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RÉSUMÉ

D’après le dernier rapport du Groupe d’experts Intergouvernemental sur l’Evolution du Cli-
mat (GIEC), la température planétaire a augmenté de 1.1°C depuis l’ère pré-industrielle, alors
qu’il faudrait ne pas dépasser le seuil de 1.5°C pour éviter des conséquences irréversibles du
dérèglement climatique. Pour cela, d’importantes réductions des émissions de gaz à effet de
serre sont nécessaires, notamment dans le domaine de la production d’énergie. Les éner-
gies fossiles sont remplacées par celles renouvelables, qui, étant intermittentes, doivent être
compensées par l’hydroélectricité. Cela augmente la durée du fonctionnement transitoire des
turbines, dont les nouvelles conditions d’opération doivent être prises en compte lors de leur
conception. Cela se fait au travers de l’étude des phénomènes en jeu dans celles-ci et de
leur comportement dynamique. Les roues hydrauliques, et notamment celles de haut débit
ou fonctionnant aussi comme pompes, qui sont et seront les plus utilisées, sont soumises à
de multiples sources d’excitation complexes, qu’il faut quantifier et qualifier. A l’inverse de
l’Interaction Rotor-Stator (IRS) qui a été décrite et analysée, le phénomène de séparation des
modes est mal connu et nécessite d’être étudié. Il se produit lorsque la roue tourne dans l’eau,
et couplé à la masse ajoutée de cette dernière, introduit une séparation, ainsi qu’une dérive,
de ses fréquences naturelles, associées aux vagues co et contre-rotative qui la parcourent pour
différentes vitesses de rotation. Lors de l’étude du comportement dynamique de roues, em-
ployer la géométrie réelle au sein de simulations numériques requiert d’importantes ressources
informatiques et durées de temps, alors qu’il est tout simplement impossible de le faire ana-
lytiquement. Ainsi, un modèle simplifié qui présente les mêmes caractéristiques dynamiques
est nécessaire, et cela est le cas pour les disques, qui ont des modes de vibration similaires
à ceux du rotor et du stator pour des basses fréquences. La séparation de modes pour un
disque tournant dans un fluide dense a été analysé et expliqué par le passé expérimentale-
ment, numériquement et analytiquement. Or, il s’avère que le stator se trouvant au-dessus
de la roue est flexible comme il possède également une faible épaisseur. Dès lors que le rotor
vibre et influence le fluide environnant, le stator est donc aussi impacté et participe au com-
portement dynamique globale de la structure. Ainsi, il est nécessaire de qualifier l’impact
de ce couplage et la séparation de modes en présence d’un stator déformable. Pour cela,
on développe dans ce projet deux modèle analytique et numérique de disques rotatif et sta-
tionnaire couplés par le fluide, pour étudier l’influence de leur interaction sur la séparation
des modes. Dans un premier temps, on applique au fluide la théorie des écoulements poten-
tiels, en le considérant irrotationnel, non-visqueux et incompressible. On suppose également
que les disques observent des formes de modes similaires dans l’eau et le vide. En utilisant
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cette hypothèse, on obtient les écoulements potentiels qui respectent la condition de non-
pénétration entre le fluide et la structure. La déformation de l’interface fluide-structure entre
le fluide et le disques est discrétisée avec la méthode de collocation par point. L’un après
l’autre, chaque disque est considéré déformable, tandis que l’autre est rigide. Avec le principe
de superposition, on couple les deux écoulements fluides obtenus ainsi dans les équations de
mouvement. Le modèle numérique a été créé en collaboration avec Blais (2021) et présente
les mêmes hypothèses et caractéristiques que le modèle analytique. En effet, il s’agit d’une
analyse modale acoustique-structure faite sous Ansys, que nous utilisons pour vérifier son
équivalent théorique et proposer un outil de simulation numérique rapide. Avec l’hypothèse
de la non-viscosité du fluide, les modèles développés présentent moins de 3% d’erreur avec les
données expérimentales issues de la littérature. Le modèle analytique permet une meilleure
compréhension du phénomène de séparation des modes pour le couplage rotor-stator, tandis
que l’analyse modale numérique offre une alternative aux simulations coûteuses en ressources
et temps. Ils sont également capables de qualifier l’influence du stator au sein du couplage
sur la performance globale de la structure, et de prédire le comportement dynamique de
disques couplés par le fluide pour différentes configurations, dans le cadre de la conception
de turbines.
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ABSTRACT

High-head turbine runners are subject to multiple sources of excitations, e.g., Rotor-Stator
Interaction (RSI) or trailing-edge vortices. Coupled with the added mass of water, rotation
induces a mode split in the natural frequencies of runners, where co-rotating and counter-
rotating waves travel through the runner at different relative speeds. Disks, by displaying a
similar behavior, can be used as a simpler model. Mode split is characterized for a rotating
disk in dense fluid but, in high-head turbines, the runner and the compliant confinement
are coupled through the axial gap fluid. In this project, we develop an analytical model
of coupled stationary and rotating disks to analyze the effect of their interaction on the
mode split phenomenon. First, we apply the potential flow theory, considering the fluid as
irrotational, inviscid and incompressible. We assume that the modeshapes of the disk in a
dense fluid are similar to their shapes in vacuo. Based on these assumed modeshapes of the
stationary and rotating disks, we derive the potential flows that respect the no-penetration
boundary conditions. One after the other, each disk is considered flexible while the other
one is rigid. By applying the superposition principle, we then couple the two obtained fluid
flows through the structural equations of motion. An acoustic-structural modal analysis was
developed in collaboration with Blais (2021) to verify the analytical model and propose a
fast numerical tool for hydraulic turbine design. Despite the inviscid flow assumption, the
derived models display less than 3% error with experimental data for large axial gaps and
rotors thicker than stators. They predict the dynamic behavior of disks coupled through fluid
for different configurations, offering an alternative to computationally expensive simulations.
Additionally, they provide a better understanding of the mode split phenomenon in a rotor-
stator system, by qualifying the influence of the stator component on the overall structure
performance for turbine design.
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CHAPTER 1 INTRODUCTION

In 2015, most countries of the world signed the Paris climate agreement to keep the increase
of Earth global temperature since the pre-industrial period well below 2°C and to pursue the
actions to limit it to 1.5°C. According to the last report from the Intergovernmental Panel
on Climate Change (IPCC), 1.1°C has already been reached and only significant cuts in
greenhouse gases emissions will prevent the rise from breaking the set thresholds. One sector
that will experience drastic changes is energy production, with a subsiding of fossil energies
in favor of renewable energies. Existing and new hydroelectric plants will be put to new uses,
as other green energies suppliers will enter the grid. Indeed, they will have to be as efficient
as before and more versatile, as they will compensate the other energies intermittent output.
Hydraulic turbines will thus face more transient events and off-design operating conditions,
that have to be considered during their design (Trivedi et al., 2013).

(a)

(b)

Figure 1.1 a) Schematic of a Francis turbine with the components of the stator and rotor, as
well as the shaft; and b) example of a disk mode shape with n “ 3 nodal diameters

Throughout their life, high-head turbines are subject to multiple physical phenomena that
can induce severe fatigue, causing a loss in efficiency or of the turbine itself (Coutu et al.,
2004, 2008). It often originates from resonance created by excitation sources, e.g. Rotor-
Stator Interaction (RSI) are unavoidable in high-head Francis turbines and pump-turbines
(Seidel et al., 2012). Moreover, sometimes resonance cannot be avoided and it thus become
essential to determine the amplitude of vibration to ascertain if it may damage the turbine.
Understanding the implied physics is therefore essential to be able to predict the dynamic
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behavior of turbines. Due to their complex geometry and the fluid rotation, it has to be ana-
lyzed with a simplified approach. High-head turbines, and especially pump-turbines runners,
have diametrical modes (a number of diameters, called nodal diameters, do not vibrate) for
low eigenfrequencies (Egusquiza et al., 2016), and their crown and band are disk-like struc-
tures (see Figure 1.1). Hence, they can be simplified as disks, an approach that has been
used in past research to qualify the involved physical phenomena, without the corresponding
quantitative data.

Simplifying high-head turbines runners as disks allowed to analyze the influence of their
geometry on their dynamic behavior. Runners are close to the stationary parts of turbines
through small gaps filled with water, whose added mass modifies the natural frequencies of
the runner. Added mass is defined as the mass of fluid oscillating with the structure. Valentín
et al. (2014) studied the influence of the radial and axial gaps on the dynamic behavior of a
confined stationary disk in contact with fluid on one side. The walls of the confinement are
considered rigid. For both, it demonstrates that when the gap is smaller, the water added
mass increases and causes the natural frequencies to decrease. Moreover, past a certain
distance, the impact of rigid walls decreases and vanishes. Presas et al. (2015a) analyzed the
influence of rotation on the natural frequencies of a disk in a fluid-filled rigid confinement. A
stationary disk exhibits a standing wave as a mode shape, which is the superposition of two
opposed traveling waves, co and counter-rotating. As the disk is stationary, the two waves
superpose exactly, creating the so-called standing wave. The same phenomenon is observed
when the disk rotates in vacuo or in a low-density fluid like air, as it does not have an impact
on its dynamic behavior. However, when a fluid is dense, its added mass is considerable,
and its movement can induce damping. Therefore, when the disk starts to rotate in a dense
fluid, the two traveling waves separate (Renshaw et al., 1994). This phenomenon is called
mode split, and induces the emergence of two natural frequencies associated with the forward
and backward modes (see Figure 1.2). When the rotation velocity increases, their difference
follows the same trend and their central value decreases slightly, which is called frequency
drift. The frequency of the co-rotating wave is increased by the rotation of the fluid, while
it is decreased for the counter-rotating mode (Kubota and Ohashi, 1991). When analyzing
the rotation of disks in water, two reference frames are used: stationary and rotating, as the
observation can be made from the stator or the rotor. When in the first one, we observe
the same variation of the waves frequency described earlier, and for the latter, it is the
opposite: the natural frequency of the forward mode decreases while it increases for the
backward mode (Presas et al., 2015b). Indeed, in the rotating reference frame, with the
rotation of the disk, the kinetic energy of the fluid increases, as well as its added mass (as it
is directly proportional) for the co-rotating wave, which explains the loss in the associated
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eigenfrequency. Using different reference frames is then only a matter of representation: when
changing from the rotating to the stationary one, the frequency of the forward mode appears
to be higher and shifts to become the highest while it is the opposite for the backward mode.
Mode split for a submerged rotating disk has been analyzed experimentally, analytically and
numerically by Valentín et al. (2016) and Presas et al. (2015a), and was given a physical
explanation by Louyot et al. (2020).

(a) Disk rotational velocity
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Figure 1.2 a) Mode split; and b) frequency split and drift

In hydraulic turbines, the runner is not the only component capable of vibrating due to its
flexibility. Indeed, the head cover of stators is not totally rigid and Valentín et al. (2017)
demonstrated that its flexibility has a significant influence on the dynamic behavior of the
rotor, by coupling it with rigid and flexible covers. In fact, natural frequencies decrease when
the rotor is near the rigid stator, and increase when it is near the flexible one (compared
to the rigid case), if the natural frequencies in vacuo of the disk and casing are in a close
range. Indeed, by being more flexible, the stator loses in rigidity and its eigenfrequencies
drop to reach the range of the rotor’s ones. In this case, their amplitudes are higher and
the coupling is stronger. Weder et al. (2019) analyzed experimentally the coupling of the
rotor with a flexible stator through the variation of their thickness and the axial gap. They
first demonstrated that when two independent disk-structures are fluid-coupled, two types of
modes can be distinguished depending on their relative motion. On one hand, if the modes
have corresponding antinodes (e.g. upward for both for the same angle), they are said to be
in-phase or sinuous (see 1.3a). On the other hand, if the modes have opposed antinodes (e.g.
upward and downward for the same angle), they are said to be out-of-phase or varicose (see
1.3b). As they have different modeshapes, and the fluid flow is altered differently, they each

have their own natural frequencies. Indeed, for varicose modes, the fluid is more squeezed
between both structures, compared to sinous modes, which increases its added mass and
decreases the natural frequencies. In-phase modes thus have higher eigenfrequencies than
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out-of-phase modes. Weder et al. (2019) also showed that the stator has an impact on the
dynamic behavior of the rotor with the integration of the fluid rotation, an addition to the
work of Valentín et al. (2017). One significant observation is that the amplitude ratio between
the rotor and the stator is also influenced by the rotation. Therefore, mode split has to be
analyzed when the rotor is coupled with a flexible stator.

(a) (b)

Figure 1.3 (a) In-phase modes; and (b) out-of-phase modes with n “ 3 nodal diameters for
two identical annular disks

This project was done in collaboration with Andritz Hydro Canada Inc., based in Montréal,
Canada. The previous work of Louyot et al. (2020), also made in partnership with this
company, analyzed the dynamic behavior of a rotating annular disk submerged in a rigid
confinement and gave physical insights on the mode split phenomenon. As the stator is
also part of the vibrating structure, integrating its coupling with the stator and considering
the mode split is thus of interest for Andritz Hydro Canada Inc. Indeed, extending the
analytical and numerical models developed by Louyot et al. (2020) would provide a better
understanding and prediction of these phenomena, essential in the early stages of hydraulic
turbines’ design.

In this thesis, we first review the available literature to build corresponding research objectives
complementing the past work and acting as guidelines for our project. We then present
the methodology of our analytical and numerical models, through the establishment of the
assumptions, the calculation and simulation steps. Afterwards, we verify and validate our
methods with results from different theoretical approaches and experimental data, before
analyzing the implied physics through parametric studies. We finally conclude on our work
based on the objectives set, by additionally giving its limitations and an outlook of the future
work that could be done.
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CHAPTER 2 LITERATURE REVIEW

Through extending the analytical and numerical models developed by Louyot et al. (2020),
our work features two physical phenomena: the mode split and the rotor-stator coupling.
Both of them have been analyzed in detail in the past by Louyot et al. (2020) and Weder
et al. (2019), and here we further describe the insights they made.

Mode split phenomenon

Although the mode split phenomemon was first introduced by Kubota and Ohashi (1991),
reproduced numerically by Valentín et al. (2016) and observed experimentally by Presas et al.
(2015a), it lacked a physical understanding. Louyot et al. (2020) thus developed analytical
and numerical models to represent the crown of the runner with a rotating annular disk
submerged in rigid confinement. Using β the Added Virtual Mass Incremental (AVMI)
factor, it is possible to evaluate the natural frequencies of the disk in water ωF with those in
vacuum ωV (Kwak and Kim, 1991):

ωF

ωV

“
1

?
1 ` β

, (2.1)

where β is defined as the ratio of the kinetic energies of the fluid and the disk. Louyot et al.
(2020) then expressed β as a function of β0 the AVMI factor without rotation of the fluid:

β “

ˆ

1 `
nΩD{F

ωF

˙2

β0, (2.2)

with n the number of nodal diameters and ΩD{F the relative angular velocity of the disk to
the fluid (as the referential is the fluid reference frame). Their theoretical approach finally
lead to a formula to calculate the eigenfrequencies ωF with ωV , β0 and ΩD{F :

ωF “

a

pβ0 ` 1qω2
V ´ β0pnΩD{F q2 ´ nβ0ΩD{F

β0 ` 1 . (2.3)

The definition of β corroborates the explanation of the added mass given by Paidoussis
(2014), as he associates the fluid loading with accelerations of the structure (and in turn
those of the fluid). Moreover, it allows us to understand the effect of the added mass on
the natural frequencies: if it is increased, the ratio between eigenfrequencies in water and
in vacuo is reduced, resulting in lower natural frequencies in fluid. On the contrary, if the
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added mass effect is less considerable, the ratio between eigenfrequencies in water and in
vacuo increases, leading to higher natural frequencies in fluid. This behavior is similar to the
one displayed by a mass-spring system. Indeed, without fluid, increasing the rigidity of the
spring causes a rise in eigenfrequencies, whereas increasing the mass results in a reduction of
the natural frequencies. The added mass of the fluid is thus combined with the mass of the
structure and has the same influence as increasing the mass of the structure. Louyot (2019)
also demonstrated that the natural frequencies of the disk in water decrease for smaller axial
gaps and/or when the disk is larger and thinner, as he observed the opposite trend for β0.
The eigenfrequencies increase with the number of nodal diameters and circles.

In the rotating reference frame, the disk rotation decreases the frequency of the co-rotating
wave while it increases the frequency of the counter-rotating wave. In addition, the number
of nodal diameters n ą 0 and n ă 0 respectively correspond to the forward and backward
modes. Therefore, the term responsible for the mode split phenomenon is identified in Eq.
(2.3) found by Louyot (2019) as ´nβ0ΩD{F . From this observation, it is possible to write the
mode split magnitude as:

ωF,´n ´ ωF,`n “
2nβ0ΩD{F

β0 ` 1 . (2.4)

Therefore, by increasing β0, the mode split magnitude tends towards the asymptotic value
of 2nΩD{F . The other phenomenon observed with the rotation of the disk is the frequency
drift. According to Eq. (2.3), it originates from the term ´β0pnΩD{F q2 as it decreases
the natural frequencies no matter which wave is concerned (the sign of n has no influence
with the square). Louyot (2019) showed that the drift is negligible for angular velocities
of the disk corresponding to those of hydroelectric runners under operating conditions. By
increasing sufficiently the rotational velocity (and thus getting outside the operating range of
turbines), the natural frequencies become complex values and an unstable coupling between
the disk motion and the pressure of the fluid is triggered, resulting in a coupled-mode flutter
instability.

Rotor-stator coupling

For the coupling of the rotor crown and the stator head cover (see Figure 1.1), Weder (2018)
showed that, in addition to the rotor, stator and fluid forming a vibrational system on its
own, the viscous dissipation of the fluid acts as the dominant damping mechanism when there
is no disk rotation. This could explain discrepancies between experimental data and results
from analytical models assuming inviscid flow. To further explain the difference between the
frequencies of the varicose and sinuous modes, and to also refer to the definition of the added
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mass done by Paidoussis (2014), Weder (2018) demonstrated that the more considerable
squeezing of the fluid for out-of-phase modes results in in-plane accelerations of the fluid,
which in turn increase the modal mass of the vibrating system. Weder (2018) also did
multiple studies on the variation of the parameters of the system, such as the axial gap, the
thickness of the rotor and stator, as well as the rotation. As for the annular disk submerged
in rigid confinement, reducing the axial gap causes a decline in the eigenfrequencies of the
in-phase and out-of-phase modes. Indeed, smaller gaps increase the squeezing effect between
the rotor and the stator, and the added mass of the fluid also rises in this case. Reducing
the axial gap also decreases the amplitude ratio of the rotor to the stator for varicose modes,
while it slightly increases for sinuous modes. Weder (2018) also observed that the natural
frequencies of the in-phase modes are sensitive to the increase of the thickness ratio (defined
as the quotient of the thicknesses of the rotor and stator), whereas it is its decrease for the
out-of-phase modes. For an increasing thickness ratio, the amplitude ratios of the varicose
mode considerably decline, while they are nearly constant for the in-phase modes. When
the rotor is rotating, Weder (2018) describes that the natural frequencies of the system split
and drift, as is observed when the stator is considered rigid. As for the amplitude ratio, an
increasing rotational velocity reduces it slightly for most of the modes.

Past analytical models

The coupling between the rotor crown and the stator head cover (see Figure 1.1) can be ide-
alized as a rotating annular disk and a stationary circular disk coupled through fluid. Leissa
(1969) describes the dynamic behavior of such plates in vacuo with different boundary con-
ditions, with theory from the earlier work of Southwell (1922) and Vogel and Skinner (1965).
Lamb (1920) first studied the fluid-structure interaction of a circular plate clamped to a rigid
and infinite wall, in contact on one side with infinite fluid by using the method introduced
by Rayleigh (1877). Along with the potential flow theory, the fluid is assumed irrotational
and inviscid, as is the case for the following studies. It is also assumed incompressible in this
work. Rayleigh (1877), along with Lamb (1920), are at the origin of the Rayleigh quotient
for coupled vibration, developed by Zhu (1994), used to calculate the natural frequencies of
plates in contact with fluid. Indeed, using Rayleigh’s quotient, the eigenfrequencies of the
plates in vacuo ωV and those in fluid ωF can be expressed as:

ω2
V “

ˆ

VP

EP

˙

V

and ω2
F “

ˆ

VP

EP ` EF

˙

F

, (2.5)
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where VP is the maximum potential energy, EP and EF the reference kinetic energies of the
plate and the fluid, respectively. Assuming that the modeshapes of the plate are the same in
fluid as in vacuo, the energies of the plate in both media can be considered equal, leading to
(Lamb, 1920):

ωF “
ωV

b

1 `
EF

EP

, (2.6)

where we recognize the formula from Eq. (2.3), which links the natural frequencies of the
plate in fluid and in vacuo, with the AVMI factor β “ EF {EP . The Non-dimensional AVMI
(NAVMI) factor was later introduced by Kwak and Kim (1991), defined as:

Γ “ β
ρP

ρF

h

a
, (2.7)

with ρP and ρF the densities of the plate and the fluid, respectively, h the thickness of the plate
and a its radius. Amabili and Kwak (1996) revised the problem of Lamb (1920), employing
the NAVMI factor and comparing it with the more accurate Rayleigh-Ritz approach. The
latter is indeed considered more accurate as it removes the assumption that the modeshapes
in fluid are the same in vacuo. It does so by introducing wet modeshapes defined as the
linear combination of admissible functions multiplied by unknown Ritz coefficients. The
eigenfunctions of the plate vibrating in vacuo are used as admissible functions, as the dry
modeshapes are similar to the wet ones. As the flow is potential, it is solution to Laplace’s
equation and Amabili and Kwak (1996) used the Hankel transform to solve it. To explain
the use of this operation, as it is employed by other references, we briefly define it here.
According to Piessens (2000), the nth order Hankel transform Hn of the function fprq defined
for a variable r ě 0 is:

Fnpkq “ Hn tfprqu “

ż 8

0
rfprqJnpkrqdr, (2.8)

where Jn is the Bessel function of the first kind and of order n and k the scaling factor.
Applying the separation of variables to Laplace’s equation in cylindrical coordinates gives
the Bessel differential operator ∆n, whose Hankel transform with an arbitrary function fprq

such that lim
rÑ8

fprq “ 0 displays an interesting property:

Hn t∆nfprqu “ ´k2Hn tfprqu , (2.9)

making it useful for problems with polar symmetry and involving the Laplacian operator.
As the fluid domain is infinite and the fluid displacement potential is null far from the
plate, Amabili and Kwak (1996) could use this property to reduce Laplace’s equation to
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an ordinary differential equation. Once solved, they used the inverse Hankel transform to
get the expression of the potential. The NAVMI factor is employed again, through the use
of the Rayleigh quotient and its minimization, which is not a real scalar but a matrix in
this case, given the combination of dry modeshapes considered. Amabili and Kwak (1996)
also considered other configurations, with different boundary conditions to prove that the
assumed-mode approach is accurate, when compared to the Rayleigh-Ritz method. Amabili
et al. (1996) analyzed the free vibrations of annular plates in contact on one side with infinite
dense fluid. The fluid-structure interaction is solved once again with the Hankel transform
and the natural frequencies are obtained with the assumed-mode approach, through the
AVMI factor, and the Rayleigh-Ritz method. Amabili et al. (1996) showed once more that
using the AVMI factor is as precise as employing the Rayleigh-Ritz method for the first
modes. This was also demonstrated by Amabili (1996) for circular and annular plates in
contact with confined fluid, either by a rigid wall or a free surface. Kubota and Ohashi
(1991) first studied the interaction of a stationary annular disk submerged in an annular and
cylindrical tank filled with rotating fluid. They observed the split of frequencies, that they
validated with an experimental setup. Presas et al. (2015a) integrated the rotation for a disk
with an average radius in a fluid-filled confinement by dividing the fluid in two subdomains
above and below the disk. Both fluid domains rotate at a different velocity, obtained through
a Computational Fluid Dynamics (CFD) simulation of the disk rotating in a viscous fluid.
Once the potential velocity of the fluid has been determined, Presas et al. (2015a) use Euler’s
momentum equation for an incompressible ideal fluid to evaluate the pressure on the disk,
and introduce it in the equation of motion given by Leissa (1969):

D∇4w ` ρPhP
B2w

Bt2
“ ppr, θ, tq, (2.10)

where D is the flexural rigidity, ∇4 the biharmonic operator, w the vertical displacement of
the plate, t the instant and p the pressure. Due to its simplifications, their model is only able
to assume modes with no nodal circles and n ě 2 nodal diameters, with no radial gap. Their
experimental data could be used to validate analytical models, and their configuration is
given in Table 2.1. Louyot et al. (2020) reproduced their model without assuming an average
radius to better explain the mode split, while also not considering a radial gap. They used the
same approach as Amabili et al. (1996), with the difference that they employed the Galerkin
method to write the vertical displacement as a linear combination of test functions (dry
modeshapes) multiplied with the generalized coordinates. It is similar to the beginning of
the Rayleigh-Ritz method, but, while the latter minimizes the Rayleigh quotient, Galerkin’s
method minimizes the weighted average error once the assumed solution has been integrated.
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Louyot et al. (2020) then used the orthogonality of the modeshapes to uncouple each mode.
In their work, the fluid rotates as a solid body at a fraction of the disk angular velocity,
defined with the entrainment coefficient K, empirically determined by Poncet et al. (2005,
2007).

Kerboua et al. (2008) modeled the coupling of rectangular plates with fluid, with different
boundary conditions such as a rigid wall and a free surface. They used an hybrid approach to
represent the structure, combining Finite Element Method (FEM) and classical shell theory,
while they applied the potential flow theory for the fluid. They determined the pressure at
the fluid-structure interface with Bernoulli’s equation, and combined it with the deformed
shape of the plate to evaluate the virtual added mass of the fluid. Similarly, Askari et al.
(2013) simulated a circular disk in a partially-filled confinement with a free surface. The
wet modeshapes are represented with a Ritz function, and they used the linear least-squares
method to discretize the fluid-disk interface, allowing for the integration of the radial gap.
They also considered the deformation of the disk and the free surface separately, using the
superposition principle, which they then coupled in Rayleigh’s coefficient. The boundary
conditions at the fluid-fluid interface are critical for the representation of the implied physics,
and Lee et al. (2016) provide additional details on the method used by Askari et al. (2013).
Indeed, they simulate the sloshing of a fluid in a cylindrical casing with a partially submerged
rigid cylindrical body at its center. A radial gap is thus formed this way and the fluid is
divided in multiple subdomains depending on its boundaries. Jeong (2003, 2006) analyzed
analytically and numerically the dynamic behavior of fluid-coupled circular and annular plates
respectively. The circular disks are identical, while the annular plates have different inner
radius and thickness. They also used the Rayleigh-Ritz method, but used different approaches
to solve Laplace’s equation. Indeed, Jeong (2003) used the Fourier-Bessel series to expand
the Bessel functions of the modeshapes, and simplify the representation of the fluid-structure
interaction between the disks and the fluid. This method is relevant for this configuration as
the axial symmetry of the problem allows for special boundary conditions related to the in-
phase and out-of-phase modes. Jeong (2006) used for his asymmetric configuration the finite
Hankel transform, similarly to Amabili and Kwak (1996). Instead of using displacements
and forces, Weder (2018) used strains and stresses from continuum mechanics to model the
rotor-stator coupling, along with an experimental setup. Their experimental results could
indeed be used to validate analytical models as they analyzed the influence of the axial gap,
the thicknesses and the rotation on the rotor-stator coupling. Representation of the three
models are available in Table 2.1.
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Past numerical models

Analytical methods alone are not able to completely reproduce the complexity of hydraulic
turbines. Therefore, in the industry, numerical models to predict the dynamic behavior of
such structures are used. One of the most used is the two-way fluid-structure coupling that
computes and couples simultaneously the fluid and the structure (Dompierre and Sabourin,
2010). To do that, it links a CFD model with a Finite Element Analysis (FEA). This method
was used under Ansys by Hengstler (2013) to predict the natural frequencies of standing
and submerged circular plates, while Weber and Seidel (2015) also integrated rotation to
reproduce the model of Presas et al. (2015a). Employing COMSOL, Specker (2016) modeled
a disk-fluid-disk system, whereas Weder et al. (2019) added bias motion to study mode split
in the rotor-stator coupling. Due to the iteration of two separate models, fully-coupled fluid-
structure simulation yields precise results but is computationally expensive (Hübner et al.,
2016). Moreover, it lacks stability and the data exchange between the solvers is a considerable
issue (Biner, 2017). There are two types of schemes used for Fluid-Structure Interaction (FSI)
analysis: monolithic and partitioned. While the first one solves the entire coupled problem
as one system of equations in one iteration, the second one is used in most cases, requiring
a lot of subiterations to be performed at each time step, to achieve convergence. Divergence
may occur in this process when a strong interaction is involved. Being time-consuming and
divergent, simpler methods have been sought for, such as one way coupled FSI. In case of
small amplitude deformation and large structural time scales, pressure and forces from the
CFD simulation can be applied as boundary conditions to the structure to obtain strains
and stresses. The opposite can also be done, where the structural motion is imposed to
the fluid in the flow simulation to get its reaction forces, and in turn the structural strain.
This process is employed by the modal approach (which is an alternative to two-way coupled
FSI), with the structural modeshape as input. It can either use the modal work, where
the hydrodynamic damping and frequency shifts are obtained through the energy exchange
between the structural motion and the flow, or the modal force, in which a single degree of
freedom oscillator model couples a CFD model with a code calculating the displacement of
the disk with the surrounding fluid parameters and pressure field. The latter was developed
to predict the hydrodynamic damping and added stiffness of runner blades in flowing water
by Monette et al. (2014) and Nennemann et al. (2016), and compared with the first method.
Biner (2017) used the modal work approach to predict the dynamic behavior of a rotating
disk submerged in rigid confinement. Louyot et al. (2020) extended the modal force approach
to the same system to build a fast eigenfrequencies prediction model. However, parasitic high
frequencies of vibration limit its range of prediction to low rotation speeds. Moreover, each
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mode has to be studied separately as its modeshape is imposed as an initial condition to get
the free vibrations of the structure.

Alternatively, Presas et al. (2015a,b, 2016) used acoustic-structural FSI coupling with modal
analysis, which applies FEA to both the structure and the fluid, as it is considered acoustic
(inviscid and irrotational). Rodriguez et al. (2012) validated this method experimentally, as
acoustic-structural modal analysis showed to predict natural frequencies of submerged plates
close to a rigid wall with an accuracy of 2.5%. Valentín et al. (2016) also showed the capa-
bility of this analysis to model rotating disks submerged in dense fluid, by reproducing the
experimental setup of Presas et al. (2014a,b, 2015a,b,c, 2016) with precise results. They also
describe in detail the approach to follow, as well as the reference frame to do the calculations
in. Hengstler (2013) simulated the coupling of two disks through fluid using this method
under Ansys, a system similar to the one of Jeong (2003).

Table 2.1 Summary of all the studies that could be used as validation

Name Description Schematic

Confined rotor
Fixed-free annular disk in

fluid-filled and rigid confinement
from Presas et al. (2015a)

Coupled static disks
Identical free-fixed circular disks
coupled with fluid from Jeong

(2003)

Coupled static annuli
Fixed-fixed annular disks

coupled with fluid from Jeong
(2006)

Coupled rotor-stator

Free-fixed circular disk and
fixed-free annular disk coupled
by fluid in rigid confinement

from Weder (2018)
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CHAPTER 3 RESEARCH OBJECTIVES

High-head hydraulic turbines and pump-turbines present dynamic behavior similar to disks
for low frequencies (Egusquiza et al., 2016). Using this simplified model, the implied physics,
such as RSI, have been thoroughly analyzed in the past research. More specifically, the
mode split phenomenon occuring for a rotating submerged disk was observed experimentally
by Presas et al. (2015a). Valentín et al. (2016) simulated it numerically using acoustic-
structural modal analysis to study the influence of the fluid flow and the reference frame.
Louyot et al. (2020) developed an analytical modal analysis of the disk to provide a better
understanding of the basic mechanisms at play and the essential parameters. Louyot et al.
(2020) used the Galerkin method to consider each assumed-mode, and the Hankel transform
to represent the fluid-structure interface, as well as the AVMI factor to evaluate the natural
frequencies. While mode split was well explained, the analytical model lacks the integration
of one geometrical characteristic: the radial gap. It was implemented in another method
developed by Askari et al. (2013), but for a non-rotating submerged disk. Each mode is
considered separately as a Ritz function, the flexible fluid-structure interface is discretized
using the linear least-squares method and the eigenfrequencies are calculated with Rayleigh’s
quotient.

In turbines, not only the runner is flexible and subject to excitation, as it is also the case
for the thin upper cover of the stator. Valentín et al. (2017) demonstrated experimentally
that, depending on its flexibility, the stator may vibrate and be coupled through the fluid
with the rotor. Askari et al. (2013) were able to couple the deformation of a submerged disk
with a free surface, by applying the superposition principle on the flows calculated for each
deformation. Jeong (2003) made an analytical model of the coupling of two identical disks
through fluid, using the Hankel transform and the Rayleigh-Ritz method. Hengstler (2013)
simulated numerically the same configuration under Ansys using an acoustic-structural modal
analysis. Jeong (2006) completed his work with the same approach for fixed-fixed annular
disks with different thickness and inner radius. Weder et al. (2019) integrated experimentally
the rotation, and determined that it influences the rotor-stator coupling, and the amplitude
ratio between both disks. Many experiments were conducted on the interaction of disks and
annuli through still or rotating fluid. They are schematized in Table 2.1.

From the literature review, we can formulate three research objectives for this project and
the associated thesis (summarized in Table 3.1):

• Analyze analytically the dynamic behavior of the rotation of the rotor crown, as a
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rotating fixed-free annular disk submerged in a dense fluid and confined with a radial
gap in a rigid casing. For the structural calculations (when the system is placed in
vacuo or air), apply the Galerkin method, based on the assumed-mode approach, as
Louyot (2019) did. When fluid is added in the confinement, discretize the moving fluid-
structure interface with the point collocation method as Askari et al. (2013). Validate
the results with experimental data from Presas et al. (2015a) and analyze the influence
of multiple characteristics on the dynamic behavior of the rotor.

• Model the coupling of the rotor with the head cover of the stator, simplified as a
clamped circular disk. To integrate the rotor-stator coupling, consider separately each
component deformation before coupling them through the equations of motion, using
the superposition principle as Askari et al. (2013) did. Verify the model step by step
with data from different analytical models from Jeong (2003, 2006). Validate the results
with experimental measurements of Weder (2018), as well as employ them to study the
influence of rotation and thickness ratio on the behavior of the rotor-stator coupling.

• Develop a Finite Element Method (FEM) model under Ansys to perform an acoustic-
structural modal analysis of the rotor-stator coupling with stationary and rotating
disks. Recreate the model for the confined rotor from the work of Presas et al. (2015a)
and Valentín et al. (2016). Add the stator, and validate the results with experimental
data from Weder (2018). Verify the corresponding analytical methods with this model,
mainly developed by Blais (2021), especially for the lone rotor.

Table 3.1 Summary of the research objectives

Model Objectives Verification Validation

Analytical

Analyze the dynamic behavior of
a rotating fixed-free annular disk
submerged in a dense fluid and
confined with a radial gap in a

rigid casing

FEM model Presas et al.
(2015a)

Analytical
Model the coupling through fluid
of a fixed-free annular disk with

a clamped circular disk

FEM model, Jeong
(2003) and Jeong

(2006)
Weder (2018)

FEM

Develop an acoustic-structural
modal analysis under Ansys of
the rotor-stator coupling with
stationary and rotating disks

Analytical model,
Presas et al. (2015a),
Jeong (2003, 2006)

Presas et al.
(2015a) and

Weder (2018)
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CHAPTER 4 METHODOLOGY - ANALYTICAL MODEL

In this section, we describe the approach used to build the analytical forced modal analysis.
In addition to considering the turbine rotor and stator as rotating and stationary disks, we
use the following assumptions:

1. We consider small amplitude deformations of the disks to apply linear perturbation
theory.

2. The disks only deform in the axial direction, even when rotating, due to the low rotation
speeds range (the gyroscopic effect and the centrifugal forces are negligible).

3. We apply the potential flow theory to the fluid, such that it is considered inviscid and
irrotational, in addition to incompressible.

4. The fluid rotates as a solid body with a mean velocity equal to a fraction of the disk
rotation speed, when viewed from the rotating disk reference frame. The value of the
fraction is given empirically by Poncet et al. (2005, 2007).

5. We use the assumed-mode approach, which states that the disks modeshapes are the
same in water as in vacuo. It was proved accurate for multiple configurations by Amabili
et al. (1996), Amabili and Kwak (1996), and Amabili (1996) with the Rayleigh-Ritz
method.

The rotor is represented by a fixed-free1 rotating annular disk of density ρD
2, inner radius b,

outer radius a and thickness hR. It is rotating with an angular velocity ΩR in the stationary
reference frame. The rotor is clamped at its inner radius to a rigid shaft of the same thickness.
The stator is represented by a fixed circular disk of the same material as the rotor, an outer
radius d and a thickness hS. We use the cylindrical coordinates (r, θ, z) in the stationary
reference frame, with its origin at the center of the rotor. The latter and the stator share
the same central axis z and are separated by an axial gap H1. Both are placed in a casing
of diameter c, which is considered rigid and filled with a fluid of density ρF , and the rotor
is placed at a distance H2 above the lower surface of the confinement. The stator is part of
the upper wall of the casing, thus the latter has an overall height of H1 ` H2. Figure 4.1
schematizes the modeled geometry.

The model is developed in two steps, as described in the research objectives:
1Throughout the thesis, boundary conditions are listed starting from the center to the edge of the disk.
2The index is set to D to differentiate with the fluid density and as both disks have the same density.
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(a) (b)

Figure 4.1 a) Geometry of a rotor and a stator in a fluid-filled tank; and b) interfaces between
the fluid and the structure composed of the rotor, stator and confinement

• We first integrate the radial gap, to better reproduce the system of Presas et al. (2015a),
as their experimental data is used to validate our model. The stator is considered rigid,
and the rotor is the only vibrating structure, as can be seen on Figure 4.2a.

• We then implement the rotor-stator coupling, by no longer assuming the stator as rigid
(see Figure 4.2b). The results are compared with experimental data from Weder (2018).

(a) (b)

Figure 4.2 a) Schematic of a flexible rotating annular disk - the rotor - in a rigid confinement
similar to the experiments of Presas et al. (2015a); and b) schematic of the system coupling
a flexible rotating annular disk - the rotor - with a flexible non-moving casing - the stator -
similar to the experiments of Weder et al. (2019)
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Submerged annular disk in rigid confinement

Structural model

We use the same approach as Louyot (2019), therefore we will briefly describe it. According
to Leissa (1969), the transverse displacement w of a disk is given by:

D∇4w ` ρDh
B2w

Bt2
“ ppr, θ, tq, (4.1)

where D is the flexural rigidity (or bending stiffness) of the disk defined as D “ Eh3{p12p1 ´

ν2qq (with E the Young’s modulus and ν the Poisson ratio of the disk material), ∇4 is the
biharmonic operator, t the instant and p the pressure field applied to the disk. The structural
parameters associated to the disk are written with no index to lighten the equations. For the
rotor-stator coupling, the indexes R and S are used to differentiate the disks representing
respectively the rotor and stator.

The vertical displacement w in vacuo is composed of all the modeshapes of the disk, with n

and m the numbers of nodal diameters and circles respectively:

wpr, θ, tq “

8
ÿ

n“0

8
ÿ

m“0
Wnmpr, θqeiωV t, (4.2)

where ωV and Wnm are the angular natural frequency and modeshape in vacuo, respectively.
For a single mode of an annular disk, and using the Fourier decomposition in θ, the associated
modeshape may be expressed as:

Wnmpr, θq “ ψnmprqeinθ, (4.3)

where
ψnmprq “ AnJn pknmrq ` BnYn pknmrq ` CnIn pknmrq ` DnKn pknmrq , (4.4)

with Jn, Yn, In and Kn the Bessel functions of the first and second kind, and the modified
Bessel functions of the first and second kind respectively. We introduce knm as knm “

ρDhω
2
V {D to later determine Wnm. The complex part of einθ, i.e. i sinnθ, is not needed

when the disk is stationary, as its boundary conditions are axisymmetric. Indeed, the co
and counter-rotating waves are exactly superposed and are represented by cosnθ and sinnθ,
respectively. When the rotation is integrated, and the waves are out of phase, it is still not
necessary to include it either, as all the terms in θ disappear, whether it is in the first or the
second model.
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The boundary conditions for a fixed-free annular disk are such that (Leissa, 1969)

Wnmpr, θq|r“b “ 0, BWnmpr, θq

Br

ˇ

ˇ

ˇ

ˇ

r“b

“ 0, (4.5)

Vrpr, θq|r“a “ 0, Mrpr, θq|r“a “ 0, (4.6)

where Vr is the radial Kelvin-Kirchhoff edge reaction and Mr the bending moment:

Vr “ ´D

„

B

Br

`

∇2Wnmpr, θq
˘

` p1 ´ νq
1
r

B2

BθBr

ˆ

1
r

BWnmpr, θq

Bθ

˙ȷ

(4.7)

Mr “ ´D

„

B2Wnmpr, θq

Br2 ` ν

ˆ

1
r

BWnmpr, thetaq

Br
`

1
r2

B2Wnmpr, θq

Bθ2

˙ȷ

. (4.8)

Vr represents the shear force at the edge of the plate under Kirchhoff-Love (or thin plates)
theory, resulting from the addition of the out-of-plane shear force and the force created by
the twisting moment.

When substituting Eq. (4.7) and (4.8) for Vr and Mr in the four boundary conditions of Eq.
(4.5) and (4.6), we obtain the eigenvalue problem:

M ¨ Xn “

»

—

—

–

ai ¨ ¨ ¨ di

... . . . ...
aiv ¨ ¨ ¨ div

fi

ffi

ffi

fl

¨

»

—

—

—

—

–

An

Bn

Cn

Dn

fi

ffi

ffi

ffi

ffi

fl

“ 0 (4.9)

The first step is to find the eigenvalues k of this problem by solving detpMq “ 0. There is an
infinite number of solutions for any number of nodal circles m, and, if we remove the trivial
solution k “ 0, the next one corresponds to m “ 0. This has to be done numerically, with
a Python code3. This code has been used to support all the calculations of the analytical
model. Once the eigenvalues are determined, we can evaluate the eigenvectors composed of
An, Bn, Cn and Dn. First, An is fixed arbitrarily with the value 1 to determine the three other
terms and have the modeshapes form an orthonormal base (as it is naturally orthogonal).

To then apply the Galerkin method to Eq. (4.1), the displacement is approximated with a
discrete sum (for more details, see Louyot (2019)):

wpr, θ, tq « wN pr, θ, tq “

N
ÿ

j

φjpr, θqqjptq, (4.10)

3https://github.com/lm2-poly/rotor-stator_coupling_split

https://github.com/lm2-poly/rotor-stator_coupling_split
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where N is the number of considered modes with different nodal diameters, φj are test func-
tions satisfying the boundary conditions (chosen to be equal to the orthonormal modeshapes
Wj) and qj the generalized coordinates. We replace w with wN in Eq. (4.1):

D∇4wN ` ρDh
B2wN

Bt2
´ pN pr, θ, tq “ R, (4.11)

where R is the residual. By substituting wN with Eq. (4.10), and by observing that ∇4Wj “

k4
jWj:

N
ÿ

j

„

ρDh
B2qjptq

B2t
` Dk4

j qjptq

ȷ

Wjpr, θq ´ pjpr, θ, tq “ R. (4.12)

According to Galerkin’s method:
ż a

r“b

ż 2π

θ“0
RWipr, θqrdrdθ “ 0 @i ď N. (4.13)

As the modes are orthonormal,
ż a

r“b

ż 2π

θ“0
Wipr, θqWjpr, θqrdrdθ “ 2π

`

a2
´ b2˘

δij, (4.14)

where δij is the Kronecker symbol. By multiplying Eq. (4.12) with Wi, and then integrating
over the annular disk surface, we get:

2π
`

a2
´ b2˘

N
ÿ

j

“

ρDh:qjptq ` Dk4
j qjptq

‰

δij “

ż a

b

ż 2π

0
pjpr, θ, tqWirdrdθ. (4.15)

We notice that each equation representing a single mode can be decoupled from the system,
and by generalizing for any chosen mode, we derive the equation solved by the vertical
displacement w:

M :wptq ` Knmwptq “ rpnmptq (4.16)

whereM “ 2πpa2´b2qρDh, Knm “ 2πpa2´b2qDk4
nm and rpnmptq “

şa

b

ş2π

0 ppr, θ, tqWnmpr, θqrdrdθ.
Eq. (4.16) can be assimilated as the equation governing the vertical motion of a one degree-
of-freedom mass-spring system.

The natural angular frequency of the annular disk in vacuo may be evaluated with Eq. (4.16)
when rpnmptq “ 0:

ωV “

c

Knm

M
“ k2

nm

d

D

ρDh
. (4.17)
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Fluid model

As one can observe in Figure 4.2, the fluid domain is divided in two subdomains: the upper
and lower fluid regions. The superior and inferior faces of the annular disk are in contact
with the fluid. The oscillatory fluid flow of both subdomains can be described by a velocity
potential, solution of Laplace’s equation in cylindrical coordinates:

∇2Φ “ 0. (4.18)

As the time-dependence is considered harmonic, the velocity potential function Φ may be
separated in a product of a displacement potential ϕ and a harmonic time function:

Φ “ iωFϕpr, θ, zqeiωF t. (4.19)

At every instant t, the potential must solve Laplace’s equation, i.e.:

B2ϕ

Br2 `
1
r

Bϕ

Br
`

1
r2

B2ϕ

Bθ2 `
B2ϕ

Bz2 “ 0. (4.20)

We then apply the separation of variables ϕpr, θ, zq “ RprqP pθqZpzq to determine the ex-
pression of ϕ1 and ϕ2 (see Appendix A). The subscript 1 refers to the upper fluid, while 2 is
for the lower. From the separation of variables, we get:

ϕpr, θ, zq “ cosnθ
8
ÿ

s“1
pAnmsJn pβnmsrq ` BnmsYn pβnmsrqq pC1 cosh βnmsz ` C2 sinh βnmszq .

(4.21)

To better reproduce the system from Presas et al. (2015a), we have established three models:
the first without a shaft in the fluid (except at the center of the rotor with the same thickness),
the second with a shaft in the lower fluid domain and the last with a shaft throughout both
fluid domains. Considering a shaft changes the boundary condition on the fluid at the center
of the confinement, which influences the radial form of the fluid displacement potential.
Especially, the Bessel function of the second kind may or may not be included, depending
on the presence of the shaft since the fluid displacement potential has to be finite at r “ 0
and lim

rÑ0
Ynprq “ 8. Most of the fluid flows in the radial gap or between adjacent antinodes,

hence the three models lead to similar results. Thus, the presence of a shaft at the center
has little influence on the fluid flow. We decided to use a model without shaft for the entire
analytical approach.
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Fluid-structure interaction model

First, we apply to the fluid displacement potentials from Eq. 4.21 the boundary conditions
at the lateral wall Γc and the center of the confinement Γ0 of the Figure 4.1b:

$

&

%

Bϕ1
Br

ˇ

ˇ

r“c
“ 0 and ϕ1|r“0 “ 0

Bϕ2
Br

ˇ

ˇ

r“c
“ 0 and ϕ2|r“0 “ 0

. (4.22)

Upon application of the boundary conditions of Eq. (4.22), we are able to remove the Bessel
function of the second kind and determine βnms with the first set of conditions, such that
J 1

n pβnmscq “ 0. We introduce s as the root index for the n-th derivative of the Bessel
function, where the root is represented by βnms, which takes a value for each s. According to
the superposition principle, every root has to be considered or at least a sufficient number so
that convergence has been reached. Thus, we truncate the infinite sum of Eq. (4.21) to Ns

terms. The value of Ns, which ensures convergence, is determined at the end of this section.

The boundary conditions at the lower and upper walls ΓH1 and ΓH2 (see Figure 4.1b) give
us the following equations on the fluid displacement potentials:

$

&

%

Bϕ1
Bz

ˇ

ˇ

z“H1
“ 0

Bϕ2
Bz

ˇ

ˇ

z“´H2
“ 0

, (4.23)

which allow us to determine the unknown terms in the axial component of the fluid displace-
ment potentials from Eq. (4.21). Substituting Eq. (4.21) into the boundary conditions of
Eq. (4.23) leads to:

$

’

&

’

%

ϕ1pr, θ, zq “ cosnθ
8
ř

s“1
AnmsJnpβnmsrq rcosh βnmsz ´ tanh βnmsH1 sinh βnmszs

ϕ2pr, θ, zq “ cosnθ
8
ř

s“1
CnmsJnpβnmsrq rcosh βnmsz ` tanh βnmsH2 sinh βnmszs

, (4.24)

which are the fluid displacement potentials of the upper and lower fluid domains, respectively.

The last coefficients left to evaluate in Eq. (4.21) are Anms and Cnms, with the conditions
for the fluid-shaft (considered rigid), fluid-rotor and fluid-fluid interfaces Γshaft, Γrotor and
Γgap in z “ 0 (see Figure 4.1b). This is where we determine the influence of the deformable
rotor on the surrounding fluid. While the non-slip boundary condition is not considered as
the fluid is inviscid, we apply the kinematic (or non-penetration) condition, which ensures
that the velocity normal component is continuous, on the potential fluid displacements from
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Eq. (4.24):

Bϕ1{2

Bz

ˇ

ˇ

ˇ

ˇ

z“0
“

$

&

%

0 0 ď r ď b
´

1 `
nΩR{F

ωF

¯

ψnprq cosnθ b ă r ď a
and Bϕ1

Bz

ˇ

ˇ

ˇ

ˇ

z“0
“

Bϕ2

Bz

ˇ

ˇ

ˇ

ˇ

z“0
, a ă r ď c.

(4.25)
In addition, the dynamic condition ensures that the pressure of an inviscid fluid at an interface
is continuous and applying it to Eq. (4.24) for the interface Γgap leads to:

ϕ2|z“0 “ ϕ1|z“0 , a ă r ď c. (4.26)

This condition is only applied on the fluid-fluid interface Γgap, as it is later used in the
equation of motions to couple the fluid motions related to each deformation of the rotor and
stator, or could have been used instead of the AVMI factor calculus for the lone rotor.

Louyot (2019) used the Galerkin method and Hankel transform to discretize these inter-
faces, whereas we will use the approach from Askari et al. (2013), the point collocation
method. To solve these systems of equations, we define a vector with unknown coefficients

ξ “ pξ1, ξ2, . . . , ξNsq, such that ξ “

#

A

C

+

, where A refers to Anms and C to Cnms. We sub-

stitute the flow potentials of Eq. (4.24) into the boundary conditions of Eq. (4.25) and (4.26).
We then apply the point collocation method by enforcing that these boundary conditions are
met at Ni evenly distributed points ri “ pi ´ 1qpc{Niq, with i “ p1, . . . , Niq. Therefore, we
obtain 2Ni equations of the form:

Ns
ÿ

s“1
Xisξs “ Yi. (4.27)

The left part of Eq. (4.27) is composed of the derivatives of the fluid displacements potentials
and their difference such that Yi is filled with 0 or the term associated to the deformation of
the rotor from Eq. (4.25). To reduce the sums in s in a product of a matrix X and a vector
ξ, the latter is a concatenation of each vector ξs, namely ξ “ tAnm0, Cnm0, ..., AnmNs , CnmNsu.
Hence, each matrix or vector has the following size:

X : t2 ˆ Ni, 2 ˆ Nsu, Y : t2 ˆ Ni, 1u and ξ : t2 ˆ Ns, 1u. (4.28)

To determine the unknown parameters Anms and Cnms, we evaluate the pseudo-inverse of X,
non-invertible as it is not always square, such that:

Xξ “ Y Ø ξ “
`

XT X
˘´1 XTY. (4.29)
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This calculus is done numerically with the Python code. In it, the pseudo-inverse matrix is
evaluated with the singular values decomposition of X.

Now that Anms and Cnms are determined, we have the expressions for the potentials. Hence,
we can calculate the AVMI factor β0 with the fluid and disk reference kinetic energies to then
determine the eigenfrequencies of the rotor alone:

β0 “
E1

f ` E2
f

Ed

, (4.30)

with
Ei

f “ ρF

ż ż

Ωi

ϕi|z“0
Bϕi

Bz

ˇ

ˇ

ˇ

ˇ

z“0
rdrdθ, (4.31)

and
Ed “

1
2ρDh

ż ż

Ω
w2rdrdθ. (4.32)

The subscript 0 refers to the rotation not being included in the model, to simplify it. The
natural frequencies in water of the rotor ωF can be written as a function of those in vacuo
ωV :

ωF

ωV

“
1

?
1 ` β

(4.33)

with β “ p1 ` nΩR{ωF q
2 β0 according to Louyot (2019). By inserting the expression of β in

Eq. (4.33), we obtain as Louyot (2019):

ωF “

a

pβ0 ` 1qω2
V ´ β0pnΩR{F q2 ´ nβ0ΩR{F

β0 ` 1 . (4.34)

We are able to implement the rotation at the last step (and express β as a function of β0 as
Louyot (2019)), and use numerical calculation instead of symbolic (as integrating the rotation
earlier introduces the unknown ωF ), because we can isolate ωF at each of its appearances.
Indeed, it intervenes during two steps of the approach: while applying the boundary condi-
tions for the interfaces Γshaft, Γrotor and Γgap, and for the evaluation of the kinetic energies,
through the term Bϕi

Bz

ˇ

ˇ

z“0 and its expression in Eq. (4.25). In the first one, we only have
terms that are null or of deformation in the vector Y , as explained above. For the second
one, we get ωF out of the integrals, as it does not contain variables of integration.

Annular disk coupled through fluid with flexible disk

To consider the coupling of the stator with the rotor, the latter is not considered rigid anymore
but flexible, as can be seen in Figure 4.2.
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Fluid displacement potentials

First, we use the principle of superposition and consider the potential flow solution ϕR re-
sulting from rotor deformation for a fixed stator and the potential ϕS resulting from stator
deformation for a fixed rotor (see Figure 4.3).

(a) (b)

Figure 4.3 (a) Rotor-only deformation; and (b) stator-only deformation

The flow potentials above and below the rotor (see Figure 4.2) can be expressed as:
#

ϕ1 “ ϕS
1 ` ϕR

1

ϕ2 “ ϕS
2 ` ϕR

2
. (4.35)

After applying the separation of variables to Laplace’s equation and the boundary conditions
at the interfaces with the lower and upper walls ΓH1 and ΓH2 , as well as with the confinement
lateral wall Γc and its center Γ0 (see Figure 4.1b), we obtain the fluid displacement potentials:

$

’

&

’

%

ϕR
1 pr, θ, zq “ cosnθ

8
ř

s“1
AnmsJnpβnmsrq rcosh βnmsz ´ tanh βnmsH1 sinh βnmszs

ϕR
2 pr, θ, zq “ cosnθ

8
ř

s“1
BnmsJnpβnmsrq rcosh βnmsz ` tanh βnmsH2 sinh βnmszs

(4.36)

and
$

’

&

’

%

ϕS
1 pr, θ, zq “ cosnθ

8
ř

s“1
Jnpβnmsrq

“ ¯Anms cosh βnmsz ` ¯Bnms sinh βnmsz
‰

ϕS
2 pr, θ, zq “ cosnθ

8
ř

s“1
¯CnmsJnpβnmsrq rcosh βnmsz ` tanh βnmsH2 sinh βnmszs

. (4.37)

The potential ϕS
1 in Eq. (4.36) has a different form than the others because, as the stator

deforms, the boundary condition on the upper wall from Eq. (4.23) cannot be applied.
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Moreover, the coefficient normally found in the radial component has been included in ¯Anms

and ¯Bnms, to reduce the number of unknowns.

We then apply the kinematic and dynamic conditions associated to the fluid-shaft, fluid-fluid,
fluid-rotor and fluid-stator interfaces Γshaft, Γgap, Γrotor and Γstator to the fluid displacement
potentials from Eq. (4.36) and (4.37), to determine Anms, Bnms, ¯Anms, ¯Bnms and ¯Cnms.
We use the point collocation method as described in the precedent section. For the sole
deformation of the rotor, we employ the same equations as before, given in Eq. (4.25) and
(4.26), and thus the same results for Anms and Bnms (the latter replaced Cnms). For the sole
deformation of the stator, we have:

BϕS
1

Bz

ˇ

ˇ

ˇ

ˇ

z“0
“

$

&

%

0 0 ď r ď a

BϕS
2

Bz

ˇ

ˇ

ˇ

z“0
a ă r ď c

and

$

&

%

BϕS
2

Bz

ˇ

ˇ

ˇ

z“0
“ 0 b ď r ď a

ϕS
2

ˇ

ˇ

z“0 “ ϕS
1

ˇ

ˇ

z“0 a ă r ď c
, (4.38)

as well as
$

’

&

’

%

BϕS
1

Bz

ˇ

ˇ

ˇ

z“H1
“

´

1 `
nΩS{F

ωF

¯

ψS
nmprq cosnθ 0 ď r ď d

BϕS
1

Bz

ˇ

ˇ

ˇ

z“H1
“ 0 d ă r ď c

(4.39)

with ΩS{F “ KΩR the relative speed of the stator compared to the fluid (as the fluid rotates)
and:

ψS
nmprq “ JnpkS

nmrq ´
JnpkS

nmdq

YnpkS
nmdq

YnpkS
nmrq. (4.40)

The modeshapes ψS
nm of the stator have been determined by solving the eigenvalue problem

resulting from the application of the boundary conditions of a free-fixed circular disk.

Eigenfrequencies calculation

Each fluid displacement potential for each deformation is calculated in an uncoupled way,
but it is necessary to then couple them to determine the dynamic behavior of the system. As
the amplitudes for the stator and rotor are not known, we introduce an unknown amplitude
term for their displacement (respectively AR

nm and AS
nm), which allows us to couple them:

$

&

%

wRpr, θ, tq “ AR
nm cospnθqψR

nmprqeiωF t

wSpr, θ, tq “ AS
nm cospnθqψS

nmprqeiωF t
. (4.41)

We first evaluate the natural frequencies, to validate our model with the results of Weder et al.
(2019). We have used three formulae employed in the literature: the equations of motion, the
AVMI factor and the Rayleigh coefficient. The first ones introduce the fluid influence through
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the pressure of the dynamic condition at the interfaces Γrotor and Γstator (see Figure 4.1b),
while for the other two, it is through the reference kinetic energies. Moreover, the second one
uses the natural frequencies of the disks in vacuo, while the last one does not. Using these
three different methods allowed us to compare them, and reach the correct formulation of
the rotor-stator coupling. Below, we describe the first approach, while the other two can be
found in Appendix C.

We write Euler’s equation which links the fluid velocity V to the pressure p to calculate the
ones on the rotor and stator:

ρF
B

ÝÑ
V

Bt
` ρF

´

ÝÑ
V .

ÝÑ∇
¯

ÝÑ
V “ ´

ÝÑ∇p. (4.42)

We introduce the velocity potential Φ such that ÝÑ
V “

ÝÑ∇Φ and we obtain:

ρF
BΦ
Bt

` ρF
1
2

´

ÝÑ∇Φ
¯2

` p “ 0. (4.43)

While the first term of Eq. (4.43) is proportional to the acceleration (i.e. the added mass)
due to its derivation in time, the central term is proportional to velocity. According to
D’Alembert’s paradox, the flow of an ideal fluid (irrotational, incompressible and inviscid
such as ours) exerts zero net force on a body submerged in it. Therefore, when the pressure
is integrated to be implemented as a force in the equations of motions, this term is null. Thus
we consider it as null from this step on to simplify the calculations, and by replacing Φ with
iωF e

iωF tϕ in Eq. (4.43):

p “ ρFω
2
Fϕe

iωF t with ϕ “ ϕR
1 ` ϕR

2 ` ϕS
1 ` ϕS

2 . (4.44)

As the rotor is placed at z “ 0 and the stator at z “ H1, the pressures exerted on both are
obtained from Eq. (4.44):
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where the unknowns such as the amplitude terms and the natural frequencies are taken out
of the fluid displacement potentials.

We express the equations of motion for the rotor and stator with Eq. (4.1), then we apply
the Galerkin method as in the structural model, to use the modes’ orthogonality to nullify
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all the incompatible modes, which gives:
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where
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By applying the modes’ orthogonality, we should have
şa{d

b{0

ş2π

0 ψ
R{S
im ψ

R{S
jm rdrdθ “ 2πpa2 ´

b2qδij or 2πd2δij. Yet, by considering these expressions, the model does not work, so we have
kept the initial form. We then transform the system of Eq. (4.46) in a matrix form by
isolating the amplitude terms AR

nm and AS
nm to solve it:
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(4.49)
We can get out the rotation terms containing ωF from the pressures of Eq. (4.49) in the
system of Eq. (4.48):
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where:
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By identifying the matrices in Eq. (4.50), we obtain the equations of a one degree-of-freedom
damped mass-spring oscillator:

“

Mω2
F ` CωF ` K

‰

.

«

AR
nm

AS
nm

ff

“
ÝÑ0 . (4.52)

From Eq. (4.50) and (4.52), we get a better physical understanding of the rotor-stator
coupling. Indeed, without rotation, we observe that, in addition to the added mass induced
when the rotor and the stator deform separately, their deformations also create an added
mass for each other, which represents their coupling. The modal rigidity in not affected in
this case. Rotation does not affect the modal mass, but the modal rigidity is affected in this
case, in addition to the appearance of damping. The observations made for the modal mass
in the case without rotation are valid for the modal rigidity when rotation is implied.

To determine the natural frequencies, we solve numerically the determinant of the matrix
from Eq. 4.52, where ωF is the unknown. It is equivalent to solving an eigenvalue problem. By
then substituting the values of the eigenfrequencies in Eq. (4.52), we obtain the eigenmodes
of the problem, and we deduce the associated amplitude ratio. It is negative for a varicose
mode and positive for a sinuous one, as the modeshapes are out-of-phase for the first one
and in-phase for the second.

Convergence analysis

To choose the parameters Ns and Ni, we have to analyze their influence on the convergence
of the model. To do so, we study the evolution of the natural frequencies depending on the
pair selected, as well as the condition number of the pseudo-inverse matrix from Eq. (4.27)
for the point collocation method. We use the condition number to determine if the matrix
is ill-conditioned, and if it is correlated to the trend of the results. For the initial system of
Presas et al. (2015a), with the parameters defined after in Table 6.2, we obtain Figure 4.4.

Figure 4.4 contains two 2D subfigures with Ns and Ni as abscissae. Figure 4.4a represents
the eigenfrequencies of the rotor in the rotating reference frame for two nodal diameters
and no nodal circles. In Figure 4.4b, the evolution of the condition number of the pseudo-
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Figure 4.4 Ni and Ns influence on (a) the natural frequencies of the rotor; and (b) the
condition number of the pseudo-inverse matrix from the point collocation method

inverse matrix is displayed. As we can see, there is a direct correlation between the condition
number of the pseudo-inverse matrix and the eigenfrequencies: when the condition number
is significant, the results are more likely to diverge. Moreover, if the pair of parameters is not
compatible, the condition number soars, as well as the results. We observe that we have to
choose a large enough value for both parameters. However, Ns and Ni greatly influence the
computing time of the code as they determine the number of terms present in the different
matrices. Therefore, we select their values such that the convergence has just been attained:

Ni “ 200 and Ns “ 80.

We tested the influence of Ns and Ni for different configurations of the model from Presas
et al. (2015a), and we observed similar convergence, such that the values chosen were still
valid. We also looked at the system from Weder et al. (2019), for the parameters defined after
in Table 6.8. The convergence of the natural frequencies of the in-phase modes is reached
even faster, even if we lack information on the condition number, as it can be calculated
solely for the rotor or stator and not for the coupling. Hence, the values selected for Ni and
Ns are still valid. We could also have changed them to reduce computation time but it is not
realistic to check convergence for each system and change their values accordingly.
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CHAPTER 5 METHODOLOGY - FEM MODEL

The FEM model was used to support the analytical approach, by comparing their results
for the same assumptions, and create an effective and fast tool to caracterize the dynamic
behavior of lone submerged rotors or coupled with stators through fluid. We started its
development by investigating the dynamic behavior of a stationary annular disk in vacuo
using hexahedral finite elements with Ansys Mechanical under Ansys Workbench. We then
added the fluid cavity, first filled with air, then with water simulated as acoustic elements to
reproduce the model of Presas et al. (2015a). The casing was additionally integrated to have
boundary conditions similar to those of Presas et al. (2015a) and get results closer to their
experimental data. The integration of the fluid rotation through the use of APDL commands
was investigated. From here on, the further development of the FEM model was done by Blais
(2021) during his internship, where we helped for the conceptualization of the methodology
and acted as supervisors. Blais (2021) implemented the rotation of the fluid in the simulation,
as well as the boundary conditions used in the analytical approach and in the study of Presas
et al. (2015a). He then added the stator to represent its coupling with the rotor through the
reproduction of the models from Jeong (2003, 2006) to finish with the experimental setup of
Weder et al. (2019). He additionally removed the necessity to use Ansys Mechanical under
Ansys Workbench by combining it with a Python code through APDL commands. This
allowed a fast and simple setup of the analysis, as well as the possibility to do automatic
parametric studies. In the following, we briefly describe the derived model, and additional
details can be found in Blais (2021).

We performed an acoustic-structural modal analysis in Ansys Mechanical APDL 2021R1.
The fluid, by being simulated with acoustic elements, is considered inviscid, irrotational,
and either compressible or incompressible. The mesh is chosen to be structural hexahedral
to be able to ensure a good aspect ratio with the number of divisions along the radial,
tangential and axial directions. The elements are quadratic and an example of mesh is given
in Figure 5.1. The latter shows that there is no need to include a casing, as Ansys interprets
the outer surfaces of the fluid as rigid walls (we save on the number of elements). The nodes
present in the fluid-structure interface belong simultaneously to both structural and acoustic
elements. While the structural elements possess displacement Degrees Of Freedom (DOF),
the acoustic elements have pressure DOF.

To characterize the mode split numerically, the rotation of the rotor has to be included.
As the fluid is inviscid, it cannot be entrained if the structure rotates, therefore the fluid
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(a) (b)

Figure 5.1 Basic mesh with quadratic elements from Blais (2021): a) section view with
boundary conditions; and b) isometric section view

rotates as a solid body, while the rotor is stationary. We use the same method as in the
analytical model, namely we evaluate the relative velocity of the fluid to the rotor with the
empirical entrainment factor K (from Poncet et al. (2007)). We get the relative rotational
velocity of the fluid with respect to the rotor ΩF {R “ ΩF ´ ΩR where ΩF “ KΩR, which we
apply through the mean flow effect (only supported by Ansys 2021R1) on the fluid nodes.
This command allows us to enforce a constant (or varying in space as in our model) velocity
ÝÑ
Vθ “ ΩF {Rr

ÝÑeθ on each node.

To compare results with the analytical approach, and also to validate its development, the
FEM model was used to reproduce the work from Presas et al. (2015a), Jeong (2003, 2006)
and Weder (2018).

To allow for automatic pre and post-processing, as well as effective parametric studies, Ansys
Mechanical APDL 2021R1 was coupled with Python 3.8. Indeed, the latter is in charge of
those two steps, by defining the input parameters and the chosen configuration, as well as
managing the results from Ansys to identify the modeshapes associated with each frequency
and to plot the relevant graphs (e.g. modeshapes visual representation). A global workflow
is given in Figure 5.2.
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Figure 5.2 FEM workflow followed by Blais (2021)
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CHAPTER 6 RESULTS AND DISCUSSION

In this section, we address the results of the two developed analytical models for the sub-
merged rotating rotor with radial gap, and for the coupling of the rotor and stator. To verify
the second approach, we first represent the systems from Jeong (2003, 2006) and compare our
results with their analytical data. Once both models are validated, we compare them with
their FEM counterpart, and get a better understanding of the involved phenomena through
parametric studies. Table 6.1 is a summary of the four developed models, used as reference
along this section.

Table 6.1 Summary of all the developed models

Name Description Schematic

Confined rotor Fixed-free annular disk in
fluid-filled and rigid confinement

Coupled static disks Identical free-fixed circular disks
coupled with fluid

Coupled static annuli Fixed-fixed annular disks
coupled with fluid

Coupled rotor-stator
Free-fixed circular disk and

fixed-free annular disk coupled
by fluid in rigid confinement

Submerged annular disk in rigid confinement

Here we present and discuss the results of the analytical model for the confined rotor, as
depicted in Table 6.1. We first validate the model with experimental data from Presas et al.
(2015a), then compare it with the FEM model. Finally, we analyze the fluid flow and the
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influence of multiple parameters on the vibration of the rotor, such as the rotation of the
disk, the axial and radial gaps, the disk thickness, as well as the disk inner and outer radii.

Validation of the analytical model

To validate the model, we use experimental data from Presas et al. (2015a) for the system
depicted in Table 2.1. Even if a shaft is present in their system, it has been shown in the
methodology that it does not influence the dynamic behavior of the disk. As some parameters
were not defined, in particular for the material, we chose the same ones as Louyot (2019),
listed in Table 6.2.

Table 6.2 Model properties for the validation with experimental data from Presas et al.
(2015a)

Parameter Value
E rGPas 200
ρD rkg{m3s 7680

ν 0.27
ρF rkg{m3s 997
b rmms 25
a rmms 200
c rmms 207
h rmms 8

In Table 6.3, we compare the natural frequencies f “ ω{p2πq (in Hz) of our analytical model
with the experimental ones from Presas et al. (2015a) for the modes with n “ 2, 3, 4 nodal
diameters (with m “ 0 nodal circles). Presas et al. (2015a) chose these modes as they are
the most likely to be excited in high-head turbines. In this chapter, all natural frequencies
are expressed in Hz and in the rotating reference frame.

Table 6.3 Comparison with experimental natural frequencies from Presas et al. (2015a)

Mode fF,exp,P resas rHzs fF,ana rHzs εexp,ana

(2,0) 127.05 149.39 17.58%
(3,0) 321.16 364.82 13.59%
(4,0) 642.23 696.49 8.45%

The discrepancies between between both sets of results are significant, and decrease with
the number of nodal diameters. Several differences between both models can explain such
discrepancies. First of all, as written before, not all parameters are given by Presas et al.
(2015a), in particular for the material properties, which have a considerable influence on the
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dynamic behavior of the disk. We modified them and obtained better accuracy, but it does
not represent a real validation as we cannot know the initial parameters of the experimental
setup. Moreover, the boundary conditions are different and difficult to reproduce analytically.
Indeed, there is no information on the casing, but it seems to be thin and thus flexible. It is
then likely to affect the vibrations of the rotor by being coupled through the fluid. The casing
was considered flexible by Blais (2021) in his FEM model, and he got more accurate results,
showing that this particular boundary condition has an effect on the natural frequencies.
We also reproduced differently the model of Presas et al. (2015a) by considering the top
surface of the casing as a flexible fixed-fixed annular disk (see Appendix D). The natural
frequencies are slightly lowered by the addition of a non-rigid stator, so it seems that the
material properties have the highest contribution in the discrepancies between the analytical
results and the experimental data from Presas et al. (2015a).

Table 6.4 Comparison of the ratio of the natural frequencies in fluid with those in vacuo from
the analytical model and from Presas et al. (2015a)

Mode fF,exp,P resas

fV,exp,P resas
rHzs

fF,ana

ωV,ana
rHzs εexp,ana

(2,0) 0.492 0.523 6.20%
(3,0) 0.545 0.592 8.58%
(4,0) 0.622 0.646 3.91%

To put aside the influence of different structural properties and boundary conditions as best
as we can, we evaluate the eigenfrequencies of the three modes in fluid, normalized with those
in vacuo. The results are presented in Table 6.4. The values of the ratio increase with the
azimuthal wave number, as the added mass effect is less considerable for higher numbers of
nodal diameters. Indeed, modes with fewer nodal diameters accelerate the fluid more as it
must move between upward and downward antinodes further apart. This in turn increases
the added mass of the fluid when near rigid walls. We also observe better accuracy (not
linked with the number of nodal diameters), which means that the analytical FSI is close to
the experimental one. The fluid is well simulated.

When the disk starts to rotate, the standing wave splits into two traveling waves with their
own natural frequencies. Presas et al. (2015a) analyzed the influence of the rotation on this
phenomenon, and to compare their experimental data with our results, we also introduced
the rotation in our model. The fluid is chosen to rotate as a solid body to a fraction of the
angular velocity of the disk, namely the entrainment coefficient K. Its value is dependent
on the parameters of the fluid cavity as well as the rotational velocity. Presas et al. (2015a)
computed the value of K with CFD to be around 0.4 for their configuration, which matches
the range mentioned by Poncet et al. (2005, 2007). We used that value of K “ 0.4. As
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written before, we have considerable discrepancies with the model of Presas et al. (2015a) in
terms of frequencies in vacuo, so we evaluated the mode split magnitude from fF,´n ´ fF,`n,
i.e. the difference in frequency between the forward and backward travelling waves.
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Figure 6.1 Comparison of the analytical prediction (in continuous lines) with experimental
data from Presas et al. (2015a) (in dot lines) for the effect of the disk rotational velocity ΩR

on the mode split magnitude fF,´n ´ fF,`n for the three modes n “ 2, 3, 4

Figure 6.1 compares analytical results with experimental data from Presas et al. (2015a) for
the influence of the disk rotational velocity ΩR on the mode split magnitude fF,´n ´ fF,`n,
for the modes (2, 0), (3, 0) and (4, 0). The mode split magnitude increases with the number
of nodal diameters, as well as with the angular velocity for the three modes. The results
are precise until the disk rotates at ΩR “ 6 Hz, at which they diverge. In addition to the
differences between the two models mentioned before, it may be due to the value of K that
does not represent the physics implied anymore. Indeed, Presas et al. (2015a) demonstrated
that for higher rotational velocities, the value of K decreases, increasing in turn the mode
split magnitude. While it increases nearly linearily for the mode (3, 0), the experimental
mode split magnitude suddenly increases from ΩR “ 6 Hz.

Comparison between the analytical and FEM models

In addition to the validation with the experimental data from Presas et al. (2015a), we
compare it with the FEM model so that this step acts as a verification. The same parameters
(see Table 6.2) and assumptions have been considered, such that the confinement is rigid
and the fluid is set to incompressible in Ansys, except for the rotation. The comparison is
explained by Blais (2021), thus we will briefly discuss them and display the most relevant
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results. Some of them are also presented in the next section, so the related observations will
be discussed after.

Table 6.5 Natural frequencies in vacuo for FEM and analytical models

fV rHzs

Mode FEM Analytical ε
(2,0) 282.43 285.65 1.14%
(3,0) 611.60 616.22 0.76%
(4,0) 1066.40 1077.64 1.05%

In Table 6.5, we compare the analytical and FEM eigenfrequencies in vacuo to see if the
structural part of each model displays the same results. The FEM natural frequencies are
slightly lower than the analytical ones. The maximum discrepancy is 1.14%, showing that the
structure is simulated similarly by both methods. The small deviations may be explained
with the differences inherent to each model, as the disk analytically only deforms in the
transverse direction while its three degrees of freedom are considered in the FEM model.
Moreover, boundary conditions are not exactly the same as the entire shaft is considered
rigid in the analytical model and only its upper and lower surfaces are fixed for the FEM
model. Indeed, with the first boundary conditions, the overall rigidity of the disk is higher,
which explains the difference between both sets of eigenfrequencies.

Once we had studied the structural part of the analytical and FEM models, we analyzed
the influence of the radial and axial gaps, as well as the angular velocity on the dynamic
behavior of the rotor. For the first two, Blais (2021) showed that both models display the
same behavior: increasing the axial gap or the radial gap increases the natural frequencies;
and a good correlation, even if the added mass effect seems to be higher for the FEM model.
Indeed, its normalized natural frequencies are slightly lower, which can be explained with
the assumptions mentioned before. As for the rotation, except for the natural frequencies
themselves (that show the same deviation as before), the mode split magnitude and the
frequency drift are close for both models, which shows that the effect of the disk rotation on
the dynamic behavior is represented similarly by both methods.

Influence of parameters on implied physics

Here we analyze the influence of different parameters, such as the angular velocity, the radial
and axial gaps, the disk thickness and its inner and outer radii, on the dynamic behavior of
the rotor. This step is done to verify that we obtain the same physical phenomena observed
experimentally by Valentín et al. (2014) and Presas et al. (2015a, 2016), as well as provide
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additional understanding about unexplored physics, through new parametric studies. Apart
from the parameter whose influence is analyzed, the other values are provided in Table 6.2.
The modes studied are the same as the ones of Presas et al. (2015a), namely (2, 0), (3, 0) and
(4, 0).

Fluid flow without rotation

To better understand the fluid flow in the confinement, we trace its streamlines with the
evaluation of the fluid velocity and its associated displacement potentials. Figure 6.2 depicts
the flow streamlines of the confined rotor without rotation for the mode (2, 0) in the plane
(r, θ, 0.005), namely in the middle of the axial gap with z “ 0.005 m, as well as in the plane
(r, 0, z).
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Figure 6.2 Streamlines of the fluid velocity for the mode (2, 0) of the confined rotor without
rotation (a) in the plane (r, θ, 0.005) (where dash lines represent diameters with zero disk
displacement, i.e. nodal diameters); and (b) in the plane (r, 0, z)

We can get some valuable information solely from the standing case. In Figure 6.2a, the
nodal diameters are highlighted by dash lines, so we can observe where are the antinodes
(an antinode is the location where the disk observes maximum amplitude), while the flow
direction gives their direction. Indeed, we see a circle at r « 0.14 m where the fluid separates
away from the circle and towards the center and edge of the disk in the left and right quarters.
In the top and bottom quarters, the flow is reversed and goes toward the r « 0.14 m circle.
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In the first case, it means the antinode is upward, while it is downward in the second. Similar
dynamics can be observed for modes with different numbers of nodal diameters (not shown).
For an upward antinode, the fluid is pushed towards the adjacent downward antinodes or
in the radial gap. For a downward antinode, it is the opposite, the fluid is drawn from
the adjacent upward antinodes and through the radial gap. Both motions for each type of
antinode is representative of how the added mass of the fluid either contained in the axial
or radial gap affects the dynamic behavior of the fluid. Indeed, the added mass is directly
proportional to the kinetic energy of the fluid. Figure 6.2b corroborates the observations
made for the flow in the axial gap for Figure 6.2a. Indeed, for this upward antinode, as we
are in the plane (r, 0, z), the fluid separates away from the r « 0.14 circle and towards the
center and edge of the disk. We can also observe the flow below the disk, where the fluid is
dragged to the circle from the center of the disk and the radial gap.

Influence of rotation

In this section, we analyze the influence of the rotational velocity of the confined rotor on
its dynamic behavior. First, we look at the evolution of its natural frequencies with the
increase of the angular velocity. Figure 6.3 provides further details on the split of the modes
(2, 0), (3, 0) and (4, 0), whose magnitude is given in Figure 6.1. The eigenfrequencies are
normalized with those in vacuum fV to better appreciate the mode split of the three modes.
Figure 6.1 shows that the mode split magnitude increases with the velocity, and we observe
in Figure 6.3 that the frequency of the co-rotating wave is decreasing while it is increasing
for the counter-rotating wave. This is the case because the reference frame is rotational, as
it is linked to the fluid. It would have been the opposite in the stationary reference frame.
Moreover, even if it is barely visible, one can appreciate the frequency drift with the dash
lines: the decrease of the central value of the eigenfrequencies of both waves. It becomes
considerable for bigger rotational velocities, as demonstrated by Louyot (2019).

Influence of the radial and axial gaps

The proximity to rigid walls of the submerged disk affects its dynamic behavior, as demon-
strated by Valentín et al. (2014) and Presas et al. (2016). Therefore, we analyze the effect
of the axial and radial gaps H1 and c ´ a on the natural frequencies of the confined rotor
without rotation for the modes n “ 2, 3, 4. For the influence of the radial gap, at first, the
natural frequencies dropped to a value close to the one for no radial gap, for c ´ a ă 6
mm. We then noticed that for such values, the fluid did not flow in the radial gap. For the
smallest radial gaps, we discovered that no points of the point collocation method were in the
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Figure 6.3 Natural frequencies of the co and counter-rotating waves of the confined rotor for
the three modes n “ 2, 3, 4 as a function of the disk angular velocity ΩD, where the dash
lines represent the central value of the eigenfrequencies

interface between the two fluid domains Γgap (see 4.1b). For the wider ones, it was not the
case, so we decided to investigate the convergence of the natural frequencies. As an example,
we obtained the influence of Ns and Ni on the natural frequencies for the radial gap c´a “ 3
mm, depicted in Figure 6.4. As we can see, compared to before, the convergence is reached
for a higher value of Ns, and it in fact keeps increasing the smaller the radial gap is. As Ns is
related to the number of terms in the sum solution to Laplace’s equation, it is directly linked
to the number of Bessel functions we consider. Due to their oscillatory behavior, it may be
needed to implement a higher number for smaller radial gaps so that the fluid displacement
potentials are able to approximate the flow in the interface Γgap. Consequently, to be able
to study the influence of small radial gaps on the dynamic behavior of the rotor, we do a
convergence analysis for each one in order to determine the associated couple of convergence
parameters (Ns, Ni). This approach is tedious and demonstrates that the point collocation
method is limited to discretize deformable fluid-structure and fluid-fluid interfaces for small
radial gaps.

In Figure 6.5, we plot the influence of the axial and radial gaps H1 and c´ a on the natural
frequencies of the confined rotor for the modes n “ 2, 3, 4. The eigenfrequencies in water are
normalized with those in vacuo to better appreciate their trend when the three modes are
traced on the same figure. In Figure 6.5b, we display the values of (Ns, Ni) used to determine
the natural frequencies for small radial gaps for the mode (2, 0). We employ the same values
with the corresponding radial gaps for the modes n “ 3, 4. For the remaining data, we
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Figure 6.4 Ni and Ns influence on the natural frequencies of the rotor for c ´ a “ 3 mm

keep the default values Ns “ 80 and Ni “ 200. In both subfigures, the natural frequencies
increase with the number of nodal diameters, as well as with the axial and radial gaps for
the three modes. Indeed, according to Valentín et al. (2014) and Presas et al. (2016), when
the axial or radial gap decreases, the fluid is squeezed between the structure and its added
mass increases. The natural frequencies of the disk are then decreased in turn. Moreover, in
Figure 6.5a, past a threshold of H1 ą 0.04 m, increasing the axial gap does not influence the
natural frequencies. The same value of axial gap was obtained by Louyot (2019), and can
be used to design a casing where the axial gaps do not interfere with the dynamic behavior
of the disk. When comparing the influence of both gaps, we observe that the axial gap has
more influence on the eigenfrequencies, as the surface occupied by the fluid in this gap is
more considerable. In Figure 6.5b, the natural frequencies decrease slightly until the radial
gap is null, where they decline abruptly as no more fluid flows in the interface Γgap.

Influence of the thickness

Here we discuss the influence of the disk thickness on its natural frequencies. Figure 6.6
compares the frequencies of the modes (2, 0), (3, 0) and (4, 0) as a function of the disk
thickness hR. We observe that the eigenfrequencies increase with the thickness, as it was
demonstrated by Louyot (2019) when he analyzed the effect of hR on the AVMI factor β0.
Indeed, β0 decreases for thicker disks, as the increase of their thickness raises their kinetic
energy (see Equation 4.32). Moreover, from a structural point of view, the modal mass M is
proportional to hR, while the modal rigidity K is proportional to its cube. Therefore, even if
increasing hR raises the modal mass of the disk, its rigidity increases even more and causes
the natural frequencies to follow the same trend, in addition to the decrease of the added
mass (represented by β0).
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Figure 6.5 Natural frequencies of the confined rotor without rotation for the modes (2, 0),
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Influence of the inner and outer radii

Figure 6.7 depicts the influence of the inner and outer radii b and a on the natural frequencies
of the modes (2, 0), (3, 0) and (4, 0). For each variation, all other parameters are kept
constant: for b, there is no change to do, but for a, we considered the radial gap constant
at 7 mm, so that c had to be increased too. In Figure 6.7a, b has nearly no influence on
the natural frequencies. It would however be expected that, although increasing b decreases
similarly the modal rigidity and mass of the disk, it affects the boundary conditions of the
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disk and the associated frequency parameter knm. Indeed, increasing b raises knm, and thus
the modal rigidity, in regard to the modal mass. In Figure 6.7a, b has nearly no influence
because it is varied slightly. In Figure 6.7b, when a increases, the natural frequencies are
greatly reduced. Indeed, increasing a decreases knm, and the linked modal rigidity, while
the added mass of the fluid is increased as the surface of the disk increases, as observed by
Louyot (2019).
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Figure 6.7 Natural frequencies of the confined rotor without rotation for the modes (2, 0),
(3, 0) and (4, 0) as a function of: (a) the inner radius b; and (b) the outer radius a

Annular disk coupled through fluid with flexible disk

Here we present and discuss the results of the analytical model for a fixed-free annular
disk coupled through fluid with a clamped circular disk, i.e. the coupled rotor-stator as
depicted in Table 6.1. We first verify our models for the coupled static disks and annuli (see
Table 6.1) with the analytical data from Jeong (2003, 2006). We then validate the model
with experimental data from Weder (2018), then compare it with the FEM model. Finally,
we analyze the fluid flow without rotation and the influence of multiple parameters on the
rotor-stator coupling, such as the rotation of the disk, the radial and axial gaps, as well as the
thicknesses of both disks. Additionally, throughout this section, we mainly show results for
the modes (2, 0), (3, 0) and (4, 0) as they are the most likely to affect the runners of hydraulic
turbines (Presas et al., 2015a) and for the sake of simplicity.
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Verification for the coupled static disks

Jeong (2003) analyzed analytically and numerically the coupling through fluid of two identical
clamped disks (see Table 2.1). Therefore, as it is a simple model with no radial gap and only
one fluid domain, we reproduced it as a first verification for our analytical model integrating
the rotor-stator coupling. Moreover, in this case, as the disks are identical, the modes
are exactly in-phase or out-of-phase. During our first calculations, we used the parameters
Ns “ 80 and Ni “ 200, and we obtained the natural frequencies of the identical disks in
vacuo. After going through the different steps of the method, we noticed that the values of
pressures were nearly null. We deduced that it came from the values of the coefficients Anms

of the radial component of the fluid displacement potentials from Eq. (4.24), determined with
the point collocation method. Indeed, we saw that the rank of the pseudo-inverse matrix
decrease when increasing Ns, i.e. the more unknowns (represented by Ns) we have, the more
dependent the equations (represented by Ni) become, until a threshold where the unknowns
Anms cannot be determined and are given a value of 0. Hence, it is as if the fluid is not
present and that is why the natural frequencies in vacuo were found. The solution was to
decrease Ns, and we selected Ns “ 10. Table 6.6 contains the comparison of our results (using
this value for Ns) with the analytical data from Jeong (2003) for the modes in-phase and
out-of-phase (1, 0), (2, 0), (3, 0) and (4, 0). Ò stands for sinuous modes and Ö for varicose
modes.

Table 6.6 Comparison of natural frequencies for diametrical modes from the analytical model
and from Jeong (2003) - Two identical disks coupled with fluid

(n, 0)Ò (n, 0)Ö

Mode fF,ana rHzs fF,ana,Jeong rHzs ε fF,ana rHzs fF,ana,Jeong rHzs ε
(1,0) 348.48 348.4 0.02% 149.33 147.5 1.24%
(2,0) 589.66 589.5 0.03% 369.58 366.1 0.95%
(3,0) 891.17 890.9 0.03% 672.27 667.8 0.67%
(4,0) 1256.78 1256.2 0.05% 1052.84 1048.1 0.45%

As expected, the natural frequencies increase with the number of nodal diameters, and they
are lower for out-of-phase modes, as the fluid is more squeezed in that case. The ana-
lytical results are equivalent, with discrepancies between both models less than 0.05% for
sinuous modes and 1.5% for varicose modes. Jeong (2003) built his analytical model using
finite Fourier-Bessel series expansion and the Rayleigh-Ritz method, while we used the point
collocation method and the assumed-modes approach. Consequently, for this specific config-
uration, the analytical model is verified, and the assumption that modeshapes are the same
in water as in vacuo still holds.
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Verification for the coupled static annuli

Jeong (2006) reproduced analytically and numerically the coupling through fluid of two fixed-
fixed annular disks, with different inner radii and thicknesses (see Table 2.1). This model is
closer to the rotor-stator coupling we want to represent, thus their analytical data (verified
with finite element analysis) can serve as a second verification for our model. Indeed, as the
disks are different, their modes are not exactly in-phase or out-of-phase, thus mixed, which is
more representative of the rotor-stator coupling in hydraulic turbines. Moreover, it still is a
simple system, as there is no radial gap and only one fluid domain. For this comparison, we
are able to keep our initial values of Ns and Ni, as the coefficients Anms are evaluated with
two equations at the fluid-disk interface, and the rank of the pseudo-inverse is less affected
by the value of Ns. Indeed, there is no deformation inside the inner radius of the disks, while
they deform between the inner and outer radii. Table 6.7 contains the comparison of our
results with the analytical data from Jeong (2003) for the out-of-phase modes (1, 0), (2, 0),
(3, 0) and (4, 0). For this choice of nodal parameters, the modes are only varicose due to the
geometry of the system.

Table 6.7 Comparison of natural frequencies for diametrical modes from the analytical model
and from Jeong (2006) - Two disks with different stiffness, coupled with fluid

Mode fF,ana rHzs fF,ana,Jeong rHzs ε Coupling
(1,0) 55.3 53.55 3.16% Ö

(2,0) 104.1 101.76 2.25% Ö

(3,0) 173.3 171.83 0.91% Ö

(4,0) 271.0 271.55 0.06% Ö

For the coupled static annuli, the results are less accurate, with discrepancies of less than
4%. As for the comparison with the out-of-phase modes from Jeong (2003), we observe that
the deviation decreases with the number of nodal diameters considered, to reach a low value.
Jeong (2006) also used the Rayleigh-Ritz method (and the finite Hankel transform) that do
not assume the same modeshapes in water as in vacuo, hence the decrease of more than 1%
of the error may be due to the fact that we use the assumed-mode approach. Indeed, with
an increase of the number of nodal diameters, the amplitude of the disk decreases and alters
less the fluid domain. Therefore, the modes in water are closer to those in vacuo and the
assumed-mode approach becomes more precise.
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Validation for the coupled rotor-stator

To validate the final analytical model, we reproduce the system of Weder et al. (2019) and we
use the experimental data of Weder (2018) (see Table 2.1). In this case, all the parameters
and geometry dimensions are given, thus we are able to recreate the same model. However,
we made some geometrical simplifications as the geometry is complex to reproduce, especially
in the lower axial gap with the conical clamping of the rotor shaft (see Table 2.1). Indeed, it
goes from the bottom of the casing (at 98 mm of the rotor) up to 44 mm away from the rotor.
Since the lower axial gap is large, its exact value has little influence on the dynamic behavior
of the structure, we therefore considered H2 “ 98 mm. Moreover, we did not reproduce the
protruding cylindrical clamping of the stator, as it is at 25 mm away from the edge of the
rotor, and does not have any impact on the fluid motion. The stator is still considered to
be clamped at this distance. In fact, Weder et al. (2019) built such a setup so that only the
upper axial gap and the thickness of the disks have an effect on the dynamic behavior of the
rotor-stator coupling. Table 6.8 shows the parameters used as well as those employed for the
parametric studies of Weder (2018).

Table 6.8 Model properties for the validation with experimental data from Weder (2018)

Parameter Value
E rGPas 210
ρD rkg{m3s 7850

ν 0.30
ρF rkg{m3s 997
H1 rmms [1.4,2.2,2.9,3.6,4.4,6.4,9.4,14.4]
H2 rmms 98
b rmms 15
a rmms 100
d rmms 125
c rmms 150
hR rmms [1,1.5,2]
hS rmms [1,1.5,2]

We compare the analytical results with the experimental data through three different para-
metric studies on the axial gap, the rotor and stator thicknesses, as well as the out-of-phase
modes.
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Influence of the axial gap

Figure 6.8 depicts the comparison between the analytical results and the experimental data
from Weder (2018) through the effect of the axial gap on the eigenfrequencies of the in-phase
modes (2, 0), (3, 0) and (4, 0) for a rotor and stator thickness of 1 mm. The deviations
between both models are also represented in %. The natural frequencies increase with the
axial gap, and with the number of nodal diameters for the three modes. Therefore, the
axial gap has the same influence on the natural frequencies of the rotor-stator coupling as
the ones of the confined rotor: its decrease increases the fluid added mass and lowers the
eigenfrequencies. For these thicknesses of hR “ hS “ 1 mm, the discrepancies between both
models are considerable, reaching up to more than 15% for the mode (3, 0), for smaller axial
gaps. This can be explained with our assumption that the fluid is inviscid. Indeed, in the
experimental setup, the fluid is not ideal and its viscosity has more influence for small axial
gaps, as the fluid is more squeezed. Moreover, we also considered that it could be due to
nonlinear effects, but Weder (2018) explains that they considered small vibration amplitudes,
thus neglecting nonlinear effects such as acoustic streaming or nonlinear stiffness of the disks.
As observed before, the accuracy increases with the axial gap, and may be due to the modes
in water being closer to those in vacuo for such configuration, in addition to the reduced
influence of the viscosity.
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Figure 6.8 Comparison of analytical results with experimental data from Weder (2018) for
the natural frequencies of the in-phase modes (2, 0), (3, 0) and (4, 0) as a function of the axial
gap H1 - hR “ hS “ 1 mm
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Influence of the thickness

Figure 6.9 displays the comparison of analytical results with experimental data from Weder
(2018) for the natural frequencies of the in-phase modes n “ 2, 3 of the coupled rotor-stator
as a function of the axial gap for different thicknesses of the rotor hR “ 1.5 mm and hR “ 2
mm. The mode (4, 0) is not displayed as it was not observed by Weder (2018). As before,
with the decrease of the axial gap, the natural frequencies of the two modes decrease. The
behavior of the discrepancies in both cases are different compared to before: they decrease
until H1 “ 3.6 mm and increase afterwards to stay below a threshold of 2.5%. Overall, the
deviations are lower and decrease with the rotor thickness. This may be explained by the
fact that increasing the thickness of the rotor increases its rigidity and in turn its natural
frequencies. This way, the eigenfrequencies of both disks are closer, which induces that they
are more likely to vibrate together and that their amplitudes are more similar, resulting in a
less compressed fluid. As explained before, when the fluid domain is less altered, the influence
of the viscosity is lower and the assumption of inviscid fluid is more appropriate. We also
considered the case where hR “ hS “ 1.5 mm (not shown), and we obtained similar deviations
as for thicknesses of 1 mm, showing that even if we change the thicknesses and make them
equal, the analytical model matches less the experimental data from Weder (2018).
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Figure 6.9 Comparison of analytical results with experimental data from Weder (2018) for
the natural frequencies of the in-phase modes (2, 0) and (3, 0) of the coupled rotor-stator as
a function of the axial gap H1 for: (a) hS “ 1 mm and hR “ 1.5 mm; and (b) hS “ 1 mm
and hR “ 2 mm
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Out-of-phase modes

Figure 6.10 depicts the influence of the axial gap on the natural frequencies for the out-of-
phase modes n “ 2, 3, 4 of the coupled rotor-stator, for hR “ 2 mm and hS “ 1 mm. The
eigenfrequencies for varicose modes are lower than those for sinuous modes, as explained in
the introduction. One can observe that the axial gap has the same influence on the out-of-
phase modes: the decrease of the axial gap lowers their natural frequencies. It also seems
that the analytical prediction is more accurate for varicose modes, with all frequencies below
3.5%, even for small axial gaps. Overall, the analytical model seems to be precise for either
big axial gaps or thickness ratios hR{hS superior to 1.

0.001 0.004 0.007 0.010 0.013 0.016
H1 (m)

100

200

300

400

500

f F
(H

z)

(2, 0)exp

(3, 0)exp

(4, 0)exp

(2, 0)ana

(3, 0)ana

(4, 0)ana

−1

0

1

2

3

E
rr
or

(%
)

(2, 0)err
(3, 0)err

(4, 0)err

Figure 6.10 Comparison of analytical results with experimental data from Weder (2018) for
the natural frequencies of the out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-
stator as a function of the axial gap H1 - hS “ 1 mm and hR “ 2 mm

Comparison between the analytical and FEM models

Here we compare the analytical and FEM models through the same studies used to validate
the first one with experimental data. In case of the FEM model, the fluid is considered
compressible and the lower axial gap is H2 “ 44 mm. We saw that a smaller lower axial gap
should only slightly affect the dynamic behavior, as explained before. This was done in order
to have fewer elements in the model, to save computation time, without losing accuracy.

Figure 6.11 compares analytical and FEM results for the influence of the axial gap on the
natural frequencies of the coupled rotor-stator for the modes (2, 0), (3, 0) and (4, 0). Fig-
ure 6.11a, Figure 6.11b and Figure 6.11c varies the rotor thickness (hR “ r1, 1.5, 2s) for the
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Figure 6.11 Comparison of analytical results with FEM data for the effect of the axial gap on
the natural frequencies of the coupled rotor-stator configuration for the modes (2, 0), (3, 0)
and (4, 0): (a) (n, 0)Ò for hS “ hR “ 1 mm; (b) hR “ 1.5 mm; (c) hR “ 2 mm; and (d)
(n, 0)Ö for hS “ 1 mm and hR “ 2 mm

in-phase modes while Figure 6.11d considers the out-of-phase modes for hR “ 2 mm. The
thickness of the stator is kept at hS “ 1 mm. As for the comparison between the analytical
model and the experimental setup of Weder et al. (2019), both models are closer when hR{hS

increases and are the closest for the varicose modes. We also observe that the FEM simu-
lation is better at predicting the collapse of eigenfrequencies when the axial gap decreases.
In fact, this is where the highest discrepancies between the models are present. It thus may
seem that regarding the experimental data from Weder (2018), the FEM model is more ac-
curate, but as Blais (2021) demonstrated, the FEM natural frequencies are lower than the
experimental ones, which results in the same overall discrepancies, with the same trend.
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Influence of parameters on implied physics

Here we analyze the influence of different parameters, such as the angular velocity, the radial
gap, as well as the disks thickness, on the dynamic behavior of the rotor. This step is done to
verify that we obtain the same physical phenomena observed experimentally by Valentín et al.
(2017) and Weder (2018), and provide additional understanding about unexplored physics,
through new parametric studies. The parameters that remain unchanged during a study are
those found in Table 6.9. We choose hS “ hR “ 1 mm to have a thickness ratio hR{hS of
1 throughout the different analysis. Moreover, as the model is validated for thickness ratios
higher than 1 or large axial gaps, we select H1 “ 14.4 mm.

Table 6.9 Model properties for the parametric studies

E rGPas 210
ρD rkg{m3s 7850

ν 0.3
ρF rkg{m3s 997
H1 rmms 14.4
H2 rmms 85
b rmms 15
a rmms 100
d rmms 125
c rmms 150
hS rmms 1
hR rmms 1

Fluid flow without rotation - In-phase modes

To provide additional insight on the rotor-stator coupling through fluid, we calculate the
flow of fluid without rotation, and then trace its velocity with streamlines in different planes
such as (r, θ) and (r, z). As a first step, and to see the influence of each disk deformation
on the fluid for the coupled rotor-stator configuration, we select the deformation of each one
and plot the associated streamlines. Figure 6.12a depicts the effect of the deformation of the
rotor on the flow for the mode (2, 0) of the coupled rotor-stator, while Figure 6.12b describes
the flow subject to the stator deformation. The planes chosen are (r, θ) for z “ 1 mm and
z “ 14 mm respectively, to be as close to each disk and capture their influence. The dash
lines represent the nodal diameters, and it is the case for all the following figures in the plane
(r, θ).

In Figure 6.12a, the velocities outside a circle of r “ 0.1 m are negligible so we removed
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Figure 6.12 Effect of the disks separate deformation on the fluid flow in plane (r, θ) for the
mode (2, 0): (a) z “ 1 mm and rotor deformation; (b) z “ 14 and stator deformation

manually the associated streamlines. We observe the same flow as for the confined rotor.
Indeed, on a circle of r « 0.07 m, there is either an influx or reflux of the fluid depending on
the antinode. If it is upward, the fluid is pushed to the center of the disk and to the adjacent
antinodes, as well as in the radial gap. For a downward antinode, it is the opposite: the
fluid is dragged from the radial gap, the center of the disk and the adjacent antinodes. In
this system, as the radial gap is 50 mm, the fluid flows close to the edge of the disk but not
farther. It has no impact on the fluid placed further in the radial gap, which is globally at
rest.

In Figure 6.12b, the deformation of the lone stator affects differently the fluid. We observe
the apparition of the same circle where the fluid either inflows or refluxes, but it has a smaller
radius of r « 0.06 m, compared to the case of the rotor. Moreover, the fluid is dragged or
pushed all the way towards the edge of the confinement. Both differences may be due to
the stator being a different disk. Indeed, while it has a radius of 125 mm (compared to 100
mm for the rotor), it is clamped on the outside, which results in no deformation at its edge
and tighter modeshapes. The second consequence may relate to the circle of reflux or influx
being smaller in radius, while the first may explain the flow reaching the lateral wall of the
casing. For instance, when the rotor deforms, its edge being free, the fluid will flow around
it, whereas it cannot do that at the edge of the stator and will travel along the upper wall



53

of the confinement. We also observe that for a corresponding antinode, the reflux and influx
are shifted compared to the case for the rotor. Indeed, in the axial gap, the stator is placed
above the fluid, while the rotor is below, thus, for the same antinode, they have the opposite
influence on the fluid.

Once the deformation of each structure has been analyzed, we explore the influence of the
rotor-stator coupling on the fluid flow. As for Figure 6.12, Figure 6.13 depicts the fluid flow
in the plane (r, θ) near the rotor (z “ 1 mm) and close to the stator (z “ 14 mm) for the in-
phase mode (2, 0) of the coupled rotor-stator. In Figure 6.13a, we observe similar phenomena
as for the sole deformation of the rotor from Figure 6.12a: the flow is negligible and erratic
in the majority of the radial gap, while the fluid refluxes and inflows on a circle with a radius
of r « 0.05 m. The circle thus has a smaller radius for the rotor-stator coupling, probably
induced by the tighter stator modeshapes that are now present. Moreover, there seems to
be a gap in the flow at the edge of the rotor, where the fluid was most active for the sole
deformation of the rotor. In fact, as both disks are in-phase, the stator accompanies the flow
created by the rotor, cancelling the one observed when it is rigid. Indeed, when it is the
case, the fluid can only flow from or to the adjacent antinodes, the center and the radial gap.
In this case, when the antinode is upward for example, the fluid that is supposed to travel
through the radial gap is dragged to the stator and the observed flow is less considerable.
For a downward antinode, the fluid that is supposed to come up through the radial gap
is pushed back by the associated antinode of the stator, which reduces the flow in that
location. We also notice that the reflux and influx happening on the circle near the rotor are
shifted compared to the case for the sole rotor deformation. Indeed, they now match those
observed on the stator, which means that the fluid flow is imposed principally by the stator
deformation. It corroborates with the natural frequencies obtained for the in-phase mode,
as they are similar to those for the sole deformation of the stator. Therefore, this suggests
that the in-phase modes in the rotor-stator coupling are close to stator-only modes (as if
the rotor is nearly rigid). The fact that the stator deformation accompanies the flow created
by the rotor, instead of opposing it when it is rigid, is consistent with the observed natural
frequencies. Indeed, the fluid is less accelerated this way, its added mass is reduced and the
eigenfrequencies are higher for in-phase modes when the stator is flexible.

In Figure 6.13b, some slight differences are observed with the sole stator deformation case
from Figure 6.12b. The circle of reflux and influx has a smaller radius of r « 0.05 m, which
is consistent with the addition of the rotor. Indeed, its in-phase modeshapes centers the fluid
motion, as being below the axial gap makes it accompany the flow created by the stator
deformation. The flow in the radial gap is also affected by the rotor deformation with a
subtle increase of the exchanges between the adjacent antinodes.
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Figure 6.13 Effect of the rotor-stator coupling on the fluid flow in plane (r, θ) for the in-phase
mode (2, 0): (a) z “ 1 mm; (b) z “ 14 mm

With Figure 6.14, we analyze the influence of the rotor-stator coupling on the flow in the
plane (r, θ) at the middle of the axial gap (z “ 7 mm) for the in-phase mode (2, 0). We also
changed the plane of observation to (r, 0, z) to observe the effect of the rotor-stator coupling
on the fluid axial velocity. In Figure 6.14a, as we get closer to the stator, the fluid flow
gradually changes to become what we observed near it in Figure 6.12b. The circle of reflux
and influx is slightly wider, while there is still a gap in the flow around the edge of the
rotor. Moreover, the flow in the radial gap becomes less erratic to be more imposed by the
deformation of the stator. This suggests once more the prominence of the stator deformation
on the fluid flow in the radial gap.

In Figure 6.14b, streamlines in the plane (r, z) provide additional insight on the phenomenon
observed before in the other plane. At θ “ 0, the antinodes of the rotor and stator are
upward, so the fluid below the rotor is dragged to it from the center and the edge of the
cavity, while the fluid in the axial gap is pushed upward by the rotor and dragged to the
stator. If the stator is rigid, the fluid in the axial gap should be pushed to the center and
in the radial gap around the edge of the rotor as observed in Figure 6.2b. As the stator
deforms in this case, it pulls up the fluid, shifting its flow in the axial gap as well as involving
the one in the radial gap. It is also why we observe a gap in the flow at the edge of the rotor
as the fluid is simultaneously dragged to it and by the stator. This once more confirms that
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Figure 6.14 Effect of the rotor-stator coupling on the fluid flow for the in-phase mode (2, 0):
(a) plane (r, θ, 0.007); and (b) plane (r, 0, z)

the added mass of the fluid in the axial gap is reduced, bringing the eigenfrequencies of the
in-phase modes closer to the higher natural frequencies of the lone stator.

Fluid flow without rotation - Out-of-phase modes

Up until now, we considered the in-phase mode (2, 0), and were able to observe that they are
close to stator-dominant modes. Therefore, we now take a look at the out-of-phase mode for
the same number of nodal diameters. To analyze the fluid flow induced by the varicose mode,
we introduce a phase shift of π{n inside the calculation of the fluid displacement potentials
associated with the stator deformation from Eq. (4.37). In this way, for an upward antinode
of the rotor, the stator has a corresponding downward antinode. Figure 6.15 depicts the
influence of the rotor-stator coupling on the fluid flow in the plane (r, θ) at z “ 1 mm and
z “ 14 mm for the out-of-phase mode n “ 2. Near the rotor, in Figure 6.15a, we observe a
wider circle of r “ 0.07 m of reflux and influx no longer shifted compared to the in-phase case,
as well as a flow in the radial gap similar to the one observed near the stator in Figure 6.13b.
Close to the stator, in Figure 6.15b, apart from the wider circle, only the reflux and influx
have shifted. All these differences are due to the flows created by each deformation being
opposed. Indeed, what was observed for sole deformations is now reproduced, each disk acts
as a rigid wall for one another. The fluid flow hereby confirms two aspects of the comparison
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Figure 6.15 Effect of the rotor-stator coupling on the fluid flow for the out-of-phase mode
(2, 0): (a) z “ 1 mm; and (b) z “ 14 mm

of the natural frequencies for each deformation, in-phase modes and out-of-phase modes.
The varicose modes have lower eigenfrequencies than sinuous modes, as the flows for each
deformation are opposed, the added mass of the fluid increases, reducing in turn the natural
frequencies. The eigenfrequencies of the out-of-phase and the rotor-only modes are really
close, which is consistent with the stator acting as a rigid wall on the flow created by the
rotor deformation. This suggests that the rotor deformation is prominent for varicose modes,
and that, while in-phase modes are stator-dominant modes, out-of-phase modes behave like
rotor-only modes.

To corroborate the observations made for the out-of-phase modes in Figure 6.15, we look
at the axial velocity of the fluid flow in the confinement. Figure 6.16 describes the effect
of the rotor-stator coupling on the fluid motion in the plane (r, 0, z) for the varicose mode
(2, 0). At this location, the rotor and stator antinodes are upward and downward respectively.
Compared to the in-phase modes, the flows created by both deformations are indeed opposed.
In the axial gap, the fluid is pushed towards the radial gap and the center of the cavity, while
it is affected similarly by the stator. It looks as if there is a rigid wall in the middle of the
axial gap as each flow repulses one another. We also observe that the circle where reflux and
influx appear has a wider radius of r « 0.075 m, as the fluid now travels around the edge
of the rotor. It once more suggests that the added mass effect is more considerable in the
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Figure 6.16 Effect of the rotor-stator coupling on the fluid flow in plane (r, 0, z) for the out-
of-phase mode (2, 0)

axial gap for out-of-phase modes and that the stator acts as a nearby-rigid wall for the rotor,
making varicose modes close to rotor-only modes.

While those observations may be valid for a higher number of nodal diameters, it may not
be the case for a different configuration depending on the amplitude of each disk and who
is therefore dominant. The influence of characteristics of the fluid and the structure on the
behavior of the rotor-stator coupling thus has to be analyzed.

Influence of rotation

To analyze the influence of the rotation on the rotor-stator coupling, we describe its associated
dynamic behavior using characteristics such as the natural frequencies and the amplitude
ratio (this is done for all the following parametric studies). The latter is obtained through
the evaluation of the eigenmodes, once the eigenvalues (or eigenfrequencies) of the associated
problem formed by the equations of motion (4.50) are determined. It is the ratio between
the unknown amplitudes of the rotor AR

nm and stator AS
nm, such that it equals AR

nm{AS
nm.

Therefore, when it is superior to 1, the associated mode is said to be with rotor dominant
vibration, whereas an amplitude ratio inferior to 1 indicates a stator dominant vibration.

Figure 6.17a and Figure 6.17b depict the influence of the rotation on the natural frequencies
of the in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-stator.
The eigenfrequencies are normalized with those of the rotor in vacuum fR

V to better appreciate
the mode split magnitude of the three modes. As for the confined rotor, the co and counter-
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Figure 6.17 Effect of rotation on the coupled rotor-stator configuration, considering modes
(2, 0), (3, 0) and (4, 0): (a) eigenfrequencies of (n, 0)Ò; (b) eigenfrequencies of (n, 0)Ö; (c)
amplitude ratios of (n, 0)Ò; and (d) amplitude ratios of (n, 0)Ö

rotating waves separate to see their frequency split with increasing angular velocity. The
central value of the pairs of eigenfrequencies for each mode are traced in dash line, and we
can see that it slightly decreases with rotation, proving the existence of the frequency drift
for the rotor-stator coupling. Apart from the effect of the rotation, we also notice that the
natural frequencies of the coupled rotor-stator are higher than those of the rotor in vacuo for
the in-phase modes as the ratios are superior to 1. This corroborates the fact that sinuous
modes are stator-dominant, as the natural frequencies in fluid are close to those of the stator
in water. In addition, the normalized eigenfrequencies of in-phase modes decrease with the
number of nodal diameters, as the natural frequencies in vacuo of the rotor increase faster than
those of the stator in water (the sinuous modes being stator-dominant, their eigenfrequencies
follow the same trend). We observe the opposite behavior for the out-of-phase modes, as the
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natural frequencies in vacuo of the rotor increase slower than those of the rotor in water (the
varicose modes being rotor-dominant).

Figure 6.17c and Figure 6.17c describe the effect of the rotation on the amplitude ratios
of the in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-stator.
The first observation is that for a higher number of nodal diameters, the amplitude ratio
is lower for sinuous and varicose modes. This is explained with the amplitude of the rotor
decreasing faster than the one of the stator when the azimuthal number increases. Indeed,
the influence of n on the amplitude of the stator is less considerable than for the rotor, as
the first is a fixed-fixed circular disk and the second a fixed-free annular disk. The amplitude
ratios remain nearly constant with the rotation, suggesting that the bias motion does not
have a considerable impact on the amplitude ratio, as observed by Weder (2018). However,
we can still notice that it increases slightly for the sinuous modes, while it decreases for
the varicose modes. This may be explained with the in-phase modes being stator-dominated,
while the out-of-phase modes are rotor-dominated (amplitude ratios are lower and higher than
1 respectively). While this confirms the hypothesis advanced in the precedent section, it also
suggests that either the amplitude of the rotor increases or the one of the stator decreases
to reach a ratio of 1, as the disk imposes the rotation and the stator undergoes it. We
also observe that the values of the amplitude ratios for out-of-phase modes are considerable.
Indeed, varicose modes are rotor-dominant and the amplitude of the stator is small. It is also
the case for following studies, and the range of values is higher than the one of Weder (2018).
One explanation could be that the fluid being inviscid allows more considerable amplitude.

Influence of the radial gap

As the influence of the axial gap on the rotor-stator coupling has been analyzed by Weder
(2018) and discussed in the comparison with his model, we study here the effect of the
radial gap c ´ a. For this configuration, we defined the lateral wall of the confinement to
be at c “ 125 mm, on the edge of the stator. We then varied at first the outer radius a of
the rotor from 100 to 125 mm, for an increment of 1 mm. However, our results displayed
numerical instability, and we found out that decreasing the radial gap has the same effect on
the convergence as for the confined rotor. The smaller it is, the higher Ns has to be for the
natural frequencies of the out-of-phase modes to converge (see Figure 6.18a). This mainly
concerns these modes as they are rotor-dominant and the reduction of the radial gap affects
principally the confined rotor compared to the confined stator. In addition, the instability
observed for the coupled static disks also has to be considered, as the equations of the FSI
model are similar for the confined stator. Indeed, in Figure 6.18b, we can see that past a
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threshold value of Ns “ 80, the natural frequencies of the in-phase modes increase abruptly
to become those of the stator in vacuo. The rank of the pseudo-inverse matrix decreases with
Ns, and in particular here, there are three unknowns in the radial component of the fluid
displacement potentials from Eq. 4.37 compared to the coupled static disks. Consequently,
we cannot analyze the natural frequencies of the sinuous and varicose modes with the same
approach as for the confined rotor, and we have to select a minimum radial gap so the
convergence is reached for both types of modes. We also noticed that Ns “ 80 is the limit
of convergence for the in-phase modes, such that we observe numerical instability for part of
the results. We decided to lower Ns to 70, and this induced that the minimum radial gap
chosen for this configuration is c ´ a “ 6 mm. Thus, the rotor outer radius a is varied from
100 mm to 119 mm, with an increment of 1 mm.

(a) (b)

Figure 6.18 Influence of Ns and Ni on the eigenfrequencies for c ´ a “ 3 mm: (a) (2, 0)Ö

and (b) (2, 0)Ò

Figure 6.19a and Figure 6.19b depict the impact of the radial gap on the eigenfrequencies of
the in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-stator. As
observed for the axial gap in the coupled rotor-stator configuration and the radial gap for the
confined rotor, reducing the radial gap decreases the natural frequencies, as the added mass
of the fluid is increased. At first glance, reducing the radial gap, even for considerable values,
decreases the eigenfrequencies of the coupled rotor-stator, where for the widest radial gaps
and the confined rotor, it was demonstrated by Valentín et al. (2014) that it should not have
any influence on its dynamic behavior. Therefore, this could corroborate the appreciations
made when we studied the fluid flow, as the deformation of the stator involves the fluid in
the radial gap. However, to decrease c ´ a, we increase the rotor outer radius and it was
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observed for the confined rotor that the frequency parameter knm is greatly reduced when
a is increased. Therefore, the reduction of natural frequencies for considerable values of the
radial gap is probably mostly due to the increase of a and not c´a. In Figure 6.19b, we also
observe that the reduction of the radial gap has a greater impact on the natural frequencies
of the varicose modes. Indeed, the radial gap is assumed to influence the dynamic behavior
of the structure through its interaction with the rotor, and we showed that the out-of-phase
modes have rotor-dominant vibrations for this configuration. As a is increased to reduce the
radial gap, and is an inherent characteristic of the rotor, we can appreciate that its effect on
the rotor dynamic behavior is mostly visible for varicose modes as they are rotor-dominant.
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Figure 6.19 Influence of the radial gap on the coupled rotor-stator configuration, considering
modes (2, 0), (3, 0) and (4, 0): (a) natural frequencies of (n, 0)Ò; (b) natural frequencies of
(n, 0)Ö; (c) amplitude ratios of (n, 0)Ò; and (d) amplitude ratios of (n, 0)Ö

Figure 6.19c and Figure 6.19d describe the influence of the radial gap on the amplitude ratios
of the in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-stator. In
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Figure 6.19c, the amplitude ratio of sinuous modes decreases with the radial gap. In-phase
modes are stator-dominant for this configuration, where the rotor is nearly rigid. Therefore,
as the rotor expands, the added mass of the fluid contained in the axial gap increases. It
in turn raises the amplitude of the stator, as an addition of mass to a structure reduces its
natural frequencies and increases its amplitude. In Figure 6.19d, for varicose modes, reducing
the radial gap increases greatly the amplitude ratio, as it is a rotor-dominant mode and the
radial gap has the most influence on the rotor. Part of the curves are still jagged, showing
numerical instability. It demonstrates once more the limitations of the point collocation
method to discretize the deformable fluid-fluid and fluid-structure interfaces.

Influence of the rotor thickness

To analyze the influence of the thicknesses of the rotor and stator on the rotor-stator coupling,
we divide the study in two, measuring the effect of each thickness separately. If we define
the thickness ratio as the quotient of the rotor thickness over the stator one, Weder (2018)
only studied its increase for values above 1. Our second study focuses on the decrease of the
thickness ratio for values below 1. As before, we consider a wide axial gap of 14.4 mm, as
the analytical model is validated for this parameter, even when the thicknesses are equal.

We first analyze the influence of increasing the rotor thickness, or the thickness ratio, on
the dynamic behavior of the rotor-stator coupling. Figure 6.20a and Figure 6.20b describe
the effect of the rotor thickness on the natural frequencies of the in-phase and out-of-phase
modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-stator. For both types of modes, the
eigenfrequencies increase with the thickness ratio: while it is linear for hR ě 3 mm for the
sinuous modes, it quickly reaches an asymptote for the varicose modes. This may be explained
with the in-phase modes becoming rotor-dominant as the thickness ratio rises, whereas the
out-of-phase modes are already this way, and a thickness is reached where it does not affect
the natural frequencies anymore (as the rotor is too rigid).

Figure 6.20c and Figure 6.20d depict the influence of the rotor thickness on the amplitude
ratios of the in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-
stator. We appreciate an opposite behavior of the amplitude ratio for both types of modes: it
increases for the sinuous modes whereas it decreases for the varicose modes (to reach nearly 0)
with the increase of the rotor thickness. The same explanation as above holds: the amplitude
ratio of in-phase modes rises as they become rotor-dominant (for hR ě 3 mm, they are no
longer stator-dominant), while as the out-of-phase modes are already rotor-dominant, the
increasing rigidity of the rotor decreases its amplitude until it is null. The trend observed
for the sinuous modes suggests the importance of considering the rotor-stator coupling: the
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Figure 6.20 Effect of rotor thickness on the coupled rotor-stator configuration, considering
modes (2, 0), (3, 0) and (4, 0): (a) natural frequencies of (n, 0)Ò; (b) natural frequencies of
(n, 0)Ö; (c) amplitude ratios of (n, 0)Ò; and (d) amplitude ratios of (n, 0)Ö

increasing rigidity of the rotor should induce a negligible amplitude ratio (as for the varicose
modes), but the switch in structure-dominance first influences the amplitude ratio. Indeed,
increasing the rotor thickness brings its natural frequencies in vacuo closer to those of the
stator, such that there is a better coupling between both and the shift in dominance is
possible. In addition, the amplitude ratio increases with the number of nodal diameters for
the in-phase modes, as they are becoming rotor-dominant and the stator amplitude starts to
decrease faster than the rotor one.
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Influence of the stator thickness

Here we analyze the influence of increasing the stator thickness, or decreasing the thickness
ratio, on the dynamic behavior of the rotor-stator coupling. The results are to be treated with
caution, as this part of the analytical model has not been validated and is purely predictive.
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Figure 6.21 Effect of stator thickness on the coupled rotor-stator configuration, considering
modes (2, 0), (3, 0) and (4, 0): (a) natural frequencies of (n, 0)Ò; (b) natural frequencies of
(n, 0)Ö; (c) amplitude ratios of (n, 0)Ò; and (d) amplitude ratios of (n, 0)Ö

Figure 6.21a and Figure 6.21b describe the effect of the stator thickness on the natural
frequencies of the in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled
rotor-stator. For both types of modes, the eigenfrequencies rise with the decrease of the
thickness ratio. However, it is linear and considerable for sinuous modes, whereas it is only
a slight increase for the varicose modes. In the first case, the modes are stator-dominant,
thus an increase in thickness and in turn of rigidity affects the entire rotor-stator coupling,
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resulting in higher natural frequencies. The out-of-phase modes are rotor-dominant, hence
an increase of rigidity for the stator that is already nearly rigid only has slight effects.

Figure 6.21c and Figure 6.21d depict the effect of the stator thickness on the amplitude ratios
of in-phase and out-of-phase modes (2, 0), (3, 0) and (4, 0) of the coupled rotor-stator. In
Figure 6.21c, when increasing the stator thickness, the amplitude ratio decreases, which indi-
cates that the sinuous modes become more stator-dominant. It quickly reaches an asymptote,
as the stator is a clamped disk and increasing its thickness does not have an impact after a
certain value (3 mm in this case). In Figure 6.21d, for the varicose modes, we observe the
opposite behavior: as they are rotor-dominant, increasing the thickness of the stator and
thus its rigidity raises the amplitude ratio. The values are considerably high, which may be
due to the stator observing negligible amplitudes and as we considered inviscid fluid. We do
not observe a shift in dominance as raising the stator thickness only increases the difference
between the natural frequencies in vacuo of the stator and those of the rotor, such that the
coupling is not enhanced.
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CHAPTER 7 CONCLUSION

The analytical model is an extension of the approach developed by Louyot (2019) as it gives
information on the effect of the FSI on the dynamic behavior of runners represented by
annular disks submerged in dense fluid with a radial gap. To integrate the latter, we used
the assumed-mode approach to impose single modeshapes of the disks on the potential flow,
while representing the fluid-structure interface with the point collocation method, as done by
Askari et al. (2013). The analytical method is able to predict the natural frequencies of the
disk in a few seconds for different configurations (dependent of the characteristics of the fluid
and the structure), and with disk rotation. Placed in the fluid reference frame, we evaluate
the fluid rotation using an empirical value of the entrainment coefficient given by Poncet et
al. (2005). Through the calculation of the frequencies of the co and counter-rotating waves,
the frequency split and drift is well captured. The analytical model is verified using acoustic-
structural modal analysis under Ansys from Blais (2021) to reproduce configurations with
the same parameters and boundary conditions, lacking in available literature.

As Askari et al. (2013) who coupled the free surface of a confined fluid and the deformation
of the submerged disk, we implement the rotor-stator coupling through the decomposition
of each deformation and their coupling by applying the principle of superposition on the
equations of motion. The analytical model is able to determine the natural frequencies of
the in-phase and out-of-phase modes, as well as the associated amplitude ratio. It also offers
the possibility to analyze the influence of different parameters such as the rotor and stator
thicknesses, the disk rotation or the geometry of the casing. It can thus be used as a tool
to assess the characteristics of the coupling through fluid of the runner with its head cover
in high-head hydraulic turbines. The analytical approach is validated with experimental
data from Weder (2018) for large axial gaps and/or a thickness ratio higher than 1. An
acoustic-structural modal analysis of the rotor-stator coupling was implemented under Ansys
in collaboration with Blais (2021) to verify its theoretical counterpart and provide a fast
numerical tool.

The different parametric studies for the confined rotor configuration provide information on
the influence of the characteristics of the system:

• With rotation, the natural frequencies of the confined rotor split and drift. While the
first phenomemon is considerable for velocities in the range of the industry, it is not
the case for the second.
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• Reducing the axial and radial gaps increases the added mass of the fluid, thus decreasing
the eigenfrequencies. The influence of the first one is more considerable than the second.

• Increasing the rotor thickness raises its rigidity and the associated eigenfrequencies.

• While increasing the inner radius of the annular disk raises the rigidity and the asso-
ciated natural frequencies, increasing the outer radius raises its flexibility and reduces
the associated natural eigenfrequencies.

For the coupled rotor-stator configuration, the parametric studies give some insights on the
implied physics:

• The rotation affects the rotor-stator coupling in a similar fashion as for the confined
rotor as the natural frequencies split and drift with the angular velocity. The drift is
also negligible for velocities in the range of the industry. In addition, the amplitude
ratio is nearly not affected.

• As for the confined rotor, decreasing the radial gap reduces the natural frequencies of
the in-phase and out-of-phase modes, while it decreases and increases the amplitude
ratio for the sinuous and varicose modes, respectively, without shifting the dominance
of the rotor or stator.

• As the axial gap has the same influence as the radial gap according to Weder (2018),
among the parameters analyzed, only the thicknesses of the rotor and stator can change
their dominance in their coupling. For thickness ratios lower or equal to 1, the in-phase
modes are stator-dominant, while the out-of-phase modes are rotor-dominant. This
behavior shifts only when the thickness ratio is higher than 1, resulting from increasing
(or decreasing) the rotor (or stator) thickness. Indeed, the natural frequencies in vacuo
of the rotor become closer to those of the stator and the coupling between both is
enhanced.

Limitations

As expected, the analytical and FEM models are principally limited by their assumptions,
made in order to develop them. While the fluid can be assumed compressible in the nu-
merical simulation, it is considered inviscid for both methods, as well as irrotational (and
incompressible theoretically). Therefore, they both lose accuracy when there are small gaps
between the flexible structures and the rigid walls, or between themselves, as viscous forces
are even more considerable in these configurations. Moreover, to apply linear perturbation
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theory, we consider small amplitude deformations for the disks. Hence, the models cannot
take into account non-linear effects either from the fluid or the structure.

The analytical results depend on the choice of Ns and Ni to converge, and even if the selection
works in most cases, we encountered some configurations where they have to be changed (such
as the one from Jeong (2003) or for small radial gaps). Even when a pair of these parameters
is functional, changing it can still induce small uncertainties, thus they have to be selected
carefully in future extensions. However, it may not be realistic to test the convergence if a
lot of configurations are created, hence we advise to check the values of these parameters if
the results diverge or observe an uncommon behavior. Extra caution is recommended when
reducing the radial gap between the rotor or stator and the casing, as it seems to be the
geometrical characteristic with the most influence on the convergence.

Finally, due to issues with the compatibility between licences and the latest version of Ansys
needed to be able to integrate the disk rotation in the modal analysis, the FEM model for
the rotor-stator coupling cannot implement the rotation yet.

Outlook

First, the FEM model of the rotor-stator coupling could be extended to integrate rotation,
to provide a fast numerical tool to study the mode split in disk-disk configurations.

During this project, we simulated the coupling between two annular disks and this model
could be used to represent the interaction between the runner band and the discharge ring,
after a validation with experimental data.

The analysis of the influence of the radial gap on the dynamic behavior of the confined
rotor and coupled rotor-stator showed the limit of the point collocation method to discretize
deformable fluid-fluid and fluid-structure interfaces. This approach could be replaced with a
similar methodology such as Galerkin’s method.

When compressible, the fluid has its own acoustic modeshapes and natural frequencies, that
are usually considered higher than those of the disk so that they do not affect each other.
However, depending on the characteristics of the fluid cavity, they may be in each other’s
range. For instance, several analytical and numerical models were developed in the past to
simulate submerged and rotating disks interacting with the acoustic modes of the surrounding
fluid (Jeong, 2006; Kang and Raman, 2004, 2006a,b; Bossio et al., 2017). Therefore, it would
be interesting to integrate the compressibility of the fluid in the analytical approach using
those methods. A first starting point could be the work of Jeong (2006), where he develops
a theoretical model for the coupling through compressible fluid of fixed-fixed annular disks.
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APPENDIX A SEPARATION OF VARIABLES FOR THE 3D LAPLACE
EQUATION IN CYLINDRICAL COORDINATES

We apply the separation of variables ϕpr, θ, zq “ RprqP pθqZpzq to Laplace’s equation (4.20):

1
R

d2R

dr2 `
1
rR

dR

dr
`

1
r2P

d2P

dθ2 `
1
Z

d2Z

dz2 “ 0 Ø
1
R

d2R

dr2 `
1
rR

dR

dr
`

1
r2P

d2P

dθ2 “ ´
1
Z

d2Z

dz2 . (A.1)

As the terms from Eq. (A.1) are all independent, this equality is possible only if each side is
equal to a constant. We write ´ 1

Z
d2Z
dz2 “ ´β2

nm, which gives:

d2Z

dz2 ´ β2
nmZ “ 0, (A.2)

whose solution is Zpzq “ C1 cosh βnmz ` C2 sinh βnmz. We choose a negative sign such that
there is a solution when we apply the boundary condition of the lateral wall of Eq. (4.22) to
the fluid displacement potentials. We now have:

1
R

d2R

dr2 `
1
rR

dR

dr
`

1
r2P

d2P

dθ2 “ ´β2
nm Ø

r2

R

d2R

dr2 `
r

R

dR

dr
` β2

nmr “ ´
1
P

d2P

dθ2 . (A.3)

In the same way, we choose the constant n2, whose sign allows to write the equality between
the vertical displacement of the disk w from Eq. (4.2) and the fluid velocity potentials ϕ1

and ϕ2 from Eq. (4.24) at their interface. As the tangential component of w is cosnθ, then
P pθq “ cosnθ. We finally obtain the modified Bessel equation:

d2R

dr2 `
1
r

dR

dr
`

ˆ

β2
nm ´

n2

r2

˙

R “ 0, (A.4)

whose solution is Rprq “
8
ř

s“1
pAnmsJn pβnmsrq ` BnmsYn pβnmsrqq. Each Bessel function of

the first and second kind is solution to the modified Bessel equation, which gives an infinite
number of solutions. Therefore, according to the superposition principle, we have to sum
them all.
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APPENDIX B CONFINED ROTOR - SHAFT IN THE LOWER FLUID
DOMAIN AND SHAFT THROUGHOUT BOTH FLUID DOMAINS

(a) (b)

Figure B.1 System with (a) a shaft in the lower fluid domain; and (b) a shaft throughout
both fluid domains

Model with a shaft in the lower fluid domain

In this model, the lower fluid displacement potential has not to be finished at r “ 0 as a
shaft is present. Therefore, we also have the Bessel function of the second kind in the radial
component Eq. (4.21), and the fluid displacement potentials of each subdomain are:

$

’

’

’

’

&

’

’

’

’

%

ϕ1pr, θ, zq “ cosnθ
8
ř

s“1
AnmsJnpβnms,1rq rC1 cosh βnms,1z ` C2 sinh βnms,1zs

ϕ2pr, θ, zq “ cosnθ
8
ř

s“1
pCnmsJnpβnms,2rq ` DnmsYnpβnms,2rqq rC3 cosh βnms,2z

`C4 sinh βnms,2zs

. (B.1)

We choose a different term βnms for each potential from Eq. (B.1). Indeed, when we apply
the conditions for the lateral wall and the centre of the confinement of Eq. (4.22), βnms is
solution to two different systems of equations, because of the different radial form of the fluid
displacement potentials of Eq. (B.1).

As for the model without a shaft in both fluid domains, when we apply the conditions for
the upper and lower rigid walls from Eq. (4.23) to the fluid displacement potentials from Eq.
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(B.1), we get:
$

’

’

’

’

&

’

’

’

’

%

ϕ1pr, θ, zq “ cosnθ
8
ř

s“1
AnmsJnpβnms,1rq rcosh βnms,1z ´ tanh βnms,1H1 sinh βnms,1zs

ϕ2pr, θ, zq “ cosnθ
8
ř

s“1
pCnmsJnpβnms,2rq ` DnmsYnpβnms,2rqq

rcosh βnms,2z ` tanh βnms,2H2 sinh βnms,2zs

.

(B.2)
The boundary conditions for the lateral wall and the center of the confinement give:

$

&

%

Bϕ1
Br

ˇ

ˇ

r“c
“ 0 and ϕ|r“0 “ 0

Bϕ2
Br

ˇ

ˇ

r“c
“ 0 and Bϕ2

Br

ˇ

ˇ

r“b
“ 0

. (B.3)

Namely, by substituting the potentials from Eq. (B.1) in Eq. (B.3):

J 1
npβnms,1cq “ 0 and

#

CnmsJ
1
npβnms,2bq ` DnmsY

1
npβnms,2bq “ 0

CnmsJ
1
npβnms,2cq ` DnmsY

1
npβnms,2cq “ 0

. (B.4)

To solve the system of equations from Eq. (B.4), we put it in a matrix form:
«

J 1
npβnms,2bq Y 1

npβnms,2bq

J 1
npβnms,2cq Y 1

npβnms,2cq

ff

¨

«

Cnms

Dnms

ff

“

#

0
0

+

Ø det
«

J 1
npβnms,2bq Y 1

npβnms,2bq

J 1
npβnms,2cq Y 1

npβnms,2cq

ff

“ 0.

(B.5)
Consequently, the coefficient βnms,1 is solution of J 1

n pβnmscq “ 0, while βnms,2 is such that
the determinant from Eq (B.5) is null. We evaluate those two coefficients numerically.

Using the same boundary conditions from Eq. (B.3), we simplify the expression of ϕ2 from
Eq. (B.1). With one of both expressions from system (B.4), we express one of the factors
Cnms or Dnms as a function of the other, which allows us to keep only one and reduce the
number of unknowns. With the first expression from system (B.4), we write Dnms as a
function of Cnms, and the expression of ϕ2 thus becomes:

ϕ2pr, θ, zq “ cosnθ
8
ř

s“1
Rprq rcosh βnms,2z ` tanh βnms,2H2 sinh βnms,2zs , (B.6)

with
Rprq “ Cnms

„

Jnpβnms,2rq ´
J 1

npβnms,2bq

Y 1
npβnms,2bq

Ynpβnms,2rq

ȷ

. (B.7)

This factorization, by reducing the number of unknowns, induces the convergence of this
model (and the one with a shaft throughout both fluid domains), to finally get close results
between the three models.
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The boundary conditions for the fluid-shaft (considered rigid), fluid-rotor and fluid-fluid
interfaces Γshaft, Γrotor and Γgap in z “ 0 (see Figure 4.1b) lead to:

Bϕ1{2

Bz

ˇ

ˇ

ˇ

ˇ

z“0
“

ˆ

1 `
nΩD{F

ωF

˙

ψnprq cosnθ for b ă r ď a and

$

’

’

’

’

&

’

’

’

’

%

Bϕ1{2
Bz

ˇ

ˇ

ˇ

z“0
“ 0 0 ď r ď b

Bϕ1{2
Bz

ˇ

ˇ

ˇ

z“0
“

Bϕ2
Bz

ˇ

ˇ

z“0 a ă r ď c

ϕ2|z“0 “ ϕ1|z“0 a ă r ď c

.

(B.8)
The rest of the approach is the same as for the model without shaft in both fluid domains.

Model with a shaft throughout both fluid domains

The shaft is throughout both fluid domains: the boundary conditions at the center and the
lateral wall of the confinement from Eq. (B.3) are the same for the upper and lower fluid
domains, such that they both have expressions similar to the second one from Eq. (B.3).
Hence, both fluid displacement potentials are analogous to the one for the lower fluid domain
from Eq. (B.1). It is thus necessary to use the factorization with the boundary conditions
at the lateral wall and the center from Eq. (B.3) for both. We obtain:

$

’

&

’

%

ϕ1pr, θ, zq “ cosnθ
8
ř

s“1
AnmsRprq rcosh βnms,2z ´ tanh βnms,2H1 sinh βnms,2zs

ϕ2pr, θ, zq “ cosnθ
8
ř

s“1
CnmsRprq rcosh βnms,2z ` tanh βnms,2H2 sinh βnms,2zs

, (B.9)

with Rprq “

”

Jnpβnms,2rq ´
J 1

npβnms,2bq

Y 1
npβnms,2bq

Ynpβnms,2rq
ı

. Moreover, only βnms,2 intervenes in this
case.
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APPENDIX C EIGENFREQUENCIES CALCULATION - AVMI FACTOR
AND RAYLEIGH’S COEFFICIENT

Method with the AVMI factor

The eigenfrequencies in water are written as a function of those in vacuo with the AVMI
factor:

ω2
F

ω2
V

“
1

1 ` β
, (C.1)

with
β “

E1
F ` E2

F

ER ` ES

. (C.2)

For reminder, we have:
$

&

%

Ei
F “ ρF

ş ş

Ωi
ϕi|z“0

Bϕi

Bz

ˇ

ˇ

z“0 rdrdθ

ER{S “ 1
2ρR{ShR{S

ş ş

Ωm
pwR{Sq2rdrdθ

. (C.3)

By writing A “
`

AR
nm AS

nm

˘T the vector of the unknown amplitudes, we get:

ATMA “ 0, namely MA “
ÝÑ0 , (C.4)

with

M “

»

—

—

–
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´
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(C.5)
where:
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şd

0 Jnpβnms,1rqψ
S
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S
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(C.6)
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and
$

’
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’

’

’

&

’

’
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%

a7 “ 1
2ρrψθ

şa

b
ψR

nm
2
dr
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2ρrψθ

şd

0 ψ
S
nm

2
dr
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2ρFψθ
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CS

nms

şa

b
Jnpβnms,1rqψ

R
nmdr

(C.7)

are linked to the different reference kinetic energies of the fluid, rotor and stator. As before, to
determine the natural frequencies, we have to solve the eigenvalue problem of Eq. (C.4), which
is equivalent to calculating the determinant of the matrix M from Eq. (C.5), where ωF is the
unknown. In M , each term in the diagonal refer to each deformation of the rotor and stator,
while in the other diagonal are displayed the coupling terms. It is possible mathematically
to place all coupling terms in only one term of the diagonal, and the determinant is then
easier to evaluate. However, the coupling terms do not intervene anymore, such that we
obtain the frequencies associated to the uncoupled deformations. Moreover, for the terms
in the diagonal displaying the natural frequencies in vacuo, we have to consider for each
one the eigenfrequencies linked to the associated structure deformation. Indeed, if the rotor-
stator coupling is not considered anymore, we have to obtain the frequencies associated to the
uncoupled deformations. This is possible only if the diagonal terms have the same expressions
as when we calculate the AVMI factor for each deformation.

Method with Rayleigh’s coefficient

We write the Rayleigh coefficient:

ω2
F “

VS ` VS

ER ` ES ` E1
F ` E2

F

, (C.8)

where VR{S “ DR{S

ş2π

0

şa{d

b{0 k
4
nmpwR{Sq2rdrdθ is the maximum potential energy of the rotor

and stator.

In the same way as for the other methods, it is possible to isolate the amplitude terms then
to determine the eigenfrequencies. We noticed that the final matrices obtained through the
three approaches are the same. In fact, this is what allowed us to succeed with the model by
comparing the methods between them.
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APPENDIX D COUPLING OF A ROTATING FIXED-FREE ANNULAR
DISK WITH A FIXED-FIXED ANNULAR DISK

r

z

Rotor

Stator

1

2ΩR

θ

Figure D.1 Rotating fixed-free annular disk coupled with a fixed-fixed annular disk

In this model where we replace the free-fixed circular disk by a fixed-fixed annular disk, the
first modification of the global approach is in the structural model of the stator. Indeed, its
boundary conditions have changed and become:

Wnmpr, θq|r“e “ 0, BWnmpr, θq

Br

ˇ

ˇ

ˇ

ˇ

r“e

“ 0, (D.1)

Wnmpr, θq|r“c “ 0, BWnmpr, θq

Br

ˇ

ˇ

ˇ

ˇ

r“c

“ 0, (D.2)

where e is the inner radius of the stator and the modeshapes Wnm have the same form as
those of the rotor.

The second change is in the FSI model of the stator, where its vertical displacement is applied
on the fluid not from 0 to d, but from e to c, such that:

$

’

&

’

%

BϕS
1

Bz

ˇ

ˇ

ˇ

z“H1
“ 0 0 ď r ď e

BϕS
1

Bz

ˇ

ˇ

ˇ

z“H1
“

´

1 `
nΩS{F

ωF

¯

ψS
nmprq cosnθ e ă r ď c

. (D.3)

Considering a disk with different boundary conditions also modifies the expression of the
pressures applied on the stator for both deformations, such that the integration is done on
the interval e ď r ď c.
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