_Re[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ; // States convolution of propagation function xR: Real

Part, k-end

 Real xk_Im[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ;

// States convolution of propagation function xI: Imaginary Part, k-end

 Real xm_Re[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ; // States convolution of propagation function xR: Real

Part, m-end

 Real xm_Im[Ng, No_H, m](start=zeros(Ng, No_H, m),each fixed=true) ;

// States convolution of propagation function xI: Imaginary Part, m-end

 Real i_hkr[m, Ng] // i_hkr: i_kr with delay

 Real i_hmr[m, Ng] // i_hmr: i_mr with delay

equation

// Calculation of Termian current

 Pk.pin.i = i_shk - 2 * i_ki;

 Pm.pin.i = i_shm - 2 * i_mi;

 for p in 1:Ny loop

 for k in 1:m loop

 der(wk[k, p]) = q[p] * wk[k, p] + G[p, k, :] * Pk.pin.v;

 der(wm[k, p]) = q[p] * wm[k, p] + G[p, k, :] * Pm.pin.v;

 end for;

 end for;

// sum of all columns for each phase

 for k in 1:m loop

 sum_wk[k] = sum(wk[k, :]);

 sum_wm[k] = sum(wm[k, :]);

 end for;

 i_shk = G0 * Pk.pin.v + sum_wk; // Calculation of shunt current, k-end

 i_shm = G0 * Pm.pin.v + sum_wm; // Calculation of shunt current, m-end

// Calculation of Incident Current

 i_kr = i_ki + Pk.pin.i;

 i_mr = i_mi + Pm.pin.i;

 for k in 1:Ng loop

 if time<tau[k] then

 i_hmr[:, k] =zeros(m);

 i_hkr[:, k] =zeros(m);

 else

 i_hmr[:, k] = delay(i_mr, tau[k]);

 i_hkr[:, k] = delay(i_kr, tau[k]);

 end if;

 for p in 1:No_H loop

 for i in 1:m loop

// calc of History cuurent k-end

 der(xk_Re[k, p, i])=real(Pm_H[k, p])*xk_Re[k, p, i]-imag(Pm_H[k, p])*xk_Im[k, p, i]+real(Rm_H[k, p, i, :])* i_hmr[:, k];

 der(xk_Im[k, p, i])=imag(Pm_H[k, p])*xk_Re[k, p, i]+real(Pm_H[k, p])*xk_Im[k, p, i]+imag(Rm_H[k, p, i, :])* i_hmr[:, k];

// calc of History cuurent m-end

 der(xm_Re[k, p, i])=real(Pm_H[k, p])*xm_Re[k, p, i]-imag(Pm_H[k, p])*xm_Im[k, p, i]+real(Rm_H[k, p, i, :])* i_hkr[:, k];

 der(xm_Im[k, p, i])=imag(Pm_H[k, p])*xm_Re[k, p, i]+real(Pm_H[k, p])*xm_Im[k, p, i]+imag(Rm_H[k, p, i, :])* i_hkr[:, k];

 end for;

 end for;

 end for;

//summation of fitting orders for each phase

 for i in 1:m loop

 i_ki[i] = sum(xk_Re[:, :, i]);

 i_mi[i] = sum(xm_Re[:, :, i]);

 end for;

end WideBand;

Figure 3.15 Codes for implementation of WB-line model

 85

3.4 Load Models

The three-phase parallel or series RL load implements a three-phase balanced or unbalanced load

as a parallel or series combination of RL elements. At the specified frequency, the load exhibits a

constant impedance.

As one can see in Figure 3.16, the parameters of the model are the load nominal line-line voltage

(V) in kV, the load active and reactive power (P[3]={Pa, Pb, Pc} in MW and Q[3]={Qa,

Qb, Qc} in Mvar respectively) and frequency (f) in Hz.

model PQLoad "Three-phase parallel/series Yg-connected PQ load "

 import MSEMT.NonElectrical.Constants.pi;

 Boolean ParallelConfig=true;

 parameter Real V(unit = "kV RMSLL") = 25 "Nominal Voltage";

 parameter Real P[3](each unit = "MW") "Active powers {Pa,Pb,Pc}";

 parameter Real Q[3](each unit = "MAVR") "Rective powers {Qa,Qb,Qc}";

 parameter Modelica.SIunits.Frequency f = 60 "Nominal frequency";

protected

 Real R1 = if ParallelConfig then V ^ 2 / 3 / P[1] else V ^ 2 *P[1]/ 3 / (P[1]^2+Q[1]^2);

 Real R2 = if ParallelConfig then V ^ 2 / 3 / P[2] else V ^ 2 *P[2]/ 3 / (P[2]^2+Q[2]^2);

 Real R3 = if ParallelConfig then V ^ 2 / 3 / P[3] else V ^ 2 *P[3]/ 3 / (P[3]^2+Q[3]^2);

 Real L1 = if ParallelConfig then V ^ 2 / 3 / (2 * pi * f * Q[1]) else V ^ 2 *Q[1]/ 3 / (P[1]^2+Q[1]^2)/(2 * pi * f);

 Real L2 = if ParallelConfig then V ^ 2 / 3 / (2 * pi * f * Q[2]) else V ^ 2 *Q[2]/ 3 / (P[2]^2+Q[2]^2)/(2 * pi * f);

 Real L3 = if ParallelConfig then V ^ 2 / 3 / (2 * pi * f * Q[3]) else V ^ 2 *Q[3]/ 3 / (P[3]^2+Q[3]^2)/(2 * pi * f);

 MSEMT.Connectors.PosPlug Pk;

 Real IL[3],IR[3]; // Inductor and resistor current

 Real VL[3],VR[3]; // Inductor and resistor voltage

equation

 {L1,L2,L3}.* der(IL) =VL ;

 {R1,R2,R3}.* IR = VR;

if ParallelConfig then

 Pk.pin.i=IL.+IR;

 Pk.pin.v=VR;

 Pk.pin.v=VL;

 else

 Pk.pin.v=VR+VL;

 Pk.pin.i=IL;

 Pk.pin.i=IR;

 end if;

end PQLoad;

Figure 3.16 Implementation of PQ load in Modelica

Similar models for three/single-phase capacitive loads are available in the MSEMT library.

3.5 Synchronous Machine

This section implements the classical dq model of a balanced wye-grounded synchronous machine

(SM). Figure 3.17 shows a two-pole SM in which damper winding effects are represented with

three damper windings: one on the d-axis, kd, and two on the q-axis, kq1, and kq2. The q-axis is

assumed to be leading the d-axis by 90 deg, and the direction of the positive stator current is out of

the terminals [101].

 86

as-axis

θr

Ꞷr

bs-axis

cs-axis

d-axis

as

as

bs

bs cs

cs

kq1

kq1

kq2

kq2

fd

kd

fd

kd

Figure 3.17 Two-pole, three-phase, wye-connected salient-pole synchronous machine

The sixth-order state-space model and the mechanical equations based on a single mass sorted from

(3-70) to (3-87) are implemented. In these equations, bold uppercase represents matrices, bold

lowercase denotes vector, and operator p is d/dt. The per-unit (pu) electrical equations are

expressed in the rotor reference-frame as following:

𝐯𝑑𝑞0 = 𝐏(θ)𝐯𝑎𝑏𝑐 (3-70)

𝑝𝛙 = ω𝑏(𝐀𝛙 + 𝐮) (3-71)

𝐀 = −(𝐑𝐋−1 + 𝐖) (3-72)

𝐢 = 𝐋−1𝛙 (3-73)

𝐢𝑎𝑏𝑐 = 𝐏−𝟏(θ)𝐢𝑑𝑞𝑧 (3-74)

𝐢𝑎𝑏𝑐,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐢𝑎𝑏𝑐 . I𝑠𝑡𝑎𝑡𝑜𝑟,𝑏𝑎𝑠𝑒 (3-75)

 87

The mechanical equations in the per-unit form that describes the dynamics of a single mass rotor

are given as:

T𝑒 = ψ𝑑i𝑞 − ψ𝑞i𝑑

(3-76)

T𝑛𝑒𝑡 = T𝑚 − T𝑒 − DΔω𝑟 (3-77)

T𝑚 = P𝑚/ω𝑟 (3-78)

𝑝Δω = T𝑛𝑒𝑡

1

2H
 (3-79)

ω𝑟 = 1 + Δω (3-80)

𝑝Δθ = ω𝑏Δω (3-81)

θ = Δθ + ω𝑏𝑡 (3-82)

where

𝐮 = [v𝑞, v𝑑 , v𝑓𝑑 , 0, 0, 0]
𝑇
 (3-83)

𝛙 = [ψ𝑞, ψ𝑑 , ψ𝑓𝑑 , ψ𝑘𝑑 , ψ𝑘𝑞1, ψ𝑘𝑞2]
𝑇
 (3-84)

𝐢 = [i𝑞, i𝑑, i𝑓𝑑 , i𝑘𝑑 , i𝑘𝑞1, i𝑘𝑞2]
𝑻
 (3-85)

𝐢𝑑𝑞0 = [−i𝑞, − i𝑑, 0]
𝑻
 (3-86)

𝐑 = diag(R𝑎, R𝑎, R𝑓𝑑 , R𝑘𝑑 , R𝑘𝑞1, R𝑘𝑞2) (3-87)

The vector 𝐯𝑎𝑏𝑐 is the pin voltage, 𝐯𝑑𝑞0 is the pin voltage in dq frame, 𝐏(θ) is the Park

transformation defined in a specific class function and reused here, vectors 𝐮, 𝐢, and 𝛙 denote stator

and rotor voltages, currents, and flux linkages in dq frame and 𝐢𝑎𝑏𝑐 is the stator current. 𝐖6×6 is

the rotor speed-dependent matrix where all elements are zero except 𝑤(1,2) = 𝜔𝑟 and 𝑤(2,1) =

−𝜔𝑟, 𝐋6×6 is a symmetrical matrix of self and mutual inductances in the rotor reference frame,

𝐑6×6 is stator and rotor resistance matrix, Δω is rotor speed deviation in pu, Δθ denotes rotor angle

deviation in pu, θ is electrical rotor angle in radians, ω𝑏 is base rotor speed in radians per second

and H represents inertia constant in s. The mechanical, electrical torque and the damping factor in

pu are denoted respectively by T𝑚, T𝑒 and D.

 88

3.5.1 Magnetic Saturation

The following assumptions are made for magnetic saturation modeling: The leakage flux saturation

and cross saturation are ignored. It means that only the magnetizing inductances, L𝑚𝑑 and L𝑚𝑞 are

saturable. The air-gap flux linkage determines magnetic saturation. The sinusoidal distribution of

the magnetic field on the pole face is not affected by magnetic saturation.

Since the saturation relationship between the total air-gap flux, 𝛙𝑇, and the magnetomotive force

under loaded conditions is supposed to be the same as at no-load conditions; thus, magnetic

saturation of stator and rotor can be modeled by the no-load saturation curve, which is

characterized by a piecewise linear function [102].

Therefore, the mathematical model of saturation is given by [102]:

ψ𝑇 = 𝑓(ψ𝑇,𝑢𝑠) = 𝑓 (√ψ𝑚𝑑,𝑢𝑠
2 + ψ𝑚𝑞,𝑢𝑠

2) (3-88)

ψ𝑚𝑑,𝑢𝑠 = L𝑚𝑑,𝑢𝑠i𝑚𝑑 (3-89)

 i𝑚𝑑 = i𝑑 + i𝑓𝑑 + i𝑘𝑑 (3-90)

ψ𝑚𝑞,𝑢𝑠 = L𝑚𝑞,𝑢𝑠i𝑚𝑞 (3-91)

i𝑚𝑞 = i𝑞 + i𝑘𝑞1 + i𝑘𝑞2 (3-92)

where ψ𝑇,𝑢𝑠 is the total unsaturated air-gap flux, ψ𝑚𝑑,𝑢𝑠 and ψ𝑚𝑞,𝑢𝑠 are the unsaturated

magnetizing flux linkages respectively, L𝑚𝑑,𝑢𝑠 and L𝑚𝑞,𝑢𝑠 are the unsaturated magnetizing

inductances, and i𝑚𝑑 and i𝑚𝑞 are the magnetizing currents. Throughout the thesis, the subscripts

sat and us mean saturated and unsaturated, respectively.

As illustrated in Figure 3.18, the saturated magnetizing flux linkages on dq axis (ψ𝑚𝑑,𝑠𝑎𝑡 and

ψ𝑚𝑑,𝑠𝑎𝑡) can be adjusted by a ratio of corresponding unsaturated values.

 89

ψT

ψT,us

ψmd,us

ψ
m

q
,u

s

ψmd,sat

ψ
m

q
,s

a
t

Lmd,us imd

L
m

q
,u

s
i m

q

Lmd,sat imd

Figure 3.18 Saturated and unsaturated magnetizing flux linkages in dq axes of a synchronous

machine

In EMTP®, a piecewise-linear function is used for representation of the magnetic saturation as

shown in Figure 3.19.

iT

ψT

ψk2

ψk3

Lmd,sat2

Lmd,sat3

Lmd,sat1=Lmd,us

ib1

ψb1

ψb2

ib2

Figure 3.19 Magnetic saturation characteristic (piecewise-linear approximation)

For the jth operating segment, ψ𝑇 is given by:

ψ𝑇 = ψ𝑘𝑗 + b𝑗ψ𝑇𝑢 (3-93)

= ψ𝑘𝑗 + b𝑗L𝑚𝑑,𝑢𝑠i𝑇 (3-94)

i𝑇 = √i𝑚𝑑
2 + (

L𝑚𝑞,𝑢𝑠

L𝑚𝑑,𝑢𝑠
)

2

i𝑚𝑞
2 (3-95)

 90

b𝑗 =
L𝑚𝑑,𝑠𝑎𝑡𝑗

L𝑚𝑑,𝑢𝑠
 (3-96)

where b𝑗 is the saturation factor and ψ𝑘𝑗 is the residual flux. The saturated values L𝑚𝑑,𝑠𝑎𝑡 and

L𝑚𝑞,𝑠𝑎𝑡 are computed as:

L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠

L𝑚𝑞,𝑠𝑎𝑡 = b𝑗L𝑚𝑞,𝑢𝑠
(3-97)

For a salient pole machine, because of large airgap path along the q-axis, it is only required to

correct the ψ𝑚𝑑; thus:

L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠

L𝑚𝑞,𝑠𝑎𝑡 = L𝑚𝑞,𝑢𝑠
(3-98)

Figure 3.20 demonstrates the solution procedure for the electrical equations of SM. In the case of

no saturation, the relationship between field current, i𝑓𝑑 and terminal voltage v𝑡, is linear.

Therefore, magnetizing inductances in matrix 𝐋 (equation (3-99) are constant (q𝑗 = d𝑗 = 1). If

saturation is selected, it is required to compute the magnetizing inductances for each time point.

The matrix 𝐋 is time-variable (q𝑗 = d𝑗 = b𝑗 for round rotor and q𝑗 = 0, d𝑗 = b𝑗 for salient pole

machine).

𝐋 =

(

L𝑙𝑠 + q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠

0 L𝑙𝑠 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑓𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑘𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 0 0

q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 L𝑙𝑘𝑞1 + q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠

q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 L𝑙𝑘𝑞2 + q𝑗L𝑚𝑞,𝑢𝑠)

 (3-99)

3.5.2 Implementation of Synchronous Machine Model in Modelica

Implementation of the SM model in Modelica is based directly on its equations without providing

solution procedures, predictions, and supplementary codes as in traditional EMT-type tools. The

dq model equations are linked to the main network equation with the interface of Park’s

transformation and provide a simultaneous solution. It is demonstrated that this method is

numerically stable and yields the same results as EMTP®.

 91

(3-71)

vdq

ψ

A
W

saturation

L
-1

inv(*)

i=L
-1

ψ

no

yes

L
(3-99)

start

R

P(θ)vabc

iabc

w
it

h

sa
tu

ra
ti

o
n

w
it

h
o

u
t

sa
tu

ra
ti

o
n

st
at

e-
v

ar
ia

b
le

 E
q

u
at

io
n

s

qj=1, dj=1

Round rotor

dj=qj=bj

dj=bj, qj==0

(3-95)

idq
P

-1(θ)

i d
,q

,f
d

,k
d

,k
q1

,k
q

2

?

iT

yes

nobj

id,q,fd,kd,kq1,kq2

Lmd,us

Lmq,us

L
-1

RL
-1

×

--

(3-76) (3-77)
Te Tnet

(3-79) ΔꞶ
(3-80)

Ꞷr

(3-81)
Δθ

(3-82)

(3-78)Pm

Tm 1

θ

M
ec

h
an

ic
al

 E
q
u
at

io
n
s

idq

H

Figure 3.20 Solution procedure of synchronous machine with/without magnetic saturation in

Modelica

Figure 3.21 shows the GUI of the synchronous machine model designed in Modelica language.

The different parameters of the model are categorized according to their functionalities.

Operational parameters are used as input parameters of the model; then, fundamental parameters

are computed using the classical method [101] in the Modelica model. The model discussed above

has been implemented for the first time in Modelica.

Figure 3.22 illustrates the Modelica codes for the implementation of SM. The terminal voltages are

represented by Pk.pin[1].v, Pk.pin[2].v and Pk.pin[3].v for the phases a, b and c

 92

respectively. P(theta) represents a pre-defined function for the Park’s transformation

calculations.

Equation (3-71) is used as a differential equation for the implemented model. The state vector Phi

represents fluxes, and the input vector u the voltages. The system matrix A is a time-dependent

matrix computed as per (3-72).

The matrix of parameters for representation of saturation, SD, is given by a 2-by-n matrix, where n

is the number of points taken from the no-load saturation curve. The first row of this matrix contains

the values of field currents (actual value), while the second row contains values of corresponding

terminal voltages (per unit). LinearInterplate(SD1PU, SD2PU, iT) is a function coded to

interpolate the iT by the two vectors of field current (SD1PU) and voltage (SD2PU) which both are

calculated in the non-reciprocal per unit [103]. The function returns the total flux (PhiT) and

Lmdsat, which is used to calculate coefficient b as per (3-96). The stator currents are represented

by Pk.pin[1].i, Pk.pin[2].i and Pk.pin[3].i for the phases, a, b and c, respectively [75],

[124].

The input pins for field voltage and output pin for field current are based on the non-reciprocal per

unit. Figure 3.23 shows the relation between the reciprocal and non-reciprocal per-unit systems.

The equations mentioned above are based on L𝑚𝑑-based reciprocal per unit system, i.e., the per-

unit field current required to produce 1 pu terminal voltage in open-circuit test equals to X𝑚𝑑
𝑝𝑢

. In

non-reciprocal per unit 1 pu field current is required to generate 1 pu terminal voltage in the open-

circuit test; therefore, the field base current equals to field no-load current.

For the initialization of SM, the initial flux and rotor angle are calculated from given steady-state

values of terminal voltage and current. The steady-state voltage and currents at the terminal of SM

can be read from EMTP®.

It is observed that the code structure is entered exactly as above equations without any further

consideration of order, solution procedures, sequences, and other lower-level details. Moreover, it

indicates that only a few code lines are needed to elaborate state-space equations through readily

available Modelica functions and constructs. This is a drastic improvement and distinctive

advantage over classical coding for performing similar tasks [75].

 93

Different Tabs for categorization of SM parameters

Parameter unit
Parameter description

Figure 3.21 The GUI of the synchronous machine model implemented in Modelica

 94

model SM "Synchronous Machine 6 order including saturation"

equation

// Conversion of terminal voltage to pu

 vabc= {Pk.pin[1].v,Pk.pin[2].v,Pk.pin[3].v} /Vsbase;

// Conversion from abc frame to dq0 frame

 vdq0 = P(theta)*vabc;

// State space electrical equations

 der(Phi) = Wb * (A * Phi + u);

 A = -(R * inv(L) + W);

 i = inv(L) * Phi;

// Implementation of magnetic saturation

 imd = Ip[2] + Ip[3] + Ip[4]; //imd = id + ifD + ikd

 imq = Ip[1] + Ip[5] + Ip[6]; //imq = iq + ikq1+ ikq2

 iT = sqrt(imd^2 + (Lmqus/Lmdus)^2 * imq^2);

 (PhiT,Lmdsat) = LinearInterpolation(SD1pu,SD2pu, iT);

 b = Lmdsat / Lmdus;

 if Sauration then

 if RoundRotor then

 q=b;

 d=b;

 else

 q=0;

 d=b;

 end if;

 else

 q=1;

 d=1;

 end if;

 Lq = Lls + q * Lmqus;

 Ld = Lls + d * Lmdus;

 Lffd = Llfd + d * Lmdus;

 Lkdkd = Llkd + d * Lmdus;

 Lkq1kq1 = Llkq1 + q * Lmqus;

 Lkq2kq2 = Llkq2 + q * Lmqus;

 L= [Lq , 0 , 0 , 0 ,q*Lmqus ,q*Lmqus ;

 0 , Ld , d*Lmdus, d*Lmdus, 0 , 0 ;

 0 , d*Lmdus, Lffd , d*Lmdus, 0 , 0 ;

 0 , d*Lmdus, d*Lmdus, Lkdkd , 0 , 0 ;

 q*Lmqus , 0 , 0 , 0 ,Lkq1kq1 , q*Lmqus;

 q*Lmqus , 0 , 0 , 0 , q*Lmqus, Lkq2kq2];

 // Conversion from dq0 to abc frame

 iabc = inv(P(theta))* idq0;

// Calculations of actual Terminal current

 Pk.pin[1].i = -iabc[1] * Isbase;

 Pk.pin[2].i = -iabc[2] * Isbase;

 Pk.pin[3].i = -iabc[3] * Isbase;

// Mechanical equations

 Te = Phi[2] * idq0[1] - Phi[1] * idq0[2];

 Tnet = Tm - Te - D * dw;

 Tm = Pm_pu / Wr;

 der(dw) = Tnet * (1 / 2 / H);

 Wr = 1 + dw;

 der(d_theta)= dw * Wb;

 theta = d_theta + Wb * time;

// where

// u = {Vq , Vd , Vfd , Vkd , Vkq1 , Vkq2 }

 u = {vdq0[1], vdq0[2], vfd , 0 , 0 , 0 };

// Phi = {Phiq , Phid , Phifd , Phikd , Phikq1,Phikq2 }

 Phi = {Phi[1], Phi[2], Phi[3], Phi[4], Phi[5] , Phi[6]};

// i = {iq , id , ifd , ikd , ikq1 , ikq2 }

 i = {i[1] , i[2] , i[3] , i[4] , i[5] , i[6] };

// Change of sign due to generating mode

 idq0 = {-i[1], -i[2], 0};

 W[6, 6] = [0 , Wr , 0 , 0 , 0 , 0 ;

 -Wr , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0];

 R[6, 6] = diagonal({Rs, Rs, Rfd, Rkd, Rkq1, Rkq2});

end SM;

Figure 3.22 Synchronous machine Modelica codes

 95

Non-reciprocal

pu system

Reciprocal pu

system

Efd efd

ifdIfd

,

,

fd pu

md pu

R

L

,md puL

Figure 3.23 Relation between reciprocal and non-reciprocal per unit system

3.6 Nonlinear Component Models

Modeling of nonlinear components is fundamental in the analysis of electromagnetic transients.

Phenomena, such as ferro-resonance, harmonic overvoltages, and inrush currents in transformers,

require nonlinear inductance and arrester models. The Modelica language allows nonlinear

components modeling without any topological or numerical restrictions. The is no limit to

mathematically expressions of nonlinearity in polynomial, exponential, piece-wise linear

functions, or a combination of them.

3.6.1 Nonlinear Inductor

The characteristics of the nonlinear inductor in EMT-type tools are expressed by monotonically

increasing piecewise linear curves. A nonlinear inductor is mathematically defined as:

φ = 𝑓(i) (3-100)

v =
𝑑φ

𝑑𝑡
 (3-101)

where φ, v and i are the flux, voltage, and current of the nonlinear inductor, respectively, and 𝑓

represents a piecewise linear function as depicted in Figure 3.24. The Modelica code describing a

nonlinear inductor is shown in Figure 3.25.

 96

φ

i

(i1,φ1)

(i2,φ2)

 L1

(i3,φ3) L2

 L3

Figure 3.24 Piecewise linear representation of current-flux relation

In a similar procedure to the linear inductor model (see Section 2.6.12.6.1), it is first required to

identify and declare the variables. The import statement is used to import the predefined

mathematical functions, e.g., sort, interpolate, and physical type of MagneticFlux. These

functions are available in the MSEMT library in the branch of NonElectrical. This spares the

developer from having to describe things in the local model constantly. By contrast, the modeler

can place definitions in packages and then recall those packages. The keyword extends is

employed to specify inheritance from the pre-defined partial model OnePort into the model. The

piecewise linear relationship of current versus flux is represented as a parameter of the model by a

2D array 𝐓𝑁×2. it is possible to partition the curve in n-sections. Flux is a state variable in this

model and is declared by the type MagneticFlux. Its initial value is set to zero by default, but it

is possible to change the initial value in the GUI of the model (see Figure 3.26). The array elements

are sorted and arranged in the protected section to define a symmetric variable (i_vec and

flux_vec). Only equations (3-96) and (3-97) are directly expressed in the equation section. The

function interpolate(i_vec, flux_vec, i), which represents (3-100), interpolates linearly

in the vectors (i_vec, flux_vec) and returns the value flux that corresponds to the i. This

function defines a causal relation between flux and current of the model. The second equation

implies (3-101) and is an acausal relation. As one can see, the modeler has absolutely nothing to

do with how the simulation engine will use that model. There is not any input/output orientation.

There is no need to define how the model equations are inserted into the main network equations.

 97

model L_Nonlinear "Nonlinear electrical inductor"

 import MSEMT.NonElectrical.Functions.sort;

 import MSEMT.NonElectrical.Functions.interpolate;

 import MSEMT.NonElectrical.Units.MagneticFlux;

 //Recalling partial class OnePort

 extends MSEMT.Interfaces.OnePort;

 parameter Real T[:,2]=[0.0015,200;1.0015,1200]

 "piecewise linear current versus flux relation";

 MagneticFlux flux(start=0);

protected

 final parameter Real[:] i_vec =

 sort(cat(1,-T[:, 1],{0},T[:, 1]));

 final parameter Real[:] flux_vec =

 sort(cat(1,-T[:, 2],{0},T[:, 2]));

equation

 // Nonlinear function Phi=f(i)

 flux = interpolate(i_vec, flux_vec, i);

 v = der(flux); // Faraday's Law

end L_Nonlinear;

Importing the predefined functions and Types

Inheritance from predefined partial model Oneport

Declaration of model equations

Figure 3.25 Nonlinear inductor model implemented in Modelica

 98

Figure 3.26 GUI of a nonlinear inductor in Modelica simulator

3.6.2 Nonlinear Resistor

Voltage-dependent resistors are widely used for various applications, such as modeling of

electronic switches.

3.6.2.1 Piecewise Linear Resistor Model

 The nonlinear resistor block represents a time-varying resistor working on a piecewise linear

representation of the voltage-current resistance characteristic, as depicted in Figure 3.27. A

monotonically increasing voltage-current characteristic specifies the resistance. The first and last

voltage points are extended to negative and positive infinity, respectively. Linear interpolation is

used between the data points.

 99

v1

v 2

vkm

ikmSymmetrical

extension

v 3

i1 i2 i3

Figure 3.27 The piecewise linear current-voltage characteristics of resistance

Figure 3.28 shows the Modelica implementation of the nonlinear resistance model. As one can see,

it is only required to program the function interpolation for finding the current passing through

the component (i) corresponding to its terminal voltage (v) using the 2D table T. The function

interpolation has been predefined and is available in the branch of

MSEMT>NonElectrical>Functions. It is noted that the relation between current and voltage of the

model is causal and is defined by a function. It is once again observed that modeling using high-

level codes is very similar to the model's equations. Implementation of one such model in an

imperative language such as MATLAB imposes hundreds of lines of code, which is complicated

to understand.

model R_Nonlinear "Nonlinear resistance"

 parameter Real T[:,2]=[-9,-20; -6,-8; -3,-1; 3,1; 6,8; 9,20]

 "piecewise linear current versus voltage relation";

 extends MSEMT.Interfaces.OnePort;

Equation

i = interpolate(T[:,2], T[:,1], v);

end R_Nonlinear;

name

Declaration of model equations

Voltage-Current characteristics [(V);(A)] — Resistance characteristic, R

Figure 3.28 Modelica codes for the implementation of the piecewise linear resistor model

 100

3.6.2.2 Polynomial Model

The polynomial nonlinear behavior of the resistor R, is described through the following relation:

v𝑘𝑚 = R1i𝑘𝑚 + R2i𝑘𝑚
2 + R3i𝑘𝑚

3 (3-102)

where v𝑘𝑚 and i𝑘𝑚 denote the voltage and current of the resistor, respectively,

and R1, R2 and R3 are the parameters of the model. The model imposes a heavy computational

burden during simulation rather than the piecewise linear resistance model, because in the second

one, the number of nonlinearities is limited to the finite number of linear sections

model R_Nonlinear "Nonlinear resistance"

 parameter Real R1 "Parameter R1";

 parameter Real R2 "Parameter R2";

 parameter Real R3 "Parameter R3";

 extends MSEMT.Interfaces.OnePort;

equation

 V = R1 * i + R2 * i^2 + R3 * i^3 ;

end R_Nonlinear;

name

Declaration of model equations

Resistance parameters

Figure 3.29 Modelica codes for the implementation of the polynomial resistor model

3.6.2.3 Surge Arrester Model

Surge arresters protect the insulation of equipment, e.g., transformers in electrical systems against

overvoltage transients caused by lightning or switching surges. The voltage and current

characteristic of a gapless metal-oxide surge arrester (ZnO), as illustrated in Figure 3.30, is a

severely nonlinear resistor with an infinite slope in the normal operation region and an almost

horizontal slope in the protection region (temporary and lightning overvoltages). The following

power function in EMTP® represents the nonlinear resistance:

 101

i𝑘𝑚 = 𝑝𝑗 (
v𝑘𝑚

V𝑟𝑒𝑓
)

𝑞𝑗

 (3-103)

where i𝑘𝑚 and v𝑘𝑚 are arrester current and voltage, 𝑗 is the segment number starting at the voltage

V𝑚𝑖𝑛𝑗
, multiplier 𝑝𝑗 and exponent 𝑞𝑗 are coefficients defined for each V𝑚𝑖𝑛𝑗

 and V𝑟𝑒𝑓 is the arrester

reference voltage. A linear function is used for the first segment.

Vmin, 1

Vmin, 2

Vmin, j

Vkm

ikmSymmetrical

extension

Vmin, 3

10
-2

10
2

104103

Temporary OV
Lightning OV

Maximum Continuous

voltage

Protection region

2
3 4

5

1

Figure 3.30 Voltage-current characteristic of ZnO surge arrester

The procedure for modeling a nonlinear resistance (arrester function) is similar to the technique

used for the nonlinear inductance. Figure 3.31 illustrates the codes for the implementation of the

surge arrester. The parameters of 𝑝𝑗, 𝑞𝑗 and V𝑚𝑖𝑛𝑗
 are defined by n -by-3 matrix T. Figure 3.32

shows the ExponentialInterpolate()function defined by the specific class function,

where the operating voltage is searched for the appropriate segment, 𝑗. Then, using (3-103), the

value of i𝑘𝑚 is interpolated. The properties of partial class OnePort are inherited to apply the

appropriate equations of one-port devices [124]. It is noted that the relation between current and

voltage of the model is causal and is defined by a function.

As one can see, the implementation of the model is straightforward, and there are no limitations

for connections of this model in arbitrary network conditions.

 102

model ZnoArrester ZnO arrester model in Modelica

 extends MSEMT.Interfaces.OnePort;

 parameter Real Vref = 516000 Reference voltage

 //Exponential segments before flashover

 parameter Real T[:, 3] "multiplier p, Exponent q, Vmin_pu";

protected

 final parameter Real[:] p = T[:, 1];

 final parameter Real[:] q = T[:, 2];

 final parameter Real[:] V_min = T[:, 3]*Vref;

equation

 i_km = ExponentialInterpolate(V_min, p, q, Vref, v_km);

end ZnoArrester;

Inheritance of OnePort partial class

Constructive equation of surge arrester

Internal parameters of model

Parameters of model

Zno

vkm

ikm

vk vm

Figure 3.31 Codes used for implementation of the ZnO surge arrester model in Modelica

 103

function ExponentialInterpolate "Interpolate exponentially in a vector"

 extends UserGuide.Icons.Function;

 input Real y[:] "Abscissa table vector (strict monotonically increasing values required)"; //Vj

 input Real p[size(y, 1)] "Ordinate table vector";

 input Real q[size(y, 1)] "Ordinate table vector";

 input Real Vref;

 input Real u "Desired abscissa value";

 input Integer iLast=1 "Index used in last search";

 output Real yy "Ordinate value corresponding to xi";

 output Integer iNew=1 "xi is in the interval x[iNew] <= xi < x[iNew+1]";

protected

 Integer i;

 Integer nx=size(y, 1);

 Real yi=abs(u),xi;

 Real x1,y1;

 Real m;

algorithm

 assert(nx > 0, "The table vectors must have at least 1 entry.");

// Search point

// search forward

 if yi >= y[nx] then

 i := nx;

 else

 i := 1;

 while i < nx and yi >= y[i] loop

 i := i + 1;

 end while;

 i := i - 1;

 end if;

// Interpolate

 if i == 0 then //linear segment

 x1 := p[1] * (y[1] / Vref) ^ q[1];

 m := y[1] / x1;

 xi := 1 / m * yi;

 else

 xi := p[i] * (yi / Vref) ^ q[i];

 end if;

//i=0

//i>1

 iNew := i;

//symetricalization based on odd function f(-x)=-f(X)

 if u >= 0 then

 yy := xi;

 else

 yy := -xi;

 end if;

end ExponentialInterpolate;

Figure 3.32 Implementation of function exponentialInterpolation

3.6.2.4 Arc Models

Arc models are mathematically modeled as a time-variant resistance or conductance function of

arc current, voltage, and several time-variant parameters representing arc properties. This section

introduces the main arc models proposed by Mayr and Cassie [104]. The arc behaves as a nonlinear

resistance described by a nonlinear ODE.

 104

The Mayr arc model [104] equation is defined by (3-104).

1

g𝑚

𝑑g𝑚

𝑑𝑡
=

1

𝜏𝑚
 (

vi

𝑝0
− 1) =

1

𝜏𝑚
 (

i2

𝑝0g𝑚
− 1) (3-104)

where g𝑚 is the conductivity of the Mayr arc model, v and i are the instant values of the arc voltage

and current in the circuit breaker, 𝜏𝑚 denotes the time constants of the electric arc and 𝑝0 represents

the dissipated power at current passing through zero. The parameters of 𝜏𝑚and 𝑝0 in the model are

determined based on the arc conductance[104]. The constants 𝜏𝑚 and 𝑝0 have impact on arc voltage

behavior during current zero-crossing such as extinguishing voltage, transient recovery voltage,

and rate of build-up of recovery voltage. The Mayr model shows an increasing arc voltage (the

extinction peak) close to the current zero-crossing.

In EMTP®, arc is modeled using the block diagrams approach. The same approach is used in

Simscape Specilized Power System library[43] as well. In Modelica, arc is completely modeled

through the explicitly expressing of its equation. Figure 3.33 shows the implementation of the Mayr

model in Modelica. As one can see, two equations are expressed in equation section. the first is

arc equation. i.e., (3-104), and other Ohm’s law, which descrive the relation between voltage and

current in a OnePort component.

model MayrArc "Mayr model"

 extends MSEMT.Interfaces.OnePort;

 parameter Real tau = 0.3e-6 "arc time constant";

 parameter Real P = 30900 "cooling power constant";

 parameter Real g0 = 1e4 "initial conductance of the arc";

 parameter Real T_trip = 0.02;

 Real g(start = g0);

equation

 1 /g * der(g) = if time>= T_trip then 1 /tau * (i^2 / P /g - 1) else 0; // der(x)=0 When the breaker is closed

 i = g * v;

end MayrArc;

Declaration of model equations

Model parameters

Figure 3.33 Modelica codes of the Mayr arc model

The Cassie arc [104] model equation is defined by (3-105).

1

g𝑐

𝑑g𝑐

𝑑𝑡
=

1

𝜏𝑐
 (

v2

𝑣0
− 1) (3-105)

 105

where g𝑐 is the conductivity of the Cassie model, v is the instant values of the arc voltage, 𝜏𝑐

denotes the time constants of the electric arc and 𝑣0 determines the average value of arc voltage.

Cassie Model assumes that the arc has a constant temperature being cooled by forced convection.

Current density and electric field strength are considered fixed in the model as well [104].

Figure 3.34 illustrates the implementation of the Cassie model in Modelica. As it can be observed,

the equation (3-105) is directly implemented in Modelica code.

model CassieArc "Cassie model"

 extends MSEMT.Interfaces.OnePort;

 parameter Real tau=1.2e-6 "arc time constant";

 parameter Real Uc=3850 "constant arc voltage";

 parameter Real g0=1e4 "initial conductance of the arc";

 parameter Real T_trip=0.02;

 Real g(start=g0) "conductance of the arc";

equation

1 / g * der(g) = if time>= T_trip then 1 / Tau * ((v / Uc)^2 - 1) else 0;

i = g * v;

end CassieArc;

Declaration of model equations

Model parameters

Figure 3.34 Modelica codes of the Cassie arc model

The series combination of both models gives a new model called the Cassie-Mayr model [104],

which can be defined by:

1

𝑔
=

1

g𝑐
+

1

g𝑚
 (3-106)

Figure 3.35 shows the Modelica code of Cassie-Mayr arc model. In the piece of code, the arc

conductance is reformulated in terms of arc current. The mathematical manipulation has no impact

on the results in Modelica. All arc models described in this section will be validated in Section 7.5.

 106

model CassieMayrModel"Cassie-Mayr model"

extends OpenEMTP.Interfaces.OnePort;

parameter Real tau_m=0.5e-06 "Mayr arc time constant";

parameter Real tau_c=1e-6 "Cassie arc time constant";

parameter Real P=10.0e+04 "cooling power constant";

parameter Real Uc=2000 "constant arc voltage";

parameter Real g0=5e+07 "initial conductance of the arc";

parameter Real T_trip=28e-3;

Real gc(start=2*g0); // Conductance of Cassie Model

Real gm(start=2*g0); // Conductance of Mayr Model

Real g; // Arc conductance

Real r; // Arc resistance

equation

der(gm)=if time>= T_trip then 1 / tau_m * (i^2/P - gm) else 0;

// der(x)=0 When the breaker is closed

der(gc)=if time>= T_trip then 1 / tau_c * ((i / Uc)^ 2/gc - gc) else 0;

// der(x)=0 When the breaker is closed

1 / g = 1 / gc + 1 / gm;

r = 1 / g;

i = g * v ;

end CassieMayrModel;

Figure 3.35 Cassie-Mayr arc model in Modelica

3.7 Switches

The modeling of ideal switch is essential for EMT studies. Implementation of the switch with zero

resistance in the closing condition in Modelica causes numerical problems. A snubber resistance

(R=1e-15 Ω) is considered to eliminate the problem. The operating logic of the ideal switch in the

MSEMT library is as below:

1) the switch closes when the simulation time is greater or equal to Tclosing.

2) the switch opens when the simulation time is greater or equal to Topening and the current

passing the switch crosses zero.

Figure 3.36 shows the implementation of the ideal switch model in Modelica using the predefined

block diagrams available in MSMET>NonElectrical>Blocks.

 107

idealClosing

Switch1

currentSensor

A

clock1

startTime=0 s

clock2

startTime=0 s

zeroCrossing

RSFlipFlop

R

S Q

Q!
booleanConstant1

false

and

and

Topening

greaterEqualThreshold

pin_p
pin_n

Tclosing

greaterEqualThreshold

Figure 3.36 Block diagram approach for modeling of the ideal switch

3.8 Transformers

The saturable transformer component (STC) model has two parts. The first part represents the

windings resistance and inductance and contains linear elements. The second part models the

behavior of the transformer core and is described with nonlinear inductance.

The STC model, which is also known as the star equivalent circuit, is illustrated in Figure 3.37.

N1:N2

N1:NN

R1 L1 R2L2

RNLN

LmRmWinding 1 Winding 2

Winding N

Figure 3.37 Single-phase N-winding STC model

The STC model can be extended to a three-phase or three-winding transformer model. In EMT-

type programs, the magnetic saturation is represented by a piecewise linear inductor [104].

 108

The implementation of a single-phase transformer in Modelica, as illustrated in Figure 3.38.(b), is

a combination of pre-defined models linked to each other and then packaged to construct a new

model. Figure 3.38.(a) illustrates the GUI symbol of the single-phase transformer in Modelica.

Figure 3.38.(b) shows the implementation of the model. The model is a combination of pre-defined

models linked to each other, then packaged to construct a new model. The input parameters as

observed in Figure 3.38.(c) include the RL-branch values (Rp, Lp, Rs,Ls), the turn ratio

(Ratio), and the magnetizing branch (Rm, Lm). Nonlinear data is entered for Lm.

RL1

R=Rp L=Lp

L m
ag

R
m

ag

RL2

R=Rs L=Ls

k

mR
=R
m

L=
L
m

i

j n=Ratio

IdealUnit

1 2

i

j

k

m
(a) (b)

(c)

Figure 3.38 (a): The icon of STC model in MSEMT library, (b): the sub-model of transformer

model, (c): the GUI of transformer model

Figure 3.39 illustrates the Modelica codes describing the transformer components depicted in

Figure 3.38. These codes are based on defining the model parameters, recalling the component

models of resistance, inductance, nonlinear inductance, and ideal unit transformer, labeling them

 109

appropriately, e.g., R1, R2, L1, etc., and finally assigning the proper parameter to them, e.g. (final

R=Rs).

model Nonideal_Unit "Nonideal single phase transformer based on STC model"

 import MSEMT.NonElectrical.Units.Resistance;

 import MSEMT.NonElectrical.Units.Inductance;

 parameter Real t "Turns ratio v2/v1";

 parameter Resistance Rp "Resisrance in primary side";

 parameter Inductance Lp "Inductance in primary side";

 parameter Resistance Rs "Resisrance in secondary side";

 parameter Inductance Ls "Inductance in secondary side";

 parameter Resistance Rmag "Magnetization resistance ";

 parameter Real Lmag[:, 2] = [0.225508571E+01, 0.682234741E+03] "Saturation characteristic [

i1(A) , phi1(V.s) ; i2 , phi2 ; ...]";

 MSEMT.Interfaces.PositivePin Pin_i ;

 MSEMT.Interfaces.NegativePin Pin_j ;

 MSEMT.Interfaces.PositivePin Pin_k ;

 MSEMT.Interfaces.NegativePin Pin_m ;

 MSEMT.Electrical.Transformers.IdealUnit IdealUnit1(final g = t) ;

 MSEMT.Electrical.RLC_Branches.R R2(final R = Rs) ;

 MSEMT.Electrical.RLC_Branches.L L2(final L = Ls) ;

 MSEMT.Electrical.RLC_Branches.R R1(final R = Rp) ;

 MSEMT.Electrical.RLC_Branches.L L1(final L = Lp);

 MSEMT.Electrical.RLC_Branches.R Rm(final R = Rmag) ;

 MSEMT.Electrical.Nonlinear.L_Nonlinear Lm(final T = Lmag) ;

equation

 connect(R1.p, Pin_i);

 connect(R1.n, L1.p) ;

 connect(Rm.n, Pin_j);

 connect(Lm.n, Pin_j);

 connect(L1.n, Rm.p) ;

 connect(Lm.p, L1.n) ;

 connect(IdealUnit1.p1, L1.n) ;

 connect(IdealUnit1.n1, Pin_j) ;

 connect(IdealUnit1.p2, R2.p) ;

 connect(L2.p, R2.n) ;

 connect(L2.n, Pin_k) ;

 connect(IdealUnit1.n2, Pin_m);

end Nonideal_Unit;

Figure 3.39 Modelica codes for the implementation of single-phase STC model

3.8.1 Three-phase Transformer

The existing three-phase transformer models are based on three single-phase transformers as

described in Section 3.8. The winding data are given in per unit. The appropriate conversion

method is based on the actual transformer connections as described below:

𝑍𝑏1 = V𝑏1
2 /S𝑏 (3-107)

𝑍𝑏2 = V𝑏2
2 /S𝑏 (3-108)

 110

I𝑏1 = 1000S𝑏/V𝑏1 (3-109)

Where V𝑏1 and V𝑏2 are respectively nominal RMS line-to-line voltages on windings 1 and 2 in kV,

S𝑏 is the nominal transformer nominal power in MVA and I𝑏1 represents the nominal current in

winding 1.

3.8.1.1 Delta-Delta Configuration

For this configuration, the actual values are computed using (3-110)-(3-116) with

C1 = 3 and C2 = 3. In these equations, C1 and C2 are coefficients whose values are defined based

on the configuration in winding 1 and 2. These coefficients are 1 and 3, respectively, for wye and

delta connections. D𝑤 is a model parameter which defines the ratio of winding impedance on

winding 1.

C1 = 3 (3-110)

C2 = 3 (3-111)

R1 = C1R 𝑝𝑢𝑍𝑏1D𝑤 (3-112)

R2 = C2R𝑝𝑢𝑍𝑏2(1 − D𝑤) (3-113)

L1 = C1X𝑝𝑢𝑍𝑏1D𝑤/(2𝜋𝑓) (3-114)

L2 = C2X𝑝𝑢𝑍𝑏2(1 − D𝑤)/(2𝜋𝑓) (3-115)

R𝑚 = C1R𝑚,𝑝𝑢𝑍𝑏1 (3-116)

The actual nonlinear characteristic flux and current are computed using:

φ𝐿, 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 =
1000√2 V𝑏1

2𝜋𝑓
φ𝐿, 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟,𝑝𝑢 (3-117)

I𝐿,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = √
2

3
 I𝑏1I𝑚𝑎𝑔,𝑝𝑢 (3-118)

where 𝑓 denote the frequency, the ratio is given by:

𝑛 = V𝑏2/V𝑏1 (3-119)

 111

3.8.1.2 Configurations DY +30, DY -30, DYg +30 and DYg -30

For these configurations, the actual values are computed with (3-112)-(3-116) with

C1 = 3 and C2 = 1. The equations (3-117) and (3-118) remained unchanged, and the ratio is

calculated by:

𝑛 = V𝑏2/√3V𝑏1 (3-120)

3.8.1.3 Configurations YD +30, YD -30, YgD +30 and YgD -30

For these configurations, the equations (3-112)-(3-116) are repeated with

C1 = 1 and C2 = 3. The actual nonlinear characteristic flux and current vectors are computed

using:

φ𝐿, 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 =
1000√2 V𝑏1

√3 2𝜋𝑓
φ𝐿, 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟,𝑝𝑢 (3-121)

I𝐿, 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = √2 I𝑏1I𝑚𝑎𝑔 (3-122)

The ratio is given by:

𝑛 = √3 V𝑏2/V𝑏1 (3-123)

3.8.1.4 Configurations YY and YgYg

For these configurations, the equations (3-112)-(3-116) are repeated with

C1 = 1 and C2 = 1. The actual nonlinear characteristic flux and current vectors are computed by

(3-121) and (3-122). The ratio is given by:

𝑛 = V𝑏2/V𝑏1 (3-124)

Figure 3.40 illustrates the GUI of the three-phase transformer with the configuration of YgD-30.

The model parameters are defined similarly to the same model in EMTP®. Figure 3.41 shows the

Modelica codes for the implementation of the transformer as described in Section 3.8.1. The first

part of the codes is related to the parameters of the model. This part starts with parameter Real.

The second part computes the actual values of parameters. Nonideal_Unit_A,

Nonideal_Unit_B, and Nonideal_Unit_C are the single-phase units respectively defined

for phases a, b and c and reused in the three-phase model. Reusability of models is one of the

 112

advantages of the object-oriented modeling approach created in Modelica. In the equation

compartment, the connections of components are defined.

Figure 3.40 The GUI of three-phase transformer type YgD01

 113

model YgD01 "YgD01/YgD-30 three phase transformer"

 //3-phase data parameters in PU

 import MSEMT.NonElectrical.Constants.pi;

 parameter Real S(unit = "MVA", start = 200) "Nominal power";

 parameter MSEMT.NonElectrical.Units.Frequency f(start=60) "Nominal frequency";

 parameter Real v1(unit = "kV RMSLL", start = 315) "Winding 1 voltage";

 parameter Real v2(unit = "kV RMSLL", start = 120) "Winding 2 voltage";

 parameter Real R(unit = "PU", start = 0.00375) "Winding R";

 parameter Real X(unit = "PU", start = 0.015) "Winding X";

 parameter Real D(start = 0.9) "Winding impedance on winding 1";

 parameter Real MD[:, 2] = [0.002, 1; 0.01, 1.075; 0.025, 1.15; 0.05, 1.2; 0.1, 1.23; 2., 1.72]

"Saturation characteristic [i1(PU) , phi1(PU) ; i2 , phi2 ; ...]";

 parameter Real Rmg(unit = "PU", start = 500) " Core loss resistance";

 final parameter Integer C1 = 1;

 // Y:C1=1 Delta: C1=3

 final parameter Integer C2 = 3;

 // Y:C2=1 Delta: C2=3

 // base parameters

 final parameter Real Z_b1 = v1 ^ 2 / S "Impedance base side 1";

 final parameter Real Z_b2 = v2 ^ 2 / S "Impedance base side 2";

 final parameter Real i_b1 = 1000 * S / (sqrt(3) * v1) "Base current side 1";

 //Actual parameters

 final parameter Real R1 = C1 * R * Z_b1 * D "Resistance on side 1";

 final parameter Real R2 = C2 * R * Z_b2 * (1 - D) "Resistance on side 2";

 final parameter Real L1 = C1 * X * Z_b1 * D / (2 * pi * f) "Inductance on side 1";

 final parameter Real L2 = C2 * X * Z_b2 * (1 - D) / (2 * pi * f) "Inductance on side 2";

 final parameter Real Ratio = (v2 / v1)* sqrt(3);

 final parameter Real Rm = C1 * Rmg * Z_b1 "Magnetizating resistance on side 1";

 final parameter Real im[:] = sqrt(2) * i_b1 * MD[:, 1];

 final parameter Real Phim[:] = (1000 * sqrt(2) * v1 * MD[:, 2]) / (2 * pi * f * sqrt(3));

 final parameter Real MDD[:, 2] = [im, Phim];

 MSEMT.Connectors.PosPlug k ;

 MSEMT.Connectors.PosPlug m ;

 MSEMT.Connectors.PlugToPin_p Ph_a(k=1, m=3) ;

 MSEMT.Connectors.PlugToPin_p Ph_b(k=2, m=3) ;

 MMSEMT.Connectors.PlugToPin_p Ph_c(k=3, m=3) ;

 MSEMT.Connectors.PlugToPin_p Ph_A(k=1, m=3) ;

 MSEMT.Connectors.PlugToPin_p Ph_B(k=2, m=3) ;

 MSEMT.Connectors.PlugToPin_p Ph_C(k=3, m=3) ;

 MSEMT.Electrical.RLC_Branches.Ground ground1 ;

 MSEMT.Electrical.Transformers.Nonideal_Unit Nonideal_Unit_A(final Lmag = MDD,final Lp = L1, final Ls =

L2, final Rmag = Rm, final Rp = R1, final Rs = R2, final t = Ratio) ;

 MSEMT.Electrical.Transformers.Nonideal_Unit Nonideal_Unit_B(final Lmag = MDD,final Lp = L1, final Ls =

L2, final Rmag = Rm, final Rp = R1, final Rs = R2, final t = Ratio) ;

 MSEMT.Electrical.Transformers.Nonideal_Unit Nonideal_Unit_C(final Lmag = MDD,final Lp = L1, final Ls =

L2, final Rmag = Rm, final Rp = R1, final Rs = R2, final t = Ratio) ;

equation

 connect(Nonideal_Unit_A.Pin_i, Ph_a.pin_p) ;

 connect(Ph_a.plug_p, k) ;

 connect(Nonideal_Unit_B.Pin_i, Ph_b.pin_p) ;

 connect(Ph_b.plug_p, k) ;

 connect(Nonideal_Unit_C.Pin_i, Ph_c.pin_p) ;

 connect(Ph_c.plug_p, k) ;

 connect(Nonideal_Unit_C.Pin_j, ground1.p) ;

 connect(Nonideal_Unit_B.Pin_j, ground1.p) ;

 connect(Nonideal_Unit_A.Pin_j, ground1.p) ;

 connect(Nonideal_Unit_A.Pin_k, Ph_A.pin_p) ;

 connect(Ph_A.plug_p, m) ;

 connect(Nonideal_Unit_C.Pin_m, Nonideal_Unit_A.Pin_k) ;

 connect(Nonideal_Unit_A.Pin_m, Nonideal_Unit_B.Pin_k) ;

 connect(Ph_B.pin_p, Nonideal_Unit_B.Pin_k) annotation ;

 connect(m, Ph_B.plug_p) ;

 connect(Nonideal_Unit_B.Pin_m, Nonideal_Unit_C.Pin_k) ;

 connect(Ph_C.pin_p, Nonideal_Unit_C.Pin_k);

 connect(Ph_C.plug_p, m);

end YgD01;

Figure 3.41 Modelica codes for transformer type YgD01

 114

3.9 Block Diagrams

Block diagrams are used in the MSEMT library to model control systems, such as exciters and

governors for synchronous generators and various other functions required for controlling power

systems. The models are frequently used in test cases. Some available models are explained in this

section to demonstrate the branch of NonElectrical>Blocks and the simplicity of adding missing

control system components in Modelica.

3.9.1 Lead-Lag Compensator

Lead and lag compensators are extensively used in control systems. A lead compensator is to

increase the stability or speed of response of a system. A lag compensator aimes to reducethe

steady-state error.

A first-order lead compensator G(𝑠) can be designed using the transfer function given by:

G(𝑠) = 𝐾𝑐

𝑠 − 𝑧0

𝑠 − 𝑝0
 (3-125)

where the magnitude of 𝑧0 is less than the magnitude of 𝑝0.

The equation (3-125) can also be rewritten as:

G(𝑠) = 𝐾𝑐

𝑇1𝑠 + 1

𝑇2𝑠 + 1
 (3-126)

where 𝑇1 and 𝑇2 are respectively lead and lag time constants.

Figure 3.42 shows the Modelica codes for the implementation of the lead-lag compensator.

 115

block LeadLagCompensator

 extends Modelica.Blocks.Interfaces.SISO;

 parameter Real K "Gain";

 parameter MSEMT.NonElectrical.Units.Time T1 "Lead time constant";

 parameter MSEMT.NonElectrical.Units.Time T2 "Lag time constant";

 parameter Real y_start "Output start value"

 annotation (Dialog(group="Initialization"));

 parameter Real x_start=0 "Start value of state variable"

 annotation (Dialog(group="Initialization"));

 MSEMT.NonElectrical.Blocks.RealExpression par1(y=T1);

 MSEMT.NonElectrical.Blocks.RealExpression par2(y=T2);

 MSEMT.NonElectrical.Blocks.TransferFunction TF(

 b={K*T1,K},

 a={T2_dummy,1},

 y_start=y_start,

 initType=Modelica.Blocks.Types.Init.InitialOutput,

 x_start={x_start});

protected

 parameter Modelica.Units.SI.Time T2_dummy=if abs(T1 - T2) < Modelica.Constants.eps

 then 1000 else T2 "Lead time constant";

equation

 if abs(par1.y - par2.y) < Modelica.Constants.eps then

 y = K*u;

 else

 y = TF.y;

 end if;

 connect(TF.u, u);

end LeadLagCompensator;

Figure 3.42 Implementation of Lead-Lag Compensator in Modelica

3.9.2 Hold_to

 This device captures as output the value presented by the input at 𝑡 = 0. It means for 𝑡 > 0, the

output value y is calculated as u(0). In the implementation of this block, the Modelica keyword

initial() is used. This function returns true during the initialization phase and false otherwise.

block Hold_t0

 MSEMT.Connectors.RealInput u;

 MSEMT.Connectors.RealOutput y ;

equation

 when { initial()} then

 y = u;

 end when;

end Hold_t0;

Figure 3.43 Implementation of Hold_t0

 116

3.9.3 Park’s Transformation

Figure 3.44 shows the pieces of code for the implementation of ParkTransform block. The

rotating frame angular position is defined by the input variable theta, in rad. This block

implements both power-variant and power-invariant transformations. In this block, it is possible

to align the d-axis or q-axis to phase-a. This function is employed in the synchronous machine

model.

block ParkTransform "This block implements a rotating reference frame transformation commonly

known as the Park transform"

//The block implements a power invariant a-phase to d-axis alignment

 import PI=MSEMT.NonElectrical.Constants.pi;

 parameter Integer Type=1 "Phase-a axis alignment"

 annotation(Dialog(group="Parameters"),choices(

 choice=1 " d-axis is aligned to phase a",

 choice=2 " q-axis is aligned to phase a"));

 parameter Boolean PowerInvariant=true

 annotation (Evaluate=true, choices(checkBox=true));

 final parameter Real K1=if PowerInvariant then sqrt(2/3) else 2/3;

 final parameter Real K2=if PowerInvariant then sqrt(1/2) else 1/3;

 MSEMT.Connectors.RealInput u[3] ;

 MSEMT.Connectors.RealInput theta ;

 //Y={Yd,Yq,Y0}

 MSEMT.Connectors.RealOutput y[3];

 Real T[3,3] "Transformation matrix";

equation

 if Type==1 then

 T = K1 * [cos(theta), cos(theta-2*PI/3), cos(theta+2*PI/3);

 sin(theta), sin(theta-2*PI/3), sin(theta+2*PI/3);

 K2 , K2 , K2];

 elseif Type==2 then

 T = K1 * [sin(theta), sin(theta-2*PI/3), sin(theta+2*PI/3);

 cos(theta), cos(theta-2*PI/3), cos(theta+2*PI/3);

 K2 , K2 , K2];

 end if;

 y=T*u;

end ParkTransform;

Figure 3.44 Implementation of Park's transformation

3.10 Functions

This section includes some functions used in the MSEMT library. Implementation of these

functions, however, is simple but necessary to have a comprehensive library.

 117

3.10.1 Clark’s Transform

Clark’s matrix is used in the modeling of the CP-line for modal transformation. For an m-phase

balanced transmission line, the matrix is programmed as illustrated in Figure 3.45. This function is

used in the CP-line model.

function Clark_Transformation "The alpha-beta transformation (also

known as the Clark transformation) for m-phase system"

 extends UserGuide.Icons.Function;

 input Integer m = 3; // "Number of phases"

 output Real[m, m] Ti;

algorithm

 for col in 1:m loop

 for row in 1 : m loop

 if col == 1 then

 Ti[row, col] := 1 / sqrt(m);

 elseif

 (col < row) then

 Ti[row, col] := 0;

 elseif

 (col == row) then

 Ti[row, col] := -(col - 1) * (1 / sqrt(col * (col - 1)));

 else

 Ti[row, col] := (1 / sqrt(col * (col - 1)));

 end if;

 end for;

 end for;

end Clark_Transformation;

Figure 3.45 Implementation of Clark's transformation

 118

 ACCURACY ASSESSMENT OF TRANSMISSION LINE

MODELS

In this chapter, two numerical examples are presented for the validation of line/cable models. To

show the accuracy of the proposed approach, the EMTP® trapezoidal/backward Euler solver is set

as a reference. The 2-norm cumulative relative error is used to measure the error level against the

reference software, EMTP®.

4.1 Test Case for Underground Cable

Figure 4.1 shows the layout and electrical circuit of a 3-phase, 6-conductor cable intended for

measuring the accuracy of the Modelica wideband model. The length of the cable is 15 km. The

cores at the receiving end of the cable are left open, and the shield is grounded at both sides of the

line through a resistance of 1 Ω. In this example, the matrix 𝐇 has been approximated by 42

complex poles while 14 real poles are used for fitting of 𝐘𝑐. The fitting parameters are read from

EMTP®. The simulation is carried out using the trapezoidal solver for 50 ms with a time-step of 10

μs in EMTP® and OpenModelica. The closing times of each phase are phase-a 0 s, phase-b 0.63

ms, and phase-c 0.4 ms. The system is energized by a 3-phase, 60 Hz, 169 kV sinusoidal voltage

source.

AC
169 kV

a b c

1.1 m

(a)

(b)

0.25 m

0.5 μF

0.25 m

1Ω 1Ω

1Ω 1Ω

1Ω 1Ω

1 k

RL

r1
r2

r3 r4
r5

SW

Figure 4.1 Underground cable system, 169 kV, 3-phase, 6-Conductor (a): Physical layout (b):

Electrical connection diagram

 119

Figure 4.2 shows the core and shield voltages at the receiving end of the cable. A black dashed line

is used for EMTP® waveforms, and a solid line is for Modelica results. High-frequency oscillations

are observed in the core and sheath voltages because of the source capacitance. The values obtained

with the Modelica-based model are perfectly superposed to those obtained with EMTP®. The 2-

norm error during the transient state [0,10] ms is 0.9 %. The simulation CPU time is 14.34 s

compared to EMTP®, which is 0.57 s.

0 2 4 6 8 10

Time (ms)

-200

-100

0

100

200

300

phase a phase b
phase c

V
ol

ta
ge

 (
kV

)

0 2 4 6 8

Time (ms)

-200

-100

0

100

200

300

shield a
shield b shield c

(a)

(b)

V
ol

ta
ge

 (
V

)

10

Figure 4.2 Voltage waveforms in receiving-end of WB-line model for (a): 3-core conductor (b)

Shield conductors, black dashed line is EMTP®, solid line is Modelica

4.2 Test Case for Aerial Transmission Line

Figure 4.3 shows the IEEE 13-Bus distribution test circuit [106], used to test accuracy and

performance with Modelica. The circuit uses the CP-line models. The PQ-loads are modeled with

RLC circuits using power-flow results obtained from EMTP®. The distribution network is

operating at 4.16 kV. The network contains 9 three-, two- and single-phase, short-length,

 120

untransposed transmission lines, shunt capacitors, a transformer, and unbalanced loads. The mutual

effects are assumed between the phases of transmission lines [107].

AC

C
P

+

B632 B634B645B646

B671B684 B675

B680

B652

CP
+

CP
+

CP
+

CP
+

C
P

+

CP
+

692
D I

671
Yg PQ

652
D-Z

634
Yg PQ

645
 PQ

646
D-Z

671
D PQ

675
Yg PQ

650 Swing bus
1.0210 pu -2.49
1.0420 pu -121.72
1.0174 pu 117.83

B633

XFM-1
4.16 kV /480 V

B692

B650

611
Y-I

B611

C
P

+

C
P

+

632
Yg PQ

675
Yg

611
Yg

CB1

CB2

Ttripping: 150 ms
Tre-closing=250 ms

EF on phase-a:

Occure at : 50 ms
Remove at : 200 ms

m=3

m
=

3

m=3

m
=

3

m=2

m
=

1

m
=

1

m=1 m=2

Figure 4.3 Single line diagram of IEEE 13-Node with the CP-line model. Earth fault occurs to

the bus B675 at 60 ms, CB2 is opened 100 ms after the fault

The switch CB1 is initially open. The simulation time-step is set to 0.2 μs since it is required to be

smaller than the propagation delay of the shortest TL. The simulation period is 200 ms. For the

 121

study of transient performance, a phase a-to-ground fault with the resistance of 1 Ω is applied to

the bus B675 at 60 ms. After the fault is detected by the protection relays (not simulated here), an

opening command is immediately sent to the breaker CB2 at t =160 ms.

In the first scenario, simulation is run using the trapezoidal solver in Modelica and EMTP®; then,

the results are graphically and quantitatively compared with EMTP®. Figure 4.4.(a) depicts the

voltage waveforms of phases-a, -b, and -c at bus B675 denoted by red, green, and blue curves. The

black dashed line represents the EMTP® results. The initial switching leads to distortion on all three

phases; then, the system reaches steady-state at t = 35 ms. The plots match perfectly. The voltage

profile is 0.99 pu for phase-a, 1.05 pu for phase-b, and 0.98 pu for phase-c. Figure 4.4.(b) presents

the voltage waveforms in the interval of fault and post fault. In this case, both curves have an

excellent agreement as well [107].

100 150 200
Time (ms)

50
-5

0

5

V
ol

ta
ge

 (
kV

)

(b)

0 5 10 15 20 25 30 35 40

Time (ms)

-4

-2

0

2

4

6

V

ol
ta

ge
 (

kV
)

(a)

Figure 4.4 (a) Voltage waveforms at Bus 675 at the interval [0, 40] ms, black dashed line is

EMTP®, Solid line is Modelica; (b) transient state after the occurrence of fault at 60 ms till the

line is tripped at 160 ms

 122

Figure 4.5.(a) illustrates the current waveforms passing through CB2. The maximum current at

phase-a reaches 3 kA during the fault. There is a high-frequency transient in the current waveforms

of phase-b and-c at the moment of fault. A high-frequency transient on current waveforms in the

interval of [0, 35] ms can be observed in Figure 4.5.(b) as well. The transient components of

voltages and currents are due to the capacitance charging of two healthy phases and discharging of

faulted phase capacitance. An excellent superposition is also observed in the current curves. To

compare with EMTP® results, the 2-norm cumulative relative error is computed for voltage at

B675: it is 1.6911e-07%, 0.9552e-07% and 3.2600e-07% for phases-a, -b and -c, respectively

[107].

Figure 4.5: (a) Phase current waveforms of CB2, black dashed line is EMTP®, solid line is

Modelica; (b) transient state in the interval [0, 35] ms

In the second scenario, the simulation is repeated using the variable-order adaptive time-step

solvers: DASSL [71] and IDA [78] with the following settings: initial step size is 0.2 μs, the

 123

maximum step size is 0.02 s, maximum integration order is 2. Due to the strict separation between

solvers and models in Modelica, it is easy to switch to another numerical integration method and

observe the results. Adaptive solvers use a local truncation error scheme to adapt the current time-

step to what is going on in the simulation. During transients, the time-step is decreased to catch the

transient phenomena completely while increasing during the steady-state to increase computational

performance. The main advantage of the variable time-step solver is that the user does not have to

set the time step for a specific analysis,e.g., electromagnetic or electromechanical transient studies.

Table 4.1shows the 2-norm error computed for voltage signals at B675. As can be observed, the

precision of variable-step solvers is very close to the second-order fixed-step trapezoidal solver

[107].

The CPU time for DASSL and IDA solvers are 83.680 s and 81.576 s, respectively. The value for

EMTP® is 8.715 s. It shall be noted that the CPU time for simulation in the OpenModelica

environment includes logging of all variables. All tests are performed on a desktop with Intel(R)

Xeon(R) CPU E5-2650 v4 @ 2.20GHz, 2201 MHz processor, and 32 GB of RAM.

Table 4.1 2-norm cumulative relative error comparison

Phase/Solver Phase a Phase b Phase c

DASSL 1.8790e-08 % 1.1445e-08% 5.8530e-08%

IDA 2.6843e-09 % 1.9535e-10% 6.7485e-09%

4.3 Conclusion

The proposed WB- and CP-line models provide results identical to those from the EMTP®.

However, the environment demonstrates several declarative language modeling advantages:

models are implemented in very few lines of code, are easily reusable, modifiable, and highly

portable. In addition, the possibility to switch from one solver to another is a native feature.

Notwithstanding, the conventional EMT-type tools provide faster computation time in the ratio of

10:1 for our initial test cases provided above. Further analysis on this aspect is conducted next.

Further developments of the MSEMT library will help assess and identify the potential challenges

for concrete large-scale transient electromagnetic simulations [107].

 124

 IEEE 39-BUS TEST CASE

5.1 Introduction

This chapter presents simulation results of the modified IEEE 39-bus benchmark system [108] to

validate the accuracy of the proposed models. The same test case is also simulated with EMTP®

[49] as reference software. The results are compared with the wideband line models.

Figure 5.1.(a) illustrates the IEEE 39-bus network created in the Modelica using the MESEMT

library. The network includes 34 transmission lines (WB-line model), 10 power plants on buses

B30-B39, each consists of a synchronous machine, machine controls, and transformer. There are

19 load transformers with static load models. The voltage ratio of load transformers is 345/25 kV,

and the winding connection is YgD01. IEEE 39-bus network contains a three-winding

345/300/12.5kV YgYgD grid transformer which connects buses B19 and B20. The primary

winding is connected to bus B19, the secondary is coupled to bus B20, and the tertiary is open

circuit. The short-circuit data of this transformer is given in Table 5.1.

Table 5.1 IEEE-39 grid transformer data (YgYgD) [108]

Bus Bus R12 R13 R23 X12 X13 X23 Tap S U1 U2 U3

19 20 0.0022 0.0058 0.0058 0.193 0.292 0.1 1.06 1400 345 300 12.5

The reactive power compensator used in this benchmark is a 92MVA shunt capacitor on bus B24.

Load models are based on constant impedance calculated using the voltage obtained by the load-

flow solution (Table 2-13 of [108]) of EMTP®. The models of all three-phase transformers consist

of single-phase units (STC model). The magnetization branch, including the nonlinear inductor is

placed on the high-voltage side. The model uses a piecewise linearly interpolated curve to represent

saturation.

Figure 5.1.(b) shows the submodel of PowerPlant 03, which contains a single-mass Wye grounded

configuration synchronous machine, the governor IEEEG1 [97], exciter ST1 [96], a step-up

 125

369.15/20 kV,1000MVA transformer with the connection type of YgD01, first-order filter, and

block for conversion of terminal voltage from dq frame to phase frame.
L

0
1

_
0
2

+

L
0
2

_
2
5

+

L
0
1

_
3
9

+

L
0
9

_
3
9

+

L25_26
+

L
0
2

_
0
3

+

L
0
3

_
0
4

+

L
0
4

_
0
5

L

0
5

_
0
8

+

L08_09
+

L26_27
+

L17_27

+

L17_18
+

L
0
3

_
1
8

+

L05_06
+

L
0
6

_
0
7

+

L
0
7

_
0
8

L26_29
+

L26_28
+

Line_28_29
+

L16_17

L
1
5

_
1
6

+

L
1
4

_
1
5

+ L04_14

+

L
1
3

_
1
4

+

L
in

e
_
1

0
_
1

3

+

L
1
0

_
1
1

+

L
0
6

_
1
1

+

L
1
6

_
1
9

+ L
1
6

_
2
1

+

L21_22
+

L
2
2

_
2
3

+

L
2
3

_
2
4

+

L
1
6

_
2
4

+

B25

B24

B23

B22 B21

B20

B02

B01

B39

B09

B26

B03

B04

B05

B08

B2

7

B17

B18

B06

B07

B28
B29

B16

B14

B13

B10

B11

B15

B12

PowerPlant_08

P
o

w
e

rP
la

n
t_

1
0

P
o

w
e

rP
la

n
t_

0
1

PowerPlant_02

PowerPlant_09

PowerPlant_03

PowerPlant_04

PowerPlant_05

PowerPlant_06

PowerPlant_07

Load25

Load39

Load08

Load03

Load04

Load26

Load27

Load18

Load07

Load12

Load29
Load28

Load15

Load16

Load20

Load21

Load23

Load24

x
fo

1
2
_

1
3

x
fo

1
2
_

1
1

1
x fo19_20

2 3

ShuntCap

B19

BRk

BRm

To=100 ms

Tc=300 ms

+

+

AC

AC

AC

AC

AC

AC

AC

AC

AC

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q P Q

AC

P Q

P Q

V1:0.98/_-28.3

k

m

XMFR

1

2

1000 MVA

369.15 kV RMSLL

20 kV RMSLL

Vf

Pm

SM

SM03

Vd Vq

W

If Vfss

Pmss

IEEEG1

w

PmLP

PmHP

Pm

g pos

IFD VT VC

VS
VF

VREF

EFD

FirstOrder

PT1

T=0.01 s

Vdq to Vt
Vd

Vq

Vt

Vf

k=0

k

PowerPlant03 submodel

(a)

YgD01
B32

Figure 5.1.(a): IEEE 39-bus network, which is designed in Modelica using the MSEMT library

incorporating the WB-line model. (b): the submodel of PowerPlant03

 126

The transient response scenario is illustrated in Figure 5.2.a. A temporary phase-to-phase fault

occurs on phases ‘a’ and ‘b’ of TL_14_15 near B15 at t = 100 ms followed by the isolation of the

line at t = 200 ms (i.e., breakers BRm and BRk open simultaneously after 6 cycles). The fault is

cleared at t = 300 ms; then, the line is reconnected at t = 450 ms.

Re-energizing the TL introduces high-frequency transient oscillations and allows us to investigate

the accuracy of transformer models in nonlinear operation. For this purpose, the curve of flux

versus current for load transformer 15, which is located near the faulted bus, is compared with

EMTP®.

Numerical tests are performed using the variable-step IDA solver with the tolerance of 1e-6 in

OpenModelica[30] and Trapezoidal/Backward Euler integrator in EMTP® with a step size of 25

µs. The Modelica network contains 12 648 DAEs. There is no initialization for the simulations

with Modelica.

+ BRm

+ BRk

B14

+

SW

-1|200ms|0

450ms|1E15s|0

100ms|300ms|0

P_bP_a Load15

(a)
(b)

BF

B15
+

TL_15_16

WB

B04

B16

+TL_1
4

_
1

5

W
B

+

TL_04_14

WB

+TL_0
3

_
1

4

W
B

+TL_0
4

_
0

3

W
B

B03

+T
L_0

2
_0

3

W
B

B02

+TL_0
4

_
0

5

W
B

Load16

Load04

Load03

G

Powerplant10

1
2-3
0

LoadBUS

345/25
500MVA

LoadTransfo15

320MW
153MVAR

24kVRMSLL

m-end

k-end

Figure 5.2 a) Schematic of the faulted zone of IEEE 39-bus network created in Modelica GUIs;

(b) the sub-circuit of Load15, the circuit contains a three-phase YgD-30 load transformer (STC

model) and a constant impedance load model

 127

5.2 IEEE 39-bus Incorporating WB-Line Models

The vector fitting parameters of the WB-line model for transmission lines of IEEE 39-bus network

are calculated in EMTP® for 8 decades starting at 𝑓𝑚𝑖𝑛 = 0.1 Hz. The maximum orders of fitting

for the propagation matrix, (𝑁𝑖
𝐇) and admittance matrix (𝑁𝐘𝑐

), are 7 and 9 respectively [75].

Figure 5.3.(a) shows the simulation results presenting phase voltage waveforms at the m-end of

TL_14_15. The close-up plot of phase voltages during re-energization of the line after clearing the

fault is observed in Figure 5.3.(b) As can be seen from the plots, the results obtained with Modelica

match perfectly the EMTP® results [75].

(a)

Va Vb Vc EMTP{Modelica }

 V
o
lt

ag
e

(p
u
)

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

1.5

2

Fault duration

TL disconnected TL connecteded

Time (ms)

(b) 450 455 460 465 470 475 480 485 490

-1

0

1

2

 V
o

lt
ag

e
(p

u
)

Figure 5.3 (a) voltage waveforms at the m-end of TL_14_15; (b) close-up view after re-

energization of TL_14_15

Accuracy assessment is carried out in Figure 5.4 by drawing the graph of relative errors for voltage

waveforms in Figure 5.3.(a). The slight difference is justified by the different methods of

 128

discontinuity handling, control system implementation, and numerical accuracy of the solver in

each simulation tool.

Time (ms)

10-2

R
e
la

ti
v

e
 E

rr
o

r
(l

o
g

)

0 100 200 300 400 500 600

1

10-4

10-6
Va Vb Vc

Figure 5.4 Assessment of accuracy for Modelica-based simulation: relative errors of phase

voltages at the m-end of TL_14_15

5.3 Solution Evaluation for STC Model

The simultaneous solution for nonlinear functions in Modelica can be verified by demonstrating

that all solution points remain on the same nonlinear characteristic segments for both simulations.

This is carried out in Figure 5.5 for the nonlinear inductor of the LoadTransfo15 (see Figure

5.2.(b)). It is observed that both solutions are precisely on the magnetization curve of

LoadTransfo15, and no overshooting or other instabilities are observed in the boundary points of

linear segments[75].

In both simulations, the problem is solved through an iterative method, and the need for changing

the segment is realized before the last point has been within its improper range. Mathematically

speaking, IDA is an adaptive solver, and when simulation reaches a breakpoint (either state event

or time event), it reduces the step size; once the last point of the current segment is solved, the

segment change is accepted [75].

 129

M
ag

n
et

iz
in

g
 F

lu
x

 (
W

b
)

0 50 100 150 200 250 300 350

Current (A)

0

200

400

600

800

100

0

EMTPModelica Magnetizing data

29.4 29.5 29.6 29.7 29.8
858.5

859

859.5

860
EMTPModelica

Figure 5.5 Superposition of magnetizing inductance in the LoadTransfo15; zoom-in view of

knee-point solutions

5.4 Evaluation of SM Model Accuracy

In this section, the behavior of the proposed SM model in an unbalanced operation is examined.

For this purpose, the generator connected to the B32 in the PowerPlant_03 (see Figure 5.1.(b)) is

selected as the nearest generator to the fault point. The resulting transients of stator current in

phase-a (𝑖𝑎), is depicted in Figure 5.6. As it can be observed, the transient responses produced by

Modelica match with the reference solutions.

C
u
rr

en
t

(p
u
)

ia,Modelica ia,EMTP

Time (ms)
0 100 200 300 400 500 600

-0.5

0

0.5

1

1.5
Fault duration

TL disconnected

TL connected

Figure 5.6 Stator current in phase-a (𝑖𝑎), for the generator in PowerPlant_03

Figure 5.7 illustrates the transient current computed in the damper kq1. One can observe that all

transients fit the reference solution obtained by EMTP®.

 130

Time (ms)
0 100 200 300 400 500 600

-0.5

0

0.5

1

1.5

C
u

rr
en

t
(p

u
)

ikq1,Modelica ikq1,EMTP

Fault occured
BRs tripped BRs reclosed

Figure 5.7 Damper winding current, 𝑖𝑘𝑞1, for the generator in the PowerPlant_03

5.5 Evaluation of Accuracy for Controllers

Figure 5.8 shows the output of the exciter in the PowerPlant_03 (see Figure 5.1.(b)), which controls

the field voltage of the generator connected to the B32. As one can observe, both solutions are

indistinguishable.

Similarly, the mechanical power regulated by the governor in PolwerPlant_03 (see Figure 5.1.(b))

is compared in Figure 5.9. It is observed that the governor controls the output power proportionally

to rotor speed, and both simulation results are in excellent agreement. Figure 5.10 illustrates the

rotor speed of the same generator. Simulation results are perfectly identical.

F
ie

ld
 V

o
lt

ag
e
 (

p
u

)

0 100 200 300 400 500 600
0

1

2

3

4

100 120 140 160 180 200
0

2

4

Efd,Modelica Efd,EMTP

Time (ms)

Figure 5.8 Field voltage 𝐸𝑓𝑑, regulated by the exciter in PowerPlant_03

 131

0 100 200 300 400 500 600

0

0.02

0.04

0.06

0.08

0.1

M
ec

h
an

ic
al

 P
o

w
er

 (
p

u
)

Pmech, Modelica Pmech, EMTP

Time (ms)

Figure 5.9 Mechanical power 𝑃𝑚𝑒𝑐ℎ, regulated by the governor in PowerPlant_03

0 100 200 300 400 500 600

0.98

0.99

1

1.01

1.02

ωr, Modelica ωr, EMTP

Time (ms)

R
o

to
r

S
p

ee
d

 (
p

u
)

Figure 5.10 Rotor speed 𝜔𝑟, for the generator in PowerPlant_03

5.6 Runtime Benchmark

The objective is to evaluate the efficiency of the Modelica environment compared with the

Simscape Electrical Specialized Power Systems (SPS) [43] library in Simulink (R2020b) and

EMTP®. Simulation in Simulink is carried out in discrete mode [43] with Tustin backward Euler

solver (∆𝑡 = 25 𝜇𝑠). The variable step solver is ode23tb [109]. It is noted that SPS is comparable

to Modelica in its usage of state-space solution of network equations. However, the handling of

nonlinearity is different from the Modelica solution method (see Section 1.5.1.2).

For the efficiency of a solver, three parameters are considered: total CPU time, the number of

timesteps, and CPU-time for one grid interval (CGI), i.e., CPU time divided by the number of

timesteps. Table 5.2 presents the numerical details of the simulation of the IEEE 39-bus network

employing the WB-line model. The simulation is repeated with the CP-line model; the solver and

 132

performance details are given in Table 5.3. As one can see, the CPU time of the Modelica

environment is not satisfactory compared to EMTP® in both cases; however, the Modelica offers a

better runtime than Simulink. Modelica has the lowest CPU time per timestep after EMTP® as well

[75].

Although Modelica offers computational speed advantages over existing environments, such as

Simscape Electrical (Specialized Power System), its performance is not yet comparable to

specialized simulation packages, such as EMTP®.

Table 5.2 Comparison of simulation performance for IEEE 39-bus network using the WB-model

Simulator OpenModelica Simulink (SPS) EMTP®

Solver IDA Trap/BE / ode23tb Trap/BE

Solver type variable step discrete / variable step fixed step

Tolerance Tol:1e-3 Tol:1e-6 -

∆𝑡 - 25 𝜇𝑠 25 𝜇𝑠

CPU time (s) 9 657 10 620 23.8

Number of time-steps 317 315 24 000 34 741

CGI (ms) 30.43 442.5 0.68

Table 5.3 Comparison of simulation performance for IEEE 39-bus network using CP-model

Simulator OpenModelica Simulink (SPS) EMTP®

Solver IDA TBE / ode23tb Trap/BE

Solver type variable step discrete / variable step fixed step

Tolerance Tol:1e-6 Tol:1e-6 -

∆𝑡 - 25 𝜇𝑠 25 𝜇𝑠

CPU time (s) 366 1 801 13

Number of time-step s 38 945 24 000 34 704

CGI (ms) 9.39 75.04 0.37

5.7 Conclusion

This work contributed a new approach to the simulation of electromagnetic transients. It is based

on the high-level programming environment of Modelica. The new approach is based on modern

concepts of programming such as declarative, equation-based, object-oriented paradigms, which

are all unified in Modelica.

 133

In this chapter, MSEMT an EMT-detailed library containing linear and nonlinear power electric

components was validated. The models yield results identical to those from the EMTP with similar

numeral stability and accuracy. It was demonstrated that the proposed models are implemented in

a few lines of code, are simply modifiable, expandable, and highly legible. The formulation of

models is explicitly based on their true mathematical equations. This achievement has a significant

impact on model development efficiency and standards. It is also noted that MSEMT is a powerful

environment for power system transients education. Also, Modelica is compatible with the FMI

and can be used for co-simulation and model exchange. Although Modelica offers computational

speed advantages over existing environments, such as Simscape Electrical (Specialized Power

System), its performance is not yet comparable to specialized simulation packages, such as EMTP.

Further research is carried out to improve performance.

 134

 DYNAꞶO HYBRID C++/MODELICA SOLUTION

Many techniques have been proposed over the years to accelerate the simulation speed in Modelica

simulators, such as using FPGA [115], solver manipulation [116], DAE-mode compilation, power

system-specific solvers [88], or efficient Jacobian calculations [117]. Despite these efforts and

large improvements, the performance of pure Modelica simulators such as OpenModelica [30],

Dymola [31] remains a barrier for industrial applications and large-scale systems [122].

A hybrid C++/Modelica solution called Dynaωo [61], [62], [118] was proposed for simulation in

the phasor domain to bypass the limitations encountered with complete Modelica tools while

ensuring the advantages of an equation-based approach. Dynaωo is an open-source simulation

package primarily designed by RTE for short- and long-term stability analysis. It aims at providing

a transparent, flexible, interoperable, and robust simulation tool that could ease collaboration and

cooperation in the power system community. This method improves the performances to levels

similar to domain-specific simulation tools for phasor-domain simulations [118]. The contribution

of this section is to draw the status of Modelica-based EMT simulations using Dynaωo.

6.1 Introduction

The overall goal of the Dynaωo approach is to bypass the limitations of pure Modelica tools for

large-scale simulations while keeping the advantages provided by the Modelica approach. It can

also be summed up in two main principles: The intent is to use the Modelica language as much as

possible for modeling complex elements while sticking to a strict separation between model and

solver sides while managing to preserve acceptable performances for industrial use.

To properly understand the design and architecture choices of Dynaωo, it is necessary to recall

some characteristics of both the Modelica language and Modelica compilers such as

OpenModelica. Modelica has been historically developed for complex but rather small physical

problems. Connectivity or graph analysis is difficult and costly to conduct in a pure Modelica

approach. Backup solutions using external programming languages, such as C or Fortran, exist but

are pretty difficult to connect and integrate into Modelica models. Native generic Modelica tools

do both compiling and simulation at run-time. When going to large systems, the compile-time

(consisting of different steps such as flattening, sorting, and eventually causalizing the equations –

 135

depending on the compiling mode ODE/DAE) becomes too costly for large-scale simulations.

Besides, one should also remember that compiling must be redone even if only parameters are

modified. Finally, the generated codes provided by native Modelica compilers remain less efficient

and less optimized than manually written codes in a classical programming language. To avoid

some of these limitations, Dynaωo uses a hybrid C++/Modelica approach for modeling and a

unique method that compiles before run-time partial Modelica models.

Figure 6.1 depicts the structure of Dynaωo. A model can be either directly written in C++ or

Modelica. The cunning point in Dynaωo is to temporarily create a square model using fictitious

equations for pending connections (typically currents), to be able to compile the models, and then

to remove these fictitious equations from the model structure once compiled. It allows compiling

models one by one to end up with pre-compiled libraries that are only instantiated at run-time.

Moreover, each of these libraries can be used as many times as needed with different parameter

values. Once compiled by the OpenModelica compiler, the models are post-processed by Python

scripts to provide the same methods and have a single formalism for C++ and Modelica models.

The origin of the model is thus entirely transparent for the rest of the tool and the solvers.

Solvers are decoupled from models in Dynaωo. New models can be introduced without further

modifications in the solvers, and new solvers can be tested and used without requiring any action

on existing models. Moreover, it is straightforward to compare numerical strategies and to observe

and analyze the impacts on the results and performances as the modeling side is unchanged. Solvers

and models only exchange a finite set of information needed for solving the system. The modeling

part notably exposes the following methods to the solving part [61]:

1. the residual functions 𝐟(𝑡, 𝑦, 𝑦′), which are the system equations evaluated at each time step.

2. the Jacobian matrix 𝐉(𝑡, 𝑦, 𝑦′) used for the time-step numerical resolution.

3. the root functions 𝐠(𝑡, 𝑦, 𝑦′), which are used to detect instants of discrete variable changes

or mode changes (i.e., a change in the form of an equation from 𝑓1 to 𝑓2, such as a limitation).

4. the mode functions that give the form of an equation at a time t (between 𝑓1 and 𝑓2, for

example).

 136

Modelica Model
Modelica Model B

Modelica Model C

Modelica Model A

Model 3

C++

Model 2

C++

Model 1

C++

Global Model

Solver

(IDA or Modified BE)

Result Graphs

(csv.file)

Sundials

SuiteSparse

Adept

NICSLU

EMT lib.

PowerGrids lib.

job. file

par. file

dyd.file

crv.file

Figure 6.1 Dynaωo structure and exchanges between solvers and models

6.2 Native Models and Solvers

Dynaωo contains a set of models and solvers natively available for any user. The provided models

in the Dynaωo library consist of phasor and simplified models for stability analysis, but no EMT

model is available. Any solver can be integrated, as long as it contains a few standard methods such

as initializing the problem, solving it, or reinitializing it. Currently, two solvers are included in

Dynaωo. The first is the Backward Euler integrator with a variable time-step strategy [63],

specifically designed for long-term voltage stability simulation.

The second solver is a variable time-step, variable order DAE system solver called IDA [80], a part

of the SUNDIALS suite [78]. The integration method in IDA relies on an approximation of the

 137

derivative using the kth order backward differentiation formula (BDF) method given by the multi-

step formula (6-1):

∑𝛼𝑛,𝑗𝑦𝑛−𝑗 = ℎ𝑛�̇�𝑛

𝑘

𝑗=0

 (6-1)

where 𝑦𝑛 and �̇�𝑛 are the computed approximations to 𝑦(𝑡𝑛) and �̇�(𝑡𝑛), respectively, and the step

size is ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1. The coefficients 𝛼𝑛,𝑗 are uniquely determined by the order k, and the history

of the step sizes. On every step, it chooses the order k and step size to control local errors according

to user tolerances (relative and absolute): k can, in theory, be selected between 1 and 5 but is limited

to 1 or 2 in Dynaωo to preserve the A-stability property. Two different LU factorization algorithms,

i.e., KLU [119] and NICSLU [120] are coupled with the algebraic solvers. Both have proven [121]

efficiency. The IDA has been augmented to include a root-finding feature for event handling while

integrating the initial value problem. The scheme is based on checking for sign changes of a set of

user-defined functions, 𝑔𝑖(𝑡, 𝑦, �̇�) for each time step. This scheme yields a high precision at the

cost of time [78].

6.3 Modifications, Open Questions, and Remaining Challenges for EMT

Simulations

To run EMT simulations with Dynaωo, it is necessary to do some modifications in the simulation

codes. After adding the EMT library, it is required to enrich the range of Modelica structures in the

tool: indeed, some keywords such as “delay” or some Modelica functions were not adequately

handled by the tool. Once done, a few adjustments also have to be made on the simulation structure

and the numerical solver: default values have to be adapted to EMT-type simulations, e.g., time-

step minimal values, strategy to reinitialize the solver after an event, or output management. These

different changes enable us to compile a large part of the library, and at this stage, no barrier related

to the use and support of the Modelica language is identified that could compromise the long-term

development of the approach.

Nevertheless, there are still open issues that will need further investigation and research to make

definitive statements.

 138

6.4 Simulations and Results

Three case studies have been used to validate the behavior of Dynaωo, enriched by the

modifications presented in the last section, in terms of accuracy and performance. The obtained

results and the simulation time are compared with the reference software EMTP®–with the

Trapezoidal and Backward Euler (BE) method–and a native open-source Modelica tool –

OpenModelica. Code generation and simulations were carried out on a laptop with Intel Core i7-

6820HQ 2.7 GHz 4 cores - CPU with HT; 62 GB DDR4 main memory; running on Fedora 29 and

using OpenModelica 1.14.1 and Dynaωo 1.2. The simulations are performed without initialization.

6.4.1 Case 1: Capacitor Bank Switching

The schematic for a capacitor bank switching in a 230 kV substation designed in OpenModelica

using the MSEMT library [75] is presented in Figure 6.2. This case exhibits both low and high

natural frequencies. It aims at studying how well the solution method performs for stiff DAE

systems. The two breakers in Figure 6.2 are initially open. CB1 is closed at t=20 ms, which

introduces high-frequency transient oscillations. CB1 is then opened at t=125 ms and recloses at

t=175 ms. The capacitor C2 is energized at t=225 ms. The simulation interval is 500 ms with a

time-step of 10 µs.

Rds

R=5 k

L0=22
L1=15

RLs

R0=2
R1=1 230kVRMSLL

Cs
C=0.5 µF

C1
C=5 µF

C2C=5 µF

L1

L=75 µH

R1

R=30

L2

L=75 µH

R2

R=30
AC1

CB2

CB1

Network equivalent

225ms|1E15s|0

20ms|125ms|0
175ms|1E15s|0

Figure 6.2 Test circuit 1: 2-step back-to-back capacitor banks designed using MSEMT in

OpenModelica

Figure 6.3.(a) superimposes the voltage curves at C1 from Dynaωo and EMTP® for the first 300

ms. Close-up views of reclosing of CB1 and closing of CB2 are given in Figure 6.3.(b)-(d). It is

 139

observed that Dynaωo results perfectly match the EMTP® during transients. At each switching,

two transient events are observable: low frequency and high-frequency oscillations. For example,

energizing C1 causes oscillations with frequencies of 27.26 kHz (it is not observable with th) and

340 Hz (see Figure 6.3.(c)), respectively. At the instant of closing of CB2, the fast transient is 8220

Hz, whereas the slower transient is 246 Hz, as observed in Figure 6.3.(d) and Figure 6.3.(b),

respectively. No numerical instability, e.g., numerical oscillations, are identified during the

simulation.

Time (ms)

(b)

Closing CB2Re-closing CB1

(c) (d)

va, vb, vc EMTPDynaꞶo:{ }

V
ol

ta
ge

 (
pu

)

(a)
0 50 100 150 200 250 300

-2

-1

0

1

2 CB1 closed

170 180 190 200 210 220 230 240 250
-2

-1

0

1

2

174 176 178 180 182
-2

0

2

V
ol

ta
ge

 (
pu

)

225 225.2 225.6 226
-1

0

1T=2.941 ms

Figure 6.3 (a): Voltage waveforms on C1; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10 μs, Tol=1e-6;

EMTP® solver: Trapezoidal/BE, ∆𝑡 = 10 μs. (b): Zoom-in view of voltage curves after reclosing

of CB1 and closing CB2. (c): Low-frequency oscillations of 340 Hz. (d): High-frequency

oscillations of 8220 Hz due to energization C2

 140

Table 6.1 presents the performances obtained for Dynaωo and OpenModelica when using the IDA

solver with the following parameters: initial time-step and maximum time-step is 10 µs, relative

and absolute accuracy are 1e-6, and the maximum order is 2. One should also note that IDA has

been modified in Dynaωo to introduce a minimum step size: its value is set to 1e-10 s in our case.

Results are compared with EMTP® performance obtained with a fixed time-step of 10 µs. The

simulations have been run 5 times, and the average computing time is extracted. It shows that the

simulation time in both Modelica-based tools is similar, which is logical as the solver properties

and the models used are identical. OpenModelica performs better on the pure solving aspects: one

possible explanation is the handling of the Jacobian calculation; in Dynaωo, the Jacobian is

evaluated using numerical differentiation while it is directly available in the OpenModelica

environment. Nevertheless, when adding front-end and back-end times and especially the

compilation time, Dynaωo becomes 1.79 times faster than OpenModelica [122].

Table 6.1 Case study 1: Performance comparison

Simulator Dynaωo
OpenModelica

EMTP®
Comp. Sim. Total (C+S+AP)

CPU-time(s) 2.34 1.59 2.11 4.21 0.5

Table 6.2 presents the characteristics of the simulations carried out in Dynaωo and OpenModelica,

especially the number of time-steps solved, the number of Jacobian evaluations, and the number of

residual equations. It confirms that the overall behavior of IDA in OpenModelica and Dynaωo is

the same, even if slight differences appear due to the precision chosen for event detection and the

equation simplifications in both tools.

Table 6.2 Case study 1: IDA behavior during simulation

Simulator Dynaωo OpenModelica EMTP®

Number of time-steps 90 818 119 749 50 008

J evaluations 2 963 2 963 -

F evaluations 121 481 135 394 -

 141

To further evaluate the possibilities of the simulation tool, the simulations have been relaunched

with different sets of parameters. Performances and accuracy sensitivity of results for different

tolerances with IDA have been assessed. Table 6.3 shows the performance aspects, while Figure

6.4.(a) focuses on accuracy. This figure depicts the high-frequency oscillations of voltage phase-a

on C1 during energizing C2. The number of time points, 𝑛∆𝑡, for different solvers is compared in

Figure 6.4.(b). It is observed in the curves obtained by the IDA solver, the number of time points

varies depending on the rate of changes on the curve, and tolerance; e.g. 𝑛∆𝑡, 𝑟𝑒𝑑 > 𝑛∆𝑡, 𝑔𝑟𝑒𝑒𝑛 >

𝑛∆𝑡, 𝑏𝑙𝑢𝑒 and also 𝑛∆𝑡,𝑎 > 𝑛∆𝑡,𝑏. The IDA solver with the tolerance of 1e-6 yields the closest results

to EMTP® with a time-step of 1 µs whose CPU-time is 3.94 s. Thus, user-defined precision is a

key and determining parameter for selecting the step size.

225 225.1 225.2 225.3 225.4 225.5 225.6
-1

-0.8

-0.6

-0.4

-0.2

0

V
o

lt
ag

e
(p

u
)

fn=8220 Hz

(a)

(b) Time (ms)

EMTP{ h=10 µs, h=1 µs}

IDA Tol.{ 1
-6

, 1-5, 1
-4 }

225.05 225.06 225.07 225.08 225.09

-0.5

-0.4

-0.3

-0.2

-0.1

V
o

lt
ag

e
(p

u
)

nΔt, a=27

nΔt, b=18

nΔt, EMTP,10µs=2

nΔt, EMTP,1µs=20
nΔt, IDA,1e-4=19
nΔt, IDA,1e-5=45
nΔt, IDA,1e-6=82

20 µs

Figure 6.4 (a): Voltage waveforms on C1, phase-a at the instant of C2 energization, Dynaωo

solver: IDA with different tolerances; EMTP® solver: Trapezoidal/BE, ∆𝑡 =1 and 10 µs. (b):

Comparison of the number of time points within 20 µs

 142

Table 6.3 Performances for different solving strategies

Solver CPU-time (s)
Gain (compared to

IDA, tolerance = 1e-6)

IDA (tolerance = 1e-6) 2.34 1

IDA (tolerance = 1e-5) 1.43 1.63

IDA (tolerance = 1e-4) 1.02 2.29

6.4.2 Case 2: Parallel Transmission Line Switching

Figure 6.5 shows a network equivalent (coupled-RL) feeding a balanced three-phase PQ load of

500 MW and 100 MVAR at 400 kV through two identical parallel lines.

The breaker BR1 is initially open and closes at t=0 s. TLM1 and TLM2 are constant-parameter

(CP) line models. In normal conditions, the line breakers are closed. L1 represents a shunt

compensator. The load is connected to Bus BOR at t=100 ms. A phase-a-to ground fault with a

resistance of 1 Ω is applied to the TML2 at t=200 ms. Immediately after detection of the fault by

the protection relays (not simulated here), an opening command is sent to the breakers BRm2 and

BRk2 at t=300 ms. Then, the fault is cleared at t=350 ms, and finally, the line breakers are reclosed

at 430 ms. The simulation time and time-step are set to 500 ms and 5 µs, respectively.

This scenario aims at validating the accuracy of the delay operator developed in Dynaωo and the

stability of the solver over discontinuities imposed by several state events.

Bus sys

L1
L=7H

+ CP

TLM1

+ CP

TLM2

BRk1

BRk2 BRm2

BRm1

BR2

P=500 MW
Q=100 MVar

BOR

Cs

Network equivalent

RLs

C=0.5 µF

BR1 BR3

vm

EF on phase-a:

200ms|350ms|0

SW
-1s|300ms|0

430ms|1E15s|0

R
R=1

100ms|1E15s|0

AC1
400kVRMSLL

Figure 6.5 Test circuit 2, switching of parallel transmission lines (CP-line model)

 143

Figure 6.6 depicts the voltage waveforms at the m-end of TLM2. The black curves represent

EMTP® results. It is observed that both curves are in excellent agreement.

0 100 200 300 400 500
-3

-2

-1

0

1

2

3

V
o
lt

a
g

e
 (

p
u
)

va, vb, vc EMTPDynaꞶo:{ }

Fault duration

Load connected TLM2 disconnected

TLM2 reclosed

Time (ms)(b) (c)

(a)

0 10 20 30
-2

0

2

320 360 400 440

-1

0

1

Figure 6.6 (a): Voltage waveforms at the m-end of TLM2; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 5 μs,

Tol=1e-6; EMTP® solver: Trapezoidal/BE, ∆𝑡 = 5 μs. (b): The close-up view of the energization

of the line. (c): The zoom-in view of voltage at the m-end of TLM2 when disconnected from both

sides

Figure 6.7.(a) illustrates the current waveforms passing through the m-end of TLM2. Figure 6.7.(b)

zoom in the transients after disconnecting the line. It shows the impact of traveling waves in phase-

a and repeats nearly at each 2𝜏. The current continues oscillating and decreasing- due to the

resistances of line and fault-until the SW is opened. Figure 6.7.(c) shows the transients at the instant

of re-energizing TLM2. One can observe that the results match the EMTP® curves fully.

 144

0 100 200 300 400 500
-4

-2

0

2

4
ia, ib, ic EMTPDynaꞶo:{ }

C
ur

re
nt

 (
pu

)

(b) (c)

(a)

310 320 330 340 350
-1

0

1

430 435 440 445 450
-2

0

2

Time (ms)

Load connected

Fault current TLM2 disconnected

2τ

Figure 6.7 (a): Current waveforms at the m-end of TLM2. (b): The zoom-in view of current at

the m-end of TLM2 after disconnecting the line. (c): The zoom-in view of current at the m-end of

TLM2 at the instant of energizing the line

Similar to Case 1, Table 6.4 reports the performances obtained for Dynaωo and OpenModelica

when using the IDA solver with the following parameters: initial time-step and maximum time-

step is 5 µs, relative and absolute accuracies are 1e-6, and the maximum order is 2. The same

network is simulated with EMTP® with the time step of 5 µs. One can see that Dynaωo presents an

overall better performance of simulations compared to OpenModelica. In this case, the use of a

variable time-step solver and the number of Jacobian evaluations, 16,042, are the most penalizing

points. It is noted that 𝑛∆𝑡, 𝐷𝑦𝑛𝑎Ꞷ𝑜 = 209,871 and 𝑛∆𝑡, 𝐸𝑀𝑇𝑃 = 100,010.

Table 6.4 Case study 2: Performance comparison

Simulator Dynaωo
OpenModelica

EMTP®
Comp. Sim. Total (C+S)

CPU-time (s) 18.74 5.31 13.6 19.46 1.6

 145

6.4.3 Case 3: Nonlinear Circuit of Surge Arrester

This case study aims to examine the behavior of Dynaωo for the simulation of nonlinear

components during very fast transients. The solution of nonlinear systems is accomplished with

Newton iterations in Dynaωo and EMTP® solvers.

Figure 6.8 shows the frequency-dependent model proposed by the IEEE W.G. 3.4.11[123] for surge

arrester modeling. The model represents the arrester as two highly nonlinear resistors, ZnO1 and

ZnO2, separated by an R-L filter. For slow front surges, the R-L filter is negligible. Thus, ZnO1

and ZnO2 are effectively connected in parallel. For fast-front surges, the impedance of this filter

becomes more important and causes a current distribution between the two nonlinear branches.

isurge

R0

R=180

L0

L=0.36 µH

C1
C=55.5 pF

R1

R=117

L1

L=42 µH

ZnO1

Zn
o ZnO2

Zn
o

10kA, 8/20 µs

i

Figure 6.8 Test circuit 3; modeling of an Ohio-Brass ZnO Arrester for a 330 kV Network,

MCOV=209 kV, d=1.8 m, n=1

Simulation is run for 300 µs with ∆𝑡𝑚𝑎𝑥 = 10 𝑛𝑠, 𝑇𝑜𝑙 = 10−6 in Dynaωo and ∆𝑡 = 10 𝑛𝑠 in

EMTP®. Figure 6.9 illustrates the voltage and current waveforms of ZnO2 compared with EMTP®.

The graphs are fully superimposed. Figure 6.10 shows the solution points on the non-linear

characteristic curve of ZnO2. The solution points are not superimposed but are on the same slope.

The solutions always remain on the actual nonlinear segments; no overshooting is observed. There

are no numerical oscillations and instability. The simulation time for different simulators is

presented in Table 6.5. IDA solves the system with the total number of 31 790 solution points while

in a fixed-step solver, e.g., Trapezoidal/BE 𝑛∆𝑡 = 30,019.

 146

0 50 100 150 200 250 300
0

200

400

600

0

2

4

6

8

10

Time (µs)

R
es

id
u

al
 V

o
lt

ag
e

(k
V

)

D
is

ch
ar

g
e

C
u
rr

en
t

(k
A

)

vZnO2 EMTPi ZnO2IDA{ }

10kA, 8/20 µs

Figure 6.9 Residual voltage and discharge current curves in ZnO2. Dynaωo solver: IDA,

∆𝑡𝑚𝑎𝑥 = 10𝑛𝑠, Tol=1e-6; EMTP®: Trapezoidal/BE, ∆𝑡 = 10𝑛𝑠

DynaꞶo EMTP Vmin,j

Discharge Current (kA)
0 2 4 6 8 10

0

200

400

600

R
es

id
u
al

 V
o
lt

ag
e

(k
V

)

0.996 0.998 1 1.002 1.004

300

400

500

600

700
800

DynaꞶo EMTP

Vmin,2

Figure 6.10 Voltage vs. current curve of ZnO2; Zoom-in view: comparison of solution points in

the nonlinear segment 2

Table 6.5 Case study 3: Performance comparison

Simulator Dynaωo
OpenModelica

EMTP®
Comp. Sim. Total (C+S)

CPU-time (s) 0.19 0.02 0.15 0.17 0.17

 147

6.5 Conclusions

Modelica is a powerful modeling language for power system simulation based on describing the

models by implicit DAEs. This chapter demonstrated a hybrid approach to EMT simulations using

Modelica and C++. The new approach contributes to improving the run-time of EMT-type

simulation in Modelica.

The method is based on modern programming concepts such as declarative, equation-based, object-

oriented paradigms, where all unified in Modelica. The improved approach has been validated in

terms of accuracy and solution speed using EMTP®. The results show that the obtained

performance is better than pure Modelica tools, e.g., OpenModelica. The obtained results for all

three cases also confirm the numerical stability of IDA for stiff systems, notably including

components with nonlinear characteristics.

The advantages of Dynaωo are not in numerical performance when compared to EMTP® but in

high-level modeling capabilities. However, it is shown that performance improvements are

possible, and further research is being conducted on this aspect.

148

 ELECTROMAGNETIC TRANSIENT MODELING OF

LARGE POWER NETWORKS WITH MODELICA

7.1 Introduction

This chapter is designed based on two purposes, first analysis of electromagnetic transient

simulations in a large network. For this goal, the IEEE 118-bus network is proposed. The second

purpose is to focus on the accuracy and performance of nonlinear models, including the

synchronous machines with magnetic saturation (see Section 3.5), surge arrester (see Section

3.6.2.3), and, finally, arc models (see Section 3.6.2.4).

The IEEE 118-bus benchmark [109] contains the following models: synchronous generators

(including saturation model) with controls, transformers, transmission lines, nonlinear inductances,

and nonlinear surge arresters. The basic models, such as resistance, inductance, and advanced

models, e.g., various models of transmission line, loads, saturable transformers, synchronous

machine (without saturation), Controls (machine controls), etc., were already presented in previous

works [107], [122]. This work focuses on the synchronous machine model with saturation and the

nonlinear arrester.

This chapter presents simulation results of the modified IEEE 118-bus benchmark [108], which is

used to validate the accuracy of the proposed models. The same test case is also simulated with

EMTP®. The results are compared using the PI-section models for transmission lines. Figure 7.1.(a)

shows the schematic diagram of the IEEE 118-bus network designed using the developed MSEMT

library in Modelica. A user-friendly graphical user

interface (GUI) with an illustrative icon is designed for each component model for entering the

parameters and drawing networks quickly. The physical connection of components is carried out

by interconnecting the terminals of appropriate components.

The IEEE 118-bus circuit consists of 54 generating units with controls (a few power plants contain

more than one SM; the total number of SMs is 69), 177 transmission lines (RL coupled), 9 three-

winding grid transformers, 145 two-winding transformers (91 Yd1-connected load-serving

transformers+ 54 generator transformers), and 91 three-phase loads. The voltage levels are 345kV

transmission, 138kV sub-transmission, 25kV distribution, and {20, 15, 10.5} kV generation. The

lines are modeled using PI sections. It was impossible to use constant parameter line models with

 149

propagation delay because of the very high computational cost of the Modelica built-in delay

operator. Simulation in both simulators, i.e., EMTP® and Modelica, start with zero initial states.

The network includes 519 nonlinear inductances and 1909 RLC elements. All SMs use a single-

mass Wye-grounded model, including the normalized saturation characteristics. The models of all

three-phase transformers consist of single-phase units. The nonlinear magnetization branch is

placed on the high-voltage side. The model uses a piecewise linearly interpolated curve defined by

8 points to represent saturation. All loads are represented by a constant impedance model.

(a)
(b)

+Lin
e_

7
0

_7
5

C
P

Portsmth_138_070

SthPoint_138_075

+BRk

+BRm

+

SW

100ms|300ms|0 P_b

P_c

Load075

1
2-3
0

LoadBUS

138/25
125MVA

LoadTransfo75

47.94MW
11.01MVAR
25kVRMSLL

m-end

k-end

-1|200ms|0

450ms|1E15s|0

(c)

Faulted zone

m

m

Power plant

PQ Load

138kV Network

345kV Network

PI Model of TL

Rf

R
=1

 Measuring Point

+ PI_ 3PH
L ine _1 _2

Rive rs de _1 38 _0 01

+

PI_3 PH

Lin e_1 _3

Po kag on _1 38 _0 02

lo ad 00 2

Hick ryC k_1 38 _ 00 3

+

PI_3 PH

Lin e_3 _5

Shu nt_Re acto r
g

Oliv e_ 13 8_ 00 5

+ PI_ 3PH
L ine _2 _1 2

+ PI_ 3PH
L ine _3 _1 2

TwinBr ch _1 38 _0 12

+ PI_ 3PH
L ine _1 1_ 12

So uth Bnd _1 38 _0 11

+ PI_ 3PH
L ine _5 _1 1

+ PI_ 3PH
L ine _4 _1 1

NwC ar lsl_1 38 _ 00 4

+

PI_3 PH

Lin e_4 _5

lo ad 00 3

lo ad 01 1

G
n wCa rlsl_ Con d

G
twin Brc h_ PP

+ PI_ 3PH
L ine _1 2_ 11 7

Co re y_ 13 8_ 11 7

+

PI_3 PH
Lin e_7 _12

+

PI_3 PH
Lin e_1 2_1 6

Ja cksn Rd _1 38 _0 07

+ PI_ 3PH
L ine _6 _7

Ka nka ke e_ 13 8_ 00 6

+ PI_ 3PH
L ine _5 _6

Co nc or d_ 13 8_ 01 3

+ PI_ 3PH
L ine _1 1_ 13

FtWa yne _1 3 8_ 01 5

+ PI_ 3PH
L ine _1 3_ 15

+

PI_3 PH
Lin e_1 4_1 5

Go sh en Jt_ 13 8_ 01 4

+ PI_ 3PH
L ine _1 2_ 14

+ PI_ 3PH
L ine _1 5_ 33

Ha vilan d _1 38 _0 33

+ PI_ 3PH
L ine _1 5_ 17

So re nso n_ 13 8_ 01 7

+ PI_ 3PH
L ine _1 6_ 17

NE_ 13 8_ 01 6

+ PI_ 3PH
L ine _1 7_ 31

+

PI_3 PH Lin e_1 7_1 13

De er Crk 2_ 13 8_ 11 3

+ PI_ 3PH
L ine _3 1_ 32

+

PI_3 PH Lin e_3 2_1 13
De lawa re _ 13 8_ 03 2 De er Crk _1 38 _0 31 Gr an t_ 13 8_ 02 9

+ PI_ 3PH
L ine _2 9_ 31

+ PI_ 3PH
L ine _2 7_ 32

+

PI_3 PH
Lin e_2 8_2 9

M ullin _1 38 _0 28

+

PI_3 PH
Lin e_2 7_2 8

M ad iso n_ 13 8_ 02 7

+ PI_ 3PH
L ine _3 2_ 11 4

WM ed fo rd _1 38 _1 14

+ PI_ 3PH
L ine _1 14 _1 15

M ed fo rd _1 38 _1 15

+ PI_ 3PH
L ine _2 7_ 11 5

+

PI_3 PH
Lin e_0 8_0 9

+ PI_ 3PH
L ine _0 8_ 30

1

Olive _T1 2 3

Bre e d_ 34 5_ 01 0

Oliv e_ 34 5_ 00 8

+

PI_3 PH
Lin e_9 _10

Be qu ine _3 45 _0 09

+ PI_ 3PH
L ine _2 5_ 27

+ PI_ 3PH
L ine _3 3_ 37

Ea stL ima _1 38 _0 37

+ PI_ 3PH
L ine _3 7_ 39

NwL ibr ty_ 1 38 _0 39

+ PI_ 3PH
L ine _3 9_ 40

We stEn d_ 13 8_ 04 0

+

PI_3 PH
Lin e_3 7_4 0

+ PI_ 3PH
L ine _4 0_ 41

+ PI_ 3PH
L ine _4 0_ 42

ST iffin _1 38 _0 41 Ho wa rd _1 38 _0 42

+ PI_ 3PH
L ine _4 1_ 42

Wo ost er _1 38 _0 53

+ PI_ 3PH
L ine _5 3_ 54

Tor re y_1 3 8_ 05 4

+ PI_ 3PH
L ine _5 4_ 56

Su nn ysd e_ 13 8_ 05 6

+ PI_ 3PH
L ine _5 5_ 56

Wa ge nh ls_ 13 8_ 05 5

+ PI_ 3PH
L ine _5 5_ 59

T idd _1 38 _0 59

+ PI_ 3PH
L ine _5 6_ 59 _1

+ PI_ 3PH
L ine _5 6_ 59 _2 +

PI_3 PH
Lin e_5 6_5 8

WNw Phil2 _1 38 _0 58

+ PI_ 3PH
L ine _5 6_ 57

WNw Phil1 _1 38 _0 57

+

PI_3 PH
Lin e_5 0_5 7

WCa m br dg _1 38 _0 50

+

PI_3 PH
Lin e_5 1_5 8

Ne wcm rs t_1 38 _ 05 1

+

PI_3 PH
Lin e_5 2_5 3

SCo sh oct _1 38 _0 52

+ PI_ 3PH
L ine _5 1_ 52

+

PI_3 PH
Lin e_4 9_5 0

Ph ilo_ 13 8_ 04 9

+

PI_3 PH
Lin e_4 9_5 1

+

PI_3 PH Lin e_4 9_5 4_2

+

PI_3 PH Lin e_4 9_5 4_1

+ PI_ 3PH
L ine _4 2_ 49 _1

+ PI_ 3PH
L ine _4 2_ 49 _2

+ PI_ 3PH
L ine _3 4_ 37

Ro ckh ill_1 38 _0 34

+ PI_ 3PH
L ine _3 4_ 43

SKe nto n_ 13 8_ 04 3

+ PI_ 3PH
L ine _4 3_ 44

WM Ver no n_ 1 38 _0 44

+

PI_3 PH
Lin e_4 4_4 5

NNe wa rk_ 13 8 _0 45

WL an cst_ 1 38 _0 46

+ PI_ 3PH
L ine _4 5_ 46

+ PI_ 3PH
L ine _4 5_ 49

Cr oo ksvl_ 1 38 _0 47

+ PI_ 3PH
L ine _4 6_ 47

+ PI_ 3PH
L ine _4 7_ 49

+ PI_ 3PH
L ine _4 6_ 48

Zan es vll_1 38 _0 48

+ PI_ 3PH
L ine _4 8_ 49

+

PI_3 PH
Lin e_3 4_3 6

Ste rlin g_ 13 8_ 03 6 We stL ima _1 3 8_ 03 5 L inco ln_ 13 8_ 01 9

+ PI_ 3PH
L ine _1 5_ 19

+ PI_ 3PH
L ine _1 9_ 34

+ PI_ 3PH
L ine _3 5_ 36

+ PI_ 3PH
L ine _3 5_ 37

M cKinle y_ 13 8_ 01 8

+

PI_3 PH
Lin e_1 8_1 9

+ PI_ 3PH
L ine _1 7_ 18

1

Sor enso n_T1

2 3

So re nso n_ 34 5_ 03 0

+

PI_3 PH
Lin e_2 6_3 0

Tan nr sCk_ 3 45 _0 26

1
YgYgD

2 3

Tan nr sCk_ 1 38 _0 25

+

PI_3 PH
Lin e_1 9_2 0

Ad am s_ 13 8_ 02 0

Ja y_ 13 8_ 02 1

+

PI_3 PH
Lin e_2 0_2 1

Ra nd olp h_ 13 8_ 02 2

+

PI_3 PH
Lin e_2 1_2 2

Co llCrn r_ 13 8 _0 23

+

PI_3 PH
Lin e_2 2_2 3

+ PI_ 3PH
L ine _2 3_ 25

+ PI_ 3PH
L ine _2 3_ 32

T re nto n _1 38 _0 24

+ PI_ 3PH
L ine _2 3_ 24

Hillsb ro _1 3 8_ 07 2

+

PI_3 PH
Lin e_2 4_7 2

NPo rts mt _1 38 _0 71

+ PI_ 3PH
L ine _7 1_ 72

+

PI_3 PH
Lin e_7 1_7 3

Sa rg en ts_ 13 8_ 07 3

Po rtsm th _1 3 8_ 07 0

+

PI_3 PH
Lin e_7 0_7 1

+ PI_ 3PH
L ine _2 4_ 70

+

PI_3 PH
Lin e_7 0_7 4

Be llefn t_ 13 8_ 07 4

+

PI_3 PH
Lin e_7 4_7 5

Sth Poin t_ 13 8_ 07 5

+

PI_3 PH
Lin e_7 0_7 5

+

PI_3 PH
Lin e_4 9_6 9

Sp or n_ 13 8_ 06 9

+ PI_ 3PH
L ine _4 7_ 69

+ PI_ 3PH
L ine _6 9_ 70

+

PI_3 PH
Lin e_6 9_7 5

Sp or n_ 34 5_ 06 8

1
YgYgD1

2 3

Ka na wha _1 38 _0 80

+

PI_3 PH Lin e_6 8_1 16
Ca pit lH l_1 38 _0 79 Kyg er Crk _3 45 _1 16

Tur ne r_ 13 8_ 07 7

+ PI_ 3PH
L ine _7 5_ 77

+ PI_ 3PH
L ine _7 5_ 11 8

WHu nt ng d_ 13 8_ 11 8 Da rr ah _1 38 _0 76

+ PI_ 3PH
L ine _7 6_ 11 8

+

PI_3 PH
Lin e_7 6_7 7

+

PI_3 PH
Lin e_6 9_7 7

Ch em ica l_1 38 _0 78

+

PI_3 PH
Lin e_7 7_7 8

+ PI_ 3PH
L ine _7 8_ 79

+ PI_ 3PH
L ine _7 9_ 80

+ PI_ 3PH
L ine _7 7_ 80 _1

+ PI_ 3PH
L ine _7 7_ 80 _2

+

PI_3 PH
Lin e_8 0_9 7

Su nd ial_ 13 8_ 09 7

+ PI_ 3PH
L ine _9 6_ 97

Ba ileys v_1 38 _0 96

+

PI_3 PH
Lin e_8 0_9 6

L og an _1 38 _0 82

+

PI_3 PH
Lin e_7 7_8 2

+ PI_ 3PH
L ine _8 2_ 96

+

PI_3 PH
Lin e_9 5_9 6

Ca rsw ell_ 13 8_ 09 5 Switc hb k_ 13 8_ 09 4

+ PI_ 3PH
L ine _9 4_ 95

+ PI_ 3PH
L ine _9 4_ 96

+ PI_ 3PH
L ine _9 4_ 10 0

Gle n Lyn _1 38 _1 00 Ha nc ock _1 38 _1 04

+ PI_ 3PH
L ine _1 00 _1 04

+ PI_ 3PH
L ine _1 04 _1 05

Ro an ok e_ 13 8_ 10 5

+ PI_ 3PH
L ine _1 05 _1 07

Re us en s_1 38 _1 07

+ PI_ 3PH
L ine _9 3_ 94

Taze we ll_1 38 _0 93

Sa ltvlle _1 38 _0 92

+

PI_3 PH
Lin e_9 2_9 3

+ PI_ 3PH
L ine _9 2_ 94

+ PI_ 3PH
L ine _9 2_ 10 0

Bla ine _1 38 _1 08

Fra nklin _1 3 8_ 10 9

+

PI_3 PH Lin e_1 05_ 108

+

PI_3 PH Lin e_1 08_ 109

+ PI_ 3PH
L ine _9 2_ 10 2

Sm yth e_ 13 8_ 10 2 Wyt he _1 38 _1 01

+ PI_ 3PH
L ine _1 01 _1 02

+ PI_ 3PH
L ine _1 00 _1 01

Cla yto r_ 13 8_ 10 3

+ PI_ 3PH
L ine _1 00 _1 03

+

PI_3 PH Lin e_1 03_ 104

+ PI_ 3PH
L ine _1 03 _1 05

F ield ale _1 38 _1 10

+

PI_3 PH Lin e_1 09_ 110
+ PI_ 3PH

L ine _1 03 _1 10

Da nv ille _ 13 8_ 11 2 Da nR iv er _1 38 _1 11

+ PI_ 3PH
L ine _1 10 _1 11

+ PI_ 3PH
L ine _1 10 _1 12

+

PI_3 PH
Lin e_9 1_9 2

Ho lsto nT_ 13 8_ 09 1

+ PI_ 3PH
L ine _8 9_ 92 _1

Clin chR v_1 3 8_ 08 9

+ PI_ 3PH
L ine _8 9_ 92 _2

F re mo nt _1 38 _0 88 Be ave rC k_1 38 _0 85

+ PI_ 3PH
L ine _8 5_ 89

+ PI_ 3PH
L ine _8 8_ 89

+ PI_ 3PH
L ine _8 5_ 88

Ho lsto n_ 13 8_ 09 0

+

PI_3 PH Lin e_8 9_9 0_1

+

PI_3 PH Lin e_8 9_9 0_2

+ PI_ 3PH
L ine _9 0_ 91

Pin evlle _1 38 _0 87

Ha za rd _1 38 _0 86

+

PI_3 PH
Lin e_8 5_8 6

+ PI_ 3PH
L ine _8 6_ 87

Be tsyL ne _1 38 _0 84

+

PI_3 PH
Lin e_8 4_8 5

Sp rig g_ 13 8_ 08 3

+ PI_ 3PH
L ine _8 3_ 84

+ PI_ 3PH
L ine _8 3_ 85

+ PI_ 3PH
L ine _8 2_ 83

Clo ve rd l_ 1 38 _1 06

+ PI_ 3PH
L ine _1 00 _1 06

+ PI_ 3PH
L ine _1 05 _1 06

+ PI_ 3PH
L ine _1 06 _1 07

Bra d ley_ 13 8_ 09 8

+ PI_ 3PH
L ine _9 8_ 10 0

+ PI_ 3PH
L ine _8 0_ 98

+ PI_ 3PH
L ine _9 9_ 10 0

Hin to n_ 13 8_ 09 9

+ PI_ 3PH
L ine _8 0_ 99

1

Kan awha _T1

2 3

Ka na wha _3 45 _0 81

+ PI_ 3PH
L ine _6 8_ 81

M usk ng um _ 34 5_ 06 5

M usk ng um _ 13 8_ 06 6

+ PI_ 3PH
L ine _6 5_ 68

1

M uskng um _T1

2 3

+ PI_ 3PH
L ine _4 9_ 66 _2

+ PI_ 3PH
L ine _4 9_ 66 _1

Na triu m _1 38 _0 62

+ PI_ 3PH
L ine _6 2_ 66

+

PI_3 PH
Lin e_6 6_6 7

Su mm er fl_ 13 8_ 06 7

+ PI_ 3PH
L ine _6 2_ 67

Ka mm er _1 3 8_ 06 1

+

PI_3 PH
Lin e_6 1_6 2

+

PI_3 PH
Lin e_6 4_6 5

Ka mm er _3 4 5_ 06 4

1
Ka mm er _T1

2
3

+ PI_ 3PH
L ine _5 9_ 61

T idd _3 45 _0 63

+ PI_ 3PH
L ine _5 9_ 60

SWKa mm e r_ 13 8_ 06 0

+

PI_3 PH
Lin e_6 0_6 1

+

PI_3 PH
Lin e_6 0_6 2

1
YgYgD3

2 3

+

PI_3 PH
Lin e_6 3_6 4

+ PI_ 3PH
L ine _3 8_ 65

1

EastL ima _T1

2 3

Ea stL ima _3 45 _0 38

e ar th

+ PI_ 3PH
L ine _3 0_ 38

e ar th1

e ar th2

e ar th3

e ar th4

e ar th5

e ar th6

e ar th7

e ar th8

lo ad 11 7

lo ad 03 3

lo ad 01 3
lo ad 00 7

lo ad 01 6

lo ad 01 7

lo ad 02 9

lo ad 11 5 lo ad 11 4

lo ad 02 8

lo ad 04 1

lo ad 03 9

Shu nt_Re acto r_ 37

G

lo ad 02 0

lo ad 02 1

lo ad 02 2

lo ad 02 3

G
ka nk ake e_ Co nd G

ftW ayn e_ Co nd

G
lin coln _C on d

G
m cKinle y_ Co nd

G
ta nn rs Ck1 38 _PP

G
m ad iso n_ Con d

G
b re ed _PP

G
d ee rCr k_ PP

G
d ela war e_ Co nd

G
o live_ Co nd

G
p ine vlle_ PP

G
h olst on _Co nd

G
h olst on T_ Co nd

G
d an Rive r_ PP

G
fie lda le_ Co nd

G
d an ville_ Co nd

G
cla yto r_ PP

G
b ea ver Ck_ Co nd

G
clin ch Rv_ PP

G
sa ltvlle _Co n d

G
g len Lyn _PP G

h an coc k_C on d

G
ro a no ke_ Co nd

G
re u sen s_ Con d

G
tu rn er _C on d

G
b elle fnt _Co nd

G
sa rg en ts_ Co nd

G
h ills br _Co n d

G
tr en to n_ Con d G

p or tsm th_ Co nd

G
kyg e rCr k_PP

G
m usk ng um 3 45 _PP

G
m usk ng um 1 38 _PP G

n atr ium _ Con d

G
ka mm e r_ PP

G
wL an cst _PP

G
we stEn d_ Co nd

G
h owa rd _C on d

G
to rr ey_ PP

G
su nn ysd e_ Co nd

G
wa ge nh ls_ Con d

G
tid d_ PP

G
h into n_ Co nd

lo ad 07 5

lo ad 08 6

lo ad 08 8

lo ad 10 1 lo ad 10 2

lo ad 10 9

lo ad 10 8 lo ad 08 4 lo ad 09 3

lo ad 09 5

lo ad 09 4

lo ad 09 6

lo ad 09 7

lo ad 09 8

lo ad 10 6

G
d ar ra h_ Con d

G
ka na wh a_ PP

lo ad 11 8

lo ad 07 8

lo ad 07 9

G
sp or n_ PP

G
p hilo _PP

lo ad 06 7

lo ad 04 7

lo ad 04 5

lo ad 04 8

lo ad 04 3

lo ad 04 4 lo ad 05 0 lo ad 05 1

lo ad 05 7 lo ad 05 8 lo ad 05 2

lo ad 05 3

lo ad 06 0

lo ad 08 3

lo ad 08 2

lo ad 03 5
G

ste rlin g _3 6_ Con d

G
ro ckh ill_C on d

G
riv er sde _ Con d

lo ad 01 4

BR

BR

To=0 .3 s

SW

Tc=0 .1 s

k = 3
p lug To Pin

k = 2
p lug To Pin1

R1

R= 0.00 01*{ 1,1, 1}

R

R= 1

ZnO1

GPortsmth_Cond

Figure 7.1 (a): IEEE 118-bus Network including 177 PI-section models of TL sketched using the

Modelica GUI. (b): the faulty zone; a phase-b-to-phase-c fault at k-end of Line_70_75. The

powerplant “Portsmth_Cond” is selected for validation of SM with saturation in Case 2, Surge

arrester ZnO1 is inserted in the circuit only for Case 3. (c): the sub-circuit of Load75 including a

saturable transformer model and constant-impedance model of load

 150

7.2 Case 1: Phase-to-Phase Fault Analysis

For creating a transient disturbance, (see Figure 7.1.(b)), a temporary phase-to-phase fault with a

fault resistance of 1Ω is applied on the phases ‘b’ and ‘c’ of “Line_70_75” at t =100 ms followed

by the isolation of the line at t= 200 ms (i.e., the breakers BRm and BRk open simultaneously after

6 cycles). The fault is cleared at t = 300 ms; then, the line is reconnected at t = 450 ms.

Re-energizing the TL introduces high-frequency transient oscillations and allows to investigate the

accuracy of transformer models in nonlinear regions. For this purpose, the curve of flux versus

current for LoadTransfo75, which is located near the faulty line, is compared with EMTP®.

Numerical tests are performed using the variable-step DASSL solver [77] in ODE mode with the

tolerance of 1e-3 and the maximum integration order of 5 in Dymola 2021x. In EMTP®,

Trapezoidal/backward Euler integrator with the step sizes of 1 µs and 5 µs is employed. The

simulation time is 500 ms. The network model in Modelica contains 96308 acausal DAEs. The

total number of network nodes and the size of the main system of equations in EMTP® are 2533

and 3773, respectively.

Figure 7.2.(a) depicts the voltage waveforms of phases-a,-b and-c at the k-end of Line_70_75

obtained by the two simulators with different precisions. An excellent agreement is observed

between the results. Figure 7.2.(b) shows the simulation results for phases-b and-c in the interval

of [300, 310] ms, i.e., after the fault is removed. The results produced by Modelica models are

almost identical to EMTP® when step size is 1 µs (black curve), while the high-frequency transient

oscillations (f=1820 Hz) are not captured by EMTP® when 𝛥𝑡 = 5 μs (blue curve). Figure 7.2.(c)

depicts the curves of voltage after the re-energization of TL. The consistent results between

Modelica and EMTP® are observed in this period once more. The close-up view of the phase a

voltage waveform at the instant of closing the breakers BRm and BRk shows that Modelica voltage

waveform rises precisely at t = 450 ms while in EMTP®, it goes up the next time point. The close-

up illustrates the discontinuity treatment discrepancies between the two simulators. This is an

important issue for the simulation of circuits with high-frequency switching.

 151

0 100 200 300 400 500
-1.5

-1

-0.5

0

0.5

1

1.5

300 302 304 306 308 310
-0.1

-0.05

0

0.05

0.1

V
ol

ta
ge

 (
pu

)

450 460 470 480 490 500

-1

-0.5

0

0.5

1

445

Time (ms) (c)

EMTP, h:5us{

va vb{ vc}Dymola, Tol 1e-3

va vb vc}

EMTP, h:1us{ va vb vc}

{Dymola, Tol 1e-2 va vb vc}

Line_70_75 energizedFault duration

Line_70_75 disconnected

EMTP, h:1us
Dymola, Tol:1-3

306 306.5 307 307.5 308
-0.01

0

0.01

0.02

0.03

EMTP, h:5us

Dymola, Tol:1-2 EMTP, h:1usDymola, Tol:1-3

EMTP, h:5us

(b)

(a)

phase b

phase c

450.01450 450.005

0

0.5

1

EMTP, h:5us

EMTP, h:1us

f =1820 Hz

450.001

Figure 7.2. (a): Voltage waveforms of phases-a, -b and -c at the k-end of Line_70_75; (b):

comparison of results for the phases-b and-c for different solvers’ parameters. (c): voltage

waveforms after re-energization of Line_70_75; the close-up at the instant of closing the breakers

BRk and BRm

 152

For validating the accuracy of nonlinear components, the magnetization branch curve of

LoadTransfo75 (see Figure 7.1.(c)) is examined in Figure 7.3. Once again, the results obtained by

the two models show an excellent agreement, and transformer operating points (depicted by the

red dashed line) move on the transformer current-flux characteristics (distinguished by the solid

red line). The iterative solution allows reproducing the nonlinear function accurately in both tools.

The number of nonlinear components and control closed loops has a significant impact on the

accuracy and speed of simulation. For example, simulation of the same network, that is IEEE 118-

bus, jams in Simscape Electrical Specialized Power Systems (SPS) package [43], which is

comparable to the Modelica environment (both are based on state-space modeling approach). This

package is based on the state-space representation of the linear network in a loop with external

current sources denoting the nonlinear components. In Modelica, nonlinear functions are solved

simultaneously through iterative methods, which gives the most accurate results.

Current (A)

0 100 200 300 400 500 600 700 800 900 1000
-200

0

200

400

EMTPModelica

0 20 40 60 80 100
260

300

340

380

Magnetization data

M
ag

n
et

iz
in

g
 F

lu
x

 (
W

b
)

Breakpoints

600

Figure 7.3 Current-Flux curve of magnetization branch in the LoadTransfo75 transformer; zoom-

in on the knee-point solutions of Modelica and EMTP®

Table 7.1 shows the data and run-times of simulations carried out in Dymola and EMTP®. The

CPU times are extracted from the average of 5-times “re-simulations.” In Dymola, simulation is

accomplished with 203 034 steps in 371.2 s, yielding 1.83 ms for each step. EMTP® outperforms

Dymola with the ratio of 3.37:1 when the least error is favorite, i.e., 𝛥𝑡 = 1 μs. Tolerance

significantly impacts the CPU time and the number of time steps for the DASSL since the local

error is tightly coupled with the logic for selecting the step size and order of integration. In this

experiment, the simulation is repeated with the tolerance of 1e-2 as well. It causes a considerable

 153

increase in the number of time steps, Jacobian, and function evaluations. Consequently, the CPU

time increases with the ratio of 4:1, whereas the simulation accuracy does not change effectively

(see Figure 7.2.(b)). The norm of error between these two simulations is reported 4.8e-3 for phase

b. In both tolerances, the results are practically identical to EMTP® when 𝛥𝑡 = 1 μs . However, it

should be noted that the solution methods in Modelica and EMTP® are fundamentally different,

and a direct comparison of variable step solver with fixed-step one is not so fair. The time steps

selected in Table 7.1 are for demonstration/comparison purposes; in reality, it is possible to choose

even higher time steps without a significant loss of accuracy.

Table 7.1 Case 1: comparison of simulation performance

Characteristics Dymola EMTP®

Solver DASSL Trapezoidal /Backward Euler

Tolerance 1e-3 1e-2

∆𝑡: 1 𝜇𝑠 ∆𝑡: 5 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.115 𝑓𝑠 0.116 𝑓𝑠
∆𝑡𝑀𝐴𝑋 5.79 𝜇𝑠 0.16 𝜇𝑠

No result points 203035 335261 601757 154367 81 661

No accepted steps 203034 335260 -

f-evaluations 415437 760052 -

J-evaluations 7393 337458 -

CPU time (s) 371.2 1510.6 110.1 44.2 23.5

CPU-time for 1 step 1.83 𝑚𝑠 4.49 𝑚𝑠 0.18 𝑚𝑠 0.28 𝑚𝑠 0.28 𝑚𝑠

Performance ratio 1 0.24 3.37 8.39 15.79

7.3 Case 2: Analysis of Saturation in SM

This test case aims to verify the validity of the SM model in the saturation region; a large

disturbance, including a sudden three-phase short-circuit, is applied at t = 50 ms near the terminals

of SM “Portsmth_Cond” and lasts till t =150 ms. The SM protective relays detect the fault and trip

the generator breaker at t = 200 ms. The parameters of both solvers are the same as in Case 1.

Figure 7.4.(a) and (b) depict the graphs of phase-a terminal voltage and field current of the SM

with and without saturation. As one can see, the results obtained from Modelica are superimposed

on EMTP® ones. As time elapses, the difference between saturated and unsaturated curves is more

distinguishable on the voltage curves (see Figure 7.4.(a)). It is observed from Figure 7.4.(b) that

inclusion of saturation has an important impact on the excitation current needed for the generator

operation.

 154

0 100 200 300 400 500

T
er

m
in

al
 v

ol
ta

ge
 (

kV
)

0

20

10

-10

-20

Time (ms)

204200 201 202 203
0

10

20

295 305 315 325
-20
-10

0

10

20 with saturationwith saturation
without saturation

0 100 200 300 400 500
0

10

20

30

40

50

F
ie

ld
 C

ur
re

nt
 (

A
)

50 70 90 100

10

20

30

40

150 170 190 210
0

10

20

30

Time (ms)

with saturation

without saturation

without saturation

Three-phase fault

(a) (b)

EMTP Modelica }With saturation{ Modelica }EMTP Without saturation{

Figure 7.4 (a): Waveform of phase-a of stator voltage of SM with and without saturation model;

the close-up views after load rejection. (b): Field current with and without saturation model; the

zoomed views during and after the fault

Figure 7.5 illustrates the phase-a current of the stator. As one can see, the Modelica model yields

the same results as EMTP® for both cases (with and without saturation). The current with saturation

is lower than without saturation. It is seen that the effect of saturation on the current under the sub-

transient state is more than the transient state and the difference decreases as time elapses.

T
er

m
in

al
 c

u
rr

en
t

(k
A

)

0 100 200 300 400 500

-10

-5

0

5

10

EMTP with saturation

Modelica with Saturation

EMTP without saturation

Modelica without Saturation

Time (ms)

152 156 160 164 168

-2
-1
0
1
2
3

420 440 460 480 500
-0.1

0

0.1
without saturation

with saturation

without saturation

with saturationw/o sat

w. sat.

Figure 7.5 Phase-a stator current with and without saturation model; zoomed view after

removing the fault and load rejection

 155

7.4 Case 3: Lightning

In this case, it is assumed that lightning with the characteristics of 10kA, 8 /20 µs strikes phase-a

of the line “TL_70_75” when the network is in steady-state at t = 95 ms. The surge arresters are

located on the bus “SthPoint_138_075” to protect the high-voltage side of the transformer

“LoadTransfo75” from transient overvoltages (see Figure 7.1.(b)). The simulation is run for 130

ms with the step sizes of 0.1 µs (depicted by black curve) and 10 µs (shown by red curve) in

EMTP®. Other parameters of solvers in both tools are as the Case 1. Figure 7.6 shows the phase-a

voltage waveform of the arrester ZnO1. As one can see, the results obtained from the Modelica

arrester model are identical to EMTP® when 𝛥𝑡 = 0.1 𝜇𝑠. A high frequency transient (1300 Hz) is

observed due to the strike of lightning.

90 95 100 105 110 115 120 125 130
-1

-0.5

0

0.5

1

1.5

A
rr

es
te

r
V

o
lt

ag
e

(p
u
)

950 960 970 980
-1

-0.5

0

0.5

1

1.5
f=1300 Hz

EMTP{ ModelicaΔt: 0.1µs, Δt: 10 µs}

Time (ms)

Figure 7.6 Voltage waveform of surge arrester ZnO1 on the bus SthPoint_138_075, DASLL

solver: Tol=1e-3, EMTP® solver: Trapezoidal /backward Euler with ∆t=0.1 μs and 10 μs

Table 7.2 compares the performances of simulations in both tools. In Dymola, simulation is

accomplished with 51513 steps in 87.2 s, which yields 1.69 ms for each time step. In this case,

Dymola outperforms EMTP®’s best result, that is when 𝛥𝑡 = 0.1 μs, with the ratio of 5.56:1.

This test case is designed to show the potential advantages of variable time step solvers over fixed

time step ones (like EMTP®). It is intended to illustrate that a very small time step used for the

short duration of the very high transient has a penalizing effect on EMTP®, but not on Modelica

 156

solver. Modelica integrator expectedly reverts to a very small time step only for a short duration.

It would have been possible to apply lightning in EMTP® at simulation time t = 0 s, and in which

case the performance results would have been much better; nevertheless, our demonstration

remains valid. A more practical example is the breaker arc model that also forces the usage of very

small time steps and may be triggered at any point of time. It will effectively give an advantage to

Modelica since, in this case, it is required to capture more extended simulation periods.

Table 7.2 Case 3: comparison of simulation performance

Characteristics Dymola EMTP®

Solver DASSL Trapezoidal /BE

Tolerance 1e-3

∆𝑡: 0.1 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.623 𝑝𝑠

∆𝑡𝑀𝐴𝑋 5.56 𝜇𝑠

No result points 51514 1335308 21637

No accepted steps 51513 -

f-evaluations 105576 -

J-evaluations 1503 -

CPU time (s) 87.2 485.6 9.9

CPU-time for 1 step 1.69 𝑚𝑠 0.36 𝑚𝑠 0.45 𝑚𝑠

Performance ratio 1 0.179 8.8

7.5 Evaluation of Arc Models

In this section, the accuracy of arc models developed in MSEMT library will be investigated in

different circuits. The arc model is a highly nonlinear component that plays an essential role in

analyzing transient recovery voltage. In the following sections, the models of Cassie, Mayr, and

combination of both models will be evaluated.

7.5.1 Comparison of Cassie and Mayr Arc Models

Arc model was explained in Section 3.6.2.4. In this section, verification of proposed Modelica

models using the EMTP® is addressed. Figure 7.7 shows two identical circuits reproduced from

[43] using the MSEMT library to test arc models' accuracy: one with Mayr and one with Cassie

arc model. The circuit can be a simple representation of a circuit breaker interrupting a short-line

fault. The circuit is energized with a sinusoidal voltage source with the magnitude of 41.8 kV RMS,

60 Hz. The circuit at the left side of the circuit breaker reproduces a 2-parameter IEC transient

 157

recovery voltage, while the circuit at the right side represents a short transmission line that is short-

circuited. The parameters of the Mayr arc model are given as 𝜏𝑚 = 0.3 µs, 𝑝0 = 30900 W, 𝑔𝑚0 =

1𝑒4 S and 𝑇𝑡𝑟𝑖𝑝 = 20 ms.

+

AC

L1

L=3.52 mH

R
=

2
9

.8

L
=

5
.2

8
 m

H

C=1.98e-6 F

R2

R=450 C=1.93e-9 F

C2

L3

L=0.6256 mH

G

G1

G2

Mayr Arc Model

R
1

L
2

41.8579kVRMS-

+

AC

L1

L=3.52 mH

R
=

2
9

.8

L
=

5
.2

8
 m

H

C=1.98e-6 F

R2

R=450 C=1.93e-9 F

C2

L3

L=0.6256 mH

G

G1

G2

Cassie Arc Model

ground1

R
1

L
2

41.8579kVRMS-

Figure 7.7 The proposed circuit for the verification and comparison of Mayr and Cassie arc

models

Simulation is run using trapezoidal/backward Euler integrator with the time step of 0.1 µs and

simulation time of 400 ms in EMTP®. The same circuit is simulated with IDA solver, Tol=1e-6 in

Modelica. Figure 7.8 compares the curves of voltage and current of arc model obtained from

Modelica and EMTP® solutions. As one can see, the results obtained from Modelica are identical

with the EMTP® solutions.

Figure 7.9 shows the arc conductance/resistance of the Mayr arc model. It is observed that the arc

resistance increases from zero to almost infinite quickly at the instant of interruption of current.

After the interruption, the transient recovery voltage builds up across the circuit breaker contacts;

hence a high-frequency transient recovery voltage (2-parameter) oscillation is observed over the

breaker in the Mayr model in Figure 7.8.

 158

0 5 10 15 20 25 30 35 40

Time (ms)

-100

-80

-60

-40

-20

0

20

40

60

-40

-30

-20

-10

0

10

20

30

40

varc

V
o
lt

ag
e
 (

k
V

)

C
u
rr

e
n
t

(k
A

)

EMTP{
Modelica{

varc iarc

iarc }
}

TRV(f=1525 Hz)

T trip

Figure 7.8 The curves of voltage and current obtained from the Mayr arc model in Modelica and

EMTP®

0 5 10 15 20 25 30 35 40
-1

0

1

2

3

4

5

0

0.5

1

1.5

2

2.5
10-5

C
o

n
d

u
ct

an
ce

× 104

Time (ms)

R
es

is
ta

n
ce

EMTP

Modelica

g0
T trip

Arc

Figure 7.9 Arc conductance for Mayr model

Once again, the same circuit is simulated with the same solver parameters, except the Cassie arc

model is used in this case. The parameters of the Cassie arc model are: 𝜏𝑐 = 1.2 µ𝑠, 𝑣0 = 3850 V,

𝑔𝑐0 = 1𝑒4 S and 𝑇𝑡𝑟𝑖𝑝 = 20 𝑚s. Figure 7.10 illustrates the results for arc voltage and current

 159

obtained from both simulators. In this case, it is also observed that the solutions of both solvers are

in excellent agreement.

0 5 10 15 20 25 30 35 40
-6

-4

-2

0

2

4

6

-40

-30

-20

-10

0

10

20

30

40

varc

EMTP{
Modelica{

varc iarc

iarc }
}

V
o

lt
ag

e
(k

V
)

C
u
rr

en
t
(k

A
)

Time (ms)

Figure 7.10 The curves of voltage and current obtained from Cassie arc model in Modelica and

EMTP®

Comparing Figure 7.8 and Figure 7.10 shows that: (1) both arc voltage and current passe zero

simultaneously (because arc behaves as a nonlinear resistor). (2): The Cassie model fails to

interrupt the short circuit current, while the Mayr arc model has a successful interruption.

7.5.2 Cassie-Mayr Arc Model

This section deals with the Cassie-Mayr arc model in a kilometric fault test of a 420-kV CB. The

test circuit is reproduced from the EMTP® example using the MSEMT library. Figure 7.11 shows

the schematic of the circuit. The circuit is energized with a voltage source of 420 kV RMS, 60 Hz.

The circuit at the right side represents a short (d=500 m) untransposed transmission line (CP-line

model). The parameters of the arc model are given as 𝜏𝑚 = 0.5 µs, 𝜏𝑐 = 1 µ𝑠 𝑝0 = 100 kW, 𝑣0 =

2000 V, 𝑔0 = 5𝑒7 S and 𝑇𝑡𝑟𝑖𝑝 = 28 𝑚s. A single-phase earth fault on phase-a occurs at t = 1 ms

at the end of TLM. The high voltage circuit breaker, D, trips the phase-a at t = 28 ms. The healthy

phases remain closed.

 160

7.5.2.1 Case 1: Source Inductance, L1=9 mH

In this case, the simulation is run using the trapezoidal/backward Euler solver with the time step of

0.1 µs and simulation time of 50 ms in EMTP®. The same circuit is simulated with IDA solver,

Tol=1e-6 in Modelica. In this simulation, L1, which represents the source inductance, is 9 mH.

R2

R=3000
R1

R=0.24
AC

420 kV
R

3

R
=

1
0

C
=

2
0

0
e
-9

 F

C
1

G1

R
f

R
=

0
.1

C=0.8e-9 F

C2

Mayr-Cassies

TLM
CP+

G2

sw
1

1
m

s l 1
s

sw2

-1s l 1s
sw3

-1s l 1s

L=9 mH

L1

D

Figure 7.11 Kilometric fault test of a 420-kV CB

Figure 7.12 shows the waveforms of voltage and current of the arc model (phase-a of circuit breaker

D). As one can see, the circuit breaker fails to interrupt the fault current in both simulators. The

fault current, 90 kA, passes through the contacts of the circuit breaker by the end of simulations.

This is a catastrophic status for the circuit breaker and may damage it severely.

0 5 10 15 20 25 30 35 40 45 50
-30

-20

-10

0

10

20

30

-100

-80

-60

-40

-20

0

20

40

60

80

100

Time (ms)

varc

EMTP{
Modelica{

varc iarc

iarc }
}

L1=9 mH

Δt=0.1 µs
Tol=1e-6

V
o
lt

ag
e

(k
V

)

C
u
rr

en
t
(k

A
)

T trip

Arc current

Arc voltage

Figure 7.12 The voltage and current curves obtained from the Cassie-Mayr model, L1=9 mH

 161

7.5.2.2 Case 2: Source Inductance, L1=10 mH, Δt= 0.1 µs in EMTP®

In the second attempt, we change the source inductance, L1=10 mH, and repeat the simulation with

the same parameters as Case 1. As shown in Figure 7.13, the circuit breaker model in the Modelica

simulation succeeded in breaking the fault current (79kA). A TRV occurs after the interruption of

current on the terminals of the breaker. The simulation in EMTP® shows that the fault current

continues by the end of the simulation. As a result, the selected time step for the simulation in

EMTP® is not correct.

0 5 10 15 20 25 30 35 40 45 50
-400

-200

0

200

400

600

800

-100

-80

-60

-40

-20

0

20

40

60

80

100

Time (ms)

V
o
lt

ag
e

(k
V

)

C
u
rr

en
t

(k
A

)

varc

EMTP{
Modelica{

varc iarc

iarc }
} Δt=0.1 µs

Tol=1e-6

L1=10 mH

T trip

Arc current Arc voltage

TRV

Figure 7.13 The curves of voltage and current obtained from the Cassie-Mayr arc model in

Modelica and EMTP®, L1=10 mH, Δt= 0.1 µs in EMTP®

7.5.2.3 Case 3: Source Inductance, L1=10 mH, Δt= 0.01 µs in EMTP®

In the third attempt, we simulate the same circuit of Case 2 with the time step of 0.01 µs in EMTP®.

The simulation parameters in Modelica remain the same as in previous cases. Figure 7.14 shows

the voltage and current of the arc model. As one can see, the results obtained from both simulators

are identical and illustrates a TRV on the terminal of circuit breaker D. In both simulators, the fault

current is cleared when it passes zero-crossing after 𝑇𝑡𝑟𝑖𝑝.

 162

Table 7.3 shows the performance of simulations in cases 2 and 3. As one can see, the Modelica

simulator outperforms EMTP® in case 3, where the results are identical, in the ratio of 4.33:1.

0 5 10 15 20 25 30 35 40 45 50
-400

-200

0

200

400

600

800

-100

-80

-60

-40

-20

0

20

40

60

80

100

V
o
lt

ag
e
 (

k
V

)

C
u

rr
e
n

t
(k

A
)

Time (ms)

L1=10 mH

varc

EMTP{
Modelica{

varc iarc

iarc }
}

Tol=1e-6
Δt=0.01 µs

34 34.5 35 35.5 36 36.5 37 37.5
0

200

400

600

800

T trip

Arc current

Arc voltage

TRV

f=3573 Hz

(a)

(b)

Figure 7.14 (a): The curves of voltage and current obtained from the Cassie-Mayr arc model in

Modelica and EMTP®, L1=10 mH, Δt= 0.01 µs in EMTP®, (b); the zoom-in plot of TRV on the

terminals of the circuit breaker

Table 7.3 Comparison of simulation performance in Cases 2 and 3

Characteristics Dymola EMTP®

Solver IDA Trapezoidal /BE

Tolerance 1e-6 - -

Δt - 0.1 𝜇𝑠 0.01 𝜇𝑠

∆𝑡𝑀𝐼𝑁 2.72e-16 s - -

∆𝑡𝑀𝐴𝑋 2e-05 s - -

No of steps 41 285 500 003 5 000 003

f-evaluations 103 768 - -

J-evaluations 25 930 - -

CPU time (s) 66.8 24.28 289.36

CPU-time for 1 step 0.134 𝑚𝑠 0.048 𝑚𝑠 0.057 𝑚𝑠

Performance ratio 1 0.36 4.33

 163

7.6 Conclusion

Modelica language has been considered for EMT simulations due to its advantages for creating

models at very high abstraction levels. This chapter emphasizes the software-to-software validation

of nonlinear models, including synchronous machines with magnetic saturation and the surge

arrester and arc models. The first two nonlinear models are validated by comparisons with EMTP®

in a large grid (IEEE 118-bus benchmark). It is shown that high-level modeling in Modelica is very

accurate as compared to EMTP®. However, the performance is unsatisfactory, except when

variable time-step is used advantageously for high-frequency transients of short duration in a long

simulation interval. Comparison of CPU time for the simulation of IEEE 39-bus and IEEE 118-bus

benchmarks shows that simulation of cases including the WB and CP-line models can be very long

and scales poorly.

Concerning the arc models, the comparison of results obtained from both tools demonstrates the

accuracy of Modelica models. About the simulation efficiency, it was demonstrated that Modelica

simulator offers better CPU time than EMTP® for high-resolution simulations required for

simulation of arc models. The MSEMT library created in Modelica is user-friendly. It can be used

for didactic purposes as well.

As future work, the existing library can be further developed to cover the models of HVDC system

and renewable energy sources. The developed EMT models can be used for model exchange and

co-simulation incorporating FMI. Therefore, co-simulation of Modelica and EMTP® via FMI can

be considered for future. Parallelization of computations in the equation-based approach can be an

interesting subject. This is a challenge for improvement of simulation speed in Modelica.

 164

 CONCLUSION AND RECOMMANDATIONS

Since the thesis covers various research subjects, therefore the conclusion and recommendation of

each work have been described in the last section of its dedicated chapter. Refer to Sections 4.3,

5.7, 6.5 and 7.6.

165

REFERENCES

[1] B. P. Zeigler, Theory of Modeling and Simulation, New York, USA: John Wiley,1976.

[2] D. C. Augustin, M. S. Fineberg, B. B. Johnson, R. N. Linebarger, F. J. Sansom and J. C.

Strauss. “The SCi Continuous System Simulation Language (CSSL).” Simulation 9, 1967,

pp. 281-303.

[3] E. Hairer, S. P. Nørsett, and G. Wanner. “Solving Ordinary Differential Equations, I: Non

stiff Problems.” Springer-Verlag Berlin Heidelberg, 2nd rev. ed. 1993. corr. 3rd printing 2008

edition, 1993.

[4] MathWorks. The Mathworks - Simulink - Simulation and Model-Based Design. [Online].

Available: http://www.mathworks.com/products/simulink/

[5] R. Riaza. "DAEs in Circuit Modelling: A Survey." In Surveys in Differential-Algebraic

Equations I. Achim Ilchmann; Timo Reis (eds.). Springer Science & Business Media, 2013.

[6] D. A. Calahan, Computer-aided network design. McGraw-Hill Education, 1972.

[7] U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, US, 1998, p. 12.

[8] K. E. Brenan, S. L. Campbell, & L. R. Petzold, Numerical solution of initial-value problems

in differential-algebraic equations. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, US, 1995.

[9] R. W. Sebesta, Concepts of programming languages. Pearson Education Inc., 11th ed., 2015.

[10] D. Broman, “Meta-Languages and Semantics for Equation-Based Modeling and

Simulation,” Ph.D. dissertation, Dept. of Computer and Information Science, Linköping

University, Linköping, Sweden, 2010.

[11] D. Zimmer, “Equation-based modeling of variable-structure systems,” Ph.D. dissertation,

Dept. of Computer Sciences, ETH Zurich, 2010.

[12] O. J. Dahl and K. Nygaard, “SIMULA: an ALGOL-based simulation language,”

Communications of the ACM, vol. 9, no. 9, 1966, pp. 671–678.

https://en.wikipedia.org/wiki/Linda_Petzold

166

[13] D. Broman, P. Fritzson, S. Furic, “Types in the Modelica Language,” in Proc. of the Fifth

International Modelica Conference, Vienna, Austria, vol. 1, 2006, pp. 303-315.

[14] P. Fritzson, Principles of object-oriented modeling and simulation with Modelica 3.3: a

cyber-physical approach. 2 ed., John Wiley & Sons, 2014.

[15] F. E. Cellier & J. Greifeneder, Continuous system modeling, Springer Science & Business

Media, 2013.

[16] F. E. Cellier, & E. Kofman, Continuous system simulation, Springer Science & Business

Media, 2006.

[17] R. Tarjan, “Depth-first search and linear graph algorithms,” in SIAM journal on

computing, vol. 1, no 2, 1972, pp.146-160.

[18] I. S. Duff, A. M. Erisman & J. K. Reid, Direct methods for sparse matrices, Oxford

University Press, 2017.

[19] K. Kaya, J. Langguth, F. Manne, & B. Uçar, “Push-relabel based algorithms for the

maximum transversal problem,” Computers & Operations Research, vol. 40, no 5, 2013, pp.

1266-1275.

[20] J. Frenkel, G. Kunze, & P. Fritzson, “Survey of appropriate matching algorithms for large

scale systems of differential-algebraic equations,” in Proc. of the 9th International

MODELICA Conference, 2012, Munich, Germany, pp. 433-442.

[21] H. Elmqvist, M. Otter, “Methods for tearing systems of equations in object-oriented

modeling.” In Proc. of European Simulation Multiconference (ESM), 1994, vol. 94, pp. 1-3.

[22] E. B. Kathryn, S. L. Campbell, L. R. Petzold, Numerical Solution of Initial–Value Problems

in Differential-Algebraic Equations, North-Holland, New York, 1989.

[23] C. C Pantelides, "The consistent initialization of differential-algebraic systems," in SIAM

Journal on Scientific and Statistical Computing, vol. 9, no 2, 1988, pp. 213-231.

[24] S. E. Mattsson, G. Söderlind, “Index reduction in differential-algebraic equations using

dummy derivatives,” in SIAM Journal on Scientific Computing, vol. 14, no 3, 1993, pp. 677-

692.

167

[25] S. E. Mattsson and G. Soderlind, "A new technique for solving high-index differential-

algebraic equations using dummy derivatives," in IEEE Symposium on Computer-Aided

Control System Design, 1992, pp. 218-224.

[26] I. S. Duff. “On Algorithms for Obtaining a Maximum Transversal.” In ACM Transactions

on Mathematical Software, vol. 7, no 3, 1981, pp. 315-330.

[27] I. S. Duff, J. K. Reid. “An Implementation of Tarjan’s Algorithm for the Block

Triangularization of a Matrix,” in ACM Transactions on Mathematical Software, vol. 4, no

2, 1978, pp.137–147.

[28] Modelica® - A Unified Object-Oriented Language for System Modeling and Simulation,

Version 3.5, Feb 2020, Modelica Association, [Online]. Available: https://modelica.org/.

[29] F. Milano, Power system modeling and scripting, Springer Science & Business Media, 2010.

[30] P. Fritzson et al., “The OpenModelica Integrated Environment for Modeling, Simulation,

and Model-Based Development,” Modeling, Identification and Control, vol. 41, no. 4, 2020,

pp. 241–295.

[31] A. B. Dynasim, Dynasim AB, [Online]. Available: http://www.dynasim.se.

[32] K., Ryzhov Rozhdestvensky et al., “Description of the Wolfram SystemModeler,”

in Computer Modeling and Simulation of Dynamic Systems Using Wolfram

SystemModeler, Springer, Singapore, 2020, pp. 23-87.

[33] S. Lynch, “An Introduction to Wolfram SystemModeler,” in Dynamical Systems with

Applications Using Mathematica®, Birkhäuser, Cham, 2017, pp. 509-522.

[34] M. Jirstrand, J. Gunnarsson, & P. Fritzson, “MathModelica--a new modeling and simulation

environment for Mathematica,” in Proc. International Mathematica Symposium, 1999.

[35] Maplesoft, MapleSim—High-performance multi-domain modeling and simulation. [Online].

Available: http://www.maplesoft.com/products/maplesim/index.aspx.

[36] J. Åkesson, M.Gäfvert & H. Tummescheit, “Jmodelica—an open-source platform for

optimization of Modelica models,” in Proc. of 6th Vienna International Conference on

Mathematical Modelling, 2009.

http://www.dynasim.se/
http://www.maplesoft.com/products/maplesim/index.aspx

168

[37] J. Mahseredjian, V. Dinavahi and J. A. Martinez, "Simulation Tools for Electromagnetic

Transients in Power Systems: Overview and Challenges," in IEEE Transactions on Power

Delivery, vol. 24, no. 3, pp. 1657-1669, July 2009.

[38] P.M. DeRusso, A.A. Desrochers, R.J. Roy, C.M. Close, State variables for engineers. John

Wiley & Sons, Inc., 1997.

[39] F. Li, W. Peng-Yung. “A New Method for Establishing State Equations: The Branch

Replacement and Augmented Node-Voltage Equation Approach,” in Proc. of Circuits,

systems, and signal, vol. 21, pp. 149-161, 2002.

[40] C. Dufour, J. Mahseredjian and J. Bélanger, "A Combined State-Space Nodal Method for the

Simulation of Power System Transients," in IEEE Transactions on Power Delivery, vol. 26,

no. 2, pp. 928-935, April 2011.

[41] T. Hassell, W. Weaver, A. Oliveira, “Using MATLAB’s Simscape modeling environment as

a simulation tool in power electronics and electrical machines courses," in 2013 IEEE

Frontiers in Education Conference (FIE), Oklahoma City, OK, USA, 2013 pp. 477-483.

[42] Simscape Language Guide 2020, [available online]: www. Mathwork.com

[43] Simscape Electrical Specialized Power System user manual, 2020

[44] L. M. Wedepohl and L. Jackson, "Modified nodal analysis: an essential addition to electrical

circuit theory and analysis," in Engineering Science and Education Journal, vol. 11, no. 3,

pp. 84-92, June 2002.

[45] L. O. Chua, Computer-aided analysis of electronic circuits: Algorithms and computational

techniques, Prentice-Hall, 1975.

[46] F. N. Najm, R. C. Dumas, Circuit simulation, vol. 9, 2010, Hoboken, NJ: Wiley.

[47] C.W. Ho, A. Ruehli and P. Brennan, "The modified nodal approach to network analysis,"

in IEEE Transactions on Circuits and Systems, vol. 22, no. 6, pp. 504-509, June 1975.

[48] J. Mahseredjian and F. Alvarado, "Creating an Electromagnetic Transients Program in

MATLAB: MatEMTP," in IEEE Transactions on Power Delivery, vol. 12, no. 1, pp. 380-

388, Jan. 1997.

169

[49] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian, L. Gérin-Lajoie, “On a new

approach for the simulation of transients in power systems,” in Electric Power Systems

Research, vol 77, No 11, 2007, pp 1514-1520.

[50] J. Mahseredjian: “Simulation des transitoires électromagnétiques dans les réseaux

électriques”, Édition ‘Les Techniques de l'Ingénieur’, Février 10, 2008, Dossier D4130,

2008.

[51] A. Ametani, “Chapter 3: Simulation of electromagnetic transients with EMTP-RV” in

Numerical analysis of power system transients and dynamics. The Institution of Engineering

and Technology (IET), UK, 2015.

[52] E. Haginomori, T. Koshiduka, J. Arai & H. Ikeda, Power system transient analysis: theory

and practice using simulation programs (ATP-EMTP), John Wiley & Sons, 2016.

[53] H. W. Dommel, "Digital Computer Solution of Electromagnetic Transients in Single-and

Multiphase Networks," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-

88, no. 4, pp. 388-399, April 1969.

[54] Manitoba HVDC Research Centre (Canada). User’s Guide on the Use of PSCAD. Winnipeg,

2004.

[55] F. M. Gonzalez-Longatt & J. L. Rueda, PowerFactory applications for power system

analysis. Springer, 2014.

[56] J. R. Marti and J. Lin, "Suppression of numerical oscillations in the EMTP® power systems,"

in IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 739-747, May 1989.

[57] R. Alexander, "Diagonally implicit Runge–Kutta methods for stiff ODE’s." SIAM Journal

on Numerical Analysis 14.6,1977, pp. 1006-1021.

[58] T. Noda, K. Takenaka and T. Inoue, "Numerical Integration by the 2-Stage Diagonally

Implicit Runge-Kutta Method for Electromagnetic Transient Simulations," in IEEE

Transactions on Power Delivery, vol. 24, no. 1, pp. 390-399, Jan. 2009.

[59] T. Noda, T. Kikuma & R. Yonezawa, “Supplementary techniques for 2S-DIRK-based EMT

simulations,” in Electric power systems research, 115, 2014, pp. 87-93.

170

[60] X. Fu, S. Mouhamadou Seye, J. Mahseredjian, M. Cai and C. Dufour, "A Comparison of

Numerical Integration Methods and Discontinuity Treatment for EMT Simulations," in Proc.

2018 Power Systems Computation Conference (PSCC), 2018, pp. 1-7.

[61] Dynaωo, open-source simulator for power systems, [Online]. Available:

https://dynawo.github.io/.

[62] A. Guironnet, F. Rosière, G. Bureau and M. Saugier, "Speed-up of Large-Scale Voltage

Stability Simulations within a Fully Separated Modeler/Solver Framework," in Proc. 2021

International Conference on Smart Energy Systems and Technologies (SEST), 2021, pp. 1-

6.

[63] D. Fabozzi and T. Van Cutsem, "Simplified time-domain simulation of detailed long-term

dynamic models," in Proc. 2009 IEEE Power & Energy Society General Meeting, Calgary,

AB, 2009, pp. 1-8.

[64] A. G. Taylor, A. C. Hindmarsh, “User documentation for KINSOL, a nonlinear solver for

sequential and parallel computers.” Lawrence Livermore National Lab., CA, US, 1998.

[65] Modelica®-A Unified Object-Oriented Language for Physical Systems Modeling - Version

1, September 1997. [Online Available] http: //www.modelica.org.

[66] Modelica Association. [Online Available] http://www.modelica.org

[67] Julia programming language. [Online Available]: https://julialang.org/

[68] B. Lie, A. Palanisamy, A. Mengist, L. Buffoni, M. Sjölund, A. Asghar, & P. Fritzson,

“OMJulia: An OpenModelica API for Julia-Modelica Interaction,” in Proc. 2019 13th

International Modelica Conf. Linköping, Sweden,

[69] H. Elmqvist, M. Otter, A. Neumayr, G. Hippmann, “Modia - Equation Based Modeling and

Domain Specific Algorithms,” in Proc. 2021 14th International Modelica Conf., Linköping,

Sweden, pp. 73-86.

[70] The Functional Mock-up Interface. [Online Available] https://fmistandard.org

[71] T. Blochwitz, et al. "The functional mockup interface for tool independent exchange of

simulation models," in Proc. of the 8th International Modelica Conf., Linköping, Sweden,

2011.

171

[72] L. Vanfretti, W. Li, T. Bogodorova and P. Panciatici, "Unambiguous power system dynamic

modeling and simulation using Modelica tools," in Proc. 2013 IEEE Power & Energy Society

General Meeting, 2013, pp. 1-5.

[73] F. J. Gómez, L. Vanfretti and S. H. Olsen, "CIM-Compliant Power System Dynamic Model-

to-Model Transformation and Modelica Simulation," in IEEE Transactions on Industrial

Informatics, vol. 14, no. 9, pp. 3989-3996, Sept. 2018.

[74] F. J. Gómez, L. Vanfretti and S. H. Olsen, "Binding CIM and Modelica for consistent power

system dynamic model exchange and simulation," in Proc. 2015 IEEE Power & Energy

Society General Meeting, 2015, pp. 1-5.

[75] A. Masoom, J. Mahseredjian, T. Ould-Bachir, A. Guironnet, “MSEMT: An Advanced

Modelica Library for Power System Electromagnetic Transient Studies.” in IEEE

Transactions on Power Delivery, 2021.

[76] J. Joss. “Algorithmisches Differenzieren.” Ph.D. dissertation, Swiss Federal Institute of

Technology, Zurich, Switzerland, 1976.

[77] L. Petzold. Description of DASSL: a differential/algebraic system solver. Tech. report Sandia

National Labs., Livermore, CA (USA), Sept. 1982.

[78] A. C. Hindmarsh et al. “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation

Solvers, ” in ACM Trans. Math. Software. 31.3, Sept. 2005, pp. 363–396.

[79] S. G. Krantz & H. R. Parks, The implicit function theorem: history, theory, and applications.

Springer Science & Business Media, 2012.

[80] A. C. Hindmarsh, R. Serban., A. Collier, User Documentation for IDA v2.6.0, Center for

Applied Scientific Computing, Lawrence Livermore National Laboratory, May 2009.

[81] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd. Ed., Society for Industrial and

Applied Mathematics, USA, 2003.

[82] R. S. Dembo, S. C. Eisenstat, T. Steihaug. "Inexact newton methods," in SIAM Journal on

Numerical analysis, vol. 19.2,1982, pp. 400-408.

[83] P. N. Brown and A. C. Hindmarsh. “Reduced Storage Matrix Methods in Stiff ODE

Systems,” in Journal of Applied Math. & Comp., vol. 31, 1989, pp. 49-91.

172

[84] W. Braun, et al. "Fast simulation of fluid models with colored jacobians," in Proc. of the 9th

International Modelica Conf., 2012, Munich; Germany.

[85] A. H. Gebremedhin, F. Manne, and A. Pothen. "What color is your Jacobian? Graph coloring

for computing derivatives." in Society for Industrial and Applied Mathematics (SIAM)

review, vol. 47.4, 2005, pp. 629-705.

[86] J. Åkesson, et al. "Generation of sparse jacobians for the function mock-up interface 2.0." in

Proc. of the 9th International Modelica Conf., 2012.

[87] K. Soetaert, J. Cash, & F. Mazzia, Solving differential equations in R. Springer Science &

Business Media, 2012.

[88] W. Braun, F. Casella & B. Bachmann, “Solving Large-scale Modelica models: New

Approaches and Experimental Results using OpenModelica,” in Proc. 2017 International

Modelica Conf., Prague, Czech Republic, 2017.

[89] V. Brandwajn, “Damping of numerical noise in the EMTP solution”, EMTP Newsletter, vol.

2, no. 3, pp 10-19, 1982.

[90] J. Lin and J. R. Marti, "Implementation of the CDA procedure in the EMTP," in IEEE

Transactions on Power Systems, vol. 5, no. 2, pp. 394-402, May 1990.

[91] H. Lundvall, P. Fritzson, and B. Bachmann, ‘Event Handling in the OpenModelica Compiler

and Runtime System’, Linköping University Electronic Press, Linköping, 2008.

[92] N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications,

and Design, John Wiley & Sons, Inc., New York, 1995.

[93] J. Mahseredjian, L. Dube, Ming Zou, S. Dennetiere and G. Joos, "Simultaneous solution of

control system equations in EMTP," in IEEE Transactions on Power Systems, vol. 21, no. 1,

pp. 117-124, Feb. 2006.

[94] OpenModelica documentations, [Online Available]: https://www.openmodelica.org/

[95] “Excitation System Models for Power System Stability Studies,” IEEE Committee Report.

IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, No. 2 February 1981.

[96] “IEEE Recommended Practice for Excitation System Models for Power System Models for

Power System Stability Studies,” IEEE Standard 421.5-2005.

173

[97] P. Pourbeik et al., “Dynamic Models for Turbine-Governors in Power System Studies,”

Tech. report PES-TR1. IEEE Power & Energy Society Jan 2013.

[98] J. R. Marti, "Accurate Modelling of Frequency-Dependent Transmission Lines in

Electromagnetic Transient Simulations," in IEEE Transactions on Power Apparatus and

Systems, vol. PAS-101, no. 1, pp. 147-157, Jan. 1982.

[99] A. Morched, B. Gustavsen and M. Tartibi, "A universal model for accurate calculation of

electromagnetic transients on overhead lines and underground cables," in IEEE Transactions

on Power Delivery, vol. 14, no. 3, pp. 1032-1038, July 1999.

[100] I. Kocar and J. Mahseredjian, "Accurate frequency dependent cable model for

electromagnetic transients," 2016 IEEE Power and Energy Society General Meeting

(PESGM), 2016, pp. 1-1.

[101] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, “Synchronous machines” in

Analysis of electric machinery and drive systems, 3rd d. NY, USA, IEEE Press, 2013.

[102] U. Karaagac, J. Mahseredjian and O. Saad, "An efficient synchronous machine model for

electromagnetic transients," IEEE Trans. Power Delivery, vol. 26, no. 4, 2011, pp. 2456-

2465.

[103] P. Kundur, “Synchronous machine parameters," in Power system stability and control, New

York, USA: McGraw-Hill, 1994.

[104] J. A. Martinez, J. Mahseredjian and B. Khodabakhchian, "Parameter determination for

modeling system transients-Part VI: Circuit breakers," in IEEE Transactions on Power

Delivery, vol. 20, no. 3, pp. 2079-2085, July 2005.

[105] M. Lambert, "Transformer modeling for low-and mid-frequency electromagnetic transients’

simulation." Ph.D. dissertation, Dept. Electrical Engineering, École Polytechnique de

Montréal, Montreal, 2014.

[106] W. H. Kersting, “Radial distribution test feeders,” in IEEE Transactions on Power Systems,

vol. 6 (3), Aug 1991, pp. 975–985.

174

[107] A. Masoom, T. Ould-Bachir, J. Mahseredjian, A. Guironnet, N. Ding, “Simulation of

electromagnetic transients with Modelica, accuracy and performance assessment for

transmission line models,” In Electric Power Systems Research, vol. 189, 2020, 106799.

[108] A. Haddadi, J. Mahseredjian, “Power system test cases for EMT-type simulation studies,”

CIGRE, Paris, France, Tech. Rep. CIGRE WG C, 4, 2018, pp. 1-142.

[109] M.E. Hosea, L.F. Shampine, “Analysis and implementation of TRBDF2,” in Applied

Numerical Mathematics, vol. 20, no. 1, pp. 21-37, 1996.

[110] PEGASE: Pan European Grid Advanced Simulation and state Estimation, [Online].

Available: https://cordis.europa.eu/project/id/211407

[111] iTesla: Innovative Tools for Electrical System Security within Large Area, [Online].

Available: https://cordis.europa.eu/project/id/283012

[112] L. Vanfretti T. Rabuzin, M. Baudette, and M. Murad, “iTesla Power Systems Library (iPSL):

A Modelica library for phasor time-domain simulations, ” in SoftwareX, 18 May 2016.

[113] M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, L. Vanfretti, OpenIPSL:

Open-Instance Power System Library - Update 1.5 to “iTesla Power Systems Library (iPSL):

A Modelica library for phasor time-domain simulations, ” in SoftwareX, vol. 7, January-June

2018, pp. 34-36.

[114] A. Bartolini, F. Casella, A. Guironnet. “Towards Pan-European Power Grid Modelling in

Modelica: Design Principles and a Prototype for a Reference Power System Library”. In

Proc. 2019 International Modelica Conf., Regensburg, Germany,2019, Feb 2019.

[115] H. Lundkvist, and A. Yngve. "Accelerated Simulation of Modelica Models Using an FPGA-

Based Approach." Master thesis, Dept. of Electrical Engineering, Linköping University,

2018.

[116] P. Gibert, P. Panciatici, R. Losseau, A. Guironnet, D. Tromeur-Dervout and J. Erhel,

"Speedup of EMT simulations by using an integration scheme enriched with a predictive

Fourier coefficients estimator," In Proc. 2018 IEEE PES Innovative Smart Grid

Technologies Conf. Europe (ISGT-Europe), Sarajevo, 2018, pp. 1-6.

175

[117] E. Kofman, J. Fernández, D. Marzorati, “Compact sparse symbolic Jacobian computation in

large systems of ODEs,” in Applied Mathematics and Computation, vol. 403, p. 126181,

Aug. 2021.

[118] A. Guironnet, M. Saugier, S. Petitrenaud, F. Xavier, and P. Panciatici, “Towards an Open-

Source Solution using Modelica for Time-Domain Simulation of Power Systems,” in Proc.

2018 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Sarajevo,

2018.

[119] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, A Direct Sparse Solver for

Circuit Simulation Problems,” in ACM Trans. on Mathematical Software, vol. 37, no. 3, pp.

36:1–36:17, Sep. 2010.

[120] X. Chen, Y. Wang & H. Yang “NICSLU: An adaptive sparse matrix solver for parallel circuit

simulation,” in IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, 32(2), 261-274:2013.

[121] L. Razik, L. Schumacher, A. Monti, A. Guironnet and G. Bureau, "A comparative analysis

of LU decomposition methods for power system simulations," in 2019 IEEE Milan

PowerTech, Milan, Italy, pp. 1-6.

[122] A. Masoom, A. Guironnet, A.A. Zeghaida, T. Ould-Bachir, J. Mahseredjian, “Modelica-

based simulation of electromagnetic transients using Dynaωo: Current status and

perspectives,” in Electric Power Systems Research, vol. 197, 2021, 107340.

[123] IEEE Working Group 3.4.11, "Modeling of metal oxide surge arresters," IEEE Trans. Power

Delivery, vol. 7, no. 1, pp. 302-309, Jan. 1992.

[124] A. Masoom, J. Mahseredjian, T. Ould-Bachir, A. Guironnet “Electromagnetic Transient

Modeling of Large Power Networks with Modelica,” in Proc. of 14th International Modelica

Conf., Linköping, Sweden, Sep. 2021.

	DEdicaTION
	Acknowledgements
	RÉSUMÉ
	Abstract
	TABLE OF CONTENTS
	List of tables
	List of figures
	List of symbols and abbreviations
	Chapter 1 INTRODUCTION
	1.1 Modeling and Simulation
	1.2 Programming Paradigms
	1.3 Equation-Based Object-Oriented Languages
	1.3.1 Equation-based Modeling
	1.3.2 Object-Oriented Programming
	1.3.3 Mathematical Equations and Acausality

	1.4 Modelica
	1.5 EMT Modeling and Simulation
	1.5.1 State Space Analysis
	1.5.1.1 Simscape Electrical
	1.5.1.2 Specialized Power System Library

	1.5.2 Modified Augmented Nodal Analysis
	1.5.2.1 EMTP®
	1.5.2.2 XTAP

	1.6 Motivation and Objectives
	1.7 Methodology
	1.8 Contributions
	1.9 Thesis Outline

	Chapter 2 A review on Modelica and basic concepts
	2.1 Introduction
	2.2 Object-Oriented Mathematical Modeling in Modelica
	2.3 Equation-based Modeling
	2.4 Symbolic Workflow of Modelica Models
	2.5 Matching Algorithm
	2.6 Analysis of an RLC Circuit
	2.6.1 Linear Inductor Model
	2.6.2 Interconnection of Models
	2.6.3 Model Compilation
	2.6.4 Transformation to State-Space Form
	2.6.5 Solution Method

	2.7 Example of Algebraic Loop
	2.8 Example of Structural Singularities
	2.9 Solver
	2.9.1 BDF-methods
	2.9.2 IDA solver
	2.9.3 ODE mode
	2.9.4 DAE mode
	2.9.5 Exploring of Events Handling and Zero Crossings.

	2.10 Exploring of Switch Equation
	2.11 Exploring of Control Systems Modeling
	2.12 Exploring of Nonlinear Models
	2.13 Interfacing to Other Software

	Chapter 3 MSEMT: An Advanced Modelica Library for electromagnetic transient simulations
	3.1 Overview of the MSEMT Library
	3.2 Controllers
	3.2.1 Exciter ST1
	3.2.2 Governor IEEEG1
	3.2.3 Governor IEESGO

	3.3 Transmission Line
	3.3.1 PI-section Line Model
	3.3.2 Distributed Parameter Line Model Equations
	3.3.3 Constant Parameter Line Model
	3.3.3.1 Formulation and theoretical aspects
	3.3.3.2 Implementation in Modelica

	3.3.4 Wideband Line Model
	3.3.4.1 Formulation and theoretical aspects
	3.3.4.2 Implementation of WB-line model

	3.4 Load Models
	3.5 Synchronous Machine
	3.5.1 Magnetic Saturation
	3.5.2 Implementation of Synchronous Machine Model in Modelica

	3.6 Nonlinear Component Models
	3.6.1 Nonlinear Inductor
	3.6.2 Nonlinear Resistor
	3.6.2.1 Piecewise Linear Resistor Model
	3.6.2.2 Polynomial Model
	3.6.2.3 Surge Arrester Model
	3.6.2.4 Arc Models

	3.7 Switches
	3.8 Transformers
	3.8.1 Three-phase Transformer
	3.8.1.1 Delta-Delta Configuration
	3.8.1.2 Configurations DY +30, DY -30, DYg +30 and DYg -30
	3.8.1.3 Configurations YD +30, YD -30, YgD +30 and YgD -30
	3.8.1.4 Configurations YY and YgYg

	3.9 Block Diagrams
	3.9.1 Lead-Lag Compensator
	3.9.2 Hold_to
	3.9.3 Park’s Transformation

	3.10 Functions
	3.10.1 Clark’s Transform

	Chapter 4 accuracy AssessMENt of Transmission line modelS
	4.1 Test Case for Underground Cable
	4.2 Test Case for Aerial Transmission Line
	4.3 Conclusion

	Chapter 5 IEEE 39-bus Test case
	5.1 Introduction
	5.2 IEEE 39-bus Incorporating WB-Line Models
	5.3 Solution Evaluation for STC Model
	5.4 Evaluation of SM Model Accuracy
	5.5 Evaluation of Accuracy for Controllers
	5.6 Runtime Benchmark
	5.7 Conclusion

	Chapter 6 DynaꞶo hybrid c++/Modelica solution
	6.1 Introduction
	6.2 Native Models and Solvers
	6.3 Modifications, Open Questions, and Remaining Challenges for EMT Simulations
	6.4 Simulations and Results
	6.4.1 Case 1: Capacitor Bank Switching
	6.4.2 Case 2: Parallel Transmission Line Switching
	6.4.3 Case 3: Nonlinear Circuit of Surge Arrester

	6.5 Conclusions

	Chapter 7 Electromagnetic Transient Modeling of Large Power Networks with Modelica
	7.1 Introduction
	7.2 Case 1: Phase-to-Phase Fault Analysis
	7.3 Case 2: Analysis of Saturation in SM
	7.4 Case 3: Lightning
	7.5 Evaluation of Arc Models
	7.5.1 Comparison of Cassie and Mayr Arc Models
	7.5.2 Cassie-Mayr Arc Model
	7.5.2.1 Case 1: Source Inductance, L1=9 mH
	7.5.2.2 Case 2: Source Inductance, L1=10 mH, Δt= 0.1 µs in EMTP®
	7.5.2.3 Case 3: Source Inductance, L1=10 mH, Δt= 0.01 µs in EMTP®

	7.6 Conclusion

	Chapter 8 Conclusion AND recommandations
	ReFerences

