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RÉSUMÉ

En Amérique du Nord, les tumeurs primitives du foie et les métastases associées représen-
tent la deuxième cause de mortalité liée au cancer, causant plus de 600 000 décès chaque
année. Pour les patients dans les stades intermédiaires et avancés, la radiothérapie externe
est souvent utilisée pour traiter et contrôler la progression de la maladie. Son objectif est
de fournir suffisamment d’irradiation aux cellules cancéreuses afin d’endommager le matériel
génétique de celles-ci. Par conséquent, lors de l’administration de la dose, l’objectif est
d’obtenir une cible presque statique dans le champ de vision du faisceau lorsque celui-ci est
actif. Cependant, le mouvement des organes respiratoires est un facteur de complication
dans le traitement des tumeurs. Par conséquent, la localisation précise de la cible est l’un
des principaux défis au cours de la procédure. Pour garantir une dose précise, des stratégies
de gestion de la respiration sont utilisées afin d’optimiser l’administration du rayonnement
au site tumoral. À cet égard, la proposition de nouvelles méthodes pour imager le mouve-
ment de l’organe en respiration libre permettra d’évaluer quantitativement les déformations
induites par la respiration.

Bien que l’imagerie 3D soit possible, les temps d’acquisition et de traitement ne sont pas
compatibles avec le suivi en temps réel. Pour cette raison, les approches permettant d’obtenir
de l’information volumétrique à partir de coupes 2D sont considérées comme des solutions
potentielles pour améliorer l’efficacité du traitement. De plus, pour ajuster la dose conforme,
il est nécessaire de prédire la trajectoire du mouvement de la cible afin de compenser les
latences du système. Les développements technologiques récents ont permis la livraison
simultanée de faisceaux d’irradiation et l’acquisition d’images. Les images acquises en temps
réel permettent une surveillance de la cible dans le plan imagé. Elles représentent également
des signaux substituts internes, ce qui les rend compatibles avec des modèles de mouvement.

L’objectif de cette thèse est de fournir un ensemble d’outils pour analyser et modéliser le
mouvement respiratoire sur la base d’images généralement acquises par le flux de travail clin-
ique. La méthodologie adoptée a conduit à répondre à trois objectifs de recherche spécifiques.
Le premier objectif vise à développer une méthodologie de réordonnancement automatique
de tranches pour reconstruire des volumes 4D à partir d’images IRM sans navigateur. Le sec-
ond cherche à trouver de nouvelles solutions pour tirer parti de l’intelligence artificielle pour
la tâche de modélisation du mouvement. Le dernier objectif vise à concevoir un prédicteur
temporel basé sur l’image qui peut être intégré aux modèles de mouvement pour permettre
la génération de volumes à l’avance.
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La première contribution vise plus particulièrement la reconstruction automatique de volumes
IRM en 4D à partir d’acquisitions cinématiques multicoupes sans navigateur. Le processus
de triage des tranches pour conformer les volumes temporels est une tâche complexe. C’est
encore plus difficile lorsque les signaux du navigateur ne sont pas disponibles. Nous proposons
une méthodologie pour dériver des signaux pseudo-navigateurs à partir des séries dynamiques
acquises à chaque position de coupe anatomique. Elle repose principalement sur le recalage
d’images déformable. Par la suite, un signal unidimensionnel est dérivé d’une analyse statis-
tique de la composante principale du mouvement. Ce signal respiratoire est ensuite traité
pour identifier automatiquement un point temporel correspondant à l’état de fin d’expiration.
De plus, nous avons conçu une approche basée sur des graphes pour l’empilement de tranches
où les images 2D représentent les sommets. Les arêtes des graphes sont pondérées selon des
mesures de similarité basées à la fois sur les informations de pixel et du mouvement. La
détection automatique du temps de fin d’expiration et l’extraction automatique du pseudo-
navigateur permettent à la méthode d’opérer sur des données à haute résolution spatiale et
temporelle qui capturent plusieurs cycles respiratoires, permettant des études de variabil-
ité inter-cycles. Les mesures quantitatives et qualitatives montrent une meilleure cohérence
spatio-temporelle avec la méthode proposée. Comparée à des techniques similaires, qui sup-
posent un schéma respiratoire régulier, notre méthode est capable de faire face à la respiration
irrégulière et aux courtes apnées chez les sujets.

La deuxième contribution vise à proposer des solutions basées sur l’apprentissage profond
pour la modélisation du mouvement respiratoire d’un point de vue à la fois déterministe et
probabiliste. Les deux approches reposent sur la réduction de dimensionnalité pour associer
des observations partielles à des déformations de grande dimension. Plus précisément, nous
proposons l’auto-encodage convolutif comme base pour effectuer la tâche de modélisation.
Le premier modèle développé associe les images substituts aux déformations de dimension
réduite en minimisant la distance L2 entre les deux représentations latentes. En revanche, le
second modèle utilise les images afin de conditionner une distribution probabiliste sur les dé-
formations à chaque phase respiratoire. Les orientations sagittale et coronale ont été explorées
dans nos expériences. Contrairement aux modèles de mouvement statistiques traditionnels,
qui nécessitent de trouver des correspondances entre les sujets, nos méthodes exploitent la
forte capacité de généralisation des réseaux profonds pour identifier ces correspondances dans
un ensemble de données d’une population. Par conséquent, ces travaux présentent un nou-
veau paradigme pour aborder la tâche de modélisation du mouvement respiratoire. De plus,
ils offrent des avantages en termes d’interprétation et de personnalisation des modèles.

Nos études révèlent que, quelle que soit la modalité d’imagerie, dans l’espace latent, les don-
nées sont regroupées en fonction de leur position dans le cycle respiratoire. D’autre part,
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les modèles peuvent être facilement personnalisés à de nouveaux sujets en ajustant leurs
paramètres. Fait important, étant donné que le temps d’inférence est de l’ordre de quelques
millisecondes, ces modèles sont applicables en temps réel. L’analyse expérimentale sur des
ensembles de données réels a montré que le modèle peut être appliqué sur des sujets ex-
clus de l’ensemble de données d’entraînement, offrant une précision cliniquement pertinente.
L’approche déterministe permet un suivi de cible en 3D à partir de tranches en 2D avec des
erreurs moyennes de 2.4 mm et 5.2 mm pour des cas tests d’ensembles de données IRM et
US, tandis que la variante probabiliste du modèle a obtenu une erreur moyenne de 1.67 mm
et 2.17 mm dans ces mêmes ensembles de données.

Enfin, la troisième contribution propose des mécanismes prédictifs temporels pour la représen-
tation et la génération d’images futures. Cette étape est fondamentale pour une administra-
tion et une planification précise de la dose. Cependant, elle n’est pas exempte d’obstacles
tels que la prédiction à partir de dynamiques limitées ainsi que la grande dimensionnalité
inhérente aux déformations complexes. Le premier modèle développé exploite les représen-
tations de caractéristiques à plusieurs échelles et apprend à les extrapoler dans le temps à
l’aide de couches récurrentes convolutives. Contrairement aux approches connexes qui ten-
tent de régresser les valeurs dans le domaine des pixels, nous tirons parti des transformations
spatiales pour relever ce défi et éviter la synthèse directe de pixel. Ce modèle est capable
de prédire les positions des vaisseaux sanguins dans la prochaine image temporelle avec une
précision médiane (écart interquartile) de 0.45(0.55) mm, 0.45(0.74) mm et 0.28(0.58) mm
dans les ensembles de données IRM, US et CT, respectivement.

Dans cette même avenue de recherche, nous étudions également les structures d’attention de
produits scalaires à têtes multiples, qui ont été initialement proposées pour le traitement du
langage naturel. Ces modèles projettent linéairement l’entrée sur un ensemble de vecteurs,
à savoir des requêtes, des clés et des valeurs. Contrairement à la structure originale, qui
utilise le langage cible comme requêtes dans la partie décodante, nous proposons de prédire
la future représentation à partir d’une séquence d’images en apprenant les requêtes. De plus,
nous exploitons les images futures, disponibles lors de l’entraînement du modèle, pour cal-
culer une distribution à priori. Cette connaissance préalable agit comme régularisateur pour
l’apprentissage des requêtes. La méthode proposée est capable de prédire les déformations
futures avec une erreur géométrique moyenne de 1.2 ± 0.7 mm dans l’ensemble de données
IRM.

De plus, nous introduisons une nouvelle approche pour améliorer le suivi local. Étant donné
que les méthodes de détection locales sont généralement plus précises que les prédictions
de déformations denses globales, nous proposons de tirer parti des modèles de mouvement
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précédemment développés pour raffiner les champs de déformation à l’intérieur d’une région
d’intérêt présélectionnée autour de la cible. Cela signifie qu’au lieu de compter uniquement
sur le champ de déformation global, nous l’utilisons pour améliorer le suivi de la cible locale.
De plus, nous utilisons les codes latents du modèle de mouvement pour créer une carte
d’attention sur les champs de déformation grossiers. Ce module de suivi est indépendant du
modèle de mouvement et du prédicteur temporel. Les résultats expérimentaux révèlent qu’il
peut réduire l’erreur du modèle de mouvement d’environ 63%.

Ce projet de recherche nous a permis d’étudier l’utilisation des réseaux de neurones profonds
pour la modélisation des déformations de grande dimension dans un espace latent et de les
relier à des observations partielles. De plus, il a introduit le premier modèle basé sur une pop-
ulation de sujets utilisant des réseaux génératifs profonds appliqués au suivi des mouvements
respiratoires. Cette recherche a démontré que les modèles proposés peuvent également être
personnalisés, les rendant plus adaptés aux caractéristiques uniques du patient. En résumé,
cet ensemble de méthodes de compensation de mouvement devrait avoir un impact sur la
prochaine génération d’appareils de radiothérapie guidée par l’image et devenir un élément
important pour l’optimisation du traitement.
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ABSTRACT

In North America, primary liver tumor and associated metastasis represent the second most
common cause of cancer-related mortality, causing more than 600,000 deaths each year. For
both intermediate and late stages, external beam radiotherapy is often used to treat and
control disease progression. Its goal is to deliver enough radiation to damage the genetic ma-
terial of cancerous cells. Therefore, during dose delivery, the aim is to obtain a possibly static
target in the beam’s eye view whenever the beam is on. However, respiratory organ motion
is a complicating factor in tumour treatment. Consequently, accurate target localization is
one of the main challenges during the procedure. To ensure an accurate dose, respiration
management strategies are required to optimize the radiation delivery to the tumor site. In
this respect, proposing new methods for imaging the temporal dynamic of the organ during
free-breathing will allow the quantitative assessment of respiratory-induced deformations.

Although 3D imaging is possible, the acquisition and processing times are not compatible with
real-time monitoring. For this reason, approaches to obtain volumetric information from 2D
slices are considered potential solutions for improving the treatment efficiency. Furthermore,
to adjust the conformal dose, it is necessary to predict the target motion trajectory in advance
in order to compensate for the system latencies. Recent technological developments have
enabled simultaneous beam delivery and image acquisition. The real-time image acquisitions
allow for in-plane target monitoring. At the same time, they act as internal surrogates,
making them suitable to drive motion models.

The focus of this thesis is to provide a set of tools for analyzing and modelling the respiratory
motion on the basis of images that are typically collected through the clinical workflow. The
adopted methodology led to addressing three specific research objectives. The first objective
is aimed at developing an automatic slice reordering methodology to construct 4D volumes
from navigator-less MR images. The second one seeks to find novel solutions to leverage
artificial intelligence for the motion modelling task. The last objective is aimed at designing
an image-based temporal predictor that can be integrated into the motion models to enable
future volume generation.

The first contribution aims more specifically at automatic 4D MR volume construction from
navigator-less multi-slice cine acquisitions. The slice sorting process to build temporal vol-
umes is a challenging task. It is even more difficult if navigator signals are not available. We
propose a methodology to derive pseudo navigator signals from the dynamic series acquired
at each anatomical slice position. It relies primarily on deformable image registration. Sub-
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sequently, a uni-dimensional signal is derived from a statistical analysis of the main motion
component. This respiratory signal is then processed to automatically identify a time point
corresponding to the end-exhale state. Furthermore, we designed a graph-based approach for
slice stacking where 2D images represent the vertices. The edges of the graphs are weighted
according to similarity measures based on both pixel and motion information. The auto-
matic end-exhale time detection and the automatic pseudo navigator extraction allow the
method to work on high spatial and temporal resolution data that capture several respiratory
cycles, enabling inter-cycle variability studies. Both quantitative and qualitative measures
show improved spatiotemporal consistency with the proposed method. Compared to similar
techniques, which assume a regular respiratory pattern, our method is able to cope with
irregular breathing and small apneas of the volunteers.

The second contribution intends to establish deep learning-based solutions for respiratory mo-
tion modelling from both deterministic and probabilistic points of view. Both approaches rely
on dimensionality reduction to associate partial observations with high-dimensional deforma-
tions. Specifically, we propose convolutional autoencoding as a backbone for the modeling
task.

The first developed model associates the surrogate images to the low dimensional defor-
mations by minimizing the L2 distance between both latent representations. In contrast,
the second model uses the images to condition a probabilistic distribution over the defor-
mations at each respiratory phase. Sagittal and coronal orientations were explored in our
experiments. Unlike traditional statistical motion models, which require finding inter-subject
correspondences, our methods exploit the strong generalization capability of deep networks
to find patterns across a population dataset. Hence, these works present a novel paradigm to
approach the respiratory motion modelling task. Additionally, they offer other advantages
in terms of model interpretability and personalization.

Our studies reveal that, regardless of the imaging modality, data points in the latent space
are clustered according to their position within the respiratory cycle. On the other hand, the
models can be easily personalized to new subjects by fine-tuning their weights once created.
Importantly, since the inference time is on the order of a few milliseconds, these models are
real-time applicable. Experimental analysis on real datasets showed that the model can be
applied on unseen subjects to yield a clinically relevant accuracy. The deterministic approach
enables 3D target tracking from single-view slices with mean landmark errors of 2.4 mm and
5.2 mm in unseen cases of MRI and US datasets, while the probabilistic variant obtained a
mean error of 1.67 mm and 2.17 mm in these datasets.

Finally, the third contribution proposes temporal predictive mechanisms for future image
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representation and frame generation. This step is fundamental for accurate dose delivery
and planning. However, it is not exempt from hurdles, such as the prediction from limited
dynamics and the high-dimensionality inherent to complex deformations. The first developed
model leverages feature representations at multiple scales and learns to extrapolate them
through time using convolutional recurrent layers. In contrast to related approaches, which
attempt to regress values in the pixel domain, we leverage spatial transformations to tackle
this challenge and avoid direct pixel synthesis. This model is able to predict vessel positions
in the next temporal image with a median accuracy (interquartile range) of 0.45(0.55) mm,
0.45(0.74) mm and 0.28(0.58) mm in MRI, US and CT datasets, respectively.

In this same research line, we also investigate multi-head dot-product attention structures,
which were originally proposed for natural language processing. These models linearly project
the input to a set of vectors, namely, queries, keys and values. Unlike the original structure,
which uses the target language as queries in the decoding part, we propose to predict future
representation from an image sequence by learning the queries. Furthermore, we leverage
future frames, available during model training, to compute a prior distribution. This prior
knowledge acts as a regularizer for learning the queries. The proposed method is able to
predict future deformations with a mean geometrical error of 1.2 ± 0.7 mm in the MRI
dataset.

Additionally, we introduce a novel approach to improve local tracking. Since local detection
methods are generally more accurate than global dense deformation predictions, we propose
to leverage the previously developed motion models to refine the deformation fields over a
pre-selected region of interest around the target. This means that, instead of relying solely
on the global DVF, we use it to enhance the local target tracking. Besides, we use the
latent codes of the motion model to compute an attention map over the coarse deformation
fields. This tracking module is agnostic to the motion model and the temporal predictor.
Experimental results reveal that it can reduce the motion model error by approximately 63%.

This research project enabled us to investigate whether deep neural networks would be a
feasible option to model high-dimensional deformations in a latent space and to relate them
to partial observations. Moreover, it introduced the first population-based model using deep
generative networks applied to respiratory motion tracking. This research demonstrated that
the proposed models could also be personalized, making them better suited to the patient’s
characteristics. In summary, this set of motion compensation methods is expected to impact
the next generation of image-guided radiotherapy and become an important component for
treatment optimization.
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CHAPTER 1 INTRODUCTION

According to the World Health Organization, liver cancer is the third leading cause of death,
accounting for more than half a million deaths each year across the world [15]. In North
America, primary liver tumor, known as hepatocellular carcinoma (HCC), and secondary
liver tumor (metastasis) represent, in aggregate, the second most common cause of cancer-
related mortality, causing more than 600,000 deaths each year. Liver cancer is on the rise in
Canada, with 24,400 new cases and 9,300 associated deaths in 2014. In parallel, the rate of
liver metastases also increases. Liver metastases develop in 45% of patients with colorectal
carcinoma (CRC) and currently represent a major health challenge [16], with 22,500 new
cases in 2010 and 9,300 associated deaths. Patients with untreated liver cancer have poor
prognosis, with a median survival of 4-9 months and 5-year survival rate of less than 5% [17].
Depending on tumor stage, curative treatment is favored [18]. Whenever possible for early
stage cancer, surgery, percutaneous radiotherapy or ablative therapy are favored treatment
options while for intermediate stage disease, trans-arterial chemoembolization is considered
as a first-line palliative treatment in eligible patients. However, for both intermediate and
late stages, external beam radiotherapy (EBRT) remains one of the most common forms of
treatment. In fact, radiation therapy is applied in more than 50% of cancer patients to treat
and control disease progression [19].

External beam radiotherapy employs an external radiation source and collimators to deliver
precise doses of radiation to the cancerous tissue from different orientations around the
patient’s body. Its goal is to deliver enough radiation to damage the genetic material of
cancerous cells, thus disabling them from dividing and growing the cancerous tumor further
[20]. Nonetheless, radiation is not only harmful to cancerous cells, it can also damage healthy
tissue. Therefore, the dose delivery is preceded by a rigorous treatment planning process in
order to define the target location and surrounding organs at risk (OAR). Indeed, OAR
such as the spinal cord or the heart need to be spared to avoid complications. Hence,
accurate target localisation is one of the main challenges during the procedure. In the case of
abdomino-thoracic organs, such as the liver and lungs, the motion induced by the patient’s
free-breathing causes a complex non-rigid tissue deformation. Consequently, it is the major
cause of positional uncertainties and have shown to have a large dosimetric impact [21].
Therefore, respiration management strategies are required to optimize the radiation delivery
to the tumor site. Multiple techniques can be used to limit or temporarily eliminate the
amplitude range of respiratory motion. However, they present certain limitations related to
their reproducibility and potential physiological constraints, particularly in cancer patients
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[22].

Currently, imaging is used throughout the entire clinical workflow, representing a key compo-
nent in the process. At the planning stage it is used to delineate targets and organs at risk.
Additionally, in the clinical routine, a new scan is typically performed before starting the
treatment to properly position the patient. Intra-procedural images are also acquired and
registered to prior acquisitions to verify the tumor target location. In this context, modal-
ities such as X-ray imaging or cone beam computed tomography (CBCT) are commonly
used. Currently, computed tomography (CT) is considered the standard imaging modality
for treatment planning. However, its ionizing nature is a drawback, whereas Magnetic Res-
onance Imaging (MRI) is non-ionizing and offers better soft tissue contrast. For the study
of moving organs, a natural extension of static 3D imaging consists of acquiring a series of
dynamic images (i.e. time-resolved images) to capture the organ’s temporal behaviour. This
is referred as 4D imaging, time being the fourth dimension. The development of strategies for
dynamic volumetric MRI data collection has increased interest in the scientific community
and is an area in constant development. As part of this thesis, we develop methodologies to
construct 4D volumes from navigator-less cine acquisitions.

The development of fast MR-sequences have enabled the real-time acquisition of 2D slices,
useful for intra-operative structure monitoring. Nowadays, in many hospitals the OAR mon-
itoring and target tracking using real-time images is part of the clinical process. However,
it is well-known that tumors undergo complex 3D displacements. Although 3D imaging is
possible, the acquisition and processing times are not compatible with real-time monitoring.
For this reason, approaches to obtain volumetric information from 2D slices are considered as
potential solutions for improving the treatment efficiency. For instance, motion models aim
at estimating the motion undergone by the entire imaged anatomy, thereby proving global
3D information. Moreover, to adjust the conformal dose according to this feedback, it is
required to predict in advance the target motion trajectory to account for the processing
times. Motion models are also helpful during treatment planning, to assess the feasibility of
the procedure and to determine the best possible approach of the target. The basic prin-
ciple behind motion models is the mapping of dense 3D motion fields to surrogate signals,
which are easy to acquire and can be represented in few dimensions. A motion model can be
specifically designed for a given subject or can be created with data from multiple subjects.
Despite the promising results of these models on patient data, they still present significant
limitations. In particular, the construction of a single patient model requires the acquisition
of 4D data for each new patient, which can be impractical. On the other hand, population
models, which are expected to work on unseen cases, require significant efforts to be created.
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Recent advancements in deep learning have opened new opportunities to formulate the motion
modelling task given sufficiently large training datasets. Some previous works in computer
vision have attempted to learn a joint mapping between partial views and prior 3D shapes.
The advantage of deep learning approaches over conventional motion models lies in their
ability to learn the patterns with very little human intervention. Specifically, unsupervised
settings do not require expert-annotated data. This makes deep learning models very flexible
and powerful when there is sufficient amount of training data. Also, the excellent generaliza-
tion capabilities of neural networks enable learning over a population dataset and applying
the knowledge to unseen subjects, which resembles traditional inter-subject motion models
but with much less effort and time.

Despite these advantages, in the field of respiratory motion modelling little progress have
been done beyond the traditional statistical modelling via principal component analysis. In
addition, the application of recent concepts in deep learning for motion modeling has not
been sufficiently studied to introduce innovative solutions in the clinical scenario. In this
thesis, we approach the motion modelling and the image-based temporal prediction from a
new and promising perspective by exploiting deep learning techniques. Therefore, we advance
the knowledge in the field by proposing respiratory motion models, which we postulate may
become an important component toward the next generation of image-guided radiotherapy.
The next sections provide the main contributions and an overview of the organization of the
manuscript.

1.1 Contributions

This thesis, which falls within the field of biomedical imaging, is aimed at developing methods
for imaging, analysis, and modelling of respiratory organ motion. As mentioned previously,
in the context of image-guided radiation therapy, motion compensation strategies aid the
treatment planning and improve dose delivery. The main contributions of this work can be
summarized as follows :

• Proposing a fully automatic self-sorting 4D MR volume construction method that en-
sures the temporal coherence of the results. It includes a methodology to derive a
pseudo navigator signal from dynamic slice acquisition series and a graph-based ap-
proach for slice stacking. The automatic end-exhale time detection and the automatic
pseudo navigator extraction allow the method to work on high spatial and temporal
resolution data that capture several respiratory cycles, enabling inter-cycle variability
studies. Compared to similar techniques that assume a regular respiratory pattern,



4

this method is able to cope with irregular breathing and small apneas of the volunteers
(Chapter 5).

• Presenting deep learning-based solutions for respiratory motion modelling from both
deterministic and probabilistic point-of-views. The two proposed solutions are based
on dimensionality reduction to relate partial observations with high-dimensional de-
formations. Specifically, we propose convolutional autoencoding as a backbone for the
modeling task. In contrast to traditional statistical models, which requires establishing
inter-subject correspondences, our methods rely on the strong generalization capability
of deep networks to find patterns across a population dataset. Hence, the burden of
this complex step, which often requires manual intervention and is time-consuming, is
removed. It is replaced by unsupervised feature learning across population samples,
which represents a significant benefit over the state-of-the-art (Chapters 6 and 7).

• Proposing temporal predictive mechanisms for future image representation and frame
generation. Contrary to similar approaches, which attempt to regress values in the
pixel domain, we leverage spatial transformations to tackle this challenge and avoid
direct pixel generation. Moreover, we investigate multi-head attention structures with
a learnable prior to learn the spatio-temporal dynamic of the images (Chapters 8 and
9).

1.2 Thesis structure

This thesis is composed of eleven chapters. Following this introduction, Chapter 2 pro-
vides background information that is useful to better understand the methods developed
throughout this thesis and the context in which they were developed. Chapter 3 presents
a critical literature review about 4D imaging techniques, image-based temporal predictive
mechanisms, and motion modeling approaches, which are the main pillars of this work. The
research problem, objectives and hypothesis, as well as the general methodology, are exposed
in Chapter 4.

The main findings of this thesis are presented in four articles, which are included in Chap-
ters 5, 6, 7 and 8. These articles have been published in peer reviewed scientific jour-
nals. Chapter 5 presents the first article entitled "Automatic self-gated 4D-MRI construction
from free-breathing 2D acquisitions applied on liver images", published by the International
Journal of Computer Assisted Radiology and Surgery. It presents an automatic weighted
graph-based method designed for volume reconstruction from navigator-less cine acquisi-
tions. Chapter 6 presents the second article entitled "Predictive online 3D target tracking
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with population-based generative networks for image-guided radiotherapy", which was pub-
lished by the International Journal of Computer Assisted Radiology and Surgery. This paper
presents the first population-based deep motion model reported in the literature. Chapter 7
presents the third article entitled "Probabilistic 4D predictive model from in-room surro-
gates using conditional generative networks for image-guided radiotherapy" published by the
Medical Image Analysis journal. This paper describes a probabilistic formulation of the mo-
tion modelling task and demonstrates its use both in population-based and subject-specific
conditions. Chapter 8 introduces the fourth article entitled "Prediction of in-plane organ
deformation during free-breathing radiotherapy via discriminative spatial transformer net-
works", which was published by the Medical Image Analysis journal. It describes a multi-scale
framework for in-plane motion prediction and tracking. Additionally, Chapter 9 presents an
attention-based model to predict future representations from an input image sequence and
explains the integration of a tracker module to refine motion fields in a given region of inter-
est. Chapter 10 discusses the benefits brought by each development to the motion modelling
community and the clinical considerations. Finally, Chapter 11 summarizes the findings,
limitations, and suggested avenues for future work.
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CHAPTER 2 BACKGROUND

In this chapter we provide background information related to the research topic. First,
we will explain the physiology of the respiratory motion, the bio-mechanics involved in the
process, and the methods for motion estimation in medical images. Then, we will introduce
the process of external beam radiation therapy, which is the treatment modality that this
research is focusing on. Furthermore, we will describe the classical techniques used for motion
management during treatment. Finally, we will present its more recent technology, i.e., the
image-guided radiation therapy and the current commercially available clinical systems.

2.1 Physiology of respiratory motion

Respiration is a vital process of the human body where there is an exchange of the gases oxy-
gen and carbon dioxide. This exchange is accomplished by the quasi-periodic, bio-mechanical
process of breathing. It consists of an inhalation phase, during which oxygen-rich air flows
into the lungs, followed by an exhalation phase, during which carbon dioxide is expelled
from the lungs to outside. The combined actions of inspiration and expiration constitute the
respiratory cycle. For a healthy adult at rest, the typical respiratory rate is 12–16 breaths
per minute [23]. Moreover, it is an involuntary action since a person would continue to
breathe despite being unconscious. Nonetheless, individuals are capable of controlling the
frequency and magnitude of their respiration, as well as breath-holds, to a limited extent.
Unlike cardiac motion, the respiratory motion is not rhythmic and irregular [22].

The inhalation and expulsion of air are aided by the movement of the diaphragm, a dome-
shaped muscle attached to the inferior end of the lung that separates the thorax and abdomen.
The pressure and volume within the lungs can be changed by the motion of the diaphragm
and the ribs. During inhalation, the diaphragm contracts and pushes the contents of the
abdomen in inferior direction while the volume of the lungs expands. Simultaneously, the
external intercostal muscles also participate in the inhalation process. They expand the rib
cage and raise the ribs upward and outward, thereby increasing the volume of the thoracic
cavity. This allows air to enter the lungs, where gas exchange takes place between blood and
oxygen within the capillaries [24]. During expiration, the events are opposite of those involved
in the inspiration. The diaphragm and external intercostals muscles relax and return to their
original position. As a result, the thoracic volume is decreased, the intrapulmonic pressure is
forced out of the lungs, and the abdominal organs move in superior direction again. Figure 2.1
depicts the respiratory motion of the thorax for inhalation and exhalation. This type of
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Figure 2.1 Mechanics of the respiratory motion during inhalation and exhalation within the
thorax. Source [1]

breathing, which is mainly caused by the diaphragm contraction, is known as abdominal
breathing. Other forms of breathing include the costal breathing, which is a rare type that
occurs when negative intrapulmonary pressure is primarily achieved by contraction of the
external intercostal muscle. A comprehensive overview about the physiology of respiratory
motion can be found in [25].

2.1.1 Abdominal motion observations

The breathing process also affects other organs beyond the lungs, which are not directly
involved in the respiration. For instance, the liver, esophagus, pancreas, breast, prostate,
and kidneys, among other organs, are known to undergo a complex mixture of motion and
deformation during free breathing. According to a report presented by the American Asso-
ciation of Physicists in Medicine (AAPM) [22], the average superior inferior (SI) motion for
abdominal organs ranges between 10 mm and 25 mm. In the anterior posterior (AP) and
left right (LR) motion planes the mean motion is less than 2 mm. These values can vary de-
pending on the specific organ. For instance, in the liver, the SI shift ranges from 5 to 25 mm
during relaxed breathing. Additionally, motion amplitudes in the AP and LR directions vary
between 1 - 12 mm and 1 - 3 mm, respectively [11]. Furthermore, this motion is comprised
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by complex non-rigid deformations and influenced by drifts or even irregular displacements
due cardiac motion, bladder filling, moving gases in the digestive tract, etc. [26].

2.1.2 Variability of the respiratory motion

In the literature, two types of breathing variation are distinguished: inter and intra cycle.
The first describes the variation between different breathing cycles. Figures 2.2 (a) and (b)
show SI motion amplitudes during several respiratory cycles. The first example corresponds
to a regular breathing pattern with small variations in frequency and magnitude. In contrast,
the second example, obtained from a different subject, shows irregularities in the amplitude,
frequency, and shape of the breathing trajectory. It can be caused by intermittent deep and
shallow breathing, coughing, emotional changes, among other factors. Therefore, depending
on the subject and certain conditions, the inter-cycle variability may become non-negligible.

The other type of variation occurs within a single breathing cycle. For instance, one particular
type of intra-cycle variation is the different trajectory during inhalation and exhalation. This
is called hysteresis and has been described in several studies both for tumors in the liver and
lungs [26]. A difference of up to 5 mm between both trajectories (inhalation and exhalation)
was reported in [27]. Figure 2.2 (c) shows the typical elliptic trajectory of a liver landmark

Figure 2.2 Superior-inferior and anterior-posterior motion of an exemplary point in the liver.
In this sagittal view the trajectory over 20 breathing cycles exhibits hysteresis between in-
halation and exhalation. Source [2]
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(near the diaphragm) in the sagittal plane. In the field of radiotherapy and medical imaging,
intra and inter fraction variations are the differences of motion that can be observed within
one fraction and among different fractions (typically over days or weeks), respectively. These
variations must be taken into account to ensure an accurate treatment delivery and/or an
effective imaging.

2.2 Motion estimation via image registration

The goal of image registration is to align images acquired from different imaging modalities,
times or subjects. Therefore, it is useful to fuse complementary information from multimodal
imaging sources, to observe changes over time, or to compare the anatomy between subjects.
The basic idea is to find the spatial transformation to be applied to the source image so that
it is aligned with the target image. This can be found in several applications and tasks such
as motion tracking, segmentation, image reconstruction, dose accumulation in EBRT, among
others [28].

Generally, an algorithm for image registration involves three main components: (1) the trans-
formation model, which defines the type of motion that is expected between the images, (2)
a similarity measure, which quantifies the degree of alignment of the two images, and (3)
an optimization method to find the transformation that yields the best alignment accord-
ing to the similarity measure. The deformation model is determined based on the motion
properties of the anatomy to register. In general, it can be classified as rigid and non-rigid.
Rigid deformations are suitable for rigid objects whose movements are restricted to rotation
and translation. On the other hand, non-rigid transformations constitute a large family of
mappings and are suitable for describing the deformable motion of soft-tissue organs like the
liver. The deformation is typically constrained by a regularization term that aims at favor
specific properties in the solution. It also seeks to alleviate the difficulty associated with the
ill-posedness of the problem.

Many different deformation models have been used for building motion models. Among
the most commons we can cite: free-form deformations [13, 29–34], optical flow [35, 36],
demons [37], biomechanical-constrained [14, 38, 39] and locally affine deformations [12, 40].
Certainly, the field of medical image registration continues to evolve rapidly. Recent efforts
have been focused on using deep learning based methods, which have achieved state-of-art
performances in many applications [41, 42]. Comprehensive reviews on deformable medical
image registration using both traditional and deep learning techniques can be found in [43]
and [28].
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2.3 External beam radiation therapy

External beam radiation therapy (EBRT) is a common modality used to treat cancer, in
which a machine directs a beam of ionising radiation through the skin to a specific part of
the body where the tumor is located. The radiation beam destroys the deoxyribonucleic acid
(DNA) of the malignant cells leading to cellular death using either photons (gamma-rays or x-
rays), charged particles (electrons, protons or heavy ions) or uncharged particles (neutrons).
These particles interact with all the tissue, including the healthy, depositing varying levels of
energy as they pass through the body. Therefore, the goal is to deliver the prescription dose
inside the target volume without exceeding the tolerance for the dose in normal tissues.

2.3.1 Respiratory motion management in radiotherapy

The motion induced by the patient’s free breathing is a limiting factor during image acquisi-
tion and image-guided interventions at certain anatomical sites. During image acquisition, it
can cause image artifacts thus limiting their practical utility [44]. In the context of radiation
therapy, these artifacts cause distortion of the target volume and thus in the delineation of
margins. Moreover, during treatment, it can produce a misalignment between the radiation
beam and the moving anatomy, thereby reducing its effectiveness.

Several solutions have been proposed to reduce the impact of respiratory motion during
imaging and image-guided interventions. The goal is to keep the radiation beam aligned
with the target area throughout the procedure. According to [45], they can be classified into
two categories: non-adaptive methods and real-time adaptive motion compensation. The
former includes techniques such as using large Planning Treatment Volume (PTV) margins,
abdominal compression, breath-hold, and respiratory gating. Motion encompassing methods
establish large margins to cover the whole range of tumor motion. However, this increases
the exposure of healthy tissues to high doses of radiation, which is undesired. Forced shallow
breathing using a stereotactic body frame is an alternative method based on reducing the
extent of breathing while still permitting limited normal respiration [22,46]. Intra-treatment
images are essential to verify the tumor position considering the difficult reproducibility to
place the compression device. Another straightforward approach is the breath-holding. In
this case, the acquisition/intervention time is limited to less than 30 seconds. Some subjects
are even not able to tolerate the breath-hold procedure [22]. Respiratory gating involves only
acquisition/treatment during a limited portion of the respiratory cycle (e.g. end-exhalation).
However, this will significantly prolong the treatment time.

Another alternative to manage respiratory motion is to move or shape the radiation beam
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Figure 2.3 External optical device used by the Synchrony system to provide a breathing
signal. Three markers, whose positions reflect the chest wall position, are attached with
Velcro to a vest that the patient wears during treatment. Source [3]

dynamically as the tumor moves [3]. In this approach, known as real-time adaptive tracking,
the accuracy of the dose delivery will depend on the system adapting to the moving target
anatomy. Generally, the tracking methods are driven by some kind of surrogate signal to
estimate the organ position. The surrogates are also referred as partial observations and can
be acquired externally or internally [47]. Respiration belts and optical devices that measure
the displacement of the abdominal skin are examples of external surrogate signals. For
instance, in the CyberKnife Synchrony EBRT system, surrogates are acquired by measuring
the displacement of the patient’s abdomen or chest using optical devices (see Figure 2.3). In
addition, fiducial markers are often implanted into the region of interest and tracked using
an imaging device such as x-ray. This system relies in the creation of a correspondence model
between the respiratory surrogate signals and the observed tumor motion.

Although the external surrogates can provide signals with high temporal resolution, in many
cases there may be a low correlation with the internal organ motion either due to organ drift
or varying motion patterns at different positions of the organ [24, 47]. Therefore, in clinical
practice, the external surrogate is combined with low-frequency kV imaging. This allows the
training and update of the correlation models, while controlling the non-therapeutic ionizing
dose with respect to high-frequency fluoroscopy [48].
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2.3.2 Respiratory motion models

Because of the limitations and drawbacks of the aforementioned techniques, there has been
significant interest in the development of models for organ motion compensation during free
breathing. Such models attempt to model the relationship between the motion of the organ
of interest and some surrogate data. Moreover, this relationship can be used to predict future
motion [49]. Generally, motion models are used when it is not possible or practical to directly
measure the actual motion of interest with sufficient temporal resolution during the intended
procedure.

In the literature, sometimes the terms estimation and prediction are used indistinctly. How-
ever, it is important to emphasize the distinction between the estimation of current motion
and the ability to forecast future spatiotemporal displacements based on current and/or past
observations. Throughout this thesis we focus rather in the later aspect, i.e. in the motion
prediction, since the 4D information generated at a frequency compatible with real time ap-
plications can ultimately be integrated in a therapy planning system to improve the tumor
targeting.

As stated in [50], a predictive model typically presents the following characteristics. First,
its parameters should be easily adjustable to work with new subjects. Secondly, it should be
robust enough for irregular motion signals, and adapt to the new breathing patterns as time
evolves. Finally, it requires to quickly recover after noisy signals, such as a patient coughing.
A wide variety of motion models have been proposed over the last decade mainly for lungs
and liver. A comprehensive review about the current state-of-the-art is presented in section
3.3.

2.4 Image-guided radiotherapy

Image guidance during radiotherapy planning and treatment delivery provides essential infor-
mation on target and organ locations, as well as decreases geometrical uncertainties caused by
setup, breathing motion, dose-response changes, among other factors [51]. Although CBCT
is the clinical standard for IGRT, the poor soft-tissue contrast and the additional ionizing
dose remain as drawbacks. Ultrasound is an alternative non-ionising modality that offers high
temporal resolution. However, some tumors are not visible and it completely fails for any-
thing hidden behind absorbing structures like the ribs or inside the lung. Magnetic resonance
imaging possesses superb contrast, radiation-free imaging and high temporal resolution with
fast sequences [4]. Therefore, there have been significant research and commercial efforts to
integrate this imaging modality into the treatment delivery devices.
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Current technologies integrating MRI-guidance enable online adaptive radiotherapy delivery
and imaging simultaneously. This allows a continuous visualization of target structures and
surrounding organs while the treatment is being delivered. In consequence, it provides higher
treatment accuracy and improved clinical outcomes. Moreover, it reduces toxicities by sparing
healthy tissue. Finally, it enables efficient workflows by providing the total dose in fewer
treatment sessions, which is known as hypofractionation. These features are expected to
deliver real health benefits for patients, including better disease control with fewer side effects
[52].

2.4.1 Clinical systems

Viewray MRIdian and the Elekta-Unity are two in-room MRI-guidance systems developed by
commercial entities that are approved and used for treating patients (see Figure 2.4(A)). The
ViewRay was the first commercial system enabling simultaneous MR imaging and a range of
external-beam radiation therapy options at the same isocenter [53]. The first treatments with
this unit were performed in 2014 [54] whereas the first treatment using the Elekta-Unity was
reported in 2017 [55]. As illustrated in Figure 2.4 (B), both systems may use perpendicular
or in-line configurations. In the latter case, the treatment beam is oriented perpendicular
to the magnetic field. Thus, the SI axis of the patient is aligned with the magnetic field,
and the linear accelerator can rotate independently of the magnet and patient. A drawback
of this approach is that magnetic fields applied perpendicularly to the radiation beams can
affect dose deposition compared to the zero field situation, particularly for higher fields.
Alternatively, the magnetic field can be parallel to the radiation beams. This could minimize
the effect of the magnetic field on the dose distribution. Nonetheless, it can also cause
problems in certain cases. For instance, it may increase the skin dose up to 1400% [56]. This
problem can be mitigated either through optimisation of the magnetic fringe field or electron
purging devices [4, 56].

Overall, Viewray MRIdian consists of 3 main components. First, a a vertically gapped
horizontal solenoidal superconducting 0.35 Tesla whole-body MRI. Second, the radiation de-
livery system, which is a robotic 3-headed 60Co system yielding a dose rate of 550 cGy/min.
Treatment monitoring is carried-out by tracking structures which are observed in fast planar
images. Specifically, with a sagittal plane at 4 frames-per-second (FPS) or with 3 parallel
sagittal planes at 2 FPS using real-time non-rigid registration–based beam control. There-
fore, radiation beams are only enabled if the tracked region is located within the prescribed
boundary with approximately 300 ms latency. Third, the adaptive RT treatment-planning
system. It is an integrated software dedicated for autocontouring, Monte Carlo dose compu-



14

Figure 2.4 (A) Clinical systems for IGRT: Elekta-Unity MRI-linac and ViewRay MRIdian.
(B) Typical configurations used for MRI-linac construction. Source [4]

tation, and conformal radiation planning. All these processes can be done within 30 seconds
based on the volumetric image of the day [53]. Similarly, the Unity MR-Linac integrates a
1.5 T Philips Achieva MRI scanner with diagnostic imaging quality and a 6 MV linear ac-
celerator. Its construction was a joint effort between the University Medical Center Utrecht,
Elekta and Philips.
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CHAPTER 3 LITERATURE REVIEW

3.1 4D imaging of respiratory motion

Dynamic 3D imaging, also termed as 4D imaging, is crucial to quantify organ displacements
and assess their mechanical functions. This has found applications in the study of diseases,
treatment planning and radiation therapy [57]. The literature distinguishes two types of
4D datasets. The term respiratory-correlated 4D MRI, is used to indicate the three spatial
dimensions and the respiratory phase. In contrast to time-resolved 4D images, the fourth
dimension refers to time. Respiration-correlated four-dimensional X-ray computed tomogra-
phy (4D-CT) was first described in 2003 [58]. Currently, it is the clinical standard for the
radiation therapy workflow in the presence of respiratory motion. It allows physicians to de-
termine the internal target volume (ITV), which is derived from the union of target volumes
through the entire respiratory cycle. This information is the basis to assess 3D tumor motion
and subsequently estimate the dose [59].

In 4D-CT, images are acquired and averaged over several breathing cycles. Since it is re-
quired to know the point in the respiratory cycle to which each projection corresponds, the
respiratory motion is recorded using a monitoring device (e.g., a belt or an infrared (IR)
marker placed on the thorax). Respiratory sorting is then performed retrospectively by cor-
relating each projection with a point in the respiratory cycle. A prospective approach is
another alternative that consists of acquiring projections at a defined point in the respiratory
cycle [60–62].

The retrospective approach is much simpler since it does not require a real-time detection of
the breathing state or extensive changes in the scanner software. It is based on gathering as
many dynamic images as possible to cover all the possible states. Subsequently, the images
are sorted based on their respiratory state. For instance, in respiratory correlated 4D CT
datasets, the respiratory cycle is divided into bins (typically 10 bins) and the images are
sorted according to them. Each bin is then reconstructed into a 3D dataset [58]. The bins
can be determined according to the phase or the amplitude of the signal acquired by the
sensors. In phase-based binning, the bins are determined by their temporal relationship to
the cycle, whereas in amplitude-based binning they are determined by the amplitude of the
corresponding breathing signal, which correlates with the amplitude of the diaphragm motion.
Although both variants present advantages, the amplitude-based binning is more accurate
than its counterpart [63]. On the other hand, there are some artifacts that commonly affect
the 4D-CT datasets such as blurring, duplicate, overlapping and incomplete structures [44].
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Overall, the main drawback of 4D-CT is the use of ionizing radiation and the low contrast.
In certain cases, the contrast may be insufficient for tumor delineation in the abdomen.

As an alternative modality, Magnetic Resonance Imaging is able to capture both anatomical
and functional information. Furthermore, its high flexibility in image acquisition strategy
allows excellent soft-tissue contrast with a clear distinction between tumorous tissue and or-
gans at risk (OARs). Besides, it involves no radiation. For these reasons, its use in radiation
therapy has increased considerably over the past decade. MRI aids in the delineation process,
informs about functional parameters, and can be used to assess treatment response. Func-
tional imaging, such as diffusion weighted imaging and dynamic contrast enhanced imaging,
has been used successfully to discriminate between healthy and tumorous tissue. Unfortu-
nately, currently there is no 4D technology implemented in the MRI scanners. To fill this gap,
several approaches have been proposed to generate 4D-MRI datasets, which can be divided
in two categories: multi-slice 2D acquisitions and 3D acquisitions [64].

3.1.1 Multi-slice 2D acquisitions

Multi-slice 2D acquisitions acquire the data on a slice-by-slice basis throughout the anatomy
of interest. Moreover, the slices are acquired over several respiratory cycles with sufficient
temporal resolution. Subsequently, the temporal images are retrospectively sorted according
to the respiratory phase which is informed by navigator signals, also termed as surrogates.
The surrogate signals are crucial for the subsequent slice reordering since they allow to con-
struct dynamic volumes with a temporal consistency. They can be acquired either externally
or internally.

Respiratory belts and optical tracking devices are some examples of external surrogates [65–
67]. Remmert et al. [65] used an optical device as part of their 4D imaging strategy to measure
the displacement of a dynamic porcine lung phantom. On the other hand, Tryggestad et
al. [66] employed a belt placed around the subjects’ upper abdomen to digitally encode the
respiratory trace at a 50 Hz sampling rate. Liu et al. [67] used a similar external breathing
monitoring device to guide the retrospective sorting. Nevertheless, these external surrogates
are known to have low correlation with the internal organ motion [47], particularly in cases
with irregular breathing, which causes artifacts in the sorted 4D images. In contrast, internal
surrogates are often more reliable. The MR navigator echo is one of the most commonly
used surrogate data. It is based on exciting a small column of magnetisation to measure the
position of a region of tissue over time [47]. This approach was followed in [60] and [34] to
monitor the respiratory-induced shifting of the liver and diaphragm.

Many sorting methods, whether based on external or internal surrogates, make strong as-
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(a) Unaligned embeddings (b) Aligned embeddings

Figure 3.1 Unaligned and aligned embeddings for two slice positions of one volunteer. (a)
Embedding as obtained directly from Locally Linear Embedding without alignment. (b) Em-
bedding after the alignment where nearby points correspond to similar respiratory positions.
Source [5]

sumptions about the regularity of the respiratory motion and represent it with 1D signals.
Von Siebenthal et al. [2] argued that parameterizing respiratory motion with one parameter
neglects all residual variability and may be a coarse approximation in some cases. Hence,
they proposed an interleaved scheme to acquire 2D navigator frames at a fixed anatomical
position and data frames covering the imaged volume. Slice reordering was then based on
assessing the similarity between 2D navigators since the respiratory state at each image slice
was defined by its adjacent navigator slices. The main drawback of internal navigators is
that they tend to decrease the temporal resolution of the actual acquisitions. Moreover, they
may also increase the overall acquisition time [68].

Another alternative is to derive the respiratory trace using features contained in the captured
images, which is known as self-sorting, self-navigation or self-guidance. Slice reordering
techniques that do not rely on external or internal surrogate signals can be grouped into
two main categories: machine learning [5, 69–74] and slice feature extraction-based methods
[6, 57, 68, 75–80]. Manifold learning (ML) is a machine learning based technique that has
shown to be useful in the analysis of motion in medical datasets [71]. In the context of
slice reordering, this powerful tool has been employed to map dynamic slices from different
anatomical positions into a low-dimensional space according to their respiratory phases. Some
methods used to create such representation include Isomap, Locally Linear Embedding (LLE)
and Laplacian Eigenmaps (LE). Before the actual slice stacking to construct the temporal
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volumes, the manifolds yielded at different anatomical positions are all combined within one
single globally consistent embedding using Manifold Alignment (MA) techniques. Figures 3.1
(a) and (b) show the low-dimensional space before and after the alignment, respectively.

Baumgartner et al. [71] addressed the alignment of multiple manifolds obtained using LLE
by overlapping groups of two. They also proposed a sparsification technique for the Gaus-
sian inter-dataset similarity kernel calculation. Later, the authors extended their work [5]
by adding a registration-based inter-dataset kernel, which incorporated knowledge of the
approximate relations between adjacent slice positions. Moreover, in [72] the mathematical
formulation of LLE was extended to simultaneously embed more than two datasets. The
authors tackled the similarity kernel choice problem by introducing a random walk-based
graph matching technique, which was used to determine such kernel. The advantage of that
proposal was the global alignment of the data without prior correspondences nor comparisons
between the high-dimensional data. Clough et al. [73] achieved state-of-the-art performance
over the former method by introducing a novel graph-based descriptor. The main limitation
of MA-based techniques is that they commonly makes assumptions about the regularity of
the respiratory motion. However, there is a non-negligible residual variability that makes
data discrimination difficult.

In feature extraction based methods, the derivation of a reliable respiratory signal from the
acquired images is used to optimize the reordering process. Some prior works has proposed
to monitor the body area to represent the breathing signal, as it typically correlates with
the breathing motion [6, 76, 77] (see Figure 3.2). For instance, in [6] and [76], 2D dynamic
axial images were employed for the reordering process. Nevertheless, axial planes are rarely
used since abdominal motion is better appreciated in the sagittal and coronal planes. Liu
et al. [77] demonstrated that sagittal slices yield more accurate 3D volume reconstructions.
However, changes of body area are prone to be affected by space-dependent phase shifts.

On the other hand, some techniques compute the image similarity between contiguous slices
relying on different metrics. For instance, the approaches presented in [75] and [78] are
based on calculating the mutual information between slices. Unfortunately, slice reordering
methods based exclusively on imaging data may not guarantee adequate temporal behavior.
Alternatively, Uh et al. [79] proposed to obtain internal surrogates by applying dimensionality
reduction on the dynamic slices. Specifically, they used principal component analysis to do
the mapping to the low-dimensional space. However, the low-dimensional representation of
the images does not always proportionally change with respiratory motion. This could be a
limitation in this approach.

Another group of methods introduce several intermediate steps such as segmentation and
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Figure 3.2 Workflow of extracting breathing signals from presorted 4D-CT images using
the body area (BA) method. (a) Axial images were acquired continuously throughout the
breathing cycle. (b) Body area (white area) was determined for each image. In practice,
only the middle section of the image (grey area) was used for body area calculation. (c)
For each image slice, an individual breathing curve was generated by plotting the body area
as a function of image acquisition time. (d) The complete breathing signal is generated
by plotting all individual breathing curves as a function of acquisition time. Gaps between
individual breathing curves are due to couch movements during the 4D-CT scans [6].

registration to derive the respiratory trace [57,68,80,81]. The methodology proposed by [68]
first computes a median intensity image from all the coronal dynamics at certain anatomical
position. Then, the center of the liver dome is detected relying on a previous lung seg-
mentation. Subsequently, the dynamic slices are rigidly registered to the median intensity
image, which results in N shifts per slice position (N is the number of temporal slices). The
set of shifts are filtered and normalized before obtaining the final self-sorting signal, which
was divided into 10 bins for the sorting purpose. Tong et al. [57] proposed to construct a
weighted graph and to reconstruct volumes following the shortest path. The first step is
the identification of a reference image at each anatomical position. This process was done
manually, which is impractical. Similarly to [68], this method relies on a lung segmentation.
Thus it is limited to sequences where lungs are entirely visible. Recently, Hao et al. [82]
proposed a similar technique where the breathing signal is determined based on the optical
flow computed in the image time series.
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3.1.2 3D acquisitions

In recent years, the number of 4D imaging approaches based on 3D acquisitions has in-
creased. The 3D readout trajectories include non-Cartesian [59, 83–85], Cartesian [86, 87],
and hybrid readouts [88–92]. A standard 3D readout takes multiple respiratory cycles to
collect. Therefore, the acquired data is often sorted in the k-space before image recon-
struction [64]. Cartesian readouts include the rotating Cartesian k-space (ROCK) trajectory
introduced by Han et al. [86] and the compressed sensing partial subsampling (ESPReSSO)
scheme by Küstner et al. [87].

The 3D non-Cartesian readout consists of a large number of radial projections with different
polar and azimuthal angles. Sampling the k-space with the so called "golden-angle" fills the
2D k-space with radial spokes that have a relatively uniform angular distribution for any
time interval. Chan et al. [93] extended this concept to the 3D space by introducing the
concept of multidimensional golden means. They obtain a uniform distribution of sampled
lines throughout the acquisition. This strategy achieves very high undersampling factors
with benign (incoherent) image artifacts making it suitable for compressed sensing image
acceleration. It is also very robust since the center of k-space is sampled by each line [64].
Deng et al. [59] proposed a radial readout of the k-space using the 2D golden means ordering
and self-gating motion surrogate. This scheme yielded respiratory-resolved 3D volumes with
isotropic high spatial resolution and an arbitrary number of temporal phases. Generally, the
reconstruction of non-Cartesian readouts involves a 3D gridding step, which is computation-
ally expensive. Also, oversampling the center of k-space requires time, which reduces the
efficiency of the readout [64].

Hybrid readouts (radial-Cartesian) attempt to mitigate the aforementioned shortcomings.
Buerger et al. [88] proposed a 3D acquisition with golden angle ordering in the phase-partition
(ky–kz) plane followed by k-space sorting. The golden-radial phase encoding technique
achieves high isotropic spatial resolution. Furthermore, it is robust to irregular breathing
since it retrospective sorts the data in the k-space. Alternatively, some authors uses the
radial stack-of-stars (SoS) technique [89–92, 94–96], where the k-space is sampled along a
radial pattern in two dimensions while the third is sampled on a Cartesian grid. Stemkens et
al. [92] combined a SoS acquisition with a compress sensing based reconstruction, called XD-
GRASP [97,98], to reconstruct both a DCE time series and a respiratory-correlated 4D-MRI.
The combination of both techniques showed to minimize motion artifacts and to generate
a respiratory-correlated 4D-MRI within a few minutes. Since a reliable respiratory signal
can be obtained directly from the raw k-space data, the self-navigation property is one of its
advantages.
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Recent approaches have attempted to directly generate real-time volumetric images [99] or
motion fields [100]. Feng et al. [99] proposed a real-time 3D MRI technique called MR
SIGnature MAtching (MRSIGMA). It consists of two steps. First, an offline (non-real-time)
step seeks to learn the possible 3D motion states and their association with motion signatures.
A 3D readout based on golden-angle stack-of-stars was employed. The second step, which is
performed online, matches real-time acquired motion signatures with the prelearned motion
states. The main limitation is the adaptation to organ drifts and patient movement. On the
other hand, Huttinga et al. [100] described a preliminary study aimed at recovering 3D motion
fields directly from k-space data. Experimental results showcased plausible deformations
with a predictive horizon of 170 ms on 5 subjects. Although this technique showed promising
results, it requires further validation.

3.2 Image-based temporal prediction

The ability to forecast, anticipate and reason about future outcomes is a key component
of computer-aided decision-making systems. With the great success of deep learning in
computer vision, deep-learning-based video prediction have turned out a wide research area
[8, 101–104]. Furthermore, future prediction have found applications in multiples tasks such
as anticipating events [105,106], long-term planning [107], predicting instance/semantic seg-
mentation maps [108, 109], autonomous driving [110], anomaly detection [111] and weather
forecasting [112]. Also, this area converges with other related tasks such as missing frame
interpolation [101,113], action recognition [9], future trajectory prediction [114], amongst oth-
ers. In the context of learning paradigms, video prediction can be defined as a self-supervised
learning task as target frames are already available in the video sequence during training.
Therefore, no extra labels or human supervision is needed [104].

Generally, deep architectures for video prediction are composed by an encoder, which extracts
representations of prior frames, and a decoder, which generates future frames based on the
extracted representations. This is quite common to all the models. On the other hand, there
are distinctive elements in terms of the strategies for information processing, stochasticity, etc.
In sections 3.2.2, 3.2.3, 3.2.4 and 3.2.5 we follow a similar taxonomy as in [104]. Nonetheless,
it should be noted that these categories are not mutually excluding since a model could
contain a combination of approaches. Besides, the terms video prediction, future frame
prediction, future frame forecasting, and future frame generation are used interchangeably
throughout the section.
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3.2.1 Backbone deep learning architectures

Several deep networks have been used as core components for video prediction models,
namely, recurrent neural networks, convolutional neural networks, and generative models.
Recently, attention-based mechanisms, such as the so-called Transformer [7], emerged as a
promising solution for computer vision tasks.

Recurrent neural networks

Recurrent neural networks (RNNs) are a type of neural network where connections between
nodes form a directed graph along a temporal sequence allows information to persist. They
can use their internal state (memory) to process variable sequence lengths from the inputs,
which make them applicable for temporal data. Therefore, they have prevailed in many works
for video prediction due to their flexibility for temporal information modeling. For instance,
Ranzato et al. [115] proposed a model based on RNNs, making short-term predictions at the
patch level. They divided video frames in patch clusters using k-means. A downside of this
method is that results suffer of a tilling effect.

Vanilla RNNs present some limitations when dealing with long-term sequences due to the
vanishing gradient issue. These shortcomings were mitigated with the introduction of more
sophisticated models, such as Long Short-Term Memory (LSTM) [116] and Gated Recurrent
Unit (GRU) [117]. The LSTM introduced the cell state, where information is added or
removed according to gates. The GRU is a variant of the LSTM using less gates. Shi
et al. [112] extended the point-wise computation performed within the LSTM to the two-
dimensional space by adding the convolution operation. They applied their Convolutional
LSTM (ConvLSTM) to precipitation nowcasting from radar images.

Wei et al. [118] proposed a predictive model that exploits spatial-temporal appearance infor-
mation of previous frames and the inter-frame optical flow information to predict the next
frame. Their model receives RGB frames observed at several time steps and correspond-
ing optical flow maps into a two separate input streams composed by convolutional layers.
The feature representation extracted by those layers were concatenated and fed to a stack
of ConvLSTM to produce the RGB image for the next time step. Romaguera et al. [119]
proposed a multi-scale feature extraction approach before the ConvLSTM units to predict
future in-plane organ deformations in medical image sequences.



23

Convolutional neural networks

Although RNNs such as LSTM and Gated Recurrent Units (GRU) have been the core com-
ponent of many of these models, other works relying exclusively on feed-forward convolu-
tional networks have also been proposed. Walker et al. [120] were presented a convolutional
neural network to predict dense optical flow given a static image. Yumer et al. [121] intro-
duced an end-to-end solution using a volumetric convolutional neural network that learned
three-dimensional deformation flows. The authors proposed an architecture which took the
voxelized representation of a given shape and a semantic deformation intention as input to
generate a deformation flow at the output.

Watters et al. [122] introduced a convolutional neural network for learning the dynamics of
a physical system from raw visual observations. Specifically, their model was composed of a
visual encoder, a dynamics predictor and a state decoder. The visual encoder took a triplet
of frames as input and yielded a state code which is a list of vectors, one for each object in
the scene. Each of these vectors contained a distributed representation of the position and
velocity of its corresponding object. Then, the dynamics predictor processed the sequence of
state codes to predict a candidate state code for the next frame. Finally, the state decoder
converted a state code to a physical state. In this was, they were able to infer the physical
states of multiple objects and make accurate predictions about their future trajectories.

Generative models

Variational autoencoders (VAE) and generative adversarial networks (GANs) are two popular
generative models that have been used as a backbone for future frame prediction. Generative
models learn the underlying distribution of each class, i.e. they capture the joint probability
p(x, y) or p(x) in the absence of labels y. Moreover, given some training data, they generate
new samples from the same distribution. Given input data ∼ pdata(x) and generated samples
∼ pmodel(x) where, pdata and pmodel are the underlying input data and model’s probability
distribution respectively. The training process consists in learning a pmodel(x) similar to
pdata(x) [104]. For VAE, this is done explicitly while in GANs, it is performed implicitly by
estimating a density function from the input data. The probabilistic nature of these models
have been leveraged to cope with future uncertainty by generating a set of feasible predictions
rather than a single outcome [104]. Since generative models have a stochastic component,
the state-of-the-art on this category will be approached in Section 3.2.5.
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Dot-product multi-head attention (Transformer model)

Until a few years ago, recurrent networks used to be the prevalent solution for natural lan-
guage processing (NLP). In 2017, Vaswani et al. [7] proposed a predictive model relying
exclusively on dot-production attention. This means no convolutions nor recurrence was in-
volved in the computations. This attention mechanism have shown to outperform the RNNs
while introducing several advantages, namely, it helps to solve the vanishing gradient and
bottleneck problems. Moreover, it increases the model interpretability. In contrast to RNNs,
which process sequences recursively, Transformer can attend to complete sequences thereby
learning long-range relationships and can be easily parallelized [123].

The Transformer model is composed by a stack of N encoders and N decoders (see Figure
3.3). Since the encoder receives the entire input sequence at once, there is no information
about the ordering of each token. Therefore, positional encodings are added to the input
embeddings to determine the position of each word. Each encoder block is comprised of a
multi-head attention layer and a feed-forward (FF) layer. Also, residual connections and

Multi-head attention Scaled dot-product 
attention

Figure 3.3 Transformer model. Source [7]
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normalization are applied around these two sub-layers.

The key concept behind Transformers is the scaled dot-product attention mechanism, where
the input is linearly projected to a set of queries Q ∈ Rnq×dq , keys K ∈ Rnk×dk , and values
V ∈ Rnv×dv . The vector dimensionality dq equals to dk, the number of keys nk equals to the
number of values nv. As illustrated in the rightmost part of Figure 3.3, the output of the
attention layer is given by computing the weighted sum of the values, where attention scores
S ∈ Rnq×nk are calculated from the queries and key as follows:

A(Q,K, V ) = Softmax (S)V = Softmax

(
QKT

√
dk

)
V (3.1)

where the Softmax function is used to normalize the scaled dot-product attention scores.

The attention score determines how much focus to place on other parts of the input sentence
when encoding a word at a certain position. The decoder also contains a multi-head attention
layer to compute the self-attention between the decoder’s inputs and a FF layer, but between
them there is an additional attention layer. This layer computes a cross-attention between
the decoder’s inputs and encoder’s outputs. Specifically, the K−V pairs come from encoder,
while Q is derived by multi-head self-attention from the target language sentence (decoder’s
inputs). Thus, it helps the decoder to focus on relevant parts of the input sentence to generate
the target sentence.

The success shown by Transformers in NLP tasks [124,125] has sparked great interest in the
computer vision field [126–128]. A comprehensive survey about Transformers for computer
vision can be found in [123]. Girdhar et al. [129] introduced the Action Transformer model
for localizing and recognizing human actions in video clips. They use a stack of convolutional
layers as backbone to extract spatiotemporal features. Then the bounding boxes from a region
proposal network, which localize people performing actions, are mapped into queries. Also,
the clip around the person being analyzed is projected into key and values. Hence, the action
recognition task was adapted to the key concepts of the Transformer architecture. The idea
of using a convolutional backbone before the actual Transformer has been applied in related
works to obtain a compact feature representation [127, 128]. Carion et al. [127] developed
an object detection model based on Transformers, which simplified the traditional detection
pipeline and achieved on par performance compared with SOTA detectors. A similar model,
inspired on this work, was proposed for instance segmentation [128].
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3.2.2 Disentangling vs. non-disentangling approaches

Depending on the strategy used to encode visual representations of the observed images,
future frame prediction can be classified into non-disentangling and disentangling approaches.
The former case refers whenever the encoder generates visual representations from the input
frames thereby capturing spatiotemporal information using RNNs or other predictor. In this
case, it is assumed that these representations contain the necessary information to make the
predictions [130–134].

Alternatively, other approaches learn a disentangled representation from image sequences,
i.e., they decompose the video into different components [8, 135–139]. Prior works in this
direction have focused on predicting high-level semantics in a video such as action [140],
events [141] and motion [142]. Villegas et al. [135] factorized the frames into a stationary
part and a temporally varying component representing content and motion, respectively.
This was performed using both a motion encoder and a content encoder (see Figure 3.4).
The former assumes that dynamic features are captured by the difference images of two
adjacent past frames. Thus, it aggregates the dynamic features from different time steps
using a LSTM to form the final dynamic representation of all past frames. On the other
hand, the content encoder takes the most recently observed frame as input, assuming that
the appearance of two adjacent frames are close to each other. Then the features extracted
in both streams are fused and passed through a decoder to predict the next frame. The
multi-scale skip connections are used to boost the visual quality. Guen et al. [139] proposed
a more complex kinematic motion model based on partial differential equations instead of
adjacent frames difference as in [135].

Figure 3.4 Model decomposing content and motion information. Source [8]
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Similarly, Denton et al. [8] described a model where representations are disentangled into
content and pose. Moreover, the poses are penalized for encoding semantic information
by using a discrimination loss. Likewise, Decompositional Disentangled Predictive Auto-
Encoder (DDPAE), a model proposed by Hsieh et al. [138], extracts representations of each
input frame. Then, each representation is further disentangled into appearance and pose.
DDPAE used an RNN with 2-dimensional recurrence. One recurrence is for the temporal
modeling and the other is used to capture the dependencies between components. This
model, based on variational autoencoders, enforces each component to have a low-dimensional
temporal dynamic behavior.

Often the results presented in the aforementioned works are based on validations performed in
object-centric datasets, with very basic or low complexity movements, for example Moving
MNIST. This synthetic dataset consists of two digits moving independently in a 64 × 64
frame. However, other type of videos might be harder to directly disentangle. For instance,
the disentangling concept may be more challenging in crowded scenes or in medical sequences
presenting complex deformations.

3.2.3 Sequential vs. parallel decoding

When the predictive horizon is greater than one, the outcomes can be obtained sequentially
[8, 10, 130, 131, 143, 144] or in parallel [9, 145, 146]. In the former case, the future frames
are generated one by one, and each new prediction is fed back to yield the next prediction,
i.e. recursively. Generally, these sequential models achieve the temporal coherence of future
frames implicitly since the outputs are conditioned on previous predictions. Bengio et al. [147]
proposed a a curriculum learning strategy to bridge the gap between training and inference

Figure 3.5 LSTM encoder-decoder for motion prediction. Source [9]
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for sequential prediction using RNNs. This strategy, called Scheduled Sampling, consists in
making a transition from a fully-guided scheme, where ground-truths are used as previous
tokens, towards a less guided scheme, which rather uses generated tokens. This forces the
model to deal with its own mistakes, as it would have to during inference.

In contrast to models with sequentially-generated frames, other authors attempted to yield
multiple future frames simultaneously. On the other hand, advances in the field of natural
language processing have been a continuous source of inspiration for the developing of these
models. For instance, Sutskever et al. [148] introduced a sequence to sequence (seq-to-seq)
model for machine translation, which was implemented with a encoder-decoder configuration
and recurrent units. In addition, it enabled the generation of multiples outputs in parallel.
In this groundbreaking work, the encoder is composed by a multilayered Long Short-Term
Memory (LSTM) that maps the input sequence to an internal representation called context
vector. Subsequently, another LSTM (decoder) is used to generate the output sequence
from the vector. The lengths of the input and output sequences can be different, as there
is no explicit one-to-one relation between the input and output sequences. Such idea was
further extended by [101], who developed a LSTM encoder-decoder framework for image
reconstruction and future frame prediction. Luo et al. [9] used a similar configuration for
motion prediction. They demonstrate the predictive capability when increasing the horizon.
Additionally, they showed how the information contained in the context vector can be used
for downstream tasks, such as action recognition (see Figure 3.5).

Other works employ 3D convolutions as the backbone for the encoder and decoder. Mathieu
et al. [145] combined all the past frames and feed them into a CNN, thereby finding a mapping
function between inputs and future frames. Furthermore, they used an adversarial loss to
differentiate fake and real future frames. In contrast with the discriminator of the generative
adversarial networks [149], which operates on a single image, this discriminator acts on
multiple frames. This introduces an implicit constraint to ensure a temporal consistency. Wu
et al. [146] proposed a convolutional autoencoder to generate future frames simultaneously.
The authors also used a multi-frame discriminator to ensure temporal coherence. In addition,
they integrate an additional discriminator to improve the spatial quality. In summary, parallel
models may benefit from parallel computing. Also, for some applications it might be desirable
to get multiples frames in one-shot.

3.2.4 Pixel synthesis vs. spatial transformations

The approach to generate future frames is a distinctive feature of predictive models. Some
models use the decoder to directly synthesize the pixels of future frames [131, 135, 143, 150–
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155]. There have been early attempts to sequentially predict RGB pixels by modelling the
discrete probability of the raw pixel values and encoding the dependencies in the image [156].
Inspired by this work, Kalchbrenner et al. [157] proposed the Video Pixel Network (VPN)
model, which estimated the discrete joint distribution of the raw pixel values in a video.

Generally, pixel-wise regression models assume that the feature representations learned by
the encoder contain useful information to reconstruct the future frames. This information
is typically passed through skip connections at different scales to ensure good visual quality.
Therefore, the powerful U-net architecture [158] is a popular choice for this purpose. The
model presented by Castrejon et al. [10] employed a CNN to encode prior frames individually.
Subsequently, the extracted features were used to initialize the states of recurrent networks,
which were used for decoding purposes. The model design was based on a U-net backbone,
where the encoder’s features at multiples scales were skipped to the decoder to regress the
pixels. Nonetheless, because images are high dimensional and highly structured, direct pixel
generation is extremely challenging.

Alternatively, other approaches use spatial transformations on previous frames to yield the
future ones [119, 159, 160], thereby avoiding the pixel synthesis. Hence, they leverage the
visual appearance already available in the input sequence. The spatial transformation layer
in [161] is the essence of vector-based resampling approaches for video prediction. It is fully
differentiable and can be integrated at any part of the models [104].

Inpired on this module, Liu et al. [113] proposed the Deep Voxel Flow model. It consists
of a multi-scale flow-based encoder-decoder model. Although it was conceived originally for
video frame interpolation, the model was also evaluated on a predictive basis reporting sharp
results. Similarly, Liang et al. [162] used a warping layer based on bilinear interpolation
to warp the last input frame with the predicted flow. Finn et al. introduced the Spatial
Transformer Predictor motion-based model [163], which generated 2D affine transformations
for bilinear sampling. Furthermore, this work also presented other two kernel-based variants.
The first, denoted as Dynamic Neural Advection (DNA), outputs a distribution over locations
in the previous frame for each pixel in the new frame. The computed distribution is then used
to determine the pixel values. Similarly, the convolutional version of this approach (CDNA)
find the parameters of multiple convolution kernels. Then, the next frame is obtained by
convoluting the previous image with the kernel.

Instead of focusing on the whole image, Chen et al. [159] followed a local motion modelling
approach, i.e. object-centered representations. After selecting the target object, transfor-
mation kernels were yielded dynamically as in the DFN [164] and applied to the last patch
containing the object. The main limitation of object-centric predictions is that performance
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Figure 3.6 Conditional Variational Recurrent Neural Network for video prediction. Source
[10]

decrease when dealing with multiple objects and occlusions [104]. Overall, transformation-
based models lead to sharper results. Their main limitation is the incapacity to generate
structures that are not contained in the previous (source) images.

3.2.5 Deterministic vs. stochastic models

In deterministic models, the output is fully determined by the parameter values and the
initial conditions. This means that the model will always provide the same results for a given
input. Modeling the randomness of future events is extremely challenging. Hence, most of
the video prediction models are deterministic [132,133,146,151]. For instance, PredNet [165]
and ContextVP [166] are deterministic models, based on recurrent architectures, that have
been proposed for video prediction of car mounted scenes.

In contrast, in stochastic models a certain set of parameters and initial conditions will yield
an ensemble of different outputs. Thus, randomness is inherent to them. An early work in
stochastic modeling was developed by Babaeizadeh et al. [130]. These authors proposed a
stochastic variational video prediction (SV2P) method, which is able to provide a different
prediction for each sample of its latent variables. At training time, the inference network
estimates the posterior using both past and future images. The latent value z, sampled from
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the posterior distribution, is fed to the generative network. Optionally the action can be also
passed. The generative network, taken from [163], predicts the next frame given the previous
frames, latent values, and actions. At test time, z is sampled from the prior.

Further works continued developing the idea of leveraging future frames as prior knowledge
during training [144, 167]. Lee et al. [167] combined the advantages offered by both GAN
and VAE within an stochastic adversarial video prediction (SAVP) model. Specifically, they
added a GAN architecture into the aforementioned model (SV2P) [130] to improve the visual
quality of future frames. Denton et al. [144] combined a deterministic frame predictor with
time-dependent stochastic latent variables. They developed an inference network, based on
LSTM, to estimate the latent distribution for each time step recursively. During training, they
leveraged the ground-truth images to compute a prior over the latent variables, which can
be fixed or learnable. The fixed prior is generally assumed to follow a Gaussian distribution
while the other alternative learns the prior for the latent variable z from the input frames.
These prior-based models showed that using the future frames as additional information
during training can boost the results. The authors argued that the learned prior can be
interpreted as a predictive model of uncertainty.

Indeed, several works have attempted to deal with uncertainty, either in the inputs [134] and
outputs [137]. The work presented by Jang et al. [137] tried to answer the question on how
should a model behave when there are multiple correct, equally probable future images. They
propose a generative adversarial network conditioned on appearance and motion information.
The model is composed by generator, two discriminators for the appearance and motion
pathways, and a perceptual ranking module that encourages videos of similar conditions
to look similar. Wang et al. [134] argued that previous works assume the spatiotemporal
coherence of the inputs and fail to deal with perceptual uncertainty. In other words, they
do not work well for noisy inputs, where spatiotemporal consistency is significantly broken.
Therefore, they proposed a Bayesian Predictive Network (BP-Net), which is able to cope
with both perceptual and dynamic uncertainties. The model combines Bayesian inference
and recurrent neural networks. Similarly to [144], the predictions are aided by a learned
prior. Other probabilistic approaches have also been proposed to cope with uncertainty
[130,167,168].

3.3 Respiratory motion models

Motion models establish a relationship between some surrogate data (input) and a motion
estimate (output) [47]. It often finds an application when measuring the motion of interest
is not feasible. For instance, due to limitations in the temporal resolution during certain
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procedures. When a motion model is used, measurements are made of some surrogate data,
also known as partial observations, instead of measuring the motion of interest directly. Such
a signal is required to have a strong correlation with the motion of interest and be easily
measurable. There are different sources of surrogate data. Some of them were mentioned in
Section 3.1.1. In the literature, several motion models have been introduced which can be
divided into subject-specific and population-based models, depending on the data used for
their creation.

3.3.1 Subject-specific motion models

In a early work, Blackall et al. [31] constructed a subject-specific statistical model of the
liver by using non-rigid registration. The resulting free-form transformations were used to
propagate landmarks derived from a segmented liver surface of a template image to the other
images throughout the breathing cycle. Principal component analysis of these landmarks was
used to produce a statistical model of motion and deformation. The maximum deformation
captured by the model was approximately 15 mm for deep breathing and 10 mm for shallow
breathing. In [169] the same authors built a subject-specific motion model to constrain the
alignment between 3D preoperative images (either MR or CT) and intra-operative US during
thermal ablation of liver metastases. To this end, six breath-hold volumes were acquired at
different phases in the respiratory cycle. A selected reference volume was registered to other
volumes across the respiratory cycle using free-form deformation based on B-splines. The six
images were assigned equally spaced T-values starting at T = 0.0 (end-exhale) and T = 1.0
(inhale). Subsequently, third-order polynomials in T were fitted to the 3D motion vectors
and the coefficients for each of these polynomials were recorded. This formed a model that
allowed to interpolate the deformation at any time between end exhale and inhale given the
value of T .

Similarly, Rohlfing et al. [11] proposed to quantify abdominal organ deformations using
intensity-based nonrigid image registration. They introduced the idea of applying the tem-
poral sequence of deformations to a geometrical model to determine the position and shape
of a reference image throughout the respiratory cycle (see Figure 3.7). They experimented
with MR liver images from four healthy volunteers. Although this method is not feasible for
real-time treatment, it was an important step towards the development of motion models.

Zhang et al. [170] employed a deformable registration algorithm to align respiration-correlated
CT volumes to a reference volume from four lung cancer patients. An additional input of
their method was the diaphragm positions at ten phases of the respiratory cycle. A principal
component analysis was performed to parameterize the 3D deformation field in terms of the
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Figure 3.7 Non-rigid image registration and model deformation. All frames are registered
to a common reference I0. A geometrical model M0 is generated from the reference image
and deformed using the transformations determined by intensity-based registration. The
model could be the external skin surface, liver surface, or an internal liver structure such as
a radiosurgical target (e.g., tumor). Source [11]

diaphragm motion. They showed that images artifacts, that commonly occur at the mid-
respiration states, were reduced in the model-generated images. This approach may have
limitations in cases where the correlation between lung tumor and diaphragm position is less
reliable such as superiorly located tumors and inter-fraction changes in tumor-diaphragm
correlation.

Eom et al. [171] proposed a nonlinear finite element model of respiratory motion during
a full breathing cycle based on patient specific pressure-volume relationship and 4D CT
data. To achieve a physiologically plausible respiratory motion modeling they used thee
pressure-volume (PV) relationship to apply pressure loading on the surface of the model. An
experimental hyperelastic soft tissue model was used. The validation was performed using 51
landmarks from CT data. The average differences in position were 0.07 cm (0.20 cm), 0.07
cm (0.15 cm), and 0.22 cm (0.18 cm) in the left-right, anterior-posterior, and superior-inferior
directions, respectively.

King et al. [12] built a subject-specific model aimed at improving the acquisition of PET
images during free-breathing. For the motion model creation they register dynamic volumes
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Figure 3.8 Plot of constrained inspiration and expiration polynomials for the head-foot trans-
lation of a sample control point. There is little hysteresis as the inspiration and expiration
polynomials are very similar. The full deformation motion model consists of 3 pairs of poly-
nomials such as these (for x, y and z displacements) for each control point. Source [12]

to a reference end-exhale volume by using hierarchical local affine registration. The motion
fields were modelled as second order polynomial functions of a 1D surrogate signal using
a least squares technique. In this case, the used surrogate was the head-foot diaphragm
translation. In this way, given a value for the respiratory surrogate and a breathing direction,
the model estimates the 3D displacements vectors. Figure 3.8 illustrate the motion model.

Noorda et al. [172] developed a subject-specific model of one average motion cycle of the
entire liver. They registered dynamic MR slices of six anatomical positions to a 3D volume.
The obtained deformation fields were clustered according to their respiratory phase. They
were then averaged for every location and interpolated in 3D, to yield a 3D deformation field
for every cluster. The liver was then deformed according to these 3D deformation fields, to
obtain a look-up table of the liver for all possible states. The average error in the prediction
of the blood vessel center positions was 3.0 mm.

Broadly speaking, statistical modelling is the most commonly used technique. Recent works
have attempted to relate image surrogates to the model coefficients [90,173–175]. Generally,
these works rely on the maximization of a similarity metric between the image and the
corresponding slice position taken from a reference volume, which is iteratively warped until
convergence is reached.
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Principal Component Analysis is a well-known dimensionality reduction technique, which is
useful for exploratory data analysis and for predictive modelling. It projects the data points
onto the first few principal components to obtain lower-dimensional data while preserving
the variation of the data. Stemkens et al. [90] applied PCA to parameterize 3D deformations.
The weights of the eigenvectors were iteratively optimized until achieving the best alignment
between a warped reference volume and the surrogate slices. Similarly, [175] proposed to
refine the motion model using free-form deformations.

Such an approach has been extensively validated using MRI and kV projections [173–177].
Following the same approach, [178] created a PCA model to establish correlations between
2D navigator images and 3D displacements. Further, Garau et al. [179] proposed a variant of
this work by using a region-based approach for better local adaptation. In an early attempt
to leverage deep neural networks in the context of respiratory motion modelling, Giger et
al. [180] presented a conditional generative adversarial network to relate an ultrasound image
with a future deformation. This work was only validated to work in subject-specific condition.

In the literature, tracking errors reported for patient-specific models are often lower than
those for population models. Nevertheless, there are some limitations for their use in the
clinical context, as its reliability depends on an accurate response to inter-fraction motion
variations. Furthermore, due to time constraints, in many clinical scenarios it is not possible
to acquire a patient-specific 4D dataset and non-rigidly register the volumes to create the
model just before treatment.

3.3.2 Population-based motion models

To build statistical population models, a crucial step is the establishment of inter-subject
correspondences. Specifically for motion analysis, it is important that corresponding points
undergo the same breathing-induced deformation. Therefore, a mechanical correspondence
needs to be established. There are multiples strategies to establish such a correspondence.
According to [181], manual labeling, distance-based correspondence schemes, which favour
the correspondence of close points after a certain alignment such as Procrustes matching, or
correspondence based on parameterization are the most used techniques.

Von Siebenthal et al. [13] captured the deformation of the liver at exhalation from 12 volun-
teers through non-rigid registration. With this data, they created a statistical motion model.
First, the liver was segmented manually in one exhalation volume per subject. This yielded
fine triangular surface meshes with several thousands of triangles. Four landmarks were
manually labelled in each sagittal slice as shown in Figure 3.9 and connected by B-splines.
Subsequently, a coarse mesh prototype of the right liver lobe was then aligned to the fine
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Figure 3.9 Four landmarks LAI , LAS, LPI , LPS, where the indices indicate the location (ante-
rior, posterior, superior, inferior) were manually placed. These points mark the delineations
between the superior surface in contact with lung, the anterior and the posterior areas, which
slide along the abdominal wall, and the inferior surface. Source [13]

mesh of each specific liver such that its four edges coincided with the marked delineations (see
Figure 3.10(a)). The vertices of the prototype were regularly distributed along the landmark
splines in the medio-lateral direction. The coarse prototype was then gradually refined to
fit the fine surface mesh (Figure 3.10(b)). Further refinement steps were performed for each
of the 12 livers (Figure 3.10(c)). A regular grid of 290 points with 15 mm resolution was
placed in the average liver shape and then transformed to each subject-specfic liver. From
this data, a point distribution model was built. Specifically, PCA was applied to determine
the eigenvectors of the covariance matrix. It is important to emphasize that this model only
captured the deformation in exhale positions. Results showed that there are three typical
modes of deformation during treatment and the maximum displacement was 5 mm or larger
in all subjects and ranged up to 18.8 mm.

Arnold et al. [182] presented an atlas-based prediction technique built using 4D MRI data.
It was combined with the population-based statistical exhalation drift model explained pre-
viously ( [13]) to account for the non-periodic slower organ drifts. This approach was able
to capture the full patient specific motion of the organ. Based on a breathing signal, the
respiratory state of the organ is then tracked and used to predict the target’s future position.
The method was validated on the same dataset used in [13]. The prediction of the liver
positions resulted in an average error of 1.1 mm over time intervals of up to 13 minutes.

Samei et al. [33] proposed the use of exemplar models as a non-parametric method for adapt-
ing the population model to an individual subject during therapy. They gathered 4D MRI
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Figure 3.10 (a) Coarse mesh prototype aligned with respect to manually identified delin-
eations on the liver surface. (b) Refined mesh after correspondence preserving subdivision
and projection. (c) Resulting mesh after three refinement steps. Source [13]

data from 12 volunteers and quantified the liver motion using intensity-based non-rigid reg-
istration. Inter-subject correspondences were established following the same approach of
the aforementioned work [13]. They built exemplar models by fitting a PCA model to the
motion vectors of each individual subject. The final model was a weighted combination of
the predictions of all the sub-models. The weights were based on the squared Mahalanobis
distance between the surrogate and the corresponding components of an individual model.
They found that the use of exemplar models improves the lowest error achieved by the PCA
model by 10%. This liver motion model had subsequently 2 follow-up works. First, Tanner
et al. [183] improved the distance measure by taking into account the history of the surro-
gates. Also they proposed the individualization of the exemplar model by a subject-specific
example 3D motion field, which was extracted from an additional end-inhalation image. In
a second work [184], the same model was validated by using a 3D breath-hold image and an
interleaved acquisition of two MR slices. From those two slices, one was used for tracking and
the other for validation of the prediction accuracy. The motion of the liver on the validation
slice was spatio-temporally predicted with an accuracy of 1.9 (4.4) mm for a latency of 216
ms.

Preiswerk et al. [32] used the same dataset [13] to predict liver motion by using a statistical
population model. They also found mechanical correspondences between subjects with four
manually annotated landmarks in the same positions as illustrated in Figure 3.9. They
neglected the left liver lobe because it is heavily influenced by the motion of the heart,
which was not in the scope of their study. For each subject, they obtained a vector of
corresponding surface points at exhalation. Then they aligned those vectors using partial
(no scaling) generalized Procrustes analysis into a common coordinate system. Their model
was based on PCA and achieve an average prediction error of 1.2 mm.
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In contrast to all the aforementioned works, some authors have explored biomechanical mod-
els. Brock et al [185] employed Finite element Analysis (FEA) on two liver CT scans to
construct a 4D model of the liver during breathing. A linear elastic, small deformation
mechanical model was applied to one patient to obtain an intermediate organ position and
shape between exhale and inhale. Known transformations between anatomically defined sub-
sections of the exhale and inhale liver surfaces were applied as constraints to the exhale CT
liver model. Intermediate states were then calculated and time weighted to determine a 4D
respiratory model of the liver.

Figure 3.11 A colour scale of the population deformation map applied to the exhale population
finite element liver model to generate a liver population respiratory motion model. Source [14]

Following a similar approach, Nguyen et al. [14] used 10 patients exhale and inhale breath-
hold images and meshes to generate a population motion model. They performed rigid
registrations to align exhale meshes to one arbitrary chosen mesh. The transformations
were applied to binary masks and all the contours were summed and converted into a 3D
triangular finite element surface mesh as depicted in Figure 3.11. The population liver
model was deformed to match each patient’s exhale and inhale using the biomechanical
framework MORFEUS [186]. This resulted in a deformation map describing the patient’s
specific respiration motion using a common set of elements. An average deformation map was
then calculated as the mean deformation at each node. The average respiratory deformation
map was then applied to the population exhale liver model to generate a liver population
respiratory motion model.

Other approaches such as kernel PCA, support vector machine, atlas and Kalman filtering
have been involved in the creation of related models. He et al. [187] generated a 4D motion
model of the lung from dynamic CT volumes of 30 patients. First, they segmented the lungs
and aligned the surfaces. Kernel PCA (K-PCA) was then applied on the lung field motion
vectors derived from the extracted lung field surfaces to model the motion. They trained
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a support vector machine (SVM) to model the relation between motion of fiducial markers
and the coefficients of the K-PCA, which contain the representation of lung’s surface motion.
During the intervention, the trained SVM motion model is used to estimate the lung motion
vectors from real-time fiducial signals. These motion patterns can be used to estimate the
patient-specific serial CTs from a static 3D CT and the real-time respiratory signals of that
patient. The reported average accuracy was 1.63 mm.

Ehrhardt et al. [188] modeled the lung motion from thoracic 4D CT data of 17 patients. The
process consisted of three steps: an intra-subject registration to generate subject-specific mo-
tion models, the generation of an average shape and intensity atlas of the lung as anatomical
reference frame, and the registration of the subject-specific motion models to the atlas in or-
der to build a statistical 4D mean motion model. The prediction was evaluated with respect
to landmark and tumor motion. The mean target registration error (TRE) was 3.3 ± 1.6 mm
in cases where lung dynamics are not impaired by large lung tumors or other disorders.

Ries et al. [189] proposed a real-time tracking method that observes the target on a 2D image
plane combined with a perpendicular pencil beam navigator, finally obtaining 3D information
of the targets trajectories. The future target position is then estimated by a 3D Kalman filter.
The method was tested in phantom experiments on human kidneys and in-vivo with kidneys
of ventilated pigs, both following a regular and stable breathing pattern.

3.4 Summary

In this chapter, we conducted a literature review of different topics, which are relevant for
the research project. First, we presented an overview of current methods for 4D imaging,
which can be classified in two main groups according to the type of readout. In this review,
we have observed that multi-slice 2D acquisitions have been widely explored while interest
in 3D acquisitions is increasing rapidly. In the former case, one of the main challenges is the
acquisition of navigator signals, which are crucial for the slice sorting. Some current self-
sorting methods still involve human intervention. For instance, for the manual identification
of a reference image at each anatomical position, which is unfeasible for large datasets.
Another shortcoming is the requirement of an organ segmentation.

The second topic was about image-based temporal prediction methods. We described differ-
ent strategies for future image generation along with their limitations. This task is not ex-
empt from hurdles such as the prediction from limited dynamics, and the high-dimensionality
inherent to complex deformations. Moreover, while extensive research have been done for
natural images, contributions suited to the challenging medical datasets are more scarce.
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Finally, we presented the foundation of respiratory motion models as well as their categoriza-
tion according to the data involved in their creation. In general, subject-specific models are
often more accurate than the population-based. However, the assumption of a pre-treatment
4D dataset acquisition and processing constitutes an important limitation since it is not
always available in many clinical scenarios. In contrast, population-based models can be
applied in new/unseen patients in the absence of any 4D image data. Nevertheless, the
establishment of inter-subject correspondences remains the main obstacle.
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CHAPTER 4 RESEARCH METHODOLOGY

4.1 Problem statement

Analyzing breathing-induced organ deformation requires, first of all, acquiring ground truth
motion data. Based on the observations, the next step is to create a motion model and
relate it to surrogate signals. Finally, a mechanism for temporal forecasting, acting on the
surrogates, is required to cope with system latencies.

The basis for building respiratory motion models consists of imaging and estimating ground-
truth motion data, which shows the moving organs during free-breathing. This means that
3D+t, also known as 4D, data is needed. However, the current technology has limited
capacity to fulfill this criteria due to spatiotemporal constrains. Retrospectively sorting of
slice-base acquisitions is a solution which requires determining the respiratory state of each
slice using navigator signals. External navigators may not perfectly correlate with the actual
motion while the internal ones increase the required temporal resolution and prolong the
acquisition time. Existing self-sorting methods often require manually defining a reference
image across the acquired anatomical positions, which is time-consuming and requires trained
experts. Hence, the first research question is formulated as: Is it possible to design a
fully automatic 4D volume reconstruction self-sorting technique, which is able to
preserve the temporal consistency and capture the free-breathing organ motion?

After estimating the motion in a population of free-breathing subjects, the next step is to
construct the motion model by finding the principal modes of variations in a low-dimensional
space to better understand the underlying process. The main challenge in creating population-
based motion models is the establishment of inter-subject correspondences, which typically
involves the organ segmentation, shape meshing and finding mechanical corresponding land-
marks across subjects. This step often requires manual intervention and can be complex
and time-consuming, especially in large datasets. Therefore, the following questions arises:
Could the strong generalization capabilities of deep neural networks replace this
complex step? If so, what architecture would be suitable for motion modelling
and how surrogates signals would be related to a personalized patient model?

The time required for image acquisition, target localization, and subsequent beam modula-
tion/tracking adds a significant cumulative latency to the system. In consequence, during
real-time treatments, by the time a gating decision has been made the patient anatomy
has already changed. Generally, temporal forecasting is integrated within motion models to
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compensate these latencies. Therefore, the final question is: Is it possible to design an
image-based temporal predictor, able to yield ahead-of-time visual representa-
tions corresponding to future organ states, that can be used by the motion model
to generate future volumetric deformations?

4.2 Hypothesis

Considering the problems stated in the previous section, the following hypothesis can be
formulated.

Hypothesis 1: An automatic slice reordering methodology, comprising the extraction of
a pseudo-navigator from the cine-acquisitions and the subsequent slice stacking, can be de-
signed to construct 4D volumes from navigator-less MR images.

Hypothesis 2: A motion model, constructed from deep neural networks, can be created to
learn typical patterns over a population and then generalize in unseen anatomies.

Hypothesis 3: An image-based spatiotemporal predictive mechanism, based on deep neu-
ral networks, can be developed and integrated to the motion model to generate volumes
corresponding to future times.

4.3 Objectives

The general objective of this thesis is the development of a 4D motion modelling
framework using deep learning allowing the generation of temporal volumes from
surrogate 2D images in the context of image-guided radiotherapy. The main goal is ac-
complished through the following specific objectives.

Objective 1: Developing an automatic slice reordering methodology to construct 4D vol-
umes from navigator-less MR images.

Objective 2: Designing motion modelling solutions, relying on deep neural networks, able
to learn over a population dataset and generalize in unseen anatomies.

Objective 3: Designing an image-based temporal predictor and integrating it within the
motion model to enable future volume generation.



43

4.4 General methodology

In this research, an ensemble of novel solutions are described for the analysis and modelling of
respiratory organ motion. Figure 4.1 depicts an overview of the entire proposed framework,
which consists of three main blocks: (1) Automatic volume construction from navigator-less
cine acquisition (2) Motion modelling framework; and (3) Image-based temporal prediction.

The methodological structure of this thesis is illustrated in Figure 4.2. The first objective
of this project refers to the design of 4D imaging strategies. Specifically, to the design of
an automatic slice reordering methodology to construct 4D volumes from navigator-less cine
acquisitions. This methodology, presented in Chapter 5 (Romaguera et al. [80]), introduces
an approach to extract pseudonavigator signals from cine acquisitions. In addition, it presents
a graph-based method for slice stacking. In a related work, which is presented in Appendix
A (Romaguera et al. [74]) another slice reordering technique is designed by combining image
similarity measures with manifold alignment theory. In this method, the slice corresponding
to each point in the low-dimensional manifold is compared to the slices corresponding to
its neighborhood. These approaches allow us to obtain temporal volumes from navigator-
less cine acquisitions with no human intervention. The estimated deformations between a
fixed volume and temporal volumes in the 4D dataset constitute the basis for motion model
creation.

The second objective is to design data-driven motion modelling solutions by learning from
population data. The proposed motion models are based exclusively on deep neural net-
works and do not require any prior steps such as manual segmentation or landmark iden-
tification. During their creation, they perform dimensionality reduction on the input 3D+t
deformations. Furthermore, they establish an approach to relate partial observations with
the predictions. A first deterministic variant, presented in Chapter 6, relies on convolutional
autoencoding as a backbone for the modeling task (Romaguera et al. [190]). Volumetric organ
deformations and surrogate slices are mapped to a common latent space, where they both are
associated by minimizing their point-wise distances. A probabilistic version of the motion
modelling task is described in Chapter 7, which is formulated as a conditional manifold learn-
ing task (Romaguera et al. [191]). Specifically, this work propose the integration of feature
vectors, extracted from the pre-operative volume, and visual representations, extracted from
the surrogate images, as predictive variables to predict future volumetric deformations. The
personalization capability of this probabilistic model was explored in another work presented
in Appendix B (Romaguera et al. [192]). These motion models are tested on datasets acquired
both in healthy volunteers and cancer patients using different imaging modalities. In con-
trast to classical approaches, they do not requires establishing inter-subject correspondences.
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Hence, the burden of this complex step is removed and is rather replaced by unsupervised
feature learning across population samples.

The third objective is to investigate possible structures for temporal prediction from an
input image sequence. Specifically, the predictive mechanism should be able to forecast

I. Volume construction from cine acquisitions

II. Deep motion modelling framework

III. Temporal predictive mechanisms 
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Figure 4.1 Proposed framework. (1) Volume reconstruction: The inputs are cine-acquisitions,
and the output is a 3D+t dataset; (2) Motion modelling: The input is ground-truth motion
data, and the output is a reconstructed version of the input; (3) Temporal prediction: The
input is an image sequence, and the output is an image sequence at future times.
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visual representations from the spatiotemporal information contained in the dynamic 2D
images, that can be recovered as future deformations. The model presented in Chapter
8 (Romaguera et al. [119]), relies on multi-scale feature extraction, convolutional recurrent
units and spatial transformations to implicit regress future images. Another work, exposed in
Chapter 9, explores an attention-based model to predict future representations from an image
sequence. Moreover, it integrates prior knowledge from future frames available during model
training to regularize the latent representations. Additionally, this work demonstrates how
the previously created model can be leveraged for motion-compensated 3D target tracking.

The methods proposed across the different steps of the project, as well as the obtained results,
are presented by means of articles in Chapter 5 (objective 1), Chapters 6 and 7 (objective 2),
and Chapters 8 and 9 (objective 3). Finally, the discussion, conclusion, and recommendations
are presented in Chapters 10 and 11.
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reconstruction methods from dynamic slice acquisitions

• Paper #2 Predictive online 3D target tracking with 
population-based generative networks for image-guided 
radiotherapy

• Paper #3 Probabilistic 4D predictive model from in-room 
surrogates using conditional generative networks for 
image-guided radiotherapy

• Appendix B: Personalized Respiratory Motion Model Using 
Conditional Generative Networks for MR-Guided 
Radiotherapy

• Paper #4 Prediction of in-plane organ 
deformation during free-breathing radiotherapy 
via discriminative spatial transformer networks

• Attention-based  temporal prediction and 
tracking

General objective:

Development  of  a motion modelling framework allowing  the generation of  temporal volumes 
from surrogate slices in the context of image-guided radiotherapy

Specific objective 3

Designing an image-
based temporal predictor 
and integrating it within 
the motion model to 
enable future volume 
generation

Discussion and conclusion:

General discussion on the  general methodology proposed in the thesis and its benefits for 
motion management in the context of image-guided radiation treatments. 

Specific objective 2

Designing motion modelling 
solutions able to learn over 
a population dataset and 
generalize in unseen 
anatomies

Specific objective 1

Developing an automatic slice 
reordering methodology to 
construct 4D volumes from 
navigator-less MR images

Figure 4.2 Methodological organization of the thesis.
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CHAPTER 5 ARTICLE 1: AUTOMATIC SELF-GATED 4D-MRI
CONSTRUCTION FROM FREE-BREATHING 2D ACQUISITIONS

APPLIED ON LIVER IMAGES

Contribution of the first author in preparation and writing this paper is evaluated as 90%.
This article has been published by the International Journal of Computer Assisted Radiology
and Surgery on March 2019.

Remarks: This paper presents an automatic weighted graph-based method designed for
volume reconstruction from navigator-less cine acquisitions. The proposed method derives a
pseudo navigator signal from temporal slices and creates a weighted graph to guide the slice
stacking process. Experiments revealed that the proposed approach is able to automatically
detect the end-exhale phases within the temporal slices at one given anatomical position,
and cope with irregular breathing during the sorting process.

Automatic self-gated 4D-MRI construction from free-breathing 2D acquisitions
applied on liver images

Liset Vázquez Romaguera1, Nils Olofsson2, Rosalie Plantefève3, Elodie Lugez4, Jacques De
Guise2, Samuel Kadoury1,3

1 École Polytechnique de Montréal, 2 École de Technologie Supérieure 3 Centre de recherche
du Centre Hospitalier de l’Université de Montréal, 4 Elekta Ltd., Montréal, Canada

5.1 Abstract

Purpose MRI slice reordering is a necessary step when three-dimensional (3D) motion of
an anatomical region of interest (ROI) has to be extracted from multiple two-dimensional
(2D) dynamic acquisition planes, eg. for the construction of motion models used for image-
guided radiotherapy. Existing reordering methods focus on obtaining a spatially coherent
reconstructed volume for each time. However, little attention has been paid to the tempo-
ral coherence of the reconstructed volumes, which is of primary importance for accurate 3D
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motion extraction. This paper proposes a fully automatic self-sorting four-dimensional (4D)
MR volume construction method that ensures the temporal coherence of the results. Meth-
ods First, a pseudo navigator signal is extracted for each 2D dynamic slice acquisition series.
Then, a weighted graph is created using both spatial and motion information provided by the
pseudo navigator. Volume at a given time point is reconstructed following the shortest paths
in the graph starting that time point of a reference slice chosen based on its pseudo naviga-
tor signal. The proposed method is evaluated against two state of the art slice reordering
algorithms on a prospective dataset of 12 volunteers using both spatial and temporal quality
metrics. Results The automated end exhale extraction showed results closed to the median
value of the manual operators. Furthermore, the results of the validation metrics show that
the proposed method outperforms state of the art methods in terms of both spatial and
temporal quality. Conclusions Our approach is able to automatically detect the end-exhale
phases within one given anatomical position and cope with irregular breathing.
Keywords Slice reordering, 4D image construction, Motion extraction, Liver, MRI

5.2 Introduction

Enabling free-breathing liver cancer therapies such as external beam radiotherapy requires
accurate tracking of the internal anatomy and tumor location during treatment in order to
focus radiation beams to targets and avoid surrounding anatomy. Typically, a radiation on-
cologist will use multiplanar (in axial and coronal planes) images of the targeted organ and
its internal and surrounding structures (blood vessels, kidney) acquired prior to intervention
or a few images during the procedure. However, a major limitation of vascular and focal
interventions resides in the patient’s respiration or involuntary movement, which may stray
the pre-defined target and trajectories determined during planning from the actual anatomy,
thus inducing errors in the relative position of the instrument performing the action with
respect to the target. Furthermore, live motion tracking of the internal anatomy depends on
3D imaging and image post-processing in real-time, which is unfeasible during interventional
procedures. Thus, to complete partial information (2D images, navigator signal) clinically
available during treatment, prior knowledge of the anticipated motion field during the breath-
ing cycle is necessary [193]. Some intraoperative acquisitions require contrast agent, which
is problematic as it will increase the toxicity to the patient. Clinicians therefore avoid using
these intraoperative images as much as possible: they visually measure how the tumor target
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moves with few intraoperative images at the beginning of the intervention, and then use
their intuition of the internal motion of tumor with regards to the therapeutic tool in order
to achieve a proper targeting. Consequently, there is a clear clinical need to accurately track
tumor displacement during free-breathing radiotherapy.

Imaging volumes over time is not a feasible option since it compromises spatial and temporal
resolutions [79]. Therefore, most of the four-dimensional (4D) imaging approaches are based
on retrospective sorting of computerized tomography (CT) or magnetic resonance (MR)
dynamic two-dimensional (2D) slice series according to their respiratory phases. MR imaging
presents two main advantages with respect to CT: it does not emit ionizing radiation and
offers a higher soft tissue contrast. The latter is crucial as some tumors surrounded by soft
tissue with similar density may not be well visualized in CT [194].

Intra-operative respiratory phase tracking is typically achieved using external and internal
(anatomical landmarks) surrogates [195]. However, these methods are subject to numerous
drawbacks. For instance, external respiratory devices like respiratory belts are known to have
a low correlation with the internal organ motion, causing various artifacts in the resulting
sorted 4D images. Moreover, internal surrogates, such as the 1D navigator echo, decrease the
temporal resolution and may cause interference during the acquisition process. To alleviate
these shortcomings, a motion signal using features contained in the captured images can be
used. This is known as self-sorting or self-gating methods.

Currently, the acquisition of radial k-space is gaining attention [196–198]. One of its main
advantages is its relative insensitivity to motion artifacts at the cost of signal to noise ratio.
Although this technique seems promising, it is still in its infancy and needs further research.
In addition, pulse sequences will have to be approved for clinical use before they can be used
routinely on patients.

Slice reordering techniques that do not rely on external or internal surrogate signals can be
grouped into two main categories: machine learning [5, 69–73] and slice feature extraction-
based methods [6,68,75–79,199]. The work presented in [200] combine radial k-space acqui-
sition and manifold learning.

Manifold learning (ML) techniques have been employed to map acquired data in a low-
dimensional space according to their respiratory phases. This approach commonly makes
assumptions about the regularity of the respiratory motion. However, there is a non-negligible
residual variability that makes data discrimination difficult. This limitation is common to
all cited methods [5, 69–73], which makes it difficult to handle outliers or extreme peaks
in the respiratory cycle, ultimately increasing noise in the manifold generation process and
corrupting the motion modeling. These methods were also primarily designed either for
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gating purposes or not designed for MRI specifically, which exhibits several challenges in
terms of spatial and temporal resolution. Furthermore, some proposed ML-based methods
have been validated either on synthetic data or on low temporal resolution data [5,71–73]. In
these cases, the discrimination between slices is simplified as it uses images of high quality.

In feature extraction methods, the derivation of a reliable respiratory signal from the acquired
images is used to optimize the reordering process. Some prior work has proposed to monitor
the body area to represent the breathing signal as it typically correlates with the breathing
motion [6, 76, 77]. In [6] and [76], 2D dynamic axial images were used for the reordering
process. However, axial planes are rarely used since abdominal motion is better appreciated
in the sagittal and coronal planes. In [77], it was demonstrated that sagittal slices yield more
accurate 3D volume reconstructions. Nevertheless, changes of body area are prone to be
affected by space-dependent phase shifts. The approaches presented in [75] and [78] are based
on calculating the mutual information between slices. Unfortunately, slice reordering methods
based only on imaging data may not guarantee adequate temporal behavior. Image-based
internal surrogates using dimensionality reduction has been proposed in previous work [79].
However, the main limitation of this approach is the lack of a direct relationship between the
surrogate signal and organ motion: the low-dimensional representation of the images does
not always proportionally change with respiratory motion. Van de Lindt, Sonke, Nowee,
Jansen, van Pelt, van der Heide and Fast [68] proposed to bin 2D slices according to their
craniocaudal motion to construct 4D volumes. However, the validation is performed against
a navigator signal, thus limiting the temporal resolution of their 2D slice series acquisition
and makes the binning process easier. Moreover, the navigator, a craniocaudal 1D signal
cutting the right hemi-diaphragm at a given position, is insensitive to liver deformation that
occur far from its position.

The closest work to ours was presented by Tong, Udupa, Ciesielski, Wu, McDonough, Mong
and Campbell [199]. The authors propose to construct a weighted graph and to reconstruct
volumes following the shortest paths. However, such method is limited to sequences where
lungs are entirely visible. Moreover, it assumes that the respiratory signals are regular and a
manual selection of the end-exhale positions for each slice is required. As a result, the manual
inspection of about 10 000 images per patient would be required for our application. We pro-
pose an automatic weighted graph-based method, using both image and motion information,
that is able to handle irregular respiratory motion and that can even be applied to images
in which the lungs are partially visible. The method is tested on the liver in comparison to
a slightly altered version of [199] and a state of the art method using ML [73]. Finally, we
propose new temporal metrics to assess the quality of slice reordering regarding the temporal
coherence of the reconstructed volumes.
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5.3 Material and Methods

The proposed slice reordering method is based on inter-slice similarity measures which take
into account both pixel and motion information (see Figure 5.1). These similarity measures
are used to construct a weighted graph G where each vertex Vs,t represents (s, t), the slice
s at time t. The edges of the graphs connect only neighboring slices: the edge Es,t,t′ links
vertex Vs,t to vertex Vs+1,t′ where s ∈ {1, . . . , Ns} and t, t′ ∈ {1, . . . , Nt}; Ns is the number
of slices and Nt the number of time points for each slice. Each vertex Vs,t is associated with
the weight ws,t,t′ computed from the inter-slice pixel and motion similarity measures. The
volumes are reconstructed by finding the shortest paths in G.

Image similarity ensures spatial consistency between neighboring slices and is reflected in two
weighting terms: an inter slice pixel wise image similarity measure and right hemi-diaphragm
height consistency. Motion information is derived from the automatic computation of a
pseudo navigator ns(t) for each slice s. This differs from previous approaches [199] where
only manually labelled end-exhale images are used.

2D+t images

Graph weights 
computation
and shortest
 path finding

Motion fields
extraction

Pseudo-
navigators

computation

Starting slice 
selection

Volume 
reconstruction

3D+t images

Right hemi-
diaphragm

height extraction

Figure 5.1 Overall scheme of the proposed method. The core of the method is based on both
image and motion metrics to construct a weighted graph. Motion fields are extracted from
the 2D dynamic slice series and used to compute a pseudo-navigator for each slice which
describes the respiratory motion. The weight quantifying the degree of coherence of the right
hemi-diaphragm position across slices is set as an option as this weight is specific to our
dataset. The volume reconstruction is performed from a reference slice, selected based on
characteristics of its pseudo navigator, toward the first and last sagittal slices following the
shortest path in the graph.
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5.3.1 Data acquisition

Free breathing high-resolution sagittal slices were acquired on twelve volunteers, who provided
their written consent. The acquisitions were carried out on a Siemens Skyra 3T scanner
using a 2D T2-weighted true FISP sequence with a pixel spacing of 1.7 × 1.7 mm2 and a
slice thickness of 3 mm. To cover the whole liver, between 66 and 84 slices were acquired,
depending on the liver size. Each slice position was imaged 150 times, for a total of 20
seconds, which covers approximately 4 to 6 respiratory cycles, without any gating method.

5.3.2 Automatic pseudo-navigator extraction

In MRI acquisitions, the term navigator refers to a one dimensional signal located at the
summit of the right hemi-diaphragm dome. This signal provides the height of the diaphragm
at the dome summit and is generally used to perform respiratory gated MRI acquisitions.
Here, we use the term pseudo-navigator to designate a computed signal that gives a relative
diaphragm height for each slice position. The automatic extraction of this pseudo navigator
signal is performed for each slice s as follows (see Figure 5.2):

First, the displacement field between (s, t) and (s, t+ 1) is computed for all t ∈ {1, . . . , Nt},
and its vertical component median value v̄raw

s (t) is extracted with the convention that the
positive direction is upward. Dense displacement fields between two temporal slices were
calculated using the NiftyReg software [201]. Specifically, cubic B-Splines transformation
were generated to deform a source image in order to optimize an objective function based on
the Normalized Mutual Information and a penalty term based on the bending-energy [30].

Then, a low pass filtering with a cutoff frequency of 0.5 Hz is applied on v̄raw
s (t) to remove

the noise and keep only the respiratory signal, giving the signal v̄s(t). Zero crossing points
of v̄s(t) with negative derivative correspond to end-exhale positions.

Finally, the first end-exhale slice (s, tsE0) where tsE0 is the time point corresponding to the
first end-exhale of slice s, is selected to serve as reference and the navigator signal ns(t) is
computed as follows:

ns(t) =
∫ t

tsE0

v̄s(x)dx (5.1)

5.3.3 Right hemi-diaphragm height extraction

The diaphragm position is found before reordering for all images Is,t with s ∈ {sL, ..., sR}
with sL and sR the most left, respectively right, sagittal slice index for which the detection
is performed and correspond to the limits of the right hemi-diaphragm and t the time index
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Figure 5.2 Navigator extraction process.

before reordering. The diaphragm position is found by gradient based edge detection along
the superior-inferior (SI) axis. First, Is,t is cropped and the maximal intensity value saturated
at the average liver pixel intensity to avoid noisy signal from the bowel area and the liver
vessels. The resulting image Ic,sat

s,t is then multiplied pixel-wise by a parabolic shading image
in order to attenuate bright signal coming from the lung airways: Ic,sat,shaded

s,t = Ic,sat
s,t ·Ipara. A

Gaussian filtering followed by binary threshold around lung pixel mean intensity (90 in this
case) is applied on Ic,sat,shaded

s,t to have a rough segmentation of the visible part of the right
lung: Ls,t. Morphological 7x7 filters are used to include all airways in the rough segmentation:
Lmorph
s,t . A Gaussian gradient magnitude filter is applied on both Ic,sat,shaded

s,t and Lmorph
s,t before

multiplying them pixel wise to obtain the final gradient image. The maximum gradient
intensity is computed column wise and its position is stored as the diaphragm height of this
column: ∆ raw

s,c (t) (see Figure 5.3).

The final diaphragm height ∆s,c(t) before reordering is obtained after a temporal and spatial
smoothing of ∆ raw

s,c (t) to correct aberrant values. The temporal smoothing uses the fact that
before reordering the difference in diaphragm height for column c between (s, t) and (s, t+1)
is small while the spatial smoothing in sagittal slices take advantage of the fact that the
liver is a smooth organ. During this process a confidence value Cs,c,t is associated to each
computed height.
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Figure 5.3 Detected diaphragm points in a cropped sagittal slice.

5.3.4 Edge weight computation

The total weight ws,t,t′ , associated to each edge Es,t,t′ is composed of several weighting terms.
The first component, wis,t,t′ , reflects the image similarity between slices (s, t) and (s+ 1, t′).
Before the similarity is computed, in order to remove flashing artifacts caused by the blood
vessels of the liver, image intensities are saturated at an intensity value Isat, set to approx-
imately the mean intensity of the liver. Further, the images are cropped so that the lower
abdomen is left out, as the changes in this region have low correlation with the respiratory
induced motion. By visual inspection we found that in our dataset the liver always appears
centered in the superior part of the image. Therefore, we extracted this ROI using the
knowledge on the spatial distribution of the organ within the images. The weighting term is
computed as:

wis,t,t′ = 1
Np

∑
(x,y)

(
Is,t(x, y) − Is+1,t′(x, y)

0.5 × Isat

)2

(5.2)

where Np is the number of pixels in the images after cropping and Is,t(x, y) is the intensity
of pixel (x, y) of slice s at time t after saturation.

The second component, wps,t,t′ , is a measure of the difference in phase on the respiratory cycle

between slices (s, t) and (s+1, t′), defined as d =
∣∣∣∣ks,t

ls,t
− ks+1,t′

ls+1,t′

∣∣∣∣. Here ks,t denotes the number
of time points between t and the last end-exhale time point preceding t in slice s and ls,t,
the respiratory cycle length, denotes the number of time points between the last end-exhale
preceding t and the first end-exhale after t. The weight is given by:

wps,t,t′ = 1 − exp−d

1 − exp−1 (5.3)

The third component, was,t,t′ is a measure of the amplitude difference between the respiratory
cycles pseudo navigators in which t and t′ belong to:

was,t,t′ = 1 − exp−(As,t−As+1,t′ )2 (5.4)
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where As,t is the amplitude of the pseudo navigator signal of slice s on the respiratory cycle
that t belongs to.

The fourth component wns,t,t′ is a measure of the difference in the relative height of the
pseudo navigators:

wns,t,t′ = 1 − exp
−( ns(t)−ns(tI )

As,t
−

ns+1(t)−ns+1(t′
I

)
As+1,t′

)2

(5.5)

where tI , respectively t′I , is the inhale time-point of the respiratory cycle t, respectively t′,
belongs to.

The last component, wrs,t,t′ , determines the slice motion difference between (s+ 1, t) and the
reference slice (sr, ti) chosen to start the reordering process:

wrs,t,t′ = Dκ

(
v̄sr(ti)
ls+1,t′

,
v̄s+1(t′)
lsr,ti

, sgn
(

˙̄vsr(ti)
)
, sgn

(
˙̄vs+1(t′)

))
(5.6)

where Dκ is a weighted distance: Dκ(a, b, c, d) =
√

(a− b)2 + κ(c− d)2, sgn(x) is 1 if x is
positive and -1 if x is negative, and ˙ denotes the first derivative. This weighting term avoids
cumulative shifts between the vertical component median value of the motion field across the
slices.

Finally, the weight ws,t,t′ of edge Es,t,t′ is computed as follow:

ws,t,t′ = αwis,t,t′ + βwps,t,t′ + γwas,t,t′ + δwns,t,t′ + ϵwrs,t,t′ (5.7)

where α, β, γ, δ, and ϵ are scalar factors balancing the importance of each term.

In this application using liver images we included an additional weight: wds,t,t′ .This weighting
term ensures the coherence in the right hemi-diaphragm position across adjacent slices located
between sR and sL. The right hemi-diaphragm height ∆s,c(t) is automatically extracted for
each column c of s, see Section 5.3.3. The weight wds,t,t′ is expressed as follows:

wds,t,t′ = |(∆̄E
s,c − ∆̄E

s+1,c(t′)) − (∆s,c(t) − ∆s+1,c(t′))| (5.8)

where ∆̄E
s,c is the median value of the diaphragm height of all end-exhale time points for

column c of slice s. This weighting term can be omitted or changed depending on the
application.
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Figure 5.4 Slice matching algorithm. Each vertical line represents an anatomical position
S which is acquired tN times before acquiring the next one. The slice matching process
starts from a reference slice Sr. The reconstruction is done in 2 directions: backward and
forward, as the arrows show. One vertex (sr, ti) is connected to all the vertices in the next
slice (dashed lines). Each edge is given a weight ws, t to measure the matching unlikeness
between the 2 compared slices. The vertex with less value is considered the matching time
tmSr+1

(solid line). This is repeated up to construct all the volumes.

5.3.5 Volume reconstruction

Volumes are reconstructed by determining the optimal paths on the graph (the ones associ-
ated with the smallest weight) starting at each time step between the first end-exhale, tE0 ,
and the last end-exhale, tEn , of a reference slice sr (see Figure 5.4). The volume at ti is
reconstructed from vertex (sr, ti), following the optimal paths on the graph in two directions:
toward the first slice and toward the last slice. This process is repeated for all time steps to
obtain a sequence of constructed volumes. The reference slice sr is selected based on motion
criteria. Selection of the starting slice sr is made when a slice satisfies the following require-
ments: sr cuts the right hemi-diaphragm, breathing motion should not halt over the period
covered by sr, sr spans over at least one complete respiratory cycle, and the amplitude of nsr

is the median value of the amplitude of ns for all slices under the right hemi-diaphragm.

5.4 Validation metrics

5.4.1 Inter-slice diaphragm consistency

An inter-slice diaphragm metric is used as a spatial metric by considering the set of slice
positions s ∈ {sL, ..., sR} for which the diaphragm position has been found (see Section
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5.3.4). A coronal slice position c, where the right lobe of the liver is well visible, is manually
selected for each volunteer for validation purpose only. Subsequently, the mean of the sum
of the diaphragm position variance inside a sliding window, µc(ta), is computed: µc(ta) =

1
3(M−1)

∑sR−1
i=sL

∑1
j=−1(∆a

i+j,c(ta) − ∆̂a
i,c(ta)), where M = sR − sL + 1 is the number of slice

positions with a diaphragm signal, ∆a
i+j,c(ta) is the diaphragm height after reordering of the

column c of sagittal slice i + j in the reconstructed volume at time ta and ∆̂a
i,c(ta) is the

mean value along the coronal direction of the diaphragm position inside the sliding window
centered at the column c of slice i at time ta. µc(ta) is calculated for all time points and the
sum is the diaphragm discrepancy metric:

dDH(ta) =
∑

volunteers
µc(ta) (5.9)

5.4.2 Temporal metrics

Using the original time positions of the slices chosen in the reconstruction, a new pseudo-
navigator signal for each sagittal slice series was constructed. The navigator signal after
reconstruction was obtained from the values computed before reordering replaced at their
new time point. For instance, if slice (s, t) has been stacked to the volume at ta, the pseudo
navigator value nbs(t) computed for (s, t) before reordering will be used for slice (s, ta) in
the reordered volume: nas(ta) = nbs(t). Finally, a new set of signals, νas (ta) is obtained by
smoothing the pseudo-navigator signals using an amplitude conserving filter.

The distance dns(ta) is defined as the absolute difference between the original reconstructed
pseudo-navigator and the corresponding smoothed signal:

dns(ta) = |nas(ta) − νas (ta)| (5.10)

The distance dns(ta) allows for the detection of misaligned slices as they correspond to non-
smooth regions of the post construction navigator curve.

An inter-slice comparison is performed by calculating the difference of the filtered signal
νas (ta) at each slice position with the signal of the reference slice sr, νasr

(ta).

d⊺ns
(ta) = |(νasr

(ta) − ν̄asr
) − (νas (ta) − ν̄as )| (5.11)

where ν̄as is the mean of the filtered signal after reordering for slice s. The distance d⊺ns
(ta)

for each slice (s, ta) enables stacking discrepancy detection using the reference slice navigator
signal.
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Furthermore, the computation of the maximum amplitude Asmax for each navigator signal
νs enables the detection of slices that show less motion than the reference slice. Asmax is
calculated as the dynamic range of the linearly detrended pseudo navigator.

Finally, estimates of the number of breathing cycles present in each signal are computed
using the reconstructed navigators. Assuming that the navigators are centered around zero
and carry a dominant, low frequency, sinusoidal signal, they are low pass filtered and linearly
detrended, and such a function is found using least squares curve fitting, solving the following
minimization problem: arg minAs,ωs,θs

∑Nt
ta=1(nas(ta) −Assin(ωsta+ θs))2, where the frequency,

ωs, is used to calculate the number of oscillations in the signals, corresponding to the number
of detected breathing cycles, cs, at each slice position. It is postulated that the total number
of breathing cycles should be consistent across all slices after reconstruction, and in particular,
that they should be consistent with the number of cycles detected in the reference slice so
that csr ≈ cs, ∀s ∈ {1, ..., Ns}.

5.5 Results

5.5.1 Validation of the automatic end-exhale extraction

The automatic end-exhale detection algorithm was validated against a manual labelling (see
Table 5.1). There are 3 groups of slices which show similar motion patterns and appearance:
(1) liver slices which are located spatially before the cardiac cavity, (2) slices where the
cardiac cavity appears and only a small portion of the liver, (3) slices where only the cardiac
cavity appears without the liver. Because the liver appearance can be quite different between
these three scenarios when sweeping the liver volume, we decided to validate the end-exhale
detection algorithm using one exemplar from each representative group. This allows to
evaluate the accuracy from different spatial locations within the liver.

We would like to clarify the breathing during the exhalation phase can induce motion dy-
namics in the liver. At the beginning of the exhale phase, the liver progressively goes up
towards the diaphragm until it reaches a maximum height. Then, there is a short resting
period in which it remains in the same height before start the inhalation phase. The manual
annotation of the first end-exhale was performed by five operators with background in medi-
cal imaging or radiology and several years of experience in the field. They were given precise
instructions to identify the last temporal slice where the liver achieves the highest height
(in the first respiratory cycle). In other words, the temporal slice before the liver starts to
descend.

In general, the manual annotation of the end-exhale phase is a time-consuming, tedious and
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prone to errors task. In data acquired with high temporal resolution it is unfeasible the
labeling of thousands of images by one operator. Moreover, there are some factors which
increases the difficulty of manual end-exhale extraction: prolonged apnea, deep and shallow
breaths and in general high inter-fraction variability. Several observations can be made from
the results presented in Table 5.1. First, we can see that overall there is a good agreement
between the manual and the automatic labelling; moreover, the standard deviation (stdev) is
generally larger for the most difficult cases, on the slice (S2), where the heart is visible. Two
cases are of particular interest: slice S2 of volunteer 11 and slice S3 of volunteer 1. In both
there is a strong disagreement between the different operators. This is due to the fact that one
of the operator missed the first end-exhale and another one the two first end-exhales, showing
the difficulty of manual labelling. Secondly, the likelihood to miss end-exhale positions will
depend on the inter-fraction variability showed by the subject. In our dataset we observed
cases where it was extremely difficult to segment the respiratory cycles because the liver
remains for more than 10 temporary slices in the same position and/or does not descend up
to the same height. Finally, the spatial location of the slice also influences this process. In
anatomical positions like the one that crosses the cardiac cavity, the level of uncertainty in
the detection increases due to the influence of the cardiac motion over a small liver portion.
Thus the detection is challenging even for expert operators. This demonstrates the relevance
of the proposed automatic end-exhale detection algorithm.

The proposed slice reordering method for 4D image construction was compared against two
state of the art manifold alignment (MA) [73] and feature extraction [199] based techniques
respectively on a dataset of 12 volunteers. All validated using a set of spatial and temporal
metrics. The MA implementation uses Wave Kernel Signature (WKS) as graph descriptor.
Fully connected graphs were used with σG = 1.5 as suggested for the authors when using
image intensities as high-dimensional data. The parameters related with the WKS descriptor
were σWKS = 0.8 and µ = 0.9. We performed the following three modifications in [199] to
be able to use it in our data. First, we used our automatic method to identify the exhale
positions within each slice. Since we had an average of 10,000 images per volunteer, it was
unfeasible to perform a manual labeling. Secondly, the lungs were not entirely visible on our
dataset; in turn, we cropped the bottom part of our images to increase the proportion of
the lung in the images. This way, we calculate the similarity between images containing the
upper part of the liver, the diaphragm and a portion of the lungs. Lastly, for consistency
we selected the same starting slice sr for all three methods. In their article Tong, Udupa,
Ciesielski, Wu, McDonough, Mong and Campbell [199] always select the first slice as their
starting slice, but this choice greatly impairs the performance of the method on our dataset.
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Table 5.1 Automatically extracted first end-exhale time point indices in three different slice
positions for all subjects compared to manually selected time points (median ± stdev) of
5 operators. The three slice positions correspond to an area covering the liver and right
hemi-diaphragm (S1), the heart (S2) and the left hemi-diaphragm (S3). Finding end-exhale
time points on S1 and S3 is considered relatively easy, while on S2 it is challenging because
of the heart motion.

S1 S2 S3
Auto. Manual Auto. Manual Auto. Manual

V1 19 20 ± 2.9 14 16 ± 4.6 7 9 ± 25.0
V2 23 20 ± 2.6 16 19 ± 4.7 15 19 ± 4.2
V3 27 27 ± 3.2 19 20 ± 1.9 12 13 ± 1.5
V4 23 24 ± 2.5 10 16 ± 4.8 23 25 ± 1.5
V5 25 26 ± 1.4 17 20 ± 3.2 28 26 ± 1.4
V6 33 32 ± 2.4 38 32 ± 6.5 21 22 ± 3.8
V7 14 18 ± 2.4 19 21 ± 4.3 9 11 ± 2.3
V8 21 36 ± 5.7 23 14 ± 8.4 17 20 ± 1.0
V9 35 37 ± 4.4 32 27 ± 6.6 25 24 ± 4.1
V10 16 17 ± 1.7 10 9 ± 0.4 10 11 ± 6.4
V11 58 58 ± 6.1 15 17 ± 13.6 48 50 ± 5.7
V12 6 9 ± 6.4 23 26 ± 1.7 19 21 ± 1.4

5.5.2 Evaluation of the proposed 4D construction method

For our method two sets of parameters were used. One with all set to 1.0: α = 1.0, β = 1.0,
γ = 1.0, δ = 1.0, and ϵ = 1.0, and the other disregarding image similarity by setting α = 0.0

(a) Volunteer 3, slice 116 at time
point 2.

(b) Volunteer 5, slice 91 at time
point 93.

(c) Volunteer 9, slice 78 at time
point 76.

Figure 5.5 Coronal view of the reconstructed volume of 3 volunteers.
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while keeping all other set to 1.0. Further, it was found that the method in general was
insensitive to the choice of these weighting scale factors. These weighting scale factors were
defined systematically using heuristic trial and error while evaluating its influence on metric
results.

Figure 5.5 shows a qualitative result of the 4D construction method on 3 volunteers. The
spatial consistency is very good for the part of the liver under the right hemi-diaphragm even
if for these result the optional weight wd was not used. In the part under the heart some
slices are misaligned. In fact, it is difficult to ensure that the 2D acquisition has captured all
the possible combination of the heart and respiratory motions. The slice stacking may thus
be suboptimal because of the missing information.

Figure 5.6 shows the average variance of the diaphragm height (see 5.4.1) in all volunteers as
a function of time for each reordering method. The lower values, which were obtained with
the proposed method, indicate a greater spatial consistency.

The result of the validation using the two navigator based temporal metrics (see Section
5.4.2) across all volunteers is presented in Figures 5.7 and 5.8. It is shown for both sets of
parameters for our method, one using combined image similarity and motion information and
one using only motion derived weights, as well as the two other methods. Overall, it can be
seen that our proposed method outperforms the other two, showing smoother reconstructed
navigator signals and lower inter-slice dissimilarities. The proposed method was a significant
improvement on the compared methods (p-value=0.002 in both cases) for the intra-slice
reconstructed navigator smoothness. However, statistical analysis showed that the proposed
method did not provide a significant improvement on the inter-slice reconstructed navigator
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dissimilarity (p-value=0.2). This may be because the test was done with insufficient number
of cases. Statistical analyzes were performed using functions implemented in the Python
Scipy library. Wilcoxon signed-rank test was used since the data is not normally distributed.

The same metrics are shown for volunteer 5 in Figures 5.9 and 5.10 for all slice positions and
time points where each row corresponds to the validation of one constructed navigator signal.
We can see that in this case our method produces smoother reconstructed navigators over the
whole 4D sequence, Figure 5.9, as well as having lower inter-slice differences across the liver.
Further, it can be seen in Figure 5.11 that the proposed method has reconstructed navigator
signals of appropriate amplitudes compared to the ones before construction, showing more
motion across the right hemi-diaphragm and a near consistent number of estimated cycles
across the whole imaged region.

Figure 5.12 shows an analysis of each single weight contribution. The inter-slice validation
result is similar for all thus improvements concerning the intra-slice metric is more interesting
to analyze. For the intra-slice reconstructed navigator smoothness, the best results were
yielded with wa and wn. These weights have shown to be the most influential in the volume
construction. Slice matching that belong to respiratory cycles with similar amplitude provides
robustness to the volume construction since it copes with the irregular breathing.
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Figure 5.7 Intra-slice reconstructed navigator smoothness, a lower value is better. Box plot
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Figure 5.8 Inter-slice reconstructed navigator dissimilarity. Box plot shows the minimum
value, the first quartile, the median, the third quartile and the 95th percentile of d⊺ns

(ta) for
all time points and all slice positions.
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Figure 5.9 Intra-slice temporal metric, based on Eq. 5.10, for all time points and all slices
for volunteer 5, showing near zero values for our proposed method.
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for volunteer 5.
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Figure 5.12 Contribution of each single weights for the construction (a) Intra-slice recon-
structed navigator smoothness (a lower value is better). (b) Inter-slice reconstructed naviga-
tor dissimilarity.

5.6 Discussion and conclusion

The results presented here demonstrate that the proposed method outperforms state of the
art methods for slice reordering both in terms of spatial and temporal quality. Compared
to other methods that assume a regular respiratory pattern, our method is able to cope
with irregular breathing and with small breath-hold of the volunteers. The automatic end-
exhale time detection and the automatic pseudo navigator extraction allow the method to
work on high spatial and temporal resolution data that capture several respiratory cycles,
enabling inter-cycle variability studies. The flexibility in starting slice selection enables the
reconstruction of different 4D image sequences and increase the variability of respiratory
motion patterns that an operator can choose to capture. This is especially interesting for
motion model construction.

The proposed method does not use any information from the previous sorting during the
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current sorting, in order to avoid propagating potential inconsistencies. Nevertheless, it may
occur that some slice stacked during the construction of one volume at particular point in
time may be used for others volumes as long as it gets the lowest weight value compared
with the all the remaining slices. In the practice, this means that the 4D image construction
is a numerical approximation of the real organ motion.

In this study, the weighting parameters were chosen empirically. Surprisingly, the image
similarity weight did not seem to have any positive effect on the 4D construction in our
method, suppressing motion by favoring the slice from the same time point throughout the
volume sequence. As part of our future work, a grid search will be implemented to optimize
the weighting parameters; we expect an increase of the reconstruction accuracy. From a visual
inspection of the reconstructed volumes with the 3 methods, it can be concluded that slice
stacking at inhalation positions is more difficult because the liver does not always descend
to the same position.

To accurately reconstruct the area under the heart, it is important to ensure that most of
the possible combinations of heart and respiratory motions are acquired for all the slices.
Alternatively, the heart motion can be suppressed using cardiac gating; however, this alter-
native will reduce the temporal resolution and the respiratory motion may not be thoroughly
acquired. A final possibility would rely on an algorithm which can remove cardiac motion
using a golden-angle radial acquisition or post-processing compensation tools.

One of the main limitations of existing methods, including the one presented in this paper,
is the absence of a global temporal consistency measure during optimization. The main chal-
lenge with this optimization is the large increase in computational time required. However,
we believe that finding a way to add global temporal coherence in a slice reordering method
would greatly improve the quality of the results and should be investigated in future work.
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opment project (CRDPJ-517413-17).
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CHAPTER 6 ARTICLE 2: PREDICTIVE ONLINE 3D TARGET
TRACKING WITH POPULATION-BASED GENERATIVE NETWORKS

FOR IMAGE-GUIDED RADIOTHERAPY
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Remarks: This paper presents the first population-based deep model able to relate temporal
2D slices with a future 3D deformation. It introduces a methodology to relate input images
and dense deformations by minimizing their distances within a low-dimensional space. It also
demonstrates that the created latent space in meaningful since it contains respiratory phase
information. The results show the capability of the network to predict future anatomical
changes while bringing important advantages over existing techniques.

Predictive online 3D target tracking with population-based generative networks
for image-guided radiotherapy

Liset Vázquez Romaguera1, T. Mezheritsky1, Rihab Mansour2, William Tanguay3, Samuel
Kadoury1,2

1 Polytechnique Montreal, Canada, 2 Centre Hospitalier de l’Université de Montréal
Research Center, 3 Département de Radiologie, Radio-Oncologie et Médecine Nucléaire.

Faculté de médecine, Université de Montréal.

6.1 Abstract

Purpose Respiratory motion of thoracic organs poses a severe challenge for the administra-
tion of image-guided radiotherapy treatments. Providing online and up-to-date volumetric
information during free-breathing can improve target tracking, ultimately increasing treat-
ment efficiency and reducing toxicity to surrounding healthy tissue. In this work, a novel
population-based generative network is proposed to address the problem of 3D target location
prediction from 2D image-based surrogates during radiotherapy, thus enabling out-of-plane



67

tracking of treatment targets using images acquired in real-time. Methods The proposed
model is trained to simultaneously create a low-dimensional manifold representation of 3D
non-rigid deformations and to predict, ahead of time, the motion of the treatment target.
The predictive capabilities of the model allow correcting target location errors that can arise
due to system latency, using only a baseline volume of the patient anatomy. Importantly,
the method does not require supervised information such as ground truth registration fields,
organ segmentation, or anatomical landmarks. Results The proposed architecture was eval-
uated on both free-breathing 4D MRI and ultrasound datasets. Potential challenges present
in a realistic therapy, like different acquisition protocols, were taken into account by using
an independent hold-out test set. Our approach enables 3D target tracking from single-view
slices with a mean landmark error of 1.8 mm, 2.4 mm, and 5.2 mm in volunteer MRI, patient
MRI, and US datasets, respectively, without requiring any prior subject-specific 4D acquisi-
tion. Conclusions This model presents several advantages over state-of-the-art approaches.
Namely, it benefits from an explainable latent space with explicit respiratory phase discrim-
ination. Thanks to the strong generalization capabilities of neural networks, it does not
require establishing inter-subject correspondences. Once trained, it can be quickly deployed
with an inference time of only 8 ms. The results show the capability of the network to pre-
dict future anatomical changes and track tumors in real-time, yielding statistically significant
improvements over related methods.
Keywords: Motion tracking, Deep generative networks, 4D MRI, 4D ultrasound, Radio-
therapy, Liver

6.2 Introduction

Changes in organ shape and movement in abdominal and thoracic cavities due to the patient
breathing induced deformation represent an important barrier in radiation therapy. Conse-
quently, target tracking strategies are crucial to improve control of radiation beams within
the body [202]. Several studies, particularly in hepatic imaging, have shown the extent of
liver motion and deformation during free breathing, as well as between consecutive inhale
and exhale phases [203]. These studies demonstrate that deformation modes is much more
complex than a simple caudal/cranial translation, and includes elastic deformation as well
as rotation effects which might affect the dose administration towards a defined target.

In recent years, technological innovations such as MR-Linac systems have enabled the inte-
gration of high-strength MR scanners with linear accelerators into a single device, providing
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high-quality, real-time images of tumor targets while these are exposed to radiation beams.
However, the acquisition is limited to select 2D slices, which does not capture out-of-plane
motion, thereby compromising an accurate adaptation for 3D motion tracking. Therefore, the
ideal solution for in-room treatment systems would yield continuous 3D information of both
tumour and surrounding tissues location. Currently, the acquisition of volumetric images at
a clinically acceptable spatio-temporal resolution is not available in commercial scanners due
to physical and physiological constraints. Hence, the reconstruction of a full volume from
partial observations (in-room cine slices) is highly desirable for on-table needs. Moreover, to
avoid errors during dose delivery, the system latency must be considered, which is the time
required for surrogate acquisition, target detection, beam shaping calculation and delivery.

Traditional solutions rely on non-rigid registration and deformable statistical models [90,
178, 179, 202, 204]. In [202], the authors extrapolated the 2D displacement fields estimated
between orthogonal cine-MRI and the corresponding slices in a reference volume in the three
anatomical directions. Then, the obtained volumetric motion field was used to warp the
reference volume and estimate the deformed volume. However, this approach is difficult to
adapt in real-time. Alternatively, many works are based on maximizing the correlation be-
tween the surrogate images with motion models. An important consideration is that the
target position has to be predicted into the future so that the radiation gantry can react to
the estimated target motion in a reasonable timeframe. These motion models can be subject-
specific or population-based. In the first category, the motion information is extracted from
patient-specific 4D data using deformable registration. Generally, a statistical model is com-
puted afterwards using this motion information. For instance, in [90] Principal Component
Analysis (PCA) was applied to parameterize the pre-treatment motion information. The
weights of the eigenvectors were iteratively optimized until achieving the best alignment be-
tween a warped reference volume and the surrogate slices. A similar approach was adopted
in [175], assuming a pre-operative reference volume along with single online 2D cine MRI
slices. The authors proposed to refine the motion model using free-from deformations and
used a data fidelity constraint to find the best match between the warped volume and the
2D image during the optimization. Inspired by a previous work [178], in [179] was proposed
a model based on regions of interest to relate the 3D motion, derived from 4D-CT data, with
surrogate CT slices. In the literature, results reported for these patient-specific models are
often more accurate than for population-based methods. In a clinical scenario, its reliability
depends, however, on the degree of patient-specific inter-fraction motion variations. In ad-
dition, the assumption of a pre-treatment 4D MRI acquisition and processing constitutes an
important limitation since it is not available in many clinical scenarios with traditional Linac
systems. In contrast, population-based models can be applied in unseen patients in the ab-
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sence of any 4D image data. To construct them, datasets of different patients are combined
to a single motion model with the advantage of capturing broader motion variability (see
Figure 6.1). Moreover, the model generation can benefit from a progressive increase in the
amount of data [203]. In several cross-population approaches proposed over the past years,
the backbone is a PCA model driven with multiple types of surrogates [205–207] although
some works based on manifold learning have also been reported [208]. In [206], anatomical
landmarks in ultrasound images were used for driving a population model. Furthermore, the
authors employed an artificial neural network with a single hidden layer for spatio-temporal
prediction of the respiratory liver motion. In [207], non-linear regression was applied to
find the correlation between arbitrary surrogate signals and the motion model parameters.
Although the aforementioned population models have achieved good accuracy with errors
below 3 mm, establishing inter-subject correspondences remains a challenging task due to
anatomical variations and missing correspondences in the presence of pathological structures.
It is also time-consuming, complex, and involves direct human interaction.

Recent advancements in deep learning have opened new opportunities to address the 4D
reconstruction task given sufficiently large training datasets. Several attempts were made
with the purpose to learn a joint mapping between partial views and prior 3D shapes [209,
210]. These works have paved the way to relate partial observations with high-dimensional
data in deep frameworks. Also, the excellent generalization capabilities of neural networks
enable learning over a population dataset and applying the knowledge to unseen subjects,
which resembles traditional inter-subject motion models. Despite this, there are relatively
few works on motion modeling and 4D tracking using deep networks. A related work in
this field using conditional generative networks was presented by [180]. However, it requires
patient-specific 4D data before treatment, which is a major limitation. Moreover, the model
was validated with only 2 seen anatomies, each one with a few hundreds of temporal points.

We propose a novel population-based framework to address the problem of online predictive
3D motion tracking from navigation surrogates. Our model is trained in an unsupervised
manner, to learn a compact manifold representation of a population of various 3D defor-
mations from a generative network, which allows for out-of-plane target tracking using only
in-plane real-time images. Furthermore, the model leverages sequences of past partial ob-
servations to recover deformation fields ahead of time, thereby allowing for system latency
compensation. To the best of our knowledge, this is the first population-based model using
deep generative networks applied to respiratory motion tracking for 4D MR or US imag-
ing. Its prediction capability in unseen anatomies finds an ideal application in radiation
treatments where subject-specific 4D MRI acquisitions are not available.
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Figure 6.1 Schematic representation of the main components for population-based motion
modeling before treatment and its application during image-guided radiotherapy.

6.3 Material and Methods

The proposed surrogate-driven deep motion model learns from population-based 4D datasets
which were acquired and reconstructed to cover a significant variety of breathing patterns.
Figure 6.2 shows a schematic representation of the proposed model. During training, the
model learns, in an unsupervised way, how to map volume deformations at different respira-
tory phases to a low-dimensional space. Furthermore, it learns to recover the dense deforma-
tion given its compact representation. During the inference process, anatomical information
is added in the form of compressed skip connections. Partial observations, specifically 2D
images (cine MR or B-mode ultrasound), which contain phase information, are processed by
a spatiotemporal network. Each phase representation is related to a certain deformation,
represented by its corresponding low-dimensional coordinate. After training, the constructed
embedding can be seen as a motion model which can be driven by the image surrogates.
During deployment, the inputs are a pre-treatment volume gated at a common reference
respiratory phase and 2D image surrogates. The model allows predicting a future 3D dis-
placement vector field (DVF), thereby compensating for system latencies. Details about the
dataset acquisitions as well as the model components are provided in the next subsections.
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6.3.1 Datasets

4D MRI: Free-breathing sagittal slices were acquired from 25 healthy volunteers, who pro-
vided their written consent. The acquisitions were carried out on a 3T Philips Ingenia whole
body MRI scanner using a 2D T2-weighted Balanced Turbo Field Echo (bTFE) sequence.
This sequence allowed good vessel visualization without using any contrast agent. The ac-
quisition was limited to blocks of 5 min each since longer acquisitions made the subjects
feel uncomfortably warm. During sessions of 20 minutes, 4 blocks were acquired, which
corresponded to 240-400 breathing cycles, considering that the normal respiration rates for
an adult person at rest range from 12 to 16 breaths per minute. Image dimensions were
32 × 176 × 176, pixel spacing was 1.7 × 1.7 mm2 and the slice thickness was 3.5 mm. An
alternation scheme was followed to acquire data frames covering the right liver lobe inter-

L2 distance

1x1x1 Conv

Image
similarity

Gradient 
penalty

Population-based generative DVF network

Surrogate-based volume inference

𝜙𝑡 𝑉𝑟𝑒𝑓 ∘ 𝜙𝑡𝜙𝑡

𝑉𝑟𝑒𝑓

𝑉𝑡

𝑉𝑡

𝐼𝑡−3 𝐼𝑡−2 𝐼𝑡−1

Ƹ𝑧𝑡

𝑧𝑡

Convolution  

Fully connected

Concatenation

64
128

64
32

16 3

32
48

96

64

64
128
256
128

Gated recurrent unit

1

1

1

32

Figure 6.2 Proposed architecture for intra-treatment volume prediction from partial 2D ob-
servations and a static reference volume.



72

leaved with navigator frames taken at a fixed anatomical position, chosen in the middle of
the liver. In order to produce time-resolved volumes, we followed the slice stacking approach
detailed in [2]. The temporal resolution of the volumes was of 450ms, which produced 2480
reconstructed volumes per subject.

A second free-breathing MRI dataset was acquired in a 3.0 T clinical MRI system (Ingenia,
Philips Healthcare) using a 3D stack-of-stars gradient-echo radial sequence with golden-angle
sampling scheme. This sampling scheme, which uses ≈ 111.25◦ angular increment between
consecutive spokes, enables extraction of the respiratory signal. Relevant imaging parameters
included TR/TE=3.40/1.40 ms, flip angle 12◦, field of view (FOV) 450 × 450 × 250 mm3,
spatial resolution 1.5 × 1.5 × 5.0 mm3. The data was acquired continuously during 3 minutes
and further reconstructed into 10 respiratory phases using the XD-GRASP technique [98].
The study population comprised 11 patients diagnosed with hepatocellular carcinoma, who
provided their written consent. For each patient, tumors exceeding 10 mm in the right
liver lobe were annotated by an experienced abdominal radiologist using previous diagnostic
images. Of the patients, 6 were men and 5 women, with ages around 70 (± 11) years.

As a pre-processing step for model deployment, the volumes of both datasets were cropped
to 32 × 64 × 64 and resampled to a voxel size of 3.5 × 3.4 × 3.4 mm3 to focus on the liver and
remove organs in the bottom part of the abdomen such as the stomach, pancreas, kidneys and
intestines. Therefore, the modeled field of view was ≈ 112 × 218 × 218 mm3 in the left-right,
anterior-posterior and superior-inferior anatomical planes, respectively. The 4D reconstruc-
tion from cine acquisitions is a challenging task that is not exempt from errors in the sorting
process. Furthermore, because of some uncertainties during the image acquisition and the
involved deformable registrations, the actual motion is not precisely known. Nonetheless, the
3D deformations used to train the model still represent a valid ground truth to evaluate its
performance.

4D US: A third dataset of free-breathing 4D US sequences from 20 healthy volunteers,
who provided their written consent, was acquired using a Philips EPIQ 7G ultrasound sys-
tem with a X6-1 matrix array transducer. During acquisition, the ultrasound probe was
placed under the sternum along the sagittal plane, capturing a cross section of the left liver
lobe. The imaging depth was set to 12 cm. Focus and contrast were adjusted to provide
the best visualization of the liver and its vessels. Limited to a 15 s acquisition window, it
was possible to capture up to 3 respiratory cycles with a 250 ms temporal resolution. The
acquired volumes were first pre-processed by applying a Bayesian non-local means filter [211]
for speckle removal. Then, the volumes were resampled to a 2.0 × 2.0 mm2 spatial resolution
with a slice thickness of 1.0 mm and cropped to a volume size of 64 × 64 × 32.
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6.3.2 Problem formulation

We consider an ensemble of P time-resolved 3D acquisitions over a population, generating
4D datasets. The motion observed in each dataset p ∈ P with T + 1 temporal volumes is
described by deformation fields ϕt ∈ RH×W×D×3 between a moving image V0 ∈ RH×W×D and
the fixed images Vt ∈ RH×W×D where t ∈ [1, T ], and H,W and D denote the height, width
and depth of the volumes, respectively. For each subject, a volume obtained at exhale Vt=0 is
selected, which serves as reference to determine relative displacements to each other temporal
volume. Therefore, each dataset contains a set of 3D deformations ϕp =

〈
ϕ1, ϕ2, . . . , ϕT

〉
.

The first goal is to compute a mapping between each deformation and its low-dimensional
representation ϕt → zt ∈ Rd where d ≪ H×W ×D×3, thereby computing a motion model.
Additionally, it is assumed that for each deformation ϕt, image surrogates at times

〈
It−1,It−2,

. . . It−m
〉

are available. Having this compact representation of motion, the second goal is to
drive the model by using these partial observations.

6.3.3 Population-based generative DVF network

The first step of the workflow for motion modeling is motion quantization using deformable
registration. In order to develop a fully differentiable pipeline, we use a registration function
parameterized with a neural network. It receives a reference volume Vref and a target volume
Vt at time t as inputs to generate the breathing-induced organ DVF ϕt between them. For the
registration function, we use the U-net-like architecture proposed in [42]. Nevertheless, the
proposed framework is agnostic to this module. Therefore, any other similar configuration
can be used. The registration module is previously trained using the same training set,
meaning that during model optimization their weights remain static.

Dimensionality reduction was shown to be an essential tool for motion modeling. The core
idea is to uncover the structure of high dimensional data by projecting it down to a subspace
where hidden features become visible. We leverage the capacity of autoencoders to learn
a non-linear parametric mapping from volume deformations to their latent representations.
The goal of the auto-encoding process is to produce a meaningful space at the bottleneck
that enables input reconstruction. In our model, we start by defining a feature-extracting
function denoted as fθ, namely the encoder. It computes a feature vector z = fθ(ϕt) from an
input ϕt which is a compact input representation. Another function, gθ, called the decoder,
maps from the low-dimensional representation back into the input space, thereby yielding
a reconstruction ϕ̂t = gθ(z). The assumption is that by compressing the data into a more
compact representation space, the model decides which features of the observed data are
relevant information and what aspects can be discarded.
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The proposed deep motion model is composed of a motion encoder, an auxiliary encoder for
the anatomical information and a motion decoder. The first and second sub-models possess
similar configurations except for the number of input channels (3 for the motion encoder
and 1 for the auxiliary encoder) and output channels. They are composed of successive 3D
convolutions with kernel size 3 × 3 × 3 and a stride of 2 followed by ReLU activations and
batch normalization. Due to the ill-posedness of the autoencoding framework, we integrated
an auxiliary encoder. Its role is to extract features from the reference volume. Since during
model deployment only partial observations will be available, the pre-operative volume will
be the only acquisition that will provide complete subject-specific anatomical information.
Features go through compressed skip connections before reaching the decoder as a way to
limit information bypass while preserving spatial detail [212]. In this variant, feature maps
are compressed via 1 × 1 × 1 convolutions to a single map before concatenation in the de-
coder. Also, the features skipped from the anatomical encoder are normalized with instance
normalization. The decoder receives a 256 sized latent vector z (z = 256) which is reshaped
and fed to a stack of convolutional layers followed by Leaky ReLU (0.2) non-linearities and
batch normalization. The last convolutional layer has linear activation to output 3 feature
maps corresponding to the motion planes. We train the autoencoder with an image similarity
loss on the final voxel output against the target voxels (Vt) while ensuring smooth motion
fields. This loss function has the form:

Lrec = Lsim

(
Vt, V̂t

)
+ αLsmooth

(
ϕ̂k
)

(6.1)

where V̂t results from warping Vref with the estimated motion ϕ̂k and α is a regularization
parameter.

6.3.4 Surrogate-based volume inference

The lower part of the model illustrated in Figure 6.2 constitutes a module designed for
driving the model for future volume inference. It receives an image sequence in m prior
time points with respect to the deformation in the deep model, ie.

〈
It−1,It−2, . . . It−m

〉
.

Each single image is fed to a stack of 2D convolutional layers with kernel size 3 × 3 and a
stride of 2 followed by ReLU activations and batch normalization. The feature vectors are
concatenated through the temporal dimension and fed to a convolutional gated recurrent unit
which leverages the spatiotemporal information. This is followed by a fully connected layer
that produces an embedding vector ẑt, which attempts to resemble the encoded deformation
zt by minimizing the L2 distance between both latent representations. The optimization
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problem in our framework can be written as:

arg min
Φ

Ltotal

(
Vt, V̂t, Φ̂t, zt, ẑt

)
where Ltotal = Lrec + βL2 (zt, ẑt) (6.2)

where β is a regularization parameter.

6.3.5 Implementation details

The proposed model has 2 main tasks: (1) to create a low-dimensional mapping by com-
pressing and recovering 3D deformations, and (2) to associate partial observations to their
corresponding embedding points. Training the proposed model from scratch to jointly ad-
dress both tasks is a challenging problem. Therefore, the model was trained in three stages
thereby learning both aforementioned tasks in the first two stages. In the first stage, we
train the autoencoder independently to create the motion model using Eq. (6.1). The second
stage focuses on regressing the latent code generated by the encoder from the input defor-
mation field by solely minimizing L2. Three temporal points for the image surrogates were
used (m = 3). Meanwhile, the autoencoder weights remain fixed. In the final stage, we
fine-tune the network jointly with both losses but weighting the L2 term with a parameter
β = 0.01 as shown in Eq. (6.2). In all steps, the network’s parameters were optimized us-
ing the Adam optimizer with an initial learning rate set at 10−3, which was reduced by a
factor of 2 after multiples epochs without improvement. The MRI dataset was trained us-
ing the negative local normalized cross correlation (NCC) while the US dataset was trained
using Mean Square Error (MSE) as the image similarity metric. In Eq. (6.2), α = 0.01
both for NCC and MSE. Mean centering and standard deviation normalization were ap-
plied to the input images and volumes. Training was performed in PyTorch with a batch
size of 10. We used a leave-one-out validation scheme for both volunteers MRI and US
datasets, considering a different anatomical case for testing. The patient MRI dataset was
used for evaluation purposes as an independent hold-out test dataset. This means that the
images were not used in any way during the model optimization. Our code is available at
https://github.com/lisetvr/population-TL-model.

6.4 Experimental results and discussion

We evaluate the effect of the surrogate slice plane on the estimation accuracy. Sagittal and
coronal plane images were considered as the surrogate navigator since they both capture the
cranial-caudal direction where the largest liver motion occurs. Furthermore, the predictive
capability of the proposed model was confronted to a motion extrapolation (ME) approach
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proposed by [202] in the context of MRI-guided radiotherapy. We also implemented a related
deep network (DN) which fuses feature representations from a reference volume and a surro-
gate slice to generate a 3D deformation [213]. Both approaches are considered population-
based, meaning that a subject-specific dataset is not required prior to treatment. Statistical
significance was calculated by applying a Wilcoxon signed-rank test. In all the tests, p < 0.01
was considered to reject or fail to reject the hypothesis that the compared samples come from
the same distribution.

In the first experiment, we investigated the structure of the latent space of the proposed
model. We applied PCA on the latent code vectors to reduce their dimensionality to a
single point in a bidimensional Cartesian space while retaining ≈ 92 % of the variance. The
manifolds shown in Figure 6.3 reveal that, for both modalities, data points are clustered
according to their position within the respiratory cycle, which is convenient for a motion
model. Indeed, the size of the latent vector z is an important choice for the network design
since it defines how much variability can be encoded in the model. Experiments that support
this decision can be found in the supplementary materials. Our second experiment aimed
at investigating how the model copes with inter-cycle variability and irregular breathing. A
single liver vessel, located in the medial position and near to the diaphragm, was tracked
through several respiratory cycles. Figure 6.4 illustrates the target and predicted relative
vessel positions from MRI as well as the error plot in the superior-inferior and anterior
posterior motion directions in three cases with irregular breathing. From the graph we can
see that errors in the superior-inferior and anterior-posterior motion planes remain lower than
3 mm and 1 mm, respectively. In these cases, our model showed a reasonable performance

(a) MRI dataset (b) US dataset

Figure 6.3 Low-dimensional mapping of the latent representation in MRI and US datasets.
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following the target trajectory in the presence of small apneas and variable cycle amplitudes.

In order to assess the accuracy over the whole anatomy, 3D deformable registration between
ground-truth and predicted volumes was performed using a B-spline transformation model

Figure 6.4 Vessel trajectories in the superior inferior and anterior posterior motion planes
observed in three subjects with irregular breathing in the MRI dataset. Dashed red lines
represent the error (in mm).

(a) MRI volunteer dataset (b) MRI patient dataset (c) US dataset

Figure 6.5 Spatio-temporal prediction errors of all voxel-wise displacements.
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and the mutual information similarity measure implemented in Elastix [214]. This toolbox
is widely used for linear and non-linear registration of abdominal images. Organ masking
is commonly used when matching lung data to avoid considering the rib cage, especially
in CT scans. We considered the whole MR volume since the lung area is minimal and
the rib cage is not visible. Moreover, relatively small displacements are expected since,
overall, predicted volumes are similar to ground-truth volumes. Figure 6.5 presents the error
distribution considering all spatio-temporal voxel-wise displacements. It can be observed
that the median error is smaller than 3 mm across all the datasets. The overall computed
mean error was 1.78 ± 1.0 mm, 1.74 ± 0.9 mm and 1.99 ± 1.98 mm for volunteer MRI,
patient MRI and US datasets, respectively. Between 5 and 10 expert-selected landmark
annotations throughout one complete respiratory cycle were used to measure the geometrical
accuracy between ground-truth and predicted landmark positions (see Figure 6.6). During
inference, we excluded the reference volume from the processed volumes. Therefore, it was
not considered in the calculation of the prediction errors. Moreover, the reference volume
was taken at the very first end-exhale obtained, while the evaluated breathing cycle was the
last one in the dataset. Hence, the elapsed time between both was maximized within the
limits of the dataset (15-20 min interval for MRI). Tables 6.1 and 6.2 summarize the target
tracking errors computed on both datasets for different respiratory phases. For reference,
in the first row of the tables, we report the tracking errors measured when there is no
motion compensation (Unregistered). The values reveal that using coronal plane slices yield
an increased performance compared to the sagittal view, presumably because the coronal
plane covers a larger liver area. Moreover, we found the differences between measurements
obtained using sagittal and coronal slices as being statistically significant (p < 0.01, Pearson
correlation coefficient ρ = 0.94). In the MRI dataset, our model driven by coronal slices has
demonstrated the ability to accurately predict deformations throughout all the respiratory
cycle. The most challenging predictions were near the inhale phase, where the registration-
based approach led to the lowest median errors. It should be noted this phase is prone to
inter-cycle variability. Furthermore, large displacements occur due to increased volume of
the lungs during air intake. When comparing overall median results, the accuracy improved
by a statistically significant margin by 1.7 mm (p < 0.01, ρ = 0.92) and 1.0 mm (p < 0.01,
ρ = 0.82) over DN and ME approaches, respectively. In the US dataset, the proposed model
outperformed both DN and ME, achieving a statistically significant improvement of 1.7 mm
(p < 0.01, ρ = 0.91) and 0.9 mm (p < 0.01, ρ = 0.82) overall respectively. Generally, both
slice orientations provided similar performances except for the inhale phase where the coronal
surrogate model achieved a lower average TRE. In the US dataset, the sagittal view covers
a larger portion of the liver than the coronal view. We hypothesize that this contributes to
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the better performance of the model with the sagittal surrogate overall. Figure 6.7 displays
the variability over subjects across all the evaluated datasets.

Figure 6.8a presents NCC values between ground-truth and predicted volumes when the
imaging plane is shifted from the middle liver position, with which the model was trained. It
can be seen that, in both MRI and US datasets, the similarity values remain approximately
constant. Therefore, the model is tolerant to potential shifting of the surrogate plane. This
characteristic is especially important for ultrasound, where it is more difficult to reproduce a
certain imaging plane. We also compared predicted and ground-truth volumes at 5 different
sub-volumes along the right-left axis to evaluate if the model better predicts the motion in
the vicinity of the surrogate plane across all the MRI and US datasets. Figure 6.8b shows
that, in the MRI dataset, the quality is slightly degraded on the left side of the volumes.
However, in this case the leftmost slices correspond mainly to skin and ribs. On the other
hand, in the US dataset there is a relatively stable similarity across all positions.

Difference maps of the temporal volumes at several respiratory phases in MRI and US datasets
are shown in Figures 6.9 and 6.10. In both cases, comparing ground truth and predictions, it
is noticeable that the model correctly predicts the motion shown by the true image sequence.
Additional qualitative results can be found in the supplementary materials. Finally, we
assess the plausibility of the deformations by computing the Jacobian matrix determinant
(|J |). The percentage of voxels with a non-negative |J | was 99.7%.

The proposed method requires a mean computation time of 8 ms (average from 20 measure-
ments) for predicting the deformation field on a NVIDIA Titan RTX GPU with 64 GB RAM.
With a prediction horizon of 450 ms (in the MRI dataset), the motion model is real-time
applicable and allows for online tracking of the target volume. Typical system latencies en-
countered during dynamic target tracking based radiation delivery are estimated to be of the
order of 300 ms [203]. The capacity of convolutional recurrent units for image-based sequen-
tial prediction has been previously validated in [119] for MRI and US imaging modalities.
In this work, we applied this sort of structure to extrapolate one future time step, which
depends on the temporal resolution of the employed acquisition. Nonetheless, the predictive
horizon can be extended to more time steps. This should be validated in a future study. After
comparing results achieved in both datasets, it is noticeable that the performance in the US
dataset was worse than in the MRI dataset. It is important to note that the former captured
less respiratory cycles and by consequence, less motion variability. Also, the US dataset is
comprised of a smaller number of subjects. It is well known that, in deep learning-based
approaches, the dataset size is a limiting factor, particularly given the poorer image quality.
Therefore, to create robust deep motion models, it is crucial to capture enough breathing
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Table 6.1 Target tracking errors (in mm) measured at selected respiratory phases for the
model trained with the MRI dataset. Overall values consider all the phases. Values are
mean, median, (P95).

Model Mid-inhale Inhale Mid-exhale Exhale Overall

Unregistered
9.5

8.4 (15.6)
11.6

10.8 (18.9)
4.4

2.5 (12.1)
1.6

0.3 (8.5)
6.6

5.5 (17.4)

DN [213]
4.8

4.5 (12.4)
5.3

2.9 (10.3)
3.1

2.1 (5.5)
2.6

1.3 (4.7)
4.1

3.1 (11.4)

ME [202]
3.2

2.8 (8.8)
2.5

1.7 (6.1)
2.2

2.1 (4.6)
2.3

1.5 (4.0)
3.9

2.4 (8.2)

Proposed
(sag)

2.8
2.1 (6.1)

4.9
3.0 (7.8)

1.8
1.4 (4.2)

2.3
1.2 (4.8)

2.6
2.0 (7.1)

Proposed
(cor)

2.4
1.8 (6.0)

2.3
1.9 (4.0)

1.3
1.1 (2.7)

1.0
0.8 (1.9)

1.8
1.4 (4.7)

Table 6.2 Target tracking errors (in mm) measured at selected respiratory phases for the
model trained with the US dataset. Overall values consider all the phases. Values are mean,
median, (P95).

Model Mid-inhale Inhale Mid-exhale Exhale Overall

Unregistered
12.3

10.7 (24.8)
17.9

17.2 (23.7)
7.4

5.9 (14.3)
4.1

2.8 (10.1)
10.4

9.4 (26.9)

DN [213]
10.3

9.3 (22.4)
14.5

13.3 (24.6)
6.1

4.6 (11.2)
4.4

3.1 (9.1)
8.8

6.9 (23.6)

ME [202]
8.6

7.5 (17.8)
12.9

11.9 (24.5)
6.2

5.5 (12.0)
4.1

3.4 (7.8)
8.0

6.1 (22.4)

Proposed
(sag)

7.5
7.3 (13.7)

12.1
12.7 (20.5)

4.8
4.0 (8.1)

3.2
2.9 (7.1)

6.9
5.2 (17.0)

Proposed
(cor)

7.9
6.2 (14.7)

11.5
10.2 (23.7)

4.9
4.6 (10.3)

4.0
3.1 (8.6)

7.1
5.4 (20.1)
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(a) (b) (c) (d)

Figure 6.6 Selected vessels across temporal volumes: (a) V5 MRI (medial), (b) V5 MRI
(lateral), (c) V10 US (medial) and (d) V10 US (lateral).

variability and different anatomies. The main limitation of our motion model seems to be
reaching the deformation at the inhale phase. Although the registration-based approach
can be more accurate for this particular case, it relies on two orthogonal planes whereas
our model uses only one. Furthermore, previous methods are limited to derive the global
anatomy. Also, the run-time to acquire and register two pairs of images might be orders
of magnitude greater than our approach, which is a major limitation for real-time interven-
tions. The proposed framework is capable of predicting not only the 3D tumor position but
the whole anatomy with a single imaging plane. Therefore, in the context of image-guided
radiotherapy (IGRT), this knowledge can be used to estimate the delivered dose and subse-
quently to adapt the treatment. Besides, our approach presents two main advantages over
those using 2 orthogonal images. First, the acquisition time of the surrogate is lower since
we only use a single image rather than two. Second, we can track organs and structures
that are not present in the imaging plane. In a prospective clinical study about the usage
of IGRT to treat abdominal malignancies, it was found that, while the use of 2D-cine gating

(a) MRI volunteer dataset (b) MRI patient dataset (c) US dataset

Figure 6.7 Initial motion and target tracking errors for each subject.
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permitted target monitoring during treatment, the unobserved intra-fraction organs at risk
(OAR) motion degrades dosimetric benefits [215]. It was also acknowledged that this concern
could be mitigated by proving volumetric information. However, this real-time volumetric
information cannot be provided by current scanners. Hence, so far, respiratory motion mod-
els remain the only available solution to enable real-time 3D tumor and anatomy tracking
in combination with real-time online plan adaptation. On the other hand, a recent study
on current challenges in IGRT has acknowledged that deep learning might play an impor-
tant role towards the widespread clinical use of MR-guided radiotherapy [216]. For instance,
in terms of pseudo-CT generation, automatic contour suggestion and deep motion models,
such as the one we proposed. All of this showcases the need for future developments and
streamlining of the motion model construction. The compared deep network (DN), which
fuses features from a reference volume and surrogates, yielded the poorest performance. This
indicates that our model benefits from a structured latent space, as previously illustrated in
Figure 6.3, and from the addition of prior anatomical information during the decoding stage.
The manifold representation also fosters the model’s interpretability.

In the literature, lower errors have been reported using statistical modeling. Many of these
works have limited the prediction to the right liver lobe [13,182,184,206,207]. In this work,
the limited FOV was due to the acquired data. The MRI dataset used for model creation
was originally acquired with a FOV covering only the right liver lobe. In contrast, the hold-

(a) (b)

Figure 6.8 Image similarity between ground-truth and predicted volumes. (a) Experiment
where the location of the surrogate plane is shifted up to 3 mm and 9 mm in both directions
from the middle position in US and MRI datasets, respectively. (b) Image quality at 5
different anatomical positions along the right-left axis in US and MRI datasets.
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Figure 6.9 Difference maps between ground-truth and predicted volumes for two volunteers
and one patient in the MRI datasets.

out test set was acquired with a larger FOV, imaging the whole abdominothoracic area.
Therefore, prior to the model inference, the volumes were cropped to look similar to the
ones used during training. Nevertheless, it should be noted that having a larger FOV is
important for radiotherapy-related applications in order to perform dose calculations and
organs at risk monitoring. In this case, our approach is still applicable since its working
principle is independent of this feature. Although this would require more memory, modern
GPUs should be capable of coping with larger FOV, as shown in a related work [180].

Figure 6.10 Difference maps between ground-truth and predicted volumes for three cases in
the US dataset.
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When comparing shape-based and landmark-based approaches for establishing inter-subject
correspondences, Tanner, Yang, Samei and Székely [217] found that the former approach led
to the lowest errors and enabled the motion prediction of the whole liver with a 95th percentile
of the errors below 5 mm. However, whether landmark or shape-based, establishing inter-
subject correspondences remains an important limitation.

This process often requires manual intervention and can be complex and time-consuming,
especially in large datasets. Our method relies on the strong generalization capability of deep
networks to find patterns across a population dataset. In other words, the step equivalent
to finding inter-subject correspondences in classical models is replaced by the unsupervised
feature learning performed by our framework across the population samples. In our opinion,
this represents a significant benefit over the state-of-the-art. Nonetheless, it should be noticed
that it is assumed that there will be a correspondence in terms of field of view between the
training volumes and the volumes at inference time. For proton therapy, where accuracy is
more critical than in radiation therapy, a 2.4 mm average accuracy has been achieved with
a classical PCA-based population model assessed in 8 volunteers [206]. According to this
work, clinically acceptable accuracy for motion prediction and compensation should be less
than 3 mm, which is achieved in our work. In summary, our population-based model can
be deployed without any prior annotation steps while maintaining an acceptable accuracy.
Although the model has been treated as population-based and hence validated on unseen
cases, it can be readily adapted to work on subject-specific conditions. In this case, the
model could be personalized (via fine-tuning) using temporal samples from the patient. This
would lead to a better fit to the patient’s needs and hence an increased accuracy. With the
progressive expansion of the MR-Linac in the radiotherapy units and the promising results
shown by fast 4D reconstruction strategies [64, 218], having a 4D MRI dataset for model
personalization prior to treatment could be a viable option bringing important advantages.

Finally, as a proof of concept the 3D MRI reference volume used in the reported experiments
was extracted from the 4D-MRI dataset. However, in the clinical scenario this reference
volume will be a breath-hold image acquired before therapy. From a theoretical point of
view, we hypothesize that this difference should not represent an obstacle since the model
creates a low-dimensional representation regardless of the appearance of the reference volume.
In other words, the embeddings are created from the displacement fields delivered by the
previous registration module. This should be validated in a future study.
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6.5 Conclusion

In this work, we presented a novel predictive population-based framework for real-time 3D
motion tracking from 2D image surrogates. Our model is able to predict and generate accu-
rate deformation fields with a temporal advance which allows for system latency compensation
during radiotherapy treatments. Our model has shown promising results on two modalities,
namely on MRI and US. The presented experiments have shown that our model is able to
outperform comparative methods using only 1 imaging plane as a surrogate, while providing
clinically acceptable target tracking accuracy under 8ms. Our model also does not require
any prior processing steps such as surface segmentation or inter-subject correspondence iden-
tification. Future studies will assess the model robustness with regards to inter-fractional
variations as well as the impact of the motion mitigation in the dose delivery.
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CHAPTER 7 ARTICLE 3: PROBABILISTIC 4D PREDICTIVE MODEL
FROM IN-ROOM SURROGATES USING CONDITIONAL GENERATIVE

NETWORKS FOR IMAGE-GUIDED RADIOTHERAPY

Contribution of the first author in preparation and writing this paper is evaluated as 90%.
This article has been published by Medical Image Analysis journal on September 2021.

Remarks: This paper presents a probabilistic deep motion model, which can be deployed
both as population-based or as subject-specific. The proposed model employs a conditional
variational autoencoder as backbone to establish correspondences between respiratory phases
and dense motion fields. Furthermore, it can generate multiple future volumes in one shot.
In the test stage, it only requires a static 3D volume and cine 2D slices to predict future
deformations. Experiments revealed that this approach yields a clinically relevant accuracy
while presenting important advantages over similar state-of-the-art methods.

Probabilistic 4D predictive model from in-room surrogates using conditional
generative networks for image-guided radiotherapy

Liset Vázquez Romaguera1, Tal Mezheritsky1, Rihab Mansour2, Jean-François Carrier3,
Samuel Kadoury1,2

1 Polytechnique Montreal, Canada, 2 Centre Hospitalier de l’Université de Montréal
Research Center, 3 Centre Hospitalier de l’Université de Montréal and Département de

physique, Université de Montréal, Montréal, Canada

7.1 Abstract

Shape and location organ variability induced by respiration constitutes one of the main chal-
lenges during dose delivery in radiotherapy. Providing up-to-date volumetric information
during treatment can improve tumor tracking, thereby increasing treatment efficiency and
reducing damage to healthy tissue. We propose a novel probabilistic model to address the
problem of volumetric estimation with scalable predictive horizon from image-based surro-
gates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This
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problem is formulated as a conditional learning task, where the predictive variables are the
2D surrogate images and a pre-operative static 3D volume. The model learns a distribu-
tion of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired
temporal mechanism acts over the surrogate images yielding extrapolated-in-time represen-
tations. The phase-specific motion distributions are associated with the predicted temporal
representations, allowing the recovery of dense organ deformation in multiple times. Due to
its generative nature, this model enables uncertainty estimations by sampling the latent space
multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning,
and does not require inter-subject correspondences. The proposed model was evaluated on
free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on
11 cancer patients. A navigator-based data augmentation strategy was used during the slice
reordering process to increase model robustness against inter-cycle variability. The patient
data was used as a hold-out test set. Our approach yields volumetric prediction from image
surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the
patient MRI and US datasets, respectively. Moreover, model personalization yields a mean
landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI
dataset, with statistically significant improvements over state-of-the-art.
Keywords Motion modeling, Liver, Conditional generative networks, Radiotherapy, 4D
imaging, Temporal prediction

7.2 Introduction

Radiation therapy is a well-established modality to treat malignancies in the thoracic and
abdominal regions. This treatment modality uses ionizing radiation to destroy tumor cells.
Its goal is to deliver the prescribed dose to the tumors while sparing healthy tissues and nearby
organs [4]. However, organ shape and location variability induced by the patient’s respiration
during free breathing represents one of the main challenges during dose delivery. For instance,
organs like lungs, liver, kidneys, and bowel, among others, are subject to respiratory motion,
which have a large dosimetric impact, thereby compromising the treatment’s effectiveness.
Previous studies have shown that the total organ motion seen during treatment is composed
of a main quasi-periodic component and other modes of deformation caused by the cardiac
motion, digestive activity and muscle relaxation [219]. Moreover, even for the same patient,
variations in breathing depth and speed over time may occur. Hence, although breathing
shows a repetitive pattern, there is an inter-cycle variability that is non negligible.
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Existing solutions for interventional organ motion management can be classified into two
categories: non-adaptive and real-time adaptive methods. Within the first category, a simple
method consists of asking the patient to interrupt breathing while the radiation dose is being
delivered. Alternatively, the radiation beam can be turned on only during a certain period
of the breathing cycle, which is known as gating. Both approaches require reproducibility of
the organ position for the selected breathing phase and increase the procedure time. Clinical
guidelines as well as other non-adaptive techniques are available in [22].

Real-time adaptive tracking is another motion compensation category designed to re-position
the radiation beam as the target moves. Therefore, the accuracy of the dose delivery depends
on the system adapting to the moving target anatomy. The success of such adaptation is
related to the typical time delay between detecting a change in target position and the system
change. For example, linear accelerators require a certain amount of time for adaptation.
During such time, the target continues to move, thereby causing a perennial lag in the system
response with respect to the target position [203]. Predicting the target position in advance is
an approach to ensure that the radiation beam encompasses the target as it moves throughout
the respiratory cycle. Toward this end, organ motion modeling, whether local or global, and
temporal predictive mechanisms are crucial components.

Local approaches use information surrounding the target to exclusively estimate the tumor
position, while global approaches relying on in-room surrogates (correlated signal acquired
during treatment) and respiratory motion models estimate the whole anatomy. In previous
works, surrogates are also referred to as partial observations [49]. Generally, forecasting
mechanisms act over the surrogates to meet temporal requirements. For instance, linear
adaptive filtering [184], multi-layer perceptron [174,206] and recurrent neural networks [119]
have been proposed for this purpose.

Commercial systems, such as the CyberKnife (Accuray) or Vero (BrainLAB), use correspon-
dence models to estimate the internal tumor position as a function of external surrogates.
The information provided by these systems is limited to the tumor position, which is gener-
ally represented by its center of mass or other fiducial marker, thus ignoring the surrounding
anatomy. Some studies revealed low correlations between external surrogates and the internal
organ motion. Therefore, in the clinical routine, the external surrogate is combined with low-
frequency kV imaging. This allows the training and update of the correlation models, while
controlling the non-therapeutic ionizing dose with respect to high-frequency fluoroscopy [48].

Recent technological innovations have enabled the integration of linear accelerators (Linac)
with high-quality imaging capabilities during treatment [220, 221]. For instance, an MR-
Linac can acquire an MRI with the patient lying on the treatment table [53,222]. This novel
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paradigm, known as MR-guided radiotherapy (MRgRT), enables non-invasive monitoring of
moving structures with excellent soft-tissue contrast [223] without the extra burden of ionizing
radiation for the patient [216]. Similarly, other treatment modalities benefit from image
guidance. For instance, ultrasound (US) images are acquired for radiofrequency ablation.
Furthermore, high-intensity focused ultrasound (HIFU), can be guided using MRI [224,225]
as well as diagnostic US data [226, 227]. Recent studies have suggested that image-guided
radiotherapy (IGRT) systems may improve treatment accuracy and control the toxicity in
the surrounding healthy tissue for moving targets [228,229].

Image acquisition during treatment with MRgRT is limited to 2D cine slices, which does
not capture out-of-plane motion. While this still can be useful for tumor trailing [230] and
stereotactic radiation treatments [231] it is well-known that tumors in the abdominothoracic
area may exhibit a 3D hysteresis trajectory [13]. For this reason, the ideal imaging strategy
to guide treatment delivery should yield real-time volumetric information. Additionally, the
knowledge of the 3D tumor position would facilitate the reconstruction of the dose delivered
during the treatment fraction. This, in turn, can serve for adaptive planning process for
the next treatment fraction [64, 232]. The core idea is to use the real-time cine MR images
acquired during beam-on to yield synthetic 3D+t volumes at the temporal resolution of the
surrogate images. In the next section, we present the state-of-the-art on surrogate-driven
motion modeling in the context of radiotherapy applications, with particular emphasis on
MRgRT.

7.2.1 Related works

Current solutions deriving volumetric information are based either on non-rigid registra-
tion [202, 204, 233] and deformable statistical models [48, 90, 174, 175, 178, 179]. The former
approach, also denominated as fast/simplified strategy, employs 2D-3D image registration be-
tween orthogonal cine-MRI and a pre-treatment reference volume to estimate the 3D target
position. For instance, the method introduced by [204] completes the missing out-of-plane in-
formation with a phase-specific correction term computed a-priori. The computation of such
correction term relies on a mask of the diaphragm of each sagittal slice of the 4D MRI data
and optical flow registration. The method proposed by [202] is also purely based on image
registration. The corresponding slices of a reference pre-treatment volume are registered to
in-room sagittal and coronal cine-MRI. The 2D motion fields components are then replicated
to all the slices in the volumetric space thereby yielding a 3D displacement vector field. A
common limitation of these simple yet effective techniques is the inability to compensate for
system latencies in real-time, with high computational requirements.
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Alternatively, many works are based on maximizing the correlation between surrogate sig-
nals with organ motion models. These capture the motion and deformation of the internal
anatomy due to respiration. The origin of the data used for its construction classifies them as
subject-specific or population-based models. In both categories, the motion estimation from
the dynamic volumes using deformable registration is a common step. In the first category, a
statistical model is computed from the patient-specific motion information. These works rely
on the maximization of a similarity metric between a surrogate image with the correspond-
ing slice of a reference volume, which is iteratively warped until convergence is reached. [90]
applied Principal Component Analysis (PCA) to parameterize the pre-treatment motion in-
formation. The weights of the eigenvectors were iteratively optimized until achieving the
best alignment between a warped reference volume and the surrogate slices. Similarly, [175]
proposed to refine the motion model using free-form deformations. Such an approach has
been extensively validated using MRI and kV projections [173, 174, 176, 177]. In the same
manner, [178] created a PCA model to establish correlations between 2D navigator images
and 3D displacements. [179] revisited this concept with a region-based approach, enabling a
local adaptation. In the literature, tracking errors reported for patient-specific models are
often lower than those for inter-subject. Nevertheless, in the clinical context, its reliability
depends on an accurate response to inter-fraction motion variations. Furthermore, due to
time constraints, in many clinical scenarios it is not possible to acquire a patient-specific
4D dataset just before treatment. Conversely, population-based models constructed from
different patients can be applied to new anatomies. Some authors argue that these models
can benefit from large dataset to capture broader motion variability [203].

Similarly as in the subject-specific modeling, cross-population approaches have used sta-
tistical techniques to create a compact motion representation which is further driven with
certain surrogates [13, 205–207]. Other works suggested the use of manifold learning theory
for this task [208, 234]. [235] proposed the construction of an "exemplar model" by weight-
ing the predictions of multiple subject-specific sub-models. In a later study, the exemplar
model was driven using vessel landmarks which were tracked and temporally extrapolated
via linear adaptive filtering [184]. [206] used anatomical landmarks in ultrasound images to
drive a population model. Furthermore, they employed an artificial neural network with a
single hidden layer for spatio-temporal prediction of the respiratory liver motion. [207] ap-
plied non-linear regression to find the correlation between arbitrary surrogate signals and the
motion model parameters. Although the aforementioned population models have achieved
good accuracy with errors below 3 mm, establishing inter-subject correspondences remains
a challenging task due to anatomical variations and missing correspondences in the presence
of pathological structures. It is also time-consuming, complex, and involves direct human
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interaction.

Recent advancements in deep learning have led to new opportunities for the image-based 3D
object reconstruction task [236]. These data-driven approaches automatically discover and
learn discriminatory features from image sets. Several attempts were made with the purpose
of learning a joint mapping between partial views and 3D shapes [209, 210]. These works
have paved the way to relate partial observations with high dimensional data in an end-to-
end trained deep framework. Although 3D reconstruction from single 2D images has been
an active area of research in the computer vision community, contributions in medical image
analysis are rather limited to segmentation and shape reconstruction tasks [237–239]. Fur-
thermore, most proposed architectures rely on annotated data such as triangulated meshes,
binarized maps and point clouds and/or large datasets, which constitutes important limita-
tions for clinical interpretation. Moreover, direct generation of grayscale intensities is chal-
lenging due to the wide range of values each voxel can take. In the motion modeling field,
patient-specific and population motion models have been reported by [180] and [190]. In the
former, a conditional generative adversarial network was developed to relate 2D US images
with a 4D MRI dataset. This subject-specific model was validated with only 2 anatomies,
each one with few hundreds of temporal points. In the latter case, the authors proposed
to minimize the L2 distance between temporal low-dimensional feature representations and
deformation encodings obtained with a convolutional autoencoder.

Other recent approaches have attempted to directly yield real-time volumetric images (MR-
SIGMA) [99] or motion fields (MR-MOTUS) [100]. The key idea of MR-SIGMA is to match
real-time acquired motion signatures with a set of pre-learned motion states. The main
limitation is the adaptation to organ drifts and patient movement. On the other hand,
MR-MOTUS recovered 3D motion fields directly from k-space data. Furthermore, it yielded
plausible deformations with a predictive horizon of 170 ms on 5 subjects. Although this
technique showed promising results, it requires further validation.

7.2.2 Contributions

As shown previously, population models using data-driven approaches are still very incipient.
In this work, we propose a novel population-based deep probabilistic model to address the
problem of real-time 3D motion compensation from image surrogates, with personalization
capabilities when patient-specific data is available. It is one of the first population-based
models using generative networks into the field of respiratory motion modeling and 4D MR
imaging. The rationale behind this work is to leverage the representational capacity of condi-
tional variational autoencoders (CVAE) [240] as a backbone to map organ deformations over
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Figure 7.1 Overview of the motion modeling pipeline and its application to IGRT. Cine-MR
slices are acquired during free-breathing and then reordered to construct temporal volumes.
The organ motion between a reference volume (at a fixed time) and the other temporal
volumes is estimated via deformable registration. This data, captured over a population, is
employed to fit a probabilistic motion model, which can be readily personalized (via fine-
tuning) when a subject-specific (SS) 4D dataset is available before treatment.

a low-dimensional space containing compact representations of respiratory states. Simulta-
neously, these representations are linked to the surrogate 2D image sequence and subject-
specific features extracted from the volumetric reference image. The main contributions can
be summarized as follow:

• A unified conditional generative framework, which integrates anatomical information
and a history of partial observations as predictive variables for the motion modeling
task (Section 7.4.3).

• A temporal predictive mechanism acting on low-dimensional features to forecast mul-
tiple future volumes in one shot (Section 7.4.4).

• Demonstration of motion modeling and multi-time prediction capabilities with multi-
ple imaging modalities (MRI, ultrasound) and settings (both population and subject-
specific) showing superior performance and advantages over state-of-the-art approaches
(Section 7.5).

Considering the rapid evolution of the radiation systems and the impressive performance of
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deep learning for medical imaging task, this work takes a step towards the introduction of
a deep probabilistic motion model that might impact the next generation of image-guided
radiotherapy. To facilitate further research and encourage other researchers to build upon
our results, the source code of our probabilistic motion model is made publicly available at
https://github.com/lisetvr/4d-dmm.

7.3 Data acquisition and 4D volume reconstruction

Figure 7.1 illustrates our pipeline for the 4D motion model construction and online application
for IGRT using 2D surrogates. Acquiring ground truth motion data is the first step for
building respiratory motion models, showing the moving organs in free-breathing over time
(3D + t) with sufficient temporal resolution (a couple of volumes per second) [219]. In this
section we present details on the acquisition protocol and the reconstruction process to create
the in-house datasets.

7.3.1 MRI datasets

Free-breathing sagittal slices were acquired on 25 volunteers, each providing their written
consent. The study was conducted under approval of the CHUM’s research ethics commit-
tee. The acquisitions were carried out on a 3T Philips Ingenia whole body MRI scanner
using a 2D T2-weighted Balanced Turbo Field Echo (bTFE) sequence. This sequence en-
abled good vessel visualization without using any contrast agent. Image dimensions were
32 × 176 × 176, pixel spacing was 1.7 × 1.7 mm2 and the slice thickness was 3.5 mm. An
alternating scheme was followed to acquire data frames covering the right liver lobe inter-
leaved with navigator frames taken at a fixed anatomical position, chosen in the middle of
the liver. In order to produce time-resolved volumes, the navigator slices were non-rigidly
aligned to a pre-selected segmented master navigator. This step was initialized with a rigid
transformation and performed using Elastix as the registration framework [214]. The de-
formation field was parameterized by cubic B-splines at three resolutions. The similarity
measure was the normalized mutual information. The liver area inside the master navigator
was manually segmented by a specialist, thereby yielding a binary mask. The 2D deformation
fields inside the binary mask were used to calculate a similarity cost function to drive the
slice stacking as detailed in [2]. By considering only the deformation within the mask, the
organ’s respiratory motion is isolated from other sources of motion. The core idea behind this
reconstruction method is that, whenever the respective preceding and subsequent navigator
frames corresponding to two different anatomical slice positions are similar, both data slices
will be at the same respiratory state and, therefore, can be stacked together to construct the



94

volume [2]. It should be considered that potential uncertainties during the image acquisition
and the subsequent deformable registration may cause artifacts during the sorting process.
Nevertheless, the motion observed between temporal volumes still represents a valid ground
truth to build the motion model.

The temporal resolution of the volumes was of 450 ms. For each of the 25 cases, 80 different
sequences of 2D navigators showing different breathing patterns were acquired with 31 time
points each, yielding a dataset of 62 000 volumes. For each volunteer, these 80 sequences
showed different motion amplitudes and frequencies as illustrated in Figure 7.2, which por-
trays the considerable inter-cycle variability that must be taken into account to increase the
robustness of the motion model during radiotherapy. Therefore, we leverage this variability
as a data augmentation strategy during the dataset creation.

A second free-breathing MRI dataset was acquired from 11 patients diagnosed with hepato-
cellular carcinoma (6 male, 5 female, ages 70±11). The study was approved by the CHUM’s
research ethics committee, and patients provided informed consent to participate. The data
was acquired continuously during 3 minutes on a Philips Ingenia 3T clinical MRI scanner us-
ing a 3D stack-of-stars gradient-echo radial sequence (flip angle=12◦, TR=3.4ms, TE=1.4ms,
FOV=450×450×250 mm3, spatial resolution=1.5×1.5×5.0 mm3) with golden-angle sampling
scheme. This sampling scheme used an angular increment of ≈ 111.25◦ between consecutive
spokes, which enabled the extraction of a respiratory signal used to reconstruct 10 respiratory
phases. For further details on the XD-GRASP reconstruction technique, see [98,99]. For each
patient, tumors exceeding 10 mm in the right liver lobe were annotated by an experienced
abdominal radiologist using previous diagnostic images. As a pre-processing step for model
deployment, volumes were resampled to the spatial resolution of the previous dataset and
cropped to 32 × 64 × 64 to focus on the liver and remove organs in the bottom part of the
abdomen such as the stomach, pancreas, kidneys and intestines. Henceforth, we will refer to
the volunteer and patient datasets as V-MRI and P-MRI, respectively.

7.3.2 Ultrasound dataset

Another dataset of free-breathing 4D US sequences from 20 volunteers, who provided their
written consent, was acquired using a Philips EPIQ 7G ultrasound system with a X6-1
matrix array transducer. This study was approved by the CHUM’s research ethics committee.
During acquisition, the ultrasound probe was placed under the sternum along the sagittal
plane, capturing a cross section of the left liver lobe. The imaging depth was set to 12cm.
Focus and contrast were adjusted to provide the best visualization of the liver and its vessels.
Limited to a 15s acquisition window, it was possible to capture up to 3 respiratory cycles with
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a 250 ms temporal resolution. The acquired volumes were first pre-processed by applying a
Bayesian non-local means filter for speckle removal. Then, the volumes were resampled to a
2.0 × 2.0 mm2 spatial resolution with a slice thickness of 1.0 mm and cropped to a volume
size of 32 × 64 × 64.

7.4 Proposed population-based motion model

In the field of respiratory motion modeling, one is often interested in the changes undergone
by the organ with respect to a reference breathing phase. Having the 4D ground-truth data,
the next step is to fit a model that establishes a relationship between specific surrogates
and the motion of interest (see Figure 7.1). Dimensionality reduction and manifold learning
theory has shown to be key components for the analysis of organ motion in medical datasets.

Our conditional probabilistic framework learns from population motion data covering a sig-
nificant variety of breathing patterns. It receives as input: a pre-treatment volume gated
at a certain reference respiratory phase and a sequence of image surrogates to estimate the
deformation from a previously learned motion distribution. The temporal information of the
surrogate sequence acts as a predictive variable to recover the dense displacement vector field
(DVF) corresponding to n future respiratory phases. Such conditioning factors are feature
vectors forecasted from the latest acquired images.

Figure 7.3 shows a schematic representation of the proposed model which has a different
configuration in training and testing phases. The training framework is composed of the
following blocks: (1) a DVF inference network for motion estimation, (2) a conditional vari-
ational autoencoder to learn the DVF distribution with respect to the surrogate, and (3)
multi-time predictive module. During testing, the first component and the motion encoder
are removed. Therefore, the motion prediction only depends on sampling the latent dis-
tribution and conditioning it on the available intra-treatment partial observations. In the
following, we formalize the modeling task, focusing on its application for real-time image-
guided motion estimation. We then thoroughly explain the model components and provide
its implementation details.

7.4.1 Problem formulation

We consider a set of P time-resolved 3D acquisitions spanning k respiratory cycles generating
T temporal volumes. For each subject’s dataset p ∈ P , a volume Vt=r at certain respiratory
state r is selected. This reference volume is used to measure relative displacements to the
other temporal volumes in a given dataset. The motion observed between a moving image
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Figure 7.2 Sample breathing patterns captured by the navigator amongst a volunteer pop-
ulation: shallow, deep, regular, irregular. The patterns in the last row are from the same
subject.

Vr ∈ RH×W×D and a fixed image Vt ∈ RH×W×D is described by a dense displacement field
ϕt ∈ RH×W×D×3, where t ∈ [1, T ] ̸= r, and H,W and D denote the height, width and
depth of the volumes, respectively. Hence, each dataset p is comprised by an ensemble of 3D
deformations Φp =

〈
ϕ1, ϕ2, . . . , ϕT−1

〉
. The first goal of the motion modeling task consists of

mapping each deformation to a low-dimensional space ϕt → zt ∈ Rd where d ≪ H×W×D×3,
thereby summarizing the observed inputs in a compact representation. Simultaneously, each
deformation at time t can be associated with a partial observation, e.g., a 2D slice It ∈ RH×W .
Moreover, to meet the temporal requirements the deformations must be forecasted ahead-of-
time. Therefore, the second goal is to relate the partial observations with the correspondent
extrapolated-in-time dense deformations.

7.4.2 DVF inference network

The motion measurement step using deformable registration constitutes the first step in the
motion modeling workflow. Since our method does not rely on any surface-based information
(i.e. prior segmentation) and avoids explicit voxel generation, we work with deformations
between pairs of volumes from same patients in a dataset. We use a registration function,
parameterized with a neural network, which receives a specific reference volume Vref and a
target volume Vt at time t as inputs to generate the breathing-induced organ DVF matrix
ϕt between them. In our experiments, Vref is taken at the end-exhale phase since it presents
the most reproducible liver shape [241]. Parameterizing the deformation through a neural
network enables a single differentiable end-to-end pipeline. Furthermore, it requires less
memory and the inference is faster than traditional registration methods. These represent
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Figure 7.3 Schematic representation of the proposed probabilistic motion model. Top:
During training, the inputs are: a reference volume (Vref ) and a set of target volumes
{Vt, Vt+1, · · · , Vt+n} at n time steps. The deformation between each pair of volumes, i.e. Vref
and Vi, are estimated through a pre-trained inference DVF network. These deformations
and the inputs volumes are fed to a multi-branch convolutional neural network composed of
three branches: (1) an auxiliary encoder that receives the reference volume, namely Ref-Net;
(2) a motion encoder, which is repeated according to the amount of input deformations (n
times), and (3) a temporal predictive network, which outputs the extrapolated-in-time fea-
ture vectors used as conditioning variables, namely Condi-Net. The outputs of each branch
are combined together according to each time. Then it is constrained to form a Gaussian
distribution, conditioned on the predictive variables. The decoder generates a DVF from
each input feature vector, meaning a phase-specific dense 3D deformation. Bottom: During
testing, given the partial observations and the 3D anatomical reference, it is possible to sam-
ple the latent space and recover the 3D deformations.

important advantages during training.

We assume that both volumes were previously rigidly aligned to a common reference space,
meaning that their origin and orientation coincide. This step could be performed with tra-
ditional registration frameworks such as Elastix [214] or Plastimatch (www.plastimatch.org).
For the deformable registration, we employ the U-net-like architecture proposed by [42] with
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pre-trained weights, which is a well-validated structure. This means that the DVF inference
network was previously trained, thus during model optimization their weights remain static.
It should be noted that the proposed motion modeling framework is agnostic to the approach
used for deformable registration.

7.4.3 Conditional motion modeling

In our case, the set of temporal volumes, acquired under free-breathing, differs from one
another by the tissue deformation due to complex respiratory motion. These deformations
lie in a high-dimensional space, determined by the number of voxel and motion components.
However, the spatio-temporal variation is caused by a much smaller number of degrees of
freedom, and hence the underlying structure can be captured by a low-dimensional sub-
space. Therefore, it can be seen as a set of points on a manifold of many fewer dimensions.
Such embeddings can be uncovered using the capacity of autoencoders to learn a non-linear
parametric mapping from volume deformations to their latent representations.

Let Φ = {ϕt+1, ϕt+2, . . . , ϕt+n}, Iseq = {It, It−1, . . . , It−m} and Vref be the sequence of n
future 3D deformations, the sequence of 2D slices at times t, t+ 1 and t−m, and the refer-
ence volume, respectively. The goal is to maximize the conditional probability distribution
ptrue (Φ|Iseq, Vref ) of obtaining the sequence of deformations Φ ∈ RH×W×D×3×n given the
available partial information and subject anatomy, where H,W , D and n are the height,
width, depth of the volume and number of predicted time steps, respectively. Accordingly,
we aim at learning a parameterized model with parameters θ to sample new phase-specific
deformations, similar to samples from the unknown distribution ptrue. This dependency, i.e.
pθ (Φ|Iseq, Vref ), can be expressed by the law of total probability, which relates the conditional
and marginal probabilities:

pθ (Φ|Iseq, Vref ) =
∫
z
pθ (Φ|z, Iseq, Vref ) p(z) dz (7.1)

where the likelihood pθ (Φ|z, Iseq, Vref ) is chosen to be a Gaussian distribution, which is
continuous in θ. However, solving this integral over z would require a very large number of
samplings, which is not viable. Therefore, to compute the left term of Eq. 7.1, only z values
likely to produce pθ (Φ|Iseq, Vref ) are considered, namely the posterior pθ(z|Φ, Iseq, Vref ).

Because computing the exact posterior distribution of the CVAE is analytically intractable
[242], it is approximated through a distribution qψ (·) with parameters ψ. By using Bayes’
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theorem, we have:

Ez∼q[log pθ(ϕi|zi, Iseq, Vref )] = Ez∼q[log p(zi|ϕi, Iseq, Vref )]

− log p(zi|Iseq, Vref ) + log pθ(ϕi|Iseq, Vref ).
(7.2)

After subtracting Ez∼q[logqθ(z)] from both sides and rearranging the terms, the approximated
posterior can be related to the true posterior through the Kullback-Leibler (KL) distance:

log pθ(ϕi|Iseq, Vref ) −KL[q(zi|ϕi, Iseq, Vref )||p(zi|ϕi, Iseq, Vref )] =

Ez∼q[log pθ(ϕi|zi, Iseq, Vref )] −KL[q(zi|ϕi, Iseq, Vref )||p(zi)].
(7.3)

With a high-capacity function to approximate the posterior, the second term of the left side
is expected to be negligible in the ideal case. Therefore, maximizing log pθ(ϕi|Iseq, Vref ) is
equivalent to maximizing the evidence lower bound (ELBO) on the right side of Eq. 7.3,
which basically contains the expectation of the reconstruction term and the KL distance
between the prior and the approximated posterior. Generally, the prior is assumed to be a
multivariate Gaussian distribution with covariance I, i.e. pθ(zt) ∼ N (0, I), since it can be
computed in a closed form and is differentiable.

In practice, an encoder network is adopted to find the approximation:

qψ(zi|Iseq, Vref ) = N (µ(ϕi, Iseq, Vref ), σ(ϕt, Iseq, Vref )) . (7.4)

This network, parameterized with stacked 3D convolutional layers, learns the mean µ ∈
Rd and diagonal covariance σ ∈ Rd from the data, as illustrated in the upper middle of
Fig. 7.3. At training, the sampling of zi is differentiable with respect to µ and σ by using
the reparameterization trick [242], and defining zt = µ+ ϵ ∗ σ, where ϵ ∼ N (0, I).

Following the methodology of the CVAE, the distance between both distributions pθ and
qψ is minimized using the KL-divergence. This loss term is inserted within the total loss
function, which also aims at minimizing a reconstruction loss. Unlike autoencoders, we
avoid calculating voxel-wise differences over motion fields. Instead, we implicitly regress ϕi
through image similarity. Hence, in the spatial warping block, the reference volume is warped
(denoted with the symbol ◦) with the transformation provided by the decoder enabling the
model to calculate a reconstruction term Lrec between Vref ◦ ϕi and the expected in-room
volume Vi. We use stochastic gradient descent to find the optimal parameters θ̂ by minimizing
the following loss function:
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arg min
θ

[
1
n

n∑
i=1

Lrec

(
Vref ◦ ϕ̂t, Vt

)
+ KL (qψ(zi|Iseq, Vref )||pθ(zi))

]
(7.5)

where the KL-divergence can be computed in closed form.

The reconstruction term, Lrec, computes the similarity between the estimated voxel output
against the target voxels (Vi) while ensuring smooth motion fields using a diffusion regularizer
on the spatial gradients:

Lrec = Lsim

(
Vi, V̂i

)
+ αLsmooth

(
ϕ̂i
)

(7.6)

where V̂i results from warping Vref with the estimated motion ϕ̂i, α is a regularization pa-
rameter, and Lsmooth

(
ϕ̂i
)

= ∑
p∈R3∥∇ϕ (p)∥2 computes the differences between neighboring

3D positions p.

7.4.4 Multi-time predictive network (Condi-Net)

For the design of real-time motion compensation systems, the involved latencies must be
considered. Therefore, the goal of the multi-time predictive network is to enable future
deformation recovering. This task is conducted by the conditional branch ("Condi-Net" block
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Figure 7.4 Schematic representation of the temporal predictive network, which receives an
input image sequence and outputs the extrapolated-in-time feature vectors used as condi-
tioning variables.
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in Figure 7.3). This sub-network tries to maximizes the conditional probability of predicting
a sequence of feature vectors hi, corresponding to future time steps, given the input images,
i.e., P (ht, ht+1, · · · , ht+n|Iseq).

Figure 7.4 depicts the internal configuration of the "Condi-Net" block. It receives a surro-
gate 2D image sequence (Iseq), where each temporal image is concatenated along the feature
dimension with their corresponding slice in the reference volume. Ideally, this additional
information is a common reference that helps with the respiratory phase discrimination.
Subsequently, each bi-channel image is passed through a feature extraction function, param-
eterized with convolutional neural networks. The resulting feature representations are then
concatenated to form a new temporal dimension. The temporal feature representations is
then forecasted through recurrent cells arranged in an encoder-decoder configuration. Such
a design is inspired by the seq2seq mechanism, widely used for natural language processing
(NLP) and other related time-series tasks [148]. The encoder receives the spatio-temporal
features and outputs a single vector, known as context vector. The hidden state from the
final encoder cell is an embedding containing a condensed representation of the sequence. It
is tiled and fed to the decoder, which learns how to extrapolate the feature vectors associated
to future time steps.

7.4.5 Implementation details

In the proposed architecture, we develop a multi-branch convolutional neural network com-
posed of three branches: (1) the motion encoder, (2) the auxiliary encoder for the reference
volume ("Ref-Net" sub-network) and (3) the image sequence encoder, which enable temporal
predictions ("Condi-Net" sub-network) (see Figure 7.3). The first and second branch possess
identical configurations except by the number of input channels. In the first case, it receives
the 3 channels pertaining to the motion components. In the second case, it receives a single
channel with the voxel intensity of the reference volume. Both encoders are composed of
successive pairs of 3D convolutions with a kernel size 3 × 3 × 3. The inclusion of the subject-
specific anatomical 3D information seeks to alleviate the ill-posedness of the problem. The
first layer in the stack has stride of 2 and the second has single stride. In all cases they are
followed by ReLU activations and batch normalization (BN). The motion encoder is repeated
n times, i.e., the same number of output volumes. Each one of them shares their weights.

The third branch receives a sequence of bi-channel images. Each of them is passed through
a shared stack of 2D convolutions with kernel size 3 × 3 and a stride of 2, followed by
ReLU activations and batch normalization. Subsequently, the feature representations are
concatenated forming a new temporal dimension, which is fed to the recurrent encoder-
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decoder configuration. In the model, this configuration is implemented with convolutional
long short-term memory (ConvLSTM) with 64 feature maps and kernel size 3 × 3. The
encoder consists of m cells, depending on the number of temporal slices available. Similarly,
the decoder consists of n cells, depending on the desired number of output volumes.

Each of the aforementioned model branches, i.e., the motion encoder, "Ref-Net" and "Condi-
Net", ends in a fully connected (FC) layer with equal size to the latent dimension. Their
respective outputs are further concatenated and mapped to two additional FC layers to gen-
erate µ and σ, which are combined with ϵ to construct the latent space sample zi, representing
the normal Gaussian distribution. The rationale behind this concatenation scheme is to create
the distribution over the latent vector considering the patient anatomy and spatio-temporal
consistency associated to the 3D deformation.

Once the latent distribution is created, the conditional dependency is explicitly modeled by
the concatenation of zi with the feature representation of Vref and each one of the extrapolated
embeddings hi. The resulting vector is then fed to the decoder, which learns how to map it
back into the input space, thereby yielding a reconstructed displacement field ϕ̂t = gθ(z). The
decoder is modeled with a stack of convolutional neural networks, with kernel size 3×3×3 and
interleaved strides of 1 and 2 to upsample the spatial dimensions while gradually decreasing
the number of channels. These convolutional layers are followed by Leaky ReLU activations
(0.2) and batch normalization, except the last one, which has a linear activation. It is
important to note that the decoders used to generate the different temporal deformations
share their weights. While one may consider leveraging 4D convolutions to manage the
volumetric sequence, this would change the approach since the decoder can be seen as an
unique generator that maps from the low-dimensional motion model to the high-dimensional
space. Finally, the reference volume is resampled according to each generated temporal
deformation using a differentiable spatial warping layer (STN) [161]. Using this scheme, our
model is able to provide volumetric information.

At test time, the encoder is disabled since it is assumed that there will be no volumetric
motion information. Hence, the decoder operates as a generative network given only the
patient anatomy and the in-room cine acquisition, yielding realistic DVFs by sampling zi ∼
N (0, I).

7.4.6 Training and personalization protocol

The network’s parameters were optimized using the Adam optimizer with an initial learning
rate (lr) set at 10−3, which was reduced by a factor of 2 after each sequence of 3 epochs
without improvement. For model personalization, the lr = 10−5 was progressively reduced
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after 3 epochs without improvements in the validation loss measured on the subject-specific
volumes. Mean centering and standard deviation normalization were applied to the input
images and volumes. This normalization was performed on a per-volume basis. Training was
performed in PyTorch with a batch size of 10 to exploit GPU acceleration. We used a leave-
one-out validation scheme, considering a different anatomical case for testing. We adopted
a negative local cross correlation (NCC) as similarity loss function when working with the
MRI dataset. On the other hand, for the ultrasound (US) dataset, we used a similarity
loss based on Mean Squared Error (MSE), which was helpful for the model convergence. In
equation 7.6, α = 1.0 and α = 0.01 when Lsim was NCC and MSE, respectively.

7.5 Experiments and results

In this section we present a series of experiments in order to analyze the impact of each com-
ponent in the form of ablation study, justify the choices made in the model design and under-
stand the internal structure of the latent space for the motion modeling task (Section 7.5.2).
Moreover, in Section 7.5.3 we quantitatively assess the performance of the proposed frame-
work under two possible scenarios: (1) when a prior subject-specific 4D data is not available
and thus a population model is applied, and (2) when a subject-specific (SS) 4D acquisition
is available before treatment and thereby used to personalize the model.

7.5.1 Validation methodology

In the first scenario (i.e. unavailable subject-specific data), the predictive capability of the
proposed model, tested on unseen cases, was compared to several approaches that have been
introduced in the context of IGRT: (1) a motion extrapolation (ME) based method [202],
which is based on deformable registration between interleaved 2D images and their corre-
sponding slices in the pre-treatment 3D volume; (2) a deep neural network that combines
feature representations from a reference volume and a surrogate slice to generate a 3D defor-
mation [213] (denoted as DN, which stands for deep network); (3) a model based on motion
autoencoding (AE), which aims at minimizing the distance between surrogate images and
3D deformations in a low-dimensional space [190]. In addition, we evaluate the effect of
the anatomical plane on the predictive accuracy. Sagittal and coronal planes were consid-
ered since they both capture the cranial-caudal direction, the direction in which the largest
respiratory motion is present. The motion model created with MRI data from 24 volun-
teers (V-MRI dataset) was evaluated both with an unseen anatomy acquired using the same
protocol and on a separate dataset of 11 liver cancers patients (P-MRI dataset). There-
fore, this independent hold-out test dataset was not used to develop the model or tune the
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hyper-parameters.

For the second scenario (i.e. available subject-specific data), we compared our model to
a subject-specific statistical model coupled with AdaBoost (AB) multilayer perceptron to
enable spatio-temporal prediction as detailed in [174]. In this case, the experiments were
conducted only with the V-MRI dataset. The 20 minutes were divided for personalization
and testing purposes. Our model was first fine-tuned with 620 volumes, corresponding to the
first 5 min of the V-MRI dataset, and then tested with the remaining volumes.

We compare the performances based on target tracking accuracy, by measuring the distance
between five expert-selected blood vessel and bifurcations in the ground-truth and predicted
images. The prediction error for each landmark l in a temporal image t was measured as
the Euclidean distance El,t+∆ = ∥gl,t+∆ − pl,t+∆∥ between target g and predicted p positions.
We also compute the global registration error using 3D deformable registration between
ground-truth and predicted volumes. This was conducted using the multiresolution B-spline
transformation model implemented in Elastix [214]. The spatio-temporal prediction error
was defined as the voxel-wise vector magnitude of the estimated DVFs. Moreover, we report
the geometrical error for all motion states, which is defined as the Euclidean norm of the
voxel-wise vector difference between the ground truth and the predicted DVFs. Although the
ground-truth DVFs do not necessarily represent the real motion due to errors introduced by
the 4D reconstruction process and by the registration algorithm, they still represent a valid
ground truth for the motion model. For certain experiments we used the MSE and NCC
similarity metrics, as well as Structural Similarity (SSIM), to capture the spatial consistency
between ground truth and predicted volumes.

During inference, the reference volume (Vref ) was excluded from the processed volumes.
Hence, it was not considered in the error computation. Furthermore, the reference volume
was taken at the very first end-exhale while the evaluated breathing cycles were the last
ones. This means that the elapsed time between both was maximized within the limits of
the dataset (15-20 min interval for the V-MRI). Statistical significance was calculated by
applying a Wilcoxon signed-rank test to reject the null hypothesis. In all the tests, p < 0.01
was considered to indicate a statistically significant difference. Effect size was measured using
Pearson correlation coefficient (ρ).

In Section 7.5.3 we report results on temporal experiments, which aim at: (1) determining
which is the best predictive mechanism to get multiple output volumes, (2) documenting
model behavior with varying number of input images and output volumes, and (3) reporting
the prediction accuracy for a predictive horizon of more than one time step. These experi-
ments were conducted on the V-MRI dataset. Since its temporal resolution is 450 ms, the
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Table 7.1 Performance metrics obtained for different variants of the proposed model on the V-
MRI dataset. Values are mean ± std. (95th percentile). The p-value (effect size) is reported
for the geometrical error distributions between consecutive experiments.

Ablation models MSE NCC SSIM p value
CVAE+I 0.15 ± 0.09

(0.35)
0.72 ± 0.12
(0.89)

0.69 ± 0.14
(0.89)

-

CVAE+(I|Iref ) 0.15 ± 0.10
(0.35)

0.74 ± 0.13
(0.91)

0.71 ± 0.14
(0.90)

≪ 0.01 (ρ=0.83)

CVAE+(I|Iref ) + Vref 0.14 ± 0.08
(0.32)

0.74 ± 0.12
(0.91)

0.72 ± 0.13
(0.91)

≪ 0.01 (ρ=0.89)

CVAE+(Is|Iref)+Vref 0.12 ± 0.07
(0.27)

0.77 ± 0.11
(0.93)

0.75 ± 0.12
(0.93)

≪ 0.01 (ρ=0.81)

times associated with the predictive horizons n = 1, 2, 3, 4, 5 are 450, 900, 1350, 1800, 2250 ms,
respectively. Finally, in Section 7.5.4 we present qualitative results on the employed datasets.

7.5.2 Ablation study

Table 7.1 presents the results from several metric for the different model variants, which were
trained under the same conditions to predict the next temporal volume. These values were
computed on the V-MRI dataset. The ablation study starts with a baseline architecture,
which is composed solely of the conditional variational autoencoder and a single 2D image.
In the second variant, the surrogate image was concatenated with the correspondent slice
in the reference volume (Iref ). The appearance of this slice remains invariant across all
the images belonging to a same subject. Therefore, it is useful to identify and discriminate
the respiratory phases. In the third case, the anatomical information was incorporated by
encoding the reference volume (CV AE+(I|Iref )+Vref ) and exploiting their feature during the
volume generation. In the last version, we leveraged the spatio-temporal information provided
by an image sequence (Is) where each temporal image is concatenated with the reference
slice. It can be observed that all the similarity metrics reflects a gradual improvement
between consecutive versions. In all cases, the differences between consecutive experiments
were found to be statistically significant, with p ≪ 0.01. The large effect sizes reported in
Table 7.1 correspond to the SSIM metric.

To investigate the structure of the latent space, we applied principal component analysis on
the latent code vectors to reduce their dimensionality to a single point in a bidimensional
Cartesian space. The manifolds shown in Figure 7.5 for MRI and US motion models reveal
that data points span through the respiratory cycle. Besides, the points corresponding to
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(a) (b)

Figure 7.5 Low-dimensional mapping visualization (in 2D) of the latent representation in (a)
V-MRI and (b) US datasets.

volumes at end-exhale and end-inhale were found at separate ends of the manifold. This
phase discrimination explains the learning process and is plausible for a motion model.

7.5.3 Quantitative results

Single time-point experiments

Inter-cycle tracking errors Given the important inter-cycle variability and irregular breath-
ing patterns captured in the volunteer MRI dataset, as shown in Figure 7.2, a single blood
vessel was tracked through several cycles to analyze how the model copes with these effects.
For the sake of clarity and visualization, a single trajectory will be shown. This blood vessel’s
location was selected at the medial position and near to the diaphragm, since this is the area
with the largest amplitude of movement.

Figure 7.6 displays the target and predicted relative vessel displacements (in mm) in the
superior-inferior (SI) and anterior-posterior (AP) directions in three cases with irregular
breathing pertaining to the volunteer MRI dataset. The graphs also present the associated
errors for all subjects, which are lower than 2 mm and 1 mm for SI and AP motion planes,
respectively. The proposed model demonstrates an acceptable consistency with the target
trajectory even in the presence of involuntary breath-holds and variable cycle amplitudes.
The ability of coping with these cycle-to-cycle variations is essential to ensure predictive
robustness when deployed in the clinical setting.

Target tracking Table 7.2 reports the geometrical accuracy (for the next time step) between
ground-truth and predicted landmark positions for the proposed model working both in
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Table 7.2 Target tracking errors (in mm) measured at selected respiratory phases for the
V-MRI dataset. These values were measured for the next time step, i.e. a horizon of 450 ms.
Overall values consider all the phases. Values are mean ± std (95th percentile).

Model Mid-inhale End-inhale Mid-exhale End-exhale Overall
Initial m. 9.5±4.5(15.6) 11.6±5.6(18.9) 4.4±4.0(12.1) 1.6±3.6 (8.5) 6.7±4.4(13.7)
DN [213] 4.8±3.1(12.4) 5.3±4.5(10.3) 3.1±1.5 (5.5) 2.6±2.0 (4.7) 3.9±2.7 (8.2)
ME [202] 3.0±2.7 (8.8) 2.5±2.5 (6.1) 2.5±1.7 (4.6) 1.9±1.8 (4.3) 2.4±2.0 (5.8)
AE [190] 2.9±2.5 (6.0) 3.3±2.9 (5.7) 2.3±1.6 (4.4) 2.1±1.7 (3.1) 2.6±2.1 (4.8)
Proposed
(sag, P)

2.9±2.3 (5.9) 3.1±2.5 (5.0) 2.4±2.3 (4.9) 2.3±1.9 (3.3) 2.6±2.2 (4.7)

Proposed
(cor, P)

2.4±2.0 (3.8) 2.9±2.2 (4.5) 2.1±1.5 (3.5) 2.0±1.9 (2.7) 2.3±1.9 (3.6)

PCA+AB
[174]

1.6±2.0 (3.6) 2.0±2.6 (4.7) 1.6±0.9 (2.9) 2.0±1.2 (3.2) 1.8±1.6 (3.6)

Proposed
(cor, SS)

1.4±1.1 (3.1) 1.8±1.6 (4.1) 1.3±1.0 (3.1) 1.1±0.8 (3.0) 1.4±1.1 (3.3)

population and subject-specific modes, as well as for related approaches. Furthermore, these
tracking errors are reported at different phases through the respiratory cycle. As a reference,

Figure 7.6 Vessel trajectories in the superior-inferior and anterior-posterior motion planes
observed in three subjects with irregular breathing in the V-MRI dataset. Dashed red lines
represent the error (in mm).
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(a) (b) (c)

Figure 7.7 Estimation errors (in mm) considering the whole volume for (a) P-MRI and (b)
US datasets. (c) Analysis of the drift effect on the estimation error when increasing the
temporal gap between training and test subsets in the V-MRI dataset.

the first row contains the errors measured when there is no motion compensation (Initial
motion). The values reveal that using coronal plane slices yield an increased performance
compared to the sagittal view. This can be attributed to the fact that the coronal plane covers
a larger area of the organ than the sagittal plane. Moreover, we found the differences between
measurements obtained using sagittal and coronal slices as being statistically significant (p ≪
0.01, ρ = 0.89). It can be observed that the most challenging predictions were near the end-
inhale phase, which is well-known to be prone to inter-cycle variability.

The proposed model, driven by coronal slices, demonstrates the ability to predict deforma-
tions throughout all the respiratory cycle with a mean overall error of 2.3 mm in unseen
cases. This represents an improvement of 1.6 mm, 0.1 mm and 0.3 mm to DN, ME and AE
approaches, respectively. Additionally, when applied to the subject-specific configuration, the
overall error decreased to 1.4 mm, a sightly better performance than the PCA+AdaBoost
approach. Therefore, our model achieves state-of-the-art results for target tracking while
introducing new advantages.

Figures 7.7a and 7.7b display the error distribution per case considering all spatio-temporal
voxel-wise displacements for the (hold-out) MRI and US datasets. Additionally, Figure 7.7a
contains the target registration error for the center-of-mass of each liver tumor or the average
if more than one. The values of breathing magnitudes are in the same order as the values
reported by other studies on the quantification of liver motion [119]. It can also be observed
that the magnitudes exhibit large differences between them, which showcases the inter-subject
variability. The overall computed mean error was 1.67 ± 1.68 mm and 2.17 ± 0.82 mm for
patient MRI and US datasets, respectively.

Drift analysis The drift that undergoes the liver due to respiration has been described
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(a) (b) (c)

Figure 7.8 (a) Geometrical error (in mm) when varying the position of the surrogate slice
both in V-MRI and US datasets. (b) NCC between GT and predicted volumes at 5 different
anatomical positions along the right-left axis both in V-MRI and US datasets. (c) MSE
between GT and predicted volumes in the V-MRI dataset when varying the number of prior
images in the conditioning sequence.

in several studies [13, 206], which may cause a negative effect on the system accuracy, for
instance, in gated treatment with external respiratory signals [243]. Generally, this outcome
becomes visible in longer acquisitions. Hence, we used our largest dataset (volunteer MRI)
to validate the impact of the organ drift on the subject-specific model. Each dataset (with
20 min duration) was divided into 5 subsets of 4 minutes. The last subset was spared as a
common testing set for all the experiments, namely, when the temporal gap and the training
data were: (a) 4 min and all the training subsets, (b) 4 min, (c) 8 min, (d) 12 min and (e)
16 min using only the fourth, third, second and first subsets, respectively. It can be seen
in Figure 7.7c that the error distributions show a slightly degradation as the temporal gap
between training and testing sets increases.

Surrogate slice positioning Figure 7.8a presents the model behavior in terms of the geo-
metrical error, when the surrogate slice position is shifted from the original one used during
training, while the reference slice was fixed. The reference slice is extracted from the ref-
erence volume at the same anatomical position as the surrogate image. Positive values in
the x axis correspond to shifts from the middle to one extreme of the volume while negative
values correspond to shifts from the middle to the opposite extreme. It can be observed that,
for both V-MRI and US datasets, even though the error is slightly increased, the model is
still tolerant to the shift. Interestingly, if the reference slice is also shifted to the same posi-
tion as the surrogate, there is no performance degradation (see graphs in the Supplementary
materials). This finding confirms that, as long as the conditional branch is able to identify
the phase, the prediction will be satisfactory. This characteristic confers robustness to the
model, and represents an important advantage over current techniques.
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Volume’s quality We also compared the spatial consistency between GT and predicted
volumes at 5 different sub-volumes along the right-left axis. This experiment focused on the
model’s robustness towards abrupt changes with regards to predictive quality depending on
the volume area. Results reported in Figure 7.8b show a stable similarity across all the US
sub-volumes. In the MRI data, the quality is slightly degraded on the leftmost volumes,
which generally does not contains the organ of interest.

Deformation analysis Finally, the plausibility of the deformations was assessed using the
Jacobian matrix determinant (|J |). Values of |J| below or equal to zero indicate folding areas
resulting from the crossing of the motion vectors. It should be noticed that the analysis
is aimed at assessing the quality of the deformations predicted by the model instead of
quantifying the accuracy of the deformable registration step. The proposed model obtained a
percentage of voxels with a non-negative |J | of 99.3 ± 1.3% [88.9, 100], 99.9 ± 0.1% [99.1, 100]
and 98.3 ± 3.4% [83.5, 100] in V-MRI, P-MRI and US datasets, respectively. This suggests
that, on average, it yields smooth and invertible deformations. Furthermore, we report the
deviations of |J| from unity within the liver. The mean ± std and 95th percentile (P95) of all
the deviations is 0.07±0.23 P95 = 0.44, 0.02±0.11 P95 = 0.19, and 0.02±0.47 P95 = 0.68 for
V-MRI, P-MRI and US datasets, respectively. These results show that |J| values are close
to unity within the liver, which means anatomically plausible motion fields. Violin plots
with the dispersion from unity as well as visual results with the spatial distribution of |J| are
included in the Supplementary material.

Temporal experiments

Table 7.3 shows a comparison based on the geometrical errors between different predictive
mechanisms, namely, ConvGRU, 3D convolution and ConvLSTM to process the image se-
quence and forecast the future deformations, on a time horizon spanning 1.3 s. Each column
shows the statistical values that summarize the error distributions obtained for a horizon of

Table 7.3 Geometrical errors (in mm) obtained from the V-MRI dataset with different alter-
natives of processing the conditional image sequence to extrapolate future times. Values are
mean ± std (95thpercentile).

Predictor ∆t = 450 ms ∆t = 900 ms ∆t = 1350 ms
ConvGRU 1.6 ± 0.9 (3.7) 1.7 ± 1.1 (3.9) 1.3 ± 1.0 (3.2)
3D Conv 1.4 ± 1.0 (3.2) 1.6 ± 1.2 (4.2) 1.3 ± 0.9 (3.3)
ConvLSTM 1.2 ± 0.6 (2.6) 1.4 ± 0.9 (3.3) 1.3 ± 0.9 (3.1)
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n = 3 time steps. Overall, the model using ConvLSTM yields the lowest errors compared
to the other two variants, a result that was found to be statistically significant, p ≪ 0.01,
ρ = 0.5 (ConvLSTM/3DConv), ρ = 0.6 (ConvLSTM/ConvGRU).

Figure 7.8c presents MSE values between ground-truth and predicted volumes for different
predictive horizon n = {1, 2, 3, 4, 5} when varying the length of the surrogate image sequence
m = {2, 3, 4, 5} given to the proposed model. The case with one input image was not consid-
ered as it does not provide spatio-temporal information. These results were obtained following
a leave-one-out scheme on a subject level using the V-MRI dataset. Generally speaking, the
performance increases as more images are provided as input, which is particularly evident
for m = {2, 3}. On the other hand, results are sightly worse for longer horizons, consistently
with what was shown in a related study [119].

7.5.4 Qualitative results

Figure 7.9 shows the most probable deformation when sampling the latent space for each
phase spanning one respiratory cycle, as well as the ground-truth motion fields. It can be
observed the spatio-temporal consistency of the predictions with respect to the ground-truth
deformation. Knowing that every sampling yields a new result, an uncertainty map can be
constructed by sampling N times. This represents a measure of the statistical dispersion of
each attributed value and therefore gives an idea of the areas more prone to errors. Such func-
tionality is possible due to the probabilistic and generative nature of the model. Figure 7.10
displays the uncertainty over the whole organ across several phases.

Figure 7.11 shows qualitative results on the V-MRI dataset at several respiratory phases.
In each image, the left half belongs to the ground truth and the right half belongs to the
prediction. Dashed lines indicate the maximum motion amplitude from end-exhale to end-

exhale exhaleinhale

Figure 7.9 Most probable deformation fields chosen when sampling the probabilistic latent
space for several phases spanning one respiratory cycle. Green and yellow arrows represent
ground-truth and predicted motion fields, respectively.
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Figure 7.10 Motion-based prediction uncertainty maps (N = 50) at selected respiratory
phases.

inhale.

Figure 7.12 presents the outputs of the proposed model, comparative approaches as well
as the true volume for different respiratory phases with the US dataset. The outputs are
presented in the sagittal and axial planes to demonstrate that motion is generated in all
three dimensions. It can be observed that difference maps corresponding to ME present some
regions with high error values. Although the results of the other two comparative approaches
(DN and AE) look similar to those showcased by the proposed model, there are some small
areas, particularly within the liver, where values are slightly worse for these methods. Red
circles are added to point out differences in the generation quality of anatomical features
like vessels and liver borders. In both cases, comparing ground truth and predictions, it is
noticeable that the model correctly predicts the motion shown by the true image sequence.
Additional qualitative results can be found in the Supplementary materials.

The proposed method requires a computational time of 10.2 ± 0.6 ms when deployed on
a NVIDIA Titan RTX GPU with 64 Gb RAM to predict 3 future deformation fields on
the V-MRI dataset, which is equivalent to a horizon of 1.3 s. This value was obtained
by averaging 50 different inference times. According to the literature, predicting between
300 and 600 ms ahead of time is enough to cope with the typical system’s latency during
radiation delivery [174, 203]. Hence, considering its low computational time, the motion
model is sufficiently performant to be applicable in real-time and to allow precise online
tracking of the target volume. Each training in the V-MRI dataset took approximately 4
hours. The time required to perform a subject-specific fine-tuning was 8 min.
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Figure 7.11 Qualitative results and difference maps between ground-truth and predicted
volumes.

7.6 Discussion and Conclusion

We presented an unsupervised predictive framework that can generate 4D volumes given
only a reference pre-treatment volume and real-time 2D slices. Our method not only allows
accurate spatio-temporal predictions with 1.3s time horizon, but also provides uncertainty
values. Indeed, deep neural networks are known by their capacity to approximate a large
class of functions. The proposed generative framework, inspired by a conditional variational
autoencoder, relates partial observations to dense 3D motion fields over time. These partial
observations are in-room cine slices or US images that capture the internal organ motion.
This has an advantage over models relying on external surrogates that are not always repre-
sentative of the actual organ motion.

During the model validation, we considered imaging modalities such as MRI and US, which
avoid an extra burden of ionizing radiation for the patient. Unlike previous approaches that
have constructed motion models relying on treatment planning 4D CT or CBCT, the two
datasets employed in this study were acquired during free-breathing. Generally, the treatment
planning data is a respiratory-correlated dataset which only captures an average motion over
the respiratory cycle. This may yield poor motion estimation results and difficulty in coping
with irregular patterns. In contrast, our time-resolved free-breathing predictive model covers
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Figure 7.12 Qualitative results for all compared methods on the US dataset. For both sagittal
and axial planes, the central slice of the volume is shown at mid-inhale, end-inhale and mid-
exhale respiratory phases. For the end-inhale lisetpoly phase, an error map is calculated.
Red circles are included to highlight differences between the displayed approaches.

a wide variability of breathing patterns and the model showed to be robust managing cycle-
to-cycle variations. Furthermore, it can accommodate to challenges which may occur during
therapy. In this regard, a different image acquisition protocol, liver drift motion over longer
time and coverage of the whole liver were taken into account in our experiments. The hold-
out dataset used for testing purposes was acquired and reconstructed with a different MRI
protocol to the one used to build the motion model. This experiment is crucial to validate
whether or not the model can work with different image contrasts and appearances, which
is very likely to happen in the clinical routine. In terms of respiratory organ drift, related
works have shown how the performance decreases up to four times between the extreme
subsets [244]. In contrast, the proposed model shows little quality degradation with time
thereby offering superior robustness compared to existing techniques.

The analysis of the motion embeddings revealed that the latent space projects similar respi-
ratory phases close to each other. This could be potentially used for further classification.
The ablation experiments showed the influence of each component involved in the model,
demonstrating their effect on the overall performance. It was observed that considering the
temporal consistency of the slices concatenated with the corresponding slice in the reference



115

volume and adding anatomical features is beneficial for the performance. Moreover, pro-
cessing the image sequence with ConvLSTM proved to be the most effective way to enable
multi-time predictions, which is consistent with previous results [119]. The proposed model
enables one-shot multi-time predictions. Results were reported when the number of future
time steps ranged from one to three. Nonetheless, it is important to note that the optimal
horizon will depend mainly on the clinical application.

In the comparative study, we observed significant differences between the results obtained
with sagittal and coronal orientations in the MRI datasets. In the US data, axial orienta-
tion outperformed the other alternatives. Presumably, more anatomical information with
larger fields of views favors the predictions, which is in line with results reported in previous
works [90, 190, 233]. The proposed model tries to address some limitations of the existing
solutions. For instance, the main shortcoming of simplified strategies, such as the spatial
motion extrapolation [202], is related to the derivation of an accurate global anatomical de-
scription since it was designed for local modeling. Also it lacks of a temporal predictive
mechanism. In contrast, our model enables dense spatio-temporal predictions from the same
inputs, i.e. a 3D pre-beam volume and beam-on cine images.

Previous studies have described the hysteresis trajectory followed by the liver during free-
breathing, which is visible in the SI and AP planes [2, 206]. Therefore, intuitively one may
think that using coronal slices might affect the hysteresis recovery, since this orientation does
not capture one of these planes. However, because predictions are based on breathing phase-
detection rather than image appearance, even if the orientation of the surrogate image does
not capture the SI-AP motion, the predicted DVF does contain the hysteresis. For instance,
Figure 7.6 showcases SI and AP trajectories yielded from coronal slices. In fact, the hysteresis
is reflected in the training motion fields, and subsequently learned by the motion model. Since
the respiratory phases are linked to high-dimensional deformations, by recovering the phase
computed from the surrogate (regardless of the orientation) the model will try to generate
the corresponding motion fields similarly as learned during training.

When comparing the tracking capabilities, the approach based on merging features from a
reference volume and surrogates yielded the poorest performance. This showcases that the
proposed model benefits from a manifold-structured latent space, as previously illustrated
in Figure 7.5. As an added value, such representation fosters the model’s interpretabil-
ity. Furthermore, decision-making in the low-dimensional space has advantages over current
surrogate-driven statistical models. In these cases, the weights optimization relies on a sim-
ilarity metric based on high-dimensional information, which only captures the variation in
a single plane. Consequently, the surrogate used to update the model does not consider a
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global adaptation. Conversely, in our approach, with the same type of input we tackle this
shortcoming by working with latent representations, which contains 3D information thereby
ensuring global adaptation. Moreover, the limited capacity in properly compensating for
motion in a third dimension when using a single plane cine-MRI has been acknowledged in
previous studies [233]. This limitation is generally resolved by combining sagittal and coronal
slices at the expense of increased computational cost, though. On the other hand, in statis-
tical models, the fixed relationship assumed between the motion of the surrogate itself and
that of the entire anatomy is known to be a limitation, especially under irregular breathing
conditions [233]. As consequence, these models perform well only on patients showing little
differences between the mean cycle signal and the actual free-breathing signal, i.e., in regular
cycles, similar to the average motion seen during model construction. In these cases, the
similarity function used for weight optimization quickly converges to the optimal solution. In
contrast, our model showed enough capacity to cope with irregularities in the respiratory cy-
cle. While some individuals present stable and regular breathing cycles, others have irregular
patterns (coughing, sneezing) that can lead to the internal target volume underestimating
the true range of motion [245]. The model also demonstrated certain tolerance to potential
shifts of the surrogate position, which is an important characteristic especially for ultrasound,
where it is more difficult to reproduce a certain imaging plane.

Unlike a related autoencoder-based model [190] trained in 3 steps, our approach only involves
a single training step. The proposed framework is flexible in terms of imaging modality and
pre-treatment data availability. Moreover, it is neither limited to a specific organ, nor to
radiation therapy as a treatment modality. In fact, other applications requiring motion
compensation can be considered. In theory, any type of images could be used as surrogate
independently of the output imaging modality. The only aspect that would need adapting
is the synchronized acquisition of both datasets, similarly as [206] and [180]. Furthermore,
the described method can be applied both as population-based or as subject-specific. If we
consider the first scenario, an important advantage of our model is that, due to the strong
generalization capabilities of the neural networks, it does not require finding inter-subject
correspondences. This process, which is part of the workflow in statistical modeling, is time-
consuming and needs manual interaction. In the second scenario (subject-specific mode),
the learning process can benefit from a broad motion and anatomical variability before the
personalization to a given patient. Whenever possible, this scenario is preferable since it yields
more accurate predictions. Recent approaches using partial Fourier acquisition, different k-
space read-out strategies and the use of deep learning have shown promising results to shorten
reconstruction times [64,218]. Therefore, this could become a viable option to quickly obtain
in-room 4D MRI datasets to personalize the population models before treatment.
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While some current clinical systems enable target monitoring using 2D orthogonal images, the
unobserved intra-fraction motion of the organs-at-risk may degrades dosimetric benefits [215].
This issue can be alleviated by proving volumetric information. Hence, the predicted dense
displacements fields can be used as a feedback variable for dose calculations, real-time online
plan adaptation and anatomy tracking during interventions. The level of accuracy achieved in
this work (1.67 mm and 2.17 mm for P-MRI and US datasets) is deemed sufficient according to
the standards mentioned in related works [22]. For instance, the population model proposed
by [206] achieved a mean error of 2.4 mm over 8 subjects. This model was intended to be
used for proton therapy. Furthermore, the authors mentioned 3 mm as a clinically acceptable
margin accuracy for this treatment modality. Similarly, the Lung Target Tracking Challenge
[246] considered tracking errors lower than 2 mm as a clinically relevant primary ranking
metric.

With regard to the dataset, it is worth mentioning that errors stemming from the recon-
struction process (e.g. discontinuous organ edges between consecutive slices) may negatively
affect the image registration process. Therefore, the quality of the employed dataset must be
ensured to yield plausible motion fields. Likewise, it is important to consider that similarly to
other motion models such as PCA-based, the performance will depend on the accuracy of the
deformable registration, which provides the training data for model creation. Certainly, de-
formable registration is a process that is not exempt from errors. Moreover, in practice, there
are no ground-truth motion fields available. In our experiments, the estimated average error
after registration between the moving and fixed volumes was 1.0 ± 0.6 mm. We consider this
value as an acceptable threshold accuracy for the modeling task. Also, some considerations
should be made regarding the acquisition of the reference volume. In the current experiments,
it was extracted from the 4D dataset. Nevertheless, in the clinical scenario this reference will
be a breath-hold image acquired before therapy. This difference should not represent an
obstacle as long as the field-of-view is consistent with the one used for the training volumes
and all the images are aligned to a common reference system. These requirements can be
met with a proper setting of the scanner. Finally, in terms of computational cost, training
and/or fine-tuning is performed before treatment whereas during treatment, only inference is
required. The inference occurs within a few milliseconds, which allows the radiation device
to react on the estimated target motion. Future studies should focus on evaluating the model
performance from a dosimetric point-of-view.
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Remarks: This paper presents a recurrent encoder-decoder architecture which leverages fea-
ture representations at multiple scales. It simultaneously learns to map in-plane deformations
between consecutive images and to extrapolate them through time. Experimental results on
healthy subjects and patients revealed that this approach yields a clinically relevant accuracy
while presenting important advantages over similar state-of-the-art methods.
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Abstract
External beam radiotherapy is a commonly used treatment option for patients with cancer in
the thoracic and abdominal regions. However, respiratory motion constitutes a major limita-
tion during the intervention. It may stray the pre-defined target and trajectories determined
during planning from the actual anatomy. We propose a novel framework to predict the in-
plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages
feature representations at multiple scales. It simultaneously learns to map dense defor-
mations between consecutive images from a given input sequence and to extrapolate them
through time. Subsequently, several cascade-arranged spatial transformers use the predicted
deformation fields to generate a future image sequence. We propose the use of a compos-
ite loss function which minimizes the difference between ground-truth and predicted images
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while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised
manner, thus it does not require additional information beyond image data. Moreover, no
pre-processing steps such as segmentation or registration are needed. We report results on
85 different cases (healthy subjects and patients) belonging to multiples datasets across dif-
ferent imaging modalities. Experiments were aimed at investigating the importance of the
proposed multi-scale architecture design and the effect of increasing the number of predicted
frames on the overall accuracy of the model. The proposed model was able to predict vessel
positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74)
mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results
show the strong potential of the model by achieving accurate matching between the predicted
and target images on several imaging modalities.
Keywords: Motion prediction, free-breathing, liver, lungs, radiotherapy, deep learning,
LSTM

8.1 Introduction

External beam radiotherapy (EBRT) is a commonly used treatment option for patients with
cancer in the thoracic and abdominal regions, for example, in lungs and liver. Statistics reveal
that between 40 - 50% of patients diagnosed with this disease undergo this treatment [247].
During the procedure the goal is to optimize the dose over the tumor while sparing healthy
tissue. However, there are several factors contributing to potential inaccuracies during the
treatment. Among them, respiratory motion induced by free-breathing is one of the major
issues in abdominothoracic radiation treatment and have shown to have a large dosimetric
impact [21]. Organs such as the lungs, liver, pancreas and kidneys are known to move
dramatically with respiration. Several studies, particularly in hepatic imaging, have shown
the extent of various modes of liver deformation during free-breathing [169, 182]. The main
motion component in the liver has been measured in the superior-inferior direction, with a
typical range of 5-25 mm for relaxed breathing, whereas in anterior-posterior (1-12 mm) and
left-right (1-3 mm) directions the motion amplitudes are smaller. Moreover, these studies
have demonstrated that the nature of deformation is much more complex than a simple
caudal-cranial translation, and includes elastic deformation as well as rotation effects which
might affect the dose administration towards a defined target [248,249]. On the other hand,
although breathing shows a repetitive pattern, there is an inter-cycle variability that is not
negligible. This can be evidenced during involuntarily shallow or deep breathing which
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represent an additional challenge during treatment.

Several solutions have been proposed to deal with the problem of respiratory motion dur-
ing imaging and image-guided interventions such as EBRT. According to [45], they can be
classified into two categories: non-adaptive motion compensation and real-time adaptive
methods. The first category includes techniques such as using large Planning Treatment
Volume (PTV) margins, abdominal compression, treating during breath hold, or respiratory
gating [22]. Using large margins to cover the whole range of tumor motion is clearly undesir-
able as this increases the volume of healthy tissue exposed to high doses of radiation. Forced
shallow breathing using a stereotactic body frame is one alternative to use during radiation
treatments. It reduces diaphragmatic excursions, while still permitting limited normal respi-
ration [46]. During treatment, the images are essential to verify the position of the tumor due
to the difficulty in reproducible placing the abdominal compression device. Breath-holding
is a simple approach but it limits acquisition/intervention time to typically less than 30
seconds. Moreover, some patients may not be able to tolerate this procedure. Respiratory
gating involves only acquisition/treatment during a limited portion of the respiratory cycle
(e.g. end-exhalation). However, it significantly increases the procedure time [22].

On the other hand, adaptive motion tracking re-positions the radiation beam as the tumor
moves. In this approach, organ motion modeling is a crucial component. We can distinguish
two types of motion modeling. Local approaches use information surrounding the target to
reconstruct exclusively the 2D/3D position of the tumor, while global approaches relying
on in-room surrogates and patient-specific global motion models estimate the whole 2D/3D
anatomy [49]. Some of the clinically available solutions follow the local approach. For in-
stance, the CyberKnife Synchrony system [250] relies on the construction of a correspondence
motion model between respiratory surrogate signals and the tumor motion. Surrogates are
acquired by measuring the displacement of the patient’s abdomen or chest using optical de-
vices [45]. As it can be difficult to image the internal motion, fiducial markers such as gold
seeds are often implanted percutaneously near the region of interest and tracked using fluo-
roscopy. Such implantation techniques are invasive and motion information is only available
at the marker(s) and not for the whole region of interest.

Over the last few years, Magnetic Resonance Imaging (MRI) have emerged as an image
guidance modality in radiotherapy (RT) treatment units, thereby creating an entirely novel
paradigm denoted as MR-guided RT (MRgRT) [223]. Moreover, technological innovations in
dose delivery systems, such as the MR-Linac, have enabled the acquisition of high-quality,
real-time images immediately before, during and after the patient is treated [55,223,251,252].
Similarly as EBRT, other tumor ablation modalities benefit from image guidance: radiofre-
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quency ablation is normally guided using ultrasound (US) images whereas high-intensity
focused ultrasound (HIFU) can be guided using MRI [224, 225] as well as diagnostic US
data [49, 226, 227]. One major limitation of image-guided interventions is the acquisition of
sparse 2D slices, which does not guarantee an accurate adaptation for 3D motion [4]. Con-
sequently, there has been several attempts to derive 3D motion from partial observations
(single or interleaved slices), demonstrating promising results [90,179,202,204]. For instance,
a quantitative comparison between five established strategies that derive time-resolved volu-
metric MRI in MRI-guided radiotherapy was presented by [233].

In order to cope with system latencies between target localization and dose delivery, the
integration of the aforementioned works with in-plane sequential prediction represents a po-
tential and feasible short-term alternative to produce real-time 4D. Therefore, the in-plane
motion prediction is a relevant task which we address in the present work.

8.1.1 Related works

A vast amount of literature has presented various two dimensional (2D) and three dimensional
(3D) predictive deformation models. Generally, these methods rely on statistical modeling
[13, 90, 178, 179, 235, 253, 254], biomechanical modeling [185, 255, 256], atlas creation [182],
clustering [257], template matching [258] and deformable image registration [48, 202, 259].
Among these approaches, statistical modeling is one of the most explored and has proven to
achieve state-of-the-art results. Hereinafter we refer to all of them as model-based approaches.
Although most have been used for 3D prediction, the method itself is also applicable for the
2D case.

Model-based approaches: Principal Component Analysis (PCA) is a well-established sta-
tistical approach that has been used for the construction of subject-specific and population-
based motion models. Generally, eigen decomposition is performed on a motion matrix which
is obtained from deformable image registration (DIR) between a reference phase and other
phases in a four-dimensional (4D) dataset. According to [253], every possible organ mo-
tion state can be approximated by a linear combination of the eigenvectors corresponding
to the largest eigenvalues. Previous studies have found that two principal components are
adequate to describe respiratory motion in 4D-CT datasets [170, 253]. However, PCA mod-
els by themselves can only provide spatial predictions without any temporal consideration.
Consequently, several works have proposed to integrate temporal prediction using surrogates
with the model’s spatial prediction. [235] built exemplar models by fitting a PCA model to
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the motion vectors of each individual subject. The final model was a weighted combination
of the predictions from all the sub-models. In a follow-up study, liver vessels landmarks were
tracked and temporally extrapolated to achieve spatio-temporal prediction from the PCA
model [184]. Linear adaptive filter was chosen for temporal prediction since it showed the
best performance in a comparative analysis presented in [260]. [254] combined a statistical
model and information from 2D ultrasound sequences. They used an artificial neural net-
work with a single hidden layer for temporal prediction on anatomical landmarks tracked
in the ultrasound images. Similarly, [90] parameterized 3D motion information using PCA.
The weights of the eigenvectors were iteratively optimized until the warped reference volume
matched the incoming interleaved slices. Inspired by [178], [179] proposed a model based on
anatomical regions of interest to relate the 3D motion, derived from 4D-CT data, with CT
slices centered around the tumor.

Most of existing 2D motion prediction methods follow a local approach or utilize low-
dimensional position information to derive the predictions. For instance, Yun et al. (2012)
implemented an artificial neural network to predict lung tumor positions in cine-MRI images.
Similarly, Bourque et al. (2017) proposed a 2D motion prediction algorithm for lung tumors
using a particle filter combined with an autoregressive model. This approach enabled to
sequentially track and predict the tumor position, 250 ms in the future. Both works were
developed in the context of MR-linac treatments. Seregni et al. (2016) evaluated different
predictive algorithms, namely, linear extrapolation, autoregressive model and support vector
machine. The tumor positions were identified in cine-MRI slices using scale invariant fea-
tures. The authors showed that cine-MRI guidance, combined with prediction algorithms,
could decrease geometric uncertainties during treatment. Alternatively, Ginn et al. (2020)
leveraged the high-dimensional information carried by the images to drive the predictions.
Specifically, they used a weighted combination of previously observed motion states. The
weights were determined by calculating the sum of squared differences (SSD) between the
current and past images. However, SSD is known to have poor performance when noise
corrupts the image intensities. Another limitation is that this approach may not provide
accurate predictions for irregular motion not captured in the selected most similar images.

In the past few years, deep learning techniques have been proposed for spatio-temporal
motion prediction on image sequences. However, most of the works have been reported in
the field of natural images while in medical imaging the contributions are scarce. These
data-driven approaches automatically discover and learn discriminatory features from a very
large number of labelled or unlabelled examples. That information is then used to perform
a prediction task such as regression or classification [261].
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Learning-based approaches: Several deep learning techniques have been proposed for mo-
tion prediction on natural images [9], as well as video frame prediction [8,101–103]. Moreover,
different models were proposed in complex scenes to predict the actions [262], poses [263]
or trajectories of humans [264]. Some of these architectures have been inspired from the
recurrent encoder-decoder model developed by [148] for machine translation. In this ground-
breaking work, the encoder is composed by a multilayered Long Short-Term Memory (LSTM)
that maps the input sequence to an internal representation called "context vector". Subse-
quently, another LSTM (decoder) is used to generate the output sequence from the vector.
The lengths of the input and output sequences can be different, as there is no explicit one-
to-one relation between the input and output sequences. Such idea was further extended
by [101], who developed a LSTM encoder-decoder framework for reconstruction and future
frame prediction. In [265], the authors introduced a generative model that uses a recurrent
neural network to predict the next frame or interpolate between frames. [120] proposed a
convolutional neural network to predict dense optical flow given a static image. The au-
thors stated that motion estimation via regression has an important drawback: the output
space tends to smooth results to the mean. In consequence, they turned the problem into a
classification task. Similarly, [9] posed the motion prediction on natural images as a classifi-
cation task and hypothesized that directly regressing the displacement fields is not a suitable
approach.

Generative models have received a considerable attention for future frame prediction [145,
162, 165, 266]. However, these approaches suffer from blurriness which is likely due to the
difficulty in directly regressing to pixel values [166]. This limits its application, particularly
in the medical field. An alternative approach is to learn a disentangled representation from
image sequences. For instance, [135] and [8] factorized the frames into a stationary part and a
temporally varying component to represent content and motion, respectively. The prediction
of future dynamic is then enabled applying standard LSTM to the time-vary components.
Although the spatio-temporal dependency in sequential data has been well explored and many
recurrent variants have been considered in deep learning for motion prediction, the results
presented in the vast majority of cases are based on validations carried out in datasets with
basic or low complexity movements (e.g. KTH action dataset [267], KITTI [268], Waving
Flags [103]), or even in synthetic or test data sets (e.g. Moving MNIST [101]).

On the other hand, relatively little has been done on this matter in the medical imaging
field. Recently, [269] proposed a conditional variational auto-encoder that can predict mo-
tion from an image sequence. However, the model was only validated on cardiac MRI-cine
data and requires complete cardiac cycles as inputs. Similar works have addressed the mo-
tion estimation on cardiac sequences using siamese-style convolutional recurrent units [270]
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and manifold learning theory [271]. Several configurations using LSTM have been proposed
to address related predictive tasks [272–277]. Specifically, for application in radiotherapy,
most of the works have been focused on temporal prediction from the Real-Time Position
Management [278] system acquisitions [272, 273, 275, 277] while scarce works have been pre-
sented on future frame generation. This work is motivated by the aforementioned challenges.
Therefore, we aim to propose a novel mechanism for future frame generation and to validate
it with clinically relevant cases across the most commonly used medical imaging modalities.

8.1.2 Contributions

In this work, we introduce a novel recurrent encoder-decoder architecture to perform multi-
time in-plane motion prediction. We leverage feature representations at multiple scales and
convolutional LSTM to find the deformation between input images and to learn how to
extrapolate them through time. Then, spatial transformers take over the image generation
process. The main contributions can be summarized as follow:

• We propose a novel multi-scale recurrent encoder-decoder model for motion prediction
in multiple times (Section 8.2.2). We introduce a differentiable spatial transformation
for displacement fields (implicit) regression and image generation (Section 8.2.3).

• We evaluate the modeling power of our method across different imaging modalities and
we show that our pipeline outperforms state-of-the-art approaches (Section 8.3).

• We show that classification-based models can greatly benefit from an adaptive motion
encoding (Section 8.3.4).

We postulate that the introduction of deep learning-based motion models will become an
important component toward the next generation of image-guided radiotherapy. Moreover,
the development of a new family of motion compensation methods which will impact directly
tumor targeting during radiotherapy.

8.2 Motion prediction network

In this section, we present our in-plane motion prediction pipeline. As highlighted in the
previous section, our approach combines a multi-scale recurrent encoder-decoder model with
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Figure 8.1 Functional blocks of the motion prediction framework. The model first learns the
successive deformations in the input sequence. Then the feature representation is extrapo-
lated and further upsampled up to the original dimensions. The spatial transformer warps
the input image with the predicted deformations in order to generate the future frames. A
composite loss function takes over of minimizing the differences between predicted and target
sequences as well as ensuring smooth deformations.

a differentiable spatial transformer module. The goal is to implicitly regress the future spa-
tiotemporal 2D deformations for image sequence generation. Figure 8.1 shows the functional
blocks of the proposed in-plane motion prediction framework. First, a neural network learns
how to align the images. In other words, it learns to non-rigidly register image pairs. Sec-
ondly, the feature representation corresponding to the extracted deformations is extrapolated
and further upsampled up to the original dimensions. Then, the last input image is warped
with the predicted deformation in order to generate future images. Finally, a composite loss
function takes over of minimizing the differences between predicted and target sequences as
well as ensuring smooth deformations.

In the following sections, we state the task in question (Section 8.2.1), describe the proposed
motion learning framework (Section 8.2.2) and the spatial transformer module (Section
8.2.3), as well as the loss function used to train our model (Section 8.2.4). Finally, we
provide details about the training protocol (Section 8.2.5).

8.2.1 Problem formulation

For the spatio-temporal in-plane motion prediction problem, we consider an ensemble D of
sequentially-acquired population data (volunteers or patients), namely 2D + time datasets.
The motion in each dataset d ∈ D can be quantified by performing pair-wise deformable
registrations between consecutive pairs of images. Therefore, each dataset can be represented
as a sequence of 2D motion fields which contains the vectorial components that express the
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deformable displacement of the organ between two given times tk and tk+1.

The proposed model aims at learning a representation that predicts the sequence of dense
displacement fields which represents the deformation of a given organ during free-breathing
acquisitions. We formulate this task as follows: given a temporal input
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of length n, our goal is to predict the sequence of motion fields Φ =〈
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over T time steps, where ϕn is the predicted motion at time n. Moreover,
Φ contains the deformations corresponding to a future output
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with the same length T ; Ion+1 results from warping the previous

image I in with ϕn; X,Y ∈ RH×W ,Φ ∈ RH×W×2 where H and W are the height and width of
the images, respectively. Therefore, the proposed model aims to learn from the training data
a discriminative model by means of a d-dimensional latent distribution that maximizes the
conditional probability P(Y|X) of obtaining a predicted sequence given the input sequence.

8.2.2 Motion learning architecture

The outline of the proposed in-plane motion prediction architecture is shown in Figure 8.2.
It is composed by a fully convolutional spatial encoder, recurrent units, a fully convolutional
spatial decoder and multiple spatial transformer layers, depending on the number of predicted
time steps. The length of the input and output sequences can be empirically determined,
depending on the nature of the application. The spatial encoder is fed with an input temporal
sequence. It extracts high-level features from the input images and maps the consecutive
deformations between them. Afterwards, the spatio-temporal features are extrapolated in
time by the recurrent units, which are then processed by the spatial decoder to recover
the desired dimensions in the form of smooth deformations. Finally, the deformations are
applied in cascade through individual spatial transformer layers yielding the predicted image
sequence.

Previous works [9, 118, 120] on motion prediction and missing frame interpolation have ad-
dressed the feature extraction problem by using repeated convolution and pooling layers.
With this traditional architecture, fine-scale features are learned in the early layers whereas
coarse-scale features are learned in later layers. However, there is no guarantee that a certain
feature, which may be crucial for the performance, will be maintained through the contract-
ing paths until its extraction in deeper layers. Therefore, instead of using the aforementioned
approach, we introduce an alternative scheme that extracts feature representations at multi-
ple scales through the network. Figure 8.3 illustrates the internal structure of the proposed
multi-scale residual (MSR) block which processes the input tensor at different levels: full
resolution, medium resolution and low resolution in order to fully exploit the image features.



127

…

Input image sequence

I1 I2 In
Φn Φn+1 Φn+T

…

STN STN …

Predicted deformation sequence

Predicted image sequence

In+1 In+2 In+T+1

Convolution +  Batch Normalization + ReLU activation 
Kernel size = 3×3 , stride = 1

Multi-scale residual block

Max Pooling Up convolution

Convolutional LSTM

2D + t motion prediction model

32

64
128 64 64

32

16 8 2

…

Skip connection

STN

Figure 8.2 Schematic representation of the proposed model. The model receives a image
sequence as input and learns to generate future frames. Convolutional layers, arranged in a
multi-scale configuration, extract features at different resolutions and map the consecutive
deformations between the input images. Convolutional LSTMs leverage the spatio-temporal
properties of the sequence and extrapolate the feature representations which are further up-
sampled by up-convolutional layers in the decoder. Interleaved convolutional layers decrease
the features dimension up to a plane representing the anterior posterior and superior inferior
motion directions. Finally, cascade-arranged spatial transformers apply the predicted defor-
mations to generate the output image sequence.

In the first pathway, features are extracted from the input without reducing its size. In this
manner, fine-grained features are extracted from the images in original size since there is no
pooling layers. In the other two pathways, the input resolution is decreased up to two times
by using average pooling layers. The reason behind this choice is that, while max pooling
only retains a quarter of the data, average pooling brings all into account retaining more
information.

In the two coarser levels of the block, the input of the convolutional layers is enriched with
features extracted in the convolution of the previous scale. To this end, transversal max pool-
ing modifies the tensor size to match with the current level. Both tensors are concatenated
and fed to the convolutional layer. With this configuration, features from the highest levels
are shared with lower levels across the block. The core idea is to provide the network with
multiple ways to extract information pertaining to deformation. Up-convolutions upsample
the feature maps to the original block input size. At the end of each pathway, features ex-
tracted at different scales are merged in the concatenation block. Inspired by ResNet [279],
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we placed a shortcut that performs identity mapping on the input and add it to the MSR
block output. All convolutional layers have 3 × 3 receptive fields, single stride and ReLU ac-
tivations. Batch normalization layers were placed after convolutions as it speeds up training
and acts as a regularizer.
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Max 
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Figure 8.3 Internal structure of the proposed multi-scale residual block. The input tensor
passes through three pathways consisting of convolutional and pooling layers. This scheme
allows for feature extraction at multiple resolutions. At the bottom part, features are up-
sampled to the original dimension and combined to shape the output tensor.

In order to perform prediction, Vanilla LSTM have shown excellent results in processing
sequences of one-dimensional vectors. However, its performance is limited in handling multi-
dimensional sequential data such as images (2D + time) and volumes (3D + time) due to
lacking spatial correlations. We leverage the variant proposed by [112] in which internal
point-wise matrix multiplications are replaced by convolutional structures for both input-
to-state and state-to-state transitions. By doing so, it captures underlying spatial features
using convolution operations in multiple-dimensional data. These cells, named convolutional
LSTM (ConvLSTM), are able to capture spatio-temporal properties of the data much better
than vanilla LSTM cells and have shown to outperform them with even containing fewer
model parameters. These memory units keep an accumulative knowledge across sequences
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through their cell state C. Internal gates provide these units with the capacity of erasing
information that is no longer useful (forget gate f) and adding relevant information (input
gate i). Such decisions are made by neural networks with sigmoid activation functions σ (·),
weights W and bias b. At each iteration the old cell state Ct−1 is updated into the new cell
state Ct:

Ct = ft ◦ Ct−1 + it ◦ tanh
(
Wxc ∗ xt +Whc ∗ ht−1 + bc

)
(8.1)

ft = σ
(
Wxf ∗ xt +Whf ∗ ht−1 +Wcf ◦ Ct−1 + bf

)
(8.2)

it = σ
(
Wxi ∗ xt +Whi ∗ ht−1 +Wci ◦ Ct−1 + bi

)
(8.3)

where Wxc and Whc are the learnable weight matrices applied over the current input data xt
and previous hidden state ht−1, respectively; Wxf , Whf and Wcf are the weights applied in the
feature vector, previous hidden state and previous cell state in the forget gate, respectively;
Wxi, Whi and Wci are the weights applied in the feature vector, previous hidden state and
previous cell state in the input gate, respectively.

Further, an output gate ot decides whether Ct will be propagated to the final state ht ac-
cording to the following expressions:

ot = σ
(
Wxo ∗ xt +Who ∗ ht−1 +Wco ◦ Ct−1 + bo

)
(8.4)

ht = ot ◦ tanh
(
Ct
)

(8.5)

where Wxo, Who and Wco are the learnable weight matrices applied over the input data,
previous hidden state and cell state in the output gate, respectively. In Equations 8.1 to 8.5,
symbols ∗ and ◦ denote the convolution operator and Hadamard product, respectively.

In the proposed architecture, the convolutional LSTM units are arranged in an encoder-
decoder configuration in order to handle the temporal information from the activations de-
livered by the prior block, i.e. the last convolutional layer in the spatial encoder. The
temporal encoder maps the feature sequence to a vector of fixed dimension based on all in-
puts of the sequence and therefore takes advantage of its temporal structure. The resulting
cell and hidden states contain the learned motion from the sequence. This representation is
fed to initialize the internal states of the temporal decoder where another LSTM decodes the
target sequence from the vector.

The spatial decoder consists in a generative pathway. It is composed by three up-convolution
layers to upsample the features back to the original dimension. Before every up-convolution,
features coming from the spatial encoder are concatenated to the decoder through skip con-
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nections. Using this scheme, the up-sampling path is provided with information captured
in early layers that may be useful for the reconstruction. Five convolutional layers, with
same configuration as in the encoder (in terms of kernel size and stride), reduce progressively
the feature maps. In this case, its final size can represent a bidimensional space, namely
superior-inferior and anterior-posterior motion.

8.2.3 Spatial transformation module

Spatial Transformer Networks (STN) were proposed by [161] to provide Convolutional Neural
Networks with explicit spatial transformation capabilities. This module performs spatial
warping on images or feature maps by producing a transformation with learnable parameters.
It also contains a differentiable grid sampling function allowing for backpropagation within
an end-to-end learning framework. Inspired by this, we introduced a cascade of spatial
transformation functions at the end of the model to sequentially yield the predicted image
sequence. Unlike the original STN, where the transformation is intrinsically learned by
internal neural networks, our model infers the transformation from the last convolutional
layer of the decoder which provides the sequence of predicted flows. Starting by the last
image in the input sequence I in, the first spatial transformer warps it with ϕn to produce
Ion+1. Subsequently, the resulting image Ion+1 is warped with ϕn+1 by another independent
spatial transformer yielding Ion+2 and so on, for all the predicted time steps. An alternative
approach is to perform one-shot warping on the last input image I in with the algebraic sum
of the deformations over T times to get the output image:

Ion+T+1 = I in ◦
T∑
τ=0

ϕn+τ . (8.6)

This can be beneficial in the presence of noise, e.g. US images, where speckle noise can
deteriorate image quality during iterative warping.

Each spatial transformation takes the form of a smooth dense displacement field u. Following
the common notation used in medical image registration, we represent the transformation
at every pixel position p ∈ RH×W as the summation of an identity transformation with
the displacement field u, or ϕ (p) = p + u (p). For each p in the source image In at time
n, we compute a subpixel resolution location p′ in the warped image In+1 = In ◦ ϕn. In
order to obtain new locations, we interpolate linearly the values at the neighboring pixels
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following [280]:

In+1 (p′) = In ◦ ϕ (p) =
∑

q∈Z(p′)
In (q)

∏
d∈R2

(1 − |p′d − qd|) , (8.7)

where Z (p′) are the pixel neighbors of p′, and d iterates over a bidimensional space.

8.2.4 Similarity-based loss function

Similarly to the image registration domain, we propose a loss function to the neural network
which measures the fit between the predicted and target images. Let Y and Ŷ denote the
target and predicted image sequences, respectively, and let Φ be the sequence of predicted
dense displacement fields. Our optimization problem can be written as:

Φ̂ = arg min
Φ

Ltotal

(
Y, Ŷ,Φ

)
(8.8)

where
Ltotal = 1

T

T∑
k=1

Lsim

(
I tk, I

p
k

)
+ λLsmooth (ϕk) (8.9)

Here, Lsim (·, ·) is a modular metric that measures the similarity between the target and
predicted images, I tk and Ipk , respectively. Lsmooth (·) acts as a regularization term weighted
by λ on the deformation field ϕk. The proposed framework is agnostic to the loss func-
tion as long as it be differentiable. Since the sequential images always come from the same
modality, in this work the metrics used for Lsim include mean squared pixel difference and
cross-correlation. Normalized Cross Correlation (NCC) is able to cope with intensity varia-
tions often found across scans and datasets. We minimize the negative local cross-correlation
between predicted and target sequences by using exclusively convolutional operations simi-
larly as proposed by [42]. Instead of computing local means over volume patches, we look at
n2 vicinities around each pixel with n = 9:

NCC
(
I tk, I

p
k

)
=
∑

p∈R2

(∑
pi

(
I tk (pi) − Î tk (p)

) (
Ipk (pi) − Îpk (p)

))2(∑
pi

(
I tk (pi) − Î tk (p)

)) (∑
pi

(
Ipk (pi) − Îpk (p)

)) (8.10)

where Î tk and Îpk are images in which local mean intensities have been subtracted.

Finally, we introduce a regularizer term Lsmooth (·) in the cost function to achieve smooth
deformation fields and avoid discontinuities. It is modeled as a linear operator on spatial
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gradients of ϕ:
Lsmooth (ϕ) =

∑
p∈R2

∥∇ϕ (p)∥2 (8.11)

The spatial gradients of the deformation vectors ∇ϕ are calculated from the differences
between neighboring locations of p. The regularizer term Lsmooth (·) was weighted with λ

equal to 0.01 and 1.0 when used with the MSE and NCC similarity metrics, respectively.

8.2.5 Training protocol

Datasets were divided in different subsets for training, validation and testing purposes. Hence
during testing the model performs predictions from unseen anatomies. The proportions used
for each dataset are specified in Section 8.3.1. Mean centering and standard deviation nor-
malization was applied to each input image. This decreases the variability of the input data,
thus improving the training stability. Adam optimizer was used with an initial learning rate
of 10−3. This learning rate was reduced by a factor of 2 after 5 epochs without improve-
ments in the validation set accuracy. The allowed minimum learning rate was 10−10. Finally,
early stopping was used to prevent overfitting. We implemented our model in the Keras
framework [281] using Tensorflow backend [282].

8.3 Experiments and results

In this section, we present the experimental results of the proposed pipeline for medical
sequence prediction. We first provide details on the different dataset used to validate the
model. Furthermore, we describe the metrics used for evaluation purposes as well as the
implementation of comparative methods. We then present quantitative results on the com-
parison of our method with related approaches through different imaging modalities. It is
important to highlight that in our comparisons, we are interested in assessing the predictive
capacity of the model. Consequently, we selected state-of-the-art approaches performing the
same in-plane motion prediction task. Finally, we show some qualitative results in each case
for three modalities (MRI, US, CT) and the computational times with the hardware used.

8.3.1 Datasets

Magnetic resonance images This dataset consists of liver sagittal scans without contrast
agent from 12 healthy subjects. This study was approved by the institutional review board
and written consent was obtained from all the volunteers. Volunteers were instructed to
breathe normally during the entire acquisition. Cine-phase images were acquired on a Siemens
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Skyra 3T scanner using a 2D T2-weighted true FISP sequence with pixel matrix of 176×176,
pixel spacing of 1.7×1.7 mm2 and a slice thickness of 3 mm. The temporal resolution was 320
ms. In order to avoid mixing different movement patterns (breathing induced with cardiac
beating) the slices covered only the right hemi-diaphragm leaving out the cardiac cavity.
Each anatomical position comprises 50 dynamics. We followed a leave-one-out validation
scheme on a subject level. Thus, the model was tested on all the slice positions belonging to
an unseen subject. As a pre-processing step, images were cropped to 112×112 to focus on the
liver and remove organs in the bottom part such as stomach, kidneys, pancreas, intestines,
etc. Figure 8.4 shows the liver motion range measured from vessels positions for each subject
during the free breathing sequence. These values are in concordance with the motion ranges
reported in [22]. In addition, we observed that the MRI dataset contains different motion
amplitudes, ranging from shallow up to deep motion patterns, which increases the inter-
subject variability.

Figure 8.4 Observed motion in the MRI dataset from vessel tracking. Box plot shows the
minimum value, the first quartile, the median, the third quartile and the 95th percentile of
the values. Mean values are marked by green points.

Ultrasound images The CLUST dataset [283] was originally created for 2D and 3D liver
vessel tracking challenges. It contains 63 free-breathing sequences acquired at various centers
with different scanners. Image sizes, pixel and temporal resolutions, ranging between 262 ×
313 and 475 × 687, 0.27 mm and 0.77 mm and 32 ms (31 Hz) and 90 ms (11 Hz). Manual
annotations of anatomical landmarks were provided. Images were preprocessed before the
training, validation and testing. Consequently, pixel resolutions were normalized to 0.5 × 0.5
mm2. This value represents the mean value of the original resolutions range. Zero-padding
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was applied in order to obtain a consistent image size (480×640 pixels) through all the data.
Similarly, image rates were normalized to 200 ms (5 Hz). From the total of 63 sequences, 39
were used for training, 8 for validation and 16 for testing which represents, approximately,
62%, 13% and 25% of the total, respectively.

Computed tomography images The third and final dataset to be used was 4D thoracic
CT dataset [284, 285] which is publicly available at http://www.dir-lab.com. It contains
thoracic CT images from 10 patients which were acquired as part of the treatment plan-
ning process for the treatment of thoracic malignancies. Anatomical landmarks were man-
ually identified by an expert in thoracic imaging, with additional registration performed by
multiple observers. Similarly as the MRI dataset, we used fifty slices covering the right
hemi-diaphragm with 10 dynamic each. Pixel spacing was normalized to 1.0 × 1.0 mm2.
The temporal resolution is approximately 400 ms. Similarly as the previous datasets, image
acquisition was carried-out during free-breathing.

8.3.2 Evaluation metrics

We evaluate the performance of the proposed method both quantitatively and qualitatively.
To perform the quantitative evaluation, we analyzed the local and global behavior using
landmark errors and image similarity metrics, respectively. The local behavior was assessed
by measuring the distance between landmarks in the ground-truth and predicted images. To
this end, manual annotations of blood vessel positions and bifurcations provided by experts
were used for MRI, US and CT datasets. These landmarks were located in the predicted
images using the Lucas-Kanade optical flow algorithm implemented in OpenCV library [286]
to find the estimated positions. The prediction error for each landmark n in a temporal image
t was measured as the Euclidean distance En,t+∆ = ∥gn,t+∆ − pn,t+∆∥ between target g and
predicted p positions. For certain experiments we used the Normalized Cross Correlation to
capture the global spatial coherence between ground truth and predicted images.

8.3.3 Implementation of comparative methods

Both comparative methods require deformable image registration as part of their processes:
the motion matrix construction for PCA, and the label creation for the deep approach.
Therefore, pairwise deformable registration was performed using the publicly available tool
NiftyReg [201] in order to quantify the motion between consecutive temporal images. Dense
displacement fields were obtained by using a cubic B-Splines transformation model in a
pyramidal approach. A source image was iteratively deformed while optimizing an objective
function based on the Normalized Mutual Information with 64 bins and a penalty term based
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on the bending-energy [30].

Statistical modeling: Deformable registration was accomplished following the previously
mentioned configuration after the rigid alignment between a reference phase (exhale in this
case) and the rest of phases. The resulting displacement fields were utilized to construct
PCA motion models for comparison purposes. Specifically, individual models using two
principal components were created for each anatomical position and its temporal images.
The explained variance with two components was [0.96, 0.03].

Figure 8.5 illustrates the methodology used to produce the spatio-temporal predictions. Re-
cent state-of-the-art works have used surrogates to drive the models [254, 260]. One dimen-
sional navigators extracted from a tracking method presented by [80] were used as surro-
gates. They were linked to the PCA coefficients through linear regression. Adaptive linear
filtering was used to extrapolate respiratory signal values in time. According to [260] this
approach yielded the best performance among several compared temporal prediction meth-
ods. Updated PCA coefficients were derived from the known relationship between model
and surrogate. Finally, these coefficients were used to feed the model and to produce the
spatio-temporal predictions.

Classification-based approach (uniform grid): We also implemented the classification-
based motion prediction approach proposed by [9], where a method is used to uniformly quan-
tize the range of values for each vectorial component. In our case, these ranges represent the
anterior posterior (AP) and superior inferior (SI) motion planes. Using this uniform scheme,
the values covered by each bin were determined by dividing the whole range (max-min) by
the number of bins. Then, different classes were assigned to each possible combination be-
tween the bins of each motion plane. The number of bins was equal to 5, yielding 25 classes
(5 × 5). Weighted cross-entropy was used as loss function as the original paper [9].

Classification-based approach (adaptive grid): Figure 8.6 shows the probability distri-
bution of the motion vectors obtained from deformable registration in the MRI dataset. Its
approximately-Gaussian shape is a key characteristic that must be taken into account during
the space discretization. Therefore, instead of dividing uniformly the range with the number
of bins, we follow an alternative scheme which we refer as adaptive grid (AG). It consists of
selecting the bins near to the mean, standard deviation, minimum and maximum distribution
values. Using this scheme, we effectively represent the motion distribution observed in the
dataset.



136

Temporal 
prediction

(adaptive filter)

vectors

surrogate

Get correlated PCA 
coefficients

weights

PCA
coefficients (wk)

Motion Linear regression
[surrogate, wk t ]

PCA model

x t = x +

k=1

K

ukwk t

Spatio-temporal 
prediction

Figure 8.5 Implemented PCA pipeline for in-plane spatio-temporal prediction.

Table 8.1 Vessel tracking error position (in mm) for each predicted time in the MRI dataset.
Values are median (interquartile range).

Model tp=1
(320 ms)

tp=2
(640 ms)

tp=3
(960 ms)

tp=4
(1280 ms)

tp=5
(1600 ms)

Classification 1.63 (2.29) 2.32 (2.58) 2.96 (2.88) 3.23 (2.65) 3.55 (2.52)
Classif. (AG) 1.55 (1.45) 2.33 (2.10) 2.77 (2.64) 3.16 (2.63) 3.20 (2.82)
PCA 1.36 (2.73) 1.85 (2.98) 2.37 (2.88) 2.72 (2.67) 3.01 (2.49)
ED-ST(ncc) 0.54 (0.66) 0.74 (0.98) 1.03 (1.26) 1.17 (1.42) 1.30 (1.66)
MSED-ST(ncc) 0.43 (0.54) 0.72 (0.91) 0.88 (1.22) 1.01 (1.36) 1.21 (1.57)
ED-ST(mse) 0.56 (0.65) 0.77 (0.96) 0.94 (1.15) 1.00 (1.15) 1.28 (1.61)
MSED-ST(mse) 0.45 (0.55) 0.57 (0.75) 0.80 (0.99) 0.88 (1.25) 0.77 (1.36)

8.3.4 Results

We now present a comparison between multiples variants of our pipeline and state-of-the-art
approaches for spatio-temporal prediction, which were described above, namely: PCA and

Figure 8.6 Histograms of the superior-inferior and anterior-posterior displacements in the
liver MRI dataset. Dashed lines delimit the bins. For clarity only the division of the SI
component is represented.
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classification-based models. As explained in Section 8.3.3, our classification-based imple-
mentation follows the method introduced by [9]. Moreover, we explore the benefits of the
proposed adaptive motion encoding.

Our experiments are aimed at investigating three aspects regarding the time extrapolation
and the proposed multi-scale feature extraction model: (1) the importance of the multi-
scale architecture design, (2) the effect of increasing the number of predicted frames on
the overall accuracy of the model, and (3) the effect of varying the number of prior frames
on the overall accuracy of the model. To address these effects, we ran paired experiments
with and without the multi-scale architecture. Therefore, we investigate the performance
of: (1) stacked convolution and pooling layers for feature extraction and (2) multi-scale
residual feature extraction, hereinafter referred as "ED-ST" and "MSED-ST", respectively.
We also present results on the use of different loss functions. Predictions were extrapolated
at {1, 2, 3, 4, 5} time points given the same number of prior time steps at the input (5 images
for all the cases). Statistical significance was calculated by applying a Wilcoxon signed-rank
test using the function implemented in the Python Scipy library. P < 0.01 was considered
to indicate a statistically significant difference.

Tables 8.1, 8.2 and 8.3 list the median landmark tracking errors and interquartile ranges
among the compared methods for MR, US and CT images, respectively. These tables present
results on multiple predicted times. In these cases (number of predicted frames > 1), the
reported value is the average of the individual errors at each predicted image. Seemingly, the
reported distributions exhibit a trend in their values: error values increase as we generate
more frames. It is natural that, based on the same information, the error increases when
extrapolating more time points. In all cases the proposed approach provides the top accu-
racy for the landmark tracking. This behavior is consistent through all the time-resolved
experiments and imaging modalities. As reported in the tables, landmark localization errors

Table 8.2 Landmark localization error (in mm) for each predicted time in the US dataset.
Values are median (interquartile range).

Model tp=1
(400 ms)

tp=2
(800 ms)

tp=3
(1200 ms)

tp=4
(1600 ms)

tp=5
(2000 ms)

Classification 0.96 (1.35) 1.33 (1.76) 1.94 (1.77) 2.22 (1.85) 2.34 (1.66)
Classif. (AG) 0.71 (0.92) 1.01 (1.38) 1.33 (1.57) 1.43 (1.58) 1.72 (1.64)
ED-ST(ncc) 0.55 (0.83) 0.81 (1.13) 1.18 (1.41) 1.18 (1.27) 1.48 (1.52)
MSED-ST(ncc) 0.51 (0.76) 0.76 (1.08) 1.03 (1.28) 1.17 (1.24) 1.25 (1.28)
ED-ST(mse) 0.49 (0.82) 0.75 (1.20) 1.03 (1.23) 1.24 (1.30) 1.44 (1.34)
MSED-ST(mse) 0.45 (0.74) 0.74 (1.16) 0.98 (1.20) 1.18 (1.28) 1.28 (1.31)
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Table 8.3 Landmark localization error (in mm) for each predicted time in the CT dataset.
Values are median (interquartile range).

Model tp=1
(400 ms)

tp=2
(800 ms)

tp=3
(1200 ms)

tp=4
(1600 ms)

tp=5
(2000 ms)

Classification 1.03 (1.03) 1.55 (1.63) 1.98 (2.23) 2.33 (3.00) 2.75 (3.49)
Classif. (AG) 0.72 (1.04) 1.22 (1.53) 1.59 (2.02) 1.85 (2.15) 2.14 (2.54)
ED-ST(ncc) 0.33 (0.57) 0.45 (0.64) 0.52 (0.69) 0.54 (0.69) 0.57 (0.73)
MSED-ST(ncc) 0.25 (0.52) 0.38 (0.53) 0.42 (0.55) 0.44 (0.58) 0.45 (0.55)
ED-ST(mse) 0.32 (0.61) 0.42 (0.56) 0.47 (0.52) 0.46 (0.52) 0.49 (0.53)
MSED-ST(mse) 0.28 (0.58) 0.37 (0.56) 0.41 (0.52) 0.42 (0.47) 0.42 (0.49)

ranges between 0.45 (0.55) and 0.77 (1.36), 0.45 (0.74) and 1.28 (1.31) and 0.28 (0.58) and
0.42 (0.49) for one and five predicted time steps in MRI, US and CT datasets, respectively.

When comparing results for overall landmark errors in one predicted time with the model
which did not integrate multi-scale feature extraction, the accuracy improved by a statistically
significant margin of 0.11 mm, 0.04 mm and 0.04 mm (p<0.01), of 1.1 mm, 0.26 mm and
0.44 mm (p<0.01) to a classification-based approach and of 0.91 mm (p<0.01) to a statistical
model, for MRI, US and CT dataset, respectively. These results seem to confirm two-fold
outcomes: first, using a multi-scale approach does help to converge towards an optimum
minimum, and second, minimizing image differences through a regression model does improve
the current state-of-the-art for the sequential prediction task.

Reported results reveal that PCA performed better than classification-based models. As
hypothesized, the adaptive gridding achieved better performance among the compared clas-
sification methods in comparison with the approach presented by [9]. As shown in Figure 8.6,
there is a high density in the central part of the distribution. In consequence, the adaptive
grid will recover approximate values nearest to the actual values improving the results.

We performed additional experiments on MRI slices belonging to the left liver lobe to test
the model capacity to learn composite motion (see Figure 8.7). Figure 8.8 shows the NCC
values obtained with the proposed model (MSE-based optimization) following a leave one
out scheme on the 12 subjects. Reported results reveal a performance slightly lower than
those obtained in slices where most of the movement was breathing-induced, but remain
quite accurate. This showcases the complexity of predicting composite motion from various
sources. In this case, the images capture respiratory, cardiac and even peristaltic motion.
Nevertheless, mean NCC values higher than 0.85 for the longest extrapolation (5 predicted
times) seem to confirm that the model extracts useful spatiotemporal latent features which
allows to learn and predict the complex underlying dynamics.
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Figure 8.7 MRI slices belonging to the left
liver lobe from several subjects.

Figure 8.8 NCC between target and pre-
dicted images of the left liver lobe using the
proposed model (MSE-based optimization)
for 1 and 5 timesteps.

Figure 8.9 displays the vessel trajectory through the target and predicted temporal MR
images. Our multi-scale regression-based model trained with MSE as loss function showed a
near perfect alignment with the target trajectory. Therefore, this confirms that our procedure
is a clear improvement on current methods.

Figure 8.10 presents NCC values for all different predicted times {1, 2, 3, 4, 5} when varying
the number of input images {2, 3, 4, 5} given to the proposed model using the MRI dataset.
The case with one input image was avoided to maintain the sequence to sequence approach.
Results were obtained following a leave one out scheme on the 12 cases and show an increased
performance when more input images are provided.

Finally, we present qualitative results on the adopted datasets. Figure 8.11 shows the differ-
ence maps between the ground-truth and predicted images obtained with the classification,
PCA and the proposed models. Images predicted by our framework match target images
showing pixel-wise errors near to zero, particularly in regions with vessels. Multiple time
predictions on this dataset are shown in Figure 8.12. Images were selected at challenging
end phases such as exhale. The yellow boxes indicate the most noticeable inconsistencies
among the compared images. Intermittent blood vessels that appear suddenly as a result of
the out-of-plane movement are not captured in the predictions. This is mainly due to two
factors: (1) the appearance content depends on the last image seen in the input sequence
and (2) the model is not generative by nature but discriminative.

Figure 8.13 shows two inference cases from the ultrasound dataset: (a) next frame prediction
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Figure 8.9 Vessel trajectory from images pre-
dicted with different approaches for one case
in the MRI dataset.

Figure 8.10 NCC between target and pre-
dicted MRI images when varying the num-
ber of prior images provided to the proposed
model (MSE-based optimization).
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Figure 8.11 Difference maps between ground-truth and predicted MR images from different
methods through a complete respiratory cycle. Color bars indicate the pixel intensities of a
8-bit grayscale image which range from 0 (blue) up to 255 (red).

and (b) five frames prediction. In Figure 8.13 (a) we observe that slight misalignment in
the diaphragm edge occurs in the predicted frame, which correspond to inhale phase. This
observation, also evident in Figure 8.11, suggests that errors are more prone to happen over
that specific phase. This is probably due to large displacements during air intake within the
lungs. In the case of more than one predicted time, a single model inference is shown. The
longer it is extrapolated, the more image becomes blurred. Presumably, this is due to the
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Figure 8.12 Extrapolation up to five time steps from an input sequence belonging to the
test set in the MRI dataset. Top row: Target images, middle row: predicted images by the
proposed model, bottom row: overlapping between target and predicted images. Magenta
and green pixels belong to target and predicted images, respectively. Yellow boxes indicated
some vessel inconsistencies due to out-of-plane motion.

effect of the successive transformations and the speckle noise contained inside the US images.
Nonetheless, even though the last images are not as sharp, landmarks are easily identifiable.
The use of equation 8.6 for warping is an alternative that may improve the quality as it
always uses the last image in the sequences as source image. In our experiments we did not
exploit such alternative as the generated images maintained an acceptable quality. In the
illustrated examples, mismatches becomes evident at the liver edge, as shown in the yellow
boxes.

It should be noted that different ultrasound probes from different commercial scanners were
used and were placed in different positions through the dataset. For example, the images
showed in Figure 8.13 (a) and (b) were acquired with Siemens and Clarity equipment. More-
over, as can be observed, in one case (Figure 8.13 (a)) the liver edge appears in the opposite
orientation to the other Figure 8.13 (b). Consequently, there is a higher variability between
scans in terms of organ orientation and appearance. This indicates the generalization capabil-
ity of the model. Finally, Figure 8.14 presents qualitative results on multiple time predictions
on CT dataset. In comparison with other imaging modalities, the predictions seems closer to
target images. Nevertheless, this dataset captures only an average movement. This means
that inter-cycle variability, which is a challenging factor, is not taken into account.
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Figure 8.13 Extrapolations obtained from a single input across different views and scanners in
the ultrasound dataset (sequence ID, scanner): (a) one time (ETH–04–02, Siemens Antares)
(b) five times (ICR–01, Elekta Clarity) are showed in the upper and bottom parts, respec-
tively. In both cases, the top row contains the input sequence and the expected target images;
the middle row contains the input sequence and the predicted images by the proposed model;
last, the bottom row shows the overlapping between target and predicted images. Magenta
and green pixels belong to target and predicted images, respectively. Yellow boxes highlight
some inconsistencies due to out-of-plane motion.

8.3.5 Computational times

The training of the proposed model took approximately 2 hours in the largest dataset (MRI),
leaving out the test case. We report the following times for the total number of images in a
single network inference during testing as a result of averaging 10 individual measurements:
35 ms, 35 ms, 38 ms, 38 ms and 39 ms for 1, 2, 3, 4 and 5 predicted time steps, respectively.
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Overlapping (GT & prediction)

Predicted output

Ground-truth output
5 extrapolated times

Input

time

Figure 8.14 Extrapolation up to five time steps from an input sequence belonging to the
test set in the CT dataset. The top row contains the input sequence and the expected
target images; the middle row contains the input sequence and the predicted images by the
proposed model; last, the bottom row shows the overlapping between target and predicted
images. Magenta and green pixels belong to target and predicted images, respectively.

All measurements refer to a Python implementation running on a machine equipped with a
3.50 GHz processor, 64 GB RAM and a GPU NVIDIA GeForce GTX TITAN X.

8.4 Discussion and conclusion

This paper presents the first multi-scale recurrent encoder-decoder framework able to gen-
erate future image sequences based on iterative spatial transformations from free-breathing
scans. The reported results on three different modalities (MRI, ultrasound, CT) demon-
strate that the proposed method outperforms state of the art methods for in-plane motion
prediction in terms of spatial and temporal quality. Compared to the statistical modeling
methodologies proposed in the literature, our method does not need any pre-processing step
such as segmentation or displacement field extraction.

In several previous methods, organ segmentation is performed prior to image registration to
isolate the organ motion. Generally, it is verified manually to avoid uncertainties introduced
by automatic contouring methods. On the other hand, nowadays there are powerful tools
for deformable image registration which have demonstrated excellent performance. How-
ever, this process can be time-consuming, especially in large datasets. In our model, the
alignment between consecutive images is performed implicitly during training. Moreover,
once trained, the model weights remain optimized to help generalize for unseen images. In



144

other approaches, the registration is an independent and mandatory step prior to inference,
whether to construct the motion matrix (PCA) or to create target labels (classification ap-
proach). From our point of view, an implicit registration compared to prior-step registration
presents the advantage where inference can be done in near real-time. For example, for PCA
modeling, registration on each new patient dataset must be done before. Instead of that,
the proposed model learns global alignment parameters allowing one-shot prediction. While
classical registration approaches still outperform deep learning techniques in several medical
imaging applications, we observed in registration cases where cyclical organ motion is ap-
parent on image sequences of free-breathing images, the deep learning approaches tend to
better capture this phenomenon by learning latent features related to internal motion. On
the other hand, in the case of population-based models, finding inter-subject correspondences
between anatomical landmarks is an additional step in the pipeline towards the statistical
model creation, which can lead to inaccuracies and poor repeatability.

Our method also has significant benefits over the classification-based model. Such approaches
introduce an inherent error during the motion encoding for the label creation. That error
depends directly on the number of bins selected to cluster the deformation vectors. On the
other hand, potential misclassification may lead to unrealistic and ambiguous motion. Sim-
ilarly to statistical models, image registration is a mandatory step during label creation. It
might be time-consuming, depending on the available computational resources. Additionally,
during deployment it is necessary to recover the actual deformation values from the predicted
motion classes. In contrast to the aforementioned, our proposed method is trainable end-to-
end and fully unsupervised. No previous segmentation, registration nor intermediate motion
encoding/decoding are needed. Furthermore, it presents other attractive and practical char-
acteristics. It can be trained with images from different subjects, anatomies, scanners and
views. As demonstrated in this study, our framework can learn the motion patterns regardless
the imaging modality which makes it very valuable for clinical applications. Thanks to the
feature extraction stage, the network learns in the domain of pixel intensities and implicitly
regress the transformations. It simultaneously learns to register the images and subsequently
to extrapolate the deformation in time. The experiments showed the model performance with
increasing number of predicted times, ranging from one to five. Also, the inference time was
reported for each case. It is important to note that the optimal predicted number of images
will depend heavily on the clinical application. While the top performance was obtained
when predicting the next frame, some applications may require additional extrapolations.
Nonetheless, the proposed model showed a suitable behavior in all the cases.

Finally, some limitations remain which will need to be addressed in future studies. The first
is related to the presence of large deformations. However, we believe it is unlikely to happen
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as we are modeling sequential deformations instead of deformation from a particular phase
or state. The second is the inability to cope with out-of-plane motion. Generative models
might be a solution and should be investigated in future work. Also, in order to solve this
limitation, the extension to 3D prediction or modeling might be considered. Last, but not
least, is the necessity of covering exhaustively the immense anatomical and structural vari-
ability that may be seen during the clinical routine before its actual introduction. Further
studies should be concentrated towards optimization for real-time application.
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development project (CRDPJ-517413-17) and by the Canada First Research Excellence Fund
through the TransMedTech Institute.
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CHAPTER 9 ATTENTION-BASED TEMPORAL PREDICTION AND
TRACKING

9.1 Introduction

In medical imaging, the analysis of temporal image sequences allows to examine physiological
processes within the human body. Organs that undergone certain dynamic, such as the heart,
liver or lungs, are particularly interesting to study whether for diagnostic purposes or for
treatment delivery. Furthermore, modelling the motion patterns allows to track anatomical
structures, to compensate for motion, to do temporal super-resolution and motion simulation
[269]. In the context of image-guided interventions, modelling the temporal behavior allows to
compensate for the system latencies. Certainly, processes such as image acquisition, target
localization, and subsequent beam modulation/tracking result in a significant cumulative
system latency. This means that, in real-time treatments, by the time a gating decision has
been made, the patient anatomy has already changed. Therefore, temporal forecasting is
required to compensate for these latencies.

Modern image-guided radiotherapy (IGRT) systems enable the acquisition of cine slices at
certain anatomical position, which provides in-plane information. These intra-operative im-
ages can be used as partial observations to derive volumetric information from previously
created motion models. Such volumetric information is useful to estimate tumor position
and to monitor organ at risks throughout the treatment [191].

Motion models relate partial observations, such as 2D slices, with high-dimensional motion
measurements (e.g. 3D deformation fields). Generally, two types of motion modeling can
be distinguished: local and global [119]. Local approaches use information surrounding the
target to reconstruct exclusively the 2D/3D position of the tumor, while global approaches
estimates the entire 2D/3D anatomy. Local modelling is commonly used for target tracking
through time. Similarly to visual tracking, in the general computer vision domain, this
process refers to matching instances in consecutive time frames. However, compared to
natural images, medical sequences present additional challenges such as complex background,
variable target sizes and appearances. Currently, Siamese networks constitute the state-of-
the-art for target tracking [287]. Nevertheless, this type of models requires both source
and target images as inputs, which is not possible in real-time slice-based intra-treatment
acquisitions. Moreover, the feature representation in Siamese networks does not take into
account contexts of other objects and it does not fully utilize complementary information,
for instance, motion. We argue that both low-dimensional and high-dimensional motion
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modelling outcomes can be useful to achieve refined 3D+t target trajectories from cine slices.

On the other hand, classical approaches for global deformation estimation rely on biomechan-
ical modeling, image registration and statistical modeling, the latter being the most common.
Recently, some authors have proposed modelling frameworks leveraging the benefits offered by
deep neural networks [180,190,191,288]. Since motion compensation is an important require-
ment, these motion models generally comprise mechanisms for temporal forecasting. More-
over, with the increasing imaging capabilities in the clinical units, the forecasting is expected
to be performed on the image domain. In the literature, a vast amount of approaches for
temporal prediction rely on recurrent neural networks (RNN) [10,119,134,138,144,165,166].
Long-Short Term Memory and their variants have been applied to sequential data learning,
including natural language, video, among others tasks [104]. Particularly for spatiotemporal
modeling, using a serie of Convolutional Long-Short Term Memory (ConvLSTM) [112] units
is a popular choice. Nevertheless, it has been shown that ConvLSTM presents a blind-spot
problem since it fails to consider the entire spatiotemporal context from previous frames [166].
Recently, Transformers have made breakthrough in many natural language processing tasks,
where they have shown excellent performance for representation learning. Hence, there have
been an increasingly interest in adapting this attention-based model for computer vision
problems. However, in the medical imaging field their benefits for temporal forecasting have
been less explored. Similarly to natural language, respiratory motion presents a sequential
dependency, which can be leveraged as additional knowledge to regress future values.

In this work, the main contributions are as follows:

• We propose a self-supervised model to predict future representation from an image
sequence by learning queries within a Transformer architecture.

• We leverage future frames, available during model training, to compute a prior over
their latent representations.

• We propose a model-based region tracking strategy, which enables ahead-of-time 3D
target tracking from image surrogates.

9.2 Related works

9.2.1 Motion prediction

Video forecasting is an active research topic in general computer vision [113, 132, 133, 135,
138,144,146,151,159,160]. A common characteristic of most of the proposed models is that
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they often follow an encoder-decoder architecture. Furthermore, during the encoding process,
some methods learn disentangled representations by decomposing the video in appearance
and motion [8, 135–139]. This strategy seems to be effective in object-centric datasets (e.g.
Moving MNIST, KTH), where the static background can be easily divided from the fore-
ground. However, other videos containing crowded scenes or medical sequences, might be
harder to directly disentangle. In terms of backbone deep learning architectures, predic-
tive models generally rely on RNN [9, 101, 112, 119], although convolutional neural networks
(CNN) [120, 122] and generative models [105, 136, 167], such as variational autoencoders
(VAE) and generative adversarial networks (GAN), have also been employed. However,
RNNs present some well-known drawbacks, which limit the temporal information modeling
ability inherently. For instance, vanishing gradients remain an issue when they are applied
for long-term dependency learning, as the recursive prediction may accumulate the errors. In
addition, the sequential processing makes it unsuitable for parallel computation. Recently,
attention-based mechanisms, such as the so-called Transformer [7], emerged as a promising
solution for computer vision tasks [126–128]. A comprehensive survey about Transformers
for computer vision can be found in [123].

On the other hand, multi-frame predictions still represent a challenge. In many SOTA ap-
proaches, the first few predicted frames are sharp while the visual quality quickly degrades
when increasing the predictive horizon. Furthermore, pixel synthesis is challenging due to
the high-dimensionality of the images [104]. Therefore, the blurriness is even more remark-
able in models performing direct pixel regression [131, 135, 143, 150–155]. This constitutes
an important limitation, particularly in the medical field. Alternatively, other approaches
generate future frames by applying spatial transformations on the previous frames, like warp-
ing [119,159,160]. Nonetheless, it is important to highlight that this process is not exactly the
same in natural images compared to medical images, where the motion observed in an image
sequence is typically described by deformation fields between a source image and a fixed im-
age. This presents an additional challenge, since the model must learn in the pixel intensity
domain and implicitly regress the future transformations. In other words, it simultaneously
learns to register the images and to extrapolate the deformations ahead-of-time [119].

From a probabilistic point-of-view, most of the works on motion prediction can be considered
as deterministic [113,132,133,142,146,151,165], meaning that the model will always provide
the same results for a given input. However, for multiple equally plausible outcomes, these
models tend to average the result. In contrast, stochastic models usually generate sharper
predictions [104]. For instance, Denton et al. [144] proposed to learn a probabilistic prior
from future images recursively. Nonetheless, for some applications is desirable to obtain
parallel outcomes rather than sequentially. In summary, information modeling for future
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frame prediction is still an open challenge due to the high-dimensionality inherent of real
world videos. Predictions still suffer from lacking of high-frequency details and insufficient
use of motion information [133].

9.2.2 Object detection and tracking

A vast amount of works have been dedicated to object tracking in diverse datasets using
several paradigms [128, 289–293]. Some authors have attempted to discriminate the target
from background regions [294–296]. Furthermore, motion can be leveraged using image
registration [42,297]. Another strategy is based on similarity comparisons between the target
object and proposals from the search image [289–292]. In this latter case, Siamese networks
are the most popular choice to extract and compare deep features from the images [128].
Recently, attention-based models have been adapted for object detection and tracking. For
instance, Detection Transformer (DETR) [127] relaxed the dependence on region proposal
by inferring an arbitrary number of object queries using a Transformer backbone. This work
was extended for object tracking [293]. Also, the Transformer have been inserted into a
Siamese-like model for video object tracking [298]. Generally, for medical datasets, tracking
models receive a template image, with the target landmark, and a search image in which to
estimate the landmark position [128]. However, this task becomes more challenging when it
involves different image dimensionalities.

9.3 Preliminaries

9.3.1 Problem formulation

Given the input images ⟨It, It−1, . . . , It−m⟩ at m observed time steps, the first goal is to
produce visual representations corresponding to n future times ⟨zt+1, zt+2, . . . , zt+n⟩ which
can be used to generate either volumetric deformations, if used with a motion model, or
in-plane deformations corresponding to future times. By warping a reference image with the
predicted deformations we can yield future images ⟨It+1, It+2, . . . , It+n⟩. The second goal is to
learn a non-linear parametric mapping from the outcomes of a deep motion model to refined
deformations over a region of interest

〈
ϕROIt+1 , ϕ

ROI
t+2 , . . . , ϕ

ROI
t+n

〉
.

9.3.2 Attention mechanism

The Transformer was originally proposed as a new paradigm for machine translation [7] since,
in contrast to previous models, no convolution operation nor recurrence was involved in the
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computations. Since its introduction, it has shown to be a powerful mechanism to process
sequences and has gained increasing popularity in many tasks. Transformer can attend
to complete sequences thereby aggregating information amongst the inputs and learning
long-range relationships. The key concept behind Transformers is the scaled dot-product
attention mechanism, where the input is linearly projected to a set of queries Q ∈ Rnq×dq ,
keys K ∈ Rnk×dk , and values V ∈ Rnv×dv . The vector dimensionality dq equals to dk, the
number of keys nk equals to the number of values nv. The output of the attention layer is
given by computing the weighted sum of the values, where attention scores S ∈ Rnq×nk are
calculated from the queries and key as follows:

A(Q,K, V ) = Softmax

(
QKT

√
dk

)
V (9.1)

where the Softmax function is used to normalize the scaled dot-product attention scores.

9.3.3 4D deep motion modelling framework

The conditional motion model proposed in [191] receives as input a reference volume Vref ,
acquired at a fixed respiratory phase, an image sequence Iseq = ⟨It, It−1, . . . , It−m⟩, and a set
of temporal volumes ⟨Vt+1, Vt+2, . . . , Vt+n⟩ for their creation (i.e. training stage). The goal of
the model is to relate the 2D slices at m previous times, with high-dimensional deformations
within a latent space. Furthermore, the model contains a temporal predictor which yields
extrapolated-in-time visual representations from the input slices. Nonetheless, the motion
model is agnostic to the approach used for visual representation forecasting. During testing,
only Vref and the cine-acquisitions are available. In consequence, the model relies mostly on
the visual representations corresponding to future times. Thus, the temporal prediction of
accurate and meaningful representations is crucial for the model performance.

9.4 Proposed method

In this section, we describe in details the proposed prior-based Transformer architecture for
temporal prediction as well as the phase-conditioned tracker module. Figure 9.1 depicts an
overview of the entire framework. The blue boxes represent the two blocks containing the
contributions presented in this work. Our framework assumes a motion model, as described in
Section 9.3.3, which receives forecasted visual representations from the temporal predictor.
Furthermore, these ahead-of-time representations are fed, together with the displacement
vector fields (DVF) generated by the motion model, to the tracker module to yield refined
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Figure 9.1 Framework overview. The temporal predictor block provides ahead-of-time visual
representations, which act as predictive variables for the motion model. The outcome of the
temporal predictor and the motion model is used to refine the deformation over a pre-selected
region of interest.

motion fields over a region of interest (ROI).

9.4.1 Temporal predictor

Figure 9.2 shows a schematic representation of the proposed temporal predictor, which is
composed by: (1) a CNN-based backbone for feature extraction, (2) an encoder-decoder
Transformer architecture with learnable queries, (3) attention-based encoders to learn a prior
from ground-truth images, and (4) a CNN-based feature projector. The latter component
is optional since it depends on the specific application. For instance, for the framework
presented in Figure 9.1 this block is not required. On the other hand, it could be added to
enable the prediction of 2D+t deformations.

Frame-wise feature extraction

The frame feature encoder receives an input sequence containing the channel-wise concate-
nation (denoted as |) of temporal images with a fixed reference image. It is shared by
all frames and can be implemented by any CNN or self-attention-based models. Dur-
ing training, it generates a feature map sequence Zp ∈ Rm×H×W×C for m past frames
{It|Iref , It−1|Iref , . . . , It−m|Iref} where Ii|Iref ∈ RH0×W0×C0 , H0, W0 and C0 and H, W and
C denote the initial and final image height, width, and channels, respectively. Likewise, this
block receives the ground-truth image sequence {It+1|Iref , It+2|Iref , . . . , It+n|Iref} (n is the
number of future frames) from which computes a feature map sequence Zf to be used as
prior knowledge (see Section 9.4.1). During inference, only the past frames are fed into this
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Figure 9.2 Schematic representation of the proposed temporal predictor. During the training
stage, it receives an input sequence containing both past and ground-truth future frames.
The features extracted from this input sequence are used to learn prior knowledge, which
is combined with the queries of the Transformer decoder to forecast visual representations
associated to future times. The projector block recovers dense deformations from the fore-
casted features.

block.

Transformer with learnable queries

We employ the powerful Transformers as backbones for our temporal predictive model. Since
the encoder transformer expects a sequence as input, the previous frame features need to be
flattened over both temporal and spatial dimensions to get a sequence of uni-dimensional
vectors, i.e. Zp → Zp ∈ R(m×H×W )×dmodel . Furthermore, since the transformer architecture is
permutation invariant, it is required to incorporate the position information for each temporal
feature maps using fixed 3D positional encodings. The positional encoding for a pixel position
(t, h, w), where t ∈ [0,m − 1], h ∈ [0, H − 1], w ∈ [0,W − 1], is a 1D vector with the same
dimensionality as the Transformer (dmodel). It is formed by concatenating three 1D positional
encodings along each dimension. Thus, dmodel is constrained to be divisible by 3. Positional
encodings (PE) of each dimension are encoded independently by sine and cosine functions
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of different frequencies:

PE(pos, i) =

sin(pos/ωk), for i = 2k

cos(pos/ωk), for i = 2k + 1
(9.2)

where pos denotes position, i is encoding dimension, and i ∈ [0, dmodel/3 − 1]. ωk =
100002k/dmodel/3. Subsequently, they are added to the visual feature sequence. We choose
the 3D positional encodings to be fixed rather than learnable as previous studies [7,127] have
shown that both approaches yield similar results. In addition, the learnable variant would
increase the number of model parameters.

Given Zp ∈ R(m×H×W )×dmodel , the Transformer encoder makes every element of Zp attend to
each other. It follows the original architecture [7] meaning that queries, values and keys are
all derived from the same inputs aggregating the contextual information from the sequence
itself. The Transformer decoder aims to decode features of each future frame based on the
encoder outputs and future frame queries. Sequence of frame queries ⟨qt+1, qt+2, . . . , qt+n⟩
are initialized and fed into the frame-level decoder, where qi ∈ Rdmodel denotes the query
corresponding to the features of the ith predicted frame. In contrast to previous works
[127,128], we integrate an additional temporal positional encoding for the deformation queries
in order to maintain the order of predicted future frames. The temporal positional encoding
(TPE) is implemented as Equation 9.2, except that i ∈ [0, dmodel−1] and ωk = 100002k/dmodel .
Future deformation queries are learned automatically during training. Output features are
used for the following future deformation generation.

Prior-based latent modeling

Considering the future frame prediction to be a generative task, inspired by [144], we propose
to improve the regression of future visual representations by providing an additional source
of information using an attention-based prior. The aims of the learnable prior are twofold.
Firstly, it leverages additional information available during training. Secondly, it acts as an
stochastic regularizer during the learning of the queries. In contrast to [144], n prior distri-
butions pθ(ht+i|zt−m:t+i) i = 0, 1, . . . , n are estimated simultaneously from the sequence of
feature vectors extracted from the ground-truth images up to a future time t + i. Moreover
they are parameterized by µ and σ, i.e. N (µ(zt−m:t+i), σ(zt−m:t+i)). In parallel, n identical
networks try to learn an approximation of the prior distributions but using limited observa-
tions, i.e. rψ(ht+i|zt−m:t−1) i = 0, 1, . . . , n. In other words, these approximations networks
aim at learning a mapping function between the spatiotemporal information contained on
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the observed frames and the latent variable describing a future time. This is performed by
enforcing both distributions pθ and rψ to be close each other by minimizing a KL-divergence
term:

LKL =
n∑
i=0

KL [pθ(ht+i|zt−m:t+i)|rψ(ht+i|zt−m:t−1)] (9.3)

During training, latent variables ht+i are sampled from pθ and concatenated with the queries
qt+i (i = 0, 1, . . . , n). At test time, the sampling is performed over rψ.

The distance between distributions (Eq. 9.3) is inserted within the total loss function, which
also aims at minimizing the reconstruction loss:

arg min
θ

[
1
n

n∑
i=1

LKL + Lrec

]
(9.4)

The specific formulation of the reconstruction term depends on whether the temporal pre-
dictor is used within a 4D motion model or for dynamic slice forecasting.

Feature projector

Given the predicted future frame features from the Transformer decoder, the feature projector
aims at reconstructing future dense deformations. This block can be implemented by a
standard deconvolution neural network and shared by each future frame features. The last
layer should output a 2D motion field. Since we avoid direct pixel synthesis, the motion
fields generated by the feature projector are used to resample (operation denoted with ◦) the
reference image using a spatial transformation layer, thereby yielding n forecasted images.
This enables to calculate a reconstruction term (Lrec), comprised by the similarity between
predicted and ground-truth images and a diffusion regularizer on the spatial gradients to
ensure smooth motion fields:

Lrec = 1
n

n∑
i=1

[
Lsim

(
Ii, Îi

)
+ αLsmooth

(
ϕ̂i
)]

(9.5)

where Îi results from warping Iref with the estimated motion ϕ̂i, α is a regularization pa-
rameter, and Lsmooth(ϕ̂i) = ∑

p∈R2∥∇ϕ (p)∥2 computes the differences between neighboring
2D positions p.

9.4.2 Model-based tracker module

In current frameworks designed for target tracking, such as [287], it is assumed that both
source and target volumes are available. However, this assumption is not met during real-time
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image-guided interventions. We tackle this shortcoming by leveraging the global estimation
provided by a motion model to better localize the target. In [190, 191], it was shown that
the latent space of autoencoding-based motion models carries important information related
to the respiratory phase. Ultimately, free-breathing is the underlying factor of variation.
Such low-dimensional representations are uncovered thanks to the capacity of autoencoders
to learn a non-linear parametric mapping from volume deformations to their latent vectors.
On the other hand, it is important to mention that generating 3D deformations from 2D
images is an ill-posed problem.

Considering these elements, we propose to learn a mapping function, conditioned on latent
vectors, to refine the target trajectory from the coarse approximation of the entire field-of-
view provided by the model. The core idea is to use the latent codes of the motion model
to compute an attention map over the coarse deformation fields. We assume that the target
position is defined a priori. In the context of image-guided radiotherapy this is feasible since
a pre-operative (fixed) volume is routinely acquired before the procedure.

Given the selected target position (xref , yref , zref ), a three-dimensional bounding box can be
defined with origin at (xref − ∆x

2 , yref − ∆y

2 , zref +−∆z

2 ) and height, width and depth denoted
by ∆x, ∆y, ∆z, respectively. We use the bounding box to mask the motion model’s outcome.
Then we divide the motion components (ϕROIx , ϕROIy , ϕROIz ) and compute weighted maps (Sx,
Sy, Sz) for each one. The refined 3D displacement at an arbitrary time (ϕ̂ROIi ), corresponding
to the motion plane i, is given by the concatenation of the element-wise multiplications of the
motion model prediction (ϕROIi ) and the weighting coefficients (S), i.e., ϕ̂ROI = Concat(Sx ×
ϕROIx , Sy×ϕROIy , Sz×ϕROIz ). The weighted map at a given plane i is computed following [299]:

Si = σ2(σ1(Wcc+Wϕϕ
ROI
i )Ws) (9.6)

where c is the latent vector from the motion model, σ1 and σ2 are ReLU and sigmoid ac-
tivations, and Wc, Wϕ and Ws are linear transformations implemented with (1 × 1 × 1)
convolutions.

During the training of the tracker module, the optimization problem aimed at minimizing
the dissimilarity between the ground-truth and predicted patches as well as the difference
between ground-truth and predicted motion fields.
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9.5 Results

In this section, we demonstrate the effectiveness of our model both for temporal forecasting
and tracking on an MRI dataset containing 4D volumes acquired on 25 subjects. Details on
the acquisition parameters, reconstruction and pre-processing of this dataset can be found
in [191]. First, we provide the implementation details of the models as well as the validation
methodology. Next, we show results on future slice generation and model-based volume
generation. In addition, we compare our approach with related state-of-the-art predictive
models. Finally, we present the results of the tracker module.

9.5.1 Implementation details

Temporal predictor The feature encoder of the bi-channel image sequence was imple-
mented as described in [191]. All the involved multi-head attention blocks were composed
by one layer, 16 heads, 2048 channels in the internal feed-forward layer and Dropout of
0.1. Layer normalization was placed before computing attention, as explained in [300]. The
sub-networks involved in the prior computation end in two 256−sized fully connected layers,
which determine the parameters of the latent distribution. The projector network was com-
posed of successive pairs of 2D transposed convolution and convolution layers with kernel size
3 × 3 to reach a final size of 2 × 64 × 64. Each layer was followed by LeakyReLU activation
set to 0.2.

Tracker The right portal vein was annotated in the reference volumes by a radiologist.
Although the landmark represents the same anatomical structure, it has a variable appear-
ance across the subjects, as can be observed in Figure 9.3. A bounding box with dimension
4 × 8 × 8, and centered at the annotated position, was selected as region of interest. During
the optimization of the tracker, the weights of the motion models remained unchanged. The
hidden dimension of the tracker module was set to 32.

Training details The network’s parameters were optimized using the Adam optimizer with
an initial learning rate (lr) set at 10−4. Training was performed in PyTorch with a batch
size of 10. We used a leave-one-out validation scheme on a subject level. In equation 9.5,
the negative local cross correlation (NCC) was used as similarity measure and α was set to
0.0001.

9.5.2 Validation methodology

We assess the model performance using different measures based on motion and appearance.
Specifically, we report the geometrical error for all the respiratory states, which is defined
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Figure 9.3 Examples of landmarks for tracking. The annotated position of the right portal
vein is represented by the red point at different anatomical orientations.

as the Euclidean norm of the voxel-wise vector difference between the ground truth and
predicted motion fields. Notwithstanding the ground-truth motion does not necessarily rep-
resent the real motion due to errors introduced by the registration process, it still represents
a valid reference [191]. Additionally, we used similarity metrics such as MSE, NCC, Struc-
tural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR), which are generally used
in related works to measure the spatial consistency of the predicted volumes. Statistical sig-
nificance was computed using a Wilcoxon signed-rank test, considering p < 0.01 to indicate
a significant difference. Effect size was measured using Pearson correlation coefficient (ρ).
Finally, we followed a leave-one-out scheme, which means results are reported on unseen test
cases.

Table 9.1 Geometrical errors (in mm) and image similarity measures obtained with the motion
model when using different temporal predictors. Values are mean ± std (95thpercentile).

Predictive module TRE (mm) NCC MSE

ConvGRU [190] 1.60 ± 1.09 (3.17) 0.71 ± 0.14 (0.89) 0.16 ± 0.09 (0.32)
ConvLSTM [191] 1.37 ± 0.92 (2.60) 0.76 ± 0.13 (0.91) 0.13 ± 0.09 (0.22)
Transformer 1.34 ± 0.87 (2.51) 0.76 ± 0.13 (0.91) 0.14 ± 0.09 (0.23)
Transformer+prior 1.25 ± 0.74(2.13) 0.81 ± 0.11(0.95) 0.10 ± 0.07(0.18)
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9.5.3 Model-based future volume generation

Table 9.1 presents the geometrical error (in mm) measured between ground-truth motion
fields and those predicted by the motion model. It also contains similarity metrics between
ground-truth and predicted volumes for a predictive horizon of 450 ms. Moreover, it shows
a comparison between different predictive mechanisms, namely, ConvGRU and ConvLSTM,
which were used in the motion models described in [190] and [191]. In addition, a Transformer
model with learnable queries, and the proposed model which also includes the prior. The
models were trained under the same conditions using coronal orientation for the surrogate
images. Also, the same network architecture was used for feature extraction.

Overall, the proposed model yields the lowest geometrical error compared to the other
variants, a result that was found to be statistically significant, p ≪ 0.01, ρ = 0.48 (pro-
posed/ConvGRU), ρ = 0.73 (proposed/ConvLSTM), ρ = 0.72 (proposed/Transformer).
Likewise, the MSE and NCC values show a similar behavior.

9.5.4 Temporal forecasting of in-plane deformations

The performance of the proposed model was confronted to several state-of-the-art approaches
for future image generation. We used the publicly available implementations released by the
authors. The first approach, introduced for stochastic video generation (SVG-LP), computes
a prior from the next image recursively using an LSTM [144]. For the frame encoder and
decoder, we used the VGG16 [301] architecture as described in [144]. The second model [119]
consists of an U-net-like shape with ConvLSTM. Furthermore, it was designed specifically
for respiratory-induced deformation forecasting and integrates spatial transformations. The
third model leverages ground-truth images during the training stage to learn a long-term
motion context memory (LMC-Memory) with memory alignment. Except [119], these models
were validated originally with natural images. Furthermore, they were designed to directly
synthesize the pixels.

Table 9.2 reports similarity metrics (for the next time step) between ground-truth and pre-
dicted images for the proposed model as well as for comparative approaches. It also present
the computational time required for inference when deployed on a NVIDIA Titan RTX GPU
with 64 Gb RAM. The presented values were obtained by averaging 50 measurements. Over-
all, the proposed model obtained the best performance in all the presented metrics. In terms
of computational time, all the methods are quite similar except LMC-Memory, which got a
slightly higher value.

Figure 9.4 illustrates visual results of the generated images by each implemented method. The



159

Table 9.2 Comparison with the state-of-the-art methods. Values are mean ± std.

Method PSNR SSIM MSE Time (ms)

SVG-LP [144] 17.35 ± 1.14 0.59 ± 0.08 0.12 ± 0.03 7.46 ± 0.36
Recurrent U-net [119] 25.48 ± 5.52 0.77 ± 0.13 0.08 ± 0.04 8.12 ± 0.15
LMC-Memory [302] 23.55 ± 2.37 0.71 ± 0.13 0.10 ± 0.04 11.20 ± 1.05
Proposed 26.30 ± 4.55 0.78 ± 0.11 0.07 ± 0.05 7.78 ± 0.21

images cover a respiratory cycle. It can be observed that deformations near the inhale phase
are the most challenging regardless the method. Furthermore, considering the difference
maps, the proposed method achieves the best spatiotemporal consistency.

9.5.5 Model-based tracker results

Table 9.3 presents the target registration errors on the selected region of interest for different
model variants, which were trained under the same conditions to predict the next three
temporal volumes. Since the volumes has a temporal resolution of 450 ms, the predictive
horizon is 1350 ms. The first row contains the errors when there is no motion compensation,
i.e. the initial motion. To quantitatively analyze the effectiveness of the tracker module,
we compare the results before and after its integration to the motion model. Moreover,
several variants of motion models were considered, i.e. using different temporal predictors.
Experimental results show that, in average, the tracker module can decrease the alignment
errors by 63% when compared to the motion model outcome. Also, it is important to mention
that the tracking areas are out-of-plane with respect to the position of the input images.
Figure 9.5 depicts exemplary sagittal and coronal slices, taken at the center of the tracked
region, in the predicted volumes. It can be observed the error reduction in the results obtained
with the tracker module.

9.6 Discussion and conclusion

In this work, we presented a novel self-supervised model able to predict future representations
from an image sequence by learning queries within a Transformer architecture. Alternatively
to previous works, based on autoregressive predictions with recurrent networks [119, 144],
our approach enables parallel decoding. Furthermore, the number of learnable queries is
defined by the number of future time steps. For certain applications, parallel decoding is
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Figure 9.4 Visual results. The top row contains the ground-truth images spanning a respira-
tory cycle. The second, fourth, sixth and eight rows show the predictions performed by the
implemented methods and at the bottom the difference maps.
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Table 9.3 Target tracking errors (in mm) measured at selected respiratory phases for the
V-MRI dataset. These values were measured for the next time step, i.e. a horizon of 450 ms.
Overall values consider all the phases. Values are mean ± std [P90].

Method TRE (450 ms) TRE (900 ms) TRE (1350 ms)

Initial motion 6.52 ± 3.41 [8.19] 6.35 ± 3.11 [8.0] 6.42 ± 3.40 [8.23]
MM + GRU 2.65 ± 1.93 [5.47] 2.72 ± 1.89 [5.45] 2.66 ± 1.86 [5.38]
MM + LSTM 2.68 ± 1.73 [4.90] 2.66 ± 1.70 [4.81] 2.59 ± 1.66 [4.68]
MM + Transf. 2.61 ± 1.58 [4.80] 2.56 ± 1.57 [4.73] 2.54 ± 1.55 [4.67]
MM + Transf. + prior 2.55 ± 2.11 [6.22] 2.56 ± 1.45 [4.70] 2.60 ± 2.08 [6.15]
MM + GRU + tracker 1.75 ± 1.19 [3.17] 1.78 ± 1.19 [3.19] 1.77 ± 1.17 [3.13]
MM + LSTM + tracker 1.66 ± 1.21 [3.25] 1.61 ± 1.16 [3.13] 1.57 ± 1.13 [3.03]
MM + Transf. + tracker 1.65 ± 1.17 [3.21] 1.63 ± 1.16 [3.16] 1.61 ± 1.15 [3.11]
MM + Transf. +
prior + tracker

1.56 ± 1.13 [3.09] 1.53 ± 1.11 [3.04] 1.52 ± 1.10 [2.98]

more convenient than the autoregressive manner. For instance, it could be useful to track
trajectories or to assess the spatiotemporal consistency across consecutive samples.

Our model combines the powerful visual feature extraction capability of convolutional neural
networks with the strong representation capacity of Transformers. The visual representations
obtained from the images are employed as tokens for the Transformer. Due to the sequen-
tial nature of cine acquisitions, this attention-based model is inherently well suited for this
predictive task.

Inspired by [144], we learn a prior from ground-truth images, which are available during the
training stage. Nevertheless, in contrast to that work, we followed a multi-time approach
thereby avoiding the auto-regression, which is prone to error propagation. Additionally, un-
like [144], this supplementary knowledge was not combined with the image features but with
the Transformer queries, which contain the actual predictions. Results showed that, condi-
tioning the queries to the prior information yields improved results, which can be attributed
to narrowing the prediction space.

On the other hand, many state-of-the-art techniques employ skip connections [119,144]. For
instance, in object-centric datasets it helps to the generation of static background features
[144]. While skip connections have been shown to boost the generation quality, they impose a
dependency between encoding and decoding parts. Since we designed our temporal predictor
to be integrated within a motion model, we do not rely on skip connections. In the case
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of such integration, the data dimensionality managed by the temporal predictor will differ
from the one in the motion model. Thus, we rather let the deformation regression to be fully
generative. Nonetheless, alternative ways to tackle the dimension disparity and to leverage
skip connections should be explored in future works.

Although the proposed temporal predictor can be used primarily to regress future images,
we also demonstrated how the forecasted representations can be integrated within a motion
model to allow future volume generation. This integration led to improved results with
respect to previous outcomes. This is very likely due to direct access that each input sample
has to all the other inputs, which prevents information loss. Likewise, for future frame
generation it yielded improved results compared to state-of-the-art techniques. Experiments
with comparative approaches evidenced that, given the complexity of medical datasets, using
spatial transformations is more feasible than regressing pixel intensities and led to sharper
results.

The main limitation of image generation based on spatial transformations is the incapacity
to maintain structures that are not contained in the source image. However, for the analysis
of motion in medical datasets, e.g. deformable registration, it is common to measure and
apply the deformation using a source image. Our experiments also confirmed that there is a
huge difference between object-centric representations and medical datasets, where typically
is harder to separate the background and the foreground. Hence, methods with excellent
performance in the former case may face obstacles to predict the whole scene. Given the
high dimensionality and complexity of these challenging datasets, models are required to
build a deep understanding of the underlying process.

We also introduced a tracker module, which leverages the outcome of a 4D motion model
to refine the deformation fields within a pre-selected region containing the target. We ad-
dressed such a task by using the temporal latent representations as gating signal to refine
the displacement fields. Experimental results showed that the error is consistently reduced
regardless of the nature of the temporal predictor. Therefore, this approach enables 3D tar-
get localization from 2D slices. Furthermore, it represent a valid alternative for real-time
image-guided interventions, where pairs of up-to-date volumes are not available.

Since our wok is targeted at deformation forecasting, we consider inputs to be a concatenation
of both source and template images. In our experiment, the source image (also known as
reference image in this manuscript) was extracted from the same dataset. Thus, it has the
same acquisition parameters as the rest of the images. However, in practice, this assumption
may not be fulfilled. Therefore, we identify it as a potential limitation that deserves further
validation.
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Figure 9.5 Visual examples of the error reduction when using the tracker module. The red
box shows the tracker region.
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CHAPTER 10 GENERAL DISCUSSION

The general methodology in this thesis was guided by three research objectives, which led to
various novel solutions for imaging, modelling, and analysis of respiratory motion. Firstly, an
automated method was developed in order to construct temporal volumes from navigator-less
cine acquisitions. Secondly, two frameworks were proposed to relate partial observations with
high-dimensional deformations. Moreover, both deterministic and probabilistic approaches
were explored. Finally, methods for future image forecasting and target tracking were de-
signed by leveraging attention structures. The development and advantages brought by these
new methodologies will be discussed in this chapter.

10.1 4D image formation

The construction of 4D datasets is an important step to observe and quantify the dynamic
behavior of moving organs. Our proposed method for 4D image formation considers the use
of MRI-based imaging technology given their well-known advantages. Specifically, it provides
excellent soft tissue contrast, emits no ionizing radiation exposure, and is flexible in selecting
image plane position and orientation. Indeed, this modality is highly desirable in several
clinical applications. The development of this method was motivated by several current
shortcomings. For instance, respiratory surrogates are crucial during the sorting process
from multi-slice cine acquisitions. However, it is not uncommon clinical scanners do not offer
the possibility to acquire these complex sequences. On the other hand, many self-gating
strategies are not fully automatic or cannot deal with subjects with complex respiration
cycles. In fact, for some patients it becomes a major hurdle.

Obtaining a navigator signal from dynamic slices may be a challenging process. One major
limitation is the detection of reference phases, which at the time of publication was performed
manually. Thus, perhaps the biggest contributions in our methodology are the automatic
extraction of the breathing signal and the end-exhale phase detection. We have shown that,
compared to other methods assuming a regular cycle, our method is able to cope with irregular
breathing and with small apneas. This is, in part, due to the robustness of these two steps.

On the other hand, the graph-based approach enables an arbitrary slice selection to start the
shortest-path computation. In theory, such flexibility allows the reconstruction of different
4D image sequences. Hence, this increases the variability of respiratory motion patterns
that an operator can choose to capture, which is especially interesting for motion modelling.
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Moreover, it could be used as an alternative strategy for data augmentation.

Experimental analysis revealed that this method is suitable to work with high spatial and
temporal resolution data. During our experiments, we noticed that manifold learning based
methods are susceptible to outliers points. One solution for this could be filtering the abnor-
mal cycles before alignment. The volunteers that participated in the acquisition protocol were
instructed to breath normally. However, when processing the acquired images we observed
that, during the same acquisition, subjects can present very variable breathing patterns. For
instance, we observed cycles containing deep breathing, prolonged periods of holding breath,
and very shallow breathing. These cases make the slice reordering even more challenging.
For instance, when slices are acquired under these conditions, they often appear as outliers in
the low-dimensional space used by manifold theory. In summary, any robust 4D construction
method should be able to cope with these outlier cycles automatically.

The 4D image formation method presented in Chapter 5 exhibit some desirable properties.
First, it is fully automatic while not sacrificing robustness to other impediments such as
irregular breathing patterns. Second, it can be generalized. This means that, with minor
changes mainly relating to the spatial distribution of the organ within the image, it can
be applied to other moving organs such as upper airways, heart and other abdominopelvic
structures. Third, the 4D construction principle is independent of the number of acquired
slices across the organ. This implies that it can be employed even when imaging is done to
gather only partial data instead of the full set across the organ of interest.

The main limitation of the proposed method, which is common for all the related approaches
relying on multi-slice, is that physiological correctness is difficult to ensure, even if temporal
coherence is achieved. Furthermore, we observed that slice stacking at the inhalation state
is more difficult because the liver does not always descend to the same position. To accu-
rately reconstruct the area of interest, it is important to ensure that most of the possible
combinations of respiratory motions are acquired for all the slices.

10.2 4D motion modelling from image surrogates

Certainly, obtaining quality motion data from the 4D observations is a key step before build-
ing a motion model. Generally, one is interested in modeling the deformations undergone
by the organ between a reference respiratory phase and other phases. The deformation be-
tween a pair of volumes is generally computed using deformable image registration. Over the
years, an enormous amount of research has been dedicated on this particular topic. In this
project, proposing new techniques to perform this task was not explored within the scope of
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the research. In fact, the developed solutions are agnostic to the method used for motion
estimation.

In Chapters 6 and 7, we developed motion models used deterministic and probabilistic ap-
proaches, respectively. In contrast with classical approaches, these models rely exclusively
on deep neural networks. One common aspect amongst both solutions is that dimensionality
reduction, via autoencoding, is the basic principle for motion modelling. The autoencoding
process aims at producing an efficient compressed representation that enables input recon-
struction. Such compressed representation is a key attribute since it avoids learning an
identity mapping between the input and output. Therefore, it must contain relevant infor-
mation to allow the decoder maps from the low-dimensional space back into the original
space.

The model described in Chapter 6 is designed to create low-dimensional manifold representa-
tions of 3D non-rigid deformations which are associated with surrogates images. It benefits
from the spatiotemporal information contained in the dynamic 2D slices, which are also
mapped to a low-dimensional space. The association between the 3D deformations and the
surrogates is done by minimizing the L2 distance between representations. This model is
based on convolutional autoencoders and does not involve any stochastic component. Alter-
natively, the model of Chapter 7 presents a probabilistic formulation for the motion modelling
task. It is based on conditional variational autoencoders, which are generative models able to
learn a probability distribution conditioned on certain variables. We found this conditioning
as a plausible solution for the task in question, i.e., relating deformations with partial ob-
servations. Hence, we formulate a conditional manifold learning task to relate the predictive
variables with their corresponding deformation encoding.

Similarly to the previous model, the backbone consists of a probabilistic autoencoding process
that learns how to compress and recover the input 3D deformations while conditioning the
generation on respiratory phases. We have shown that, with the autoencoding approach,
similar data points are mapped close to each other in the latent space according to their
respiratory phase. This feature enforces the model’s interpretability. Furthermore, it could
be potentially used for further classification or other downstream tasks.

Another interesting characteristic is the use of a static reference volume taken at end-exhale
as additional source of information and conditioning variable. Since the 3D generation from
2D slices is an ill-posed problem, the developed models leverage the volumetric information
provided by the reference volume. Generally, a volume gated at a fixed respiratory phase
is routinely acquired before treatment. This volume can be used as reference to obtain the
deformations. During our experiments, it was extracted from the 4D dataset. However,
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in a real-life situation the contrast may differ from the one used to train the model. We
hypothesise that this difference should not represent an obstacle as long as the following two
premises are met. The first one is ensuring that the field-of-view is consistent with the one
used during model creation. The second one is ensuring that the volume is aligned to a
common reference system. Notwithstanding further efforts should be devoted to validate it.
In this work, we assumed that the inputs images are rigidly aligned. However, in practice,
this can not be ensured. Hence, an extension to the current method would be to add a block
to verify the orientations and apply a rigid alignment if needed.

With regards to the imaging datasets, both models were created using a 4D MRI dataset
acquired from 25 healthy volunteers and validated using an independent hold-out set acquired
on 11 cancer patients. This last dataset contained images acquired with a totally different
protocol, which allowed to characterize the capacity of the model to work with different image
contrasts and appearances. Additionally, other variants were trained and validated using
ultrasound images. It is worth mentioning that errors stemming from the reconstruction
process, for example discontinuous organ edges between consecutive slices, may negatively
affect the image registration process. Therefore, the quality of the employed dataset must be
ensured to yield plausible motion fields. Likewise, it influences the accuracy of the deformable
registration, which provides the training data for model creation.

While traditional approaches rely on statistical modelling, the proposed models follow a new
paradigm that do not require supervised information such as organ segmentation or defini-
tion of anatomical landmarks. Establishing inter-subject correspondences is a required step
towards the construction of population models. This step is aimed at defining mechanical
correspondent landmarks across subjects. Some works have explored different alternatives
such as shape-based and landmark-based approaches [217]. However, regardless their na-
ture, this step is time-consuming and prone to errors. Thus, although they have shown
promising results, these limitations jeopardize the dissemination of population models. Our
methods relies on the strong generalization capability of deep networks to find patterns across
a population dataset. Therefore, it replaces the step equivalent to finding inter-subject cor-
respondences with the unsupervised feature learning process. In our opinion, this represents
a significant improvement over related methods.

Additionally, basing the motion modelling task on deep neural networks also eases the per-
sonalization capability to a new subject since in this context, it would be equivalent to fine-
tuning the model’s weights. This feature was explored in the works presented in Chapter 7
and Appendix B. The model personalization lead to a better fit to the patient’s anatomy and
hence an increased accuracy. Therefore, this step is recommended as long as configuration
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permits. With the progressive expansion of MR-Linacs in the radiotherapy units and the
results shown by fast reconstruction strategies [64,218], having a patient-specific dataset for
personalization before treatment is feasible. The accuracy shown by these models is compa-
rable to state-of-the-art algorithms, which normally report average errors of less than 3 mm.
In addition, these models introduce other advantages and have shown their capacity to cope
with effects such as organ drift, irregular cycles and shifting of the surrogate slice position.

There are however some major differences between the models. In some cases, the differences
are improvements introduced by the probabilistic model over the initial modelling solution.
The training protocol designed for the deterministic model comprises 3 sequential steps,
which was due to the mechanism used to link the surrogates to the motion model. The first
step is focused solely on the motion modelling. The second seeks to learn an embedding
corresponding to a single future time from dynamic slices while the third joined them all
together. In contrast, the model described in Chapter 7 simplifies the loss function and
thereby allows to jointly learn all these tasks in a single training step. Hence, in terms of the
training protocol, it eliminates the necessity of 3 different steps during training, which can
be time-consuming for large datasets.

The methodology followed for the surrogate association represents another important dif-
ference between the models. In the first case, the association between the images and 3D
deformations is done by computing a L2 distance. Moreover, feature vectors coming from the
motion encoder and the surrogate branch are treated independently, thereby requiring the
introduction of an additional term in the loss function to minimize their distances. In the
second case, we propose to link both sources as a conditional dependency, which is explicitly
modeled by the concatenation of the latent phase representation with a temporal embedding.
During our experiments we found this is beneficial for the model generalization to unseen
cases. Regarding the surrogates, a further extension could be aimed at relating multimodal
images since, in theory, This would require the synchronized acquisition of both datasets,
similarly as performed in [206] and [180].

In terms of temporal prediction, the first motion model is limited to a single future time point.
Depending on the temporal resolution of the images, and the clinical application, this may
not be sufficient. In the second model, we integrate a multi-time predictive mechanism able
to produce multiple volumes in one shot. In this regard, the temporal forecasting capability
is crucial. In this thesis, efforts were devoted to explore solutions for this task, i.e. for future
image generation and visual representation forecasting.
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10.3 Temporal prediction and tracking

Chapter 8 presents a multi-scale recurrent encoder-decoder model, which leverages a differ-
entiable spatial transformation to implicitly learn the future displacement fields. Thanks to
the feature extraction stage, the developed network learns in the domain of pixel intensities
and implicitly regress the transformations. Therefore, it simultaneously learns to register the
images and subsequently extrapolate the deformation ahead of time. Moreover, their capa-
bilities were validated on three imaging modalities, namely MRI, CT and ultrasound, which
makes it very valuable for clinical applications. Furthermore, we tested the model capacity
to learn composite motion, namely respiratory, cardiac and even peristaltic motion. Our
experiments reveal a performance slightly lower than those obtained in slices where most of
the movement was breathing-induced, although it remained quite accurate, showcasing the
complexity of predicting motion from various sources.

The new generation of temporal predictors is explored in Chapter 9, where we combine
the power of convolutional neural networks to extract visual features with an attention-
based structure, i.e. the Transformer model, acting on image representations. The visual
representations obtained from the images are employed as tokens for the Transformer. Unlike
the original model proposed for machine translation, where the queries are composed by the
target language, we address the forecasting task by learning the queries. The generation
of queries was supported by prior knowledge obtained from ground-truth images, available
during model creation. Experimental results showed that conditioning the queries to the prior
information yields improved results, which can be attributed to narrowing the prediction
space.

This temporal predictor represents a new paradigm compared to existing models. In contrast
to previous works, it avoids auto-regression, which is prone to error propagation. Besides,
it does not relies on skip connections, which makes it flexible to be integrated into 4D
motion models. Experimental results revealed that the proposed model outperforms recurrent
predictors. The introduction of convolution operation within the Transformer is an interesting
avenue for future work.

Chapter 9 was also describes how a tracker module can benefit from the prediction performed
by the model to refine motion fields within a region of interest. We have shown that geo-
metrical errors decrease when using this module. Although we used a single tracking area,
it could be extended for multi-region tracking.
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10.4 Summary

The proposed motion modelling solutions presented throughout this thesis in Chapters 8, 6, 7
and 9 are neither limited to a specific organ, nor to radiation therapy as a treatment modality.
In fact, other applications requiring motion compensation can be considered. Nonetheless,
there is one consideration that is common to all the methods developed in this thesis. It is
related to the nature of the datasets employed. Except a few exceptions, the methods were
developed and evaluated mostly with data acquired from healthy volunteers. For a proof
of concept, this remove potential adverse effects of liver diseases on the respiration of the
patient. Thus, the evaluation environment is more controlled. Nevertheless, future studies
should be focused on assessing whether typical diseases targeted in the context of external
radiotherapy, such as liver carcinoma, may affect the methods.

From a global perspective, the innovative methodologies proposed in this thesis intercon-
nect some of the typical components present in image-guided interventions. The automatic
method developed in Chapter 5, defines an approach for 4D image formation, which is the
basic step to create motion models. In addition, the motion models developed in Chap-
ters 6 and 7, establish new solutions to relate partial observation acquired in the treatment
room with volumetric deformations. In addition to the actual target tracking, the volumetric
deformations are useful for several side tasks such as dose calculation and replanning. In
addition, the methods introduced in Chapters 8 and 9 are aimed at compensating the cumu-
lative system latency caused by image acquisition, target localization, and subsequent beam
modulation/tracking result.
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CHAPTER 11 CONCLUSION AND RECOMMENDATIONS

This thesis addresses the general problem of respiratory motion management during image-
guided radiation therapy. The literature review presented in Chapter 3 highlighted the
challenges of 4D image formation, temporal predictive models as well as current motion
modelling techniques. It also revealed the current limitations of the state-of-the-art on each
one of these topics. Motivated for some of these limitations, a set of tools were developed in
order to: (i) observe temporal dynamics of moving organs, (ii) express the high-dimensional
deformations on a latent space and link them with partial observation, and (iii) forecast
future visual representations. Specifically, the methodology explained in Chapter 5 proposed
a fully automatic self-sorting 4D MR volume construction method. In Chapters 6 and 7,
we introduced the first motion models, based exclusively on deep neural networks, that can
be used as a population-based model, that can be easily personalized. These unsupervised
frameworks can generate 4D volumes given only a reference pre-treatment volume and real-
time 2D slices. Finally, in Chapters 8 and 9, new strategies were proposed to forecast visual
representations and allows future image generation. The main findings and contributions
from these research objectives were discussed in Chapter 10. We expect the developed motion
modelling approaches to have an impact on precision radiation delivery. Moreover, they may
give physicians the confidence to shrink margins while escalating dose and reducing fractions.
Therefore, patients would have better treatment outcomes, reduced toxicity and improved
quality of life. The next sections state the contributions of the thesis, current limitations,
and main recommendations for future work.

11.1 Advancement of knowledge

In this thesis we propose several contributions for the purpose of respiratory motion mod-
elling. The first one, presented in Chapter 5, demonstrates the derivation of a pseudonavi-
gator from cine-acquisitions. Moreover, a weighted graph-based approach is introduced for
slice stacking. The described methodology represents an alternative for 4D image construc-
tion whenever external navigators are not available during image acquisition. The second
contribution lies on the elimination of inter-subject correspondences as a previous step dur-
ing the construction of population-based models. Also, it shows how deep neural networks
can be leveraged for respiratory motion modelling. Specifically, in Chapters 6 and 7 we
introduced two novel model architectures towards this goal. The first one proposed to re-
late surrogate images and volumetric deformations by minimizing their distances within a
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latent space. This idea represents an innovative concept for motion modelling. Similarly,
the second model addresses the motion modelling task from a probabilistic point of view. It
exposes how the surrogate images and the reference volume can be integrated as predictive
variables within the loss function. In fact, both approaches exploited the reference volume to
regularize the volumetric generation. These models integrate a temporal predictor module to
forecast visual representations, whose structure may change independently of the modelling
backbone. Our experiments in several datasets shed light on the decision-making process
of the models. We show that, in the latent space, data points are discriminated according
to their respiratory phase. Also, in the probabilistic variant, every time the latent space is
sampled we can recover a new plausible deformation. Uncertainty maps can therefore be
constructed from several generations. These novel features advance the knowledge compared
to traditional methods.

The third contribution, discussed in Chapters 8 and 9, presents temporal predictive mecha-
nisms acting on dynamic images. We showed how the forecasted visual representations are
the key to drive motion models. The developed models contain cutting edge structures, which
are arranged to solve the complex task of estimating future deformations. In Chapters 9 we
describe how the latent representations of the motion model, as well as the predicted motion,
can be leveraged into a tracker module to improve target location. This approach constitutes
an off-the-beaten-path solution.

11.2 Limitations

Notwithstanding the advantages of each individual contribution, there are general limitations
which should be mentioned:

• A limitation of the graph-based slice sorting approach is that physiological correctness
cannot be ensured even if temporal coherence is ensured. Furthermore, due to the
nature of the approach, an accurate reconstruction will depend on acquiring enough
combinations of the slices at different respiratory states.

• In the developed motion models, we assume that the surrogate images and the reference
volume are rigidly align to a common reference space. However, in the clinical scenario
this will depend on the scanner settings. Therefore, a previous step should be integrated
to ensure this condition is respected.

• Except a few exceptions, the methods developed in this thesis were assessed mostly
with data acquired from healthy volunteers. Therefore, potential adverse effects of
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liver diseases on the respiration of the patient were not considered. Furthermore, since
4D datasets are rather scarce, the evaluation environment was limited by the available
amount of subjects.

11.3 Future research

To conclude this work, we present the major recommendations, which give the main research
lines to explore in future studies.

Recommendation 1: Further efforts should be devoted to assess the accuracy of the de-
veloped motion models from a dosimetric point of view, similarly as performed in related
works [303,304].

Recommendation 2: Although a preliminary evaluation was conducted on a dataset with
11 patients, future studies should be focused on assessing whether typical diseases targeted
in the context of external radiotherapy (e.g. liver carcinoma) may affect the methods. Fur-
thermore, the impact of sudden events should be evaluated, such as coughing, sneezing and
other sources of involuntary motion, on the models. Perhaps a quality factor could inform
about the motion model response to these events.

Recommendation 3: Further validation should be done on the performance of the motion
models when the reference volume has different acquisition parameters to the ones used in
the training set.

Recommendation 4: An interesting future direction would be to combine the 4D mo-
tion model with a dose prediction framework for online adaptive radiotherapy. Moreover,
segmentation maps could be integrated to the motion model whenever they are available.
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APPENDIX A QUANTITATIVE ANALYSIS OF 4D MR VOLUME
RECONSTRUCTION METHODS FROM DYNAMIC SLICE ACQUISITIONS

Introduction
Four-dimensional (4D) imaging is a crucial task in several medical applications where the
organ motion and breathing-induced anatomical deformation needs to be monitored. During
procedures like external beam radiotherapy, respiratory motion can deviate predefined targets
and trajectories determined during the treatment planning. Therefore, it is important to
characterize and quantify such motion to avoid damages to the healthy tissue. In this context,
motion models offer a mean to estimate spatio-temporal displacements of the organ and
correct the target position in real time during an intervention. To construct a motion model,
data of the entire organ of interest must be acquired. Unfortunately, imaging volumes over
time is not a feasible option since it compromises spatial and temporal resolutions. Actually,
there is no available implementation of 4D MRI in none of the commercial imaging equipment
[305].

Several approaches have been proposed to generate 4D-MRI datasets. Those can be clas-
sified as: multi-slice 2D acquisitions and 3D acquisitions. The latter have been reported
more recently and interest on it is rising rapidly. Generally, data are acquired over several
respiratory cycles, sufficient to capture the motion pattern. A respiratory surrogate is used
to binning the data according its respiratory phase to construct volumes over the time [305].
Such auxiliary signal can be either an external surrogate, internal surrogate or self-gating
(also known as self-sorting, self-navigation and self-guidance). Some challenges with external
and internal surrogates includes low correlation with the internal organ motion and decreas-
ing temporal resolution, respectively. On the other hand, self-gating methods yield a motion
signal using features contained in the captured images thus mitigating these shortcomings.

Slice reordering techniques that do not rely on external or internal surrogate signals can be
grouped into two main categories: machine learning and slice feature extraction-based meth-
ods. Manifold learning (ML) is a machine learning based technique that has shown to be
useful in the analysis of motion in medical images [71]. In the context of slice reordering this
powerful tool have been employed to map dynamic slices from different anatomical positions
into a low-dimensional space according to their respiratory phases. Some methods used to
create such representation include: Isomap, Locally Linear Embedding (LLE) and Laplacian
Eigenmaps (LE). Moreover, the manifolds yielded from different medical datasets are all
combined within one single globally consistent embedding using Manifold Alignment (MA)
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techniques. Baumgartner et al. (2013) [71] addressed the alignment of multiple manifolds ob-
tained using LLE by overlapping groups of two. They also proposed a sparsification technique
for the Gaussian inter-dataset similarity kernel calculation. Later, the authors extended this
work [5] by adding a registration-based inter-dataset kernel, which incorporated knowledge of
the approximate relations between adjacent slice positions. In Baumgartner et al. (2015) [72],
the authors extended the mathematical formulation of LLE to embed more than two datasets
simultaneously. They tackled the similarity kernel choice problem by introducing a random
walk-based graph matching technique to obtain such kernel. The advantage of that proposal
was the global alignment of the data without prior correspondences nor comparisons between
the high-dimensional data. Clough et al. (2018) [73] achieved state-of-the-art performance
over the former method by introducing a novel graph based descriptor.

In feature extraction methods, obtaining a respiratory signal from the data is the first step in
the sorting process. Some authors have proposed to use changes in the body area to generate
such signal as it typically correlates with the breathing motion [6,76]. However, this approach
is prone to be affected by space-dependent phase shifts. Uh et al. (2016) [79] described a
method to yield a self-navigator signal using dimensionality reduction. Nevertheless, the
low-dimensional representation of the images does not always proportionally change with
respiratory motion thus affecting the correlation between the surrogate signal and organ
motion. Van de Lindt et al. (2018) [68] performed a binning of coronal 2D slices according
to their cranio-caudal motion to construct 4D volumes. However, the validation is performed
against a navigator signal, thus limiting the temporal resolution of their 2D slice series
acquisition and makes the binning process easier. A simple and practical graph-based method
was presented by Tong et al. (2017) [199] to reconstruct 4D data from the lungs. They
constructed a weighted graph considering the slices as nodes and measuring their space and
intensity correspondences to finally find the volumes following the shortest paths.

This work aims at quantify the accuracy of two state-of-the-art slice reordering approaches,
namely: (1) slice reordering based on Manifold Alignment (MA) with Wave Kernel Signa-
ture (WKS) descriptor and (2) slice reordering based on image feature extraction. We also
compare the performance to an improved version of the MA method (3). To this end, we
introduce spatial metrics and a new temporal metric to assess the coherence of motion in 4D
images. The paper is organized as follows. The three 4D MR image construction methods
and the proposed metrics are described in Section 2. Experiments and results are presented
in Sections 3. Section 4 summarizes our conclusions.

Material and methods
Data acquisition
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High-resolution sagittal slices under free breathing were acquired on seven volunteers, who
provided their written consent. The acquisitions were carried out on a Siemens Skyra 3T
scanner using a 2D T2-weighted true FISP sequence with a pixel spacing of 1.7 × 1.7 mm2

and a slice thickness of 3 mm. To cover the whole liver, between 66 and 84 slices were ac-
quired, depending on the liver size. Each slice position was imaged 150 times, which cover
approximately 5 respiratory cycles, without any gating method.

Methods for slice reordering

Manifold Alignment Manifold Learning is a nonlinear dimensionality reduction technique
which aims to map high-dimensional datasets in a low dimensional space, also known as em-
bedding’s. Graph-based approaches build connections between two or more disparate data
sets subjected to a common process (e.g. free breathing) by aligning their underlying man-
ifolds into a single globally consistent space. Our experiments were performed using the
method presented originally by Clough et al. [73] to reorder dynamic slices from the lungs.
It yielded the best results in comparison with other MA methods that used different graph
descriptors.

Clough’s approach uses Laplacian Eigenmaps, which involves creating a Laplacian graph
for each dataset to model the internal correspondences inside it. Each dataset is formed
by all temporal images, i.e. 150, acquired in a fixed anatomical position. Then, the inter-
datasets correspondences are found through a graph based descriptor, names the Wave Kernel
Signature. Two alternatives were used for the high dimensional data: raw pixel intensities of
the images and the motion fields of each image relatively to an end exhale image. To obtain
the motion fields, consecutive temporal images of one slice were registered using NiftyReg
generating local displacement fields (df). For each slice n, the first end exhale image was
identified, and the global motion field between this image and all the other was computed
by adding the local deformation fields. In this way, registration between images with large
deformations is avoided, thus improving the accuracy. In the aligned embedding given by MA,
each point represents a given slice at a time t. In the original method [73], the reconstruction
stage is performed as follows: starting from one slice n, the points on the aligned manifolds
are grouped into volumes based on their L2 distance:

∀ti,∀m ̸= n, stack(m, tmi
) to the volume at ti if tmi

= argmint(L2((n, ti), (m, t)))

However, in cases such as the one presented in this paper, with high density in the embedding
(more than 10,000 points) due to the high spatial and temporal resolution, it was found this
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was insufficient to obtain good reconstructed volumes.

Image feature extraction Tong et al. [199] proposed a method which uses inter-slice
image similarity measure to compute a weighted graph between slices. The shortest path
in the graph is used to reorder coronal and sagittal slices of the lungs. The total weight
is composed of three weights: wg that measures the similarity between two slices, ws that
depends on the coherence in the motion direction for both slices and wp that relates to the
difference in position within the respiratory cycle of the slices. The total weight is given as
w = wg · ws · wp and ranges between 0 (best) and 1 (worse). For each time, the shortest
paths in the graph is found using the Dijkstra algorithm and a 4D volume is reconstructed.
For further details, refer to the original method [199]. In this methodology, the first step was
the segmentation of the lungs. Since our dataset was centered on the liver, we calculated the
image similarity using the whole image.

Improved Manifold Alignment We propose an improvement of the first method which
consists in comparing the reference point in the manifold L(n, ti) with the k nearest points
on the slice m and select the one that has the highest inter slice image similarity measure
with (n, ti) to be stacked into the volume at time ti (see Figure A.1). The value of k can
increase as the number acquired respiratory cycle for each slice increase. In our experiments,

Figure A.1 Aligned manifolds where each point in the low-dimensional space L corresponds
to one image at certain anatomical position and time. During the slice stacking the image
corresponding to the reference point L(n, ti) (pointed with the arrow) is compared to the
images corresponding to the k nearest points on the slice under analysis m.
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in which approximately 5 respiratory cycles were acquired for each slice, k = 5 proved to be
an acceptable value. High values of k will significantly increase computational complexity
and impair the discriminative power of the MA.

Evaluation metrics

To quantify the spatial quality of the volumes, two metrics are proposed. The first is based
on the consistency of the diaphragm height across coronal slices, which is measured as the
average of the variances calculated in 3 samples from sliding windows:

1
3(D − 1))

D−1∑
i=1

∑
j=−1

(ci+j − ĉi)2 (A.1)

where D is the total number of sampled points, ck represents the height of the diaphragm in
the column k and ĉk the average of ck−1, ck, and ck+1.

The second metric for spatial quality assessment is an image similarity measure calculated
as follow:

T∑
t=0

N∑
n=0

(In,t − In+1,t)2 (A.2)

where In,t is the matrix of pixels intensity in slice n at reconstructed time t, T is the number
of 3D volumes and N is the number of slices. Note that this metric is a slightly biased toward
methods (2) and (3) as a variation of inter slice image similarity measure are also used.

One motion-based metric was implemented to assess the temporal behavior. Since the motion
is more evident in the diaphragm area, the standard deviation of the trajectory described by
a point at the middle of the right hemi-diaphragm was calculated for each slice. This value
was compared before and after reordering.

Results

Figure A.2 (a) shows the average variance of the diaphragm height in the seven volun-
teers for each reordering method. The lower values, which were obtained with MA based on
pixel intensities combined with our proposed reconstruction, indicate a greater spatial con-
sistency. Also, our method improves the original MA method results regardless to the high
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dimensionality data used – pixel intensities or motion fields. Interestingly, comparing the
manifold-based approaches on with our dataset, the pixel based method outperformed the
displacement-based method which reported to yield improved results in Clough et al. [73].
For the second spatial metric, volumes with better reordering presented lower values since
the differences between consecutive images are smaller. This shows our method gave the best
results as observed in Figure A.2 (b).

Figure A.3 presents the standard deviation of the trajectory followed by the diaphragm. In
order to preserve the motion, it is desired that these values be in the same range than the

(a) (b)

Figure A.2 (a) Consistency of the diaphragm points in each 3D volume (b) Total difference
between consecutive slices achieved with each method.

Figure A.3 Measured motion in the middle of the diaphragm for each 4D volume, comparing
different reordering methods.
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ones shown in the unordered volume. Although generally we can say that the values are
similar in all cases, our method showed greater stability in its values.

In general, the best results were obtained with MA methods based on pixel intensities. The
reconstruction approach based on closest neighbors proposed in this work proved to im-
prove the quality of the volumes. Figure A.4 shows a qualitative result of the reconstruction
achieved in two respiratory states from the stacking of sagittal slices with the proposed
method. The reconstruction at inhalation positions is more difficult because the liver does
not always descend to the same position.

Conclusions
In this work, we proposed a new reordering approach and evaluated it against two other
approaches using novel tracking-based metrics, one of which is a temporal measure. Results
show that our proposed method outperforms state of the art methods in terms of spatial
quality and is one of the best, with the MA method based on pixel intensities, in term of
temporal quality. The proposed reconstruction scheme from aligned manifolds allows for
flexibility in choosing the parameter k depending on the number of points in the embedding.
It showed to be useful especially for acquisitions with a high temporal resolution where the
discrimination between slices is more challenging. Moreover, it can be applied regardless the
imaging modality and the organ to be imaged.

Figure A.4 Volume reconstruction at exhale and inhale respiratory states using pixel based
MA with the proposed reconstruction.
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APPENDIX B PERSONALIZED RESPIRATORY MOTION MODEL
USING CONDITIONAL GENERATIVE NETWORKS FOR MR-GUIDED

RADIOTHERAPY

Introduction

Shape and motion variability in abdominal and thoracic organs due to the breathing-induced
deformation represents an important challenge in external beam radiation therapy. Conse-
quently, tumor tracking and motion compensation strategies are crucial to improve control of
radiation beams within the body. Technological innovations such as the MR-Linac have en-
abled the integration of MR imaging capabilities with linear accelerators into a single device
enabling real-time target monitoring during treatment. However, the unobserved out-of-plane
motion may degrade dosimetric benefits [215]. Furthermore, volumetric information is useful
for dose recalculation and adaptive radiotherapy planning. Current solutions are based on
deformable registration [202,204] and statistical motion models [90,174,175,178,179,206,207].
The former strategy applies 2D-3D deformable registration between in-room cine-MRI and a
pre-treatment volume to estimate the 3D target position. However, this simple yet effective
technique is limited to local motion modeling. Alternatively, several methods are based on
maximizing the correlation between a surrogate and a motion model, which can be either
population-based or subject-specific. The term surrogate (also known as partial observation)
refers to a signal acquired during the intervention, which is directly correlated with the mo-
tion of interest [47]. In population-based models, motion data from multiple patients are
combined to capture broader motion variability. For instance, Tanner et al. [184] employed
a 3D breath-hold scan and interleaved MR slices to drive a statistical model. Although
this type of model has shown promising results, their construction involves the challenging
task of identifying correspondent landmarks. In contrast, patient-specific models do not
require establishing correspondences across a population, providing an improved fit to the
patient’s anatomy. Typically, the motion extracted from pre-treatment 4D datasets through
deformable registration is used to compute a statistical model. Subsequently, partial observa-
tions are linked to the model by maximising a similarity metric between the image surrogate
and its corresponding slice in the warped reference volume [175, 306]. Often, multi-layer
perceptrons are employed to enable ahead-of-time prediction of the model coefficients [174].
Their main limitation is that the weights optimization relies on a pixel-wise similarity metric,
which only captures the variation in a single plane [233]. Recent advancements in deep learn-
ing have opened new opportunities to relate partial observations to high-dimensional data



210

given sufficiently large training datasets [213, 239, 270]. In the context of motion modelling
for image-guided radiation treatments (IGRT), Giger et al. [180] leveraged a conditional gen-
erative adversarial network to create a patient-specific model able to relate ultrasound to
3D deformations. However, it lacked interpretability capabilities towards the 3D prediction.
Predicting the breathing-induced deformation fields from partial observations has also been
explored in 2D [119].

In this work, we propose a predictive framework for abdominal motion, leveraging the ad-
vantages of both population-based and patient-specific motion models. During training, the
model learns from a population dataset, capturing the wide range in motion variability from
multiple anatomies. Moreover, the model’s generation capability can potentially benefit from
a progressive increase in the amount of data. Once the model is created, it can be person-
alized to a given patient using relatively few temporal samples, tailoring the model to the
subject’s specific anatomy at the beginning of the IGRT. In terms of motion modelling, we
introduce a novel conditional model which considers the temporal consistency of 2D surro-
gate images to regress multiple feature representations ahead of time. These feature vectors
can be seen as conditioning variables of a low-dimensional space of breathing-induced 3D de-
formations. Besides, our model has additional advantages compared to related approaches,
namely: a latent space capable to discriminate and visualize respiratory phases and the abil-
ity to provide uncertainty measures over the model’s predictions. Both characteristics make
the results more interpretable for clinical procedures.

Methods

Model building

During training, our conditional probabilistic model receives as input a single pre-treatment
volume gated at a reference respiratory phase and cine-MR images at times

〈
t − 1, t − 2,

. . ., t−m
〉
, which act as predictive variables to recover the dense displacement vector fields

(DVF) corresponding to n future respiratory phases. It also receives a set of dense 3D de-
formations at times

〈
t, t + 2, . . ., t + n

〉
. Fig. B.1 shows a schematic representation of the

training framework. It is composed of the following blocks: (1) alignment network to gener-
ate the DVF, (2) conditional variational autoencoder to learn the motion distribution, and
(3) temporal predictor to generate conditioning feature vectors ahead-of-time.

Alignment network Since our method does not rely on any surface-based information
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Figure B.1 Proposed motion model used for multi-time volume prediction. The 3D deforma-
tions are mapped to a probabilistic latent space, which is conditioned both on extrapolated-
in-time vectors and anatomical features. The blue background indicates those components
used only during training, whereas the rest are used at all stages.

(i.e. prior segmentations) and avoids explicit voxel generation, we work with deformations
between pairs of volumes, from the same subject, over a population dataset. We use a reg-
istration function, parameterized with a neural network, which receives a specific reference
volume Vref and a target volume Vt at time t as inputs to generate a breathing-induced or-
gan deformation (ϕt) between them. This deformation is then passed to the following block,
which learns the distribution of DVF across the training dataset. In our setup, Vref is taken
at the exhale phase since it presents the most reproducible liver representation. We assume
that both volumes were previously rigidly aligned to a common reference space. For registra-
tion, we use the U-net-like architecture proposed in [42] with pre-trained weights since this
step is out of the scope of this work, however other similar configuration can be used.

Conditional motion field generation We formulate the 3D volume estimation from par-
tial observations as a conditional manifold learning task, an extension of [240]. The predictive
variables, i.e. the pre-operative volume and the cine acquisitions are integrated during opti-
mization in the form of conditional variables which modulate the motion distribution learned
by the model. Let ϕt, Vref and Is =

〈
It−1, It−2, . . . It−m

〉
be the 3D deformation, the reference

volume and the surrogate image sequence, respectively. The goal of the model is to learn the
conditional distribution P (ϕt|Is, Vref ) to produce a displacement matrix ϕ̂t ∈ RH×W×D×3,
given the available partial information and subject anatomy, where H,W and D denote the
height, width and depth of the volumes, respectively. Following the generative process of
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conditional variational autoencoders (CVAE), a latent variable z is generated from the prior
distribution pθ(z) which is constrained to be a Gaussian, i.e. z ∼ N (0, I). By randomly sam-
pling values of z, we can generate new DVF. However, computing the posterior distribution
pθ(z|Is, Vref ) to obtain z is analytically intractable [242]. Therefore, an encoder network is
adopted to find an approximation of the posterior distribution:

qψ(z|Is, Vref ) = N (µ(ϕt, Is, Vref ), σ(ϕt, Is, Vref )) . (B.1)

This network, parameterized with stacked 3D convolution layers, learns the mean µ ∈ Rd

and diagonal covariance matrix σ ∈ Rd(d ≪ H × W × D) from the data, as depicted in
Fig. B.1. At training, the sampling of z is differentiable with respect to µ and σ by using
the "reparameterization trick" [242], and defining z = µ + ϵ ∗ σ, where ϵ ∼ N (0, I). The
distance between both distributions pθ and qψ can be minimized using the Kullback-Leibler
(KL) divergence within a combined loss function which also seeks to minimize a reconstruction
loss. The spatial warping block warps the reference volume with the transformation provided
by the decoder enabling the model to calculate a similarity measure Lsim between Vref ◦ ϕt
and the expected in-room volume Vt. We use stochastic gradient descent to find the optimal
parameters θ̂ by minimizing the following loss function:

θ̂ = arg min
θ

[Lsim (Vref ◦ ϕt, Vt) + KL(qψ(z|Is, Vref )||pθ(z))] (B.2)

where the KL-divergence can be computed in closed form. We adopt a negative local cross
correlation as similarity loss function. In the proposed architecture, we use a multi-branch
convolutional neural network composed by three sub-models that encode: (1) the 3D mo-
tion fields provided by the alignment module, (2) the pre-treatment volume ("Ref-Net" sub-
network) and (3) the 2D cine image surrogates ("Condi-Net" sub-network). The first and
second sub-models possess identical configurations. They are composed of successive 3D
convolutions with kernel size 3 × 3 × 3 and a stride of 2 followed, by ReLU activations and
batch normalization (BN). On the other hand, Condi-Net acts as temporal predictor. As
illustrated in Fig. B.1, each branch ends in a fully connected (FC) layer. The respective
outputs are further concatenated and mapped to two additional FC layers to generate µ

and σ, which are combined with ϵ to construct the latent space sample z, representing the
normal Gaussian distribution. The decoder, also modeled with a convolutional neural net-
work, reconstructs the displacement vector fields given the pre-operative volume and the
spatiotemporal features extracted from the 2D slices provided in real-time. The conditional
dependency is explicitly modeled by the concatenation of z with the feature representation
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of Vref and Is. This means that our model leverages the transformation retrieved from the
latent space given the conditioning feature. Finally, a differentiable layer with explicit spa-
tial transformation capabilities [161] applies the predicted deformation on the pre-operative
volume yielding the warped volume that is compared to the target volume in the first term
of Eq. (B.2). Using this scheme, our model is able to provide volumetric information.

Temporal predictor (Condi-Net) A last module enables multi-time surrogate extrapola-
tion. Its design is inspired by the seq2seq configuration, widely applied for natural language
processing and other time-series tasks [148]. It is comprised by m = 3 stacks of 2D convolu-
tions with kernel size 3×3 and a stride of 2 followed by ReLU activations and BN. Each stack
independently processes the channel-wise concatenation of a single temporal image with their
corresponding slice in the pre-operative volume. For a single timestep horizon the result is
fed to a convolutional layer. To enable multi-time predictions, the temporal representations
are stacked together and fed to convolutional gated recurrent units (GRU) [307], which are
arranged in an encoder-decoder configuration. The encoder processes the spatiotemporal fea-
tures and summarizes the information in a context vector. This embedding is tiled and fed
to the decoder, which learns how to extrapolate n feature vectors (depending on the desired
number of outputs volume) corresponding to n future time steps.

Model personalization and application

The goal of the personalization step is to fine-tune the weights of the pre-trained model,
which is learned from a population, in order to adapt for the subject-specific anatomy and
motion patterns. Thus this process follows a similar methodology as during training, but
using a lower initial learning rate on a single subject. During the model application (test
stage), the alignment module and the motion encoder are removed. Therefore, the decoder
operates as a generative network given the patient anatomy and the cine acquisition, yielding
realistic ahead-of-time DVF by sampling z ∼ N (0, I).

Experimental Setup and Results

A dataset of free-breathing MR images acquired from a cohort of 25 healthy volunteers,
each providing their written consent, was used in this study. Sagittal slices were acquired
during 20 min on a MRI clinical scanner (3T Philips Ingenia) using a 2D T2-weighted bal-
anced turbo field echo sequence. Data frames spanning the right liver lobe and navigator
slices were acquired following an interleaved scheme and subsequently sorted to create a
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Table B.1 Target tracking errors (in mm) measured at different respiratory phases for a
predictive horizon of 450 ms. Values are mean ± std. (∗Model applied as population-based,
i.e. in unseen cases without fine-tuning)

Model Mid-inh Inhale Mid-exh Exhale Overall
Initial motion 7.0 ± 6.0 7.0 ± 10.34 5.3 ± 4.9 2.6 ± 2.1 5.4 ± 5.8
FM [213] 3.1 ± 2.6 3.9 ± 3.2 2.7 ± 2.2 1.9 ± 2.1 2.9 ± 2.7
ME [202] 3.0 ± 2.7 2.5 ± 2.5 2.5 ± 1.7 1.7 ± 1.4 2.4 ± 2.0
PCA [174] 1.6 ± 2.0 2.0 ± 2.6 1.6 ± 0.9 2.0 ± 1.2 1.8 ± 1.6
Proposed∗ (C) 2.4 ± 2.6 3.3 ± 3.0 2.0 ± 0.9 1.3 ± 1.0 2.2 ± 1.8
Proposed (S) 1.8 ± 1.3 1.9 ± 1.4 1.7 ± 1.2 1.5 ± 1.0 1.7 ± 1.2
Proposed (C) 1.4 ± 1.0 1.8 ± 1.6 1.3 ± 1.0 1.1 ± 0.8 1.4 ± 1.1

time-resolved 4D dataset, as detailed in [2]. The in-plane and through-plane resolution was
3.4×3.4 mm2 and 3.5 mm, respectively, and image dimension of 32×64×64. For each subject,
80 different sequences of 2D navigators showing different motion amplitudes and frequencies
were acquired, which portrays the considerable inter-cycle variability that must be taken
into account to increase the robustness of the motion model during radiotherapy. Hence,
we leverage this variability as a data augmentation strategy for model creation. The time
horizon for a single time step prediction is equivalent to a temporal resolution of 450ms. The

(a) (b)

Figure B.2 (a) Low-dimensional mapping of the latent representations of breathing phases.
(b) Analysis of the drift effect on the estimation error when increasing the temporal gap
between training and test subsets.
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number of volumes for each subject was 2480. We followed a leave-one-out scheme, thereby
creating the models with 24 anatomies and the remaining case for personalization/test. Each
subject dataset was split into fine-tuning images (5 min, 620 volumes) and test images (15
min, 1860 volumes). We assume that this fine-tuning data represents the treatment plan-
ning acquisition, as depicted in the upper left of Fig. B.1. The network’s parameters were
optimized using the Adam optimizer [308] with an initial learning rate (lr) set at 10−3. For
fine-tuning, the lr = 10−5 was progressively reduced after 3 epochs without improvements in
the validation loss. Training was performed in PyTorch with a batch size of 10.

As a first experiment, between 3 and 5 expert-selected vessel annotations were used to mea-
sure the geometrical accuracy between ground-truth (GT) and predicted positions over the
last minute (≈ 12 respiratory cycles). These landmark positions were scattered out-of-plane
and tracked with subpixel resolution. Two of them were tagged on the same anatomical struc-
ture (main portal trunk bifurcation and the first bifurcation of the right portal vein) across
all the subjects. The tracking capabilities of the proposed model, with sagittal (S) and coro-
nal (C) orientations used for surrogates, was compared to three state-of-the-art approaches
developed in the context of IGRT. Namely, Principal Component Analysis (PCA) [174], a
registration-based motion extrapolation (ME) technique [202] and a deep network based on
feature merging (FM) [213]. Results presented in Table B.1 were tested for statistical signif-
icance using the Wilcoxon signed-rank test with significance level α = 0.01. Effect size was
measured using Cohen’s d. The reference volume was excluded from the error calculation.
When comparing the overall tracking errors, the accuracy with the proposed model using
coronal images improved by a significant margin of 0.4 mm (p ≪ 0.01,d = 0.95), 1.0 mm
(p ≪ 0.01,d = 1.02) and 1.5 mm (p ≪ 0.01,d = 0.70) over PCA, ME and FM, respectively.
Moreover, using coronal orientation showed increased performance compared to the sagittal
view (p ≪ 0.01,d = 0.22), which is in line with previously reported results [90,233].

Figure B.3 Left: Most probable deformation (yellow) and reference motion fields (green).
Right: Motion-based prediction uncertainty maps at several phases.
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We also reported the model’s result when applied as population-based, i.e., in unseen cases
without prior fine-tuning. Fig. B.2a shows the mapping of the latent vectors to a Cartesian
plane via PCA. A clear phase discrimination can be observed, which is plausible for the
motion modeling task. When investigating the model’s tolerance to potential shifts of the
surrogate location, we found little variation of the NCC between GT and predicted volumes
with a shift of ≈ 20 mm away from the central slice in both directions. This suggests the
training process relies primarily on encoded phase information in latent space, an important
advantage over current techniques. Each acquisition was divided into 5 equally-sized subsets
of 4 minutes in order to investigate the influence of the organ drift. The analysis was con-
ducted by fixing the fifth subset as the testing set, while the first four subsets were used as
four separate training sets. The geometrical error distributions reported in Fig. B.2b were
measured using 3D deformable registration between ground-truth and predicted volumes with
the B-spline transformation model as implemented in the Elastix framework [214]. It can
be seen that the error distributions show little to no degradation with the increase of the
temporal gap between training and testing sets, showing superior robustness compared to
existing techniques where estimation errors are ×4 higher between the extreme subsets [244].

The median [interquartile range] of the error distributions when increasing the horizon to
900 and 1350 ms are 1.8 [2.6] mm and 1.9 [2.9] mm, respectively. The quality of the obtained
deformations was assessed through the Jacobian matrix determinant (|J |). The percentage of
voxels with a non-negative |J | was 99.4% across the entire dataset. Qualitative comparison
of the most probable deformation field at selected phases is shown on the left of Fig. B.3,

Figure B.4 Difference maps between ground-truth and predicted volumes.
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where the reference and the predicted deformations are overlaid. Overall, there is a satisfac-
tory alignment with some minor exceptions. The right part of Fig. B.3 displays uncertainty
maps of the predicted DVF, defined as the standard deviation of N = 50 different predictions
generated by randomly sampling the latent space. Finally, difference maps between GT and
predictions across multiple respiratory phases are shown in Fig. B.4. It is noticeable that
the model correctly predicts the spatiotemporal motion from inhale to exhale. The proposed
method required a mean computation time of 7.44 ms (average from 20 measurements) for
inference on a NVIDIA Titan RTX GPU with 64 Gb RAM.

Conclusion

We presented a novel probabilistic framework for MRI volume predictions during IGRT
with a variable predictive horizon from real-time 2D surrogates. It offers several advantages
over existing solutions. First, it avoids pre-processing steps such as surface segmentation
or landmark annotations. Second, it provides an explainable latent space and quantitative
uncertainty metrics, therefore making the results clinically interpretable by physicists. The
accuracy of the tracking results are within the clinically acceptable margins (<2mm) for
motion management in modalities such as high-intensity focused ultrasound, conventional
radiotherapy, or particle therapy. With a prediction horizon of (at least) 450 ms, the motion
model is applicable in real-time and meets the typical temporal requirements [203]. Fu-
ture studies should investigate how the model copes with inter-session variations as well as
assessing the dosimetric impact.




