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RÉSUMÉ

Un effet indésirable médicamenteux (EIM) peut être défini comme une réaction sensible-
ment nocive ou désagréable résultant d’une intervention liée à l’utilisation d’un médicament.
D’après les services de santé, les EIM sont à l’origine de nombreuses hospitalisations et, dans
certains cas graves, du décès des patients chaque année. En plus d’avoir un impact significatif
sur la santé, les EIM ont également des effets économiques néfastes pour les personnes affec-
tées. En raison de tous ces problèmes, la recherche en pharmacovigilance s’est popularisée
pour détecter et extraire avec diligence et précision les effets secondaires des médicaments. La
pharmacovigilance concerne les activités de surveillance de l’innocuité du médicament dans la
phase post-commercialisation du médicament. Les sites de réseautage social comme Twitter
ont fourni aux gens une plate-forme pour se connecter les uns aux autres, pour discuter et
partager des informations et des nouvelles. L’identification et la collecte de tweets contenant
des mentions d’expérience personnelle en matière de santé seraient l’une des sources de don-
nées les plus rapides et les plus importantes pour les chercheurs. La détection et l’extraction
des mentions de médicaments indésirables dans les tweets peuvent compléter la liste des ef-
fets indésirables des médicaments résultant des essais de médicaments et peuvent aider à
l’amélioration des médicaments. La détection et l’extraction d’EIM à partir de texte peuvent
être considérées comme un problème d’extraction d’informations qui a connu une croissance
significative ces dernières années en raison des progrès de l’apprentissage en profondeur et de
l’apprentissage par transfert. Ce mémoire vise à étudier les performances de trois modèles
différents de BiLSTM (Bidirectionnel Long-Short Term Memory), BERT (Bidirectionnel En-
coder Representations from Transformers) et BERT+BiLSTM dans les tâches de détection et
d’extraction EIM. Pour former et évaluer ces modèles, un ensemble de données de 2735 tweets
qui sont étiquetés manuellement par certains étudiants en pharmacologie est utilisé. Dans
l’étape suivante, pour vérifier la possibilité d’obtenir de meilleurs résultats dans la tâche de
détection, la tentative consiste à agrandir l’ensemble de données en utilisant certaines tech-
niques d’augmentation proposées avec Easy Data Augmentation (EDA) et back-translation
et à former le meilleur modèle par l’ensemble de données augmenté.
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ABSTRACT

Adverse drug reaction (ADR) is an unwanted, uncomfortable, or dangerous effect that occurs
after prescribing the drug and directly correlates with the drug. ADR occurs during 10 to
20% of hospitalizations, some of which are severe and lead to death [1]. In addition, it is also
a substantial financial drain on the bottom line for taxpayers. However, early and accurate
detection of ADRs will mitigate and prevent the number of ADR related potential issues. In
addition, for detrimental reactions in patients caused by taking drugs, social media conver-
sations may report ADRs more quickly and efficiently than other means. By knowing that,
there is a clear need for automated ADR surveillance at the post-marketing phase of drugs.
This study aims to use deep learning methods to accurately identify unreported drug side
effects in reviews of twitter users. Utilizing a dataset of 2735 tweets manually labeled by some
pharmacology students, this research conducts deep learning based and pre-trained transfer
learning based approaches as a solution for detecting and extracting ADRs automatically. As
a first deep learning approach, we apply Bidirectional Long-Short Term Memory Networks
(BiLSTM), units that recurrently compute nonlinear transformations on the dataset. In the
next step, we utilize the Bidirectional Encoder Representations from Transformers (BERT)
model and different combinations of its encoder layers for ADR extraction. The study’s final
model is a combination of the best model from the previous BERT experiments, a BiLSTM,
and a classifier layer. The experiments have shown that the hybrid BERT+BiLSTM model
outperforms all others. In the final step, the efficiency of some proposed data augmentation
techniques along with Easy Data Augmentation (EDA) and back-translation for ADR de-
tection tasks is explored. Ultimately, the experimental results show that using a different
combination of these simple augmentation strategies to enlarge the training dataset boosts
the model performance.



vii

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS AND ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 PHARMACOVIGILANCE ANDRELATED EXISTING NATURAL LAN-
GUAGE PROCESSING METHOD . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Pharmacovigilance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Lexicon-based approach . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Traditional machine learning approach . . . . . . . . . . . . . . . . . 5
2.1.3 Deep Learning approach . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Extraction (Word-Level classification) task . . . . . . . . . . . . . . . 10
2.1.5 Detection (Sentence-Level classification) task . . . . . . . . . . . . . . 10

2.2 Representation of words in natural language processing (NLP) . . . . . . . . 11
2.2.1 One-hot encoding, word embedding, embedding layer . . . . . . . . . 11

2.3 Overview of deep learning models in this study . . . . . . . . . . . . . . . . 12
2.3.1 Recurrent Neural Network and LSTM model . . . . . . . . . . . . . . 13



viii

2.3.2 Transformers and BERT model . . . . . . . . . . . . . . . . . . . . . 17
2.4 Training process description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Hyperparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Evaluation metrics for extraction and detection tasks . . . . . . . . . . . . . 26
2.6 NER labeling method for evaluation . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Data augmentation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 3 EXTRACTION OF ADVERSE DRUG REACTION . . . . . . . . . . 31
3.1 Extraction of ADR introduction . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Dataset preparation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Collecting data from Twitter . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Pre-processing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Data labelling for ADR extraction . . . . . . . . . . . . . . . . . . . 32

3.3 Description of models used for ADR extraction . . . . . . . . . . . . . . . . 36
3.3.1 BiLSTM model, the study baseline model . . . . . . . . . . . . . . . 36
3.3.2 Pre-trained BERT model . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Combining the BERT and BiLSTM models . . . . . . . . . . . . . . 38

3.4 Evaluation metrics for word-level task of ADR extraction . . . . . . . . . . . 39
3.5 Implementation and hyperparameter optimization . . . . . . . . . . . . . . . 42
3.6 ADR extraction experiment results and discussions . . . . . . . . . . . . . . 44
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

CHAPTER 4 ADR DETECTION IMPROVEMENT WITH DATA AUGMENTATION
TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1 Detection (sentence-level classification) task introduction . . . . . . . . . . . 66
4.2 Dataset preparation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Dataset enlargement using different text augmentation techniques . . . . . . 67

4.3.1 Our proposed augmentation methods . . . . . . . . . . . . . . . . . . 67
4.4 Description of models used for ADR detection . . . . . . . . . . . . . . . . . 68
4.5 Evaluation metrics for ADR detection task . . . . . . . . . . . . . . . . . . . 68
4.6 Implementation of the data augmentation techniques for ADR detection . . 68
4.7 Experimental results and discussion . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



ix

CHAPTER 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1 Summary of work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



x

LIST OF TABLES

Table 2.1 Literature review and our project contribution in pharmacovigilance . 9
Table 2.2 Samples for named entity recognition (NER) prediction . . . . . . . . 28
Table 3.1 The number of instances in each class in the dataset . . . . . . . . . . 36
Table 3.2 Test result of BiLSTM model . . . . . . . . . . . . . . . . . . . . . . 46
Table 3.3 Test result of BERT model with 4 last hidden layers concatenation . 51
Table 3.4 Test result of BERT with 4 last hidden layers concatenation + BiLSTM

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 3.5 Training time of models on GPU (GeForce GTX 1650) . . . . . . . . 57
Table 4.1 Examples of ADR detection labeling (AE-Yes: the review contains an

ADR, AE-No: the review does not contain any ADR . . . . . . . . . 66
Table 4.2 Distribution of the main dataset . . . . . . . . . . . . . . . . . . . . 67
Table C.1 Examples of applying EDA augmentation technique to a sample of the

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table C.2 Examples of applying 4 proposed augmentation technique to a sample

of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xi

LIST OF FIGURES

Figure 2.1 An example for Named Entity Recognition (NER) technique . . . . . 10
Figure 2.2 Semantic relationship between words in word embedding representation

[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3 The architecture of a deep feed-forward neural network [3] . . . . . . 13
Figure 2.4 The inner structure of a neuron . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.5 Architecture of an unrolled recurrent neural network [4] . . . . . . . . 14
Figure 2.6 The architecture of LSTM memory unit [4] . . . . . . . . . . . . . . . 15
Figure 2.7 The transformer model architecture extracted from [5] . . . . . . . . 18
Figure 2.8 Queries (Q), Keys (K), and Values (V) of the embedding matrix [6] . 19
Figure 2.9 BERT different Tokenization layers [7] . . . . . . . . . . . . . . . . . 22
Figure 2.10 BERT classification output (C) [7] . . . . . . . . . . . . . . . . . . . 23
Figure 2.11 The model should stop at early termination point [8] . . . . . . . . . 25
Figure 3.1 ADR extraction task pipeline . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.2 An example of Named Entity Recognition (NER) labeling . . . . . . 34
Figure 3.3 Samples of our annotated dataset for word-level adverse drug reaction

extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 3.4 Dataset distribution for word-level extract adverse drug reaction task 36
Figure 3.5 The architecture of the BiLSTM-based (Baseline) model . . . . . . . 37
Figure 3.6 Architecture of the BERT model . . . . . . . . . . . . . . . . . . . . 38
Figure 3.7 The final model which is created by combining the best BERT and

BiLSTM models from previous experiments . . . . . . . . . . . . . . 38
Figure 3.8 Illustrative example of TP, FN and FP predictions . . . . . . . . . . 39
Figure 3.9 A practical example illustrating the concepts of TP, FN, and FP in

NER task evaluation for complete sentences of reviews . . . . . . . . 41
Figure 3.10 The BiLSTM model test result confusion matrix . . . . . . . . . . . 47
Figure 3.11 The BiLSTM model output value probabilities for the words with "B-

Adverse Event" true label in the test dataset . . . . . . . . . . . . . . 48
Figure 3.12 BiLSTM model density plot for all labels . . . . . . . . . . . . . . . 49
Figure 3.13 Results of different BERT model, HL: hidden layer, Sum: summation,

Concat: Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 3.14 The BERT model with 4 last layer concatenation confusion matrix . 51
Figure 3.15 BERT with 4 last hidden layers concatenation model density plot for

all labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



xii

Figure 3.16 The BERT with 4 last hidden layers concatenation + BiLSTM model
confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.17 combination of BERT with 4 last hidden layers concatenation and BiL-
STM model density plot for all labels . . . . . . . . . . . . . . . . . . 54

Figure 3.18 Comparison of the three model’s performance . . . . . . . . . . . . . 55
Figure 3.19 Comparison of the three models density plot for all labels . . . . . . 56
Figure 3.20 An example for token-level ("eylea" and "dmo") prediction of all models 58
Figure 3.21 An example for token-level ("rop") prediction of all models . . . . . . 58
Figure 3.22 Examples for (a) teken-level ("nsclc") and (b) entity-level ("advance

nsclc") prediction of all models . . . . . . . . . . . . . . . . . . . . . 59
Figure 3.23 An example for entity-level term with different labels in the training

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 3.24 Examples for (a) entity-level: "breast cancer" and (b) token-level: "breast-

cancer" prediction of all models . . . . . . . . . . . . . . . . . . . . . 61
Figure 3.25 Comparison of the three models True Positive, False Negative, and

False Positive in the test dataset . . . . . . . . . . . . . . . . . . . . 63
Figure 3.26 (a) Precision results for the three models (b) Recall results for the three

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 4.1 Detection task model framework . . . . . . . . . . . . . . . . . . . . . 68
Figure 4.2 Overall experimental framework . . . . . . . . . . . . . . . . . . . . . 69
Figure 4.3 ADR detection results for the baseline (BL) and each of the individual

EDA techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 4.4 ADR detection results for the baseline (BL) and each of the individual

proposed augmented and back-translation techniques . . . . . . . . . 71
Figure 4.5 Comparison of results for best score obtained with each individual tech-

nique and concatenation of them (+9AugBest) with Baseline . . . . . 72
Figure 4.6 (a) The precision results for three models (b) The recall results for

three models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 4.7 Comparison of results for the Train Dataset,Train Dataset+9AugBest

and Train Dataset+18AugBest . . . . . . . . . . . . . . . . . . . . . 74
Figure 4.8 Comparison of results for the BERT+BiLSTM as baseline model, BERT

and BERT+BiLSTM models with Train Dataset+9AugBest . . . . . 74
Figure B.1 The BiLSTM model experiment results for finding optimal hyperpa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure B.2 The BERT (4 last layer concatenation) model experiment results for

finding optimal hyperparameters . . . . . . . . . . . . . . . . . . . . 87



xiii

Figure B.3 The BERT (4 last layer concatenation) +BiLSTM model experiment
results for finding optimal hyperparameters . . . . . . . . . . . . . . 88



xiv

LIST OF SYMBOLS AND ACRONYMS

ADR Adverse Drug Reaction
AI Artificial Intelligence
API Application Programming Interface
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long Short-Term Memory
CHV Consumer Health Vocabulary
CNN Convolutional Neural Network
CNNA Convolutional Recurrent Neural Network
CRF Conditional Random Fiels
EHR Electronic Health Records
FAERS FDA Adverse Event Reporting System
FDA Food and Drug Administration
KNN K-nearest Neighbor
LR Logistic Regression
LSTM Long Short-Term Memory
MedDRA Medical Dictionary for Regulatory Activities
MUC essage Understanding Conference
NB Naïve Bayes
NER Named Entity Recognition
NLP Natural Language Processing
PIDM Program for International Drug Monitoring
PV Pharmacovigilance
RF Random forest
RNN Recurrent Neural Network
SIDER Side Effect Resource
SRS Spontaneous Reporting System
SVM Support Vector Machine
UMLS Unified Medical Language System
WHO World Organization



xv

LIST OF APPENDICES

Appendix A Dataset dividing ratio explanation . . . . . . . . . . . . . . . . . . . . 85

Appendix B Experiment results for finding optimal hyperparameters . . . . . . . . 86

Appendix C Example of augmented sentences . . . . . . . . . . . . . . . . . . . . 89

Appendix D Research models codes . . . . . . . . . . . . . . . . . . . . . . . . . . 90



1

CHAPTER 1 INTRODUCTION

1.1 Motivation

After administering a drug at standard doses, any unintended side effects are categorized
as adverse drug reactions (ADRs) by the World Health Organization (WHO) definition.
Ideally, ADRs are detected during the randomized control trial phases. However, due to
limitations such as the number of participants and the short duration of the study, they
are not always detected before a drug is put on the market. These reactions or side effects
can vary from minor problems like a simple rash, allergies, dry mouth, and headache to
some severe life-threatening issues, such as the risk of a heart attack, internal bleeding, and
cancer. In Canada, an estimated 200,000 severe adverse drug reactions kill up to 22,000
Canadians per year. Moreover, it is estimated that 95% of ADRs are not reported, costing
the Canadian healthcare system between 13.7 and 17.7 billion dollars [9]. In the United
States, statistics show a higher number. ADRs are estimated to represent over 3.5 million
physician visits, over 1 million trips to the emergency department, and more than 2 million
injuries, hospitalizations, and deaths [10]. Apart from a significant impact on health, ADRs
incur significant economic losses, totaling over $75 billion each year [11].

In order to detect ADRs early, the World Health Organization set up the Program for In-
ternational Drug Monitoring (PIDM) which is referred to as pharmacovigilance. As defined
by the WHO, Pharmacovigilance (PV), also known as drug safety, is a scientific approach to
collecting, detecting, assessing, monitoring, and preventing adverse effects or any other drug
product problem. Two different approaches will create this information. The first approach
is a spontaneous reporting system (SRS), consisting of the submitted report from manufac-
turers and healthcare professionals. The second approach gathers data during routine clinical
visits such as Electronic Health Records (EHR), hospital discharge summaries, and medical
prescriptions.

Accurate and early detection and extraction of ADRs and appropriate regulatory action can
prevent many deaths and hospitalizations and reduce related financial costs. It can also help
the pharmaceutical industries improve drug safety and prevent huge financial losses since
post-market ADRs may reduce their drug production. All these reasons motivat studying
ADR detection and extraction.
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1.2 Problem definition

Despite the importance of detecting ADRs, they are unfortunately vastly under-reported [12].
This is because only health professionals could report ADRs at first. In the following years,
however, many studies demonstrated the importance of patients as reporters, and drug user
reporting became a complementary source of knowledge [13].

One of the problems in this field is that most of the healthcare providers report severe ADRs
only, and also the voluntary submission by the consumers limits the reporting quantity [14],
giving rise to a median under-reporting of ADRs for about 94% [15] which is a worrying
amount. To compensate for the lack of clinical reports of ADRs, some researchers decided
to use social media networks to extract a rich source of information [16]. The total number
of people who use social media grows worldwide continually, resulting in vast amounts of
data. Twitter is one of the most popular platforms for academic research. According to
estimates, 500 million tweets are posted every day, and of the total users, 26% have discussed
health information in their tweets [17]. Statistics show that there is a considerable correlation
between ADRs detected in Twitter and those reported in the FDA Adverse Event Reporting
System (FAERS), which offers the reliability of Twitter as a rich source of ADRs detection
in addition to the clinical reports [18]. Therefore, Twitter is chosen as the source used in this
study to compensate for the limitation.

Detection and extraction of drug side effects are expertise-dependent tasks, and if they are
done only in a manual way, it will be expensive and time-consuming, which is another issue
of this field. However, thanks to the significant improvement in AI and machine learning,
especially deep learning methods [19], working with text to extract information that is one of
the subtasks in natural language processing (NLP), becomes more convenient and practical
compared to the approaches employed in the last few years such as Rule-based extraction
methods. Recently, the NLP community has been witnessing the effectiveness of pre-trained
models and paying more attention to this sort of deep language representation models such
as ELMo [20], GPT [21], and especially Bidirectional Encoder Representations from Trans-
formers (BERT), which achieves state of the art in most of the NLP tasks [22] in contextual
representation. Therefore, deep learning and pre-trained approaches will be used to detect
and extract ADR automatically in this study.

1.3 Objective

This thesis aims to address two challenges: automatic detection of ADR and automatic
extraction of ADR in social media, specifically on Twitter. The focus of the ADR detection
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task is on identifying adverse drug reactions as a medication-related outcome. The detection
model as a sentence-level task is expected to differentiate tweets as reporting adverse drug
reactions or not. As a word-level task, the ADR extraction model focuses on identifying the
location of ADR mentions in each tweet. The core approach for this task is, generally, a
Named Entity Recognition (NER) system. The NER task identifies objects (one or many
words) like adverse drug reactions that belong to some predefined categories.

For implementing the research tasks, different models based on recurrent neural network
Bidirectional Long Short-Term Memory (BiLSTM) [23], BERT, and some combination of
BERT and BiLSTM is explored to find the model with the best performance in the dataset
of the study. Moreover, to gain high accuracy in the ADR detection task, some simple
data augmentation techniques are proposed and examined to check their effectiveness for
pre-trained models and small size domain-specific datasets.

1.4 Outline

The rest of the thesis is organized as follows: in Chapter 2, the related works that have
been done in this field and the theoretical background behind the concepts and models used
in this study are discussed. Chapter 3 describes the dataset preparation steps, different
methods used, experiments set-ups, all the results, and discussions of implementing the
ADR extraction tasks. In Chapter 4 some new data augmentation techniques are proposed
and examined to improve the ADR detection performance. Finally, Chapter 5 presents the
conclusions of this work and propose further options of the study.
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CHAPTER 2 PHARMACOVIGILANCE AND RELATED EXISTING
NATURAL LANGUAGE PROCESSING METHOD

2.1 Pharmacovigilance methods

The detection of adverse drug reactions (ADRs) has received plenty of attention, and many
studies have been done in this area. Published work in this field can be divided into three
primary classes: lexicon-based approaches, traditional machine learning approaches, and deep
learning approaches.

2.1.1 Lexicon-based approach

The lexicon-based approaches rely on analyzing language based on the idea that it comprises
lexical units rather than grammatical structures. For the detection of ADRs, a lexicon-based
approach primarily uses large data sets of medical and drug-related terms called lexicons to
identify if the tokenized words in the input text are matched with the ADR entries in the
lexicon.

There exist some standard data sets or, in other words, dictionaries among all lexicon-based
approaches that include sources such as the Side Effect Resource [24] (SIDER, that con-
nects 888 drugs to 1450 side effect terms), Consumer Health Vocabulary [25] (CHV, the
open-access terminology system contains consumer alternatives for medical terms), Medi-
cal Dictionary for Regulatory Activities (MedDRA) [26], Unified Medical Language System
(UMLS, Unified Medical Language System, which is commonly used in a medical field to
manage a variety of standards and resources for biomedical information (e.g., health records)
to facilitate collaboration [27], the FDA Adverse Event Reports System (FAERS, which is
used to track information pertaining to the quality of pharmaceutical products, including
reports of negative side effects, errors, etc.).

Leaman andWojtulewicz [28] implemented one of the first studies to extract ADRs from social
networks. They created a dataset by gathering the user comments from DailyStrength, a
social network for sharing health-related experiments. Their technique to extract the ADRs
was to tokenize the comments and check their matches by terms in lexicons created from
UMLS Methathesaurus2, SIDER, and Canada Drug Adverse Reaction Database [29]. Their
results showed that comments from health-related social networks could reflect known ADRs.

Benton et al. [30] collected a corpus of medical message board posts related to breast cancer
and attempted to extract ADRs by finding the co-occurring terms in lexicons and corpus.



5

Yates and Goharian [31] collected their data based on the names of five commonly used
breast cancer drugs from three drug review social media sites, namely, askapatient.com,
drugs.com, and drugratingz.com. Using various lexicons such as Side Effect Resource and
the Unified Medical Language System, which includes a collection of glossaries of medical
terms and presents them in a graph-like data structure indicating how the terms are related.
Their method process creates equivalent terms for ADRs and extracts all the expected and
unexpected ADRs from the reviews.

Liu and Chen [32] developed an automated crawler to download web pages from patient
forums to collect their data. Then, they applied multiple types of lexicon sources to extract
drug names and adverse events from the text, including UMLS, FAERS, and CHV. They
initialized the medical entity extraction with MetaMap, a highly configurable Java API from
the National Library of Medicine. It was used to map patient social media text to the UMLS
to recognize terms matching standard medical lexicons in patient forums.

Lexicon-based approaches tend to be fast from a processing time standpoint since they do not
require training on their data; however, some limitations exist. For example, users frequently
rely on everyday informal language to describe the symptoms they are experiencing instead
of recognized medical terms. For example, the phrase “messed up my sleeping patterns”
was used to report “sleep disturbances” or use phrases with misspellings and abbreviations.
Furthermore, approaches that rely on a fixed lexicon are challenging to use because they
require that the lexicon be periodically updated. Thus, the limitations of a lexicon approach
call for improvements to solve these problems.

2.1.2 Traditional machine learning approach

The availability of annotated data for ADR identification tasks in recent times makes it pos-
sible to use machine learning techniques to detect ADRs automatically. Advanced statistics
and machine learning methods make the users’ analysis more effective and accurate for de-
scriptive and predictive purposes. In statistical and machine learning approaches, features
are carefully designed using word-level features, documents, and corpus features for repre-
senting the training samples. These algorithms are then utilized to learn a model to find out
similar patterns from unseen data.

Nikfarjam and Gonzalez [16] introduced an automatic machine learning-based concept extrac-
tion system called ADRMine that uses conditional random fields (CRFs), a statistical-based
method, applied to pattern recognition by taking the context into account. They used the
ADRMine to identify specific social media posts mentioning adverse reactions to drugs. In
addition, they used a new feature that models the semantic of word similarities by applying a
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clustering method based on pre-trained word representation vectors to enhance their results.

Gurulingappa et al. [33] worked on adapting a machine learning-based system to identify
and extract potential adverse drug event relations. They begin with a statistical approach
by adopting an ontological framework and coupling the results with a machine learning
model. Next, they employed the Java Simple Relation Extraction (JSRE) system to create
a supervised classification platform that used Support Vector Machines (SVMs) with dif-
ferent kernels. The data set used for training and validation of the model was made from
MEDLINE case reports, a high-quality corpus that includes bibliographic information for
academic journals. Finally, they manually annotated this created dataset using an ontology-
driven methodology.

I. S. Alimova and E. V. Tutubalina [34] developed an adverse drug reaction classifier based
on user reviews, comparing the efficiency of a message-level approach to an entity-level one.
For message-level classification, they applied their model to a dataset of tweets named the
Twitter corpus. They used a dataset of user reviews called the CSIRO Adverse Drug Event
Corpus (CADEC) for entity-level. Logistic Regression and Linear Support Vector Machine
(SVM) classifiers are two machine learning algorithms they utilize in their proposed model.

For the ADR prediction task, Liu M, Wu Y, Chen Y, et al. [35] proposed a new drug
surveillance framework based on a machine learning approach. First, they created different
feature combinations by integrating chemical (i.e., compound signatures), biological (i.e.,
protein targets, transporters, enzymes, and pathways), and phenotypic (i.e., indications and
other known side effects) properties. Then they developed five different machine learning
algorithms, logistic regression (LR), naïve Bayes (NB), K-nearest neighbor (KNN), random
forest (RF), and SVM for ADR prediction task, and SVM was found to outperform the
others.

Using traditional machine learning methods leads to a substantial improvement, but there
exist many limitations. For example, some of the approaches used were lexicon-based, and
they had significant limitations; in particular, while they can be used to identify named
entities or relationships between different parts of speech, they ignore semantics and deeper
language structure. Furthermore, in traditional machine learning problems, features are
created manually, which is time-consuming. Moreover, a domain expert must identify most
of the underlying features applied to the data to work effectively for the machine learning
algorithms.
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2.1.3 Deep Learning approach

Deep Learning techniques are more effective due to the low concern about feature engineering
since they attempt to learn high-level features from data rather than engineering them from
scratch. This is one feature of Deep Learning that makes it more effective and accurate than
traditional Machine Learning.

One of the first studies on deep learning for ADR detection is Cocos et al. research [36].
A bidirectional Long Short-Term Memory (BiLSTM) was used to train their model on a
sample Twitter dataset and showed promising results compared to previous methods. Lee et
al. [37] developed various semi-supervised Convolutional Neural Network (CNN) models to
classify ADRs in tweets; they also used unlabeled data to develop their models. To solve the
ADR detection problem, Huynh et al. [38] used CNN as a baseline. They proposed two new
neural network models, a Convolutional Recurrent Neural Network (CRNN) that starts with
a convolutional layer like the CNN but is followed by a recurrent layer and Convolutional
Neural Network with Attention (CNNA) that is created by adding attention weights to
convolutional neural networks. As a result, CNN performs better than other more complex
CNN variants on the ADE dataset. In another research for ADR detection from electronic
health records (EHRs) of patients in hospitals, Wunnava et al. [39] presented a three-layer
deep learning architecture consisting of a recurrent neural network BiLSTM to represent
character-level terms in medical terminology, another BiLSTM to capture the context of
each word and conditional random fields (CRF) as the final label prediction method. Using
BiLSTM, Li et al. [40] generated a joint model for extracting drug, disease, and adverse event
mentions simultaneously.

From the different architectures used to implement neural networks, we can distinguish
mainly RNNs, more specific LSTM, or Bi-LSTM. Considering the wide use of the LSTM
model and its promising results, we select it as our baseline model.

Recently, with the advent of Transformer based approaches [5] such as BERT [7], and
GPT [41] language models, which achieved performance improvement over the state-of-the-
art RNN based architectures on several NLP tasks, researchers began to use these more
advanced models for ADR detection tasks. For example, Chen et al. [42], for automatic clas-
sification and extraction of adverse effect mentions in tweets, using a BERT-based model, and
their system ranks first among all systems on SMM4H Shared Task 2019. Social Media Min-
ing for Health Applications (SMM4H) provided some NLP challenges on social media mining
for health monitoring and surveillance. Another research for a pharmacovigilance task [43]
used BERT and two other BERT domain-specific implementations: BioBERT, which is a
BERT model that pre-trained on biomedical corpora, including PubMed abstracts and arti-
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cles (PubMed is a free search engine accessing the MEDLINE database) and clinicalBERT
which is also a BERT model pre-trained on 2M clinical notes. They train and test the models
on Twitter, and as a result, their BERT model got better results than others. Then as their
final model, they create an ensemble model of these three models, which has better results
than all previously reported models. However, they mentioned that such a large ensemble
model might not be realistic to put into production, and using simple alternative models
such as LSTM may be more suited.

With deep learning, features can be learned from large amounts of data and require no manual
work to extract those features. This is a significant advantage over traditional machine
learning, where each feature has to be handcrafted. However, to understand and learn
patterns from data, deep learning methods require large amounts of data. Finding sufficiently
large and quality annotated datasets in many domains is hard. A transfer learning strategy
can be used as a solution to the insufficient training data problem. The transfer learning
process involves training a model on a large-scale dataset then utilize the pre-trained model
in a posterior task by training it with that task-specific dataset. Patterns that are learned
from the large-scale dataset are used as a starting point for the training. We attempted
to use the Bidirectional Encoder Representations from Transformers (BERT) based model
by considering all these cases. We combined it with a simple BiLSTM layer as our leading
solution for our research objective. Table 2.1 shows a brief overview of the literature reviews
and this project contribution.
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Table 2.1 Literature review and our project contribution in pharmacovigilance

Study Year Task Method Dataset

Leaman et al. 2010 ADR extraction Lexicon based approach
(Lexical pattern-matching) Social network

Benton et al. 2011 ADR extraction Lexicon based approach MEDLINE ar-
ticles

Yates et al. 2013 ADR extraction Lexicon based approach Social media
sites

Liu et al. 2012 ADR detection/
extraction Lexicon based approach online patient

forums

Gurulingappa et al. 2015 ADR extraction
Traditional machine learning
approach (Support Vector Ma-
chines (SVM))

MEDLINE ar-
ticles

Liu M et al. 2012 ADR detection

Traditional machine learning
approach (logistic regression
(LR), naïve Bayes (NB), K-
nearest neighbor (KNN), ran-
dom forest (RF), and SVM)

SIDER, Pub-
Chem, Drug-
Bank, and
KEGG

Nikfarjam et al. 2015 ADR detection/
extraction

Traditional machine learning
approach (Conditional Ran-
dom Fields (CRFs))

Social media

I. S. Alimova et al. 2017 ADR detection Traditional machine learning
approach (SVM)

Twitter cor-
pus, CSIRO,
CADEC

Cocos et al. 2017 ADR detection/
extraction

Deep learning approach
(bidirectional Long Short-Term
Memory (BiLSTM))

Twitter

Lee et al. 2017 ADR detection Deep learning approach (CNN) Twitter

Li et al. 2017 ADR extraction Deep learning approach
(BiLSTM) PubMed

Wunnava et al. 2019 ADR extraction Deep learning approaches
( BiLSTM and CRF)

health records
(EHRs) of pa-
tients in hospi-
tals

Chen,Y et al. 2019 ADR extraction Deep learning approach
(BERT)

Twitter
(SMM4H
Shared Task
2019)

Breden et al. 2020 ADR detection/
extraction

Deep learning approach
(BERT, BioBERT, Bio +
clinicalBERT and an ensemble
model of them)

Twitter

Our study 2021 ADR detection/
extraction

Deep learning approach (BiL-
STM, BERT, BERT (concate-
nation of 4 last hidden lay-
ers)+BiLSTM

Twitter (3 spe-
cific drug)



10

2.1.4 Extraction (Word-Level classification) task

In this study, extraction performed as a word-level classification refers to the task where
each word in the document is identified and classified as belonging to a specific pre-defined
class, such as "ADR", "Drug". This task can be solved automatically by a technique in
natural language processing (NLP) called named entity recognition (NER). Originally, Named
Entities were proposed at the Message Understanding Conference (MUC-6) [44] to describe
names of organizations, people, and locations in the text, currency, time, and percentage
expressions. Throughout the text document, particular terms represent specific entities that
are more informative and have a unique context. These terms are named entities, and they
are terms like people (such as name, family name), places (such as cities, countries, rivers),
organizations (such as companies, government organizations, committees), often indicated by
proper names. Named entity recognition (NER), also called entity extraction, is a popular
technique for selecting and classifying named entities using various pre-defined classification
categories, as an example shown in Figure 2.1.

Figure 2.1 An example for Named Entity Recognition (NER) technique

To recognize an entity, a NER model needs to detect words or strings of words (e.g., United
States of America) that form an entity and recognize the entity category it relates to. So,
first, we need to create entity categories, such as Name, Location, Event, Organization, and
feed these categories as an annotated dataset to a NER model. Then, by tagging some word
and phrase samples with their corresponding entities, the NER model will eventually be
taught to detect entities themselves.

2.1.5 Detection (Sentence-Level classification) task

In this study, detection performed as a sentence-level classification refers to the task where
each sentence (each user review) in the document is identified and classified as belonging
to a specific pre-defined class. Detecting adverse drug reactions is considered as a binary
classification in which there are only two classes. For example, a review containing adverse
drug reactions is classified as "adverse drug detected", and on the other hand, if there is no
adverse drug reaction in the review, it is classified as "adverse drug not detected".
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2.2 Representation of words in natural language processing (NLP)

In general, the text data format cannot be directly processed into the language deep learning
models, and it needs to be converted into a vector or matrix of numbers.

2.2.1 One-hot encoding, word embedding, embedding layer

The most straightforward technique to represent a word is the one-hot representation. To
present the words by the one-hot representation method, all the unique words are gathered
in a vocabulary and assigned a unique index to form a bag of words. The one-hot vector size
will be the same as the created vocabulary. In one-hot representation, for the i-th word of
the vocabulary, the vector’s value at the index i is 1 and all others are 0. For example, for
the sentence " I got my Avastin injection", the vocabulary and one-hot vectors are as follow:

V ocabulary = {I, got,my,Avastin, injection}

I =[1, 0, 0, 0, 0] (2.1)

Avastin =[0, 0, 0, 1, 0]

There are two significant issues with this representation approach. The first issue is the high
dimension of a one-hot vector when presenting a large vocabulary. Most of the vector is
taken up by zeros, so valuable data are sparse. The second issue is that it does not consider
any relation between the words. With one hot representation, it can be able to recognize
the exact words but not similar words. The word embedding approach was introduced to
solve these issues. Word embeddings is a method to transform a word into a real-valued
vector in a low-dimensional space instead of a large binary vector with many zeros (one-hot
vector). Moreover, the objective is to make the distance between vectors of two semantically
close words (for example, "feline" and "cat") small while making it large for any random pair
of words ("car" and "cat") to solve the lack of meaningful relationship issue in the one-hot
method. As shown in Figure 2.2 in the representation space, similar words have similar
distances.

When deep learning models are applied to language processing tasks, the first layer is always
an embedding layer. The embedding layer will convert text inputs to word embedding vectors.
These vector representations of each word (word embeddings) are trainable parameters. Their
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Figure 2.2 Semantic relationship between words in word embedding representation [2]

values are first initialized randomly and then learned by the model during training. In the
same way, a model learns the weights of layers as the parameters. Two values must be
determined for defining the embedding layer: the number of embeddings (the size of the
dictionary of embeddings) and the dimension of the embedding (the size of each embedding
vector). The size of the embedding dictionary is equal to the number of unique words in the
dataset, and the size of the embedding vector is the number of dimensions in which each word
is represented. For calculating embedding dimension Equation 2.2 is suggested by Google
Developers [45]. They mentioned that this formula is just a general guideline, and researchers
can set the number of embedding dimensions as they please.

embedding dimensions = (number of unique words)0.25 (2.2)

2.3 Overview of deep learning models in this study

Neural networks are a set of algorithms inspired by the functioning of the human brain.
Feed-forward neural networks are the most common type of neural network that consists of
different layers, one input layer, one or more hidden layer(s), and one output layer Figure 2.3.

The layers consist of basic units called neurons or nodes. All these nodes are connected and
have associated weights which are model parameters. Each node receives data from several
nodes connected to it from the previous layer and sends its output to the nodes in the next
layer.
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Figure 2.3 The architecture of a deep feed-forward neural network [3]

As shown in Figure 2.4, inside each neuron, the weighted average of received inputs are
computed, and this sum value is fed to a nonlinear function called the activation function.

Figure 2.4 The inner structure of a neuron

2.3.1 Recurrent Neural Network and LSTM model

Recurrent Neural Network (RNN)

In the case of sequential models such as language and text processing, the sequence, the order
in which one word follows another, plays an important role. This is because a single input
item from the series is related to others in the sequence and likely influences its neighbors.
For example, in a sentence, the meaning of a word mostly depends on the previous words
in the sentence. So, for implementing language-related tasks, a link between sequences are
needed.
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To obtain such a link, a loop between higher- and lower-layers is needed in the feed-forward
neural network for feeding signals of earlier timesteps back into the network (Figure 2.5).
These networks with recurrent connections are called Recurrent Neural Networks (RNN) [46].
A recurrent neural network is a feed-forward neural network rolled out over time. With the
help of these loops within the network, RNN can remember what they have learned from
prior inputs. As a result, RNNs build a memory of time-series events. In addition, they
may handle different lengths of inputs (which was another limitation for feed-forward neural
networks in sequential data) because each new data point can be fed into the model for the
duration of the sequence, and there is no pre-set limit to the size of the vector.

Figure 2.5 Architecture of an unrolled recurrent neural network [4]

For some tasks, we may only need to consider the most recent information available. An
example could be predicting the next word based on the previous words. An RNN can
be successfully used when there is a small gap between the relevant information and its
needed location. However, RNNs are unfortunately unable to learn links between distant
data elements as that gap between relevant information and the point where it is required
grows. Furthermore, this model fails to take into account long-term dependencies that may
lead to leaving out valuable information. Practical RNNs are limited to look back in time
to approximately ten timesteps [47]. The fed-back signal vanishing causes the problem;
the continuous multiplication of partial derivatives leads to vanishing gradient values (these
values are used to adjust the network’s internal weights).

Long Short-Term Memory(LSTM)

A more complex network based on a recurrent architecture with long short-term memory
(LSTM) was developed to solve short-term memory issues by introducing a memory unit
into the network (Figure 2.6). An LSTM recurrent neural network can learn more than 1,000
timesteps, depending on its complexity [48].

An LSTM memory unit contains three gate mechanisms: forget gate, input gate, output gate,
and the cell state. The cell state can store temporal information that has been written into it,



15

Figure 2.6 The architecture of LSTM memory unit [4]

and the network can read the stored information. The three gates control how information
enters and leaves the cell. The forget gate decides how much of the old memory is to be
preserved, the input gate determines how much of this unit is added to the current state, the
output gate determines what the next hidden state should be.

LSTM works according to a three-step process [4]. In the first step, the forget gate decides
what information will be thrown away from the cell state. The sigmoid function σ() (which
is a function that maps the whole real range of z into [0, 1], decides it. It takes the previous
state ht-1 and the current input(xt) and outputs a number between 0 and 1 for each number
in the cell state Ct-1 (Equation 2.3).the ft is the forget gate output, Wf represents the forget
gate weight matrix, and bf represents the forget gate bias vector. An output 1 value means
keep this information, and 0 means omit it.

ft = σ(Wf .[ht-1, xt] + bf ) (2.3)

In the next step, the input gate decides which new information will be stored in the cell
state; a sigmoid function determines which values to let according to its 0,1 output. The
it returns the output of the input gate, Wi represents the input gate weight matrix, and bi

represents the input gate bias vector. At the same time, a tanh function gives weight to the
passed values deciding their level of importance ranging from -1 to 1, creating a vector of
new candidate values, C̃t (Equation 2.4).
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it = σ(Wi.[ht-1, xt] + bi)

C̃t = tanh (Wc.[ht-1, xt] + bc)
(2.4)

To create the new cell state, we multiply (element-wise product (∗) ) the old state Ct-1 by
ft which was calculated earlier, and add it ∗ C̃t (Equation 2.5). This is the new candidate
values, scaled by how much we decided to update each state value.

Ct = ft ∗ Ct-1 + it ∗ C̃t (2.5)

The final output is based on the cell state with some modifications. First, a sigmoid function
decides what part of the cell state is to be sent to the output, then to regulate the cell state
value between -1 and 1, a tanh function is used. The final output is obtained by multiplying
these two functions (Equation 2.6). The ot returns the output gate’s output, Wo represents
the output gate weight matrix, and bo represents the output gate bias vector. Finally, the ht

indicates the final value of the LSTM memory cell.

ot = σ(Wo.[ht-1, xt] + bo)

ht = ot ∗ tanh(Ct)
(2.6)

Each LSTM cell only considers the previous context but does not utilize the future context.
In text processing, capturing only the previous words is not sufficient to fully understand
the context of a word in a text. Indeed, it is more efficient to consider words occurring after
the word under consideration. Schuster and Paliwal [23] invented a bidirectional recurrent
neural network (BRNN) to overcome this limitation.

A BiLSTM combines two independent LSTM, one that looks left to right (with the output of
−→
h t) and the other look right to left (with the output of ←−h t) and then combines their output
at inference, usually by simple concatenation (Equation 2.7).
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2.3.2 Transformers and BERT model

The transformer concept was proposed by Vaswani et al. [5] in the famous paper "Attention
Is All You Need" to solve the problem of language translation and was very well received.
However, LSTMs and other RNN methods use sequential word input and output, and for a
neural network to learn, there can be many timesteps required, making them slow. Further,
the BiLSTM method is not the most accurate to capture the meaning of words for the simple
reason that it is learning left to right and right to left separately and then concatenating
them. As a result, the actual context is somewhat lost. The transformer architecture,
however, addresses some of these concerns.

First, they are faster since they can process words simultaneously, which means they apply
the process in parallel. Second, they are bidirectional and learn context simultaneously from
both directions, so they can better understand what the words mean.

Like LSTM, a transformer is an architecture which takes a sequence as an input and returns
another one. However, unlike recurrent models, a transformer relies on an attention mech-
anism to represent word sequences rather than recurrence. Transformers have an increased
ability to retain long-term information due to the attention mechanism. It can "attend" or
"focus" on all previous tokens that have been generated. The concept of attention was in-
troduced for the first time in [49], it was used to solve the forgetting problem of RNNs and
to improve their contextual awareness. Attention is nothing more than saying which part of
the sentence should get more importance. In other words, the attention mechanism focuses
on the certain parts of the input, while the rest of the input is in low focuses. Rather than
relying solely on the prediction based on the RNN’s final hidden state representation, the
network can look back over previously hidden states to detect context. In addition, the model
may be able to detect more complex context information.

As shown in Figure 2.7, a transformer consists of two key components, an encoder, and a
decoder. On the left is the encoder, and on the right is the decoder. In the first step, input
is fed to the embedding layer. Essentially, a word embedding layer is a lookup table for
mapping words to a vector of real numbers for representation. In the next step, there is
a positional encoding layer. As mentioned before, the transformer removes the recurrent
structure. Instead, it uses an attention mechanism, so there is no recurrent network used
to encode a model’s sequence pattern. Keeping the positional information of inputs is an
important issue. This is done using positional encoding with sine and cosine functions. So
by using positional encoding, the positions are added to the embedded representation of each
word.
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Figure 2.7 The transformer model architecture extracted from [5]

The encoder layer consists mainly of Multi-Head Attention and Feed Forward layers. The core
technology in Transformers is the “Self-Attention” mechanism. Self-Attention is a specific
attention mechanism that is used in Multi-Head Attention. Self-Attention uses a token pair-
wise scoring system instead of a recurrent network to associate each word in the input to
other words. To be more specific, given a word in a sequence, the algorithm can learn which
other words to prioritize in determining the meaning of a word. As every token in the input
is processed, self-attention looks at all other tokens to detect possible dependencies.
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To achieve self-attention, we need the Queries (Q), Keys (K), and Values (V) of the embedding
matrix (Equation 2.8). Q, K, and V are query, key, and value vectors stacked together as
matrices and KT is the transpose of matrix K. These matrices do not change across input
tokens.

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V (2.8)

The Queries (Q), Keys (K), and Values (V) matrices are obtained by multiplying the in-
put embedding vectors (X) by three different learnable weight matrices WQ, WK , and WV

Figure 2.8.

Figure 2.8 Queries (Q), Keys (K), and Values (V) of the embedding matrix [6]

This is followed by a dot product matrix multiplication of the queries and keys to produce a
scoring matrix. The score matrix can determine how much attention each word should get;
the higher the score, the more focus one has. Afterward, the product will be divided by the
square root of the dimension of the key vector (

√
dk), as multiplying values can generate vary

large values; this step allows for more stable gradients. Finally, a softmax function (which is
a function that calculates the relative probabilities) is applied to the scaled score in the next
step to get the attention weights. The higher scores are boosted with a softmax, and the
lower scores are lowered, and we get the final attention weights as a probability distribution.
Finally, these attention weights are multiplied by the value vector to get an output vector
(Equation 2.8). The goal is to keep only the values v of the input word(s) we want to focus
on by multiplying them with high probability scores and remove the rest by driving them
towards 0 by multiplying them with the low probability scores. So now, the output is ready
to be fed into a linear layer to process.

In order to make this self-attention mechanism into a multi-headed computation (in other
words, run attention mechanism several times in parallel), it is necessary to split the key, the
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value, and the query into N vectors before applying self-attention. Then, each split vector
is subjected to the self-attention algorithm. In the transformer structure, each self-attention
process is called the head. The output from each head is then concatenated before it is
passed through the final linear layer (Equation 2.9). The "concat" in the equation refers to
the concatenation function. Thus, multi-head attention allows us to pay attention to different
parts of the sequence differently each time.

Multihead(Q,K, V ) = concat(h1, ..., hh)W o

hi = Attention(QWQ
i , KW

K
i , V W

V
i )

(2.9)

Other features of the transformer structure include residual connections and a normaliza-
tion layer. A residual connection reduces the problem of vanishing or exploding, and the
normalization layer ensures that all layers’ features have the same scale.

The next transformer key component, the decoder, has a self-attention, encoder-decoder
attention, and feed-forward layer (Figure 2.7). Most concepts of the decoder are already
familiar; only the encoder-decoder is a new concept. The self-attention looks at the input
from the previous layer in the decoder stack. In contrast, the encoder-decoder attention looks
at combining the self-attention layer and input from the encoder stack. In the self-attention
of the decoder, future tokens are “masked” when computing attention for that token. Finally,
the encoder pushes the last encoded vector to all layers in the decoder stack.

BERT (Bidirectional Encoder Representations from Transformers):

What makes the transformer architectures more practical than the LSTM cell is that both the
encoder and the decoder, even separately, have some basic understanding of the language,
so each part (encoder, decoder) can be used separately to build systems that understand
language. At the end of 2018, Google published their NLP model called Bidirectional Encoder
Representations from Transformers (BERT) by using and stacking the encoder part of the
transformer. The original transformer was meant to be used for language translation tasks,
but BERT can be used for language translation, Question Answering, Sentiment Analysis,
Text summarization, and many other tasks.

Devlin et al. [7] provided researchers with several pre-trained models along with the paper.
The experiments reported in [7] used two of the released pre-trained models:

• BERT Base, Uncased: 12 layers, 768 hidden layers, 12 heads, 110M parameters

• BERT Large, Uncased: 24 layers, 1024 hidden layers, 16 heads, 340M parameters.
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The BERT can be used to understand language and then fine-tune it depending on the
problem to solve. Training a BERT is done in two phases. The first phase is pre-training,
where the model is trained to understand the language and context, and the second phase is
fine-tuning, where the model learns how to solve a specific problem. There are three essential
steps before feeding the input to the BERTmodel. The first step, called tokenization, converts
the sequence of elements to a set from which each member is referred to as a token. After
tokenization, words are projected in a geometrical space or called word embeddings. The
order is lost by converting a sequence into a set (tokenization), and positional encoding is
suggested as a solution.

BertTokenizer converts the cleaned data into BERT-compatible input in two steps:

• Basic tokenization, normalizes the text and separates the punctuation. The first step is
to lowercase the input, convert all whitespace characters to spaces, and remove accent
marks. The next step adds space around punctuation characters (not letters, numbers,
or spaces).

• WordPiece tokenization, Out-of-vocabulary (OOV) tokens are replaced with a special
token [UNK], which stands for unknown token. Conversion of all unseen tokens to
[UNK] will remove a great deal of information from the input data. Hence, BERT uses
a WordPiece algorithm to segment words into subword levels, such that the model can
also represent commonly seen subwords and get richer word information. For example,
the different tenses “training,” “trains,” and “trained” will all be segmented into “train
#ing,” “train #s,” and “train #ed.” BERT’s English vocabulary consists of 30,522
segmented words that are learned beforehand.

To complete the tokenization, BERT also adds the following special tokens. For the CLS
Token, every sequence begins with a special classification token ([CLS]). CLS stands for
classification, and it is there to represent sentence-level classification. For the SEP Token,
the token is inserted at the end of each sentence to separate the sequences specifically for
sequence-pair tasks. It is appended at the end of the sequence when a single sequence is used
in other tasks.

Pre-training process:

The purpose of pre-training for BERT is to improve understanding of the context. BERT
learns it by training two unsupervised tasks simultaneously: Masked Language Modeling
(MLM), which is a multi-class classification problem, and Next Sentence Prediction (NSP),
which is a binary classification problem.
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The training works through the following training procedure. First, two sentences are sampled
from the corpus, either following each other or from different parts of the corpus. Then, in
MLM, 15% of the words in both sentences are masked with a special [MASK] token, and
the model is taught to predict these words. By providing these mask tokens, BERT can
know the context bidirectionally. At the same time, in the following sentence prediction,
BERT determines if the second sentence follows the first. As a result, BERT can figure out
context across multiple sentences and, using these two techniques together, BERT becomes
knowledgeable about various languages.

On the input side, BERT takes a sequence of words as input, just like any encoder of the
transformer. The initial embedding is constructed from three vectors (Figure 2.9).

Figure 2.9 BERT different Tokenization layers [7]

• The token embeddings layer transforms each WordPiece token into a vector represen-
tation of a fixed length. This fixed length is 768 and 1024 for BERT Base and BERT
Large, respectively.

• Segment embeddings are primarily relevant for sentence pair classification, where BERT
needs to distinguish the tokens in each input pair. This layer consists only of two vector
representations, namely zeros and ones. The vector that consists of zeros is assigned
to the first input sequence, i.e., every token to the left of the [SEP] token. The other
vector with ones is assigned to the second input sequence, every token to the right of
the [SEP] token. In cases with only one input sentence, the whole vector is filled with
only zeros. The length of these token vectors is the same as for token embeddings.

• The final layer consists of positional embeddings. BERT’s design allows for input
sequences up to length 512. This layer is the same as positional embedding described
in the transformer section.
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These three vector representations are summed elementwise to construct a single vector
representation. The final vector is used as an input representation for BERT’s encoder stack.

As shown in (Figure 2.10), on the output side, there are C and Tis as model outputs. The C
is the binary output for the sequence-pair task. It means that if sentence 2 follows sentence
1 in the context, the C value will be 1; otherwise, it will return 0. The Ts are numerical
vectors of representation of each word in the input sequence. The number of word vectors
(Ts) is equal to the number of input tokens from 1 to N in sentence 1 and 1 to M in sentence
2. The word vectors are then converted into distributions to train the BERT model based on
cross-entropy loss. After completing these two unsupervised training tasks, the pre-trained
BERT model will understand word contexts.

Figure 2.10 BERT classification output (C) [7]

Fine-tuning process:

Fine-tuning the BERT means using the pre-trained BERT model on specific NLP tasks by
replacing the fully connected output layers with the layers corresponding to our task and then
performing supervised training with the specific dataset. Since only the output parameters
are learned from scratch, and the rest of the model parameters are just slightly fine-tuned,
the training time is fast, and we can do it for any NLP problem.
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2.4 Training process description

The goal of a deep learning neural network model is to learn how to map inputs to outputs
automatically. To achieve this, the model passes a training process in which the network’s
weights (parameters) are updated based on the errors made by the model in the prediction
of the training dataset in the different iterations of the training process. It is continually
updated to reduce this error until either a good enough model is found or the learning
process stops. The training process consists of two iterative parts, forward propagation, and
backpropagation through the model’s layers. The first phase, forward propagation, is the
process in which input is fed into the network in the forward direction. The hidden layers
accept input data, process it according to the activation function, and pass it to the next
layer. The final layer will be reached with a result of label prediction for the input. Following
that, a loss function will be used to estimate the loss (or error) and compare and measure how
well or poorly the prediction did compare to the actual result. After calculating the loss, this
information is propagated backward, which is called the backpropagation step. This is the
step where the error is sent backward to update the weights. Now that the error information is
spread back, the network parameters’ weights can be adjusted. This process will be repeated
until the error is as close as possible to zero. For this, a technique called gradient descent is
used. Gradient descent is an optimization algorithm used to find the values of parameters of
a function that minimizes a loss function. It changes the weights by computing the derivative
(or gradient) of the loss function, which shows the direction towards the global minimum;
this is generally done on batches of data in successive iterations (epochs) of all the passed
datasets to the network in each iteration.

2.4.1 Loss function

The loss function is based on the difference between a predicted value and the actual label.
Cross-Entropy is a common loss function in multiclass and binary classification. The cross-
entropy measures the difference between two probability distributions. It means that the
distributions are very different if the cross-entropy value is high. On the other hand, if the
cross-entropy value is low, the distributions are similar.

2.4.2 Hyperparameter

Hyperparameter variables are entirely different from the model parameters (weights); they
control the training process and determine the model architecture (for example, the number
of hidden layers). Hyperparameters are specified manually before the training process starts,
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while the training process automatically determines the model parameters. Among these
values, one can find:

• Learning rate: Learning rate is a hyperparameter that governs the step size that the
model should take toward achieving the minimum loss function value in each itera-
tion. Learning rate is a crucial hyperparameter since it may prevent the model from
converging if it is chosen incorrectly.

• Batch size: Batch size refers to the number of samples passed to the network at once.
Batches are also known as mini-batch. To improve training speed, the user reviews in
the input are batched into mini-batches.

• Epoch: Each complete forward and backward pass of the dataset into the model is
called 1 epoch. In an epoch, each sample in the training dataset updates the internal
model parameters.

2.4.3 Overfitting

Overfitting happens when a model starts to memorize the data; in other words, it fits precisely
against its training data by learning the details and noises. The overfitted model achieves
high accuracy in predicting the training dataset but low accuracy in predicting the unseen
data of validation and test set. Following the training and validation loss graph helps to
detect the overfitting. The point (epoch) where the training loss keeps decreasing while the
validation loss starts to increase, implies that the model is likely to face overfitting. This is
visualized in Figure 2.11. The training of the model should be stopped when the validation
loss starts to increase.

Figure 2.11 The model should stop at early termination point [8]
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Another method to combat overfitting is to use dropout layers. The Dropout layer randomly
sets input units to 0 with a rated frequency at each step during training time.

2.5 Evaluation metrics for extraction and detection tasks

Accuracy is measured by dividing the number of correct predictions from the total number
of predictions and multiplying by 100 to turn it into a percentage. It is possible to achieve
seemingly good accuracy with a model that guesses the largest class every time if the class
sizes are uneven. When the classes in the dataset are imbalanced, the three performance
measures, precision, recall, and F1-score, are used to have more accurate and reliable metrics
for evaluating the performance of the tasks. To describe a classification model’s performance,
the notations true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) are used. Classifiers use positive and negative terms to indicate their prediction on
an instance, while true and false indicate whether or not the prediction corresponds to the
actual class.

• True positive (TP) = Number of correctly labeled positive samples

• False positive (FP) = Number of negative samples incorrectly labeled as positive

• True negative (TN) = Number of correctly labeled negative samples

• False negative (FN) = Number of positive samples incorrectly labeled as negative

Each time a model predicts that a token in the sentence of input data belongs to a particular
class of label, it is by default predicting that this token is not a member of the other k−1
label classes (K is the total number of classes). According to this description and previous
definitions, the number of true and false positive (and negative) model predictions are cal-
culated and reported in a table called the confusion matrix. Moreover, the Precision, Recall,
and F1-score can be computed using these true and false positive (and negative) values based
on the following definitions.

Precision is defined as the ratio of the correct number of predictions to the total number of
predictions. If a model achieves high precision, it means that most of the predicted positive
instances were correctly classified. Thus, precision is a good evaluation metric when we want
to validate our prediction (Equation 2.10).

Precision = TP

(TP + FP ) (2.10)
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For a certain class, the recall is the fraction of successfully classified texts relevant to that
class. With high recall, it means that a model has identified most of the actual positive
instances correctly. Thus, recall is a valid choice of evaluation metric when we want to
capture as many positives as possible (Equation 2.11).

Recall = TP

(TP + FN) (2.11)

The F1-score can be seen as a harmonic mean of the precision and recall values. It is a
number between 0 and 1, and values close to 1 mean the model performs better. When
both good precision and recall are critical, the F1-score can be used as an evaluation metric.
(Equation 2.12).

F1_score = 2× Precision×Recall
(Precision+Recall) (2.12)

These individual scores can then be averaged in three ways: micro, macro, and weighted
averaging. The global average of the total true positives, false negatives, and false positives
of all different classes is called the Micro average defined by Equation 2.13, where K is the
number of label classes, in all equations.

Micro Precision =
∑K

i=1 TPi∑K
i=1(TPi + FPi)

Micro Recall =
∑K

i=1 TPi∑K
i=1(TPi + FNi)

Micro F1 = 2× Micro Precision×Micro Recall

(Micro Precision+Micro Recall)

(2.13)

Macro averaging calculates metrics for each label and finds their unweighted mean as defined
by Equation 2.14. Macro average takes the average of the precision and recall of the system
on different sets.

Macro Precision = 1
K

K∑
i=1

Precisioni

Macro Recall = 1
K

K∑
i=1

Recalli

Macro F1 = 1
K

K∑
i=1

F1i

(2.14)
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Weighted averaging calculates metrics for each class and takes their average weighted by the
number of true instances for each label as defined Equation 2.15, where M is the number of
instances, with Mi being the number of instances of class i.

Weighted Precision = 1
M

K∑
i=1

MiPrecisioni

Weighted Recall = 1
M

K∑
i=1

MiRecalli

Weighted Recall = 1
M

K∑
i=1

MiF1i

M =
K∑

i=1
Mi

(2.15)

2.6 NER labeling method for evaluation

Since the named entity recognition task involves tagging token and multi-token entities with
predefined classes, it sets a need for an evaluation method different from other classification
tasks. There are two kinds of methods to evaluate the predicted results in NER tasks: the
token-level and entity-level methods. For example, consider the sentence “Avastin gives me
a minor blood nose.” after prediction using BOI labeling model ( will be described in Section
3.1.3 ), the result is like Table 2.2:

Tokens Ground true Label Predicted Label
Avastin B-Drug B-Drug
gives O O
me O O
a O O
minor B-Adverse Event B-Adverse Event
blood I-Adverse Event I-Adverse Event
nose I-Adverse Event O

Avastin with B-Drug is a single token entity, and (minor, blood, nose) with (B-Adverse Event.
I-Adverse Event, I-Adverse Event) are multi-token entities. In the evaluation process, the
token-level method is used if each of these predicted tokens is compared separately with
related true labels. For example, the token-level method will consider the predicted label
of minor and blood true and consider the predicted label of the nose as false. However, for

Table 2.2 Samples for named entity recognition
(NER) prediction
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the same example, the entity-level method offers a different approach. Two possible sources
of errors occur in model prediction in multi-token entities: entity boundary-related error or
entity type-related error. The B- and I- prefixes determine the boundary of an entity, and
the type of entities are predefined classes such as Drug or Adverse Event.

There are different evaluation schemes for entity-level evaluation in the literature, such as
CoNLL (Computational Natural Language Learning), Automatic Content Extraction (ACE),
Message Understanding Conference (MUC). CoNLL is used for this study since it is most
common, simple, and strict when compared with the other methods, and it is closer to a
measure of performance on the actual task; a user of the NER system cares about entities,
not individual tokens. In CoNLL, three prediction scenarios will be checked as follows: both
entity boundary (start and end point of entity) and type are correct, a predicted entity does
not exist in the ground truth, the entity exists in the ground truth, but it is not predicted
by the NER system. For example, the CoNLL considers the Avastin predicted label as the
only true prediction in the previous example’s sentence seen in Table 2.2.

2.7 Data augmentation techniques

Although good performance is achieved due to improved language models, the size of training
data still plays a key role in this field [50]. Data augmentation is a strategy to increase the
amount of training data by adding modified existing data without collecting new data. Thus,
it helps to solve the data scarcity and overfitting problem and reduces the cost of annotating
more data. This method was first used for image data such as LeNet-5, which is one of the
first applications of CNNs on handwritten digit classification using data warping to create
an image augmentation and an increased model performance [51].

Compared to computer vision, data augmentation techniques in NLP have not been thor-
oughly explored since it is difficult to find appropriate transformation techniques that also
preserve the contextual and grammatical structure of natural language texts. However, in
recent years, we have witnessed several successful methods in the context of text data aug-
mentation. Synonym replacement is one of the common strategies used by many works such
as [52], [53]. The basic mechanism is to replace words in training dataset sentences with
words from a created thesaurus of synonyms by randomly choosing the closest synonym for
the selected word. Another NLP data augmentation strategy called back-translation trans-
lates all texts from one language to another and back again. Yu et al. [54] generated new
data by translating sentences into French and back into English. Ma & Li [55], used Chi-
nese as their intermediate language and translated it back to English for data augmentation.
Fadaee et al. [56] propose a method based on the generation of additional training data by



30

using low-frequency words. Easy Data Augmentation (EDA) [57] was proposed as a means
to introduce some random modification on the main training dataset such as random in-
sertion, random swap, and random deletion to create new data for adding to the training
dataset. Among text augmentation methods, EDA and back-translation are two simple and
effective methods to enlarge the dataset and improve the model’s performance that we used
for this study. Moreover, inspired by EDA, 4 data augmentation operations are proposed,
and their efficiency to improve the model results are explored. Some descriptions of EDA
and back-translation methods are given below.

Easy data augmentation (EDA) consist of the following operations :

• Synonym Replacement (SR): randomly selecting n words (should not be stop word)
and replacing them with their synonyms.

• Random Insertion (RI): Insertion of n random synonyms of a word in n sentence at
random positions.

• Random Swap (RS): selection of a pair of words in a sentence and randomly swap their
positions n times.

• Random Deletion (RD): Based on a probability value of p, randomly delete some words
of a sentence.

According to the sentence length l, a value n is computed with the formula n = αl, where α
indicates what fraction of the words in a sentence are changed and for RD, p = α.

Back-Translation: Back-Translation (BT) is a technique that generates synthetic data for
NLP. With this technique, sentences are taken from the main training set; these sentences are
translated to a target language and then retranslated to the source language. This process
generates more training data for the model.
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CHAPTER 3 EXTRACTION OF ADVERSE DRUG REACTION

3.1 Extraction of ADR introduction

This study aims to extract some unreported adverse drug reactions from social media such as
Twitter. Figure 3.1 shows the several steps which are taken to implement this task. The first
attempt is to create a proper dataset and then choose a model with the best performance for
our task. To find the model with the best performance, a different model is applied to the
created dataset and tested. Details in this chapter explore each step.

Figure 3.1 ADR extraction task pipeline

3.2 Dataset preparation steps

A model requires training data to learn what is and is not a relevant entity and how to
categorize them in the extraction task. The more relevant the training data is to the task,
the more accurate the model will be in requested tasks. So, the first step is to define specific
categories (classes or labels) and prepare an accurate dataset.

3.2.1 Collecting data from Twitter

Users can share their drug experiences on social media websites, such as Twitter, Facebook,
and Google Circle. A great deal of that information is not shared with healthcare providers
or the FDA in the USA, or similar organizations in other countries. It is estimated that
more than 50 million posts are made every day on Twitter [58]. Thus, Twitter offers rich,
large-scale multimedia data relevant to many different research projects involving automatic
ADR extraction. Moreover, this platform makes it easy and safe to access the data via several
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Application Programming Interfaces (API). As a result, Twitter is considered the primary
resource for collecting data in this study.

Researchers can download and access the content of tweets posted to the public using the
Twitter API. However, there is a limitation; Twitter does not allow users to freely access data
older than two weeks. Therefore, to stream a large amount of data, we spent several months
collecting data from Twitter. In addition, the Twitter API requires some keys and tokens,
which can be provided by creating a Twitter developer account and initiating a Twitter
platform application. In this project, Tweepy [59] is used to collect data from Twitter.
Tweepy is a Python package for accessing the Twitter API. The search keywords to gather
Twitter data in this study are based on the brand name and generic name of 3 drugs as follows:
Avastin (Bevacizumab), Eylea (Aflibercept), Lucentis (Ranibizumab), which are usually given
as part of a combination of cancer medicine. Tweepy returns a JSON (JavaScript Object
Notation) array with tweets expressed as JSON objects. These JSON objects contain the
tweets and their attached metadata. As a result, 5,000 tweets were collected.

3.2.2 Pre-processing data

Cleansing data is an essential part of the data management process. By removing too much,
we may lose valuable aspects, and by retaining too much, we may create a complex vocab-
ulary. Several data cleaning steps have been performed to boost clarification. First, the
original tweets are accompanied by some retweets (RT). When someone retweets, it shares
another person’s tweet. So, it is better to remove these retweets, since they are just repeti-
tions of identical posts.

Second, there are many URLs in the context tweets that are uninformative for this study’s
topic, so they are omitted. For example, a review like "eye infections appear linked to avastin
injections medpage today. https://t.co/rn9OncU44V" is changed to "eye infections appear
linked to avastin injections medpage today". Third, the extra whitespaces (more than one
space between words) are removed, and one space is inserted between punctuation marks and
words. Finally, only the tweets in English are retained, and the tweets in other languages
are removed.

3.2.3 Data labelling for ADR extraction

The essential part of a supervised learning task like the task of this study is to have an
adequately annotated dataset for training the model to implement. Once the data is cleaned
up, three pharmacy students from Université de Montréal collaborating on this project have
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manually labeled a total of 5,000 user reviews from Twitter. To do the annotations, pharmacy
students classified each word into four different categories: not important (O), Drug, Adverse
Event, and Indication. Drug indications are reasons for using the drug, most commonly to
treat illness or disease. For instance, insulin is indicated for treating diabetes. The indication
class is added to reduce the possibility of false positives, for example, taking the drug for
a headache rather than developing a headache due to the drug. The more precisely the
dataset is labeled, the more accurate the result of the deep learning model for extraction of
the different predefined classes will be, so labeling is one of the critical tasks in this study.

In the literature, there has been a variety of annotation schemes used such as IO, IOB or
(BIO), IOE or (IEO), IOBES or (BIEO, OBIE), and some others.

• The IO model is not a common name for this model. It is just an optional name used
in some research papers to explain the model. Each entity is represented only by one
tag in this annotation system, which does not need any prefix. Each word in a sentence
that belongs to pre-defined annotation categories is assigned with a proper tag, and O
is for other ordinary words not contained in this category.

• The BOI model (or BIO) has been adopted by the Conference on Computational Nat-
ural Language Learning (CoNLL) [60]. It can denote the inside, outside, and the
beginning of a chunk (chunks are made up of words) using B- and I- prefixes to repre-
sent each entity. The B- tag is used at the beginning of every chunk (i.e., all chunks
start with the B- tag). The I- prefix before a tag indicates that the tag is inside a
chunk. An O tag indicates that a token belongs to no chunk.

• The IOE model (or IEO) It is quite similar to BOI, with this difference that instead of
indicating the end of an entity (E- tag), it detects its beginning.

• The IOBES model (or BIEO, OBIE) detects and tags the entity words as beginning
(B), inside (I), end (E), and outside (O) of a named entity as well as single entities that
consist of a single token and tags it by (S).

Between all mentioned schemes, although the IO scheme is the simplest and was used in
studies that achieved the highest scores [61], it has a limitation, as it cannot correctly encode
consecutive entities of the same type, and subsequent chunks of the same type cannot be
distinguished from each other. So, the BOI model is selected. It is the “industry standard”
encoding model, and when named entities of the same kind immediately follow each other,
it enables us to locate the boundaries to have more accurate annotation. Therefore, it learns
to distinguish seven different labels:
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{ B-Drug, I-Drug, B-Indication, I-Indication, B-Adverse Event, I- Adverse Event, and O}

A typical labeled review is provided in Figure 3.2, each color indicates a specific label: dark
blue: B-Drug, light blue: I-Drug, dark green: B-Adverse Event, light green: I-Adverse Event,
dark purple: B-Indication, light purple: I-Indication, All other words: O.

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 82477  

 avastin and lucentis both pose same risk of infection with eye injections for macular degeneration

Figure 3.2 An example of Named Entity Recognition (NER) labeling

For the implementation of manual labeling, a text annotation tool called Doccano is used.
Doccano [62] is an open-source annotation program used by machine learning practitioners.
The system offers features for text classification, sequence labeling, and sequence-to-sequence
matching. The annotated result of this tool is a JSON file consisting of lines of information
for each review. A typical output of Doccano is as follow:

{"id":188385,
"text": "avastin and lucentis both pose same risk of infection with eye injection for macular degen-
erat.",
"annotations":{"label":"Drug", "startoffset":0, "endoffset":6, "user":6},{"label":"Drug",
"startoffset":12, "endoffset":19, "user":6},{"label":"Adverse Event",
"startoffset":36, "endoffset":53, "user":6} ,{"label":"Indication",
"startoffset":78, "endoffset":97, "user":6}}

In the next step, the resulting JSON file is converted to the proper format for the named
entity recognition model. The words of each review are tokenized based on the whitespaces
and linked to their proper label. Finally, a CSV (comma-separated values) file is returned as
a result. A typical result is reported in Figure 3.3.
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Id Post # Sentence # Word Tag

17502 Id: 82477 Post: 82477 Sentence: 17310 avastin B-Drug

17503 and O

17504 lucentis B-Drug

17505 both O

17506 pose O

17507 same O

17508 risk B-Adverse Event

17509 of I-Adverse Event

17510 infection I-Adverse Event

17511 with O

17512 eye O

17513 injections O

17514 for O

17515 macular B-Indication

17516 degeneration I-Indication

17517 Id: 11554 Post: 11554 Sentence: 5583 durable O

17518 responses O

17519 seen O

Figure 3.3 Samples of our annotated dataset for word-level adverse drug reaction extraction

Among all 5,000 samples available for this work, some of the user reviews consisted of ad-
vertisements or discussed the price of the drugs. Since the purpose of the study is extracting
ADRs, only the samples that contain Adverse Event or Indication labels are kept, and the
others are removed.

The result is a dataset that can be used to train and evaluate a model for automatically
performing ADR extraction tasks. In total, the final dataset consists of 2735 sentences. In
order to compare the different models to find the best one, the dataset is split into training,
validation, and test sets. The training set consists of 55% of all the samples, validation
15%, and the test set consists of 30% of all the samples. Figure 3.4 and Table 3.1 show the
distribution of the dataset in details.



36

Train Validation Test

102

103

104

105

Ite
m

s (
lo

g)

Dataset 
B-Adverse Event
I-Adverse Event
B-Drug
I-Drug
B-Indication
I-Indication
O

Figure 3.4 Dataset distribution for word-level extract adverse drug reaction task

Table 3.1 The number of instances in each class in the dataset
B-Adverse E. I-Adverse E. B-Drug I-Drug B-Indic. I-Indic. O Reviews

Train 518 596 2814 65 1631 1853 31388 1503
Valid. 127 130 751 27 445 457 8492 411
Test 272 331 1502 49 906 855 16709 821
All 917 1057 5067 141 2982 3165 56589 2735

3.3 Description of models used for ADR extraction

After preparing the dataset, a description of different approaches used for ADR extraction is
given in this section. The experiments explored three approaches: a baseline deep learning
model (BiLSTM-based), a transfer learning method where BERT is used, and a combination
of these two approaches is used to explore whether it can achieve better results.

3.3.1 BiLSTM model, the study baseline model

A baseline model is important because it gives us something to compare to in evaluating the
final model. Based on the methods found in the literature, the BiLSTM model appeared
to be appropriate for that purpose. The BiLSTM model architecture consists of three main
layers: the embedding layer, the BiLSTM layer, and the fully connected layer, as shown in
Figure 3.5.
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Figure 3.5 The architecture of the BiLSTM-based (Baseline) model

As described in Section 2.2.1 for the embedding layer, the number of embedding values must
be determined in the first step. For that purpose, a vocabulary is created from all the unique
words in the dataset and assigned unique indices (the size of the created vocabulary is 7907
in our dataset). Also, based on the Equation 2.2 explained in Section 2.2.1, the calculated
embedding vector dimension for the embedding layer is 10 ((7907)0.25 = 10), but as suggested
in [40], larger values such as 100, 200, and 512 will be tested as one of the hyperparameters
of the model that can be changed to try obtaining better results.

3.3.2 Pre-trained BERT model

A pre-trained BERT model can be fine-tuned with additional output layers to create models
for many natural language processing tasks, such as the named entity recognition. The BERT
model that is adopted in this study comprises of 12 layers and 110 million parameters. The
adopted BERT model architecture consists of three main parts: a BERT embedding layer, a
BERT encoder layers, and a fully connected layer, as shown in Figure 3.6.

Similar to the previous model, two values must be determined to define the embedding layer:
the number of embeddings and their respective dimension of embeddings. BERT has its
predefined dictionary of size 30522, and the word embedding vector dimension is fixed to
768. The main difference between the BERT embedding layer and the embedding layer
used in the BiLSTM model is that in the BiLSTM model, word embedding vectors are first
initialized randomly and then trained during the training process. However, since the BERT
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Figure 3.6 Architecture of the BERT model

model is pre-trained, these vectors contain proper values from the outset, and by fine-tuning,
these values will be improved.

It is possible to access and use the output of each of these 12 BERT encoder layers sepa-
rately. However, inspired by [22] to explore the idea of achieving a better score for the ADR
extraction task, instead of using the last encoder layer output, some experiments are applied
by creating different combinations of BERT hidden layers as follows: concatenation of last
3 hidden layers, concatenation of last 4 hidden layers, concatenation of last 5 hidden layers,
summation of the values of last 3 hidden layers, summation of the values of last 4 hidden
layers and summation of the values of last 5 hidden layers. These concatenations will change
the dimension of BERT word embedding. For example, for 4 concatenated layers, the 768
layer size will be changed to 4×768 = 3072. After trying these models, the one that produces
the best result is chosen as our BERT-based model for the following experiments.

3.3.3 Combining the BERT and BiLSTM models

In the final step, a combined model from BERT and BiLSTM is created to check the possi-
bility of achieving a better score than the previously selected best BERT model. The final
architecture is as follows: the selected BERT model is combined with a BiLSTM layer and
a fully connected layer as shown in (Figure 3.7). The idea behind this combination is that
both models have bidirectional word awareness. In addition, the BiLSTM layer continues to
extract the features received from BERT and improves the word representation vectors.

Figure 3.7 The final model which is created by combining the best BERT and BiLSTM
models from previous experiments
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3.4 Evaluation metrics for word-level task of ADR extraction

Since the classes in the dataset are imbalanced, this study will evaluate the performance of
the models with three performance measures, precision, recall, and F1-score. The O label
dominates the dataset; O is omitted from the evaluation to improve the dataset analysis and
the models comparison. The scores for each class are calculated and shown separately to
provide a more accurate view of performance. For the average illustration, the micro average
(explained in Chapter 2.5) is used. As mentioned in Section 3.1.3, the BOI labeling scheme
is used to annotate the dataset since considering tokens separately will not return valuable
information, so the CoNLL evaluation script (called “exact-match evaluation”) described
in Section 2.5 is selected for evaluating the performance of the study. Evaluation of the
named entity recognition task is complex, and the related resources are limited. Therefore,
some simple examples will show the concept of TP, FN, and FP (explained in Section 2.5)
for named entity recognition, BOI is adopted for labeling and exact-match evaluation. An
example is developed with the entity term of " severely swollen tongue ", which is an Adverse
Event. This example lead to several possible predictions, that illustrate the concept of TP ,
FN , and FP (see Figure 3.8, green highlights flag TP, yellow highlights flag FN, and blue
highlights flag FP ).

Token Token Token

severely severely severely

swollen swollen swollen

tongue tongue tongue

a) TP= 1 , , FP= 0 b) TP= 0 , , FP= 0 c) TP= 0 , , FP= 0

Token Token Token

severely severely severely

swollen swollen swollen

tongue tongue tongue

d) TP= 0 , , FP= 1 e) TP= 0 , , FP= 1 f) TP= 0 , , FP= 1

I-Adverse Event O

I-Adverse Event I-Adverse Event

FN= 1

FN= 1

Adverse Event

True Label Predict Label

B-Adverse Event B-Adverse Event

FN= 1

Adverse Event

True Label Predict Label

B-Adverse Event O

I-Adverse Event O

I-Adverse Event I-Adverse Event

B-Adverse Event B-Adverse Event

I-Adverse Event I-Adverse Event

I-Adverse Event O

I-Adverse Event I-Adverse Event

FN= 1

Adverse Event

True Label Predict Label

I-Adverse Event O

FN= 1

Adverse Event

True Label Predict Label

B-Adverse Event O

I-Adverse Event I-Adverse Event

True Label Predict Label

B-Adverse Event B-Adverse Event

I-Adverse Event O

I-Adverse Event

B-Adverse Event

I-Adverse Event

I-Adverse Event

FN= 0

Adverse Event

True Label Predict Label

Adverse Event

B-Adverse Event

I-Adverse Event

Figure 3.8 Illustrative example of TP, FN and FP predictions

The first columns show the tokenized format of the entity term, and the second and third
columns consist of the true labels (target labels or ground truth) and model-predicted la-
bels, respectively. In this example, the values of TP , FN , and FP are computed for the
Adverse Event label so that the Adverse Event will be considered as a positive label, and
any other predicted label would be considered as a negative label (like "O" in this example).
In Figure 3.8 (a), the true labels and predicted labels are exactly the same (highlighted by
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green), to be more specific, the type of the prediction (Adverse Event) and the boundary
of prediction (Start by B-Adverse Event and end by I-Adverse Event) are exactly the same
as the true label, so the result is TP = 1. As shown in Figures 3.8 (b) and (c), the true
labels and predicted labels do not exactly match. The true labels are B-Adverse Event and
I-Adverse Event, but the model predicted them as O, which is considered FN, highlighted
by yellow. In Figure 3.8 (d), (e) and (f), the FN is equal to 1, for the same reason as (b)
and (c). Moreover, since there is a prediction as B-Adverse Event, but the other parts of the
entity are not predicted correctly, the FP is equal to 1.

In a second example, in Figures 3.9, the described concepts are shown in a case producing
different labels. As the previous figure, the first column shows some test dataset reviews’
tokenized format. The second and third columns consist of true labels (target labels) and
model-predicted labels. Green highlights show the TP, yellow highlights show FN, and blue
highlights show FP predicted for each related label in its respective column. As shown in
the figure, in this part (second and third columns), the values of TP , FN , and FP for the
Adverse Event label are computed so that the Adverse Event will be considered as a positive
label, and all other labels (Drug, Indication, and O ) will be considered as negative labels.
In the case of two terms " severely swollen tongue " and " minor blood nose " in the first
column, the true labels and predict labels are exactly the same, so the number of TP for the
Adverse Event is 2. In the term " Wound healing ", the true label for healing is I-Adverse
Event, but the predicted model predicts it as O, so the number of FN for the Adverse Event
label is 1. For chemo word and the term " Wound healing ", the model predicts it differs
from the true labels, hence the FP is 2.

In the next part (fourth and fifth columns), the computation of TP, FN, and FP for the Drug
label is explained. In this example, the Drug label will be considered as a positive label, and
all other labels (Adverse Event, Indication, and O ) will be considered as negative labels. For
words avastin (2 times), biosimillar avastin , and biosimillar lucentin the model predicts
labels completely correctly, so the TP is 4. In the case of word lucentis , the true label is
B-Drug, but the model predicts it as O, so the FN is 1. In the case of two words treatment
and works, the true labels are O, but the model predicts them as B-Drug wrongly, so the
FP is 2. The process is the same for the Indication label in the sixth and seventh columns.
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Token True Label Predict Label True Label Predict Label True Label Predict Label

I O O O O O O

get O O O O O O

a O O O O O O

severely B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event

swollen I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event

tongue I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event

about O O O O O O

1 O O O O O O

week O O O O O O

affter O O O O O O

treatment O B-Drug O B-Drug O B-Drug

with O O O O O O

avastin B-Drug B-Drug B-Drug B-Drug B-Drug B-Drug

. O O O O O O

biosimilar B-Drug B-Drug B-Drug B-Drug B-Drug B-Drug

avastin I-Drug I-Drug I-Drug I-Drug I-Drug I-Drug

gives O O O O O O

me O O O O O O

a O O O O O O

minor B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event

blood I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event

nose I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event I-Adverse Event

. O O O O O O

no O O O O O O

avastin B-Drug B-Drug B-Drug B-Drug B-Drug B-Drug

for O O O O O O

chemo O B-Adverse Event O B-Adverse Event O B-Adverse Event

round O O O O O O

as O O O O O O

it O O O O O O

interferes O B-Indication O B-Indication O B-Indication

with O O O O O O

wound B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event B-Adverse Event

healing I-Adverse Event O I-Adverse Event O I-Adverse Event O

. O O O O O O

lucentis B-Drug O B-Drug O B-Drug O

works O B-Drug O B-Drug O B-Drug

for O O O O O O

me O O O O O O

on O O O O O O

diabetic B-Indication B-Indication B-Indication B-Indication B-Indication B-Indication

eye I-Indication I-Indication I-Indication I-Indication I-Indication I-Indication

disease I-Indication O I-Indication O I-Indication O

. O O O O O O

my O O O O O O

father O O O O O O

in O B-Indication O B-Indication O B-Indication

under O O O O O O

biosimilar B-Drug B-Drug B-Drug B-Drug B-Drug B-Drug

lucentis I-Drug I-Drug I-Drug I-Drug I-Drug I-Drug

treatment O O O O O O

for O O O O O O

wet B-Indication B-Indication B-Indication B-Indication B-Indication B-Indication

amd I-Indication I-Indication I-Indication I-Indication I-Indication I-Indication

. O O O O O O

Items : 3 Items : 5 Items : 2

TP : 2 TP : 4 TP : 1

FN : 1 FN : 1 FN : 1

FP : 2 FP : 2 FP : 3

Adverse Event Drug Indication

Figure 3.9 A practical example illustrating the concepts of TP, FN, and FP in NER task
evaluation for complete sentences of reviews
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3.5 Implementation and hyperparameter optimization

This section will present data, hyperparameters, and other configurations necessary to run the
experiments. The implementation of the model is done in Python. The experimental codes
are implemented in Python (v.3.7.6) by using the HuggingFace Transformers package [63]
with Pytorch(1.2.0) and some other libraries such as Keras, Sklearn, Seqval. Computations
were performed locally on a GeForce GTX 1650 GPU.

To perform the experiments, the dataset is split into train, validation, and test set. The
training+validation set consists of 70% of all samples, and the test set consists of 30% of all
samples (Figure 3.4). The most frequently suggested data partitioning in the literature is
80% for training+validation data and 20% for testing data. However, since the dataset of
this study is small (2735 instances), 30% of all data is considered for the test dataset to have
more reliable evaluation scores. Considering higher than 30% of the entire dataset for the
test dataset will lead to having less training data for training and lower performance.

On the other hand, with less testing data that use less than 30% of the dataset, the per-
formance score (F1-score) will have greater variance. For example, one wrong or correct
prediction will change the F1-score by 1% or more. Some statistical examples describe this
concept in appendix A. The validation set is used to find the optimal hyperparameters, check
the model during training epochs to prevent overfitting, and select the best model param-
eters, i.e., those that maximize the validation F1-score. Finally, the test dataset, which is
entirely unseen data of the dataset, is used to evaluate and assess the performance of the
models in their ability to generalize .

Before carrying out the experiments and receiving final results to compare the models, it
is essential to set the hyperparameters of the training process. In the hyperparameters op-
timization process, each possible combination of all hyperparameters with different values
is provided to find the optimal set of hyperparameters. For example, if there are two hy-
perparameters such as learning rate and batch size, and if for the first hyperparameter, a
set of 2 values like {0.005,0.001} each chosen and the second one, a set of 3 values like
{16,32,64} is considered, it will lead to 6 different combination sets of hyperparameters such
as {0.005,0.001,16,32,64}. The different values of the sets are selected based on literature and
initial testing in this project. Finally, all these combinations are applied to the models, and
the combination that returns the best F1-score value with the validation dataset is selected
as the optimal hyperparameters set. Since the study dataset is limited, to ensure that the
experiment results for each set of hyperparameters are reliable, the K-fold cross-validation
method is used for evaluation, which means that the implementation of each hyperparameter
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set is tested K times instead of one. To apply the K-fold cross-validation in this study, the
training dataset is divided into K=5 equal datasets. In each experiment, one of these K
datasets is considered as a validation dataset, and all the other K-1 datasets is considered as
a training set. The hyperparameter sets for the three different models of the study mentioned
in Section 3.2 (BiLSTM, BERT, BERT+BiLSTM) are explained as bellow.

For the BiLSTM model, the list of hyperparameters is as follows: learning rate, batches size,
dropout, number of hidden units, and embedding layer dimension. The learning rate is one
of the essential training hyperparameters, and the used set of values is considered {0.005,
0.001, 0.0005}. The batch size is also critical as it determines how many samples the model
sees each time that its weights are updated. Batch size values of 16, 32, and 64 are tested.
The large batch sizes need more memory space. Since the average value of the loss in each
epoch is used to optimize the model’s weights, it takes longer time to get a good training
with the chosen value. In contrast, the model is not guaranteed to converge to the global
optimal when using the smallest batch size. Dropout is another hyperparameter that is used
to combat overfitting, and the set values tested contained is {0.2, 0.3 }. In the LSTM models,
there is usually no rule for the number of hidden units to use. To guide us in the selection of
suitable values, some numbers found in literature such as {150, 200, 256} were tested. In the
case of embedding layer dimension, as mentioned in Section 3.2.1, the set of tested value is
{10, 100, 256, 512}. Finally, an important parameter in the NLP tasks is the sequence length
for the number of words per sentence. Due to varying lengths of user reviews, a sequence
length is set for the model. The sentences shorter than the sequence value are padded to the
right with a unique padding token, and each review with the extra length is truncated. The
sequence length is set based on the maximum sequence length of the sentences in the dataset
or a sequence length value that does not result in many sentences getting truncated. Based
on the length of sentences in the available dataset, a value of 100 is selected.

For different BERT-based models, the list of hyperparameters and their set of values are as fol-
lows: learning rate={0.005, 0.0005, 0.0001}, batches size={16,32,64}, dropout={0.2,0.3,0.4},
sequence length=120, because of the word-pieces method of tokenization in the BERT model,
120 is the value of its sequence length. Finally, for combined model of BERT and BiLSTM,
the list of hyperparameters and their set of values are as follows: learning rate={0.005, 0.0005,
0.0001}, batches size={16,32}, dropout={0.2,0.3}, embedding layer dimension={200,256},
sequence length=120.

The early-stopping rule is used to avoid overfitting by calculating a loss function value for
every epoch in the validation dataset. The training is stopped when the validation loss
reaches a minimum; however, a patience parameter of 5, the number of epochs to wait before
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the early stop, is imposed in our early stopping to allow for a local minimum. Thus, if the
loss function does not improve for five epochs, then the model stops training. Moreover, to
identify the best model for our experiments, all the model parameters are saved at the epoch
where the model reaches a maximum F1-score in the validation set.

3.6 ADR extraction experiment results and discussions

Several experiments we conducted to find the optimal hyperparameters based on the different
combinations of hyperparameters mentioned in Section 3.4. First, for the BiLSTM model,
the model got the best F1-score in the validation set for a learning rate of 0.005, a batch
size of 16, a dropout of 0.2, hidden units of 256, an embedding layer dimension of 512, and
a maximum sequence length of 100. Then, for different BERT-based models, the optimal
hyperparameters are achieved. For example, the BERT model with 4 last hidden layers
concatenation got a learning rate of 0.0005, batch size of 16, dropout of 0.2. Finally, in the
case of the combined model of BERT (with 4 last hidden layers concatenation) and BiLSTM,
the optimal hyperparameters are found to be, learning rate=0.0005, batch size=16, hidden
units=200, and dropout=0.3. The results of all experiments mentioned above can be found
in appendix B.

After finding the optimal hyperparameters, the final training and testing experiments are
performed with the BiLSTM model, different BERT-based models, and the final combined
(BERT +BiLSTM) model to find the best model by comparing their results. As mentioned
before, the performance of each model is evaluated and presented according to three perfor-
mance measures, precision, recall, F1-score, and since the "O" label dominates the dataset,
"O" is omitted from the evaluation to improve the dataset analysis. The Algorithm 1 shows
briefly the experimental procedure to extract adverse drug reactions. In the next section, the
results of the experiments are shown and followed by a related discussions.
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Algorithm 1: ADR Extraction Procedure
input : Prepared dataset based on Twitter user reviews
output: Model predicted label for each review at word-level
1. read the prepared dataset
2. shuffle the dataset
3. split the dataset to train,validation and test dataset
4. build the model ; . BiLSTM model or BERT model or BERT+BiLSTM model
5. set the hyperparameter values (batch size, learning rate, maximum
length, ...)
6. make batches of train, validation and test dataset
7. while termination condition is not satisfied do

7.1 model.train() ; . model is in training mode
for each batch in (train batches) do

- outputs=model(train batch) ; . Feed forward:pass each train batch into the
model and calculate the outputs
- loss=loss_function(outputs,true label) ; . compute training loss by using

cross_entropy function
-loss.backward ; . backpropagation:apply backpropagation by calculating the

gradient of the loss function with respect to parameters (minimizing the
error)
- optimizer.step() ; . update parameters (weights) of the model by using Adam as

optimizer function
end
7.2 training loss=mean(training batches loss) ; . average the training losses for

all batches
7.3 model.eval() ; . model is in validation mode
for each batch in (validation batches) do

- outputs=model(validation batch) ; . Feed forward:pass each validation batch
into the model
- loss=loss_function(outputs,true label) ; . compute validation loss using

cross_entropy function
end
7.4 validation loss=mean(validation batches loss) ; . average the validation losses

for all batches
if validation F1_score greater than previous maximum validation F1_score then

- save model parameters(weights)
end

end
8. outputs=trained model(test dataset) ; . Calculate the output value for the

test dataset with the trained model
9. predict=label-lists[argmax(outputs)] ; . argmax returns the index of the

predicted label based on the maximum value among the predicted outputs
10. evaluate the model predictions by F1_score,precision and recall
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Baseline (BiLSTM) model experiment results:

The architecture of the BiLSTM model is expressed in Algorithm 2. This algorithm is a
detailed explanation of step 4 in Algorithm 1 for the BiLSTM_based method.

Algorithm 2: Building BiLSTM model for ADR extraction
input : pre-processed data

. input_dim:[batch size x seq_length]
output : model output for each review at word-level
InitioalValues: batch size=16, seq_length=100, embedding_dim=512, dropout=0.2,

hidden_layer_number=256, label_number = 7
1. emb-out=Embedding (input) ; . (convert each token to a word embedding

vector) emb-out_dim:[batch size x seq_length x embedding_dim]
2. drop-out=Dropout (emb-out,dropout) ; . drop-out_dim:[batch size x

seq_length x embedding_dim]
3. lstm-out=LSTM (drop-out,bidirectional=True); . lstm-out_dim:[batch size x

seq_length x 2*hidden_layer_number]
4. outputs=Linear (lstm-out,label_number) ; . outputs_dim:[batch size x

seq_length x label_number]

The BiLSTM model with the optimal hyperparameters obtained from previous section’s
experiments is trained and applied to the test dataset. The results are reported in Table 3.2.

Table 3.2 Test result of BiLSTM model

Precision(%) Recall(%) F1-score(%) Support
Adverse Event 31.35 19.12 23.80 272
Drug 93.54 90.73 92.11 1502
Indication 63.03 47.35 54.07 906

Micro avg 80.07 68.79 74.00 2680

As shown in the table 3.2, the BiLSTM model gives precision, recall, and F1-score, all higher
than 90% in predicting Drug labels, which are good scores. However, the Adverse Event
label prediction results all are less than 30%, which are low scores. The main reason is the
low number of training examples for the Adverse Event label compared to the Drug label.
These results will be further explored in the discussion section.
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In the confusion matrix, the summary of the correct and incorrect predictions of each label
relative to the other labels is shown in Figure 3.10. All of the correct predictions are on
the diagonal, and the prediction errors are outside the diagonal. Here, for example, the
prediction percentages for the B-Adverse Event label are as follows: the B-Adverse Event
label is predicted correctly 24.6 % of the time (True positive), and the model mispredicted
B-Adverse Event as I-Averse Event 4.0% of the time, while it is predicted as O, 67.3 % of the
time (False negative). Moreover, the I-Adverse Event is predicted as a B-adverse Event 15.7%
of the time (False positive). As the confusion matrix shows for all the labels, the dominant
misprediction is the "O" label. The model has trouble distinguishing the B-Indication label
from the I-Indication 28.2% of the time, which is a high misprediction percentage.

Figure 3.10 The BiLSTM model test result confusion matrix

To better understand the performance of the model, its output will be investigated by creating
and representing the density plot of the labels. As mentioned before in the model structure
section, for each word in the input sequence, the model produces 7 different values (7 is
the number of labels considered in the study) at the output layer. The label related to the
output with the highest value will be considered as the model’s prediction. In the following,
the B-Adverse Event label will be explored as an example.

In the first step, all the output values for the words with the true label of B-Adverse Event in
the test dataset will be gathered. As it can be seen in Figure 3.11, the BiLSTM model pro-
duces 7 probability values associated with each label (B-Adverse Event, B-Drug, B-Indication,
I-Adverse Event, I-Drug, I-Indication, and O) as the output for each word.
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Figure 3.11 The BiLSTM model output value probabilities for the words with "B-Adverse
Event" true label in the test dataset

In the next step, the distribution of the probability values in each table column will be
plotted and shown as the density plot. These steps are done for all 6 labels, and the results
are shown in Figure 3.12. In all plots, the red-filled plot shows the main label (the true label
that is investigated), and other labels are presented with different colors. The distribution
plot with higher peaks and more skewed to the right indicates high probability values for
a large number of words. Thus, the more the main label plot (red-filled plot) is skewed to
the right, and the other labels’ plots are skewed to the left, the less overlap there is with
the red-filled plot, which indicates more accurate and more certain predictions for the words
with this label.

For instance, in Figure 3.12 (a) the main label is B-Adverse Event, based on the previous
explanation and the distribution plot of the O label and its overlap with the B-Adverse Event
label, most of the words which must be predicted as B-Adverse Event will be predicted as
O label. Figure 3.12 (b) shows that the model will have an accurate and certain prediction
for the B-Drug, and a few of the B-Drug labels will be mispredicted as O labels. Moreover,
based on the small overlap between the B-Drug plot and I-Indication, very few B-Drug labels
will be predicted as I-Indication. In Figure 3.12 (c), it can be seen that there will be some
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Figure 3.12 BiLSTM model density plot for all labels

misprediction of the main label (B-Indication) by considering some overlap between the B-
Indication label and the I-Indication and O labels. Moreover, the distribution of probabilities
for the B-Indication label is better than the B-Adverse Event label in Figure 3.12 (a) since
it is skewed to the right. Therefore the BiLSTM model will have better prediction score for
the B-Indication label. The advantage of exploring density plots in addition to exploring
the confusion matrix is that the confusion matrix indicates the additional percentages for
correct and incorrect predictions of the model, but in the density plots, the certainty of the
prediction is observable as well. It can be seen that the predictions are performed based on
the high probability or low probability. The more the distribution plot is skewed to the right
and the larger the probability values, the more confident the correct prediction will be, which
leads to more confidence in the score results of the model.

BERT models experiment results:

Based on the optimal hyperparameters obtained previously, several experiments were per-
formed, such as BERT first hidden layer, BERT last hidden layer, and dierent combinations
of BERT hidden layers: concatenation of the last 3 hidden layers, concatenation of the last
4 hidden layers, and concatenation of the last 5 hidden layers as well as the summation of
the values of the last 3 hidden layers, summation of the values of the last 4 hidden layers,
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and summation of the values of the last 5 hidden layers. The architecture of BERT with 4
last hidden layers concatenation is shown in the Algorithm 3 as an example.

Algorithm 3: Building BERT model (concatenation of 4 last layers) for ADR
extraction
input : pre-processed data

. input_dim:[batch size x seq_length]
output : model output for each review at word-level
InitioalValues: batch size=16, seq_length=120, dropout=0.2, label_number = 7
1. hidden layers=BERT.model (input) ; . (return the output of all 12 encoder

of BERT model) hidden layers_dim:[batch size x seq_length x 768]
2. bert-out=Concat (4 last hidden layers) ; . (concatenation of 4 last layers)

bert-out_dim:[batch size x seq_length x 3072]
3. drop-out=Dropout (bert-out,dropout)
; . drop-out_dim:[batch size x seq_length x 3072]
4. outputs=Linear (drop-out,label_number); . outputs_dim:[batch size x

seq_length x label_number]

The goal is to find a BERT model with a performance better than the original BERT. By
comparing the results in Figure 3.13 sorted from the worse to the best Micro average, it is
clear that the BERT model concatenating its 4 last layers achieves the best F1-score.
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The detailed results of the BERT model with 4 last hidden layers concatenation are shown
in Table 3.3. The Drug label has the highest score, and the model F1-score is 79.37 %.

Precision(%) Recall(%) F1-score(%) Support
Adverse Event 38.97 27.94 32.55 272
Drug 92.25 92.68 92.46 1502
Indication 71.97 66.89 69.34 906

Micro avg 81.46 77.39 79.37 2680

Exploring the confusion matrix for the BERT model with the 4 last layer concatenated shows
that like BiLSTM, the most mispredicted label is the O label with a high percentage such as
49.6%, 48.0%, and 61.2% which is reduced compared to the BiLSTM misprediction percent-
ages. In addition, two labels, I-Adverse Event and I-Drug, are mispredicted as B-Adverse
Event and B-Drug by 10.0% and 18.4% respectively, which represent high mispredictions.

Figure 3.14 The BERT model with 4 last layer concatenation confusion matrix

Table 3.3 Test result of BERT model with 4 last hidden layers
concatenation
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Figure 3.15 shows the output density plots of labels for the BERT model with 4 last hidden
layers. Based on the shape of the main label density plots and their lesser overlap with other
plots, it is clear that the B-Drug, the B-Indication, and the I-Indication labels are more
accurate and produce more certain predictions compared to other labels, and we believe the
main reason for this is the higher number of examples for these labels in the dataset.
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Figure 3.15 BERT with 4 last hidden layers concatenation model density plot for all labels
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Experimental results with the combined BERT and BiLSTM model:

In the final experiments, a combination of the best BERT (Con 4 Last layer) and BiLSTM
models with the architecture described in the Algorithm 4 is initialized with optimal hyper-
parameters, trained, and tested on the test dataset.

Algorithm 4: Building final BERT+BiLSTM model for ADR extraction
input : pre-processed data

. input_dim:[batch size x seq_length]
output : model output for each review at word-level
InitioalValues: batch size=16, seq_length=120, dropout=0.3,

hidden_layer_number=200, label_number = 7
1. hidden layers=BERT.model (input) ; . (return the output of all 12 encoder

of BERT model) hidden layers_dim:[batch size x seq_length x 768]
2. bert-out=Concat (4 last hidden layers) ; . (concatenation of 4 last layers)

bert-out_dim:[batch size x seq_length x 3072]
3. drop-out=Dropout (bert-out,dropout)
; . drop-out_dim:[batch size x seq_length x 3072]
4. lstm-out=LSTM(drop-out,bidirectional=True)
; . lstm-out_dim:[batch size x seq_length x 2*hidden_layer_number]
5. outputs=Linear (lstm-out,label_number); . outputs_dim:[batch size x

seq_length x label_number]

The detailed results of the combined model are shown in Table 3.4. The Drug label got the
highest score, and the model F1-score is 82.19 %.

Precision(%) Recall(%) F1-score(%) Support
Adverse Event 43.56 42.28 42.91 272
Drug 92.32 94.41 93.35 1502
Indication 73.73 76.82 75.24 906

Micro avg 81.23 83.17 82.19 2680

The results of the BERT+BiLSTM model in the confusion matrix keep the same trend as
the BERT model, which means that the most mispredicted label is the O label, but this
misprediction has been reduced compared to the BERT model and also has been reduced
to half compared to the BiLSTM model. The two labels, I-Adverse Event and I-Drug are
mispredicted as B-Adverse Event and B-Drug by 14.8% and 18.4%, respectively. It can be
seen that the values of true positive results increased, and the values of false negative and

Table 3.4 Test result of BERT with 4 last hidden layers concatenation
+ BiLSTM model
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false positive results decreased compared to the BERT model implying a better performance
for the combination model.

Figure 3.16 The BERT with 4 last hidden layers concatenation + BiLSTM model confusion
matrix

In Figure 3.17 it can be seen that the BERT+BiLSTM model gets more certain results for
B-Drug, B-Indication and I-Indication compared to the other labels.
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Figure 3.17 combination of BERT with 4 last hidden layers concatenation and BiLSTMmodel
density plot for all labels
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Comparison of BERT and BiLSTM models experimental results:

Now it is time to compare the performance of three models: BiLSTM, BERT with 4 last
hidden layers concatenation (4Last HL Concat) and BERT(4Last HL Concat)+BiLSTM to
find the best model of the study. From here on, during the thesis explanation, BERT will be
used for less complexity instead of BERT with 4 last hidden layers concatenation (4Last HL
Concat). According to the reported results in Figure 3.18, the final combined model that
merges BERT+BiLSTM produces the best results.
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Figure 3.18 Comparison of the three model’s performance

By comparing each label’s results for the three models, it can be seen that the Drug label
F1- score is the same with high values in all models’ predictions. Improving the high value
of scores is a challenging task. In the case of the Indication label, the BERT model leads
the BiLSTM F1-score of about 15%; however, the BERT+BiLSTM model improved the
BERT and BiLSTM model’s results, respectively by 6% and 21%. The Adverse Event label
witnesses the same trend. The BERT model leads the BiLSTM prediction F1-score by about
9%; however, the BERT+BiLSTM model leads the BERT and BiLSTM models prediction
results, respectively 10% and 19%. The reason that the BERT model performs better and
is more accurate than the BiLSTM model is probably due to the difference in architecture
between the recurrent neural network model (BiLSTM) and the pre-trained (BERT) model.
As described in Chapter 2, BiLSTM and BERT have different architectures. The BiLSTM
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method contains different layers, which have proven to perform well on textual data and
sequences. However, they cannot always remember all of the important information that
occur during the sequence. The BERT models make use of an attention mechanism that
looks at the full sequence at once and detects what information is important. Therefore, the
BERT models can have a better understanding of the text, and they are pre-trained models
as well.
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Figure 3.19 Comparison of the three models density plot for all labels

Figure 3.19 presents the density plots of three models for each label in the same graph.
The plots show that both the number of examples and the selected model will affect the
output probability values. The better performance of the BERT+BiLSTM model can be
seen clearly by exploring the density plot of labels prediction. For each label, it can be seen
that the output probability distribution of the BERT+BiLSTM model (with the pink color)
is more skewed to the right, closer to 1 value, and has the sharper form. Therefore, the
BERT+BiLSTM returns the most certain predictions compared to the other models. As
explained before, the BERT model achieves better results than BiLSTM, probably due to
the attention mechanism in its architecture. It can be seen that BERT+BiLSTM plots are
sharper and more skewed to the right than BERT plots which means that adding BiLSTM
layers to a BERT model will increase the value of output probability. The best and most
certain prediction is for the B-Drug label, which has the most samples in the dataset. On
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the other hand, the worst belongs to the I-Drug, with the least number of examples in the
dataset for all models.

Training time is another factor for evaluating and comparing the models. As shown in
Table 3.5, for the three models of the study, the quickest is the BiLSTM model. It can be seen
that there is a considerable difference between BiLSTM and BERT models. The training time
for each epoch in the BERT model is almost 7 times longer than BiLSTM. This makes sense
since the BERT model has a more complex architecture and has more parameters than the
BiLSTMmodel. The training time of each epoch for the BERT+BiLSTMmodel is the highest
one as expected since it is the combination of the two previous models with more parameters
than the other models. Although the training time of each epoch of BERT+BiLSTM is
longer than BERT’s one, the whole training time for BERT+BiLSTM is less than BERT,
due to the positive effect of the combination of BERT and BiLSTM models, which leads to
fewer required epochs to achieve better performance.

Table 3.5 Training time of models on GPU (GeForce GTX 1650)

Model Each Epoch Time Epoch Training Time
BiLSTM 8 Sec 6 48 Sec
BERT(4 last layer concatenation) 40 Sec 40 26.5 Min
BERT(4 last layer concatenation)+BiLSTM 44 Sec 22 16 Min

3.7 Discussion

In this section, we analyze and explain the obtained results from the models considered in
this thesis. It will be done by exploring the samples in the dataset and some example reviews
with their predicted labels. In the dataset, there are some token-level and entity-level terms.
Token-level consists of one word, and entity-level consists of more than one word. The
research analysis will start with the token-level samples. The token-level terms have only
B- label, and there are no boundary label for them (there is no I-), for example, token of
"eylea" with B-Drug label, "dmo" (diabetic macular oedema) with the label of B-Indication,
and "rop" (retinopathy of prematurity) with B-Indication label. By exploring the predicted
results, it turns out that the BiLSTM model has better prediction results for the token-level
terms with a limited number of examples in the dataset compared to the BERT model.
Two predicted examples would illustrate this case from the test dataset in Figure 3.20 and
Figure 3.21. In the examples, the Adverse Event labels are shown by green color (B-Adverse
Event with dark green and I-Adverse Event with light green), the Drug and the Indication
labels are indicated by blue (B-Drug with dark blue and I-Drug with light blue) and purple
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(B-Indication with dark purple and I-Indication with light purple) colors, respectively. The
sentence with the Test Dataset title shows the true labels, and in the following, the predicted
result of each model are shown. For example, in Figure 3.20, it can be seen that the BERT
model missed predicting "eylea" and "dmo" as a drug, but the BiLSTM and BERT+BiLSTM
models predicted it correctly.

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 70878 
Test Dataset: 
 eylea study reveals positive data from patients with diabetic macular oedema ( dmo ) # diabetes 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 eylea study reveals positive data from patients with diabetic macular oedema ( dmo ) # diabetes 

BERT (4Last HL Concat) Model Result: 
 eylea study reveals positive data from patients with diabetic macular oedema ( dmo ) # diabetes 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 eylea study reveals positive data from patients with diabetic macular oedema ( dmo ) # diabetes 
============================================================================

Figure 3.20 An example for token-level ("eylea" and "dmo") prediction of all models

In Figure 3.21 the BiLSTM and BERT+BiLSTM models tagged the word "rop" as an
indication, but BERT did not distinguish this word as an indication.

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 6234 
Test Dataset: 
 novartis to file for new lucentis ? ( ranibizumab ) indication in retinopathy of prematurity ( rop 
) a rare disease in premature infants that often leads to blindness 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 novartis to file for new lucentis ? ( ranibizumab ) indication in retinopathy of prematurity ( rop 
) a rare disease in premature infants that often leads to blindness 

BERT (4Last HL Concat) Model Result: 
 novartis to file for new lucentis ? ( ranibizumab ) indication in retinopathy of prematurity ( rop
 ) a rare disease in premature infants that often leads to blindness 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 novartis to file for new lucentis ? ( ranibizumab ) indication in retinopathy of prematurity ( rop 
) a rare disease in premature infants that often leads to blindness 
============================================================================

Figure 3.21 An example for token-level ("rop") prediction of all models
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In both examples, the impact of adding the BiLSTM layer to the BERT model is visible.
The BiLSTM layer improves the ability of the BERT model for the correct prediction of
token-level terms. In the cases that the number of samples for the token-level terms in the
training dataset is high, both BiLSTM and BERT models will get good results.

Some words in the training dataset are categorized in token-level as well as entity-level
terms. For example, the words like "nsclc", "macular", and "retinopathy" are labeled in
some sentences of the training dataset as B-Indication only (since there is one word and no
boundaries, so no need for I-), and in some other sentences are labeled as I-Indication (for
instance, the word "nsclc" in the term "advanced nsclc", the word "macular" in the term "wet
macular degeneration", and the word "retinopathy" in the term "diabetic retinopathy").

(a)

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 56109 
Test Dataset: 
 practical management of nsclc patients with long term bevacizumab treatment : a report of
 four cases 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 practical management of nsclc patients with long term bevacizumab treatment : a report of
 four cases 

BERT (4Last HL Concat) Model Result: 
 practical management of nsclc patients with long term bevacizumab treatment : a report of
 four cases 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 practical management of nsclc patients with long term bevacizumab treatment : a report of
 four cases 
============================================================================

(b)

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 20714 
Test Dataset: 
 randomized phase iii study of continuation maintenance bevacizumab with or without pemetrexed in pa
tients with advanced nsclc # lcsm # jco 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 randomized phase iii study of continuation maintenance bevacizumab with or without pemetrexed in pa
tients with advanced nsclc # lcsm # jco 

BERT (4Last HL Concat) Model Result: 
 randomized phase iii study of continuation maintenance bevacizumab with or without pemetrexed in pa
tients with advanced nsclc # lcsm # jco 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 randomized phase iii study of continuation maintenance bevacizumab with or without pemetrexed in pa
tients with advanced nsclc # lcsm # jco 
============================================================================

Figure 3.22 Examples for (a) teken-level ("nsclc") and (b) entity-level ("advance nsclc") pre-
diction of all models
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In the BiLSTM model, the prediction of such words depends on the number of times that
they are repeated in the training dataset samples. For example, the word nsclc is labeled
as B-Indication in 19 sentences and as I-Indication in 23 sentences of the training dataset.
Thus, in the mentioned example, the BiLSTM model prediction is all the time I-Indication.
However, the BERT model based on the word’s position in the sentences and the effects of
other words in the sentence makes the correct prediction (Figure 3.22)

As it is shown in Figure 3.22 (a), the "nsclc" is a token-level term with the true label of
B-Indication. Still, the BiLSTM model predicts it as I-Indication, and in Figure 3.22 (b), the
"nsclc" is a part of an entity-level term, and the BiLSTM correctly predicts it as I-Indication.
Therefore, according to the obtained results of the study experiments and the cases stated,
for the named entity recognition tasks, which have a limited number of token-level samples,
the preferred model is BiLSTM rather than BERT. The reason is that the BiLSTM model
will have better prediction and results, and also, it will take much less time for training.

To analyze the entity-level terms clearly, let us do it by examples. Consider the entity-level
term of "eye infections" with a B-Adverse Event label for the word eye and an I-Adverse Event
label for the word infection. The BiLSTM model does not predict the "eye" word in the "eye
infection" term correctly and assigned "O" label to it, since the word eye, which is repeated
in the training dataset 115 times, is labeled as B-Adverse Event in 6 times, I-Adverse Event
in 9, B-Indication in 10, I-Indication in 19, and O in 71 times of the 115 times. However,
since the BERT model uses the context of the sentences and the position of the words, it
yields a better prediction. Figure 3.23 shows the issue for the "eye infection" term.

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 9953 
Test Dataset: 
 eye infections appear linked to avastin injections medpage today 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 eye infections appear linked to avastin injections medpage today 

BERT (4Last HL Concat) Model Result: 
 eye infections appear linked to avastin injections medpage today 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 eye infections appear linked to avastin injections medpage today 
============================================================================

Figure 3.23 An example for entity-level term with different labels in the training dataset
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Among the samples in the training dataset, there is an interesting case to address. Some terms
consist of two words like "liver cancer", "bowel cancer", "ovarian cancer", and "breast cancer",
and is labeled as B-Indication for Breast and I-Indication for cancer. In some examples,
these terms are written like "livercancer", "bowelcancer", "ovariancancer", and "breastcancer"
without space by users, and they are labeled as B-Indication only. The BiLSTM model
predicted all the "breastcancer" words as B-Indication correctly, but it did not correctly
predict none of the "breast cancer" terms, and the same for others. However, the BERT
model performance for both terms (with and without space terms) was good (Figure 3.24).

(a)

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 5679 
Test Dataset: 
 no evidence avastin was effective against breast cancer even evidence it was explicitly harmful why 
was it approved ? 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 no evidence avastin was effective against breast cancer even evidence it was explicitly harmful why 
was it approved ? 

BERT (4Last HL Concat) Model Result: 
 no evidence avastin was effective against breast cancer even evidence it was explicitly harmful why 
was it approved ? 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 no evidence avastin was effective against breast cancer even evidence it was explicitly harmful why 
was it approved ? 
============================================================================

(b)

Labels :  B-Adverse Event I-Adverse Event B-Drug I-Drug B-Indication I-Indication 
================================================================================= 

Id: 104918 
Test Dataset: 
 bevacizumab increases the incidence of cardiovascular events in patients with metastatic breast or
 ? # breastcancer 
           ---------------------------------------------------- 

BiLSTM Model Result: 
 bevacizumab increases the incidence of cardiovascular events in patients with metastatic breast or
 ? # breastcancer 

BERT (4Last HL Concat) Model Result: 
 bevacizumab increases the incidence of cardiovascular events in patients with metastatic breast or
 ? # breastcancer 

BERT (4Last HL Concat) + BiLSTM Model Result: 
 bevacizumab increases the incidence of cardiovascular events in patients with metastatic breast or
 ? # breastcancer 
============================================================================

Figure 3.24 Examples for (a) entity-level: "breast cancer" and (b) token-level: "breastcancer"
prediction of all models
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As it is shown in Figure 3.24 (a), "breast cancer" is an entity-level term with the true label of
B-Indication for "breast" and I-Indication label for "cancer". Still, the BiLSTM model does
not predict it correctly; rather, it predicts both as I-Indications. in Figure 3.24 (b), "breast
cancer" is a token-level term, and the BiLSTM correctly predicts it as B-Indication.

Therefore from all these examples, it can be seen that the BiLSTMmodel pays more attention
to the words, and the BERT model pays attention to the context and the position of the
word related to each other. As a result, the combination model of BiLSTM and BERT leads
to a better performance compared to each model taken separately.

Exploring the reason for low F1-score values in the three models results

The small size of the dataset is not the only reason for getting the low value of F1-scores.
The study training dataset contains 2814 Drug labels related to the 6 different drug names (3
different drugs with their generic and brand names), which means that for each drug label, on
average, there are 469 samples in the training dataset. This shows that the drugs’ variety is
low compared to the number of repetitions in the training dataset, leading to proper training
and good F1-scores. The number of Indication labels in the training dataset is about 1631,
related to the 58 different indication terms. This means that for each of the indication labels,
the number of samples is 32 on average. Compared to the average number for each drug label
(469), this number (32) is low, so as a result, the Indication label F1-score does not give a
high score like for the Drug label. The number of repetitions of Adverse Event labels in the
training dataset is 518. The number of varieties of the Adverse Events is 92, so the sample
for each Adverse Event is about 5 samples, which shows the wide variety and low repetition.
Due to the fewer training samples for such a variety of Adverse Events the training is bad,
leading to a low F1-score compared to other labels.
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Exploring the three models results according to their achieved TP, FN, and FP

Figure 3.25 shows the test dataset results of True Positive (TP), False Negative (FN), and
False Positive (FP) for three models of study.
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Figure 3.25 Comparison of the three models True Positive, False Negative, and False Positive
in the test dataset

As can be seen, the values of FN and FP in the BERT model are reduced compared to the
BiLSTM model, which causes an increase in the TP values (it is clear from the definitions
of TP and FN, the value of TP+FN for a label is a fixed value). Based on the evaluation
metrics formula mentioned in Section 3.3, decreasing FN and increasing TP will increase the
recall value. Moreover, decreasing FP and increasing TP will increase the precision value.
Based on the F1-score formula, increasing recall and precision increase the F1-score values,
which shows the better performance of the BERT model compare to the BiLSTM model.
Comparing the BERT model and the BERT+BiLSTM model shows that the FN value of
the latter model is less than the former one, which causes an increase in TP. In the process
of dataset annotation, some words are not annotated with the correct labels and are labeled
as "O" by mistake. For example, words like blindness, cancer, crc, crcsm, and recurrent in
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some sentences are assigned by their correct labels, but in others, they are labeled as "O"
incorrectly. But the BERT+BiLSTM model predicts their correct labels instead of the "O"
label. Therefore, although the BERT+BiLSTM model predicts the correct label since the
ground troth label in the test dataset is mislabeled, these predictions will be counted as FP
and leads to an increase in the FP value in the BERT+BiLSTM model. However, although
the value of FP is increased in the BERT+BiLSTM model compared to the BERT model,
which should decrease the precision value, the increase of the TP value compensates for
that and leads to the higher precision of the BERT+BiLSTM model. Figure 3.26 shows the
precision and recall graph of models. The BERT+BiLSTM model got better precision and
recall compared to other models.
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Figure 3.26 (a) Precision results for the three models (b) Recall results for the three models
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3.8 Summary

This chapter reported on several experiments performed with our three adopted models
based on BiLSTM, BERT, and BiLSTM+BERT. The goal was to find the model with the
best performance to extract the three desired drug adverse reactions from Twitter reviews.
Some different concatenations of BERT layers were created. Among them, the BERT with
the 4 last hidden layer concatenation shows the better result in terms of F1-score compared
to other BERT’s layer concatenation models, which led to selecting it to be combined with
BiLSTM as our third model. After comparing the results of the BiLSTM model with F1-
score of 74%, BERT with 4 last hidden layers concatenation model with F1-score of 79.37%,
and finally BiLSTM+BERT( with 4 last hidden layers concatenation) model with F1-score of
82.19%, it appears that the last model outperformed the other models with better F1-scores.
Therefore, the idea of adding the BiLSTM layer to BERT to continue extracting the features
received from BERT’s outputs to improve the word representation vector was practical.
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CHAPTER 4 ADR DETECTION IMPROVEMENT WITH DATA
AUGMENTATION TECHNIQUES

4.1 Detection (sentence-level classification) task introduction

The predicted results of the extraction task determine the name of the adverse drug reactions
for drugs of interest. However, if some statistical results, such as the rate of adverse reactions
for some specific drugs are more important than the name of the adverse drug reaction, then,
the detection method will be more practical to apply. The advantage of the detection task
compared to the extraction task is as follows: creating a dataset for the detection task requires
less specialized skills and less time, which leads to reduced costs. In addition, the results for
the detection task achieve higher precision and recall than the extraction task. Given the
above, for gathering the adverse reactions, we suggest starting with applying the detection
task and selecting the sentences which contain the adverse drug reaction, and using them to
do the extraction task.

4.2 Dataset preparation steps

The data used to create the dataset for the detection task is the same as the data for the
extraction task (explained in sections 3.1.1 and 3.1.2). The only difference is their labeling
method. Detection is a sentence-level task, and the label will be assigned to the whole
sentence instead of each word of the sentence. If each review contains an adverse drug
reaction (ADR), this review is labeled as AE-Yes; otherwise, it is assigned an AE-No label.
A typical labeled review is provided in Table 4.1

Table 4.1 Examples of ADR detection labeling (AE-Yes: the review contains an ADR, AE-No:
the review does not contain any ADR

Row Sentence True Label
1 eye infections appear linked to avastin injections medpage today AE-Yes
2 lucentis shows effect in reducing macular edema in diabetics AE-No
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The distribution of detection tasks for the two AE-Yes and AE-No classes in the dataset are
shown in the table 4.2. That is as explained before as follows: in the training set (55%),
validation set (15% ) and test set (30%).

Samples Train Val. Test
AE-yes 411 109 215
AE-no 1092 302 606

4.3 Dataset enlargement using different text augmentation techniques

The use of deep learning methods with large size datasets is recommended to improve accu-
racy. However, the generation of large annotated domain-specific datasets is costly. There-
fore, a relevant approach is to increase the dataset size using data augmentation techniques
in conjunction with pre-trained language models to deal with small dataset sizes. The main
contribution in this chapter is to analyze and evaluate the extent to which some simple data
augmentation techniques can improve pre-trained models when we are limited to small size
domain-specific datasets.

4.3.1 Our proposed augmentation methods

Inspired by [57] (summarized in Section 2.6), we proposed four simple data augmentation
techniques to investigate whether using EDA (see Section 2.6) operations and proposed tech-
niques are effective for boosting the performance of BERT-Based models.

• Regular pattern deletion (RPD): Words are removed from the sentences according to a
regular pattern: one word is deleted every m words. Specifically, α = 1

m
is the fraction

of the number of words deleted. This technique was evaluated with m taking values in
the range of {10,5,4,3,2} that gives α values of {0.1, 0.2, 0.25, 0.33, 0.5}

• Random pattern deletion (Pattern deletion Randomly (PDR)): Similar to the previous
strategy, the number of words to be deleted are specified, but their positions are selected
randomly. The main difference between the proposed random deletion method and
EDA is that the fraction of the set of words deleted in a sentence is determined here.
However, the EDA random deletion with a fixed value of p = α may delete no word or
all words of a sentence.

Table 4.2 Distribution of the main
dataset
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• Small words deletion (SWD): Words with ch characters or less are deleted. This method
was evaluated with ch chosen in{1, 2, 3, 4 }.

• Last characters deletion (LCD): A fraction of the last characters of each word in
sentences are removed. This value will be specified by n, which is defined as n =
αl, l representing the length of each word. This method was evaluated with α =
{0.1, 0.2, 0.25, 0.33, 0.5}.

4.4 Description of models used for ADR detection

Based on the results achieved in Chapter 3 for the extraction task, the model used to imple-
ment the detection task is the final model with the best results (BERT with concatenation
of 4 last layers + BiLSTM), as shown in Figure 4.1. The only difference is that in the last
layer, the number of labels is 1 instead of 7.
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Figure 4.1 Detection task model framework

4.5 Evaluation metrics for ADR detection task

Classic metrics were chosen to compare various experiments. Specifically the F1-score was
evaluated for each class (AE-Yes and AE-No) and the total result.

4.6 Implementation of the data augmentation techniques for ADR detection

As was done for the extraction experiments, for the detection task, several experiments were
done to find the optimal hyperparameters for all detection experiments. Then, the test
dataset was applied to the model with optimal hyperparameters for comparing the results.
Figure 4.2 shows the overall framework of the experiments. In this flow graph, the model is
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the final detection BERT+BiLSTM model with the best performance from Chapter 3. The
augmentation technique will only be applied to the training dataset after dividing the dataset
into train, validation, and test datasets. The validation and test dataset was kept fixed to
have reliable test results. Then, the augmented data was added to the training dataset and
used to train the model. Finally, the trained model was fed by the test dataset to evaluate
the performance of the model. In this study, different augmentation methods are used, as
reported in the following.
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Figure 4.2 Overall experimental framework

The four new proposed augmentation techniques, All Easy Data Augmentation (EDA) and
back-translation are utilized to enlarge the training dataset to improve the model’s perfor-
mance. Validation and test datasets are kept fixed in all experiments, and only the training
dataset is changed and enlarged based on augmentation techniques.

For back-translation, English is used as the source language. Dutch, French, Italian, and
Japanese are considered as target languages. The Dutch language was chosen as it is the
most similar to English. Japanese was also chosen as the most different language compared
to English. French and Italian are widely used languages after English. Google translation
is used as the machine translation service. One augmented sentence per sentence for each
language was generated in the training dataset. In the case of EDA, the model is run with
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different values of α. For each of the single EDA operations (SR, RI, RS, RD, which are
explained in Section 2.6) and for each value of α = {0.1, 0.2, 0.3, 0.4, 0.5}, one augmented sen-
tence per sentence was generated in the training dataset. For each of the individual proposed
operations and for each value of α = {0.1, 0.2, 0.25, 0.33, 0.5}, one augmented sentence per
sentence was generated in the training dataset. Then, to evaluate the advantage of combining
several data augmentation techniques, a new dataset is created by concatenating the original
dataset with augmented versions from the best results of each technique. This new dataset
is ten times bigger than the main dataset. Moreover, another large dataset was created by
concatenating the two best versions of each technique with the main dataset in order to have
a database that is 19 times bigger than the main dataset. Some examples of augmented
sentences are shown in appendix C.

4.7 Experimental results and discussion

A BERT+BiLSTM model was implemented and run across the main dataset without aug-
mentation as the baseline. All the considered augmented datasets explore the effects of every
single operation of the EDA, the four new techniques, and the back-translation on the model
results. F1-score for AE-Yes and AE-No and the micro average ( explained in Section 2.5)
are shown in all result figures.
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Figure 4.3 ADR detection results for the baseline (BL) and each of the individual EDA
techniques

By exploring the results in Figure 4.3 and Figure 4.4, almost all the considered augmentation
strategies contribute to boosting the performance of the proposed model. The improvement
for AE-Yes is more significant compared to AE-No. The reason could be the high value of
the F1-score of AE-No in the baseline model. Improving a high score appears to be more
challenging. For SR, Figure 4.3 (a), best results are obtained at α > 0.2 as RS Figure 4.3
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(c) because both operations insert some noise to the dataset that leads to more diversity in
the training dataset. For the RI technique, Figure 4.3 (b), different α values return almost
the same result, likely because the adequate words in the sentences and their orders are
maintained and introduce less noise and diversity in that case, the best result is obtained at
α = 0.5. For the RD strategy, Figure 4.3 (d), no clear tendency is observed; this may be
due to the randomness of the deletion process. For instance, it is likely that several words
in a sentence may be deleted sequentially. On the other hand, a very small number of words
may be deleted, leading to the observed inconsistent behavior.
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Figure 4.4 ADR detection results for the baseline (BL) and each of the individual proposed
augmented and back-translation techniques

With the RPD strategy, Figure 4.4 (a), removing words creates new sentences that enlarge
the size of the dataset; more significant improvements were observed for α > 0.33 in the
PDR technique. It is of interest that the Figure 4.4 (b) was implemented for the same
values of α as the RPD technique; the results are different since, in PDR, the words are
deleted randomly. In the case of SWD, Figure 4.4 (d), since the adverse drug effects are
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words with more than four characters, it is probable that using the technique does not delete
important and effective words of the sentences. In SWD, the best results were obtained by
removing words with three characters or less. With the LCD technique, Figure 4.4 (c), low
and high deletion rates are not effective, and best results are obtained at α between 0.2 and
0.33. The reason could be that removing a specific number of last characters from words will
keep the root of the words and consequently the meaning of the words, but deletion of too
many characters changes the identity of the words. In the case of the back-translation (BT)
strategy, Figure 4.4 (e), almost all translated datasets gave the same results while back-
translation to Italian gave the best results. Applying this kind of back-translation increases
diversity in the training dataset.

As shown in Figure 4.5, improvements obtained when the model was trained using the
concatenated dataset (TrainDataset+9AugBest) outperformed all other augmentation tech-
niques when applying them to the test dataset. An improvement of the baseline accuracy
from 91.82 % to 95.25% (about 3.43 %) has been obtained. Moreover, using the concatenated
dataset for the AE-Yes score boosted the baseline score from 84.3% to 91.24% (6.93% gain).
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In a closer investigation of the results, in Figure 4.6 the precision and recall of the BERT+BiLSTM
(Base Line) model and BERT+BiLSTM+9AugBest are explored.
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Figure 4.6 (a) The precision results for three models (b) The recall results for three models

As can be seen in the figures, using the augmentation method increased precision by 3.5%
for both AE Yes and AE No labels. In the case of a recall, this method increased the AE Yes
label’s recall value by more than 10% and about 1% increase for AE No label. Therefore,
the results show that the augmentation method is more effective for the labels with fewer
samples in the training dataset. In total, the results show that the augmented dataset leads
to an increase in both precision and recall and, as a result, increases the F1-sore of the model.

In Figure 4.7, we show the final result of the experiments, which created a dataset by selecting
the two best results of each augmentation technique and by concatenating them. The results
obtained with Dataset+9AugBest were better than those obtained with Dataset+18AugBest.
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Figure 4.7 Comparison of results for the Train Dataset,Train Dataset+9AugBest and Train
Dataset+18AugBest

However, [57] noted that applying EDA when using pre-trained models may not result
in significant improvements. By contrast, our experiments show that using EDA and the
proposed augmentation techniques improve the pre-trained model. Since our baseline model
consists of BiLSTM and BERT, we performed another experiment without BiLSTM in our
baseline model. We applied an augmented dataset to BERT to see how it would contribute
to the improvement. These augmentation strategies have a main impact on the BERT part,
as illustrated in Figure 4.8.
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4.8 Summary

In this chapter, four simple data augmentation techniques are proposed, and their effective-
ness is examined along with EDA and back-translation techniques for text classification tasks.
The reported results show that using text data augmentation methods can boost the results
of pre-trained models such as BERT, and this could be a reliable solution for annotated data
scarcity in domain-specific datasets. By comparing the proposed research results with other
studies in this field, it is concluded that the improvements obtained with data augmentation
techniques depend on the type and structure of the datasets.
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CHAPTER 5 CONCLUSION

5.1 Summary of work performed

The unwanted effect of drug use called ADRs often leads to hospitalization, and some severe
impact might lead to death, so early detection can prevent these issues from happening. In
this thesis, the performance of three different models for automatic detection and extraction
of ADR were explored. The goal is to find a model with better performance. One of the fast
and reliable sources for gathering ADR data is Twitter. After gathering Twitter user reviews,
pre-possessing and annotating it by human experts, these reviews were used as training and
test datasets for the study.

By developing Natural Language Processing and introducing Deep Learning and transfer
learning methods, some of the limitations of previously reported methods like lexicon and
traditional machine learning methods are solved. The limitations include the need for pe-
riodic updates of the lexicon for a lexicon-based approach and manual feature creation for
old machine learning methods. Therefore, this thesis investigates the performance of deep
learning and transfer learning in detecting and extracting ADRs. The Deep learning models
consist of word embedding, BiLSTM, and classifier layers. For the transfer learning model,
the new state-of-the-art language model BERT is used. Some different experiments were
performed to find the best performing model, such as summation and concatenation of the
last 3, 4, and 5 last hidden layers of the BERT model. The BERT model with the concate-
nation of 4 last layers achieved the best performance among the others. To investigate the
possibility of improving the performance, a combination of BERT and BiLSTM was created,
trained, and tested in the dataset. Comparing all the final results in Figure 3.18 reveals
that the F1-score of the BERT model is higher than the BiLSTM model, 79.37% compared
to 74.0% of F1-score, and the BERT+BiLSTM model outperformed both two other models
and got 82.19% of F1-score. This makes sense since BERT as a pre-trained model is already
trained on vast amounts of text data and also, by using the attention mechanism, has a
better conception of contexts compare to BiLSTM. For better results of BERT+BiLSTM,
the reason could be that the added BiLSTM layer to BERT continued to extract the features
received from BERT’s output and improved the word representation vectors, leading to bet-
ter prediction and better performance scores. Interestingly, these pre-trained models, trained
on Wikipedia and official texts, performed well on tweets, although tweets often contain mis-
spellings and slang. Moreover, if more annotated data was available, the models could get
higher performances.
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The study dataset is considered a small dataset. By exploring the examples and true labels
in the dataset, it can be seen that for labels like "Drug", the number of samples was in the
range that the model could get 93% F1-score. If the dataset was larger, maybe the F1-score
could improve. Moreover, if the variety of the terms for the two labels of Adverse Event and
Indication in the dataset were reduced, the model was able to get a better score in the result.
Therefore, to spend a reasonable cost on preparing the dataset for the desired tasks, it is
better to estimate the variety of labeled words and entities and, to gather the proper number
of samples to create the dataset. By investigating the F1-score results for all labels, it can
be seen that the Adverse Event is lower than the others. The main reason for that is the
limited number of Adverse Event examples compared to other labels in the training dataset.
Another reason is the long length of entity terms of Adverse Event compared to other labels,
entity terms such as "loss of vision including peripheral", "reduced cognitive function and
quality of life", and "outbreaks of endophthalmitis with blindness", that if one of the words
in the entity is mispredicted, the whole entity will be considered misprediction and leads to
a low F1-score value.

According to the result in this study, for the small dataset with token-level samples, BiLSTM
might be a better choice than BERT since it makes more accurate predictions for these kinds
of samples, and also the training time is smaller. The reason probably could be that when
a word is not in the BERT vocabulary, the model uses the word-piece technique, and for
accurate prediction, the model needs more samples for training.

For the detection task, the efficiency of using the augmentation method to enlarge the training
dataset was investigated. Four proposed simple data augmentation techniques, along with
EDA and back-translation techniques were applied to the small dataset of the study. After
exploring the results, it was found that compared to the baseline model (BERT+BiLSTM
without training in the augmented dataset), the +9AugBest model, which is trained with
the augmented dataset, got better scores. Therefore using the augmentation technique was
an effective way for improving the result, and this could be a reliable solution for annotated
data scarcity in domain-specific datasets. However, excessively enlarging the dataset by the
mentioned method will not necessarily improve the result. The reason might be that applying
the augmentation technique in some of the samples can change the meaning and concept of
the sentence in such a way that the true label is no longer correct for that sentence, which
will cause incorrect training for that label and decrease performance.

The scenario of using the trained model of detection and extraction of ADR is as follows: in
the first step, some new reviews with keywords of our three mentioned drugs are gathered.
These reviews are then fed to our trained detection model, and the model predicts and classify
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these reviews as AE-Yes or AE-No. In the next step, we filter the reviews with AE-Yes labels
and feed them to our trained extraction model as input. Finally, the output of the model
will indicate ADR names for us.

5.2 Limitations

The most critical limitation in this study was finding a proper dataset for the desired tasks
of the research, so for implementing the research, a specific dataset of the desired drugs
is created and annotated. The dataset used for the study is small; for example, for some
of the Adverse Events labels, there are only 1 or 2 examples that is not sufficient to train
the models. To get higher scores, large Twitter corpus are needed but their production is
expert-dependent, expensive and time-consuming.

5.3 Future research

To obtain higher scores, a large corpus to train the model should be developed. Applying the
augmentation technique, used to enlarge the dataset for the detection task might also help
make a large dataset for the extraction task and improve the performance. To expand the
dataset, another method could be pseudo-labeling. It might be beneficial to test this method
for both detection and extraction tasks and check if the results improve or not. Pseudo-
labeling is the process in which a trained model of the project will predict some unlabelled
data. Then the predicted results will be added to the dataset as the annotated data to enlarge
the training dataset. Another way to improve the results might be to extend the model
through additional layers like CNN or CRF, creating a new combination for the detection
and extraction models. In addition, using more recent pre-trained language models such as
the XLNet model instead of the BERT model might be another subject for future work of
this research. Finally, all these suggested methods should be applied to the BERT+BiLSTM
model to check their effectiveness.
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APPENDIX A DATASET DIVIDING RATIO EXPLANATION

Here is an example to show that with less testing data, the performance will have higher
variance. Considering the B-Adverse Event with 100 instances in the test dataset and TP =
40, FN = 60 and FP = 30. Utilizing the formula in Section 2.5 the evaluation metrics for
this example will be as follows:

Recall = 40% , Precision = 57.14% , F1− score = 47.06%

Now by changing only one prediction, TP = 39, FN = 61 and FP = 30 the results will
change as follows:

Recall = 39% , Precision = 56.52% , F1− score = 46.15%

It can be seen that just by one change in prediction values, the F1-score changed about 1%.

Now the number of B-Adverse Event is tripled and is changed to 300 and the ratio for TP,
FN and FP is kept constant as follows:TP = 120, FN = 180 and FP = 90. the evaluation
metrics will be as follows:

Recall = 40% , Precision = 57.14% , F1− score = 47.06%

Now by changing only one prediction, TP = 119, FN = 181 and FP = 90 the results will
change as follows:

Recall = 39.67% , Precision = 56.94% , F1− score = 46.76%

It can be seen that just by one change in prediction values, the F1-score changed about 0.3%
which shows that by having more testing data, the F1-score will have less variance and are
more reliable for assessing the performance of the model.
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APPENDIX B EXPERIMENT RESULTS FOR FINDING OPTIMAL
HYPERPARAMETERS

Learning 

Rate
Batch Size

Embedding 

dim

Hidden 

dim
Dropout

Max F1-Valid 

Average

Max F1-Valid 

stDev

1 23 0.005 16 512 256 0.2 74.064 2.300075

2 24 0.005 16 512 256 0.3 73.954 2.742981

3 18 0.005 16 256 256 0.3 73.644 2.403735

4 17 0.005 16 256 256 0.2 73.256 3.902038

5 20 0.005 16 512 150 0.3 73.212 1.575467

6 11 0.005 16 100 256 0.2 73.028 2.604983

7 178 0.0005 32 100 200 0.3 72.872 0.530863

8 45 0.005 32 512 200 0.2 72.778 1.196351

9 34 0.005 32 100 200 0.3 72.774 1.781691

10 47 0.005 32 512 256 0.2 72.684 0.650618

11 15 0.005 16 256 200 0.2 72.668 1.980317

12 33 0.005 32 100 200 0.2 72.668 1.109151

13 22 0.005 16 512 200 0.3 72.664 2.324268

14 105 0.001 32 100 200 0.2 72.662 1.052186

15 31 0.005 32 100 150 0.2 72.582 0.962401

16 26 0.005 32 10 150 0.3 72.548 2.009551

17 43 0.005 32 512 150 0.2 72.486 0.592304

18 115 0.001 32 512 150 0.2 72.444 0.471534

19 46 0.005 32 512 200 0.3 72.438 0.855790

20 7 0.005 16 100 150 0.2 72.434 1.818390

21 39 0.005 32 256 200 0.2 72.41 1.158188

: : : : : : : : :

: : : : : : : : :

200 61 0.005 64 256 150 0.2 69.72 1.224614

201 145 0.0005 16 10 150 0.2 69.718 2.650807

202 171 0.0005 32 10 200 0.2 69.692 1.419808

203 141 0.001 64 512 200 0.2 69.688 1.218481

204 69 0.005 64 512 200 0.2 69.684 1.515514

205 213 0.0005 64 512 200 0.2 69.656 1.706008

206 123 0.001 64 10 200 0.2 69.644 1.120350

207 196 0.0005 64 10 200 0.3 69.534 0.600087

208 194 0.0005 64 10 150 0.3 69.504 1.406252

209 70 0.005 64 512 200 0.3 69.488 1.269636

210 169 0.0005 32 10 150 0.2 69.294 0.796507

211 63 0.005 64 256 200 0.2 69.292 1.296848

212 216 0.0005 64 512 256 0.3 69.23 0.358162

213 195 0.0005 64 10 200 0.2 69.22 1.858892

214 68 0.005 64 512 150 0.3 69.128 1.439255

215 203 0.0005 64 100 256 0.2 69.08 1.555236

216 197 0.0005 64 10 256 0.2 69.022 1.544052

BiLSTM

ResultHyperparameters
Run 

Num
Row

Figure B.1 The BiLSTM model experiment results for finding optimal hyperparameters
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Learning 

Rate
Batch Size Dropout

Max F1-Valid 

Average

Max F1-Valid 

stDev

1 10 0.0005 16 0.2 86.65 1.175594

2 19 0.0001 16 0.2 86.61 1.401968

3 24 0.0001 32 0.4 86.56 1.228576

4 22 0.0001 32 0.2 86.46 1.994375

5 27 0.0001 64 0.4 86.43 0.805239

6 16 0.0005 64 0.2 86.35 1.331436

7 26 0.0001 64 0.3 86.35 0.271330

8 23 0.0001 32 0.3 86.31 0.611468

9 12 0.0005 16 0.4 86.3 0.910642

10 11 0.0005 16 0.3 86.28 0.332538

11 20 0.0001 16 0.3 86.28 1.012162

12 17 0.0005 64 0.3 86.25 0.566899

13 25 0.0001 64 0.2 86.24 1.187959

14 14 0.0005 32 0.3 86.16 0.537784

15 13 0.0005 32 0.2 86.15 0.491894

16 21 0.0001 16 0.4 86.05 1.027104

17 18 0.0005 64 0.4 86.04 0.302733

18 7 0.005 64 0.2 85.87 0.241006

19 15 0.0005 32 0.4 85.65 0.437404

20 8 0.005 64 0.3 85.16 0.929400

21 4 0.005 32 0.2 84.98 0.591963

22 6 0.005 32 0.4 84.41 0.396954

23 9 0.005 64 0.4 83.76 0.412172

24 5 0.005 32 0.3 83.46 0.423272

25 2 0.005 16 0.3 82.84 0.704699

26 3 0.005 16 0.4 82.76 0.446951

27 1 0.005 16 0.2 80.87 0.704218

BERT (4 Last HL Concat)

Run 

Num
Row

Hyperparameters Result

Figure B.2 The BERT (4 last layer concatenation) model experiment results for finding
optimal hyperparameters
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Learning 

Rate
Batch Size

Hidden 

dim
Dropout

Max F1-Valid 

Average

Max F1-Valid 

stDev

1 11 0.0005 16 200 0.3 87.8 1.150037

2 14 0.0005 32 256 0.2 87.78 1.371490

3 19 0.0001 16 200 0.3 87.77 1.201868

4 12 0.0005 16 256 0.3 87.69 1.951019

5 10 0.0005 16 256 0.2 87.68 0.787733

6 21 0.0001 32 200 0.2 87.6 1.302491

7 9 0.0005 16 200 0.2 87.53 0.265432

8 16 0.0005 32 256 0.3 87.52 0.598176

9 18 0.0001 16 256 0.2 87.41 0.890846

10 17 0.0001 16 200 0.2 87.29 0.325309

11 13 0.0005 32 200 0.2 87.2 0.990159

12 22 0.0001 32 256 0.2 87.19 0.554576

13 8 0.005 32 256 0.3 87.17 1.162134

14 24 0.0001 32 256 0.3 87.11 0.526093

15 15 0.0005 32 200 0.3 86.99 0.481201

16 6 0.005 32 256 0.2 86.98 1.004776

17 2 0.005 16 256 0.2 86.96 0.296152

18 7 0.005 32 200 0.3 86.96 0.235767

19 20 0.0001 16 256 0.3 86.94 0.427895

20 23 0.0001 32 200 0.3 86.91 0.909195

21 1 0.005 16 200 0.2 86.9 0.579094

22 3 0.005 16 200 0.3 86.74 0.388325

23 5 0.005 32 200 0.2 86.66 0.403212

24 4 0.005 16 256 0.3 86.41 0.414070

BERT (4 Last HL Concat) + BiLSTM

Row
Run 

Num

Hyperparameters Result

Figure B.3 The BERT (4 last layer concatenation) +BiLSTM model experiment results for
finding optimal hyperparameters
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APPENDIX C EXAMPLE OF AUGMENTED SENTENCES

Original Text = "my father had a stroke in the part of his brain right behind the eye that
got avastin injection."

α= 0.3 L = 19 n= int(l) = int (0.3x19) = 5

Data
augmentation
technique

Sentence
length(l) Augmented text

RS 19 "avastin father had the stroke in got behind his of brain right part a
eye that the my injection."

SR 20 "my father indiana had a stroke in the brainiac middle part of his brain
right virgule behind the eye that got avastin powerful injection."

RD 14 "father had a in the part of his right behind the eye that got"

RI 24
"my male parent had a stroke in the division of his brainpower good
fundament
the eye that got avastin injection."

Word_List = ["my" "father" "had" "a" "stroke" "in" "the" "part" "of" "his" "brain" "right"
"behind" "the" "eye" "that" "got" "avastin" "injection."]

α= 0.33 m = 1/α=1/0.33=3

Table C.2 Examples of applying 4 proposed augmentation technique to a sample of the
dataset
Data
augmentation
technique

Sentence
length(l) Augmented text

RPD 13 "my father a stroke the part his brain behind the that got injection."
DPR 13 "father had a in the part of his right the that got injection."

LCD 19 "my fath had a stro in the part of his bra rig behi the eye that got avas
inject"

SWD (ch=2) 15 "father had stroke the part his brain right behind the eye that got avastin
injection."

Table C.1 Examples of applying EDA augmentation technique to a sample of the dataset
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APPENDIX D RESEARCH MODELS CODES

The training python codes for the BERT+BiLSTM are shown as the following:
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