
Titre:
Title:

An Immersed Boundary Method Approach Using Hierarchical and
Overlapping Grids for Unsteady Aerodynamics

Auteur:
Author:

Moustafa Awad

Date: 2021

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Awad, M. (2021). An Immersed Boundary Method Approach Using Hierarchical
and Overlapping Grids for Unsteady Aerodynamics [Thèse de doctorat,
Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/9911/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9911/

Directeurs de
recherche:

Advisors:
Jean-Yves Trépanier, & Guillaume Pernaudat

Programme:
Program:

PhD.

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9911/
https://publications.polymtl.ca/9911/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

An Immersed Boundary Method approach using hierarchical and overlapping
grids for unsteady aerodynamics

MOUSTAFA AWAD
Département de génie mécanique

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie mécanique

Décembre 2021

c© Moustafa Awad, 2021.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

An Immersed Boundary Method approach using hierarchical and overlapping
grids for unsteady aerodynamics

présentée par Moustafa AWAD
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Stéphane ÉTIENNE, président
Jean-Yves TRÉPANIER, membre et directeur de recherche
Guillaume PERNAUDAT, membre et codirecteur de recherche
Bruno SAVARD, membre
Sivakumaran NADARAJAH, membre externe

iii

DEDICATION

To my parents, my wife, my two little kids,
To all my friends at Polytechnique, I will miss you. . .

À mes parents, mon épouse, mes deux petits gamins,
À tous mes amis de Polytechnique, vous me manquerez. . .

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank ALLAH for the accomplished work I have reached and
the achievements under the supervision comity. A great appreciated thanks to my research
directors Prof. Jean-Yves Trépanier, Prof. Ricardo Camarero, and Dr. Guillaume Pernaudat.
Great thanks for your guidance and support through the research. I have the honor to be
supervised by such comity like you.

I appreciate and thank all the research group members, especially Renan SOUSA and Sujaat
Ali, for the real meaning of brotherhood, friendship, and support.

I would like to thank the mechanical engineering department of Polytechnique Montreal for
its support, assistance, and the afforded computational facilities.

A special thanks to my adorable wife, Noheir El Faham, and my two buddies Omar & Yassine.
I express my gratitude to my family, my mother, my dad, and my sisters.

My deep thanks to all my friends, and anyone helped me to direct this work.

v

RÉSUMÉ

La simulation numérique d’écoulements compressibles autours d’objets mobiles comprend
de nombreuses applications, comme la séparation de magasins à grande vitesse, le suivi de
débris, les jets à un nombre de Mach élevé, et l’écoulement à l’intérieur des disjoncteurs
haute-tension. La modélisation numérique de l’ensemble de ces applications se heurte princi-
palement à certains défis : les complexités géométriques, l’écoulement compressible à haute
vitesse, et de la prise en compte du mouvement des objets. A ce sujet, cette recherche vise
à relever ces défis en développant un algorithme pour simuler les écoulements compressibles
sur des géométries complexes en mouvement relatif.

Ce travail présente le développement d’un code numérique basé sur l’intégration de la méth-
ode des frontières immergées (Immersed Boundary Method, IBM) avec des maillages super-
posés (Overset Grid) hiérarchiques pour simuler des problèmes d’écoulement compressible
non visqueux. L’approche proposée réduit la complexité de la simulation numérique par
rapport aux approches conventionnelles avec des maillages ajustés aux frontières.

La méthode des frontières immergées choisie est la méthodologie (Sharp Interface, SI), où la
géométrie est représentée avec précision en fonction de la résolution de la grille Eulérienne.
Cette méthode est adaptée pour représenter des géométries rigides. La résolution de la grille
est contrôlée par un raffinement local basé sur l’approche hiérarchique linéaire. Les quadtrees
linéaires sont une structure de données efficace pour représenter les grilles hiérarchiques pour
une représentation précise de géométries complexes avec un faible coût de traitement. Des
contrôles de grille supplémentaires sont présentés, en tant que préadaptation du maillage, et
pour adapter localement le domaine de calcul aux variations physiques auparavant étudiées.

Une approche de marquage robuste est présentée, basée sur le parcours de la géométrie,
comme l’une des contributions de cette thèse. Cette approche est basée sur un bouclage
sur la courbe géométrique plutôt que sur l’ensemble de la grille Eulérienne pour identifier la
frontière immergée. Cette approche prend en charge l’identification de géométries complexes
sur des maillages cartésiens et hiérarchiques. Les informations de la géométrie immergée
générées par l’approche de marquage sont transférées vers d’autres parties de l’algorithme
pour intégrer le module des maillages superposés et le solveur fluide.

La prise en compte du mouvement des objets est réalisée par l’utilisation de maillages su-
perposés où la topologie immergée et la grille se déplacent dans un repère solidaire. Cette
approche permet d’effectuer un marquage unique et constant du maillage même avec le dé-
placement de l’objet. En effet, on élimine le besoin de refaire le marquage de la grille à

vi

chaque pas de temps. Les applications avec des objets mobiles sont jusqu’à présent limitées
aux mouvements de translation sans collisions entre les parois.

Une approche de reconstruction implicite par la méthode des moindres carrés a été mise en
œuvre permettant de reconstruire la solution d’écoulement. Ce schéma prend en compte pré-
cisément la reconstruction des conditions aux limites pour les équations d’Euler au niveau des
cellules d’interface avec la frontière immergée, ainsi que la reconstruction entre les maillages
superposés pour transférer la solution d’écoulement entre celles via une couche de cellules in-
terpolées autour de la frontière de la superposition. Le schéma de reconstruction a été vérifié
analytiquement et numériquement pour les deux cas (pour l’application des conditions aux
limites et la reconstruction pour le transfert de la solution entre les maillages superposés).

Un résoluteur d’écoulement à schéma de volumes finis a été implémenté sur la base d’un
schéma de Roe, où les calculs des flux sont généralisés à la discrétisation de l’espace Cartésien
et hiérarchique. La méthode mise en œuvre est du premier ordre dans l’espace et dans le
temps, avec une intégration temporelle explicite. De plus, ce résoluteur est mis à jour avec
la formulation Arbitrary Lagrangian-Eulerian (ALE) pour prendre en compte les vitesses de
grille introduites par le module de maillages superposés.

Un ensemble de cas de test de vérification sont menés et classés par type de configuration
spatial (maillage unique ou maillages superposés), type d’écoulement (régime permanent ou
instationnaire) et le mouvement de la géométrie (stationnaire, en mouvement à vitesse uni-
forme ou en mouvement accéléré) . Les cas tests réalisés vérifient l’intégration de chaque
module du code développé et évaluent l’ordre de précision des schémas implémentés. Les ré-
sultats de l’algorithme développé sont limités à l’ordre de convergence du résoluteur (premier
ordre) dans le cas d’écoulements sans discontinuités, et un ordre de convergence autour de
(0.5) est atteint pour les cas d’écoulements discontinus ce qui concorde avec des configurations
similaires disponibles dans la littérature.

Cette recherche constitue, comme l’une des principales contributions de ce travail, la première
version d’un algorithme entièrement basé sur l’approche IBM intégrée avec les maillages su-
perposés hiérarchiques. De plus, ce jalon est extensible pour prendre en charge les mou-
vements complexes qui incluent la collision des géométries, les implémentations de schémas
d’ordre élevé et les extensions 3D. La réalisation de ces extensions est en cours par l’équipe de
recherche permettant de repousser les limitations de la méthodologie et du code développés
et d’ouvrir de nouvelles perspectives pour des contributions scientifiques supplémentaires.

vii

ABSTRACT

Numerical simulation of compressible flows over moving bodies can be found in numerous
applications, ranging from internal and external flows (store separation at high speed, debris
tracking, flying bodies at high Mach number, flow inside circuit breakers, etc). Numerical
modeling of this wide range of applications raises some challenges when these three elements
are combined; a) Geometric complexity. b) Flow complexity. and c) Body motion. This
research addresses these challenges by the development of an algorithm able to simulate
compressible flows over complex geometries in relative motion.

This work presents the development of a numerical code based on the integration of the
Immersed Boundary Method (IBM) with hierarchical Overset grids to simulate inviscid com-
pressible flow problems. The proposed approach reduces the complexity of the numerical
simulation compared to conventional body-fitted approaches.

The immersed boundary is represented by the Sharp Interface (SI) method, where the ge-
ometry is accurately represented as a function of the Eulerian grid resolution. This method
is suitable to represent rigid geometries. The grid resolution is controlled by a local grid
refinement based on linear hierarchical grids. Linear quad-trees is an efficient data struc-
ture to represent hierarchical grids that can describe complex geometries accurately with low
computational cost. Additional grid controls are presented, as grid pre-adaptation, to locally
pre-adapt the computational domain for complex flow cases.

A robust tagging approach is presented, based on a "Geometry Marching" procedure, as
one of the contributions of this thesis. This approach is based on looping over the domain
boundaries rather than over the entire Eulerian grid to identify the immersed boundary.
The proposed tagging approach supports the identification of complex geometries on Carte-
sian and hierarchical grids. The information of the immersed geometry thus generated is
transferred to other parts of the algorithm to integrate the overset module and flow solver.

The body motion is introduced by the integration of overset grids, where every moving
geometry is immersed on an overset tagged grid. The implementation of this approach
allows to perform the mesh tagging only once on the overset grid, and this tagging remains
constant with grid motion. This integration eliminates the re-tagging of the geometry every
time step, where the overset grid will move entirely with fixed tagged geometry. The applied
cases for overset grids are limited to translation motions, with a non-colliding geometries.

A second-order implicit least-square representation is implemented to reconstruct the flow

viii

solution. This is applied to the reconstruction of boundary conditions for Euler’s equations
at the interface cells of the immersed boundary, as well as the transfer of the flow solution
between overlapping grids via a layer of interpolated cells around the overset boundary.
The reconstruction scheme is verified analytically and numerically for both cases (boundary
condition and overset reconstruction).

A cell-centered finite-volume scheme flow solver is implemented based on a flux difference
splitting scheme (Roe’s Scheme), where flux calculations are generalized to Cartesian and
hierarchical space discretization. The implemented method is first-order in space and time,
with an explicit temporal integration. In addition, the flow solver is updated with the Arbi-
trary Lagrangian-Eulerian (ALE) formulation to take into account the grid motion introduced
by the overset module.

A set of verification test cases (fifteen test cases) are conducted and categorized by the type
of space configuration (single grids/overset grids), flow type (steady/unsteady), and body
motion (stationary/uniform speed motion/accelerated motion). These test cases verify the
integration of each module of the overall developed code and assess the order of accuracy
of the implemented schemes. The results are limited to the solver order of convergence
(first-order) in case of flows without discontinuities, and an order of convergence around
0.5 is attained for the cases of discontinuous flows, these results agree solutions for similar
configurations available in the literature.

As one of the main contributions of this work, this research succeeded in developing the first
version of an entirely IBM-based algorithm integrated with hierarchical overset grids. In
addition, this milestone is extendable to support complex body motion that includes body
collisions, high-order scheme implementations, and 3D extensions. These extensions are
currently in progress by the research team to push forward the limitations of the developed
code and open new sights for additional scientific contributions.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ACRONYMS . xix

LIST OF APPENDICES . xxi

CHAPTER 1 INTRODUCTION . 1
1.1 Context . 1
1.2 Numerical treatment of unsteady compressible flows with bodies in relative

motion . 2
1.2.1 Dynamic meshes . 2
1.2.2 Overset grids . 5
1.2.3 Cartesian grid approach (Cut-cell approach) 6
1.2.4 Numerical treatments conclusion . 6

1.3 The Immersed Boundary Method . 7
1.4 Objectives of the present work . 8
1.5 Research originality . 9
1.6 Thesis structure . 9

CHAPTER 2 LITERATURE REVIEW . 11
2.1 Background of the Immersed Boundary Method 11

2.1.1 Diffused Interface Method (DIM) . 11
2.1.2 Sharp Interface Method (SIM) . 12

2.2 Eulerian mesh . 13

x

2.2.1 Adaptive Mesh Refinement (AMR) 14
2.2.2 Non-uniform Cartesian grid refinement 16
2.2.3 Unstructured grid refinement . 16

2.3 Tagging . 17
2.3.1 The Ray Tracing approach . 18
2.3.2 The Level Set approach . 19
2.3.3 The explicit minimum distance approach 20

2.4 Reconstruction schemes . 21
2.5 IBM with moving boundaries . 23

2.5.1 Field Extension approach . 23
2.5.2 Direct reconstruction approach . 24
2.5.3 Overset grids . 24

2.6 Critical literature . 25

CHAPTER 3 HIERARCHICAL GRID GENERATION - OVERSET GRID AND TAG-
GING . 28
3.1 Global methodology . 28

3.1.1 Geometry/Discrete topology . 29
3.1.2 Hierarchical grid . 29
3.1.3 Mesh tagging . 29
3.1.4 Overset grid . 30
3.1.5 Refinement criteria and grid controls 30
3.1.6 Solution reconstruction . 31
3.1.7 Flow solver . 31

3.2 Geometry/Discrete topology . 31
3.3 Hierarchical grid . 34

3.3.1 Numbering scheme . 36
3.3.2 Grid balancing . 38
3.3.3 Neighbors localization . 41
3.3.4 Side list generation of hierarchical grid 45

3.4 Mesh tagging . 46
3.4.1 Basic terminologies and definitions 47
3.4.2 Properties of intersected cells . 49
3.4.3 Geometry marching algorithm . 50
3.4.4 Types of intersected cells . 55
3.4.5 Types of Interface Cells (IC) . 56

xi

3.4.6 Face discretization . 58
3.5 Overset grid . 59
3.6 Refinement criteria . 63
3.7 Grid management and control Add-ons . 70

CHAPTER 4 FLOW SOLVER . 73
4.1 Governing equations . 73
4.2 Numerical scheme . 74
4.3 Reconstruction scheme . 78

4.3.1 Reconstruction methodology . 79
4.3.2 Reconstruction verification . 85

4.4 Boundary conditions for Euler equations . 86
4.5 Treatment of overset grid motion . 91

CHAPTER 5 VERIFICATION AND VALIDATION OF THE ALGORITHM . . . 93
5.1 Algorithm implementation . 93
5.2 General aspects . 93
5.3 Test cases classification . 94
5.4 Steady flows on single grids . 95

5.4.1 Subsonic flow in tube (CAT11) . 96
5.4.2 Supersonic flow in tube (CAT12) . 97
5.4.3 Subsonic Rayleigh flow (CAT13) . 99
5.4.4 Supersonic Rayleigh flow (CAT14) 102
5.4.5 Subsonic radial flow (CAT15) . 105
5.4.6 Confluence of two supersonic flows (CAT16) 107
5.4.7 Supersonic flow over a bump (CAT17) 113

5.5 Unsteady flows on a single grid . 115
5.5.1 Shock tube flow (CAT21) . 116
5.5.2 Tube in impulsive motion (CAT22) 119
5.5.3 Unsteady supersonic flow over a Wedge (CAT23) 123

5.6 Steady flows on overset grids . 127
5.6.1 Supersonic tube flow with stationary overset grid (CAT31) 127
5.6.2 Supersonic tube flow with moving overset grid (CAT32) 132

5.7 Unsteady flows on overset grids . 135
5.7.1 Unsteady supersonic flow over a wedge with stationary overset grid

(CAT41) . 135
5.7.2 Unsteady supersonic flow over a wedge with moving overset grid (CAT42)141

xii

5.7.3 Unsteady supersonic flow over three moving accelerated wedges on
overset grids (CAT43) . 144

CHAPTER 6 CONCLUSION . 150
6.1 Summary of work . 150
6.2 Limitations . 151
6.3 Future research . 152

REFERENCES . 154

APPENDICES . 167

xiii

LIST OF TABLES

Table 3.1 Siblings pair of a parent cell and the corresponding indices in four
cardinal directions . 43

Table 3.2 Example of a vertical side list . 46
Table 3.3 List of cell index vs.cellID . 46
Table 4.1 Reconstruction types of boundary conditions 91
Table 5.1 Classification of test cases . 94
Table 5.2 Test cases - Category#1: Steady flows on a single grid 94
Table 5.3 Test cases - Category#2: Unsteady flows on a single grid 95
Table 5.4 Test cases - Category#3: Steady flows on overset grids 95
Table 5.5 Test cases - Category#4: Unsteady flows on overset grids 95
Table 5.6 Operating conditions of tube in impulsive motion 120
Table 5.7 Operating conditions of supersonic wedge on single grid 125
Table 5.8 Operating conditions of moving supersonic wedge on overset grid . . 142
Table A.1 Hash-table information of a given key (cellID) in hierarchical grid. . 167
Table A.2 Hash-table tagging information of a given key faceID. 168

xiv

LIST OF FIGURES

Figure 1.1 The Gripen E aircraft performing the separation test of the drop fuel
tank [1]. 1

Figure 1.2 Interaction between the different approaches used for testing and as-
sessment of store separation [2]. 2

Figure 1.3 Tetrahedral computational domain and simulation contours of rocket
booster separation using dynamic meshes [3]. 3

Figure 1.4 Adaptive Cartesian grid with static pressure contours for the simulation
of a Space Launch System [4]. 3

Figure 1.5 Cross-section view of a simplified circuit breaker, indicating different
stationary and moving parts [5]. 4

Figure 1.6 Cross-section view of the relief valve, with contours of Mach number
and pressure [6]. 4

Figure 1.7 Overset grids for debris tracking simulation [7]. 5
Figure 1.8 Overset grids for flow simulation over the 30P30N airfoil [8]. 6
Figure 1.9 Classification of cells resulting from tagging procedure. 8
Figure 2.1 IBM Classification. 11
Figure 2.2 Boundary condition reconstruction with Sharp Interface Method (SIM) [9]. 13
Figure 2.3 Illustration of quadtree levels representation [10]. 15
Figure 2.4 Local anisotropic grid refinement [11]. 16
Figure 2.5 Local non-uniform grid refinement [12]. 17
Figure 2.6 Unstructured grid refinement for IBM with the contours of density

distribution over a wedge [13]. 18
Figure 2.7 Illustration of ray tracing the concept [14]. 19
Figure 2.8 Illustration of Level Set function [15]. 20
Figure 2.9 Illustration of explicit tagging. 21
Figure 2.10 Reconstruction stencil of an interface cell based on three fluid cells and

two boundary condition points. 22
Figure 2.11 Field Extension Approach for FCC Treatment. 24
Figure 2.12 Direct Interpolation Approach for FCC Treatment. 25
Figure 2.13 Overset grids around a mackerel, the geometry is descretized by a body-

fitted tetrahedral elements [16]. 26
Figure 3.1 Representation of the immersed geometry. 32
Figure 3.2 Entities of discrete topology. 33

xv

Figure 3.3 Quadtree representation with two levels of refinement. Refined siblings’
location relative to the parent cell is indicated (SW, SE, NW, NE). . 35

Figure 3.4 Siblings indices generated from a parent cell refinement. 37
Figure 3.5 Numbering scheme adopted to represent a linear quadtree data structure. 38
Figure 3.6 Hierarchical grid 2:1 balancing rule. 39
Figure 3.7 Example of procedures of grid balance, using the level difference be-

tween neighbors. 40
Figure 3.8 Neighboring possibilities of balanced grid. 42
Figure 3.9 Numbering of sides of a hierarchical grid. 46
Figure 3.10 Cells classification of a tagged immersed topology. 48
Figure 3.11 Properties of an intersected cell. 49
Figure 3.12 Geometry marching procedure to find intersected cells. 51
Figure 3.13 Geometry marching procedure on a Cartesian grid. 53
Figure 3.14 Geometry marching in hierarchical grid. 54
Figure 3.15 Illustration of two cases of intersected cells. 55
Figure 3.16 Four possibilities of intersected cells. 56
Figure 3.17 one corner cut vs. two corners cut Intersected Interface Cell (IIC). . . 57
Figure 3.18 Determination of Non-Intersected Interface Cell (NIIC) by two-corners

cut Interface Outside Cell (IOC) of cell W 57
Figure 3.19 Interface tagging verification by neighborhood check. 58
Figure 3.20 The four steps of the tagging algorithm. 59
Figure 3.21 Overset supported configuration. 60
Figure 3.22 Overset treatment for overlapped grids. 62
Figure 3.23 Representation of the interpolated cells conditioning for 1D overset

configuration. 63
Figure 3.24 Application of the first criteria of refinement to limit to 4 the number

of geometric points inside a cell. 66
Figure 3.25 Application of refinement criteria #2. 67
Figure 3.26 Application of the proximity refinement criteria. 69
Figure 3.27 Five levels of refinement with vs. without uniform refinement around

a NACA 0012 profile. 70
Figure 3.28 Grid pre-adaptation with three levels of refinement following the adap-

tation topology. 71
Figure 3.29 Representation of doubling the grid resolution will not lead to a grid

topology finer by a factor 1/2 for all grid elements. 72

xvi

Figure 3.30 The application of RefineUniformGrid function to generate the same
grid topology with 1/2N factors of reduction. 72

Figure 4.1 Cell-centered control volume definition in Cartesian grids. 74
Figure 4.2 Evaluation of average properties at the control volume boundaries. . . 75
Figure 4.3 Flux representation in hierarchical grids in x-direction. 77
Figure 4.4 Reconstruction stencil of interface cell P 79
Figure 4.5 Reconstruction of Dirichlet and Neumann Boundary Condition (BC)’s

of cell P from East side. 80
Figure 4.6 Dirichlet and Neumann BC reconstruction for cell P 81
Figure 4.7 Illustration to implicitly reconstruct the gray cells (7,8 and 9). 84
Figure 4.8 Verification of reconstruction scheme using analytical function. 86
Figure 4.9 Possible configurations for BC reconstruction. 87
Figure 4.10 Slip boundary condition application by vector projection. 89
Figure 4.11 Reconstruction stencil on a 2-D overset grid. 90
Figure 5.1 Subsonic tube test setup and computational domain. 96
Figure 5.2 Comparison of numerical solution of Mach number for the subsonic

flow in a tube. 97
Figure 5.3 Comparison of numerical solution of pressure for the subsonic flow in

a tube. 97
Figure 5.4 Supersonic tube test setup. 98
Figure 5.5 Comparison of numerical solution of Mach number for the supersonic

flow in a tube. 98
Figure 5.6 Comparison of numerical solution of Pressure for the supersonic flow

in a tube. 99
Figure 5.7 Subsonic Rayleigh flow test setup and operating boundary conditions. 100
Figure 5.8 Mach number variation for subsonic Rayleigh flow on a 10x10 grid. . 101
Figure 5.9 Mach number variation for subsonic Rayleigh flow on a 80x80 grid. . 101
Figure 5.10 Mach number L2 norm convergence for subsonic Rayleigh flow. 102
Figure 5.11 Test case setup for supersonic Rayleigh flow. 103
Figure 5.12 Supersonic Rayleigh flow solution on a 10x10 grid. 103
Figure 5.13 Supersonic Rayleigh flow solution on a 160x160 grid. 104
Figure 5.14 L2 norm convergence for supersonic Rayleigh flow. 104
Figure 5.15 Test case setup for subsonic radial flow. 105
Figure 5.16 Pressure distribution of IBM vs. unstructured solvers. 106
Figure 5.17 Pressure distribution of IBM vs. analytical solution on a Cartesian

grid of 85× 85 (average element length of 0.0247 m). 107

xvii

Figure 5.18 Density and pressure L2 norm convergence for IBM vs. unstructured
solvers. 107

Figure 5.19 Test case configuration, flow angles, and boundary conditions for the
confluence of two supersonic flows. 108

Figure 5.20 Computational domains of pre-adapted refined grids for confluence test
case. 109

Figure 5.21 Pressure distribution along the outlet section for different grid resolutions.110
Figure 5.22 Pressure error along the outlet section for different grid resolutions. . 111
Figure 5.23 Pressure L2 norm convergence for supersonic confluence of two flows. 112
Figure 5.24 Numerical results on a Level 3 grid. 112
Figure 5.25 Test case setup for a supersonic bump configuration. 113
Figure 5.26 Distribution of physical properties over a supersonic bump M = 1.4. . 114
Figure 5.27 Mach number distribution on upper and lower walls. 115
Figure 5.28 Shock tube configuration. 116
Figure 5.29 Pressure distribution at mid-section of a shock tube at different times,

grid size 81× 81. 117
Figure 5.30 u-velocity distribution at mid-section of a shock tube at different time

frame, grid size 81× 81. 117
Figure 5.31 Density distribution at mid-section of a shock tube at different time

frame, grid size 81× 81. 117
Figure 5.32 Order of convergence of L2 norm of physical quantities of shock tube. 118
Figure 5.33 Schematic representation of a tube in impulsive motion with operating

zones. 119
Figure 5.34 Flow properties at mid-section of a tube in impulsive motion for a grid

resolution of 200× 20 at t = 0.0089s. 121
Figure 5.35 Flow properties L2 norm convergence of a tube in impulsive motion. . 122
Figure 5.36 2D flow properties distribution in a tube in impulsive motion, grid

400× 40 at t = 0.0089s. 123
Figure 5.37 Computational domain of supersonic wedge test case. 124
Figure 5.38 Immersed wedge topology in Cartesian grid for different grid resolutions.124
Figure 5.39 Density distribution of the shock development over a wedge at Mach

2, grid resolution of 90× 80. 126
Figure 5.40 Flowfield properties distribution of the shock development over a wedge

at Mach 2, grid resolution is 360× 320 at steady state conditions. . . 127
Figure 5.41 Computational domain of a stationary overset supersonic tube. 128
Figure 5.42 Overset computational domain for supersonic flow tube. 129

xviii

Figure 5.43 Solution error of flow properties on the reference grid. 130
Figure 5.44 Solution error of flow properties on the overlapping grid. 131
Figure 5.45 Solution of flow properties on the overset grids. 132
Figure 5.46 Computational domain of moving overset supersonic tube. 133
Figure 5.47 Pressure error on reference grid at initial position, mid-trajectory, and

at the end of trajectory. The position of the hole changes with the
mobile grid motion. 133

Figure 5.48 Pressure error on overset grid at initial position, mid-trajectory, and
at the end of trajectory. 134

Figure 5.49 Pressure distributions on reference grid at initial position, mid-trajectory,
and at the end of trajectory. The position of the hole changes with the
mobile grid motion. 134

Figure 5.50 Pressure distributions on overset grid at initial position, mid-trajectory,
and at the end of trajectory. 135

Figure 5.51 Computational domain dimensions for a symmetric wedge on an overset
grid. 136

Figure 5.52 Computational domain with perfectly aligned overset grids. 137
Figure 5.53 Grid offset of interpolated cell centers. 138
Figure 5.54 Density distribution on single and reference grids, nt = 100. 139
Figure 5.55 Density distribution on single and overset Cartesian grids, nt = 100. . 139
Figure 5.56 Pressure distribution on single and reference girds, nt = 100. 140
Figure 5.57 Pressure distribution on single and overset Cartesian girds, nt = 100. 140
Figure 5.58 Overset reconstruction error of flow properties. Outer loop: overset

grid. Inner loop: reference grid. 141
Figure 5.59 Computational domain of moving overset supersonic tube. 142
Figure 5.60 Computational domain discretization at initial position t = 0. 143
Figure 5.61 Unsteady density distribution of supersonic moving wedge at Mach 2,

grid resolution 1260× 160/ 120× 80 at different time steps. 144
Figure 5.62 Overset grids trajectories for three wedges, aligned initially at x = 0. 145
Figure 5.63 Trajectory and corresponding velocity profiles for the three moving

wedges . 146
Figure 5.64 Computational overset domain at t = 0. 147
Figure 5.65 Unsteady density distribution of an accelerated three wedges. 148
Figure 5.65 Unsteady density distribution of an accelerated three wedges. 149
Figure A.1 Hierarchical grid element definition. 168
Figure A.2 UML diagram of the developed code 169

xix

LIST OF SYMBOLS AND ACRONYMS

ALE Arbitrary Lagrangian Eulerian
AMR Adaptive Mesh Refinement
API Application Programming Interface
BC Boundary Condition
BI Body Intercept
BLI Bi-Linear Interpolation
CFD Computational Fluid Dynamics
DDF Discrete Delta Function
DIM Diffused Interface Method
ENO Essentially Non-Oscillatory
FC Face Cell
FCC Fresh Cleared Cells
FIC Fluid Interface Cell
FSI Fluid Structure Interaction
GC Ghost Cell
GCL Geometric Conservation Laws
HPC High Performance Computing
IBM Immersed Boundary Method
IBVP Initial Boundary Value Problem
IC Interface Cell
IDW Inverse Distance Weighting
IIC Intersected Interface Cell
IOC Interface Outside Cell
LSI Least Square Interpolation
MUSCL Monotone Upstream-Centered Scheme for Conservation Laws
NIIC Non-Intersected Interface Cell
OC Outer Cell
PDE Partial Differential Equation
RBF Radial Basis Function
SIM Sharp Interface Method
SLS Space Launch System
TLI Tri-Linear Interpolation
TVD Total Variance Diminishing

xx

UML Unified Modeling Language
WENO Weighted Essentially Non-Oscillatory

xxi

LIST OF APPENDICES

Appendix A Algorithm Implementation . 167

1

CHAPTER 1 INTRODUCTION

1.1 Context

Numerical simulation of unsteady compressible flow fields past moving geometries with ad-
equate cost and accuracy is a highly demanding problem. The difficulties confronting nu-
merical approaches are often linked to flow complexities (shockwaves, wakes, separated flow,
dynamic stall, etc.) and/or geometric complexities (thin bodies, body proximity in relatively
small tolerances, complex shapes, moving bodies, etc.).

Numerous applications illustrate these complexities and the importance of numerical simu-
lations to solve these kinds of problems. The store separation from aircraft is an example.
This could be any payload released or separated from the aircraft during its flight (e.g., a
drop tank, an unmanned areal vehicle, flares, etc.), as illustrated in Fig. 1.1. The difficulty
of the separation procedure resides on the complexity of the flowfield surrounding the store,
especially as it is exposed to a high flow speed, near the supersonic regime with shockwaves
and high dynamic pressures. In addition, the non-uniformity of the flow around the store
and its interaction with shockwaves may lead to an abrupt change in the store’s attitude
after separation, which in turn may cause post-separation hazards.

The integration of Computational Fluid Dynamics (CFD) with flight tests and experimen-
tal wind tunnel tests has proved a cost effective and time management complement. The
interaction between these three approaches, Fig. 1.2, illustrates the importance of the CFD
approach to investigate unsteady aerodynamic compressible flow problems with bodies in
relative motion.

Figure 1.1 The Gripen E aircraft performing the separation test of the drop fuel tank [1].

2

Figure 1.2 Interaction between the different approaches used for testing and assessment of
store separation [2].

With CFD as a complementary pivot approach, the present research introduces a numerical
tool to simulate 2D unsteady compressible inviscid flows over moving bodies. This tool is
based on the integration of the Immersed Boundary Method (IBM) and overset grids, as
a step toward the development of an optimized and functional numerical tool in terms of
precision and complexity to perform the simulation.

1.2 Numerical treatment of unsteady compressible flows with bodies in relative
motion

This section reviews different numerical techniques used to solve unsteady compressible flows
with boundaries in relative motion. First, the body-fitted numerical approaches will be
discussed, namely, the dynamic meshes, the overset grids, and the Cartesian grid method.

1.2.1 Dynamic meshes

In this approach, the computational domain is discretized into a single or multiple zones,
where the grid connectivity is updated with the boundary motion. The movement of the
boundary inside the grid is treated by adapting the mesh every time step. This grid update
is carried out by different techniques:

• Complete global re-meshing of the computational domain.

• Local refining/coarsening of the mesh cells within applying certain quality criteria.

3

Both techniques have demonstrated good results for 2D and 3D configurations [3, 17, 18], as
illustrated in Fig. 1.3.

(a) (a) Hypersonic domain using triangular
mesh cells.

(b) Contours of Mach number and pressure
coefficient.

Figure 1.3 Tetrahedral computational domain and simulation contours of rocket booster
separation using dynamic meshes [3].

The adaptive meshing is also implemented with a Cartesian grid discretization, as shown in
Fig. 1.4. This approach has been applied to simulate the separation of solid rocket boosters
from an Space Launch System (SLS) problem [4].

Figure 1.4 Adaptive Cartesian grid with static pressure contours for the simulation of a Space
Launch System [4].

Another industrial applications dealing with complex internal flows, is the flow inside high
voltage circuit breakers used in electrical power stations. These involve multi-physics in-
teraction of high speed compressible flow of plasma, and combined various energy exchange

4

phenomena such as thermal radiation. The cross-section view of a simplified circuit breaker is
illustrated in Fig. 1.5, where the moving and non-moving parts are indicated. A compressible
flow simulation is conducted [5] to simulate the airflow through the chamber of the circuit
breaker.

Figure 1.5 Cross-section view of a simplified circuit breaker, indicating different stationary
and moving parts [5].

Additional examples of dynamic mesh flow simulations with moving bodies are the compress-
ible flow simulation of pneumatic relief valves [6, 19], shown in Fig. 1.6 respectively.

Figure 1.6 Cross-section view of the relief valve, with contours of Mach number and pres-
sure [6].

5

1.2.2 Overset grids

The approach of overset grids or Chimera grids [20] generally relies on overlapping grids to
decompose the domain of interest, where the interpolation accomplishes the communication
between overlapping grids within the overlapped layer. This approach allows the motion of
the grids relative to each other while the topology of each grid remains constant, avoiding the
process of re-meshing at each time step. The communication between the overlapping grids
and the treatment of the data transfer between grids is known as "grid assembly," whereby
a procedure of hole creation is applied to remove the cells containing the solid boundary
from the background grid. This approach was first proposed by [20] and applied to store
separation simulations at compressible flow conditions [21–27].

The implementation of structured overset grids makes grid generation easier, in addition
to its definitive advantage for moving boundaries configurations. Hence, it is adopted to
simulate a Space Launch System (SLS) during payload separation [7, 28, 29]. Structured
overset grids were also implemented to investigate a space shuttle accident [7] caused by
foam debris; whereby the debris trajectories that hit the leading edge of the space shuttle
wing were simulated, as shown in Fig. 1.7.

(a) Overset grids for SLS simulation (b) Debris trajectory

Figure 1.7 Overset grids for debris tracking simulation [7].

Other applications of the overset grids to simulate aerodynamic problems with moving bound-
aries include flows over flaps and leading-edge slats [8, 26], Fig. 1.8.

The extension of the unstructured overset approach makes the grid generation process more
flexible, but complicates the solver and increases the computational effort [27].

6

Figure 1.8 Overset grids for flow simulation over the 30P30N airfoil [8].

1.2.3 Cartesian grid approach (Cut-cell approach)

The Cartesian grid approach was first introduced by [30] and consists of submerging the
geometry in a Cartesian grid. Local grid refinement is then performed after the identification
of the immersed boundary inside the grid, and applying a cut-cell procedure to adapt the cells
to the boundary. Generally speaking, it can be considered as a non-traditional body-fitted
approach, that accelerates the meshing procedure, and leads to more efficient computations.
This approach is characterized by its cost effectiveness, resulting from the effort related to
grid generation [31–37].

1.2.4 Numerical treatments conclusion

From the review of the previous numerical approaches, the advantages can be summarized
as:

• The Cartesian grid approach is helpful in order to facilitate grid generation, where
grids over complex geometries can be generated more easily than traditional body-
fitted approaches.

• Overset grids eliminate the re-gridding at every time step during the simulation, which
reduces the computational cost compared to dynamic meshes.

• Relying on structured grids will make the computational cost more efficient in terms
of data structure handling.

7

The analysis of these advantages leads to propose a non-body fitted approach that supports
the solution for two-dimensional compressible inviscid flows over stationary and moving bod-
ies. It is based on the integration of the Immersed Boundary Method with overset grids.

1.3 The Immersed Boundary Method

The Immersed Boundary Method (IBM) is a methodology introduced by Peskin [38] to over-
come the burden of generating body-fitted grids. Primarily introduced to simulate the blood
flow in heart artery, the methodology was extended to cover multiple Fluid Structure Interac-
tion (FSI) applications. In this approach, the boundary is represented by a set of Lagrangian
points immersed in an Eulerian grid, 1.9. The Eulerian grid lines do not necessarily conform
to the body contour, unlike the body-fitted approaches.

This non-body-fitted methodology has high potential because of its capability to deal with
complex shapes efficiently. In order to solve an IBM-based problem, the immersed boundary
is supposed to enclose a face that represents the computational domain. The immersed
boundary location within the grid is identified via a tagging procedure, which is performed
to separate the computational Eulerian nodes into two types, inside and outside the face. A
detailed discussion about the different types of cell tagging will be presented in Chapter 2.
A typical illustration of different cell types used in the IBM is illustrated in Fig. 1.9. The
nodes adjacent to the immersed boundary are treated differently; they have been identified
as interface interior cells if the cell lies inside the face or outside interface cell if the cell lies
outside the face.

Moreover, benefiting from Cartesian grids, adaptive grid refinement can be achieved by using
hierarchical grids (quad-tree) to control the grid resolution in the vicinity of the boundary
for better resolution to describe the immersed boundary.

8

Figure 1.9 Classification of cells resulting from tagging procedure.

The difference between body-fitted methodologies and the IBM approach is the way the
boundary conditions are applied. Since the IBM is a non-body-fitted approach, these are
applied by reconstructing the solution from the geometric boundary to the nearest cell,
called the interface cell. This characteristic makes the reconstruction scheme used in such
a methodology critical for the accuracy of the results. After reconstructing the boundary
conditions to the interface cells, the solution is resolved to the entire domain through a
solver.

The IBM has been developed and applied to numerous applications that span compressible
and incompressible flows with stationary or moving boundaries. A detailed review will be
presented in the next chapter.

1.4 Objectives of the present work

The present research’s principal goal is to develop an IBM algorithm integrated with hierarchical-
overset grids to simulate unsteady aerodynamic inviscid compressible flows over 2D bodies
in relative motion. The detailed objectives are as follows;

1. Development of a robust and efficient tagging approach for the geometry representation.

2. Development of a hierarchical grid generator based on curvature and proximity for the
adaptation of the grid to complex geometry and complex flows.

3. Integration of the hierarchical grid to an Overset grid strategy to introduce the body
motion.

9

4. Implementation of a robust reconstruction scheme for the application of boundary
conditions.

A set of hypotheses are considered for the research problem:

• The flow viscosity effect is neglected so that Euler’s equations are employed to model
the flow.

• The moving of bodies always remains within the computational domain.

• Only translation movement will be implemented in the present work.

1.5 Research originality

The originality of the present work comes from different aspects :

• An original and efficient tagging approach that does not require looping over the entire
domain to localize the immersed boundary to reduce the computational cost. This
approach loops only over the boundary segments to identify the intersected cells. This
is in contrast to the double loop on all cells and all boundary segments needed with
the Ray-Tracing approach. So the proposed approach has an order of complexity lower
than the Ray-Tracing.

• A robust reconstruction scheme based on an implicit least-square reconstruction scheme
that allows reconstructing the boundary conditions of inviscid compressible flow-based
problems efficiently.

• The integration of a two-dimensional IBM approach with the Overset-hierarchical grids
to treat bodies in motion in compressible flows.

To the author’s best knowledge, generally, the proposed integration of hierarchical-overlapping
grids with an IBM scheme has not been reported to solve compressible flows yet.

1.6 Thesis structure

This document is organized into five chapters as follows:

• Chapter 1: This chapter presents the research context, the field of study, the problem
definition, and how previous researchers treat this problem. Finally, the proposed
strategy is presented, with the research objectives, originality, and thesis structure.

10

• Chapter 2: The literature on the proposed methodology is reviewed, and the progress
achieved on each element of the proposed methodology is discussed. This chapter
answers the questions: Why the proposed methodology is adopted? What is the state
of the art of the field? How will the proposed methodology fill the gap between the
elements?

• Chapter 3: This chapter presents the first part of the methodology, which includes:

– The generation of hierarchical grids, the numbering scheme of quadtree meshes,
neighbor localization, and grid balance.

– The development of a tagging approach, the employment of tagging to apply local
grid refinements using the hierarchical grid algorithm, the definition of refinement
criteria and other grid control tools.

– The integration of the developed algorithm with an overset strategy in mind and
the generalization of data structure between the different components.

• Chapter 4: This chapter is the second part of the methodology and presents the
development of a fluid solver based on Roe’s scheme, the reconstruction scheme based
on an implicit averaged least-square approach to apply boundary conditions. Next,
the different types of boundary conditions for Euler equations are presented, and how
there are treated by the reconstruction scheme. Finally, the introduction of moving grid
terms in the Euler equations by means of the Arbitrary Lagrangian Eulerian (ALE)
approach, to link the overset grid module to the solver.

• Chapter 5: This chapter presents the computer programming of the proposed method-
ology (class architecture), as well as the verification test cases conducted to verify and
assess the order of accuracy of the proposed methodology. The results of the test cases
are then presented and discussed.

• Chapter 6: It concludes the findings of the research project, the gains, the limitations
and proposes future work opportunities.

11

CHAPTER 2 LITERATURE REVIEW

In the literature, there is a large body of studies and researches in diverse topics of aerody-
namics using the IBM in different applications and different flow conditions. This review will
focus on the application of IBM to compressible flows with moving boundaries.

2.1 Background of the Immersed Boundary Method

The IBM is categorized into two types according to the application of the boundary condi-
tions: the Diffused Interface Method (DIM) and the Sharp Interface Method (SIM), as shown
in Fig.2.1.

Figure 2.1 IBM Classification.

2.1.1 Diffused Interface Method (DIM)

The DIM, a.k.a continuous forcing approach, accounts for the immersed boundary by a
fictitious force or a penalization term that simulates the presence of the boundary on the
background grid. In this methodology, introduced by Peskin [38], the boundary is smeared
on the background grid nodes and not sharply identified. The representation of an elastic
boundary is described by an external force field applied in the flow equations solved at the
Eulerian grid points. The structure elasticity was modeled by mass-less Lagrangian points
interconnected together by spring forces, with predefined stiffnesses. The connection between

12

the flow and the structured discretization was made via a Discrete Delta Function (DDF),
in such a way that the fluid velocity on the Eulerian background grid is interpolated to the
Lagrangian boundary nodes, and the momentum is then forced from the boundary node to
the nearest cells on the background Eulerian grid. Further developments were made by Kim
and Peskin [39] to apply to a rigid body by considering the connection between Lagrangian
points as springs with large stiffness. However, this did not result in a good behavior in the
rigid limit for complex geometries [40], and drove the material stiffness representation to be
considered as an ad hoc crucial parameter [41].

A feedback-continuous forcing approach has been presented by Goldstein et al. [42], based on
the correction of the flow velocity to satisfy the boundary condition via a large set of adjusting
parameters. This imposes another constraint to this approach, in addition to its considerable
restriction for the time step size [43]. Applying that method to rigid boundaries has shown
some shortcomings in computations [44] to simulate compressible flow over a cylinder. This
was corrected by Qiu et al. [45]. Another shortcoming of the diffused interface approach was
reported by Edwards et al. [46], which faced challenges for the simulations of rigid moving
boundaries.

Most of the applications of the continuous forcing approach were applied in biological ap-
plications [38, 47–50], elastic boundary and multi-phase flows [44, 51], or porous medium
simulations as in [52]. So that, this method is not commonly recommended for the applica-
tion on rigid boundaries [43].

2.1.2 Sharp Interface Method (SIM)

The SIM, introduced by Mohd-Yusof [53], removed the time step constraint posed by the
diffused interface method. This approach was initially applied for stationary boundaries and,
often, to efficiently span stationary/moving and rigid/elastic boundaries [9]. In this method,
also known as the discrete forcing approach, the boundary is sharply described, where the
boundary condition is directly imposed. The flow variables are then reconstructed in the
nearby cells using an interpolation scheme without relying on the formulation of material
stiffness. This approach is globally seen as a local reconstruction approach that satisfies
the boundary condition without momentum forcing [54]. The interpolation stencil in such a
method uses the Eulerian grid in the vicinity of the immersed boundary. If a point adjacent
to the immersed boundary lies in the fluid zone, it will be called Fluid Interface Cell (FIC),
and if it lies in the solid zone, it will be called Ghost Cell (GC), as illustrated in Fig. 2.2. The
flow variables are reconstructed on these points such that the boundary condition is exactly
satisfied at the immersed boundary.

13

(a) Ghost-Cell approach. (b) Immersed Interface approach.

Figure 2.2 Boundary condition reconstruction with Sharp Interface Method (SIM) [9].

So, depending on the way the interface points are considered as the unknown for the recon-
struction stencil, the SIM can be further classified into :

• Ghost-Cell Approach: The solution is extrapolated to the solid ghost cell via the normal
vector that passes through the ghost cell center toward the point of intersection of the
normal vector with the boundary interface, named the Body Intercept (BI) point, as
shown in Fig. 2.2a. The normal vector in this approach is based on the known surface
information.

• Immersed Interface Approach: The solution is reconstructed directly at the fluid inter-
face cell, relying only on the fluid neighbors and solid boundary information, as shown
in Fig. 2.2b.

This classification is illustrated in Fig. 2.1. Several classifications were found to categorize
the sharp interface method. Ones include the cut-cell approach as a descendant from the
sharp interface method, such as Mittal et al. [40] and Sotiropoulos et al. [55]. Nevertheless,
without loss of generality, the IBM is essentially a non-body-fitted approach, which leads to
easily exclude the cut-cell from this classification. This perspective is similar to Yang’s [41].

2.2 Eulerian mesh

The IBM has moved the difficulties related to grid generation to the tagging process. The
generation of body-fitted mesh, especially with complex geometries, requires more robust

14

meshing algorithms and more complex programming [41]. Classically, the solution on a
Cartesian grid removes these constraints. However, it has some difficulties when dealing
with steep curvature geometries or high gradients flows [56]. In order to fit these geometric
and physical gradients, the corresponding fine grid resolution would be propagated to the
entire computational domain, which in turn drives this refinement methodology inefficient.
Furthermore, Peskin and McQueen [57] observed during applying a uniform Cartesian grid
to their simulation that the order of convergence of the cells adjacent to the boundary was
of first order, while the numerical order of convergence of the entire remaining domain cells
was second order. These observations spur the essential consideration of a local refinement
near the boundary to engender more grid points to capture the geometric and physical steep
variations.

Numerous local grid refinement techniques have been proposed to describe the sharp interface
better, enhancing the methodology’s global accuracy. The reviewed approaches for local grid
refinement are Adaptive Mesh Refinement (AMR), non-uniform Cartesian grid refinement,
and unstructured grid refinement.

2.2.1 Adaptive Mesh Refinement (AMR)

The first implementation of an adaptive grid methodology in the context of IBM was made by
Roma et al. [58], who employed a two-dimensional hierarchical adaptive grid refinement near
the boundary. Thereafter, this AMR approach was widely adopted by several researchers to
adapt the mesh resolution near the immersed boundary locally [11,15,49,58–83].

Basically, the AMR is based on the successive and nested subdivision of each cell to quadrants
(2D) or octants (3D), such that the parent cell is divided into four/eight siblings or sub-cells.
Each subdivision occurs in a given level that describe the generation of the new siblings; this
nested subdivision process takes place until fulfilling prescribed refinement criteria, which is
often linked to a geometric feature (e.g., boundary curvature, proximity to another boundary,
user-defined level, ...etc.) and/or physical feature (e.g., gradients, location of shock-wave,
...etc.) [84]. Fig. 2.3 illustrates the discretization in the quadtree, and its corresponding
generated grid.

The wide use of the AMR promotes the integration of multiple grid levels, such that each
refined level could be considered a Cartesian grid with a prescribed resolution, and hence
several grids with several levels could be distributed over processor nodes, which could result
in faster computations [82]. Furthermore, this progress allows efficient end-user libraries that
handle the data passage through the hierarchical tree, such as AMReX [85], BoxLib [86], and
Chombo library [87].

15

Figure 2.3 Illustration of quadtree levels representation [10].

Another similar approach to the hierarchical local grid adaptation was introduced by [88] and
employed by [61,64,73], called the iblanking approach. This approach is the reverted version
of the conventional hierarchical refinement procedure. In other words, it is a hierarchical
coarsening procedure, the initial grid is the finer grid, and instead of applying refinement
criteria, a coarsening criteria is applied to coarsen the computational domain moving away
from the boundary.

The approaches mentioned above (hierarchical refinement/coarsening) generate at each level
of refinement/coarsening the same number of siblings with the same aspect ratio, i.e., all
subdivisions are equal in all directions (isotropic subdivision) of quadrants or octants. Wang
et al. [59] introduced an anisotropic hierarchical grid refinement approach to simulate the flow
field over F-16 aircraft. This approach is a 2N tree-based approach that supports directional
grid adaptation, where N is the dimension of directional coordinate. This approach can
attain the same mesh resolution with fewer cell counts compared to the isotropic hierarchical
scheme. As an example, a comparison between the number of cells generated by an isotropic
versus an anisotropic grid generator for the same resolution parameters [59] results in 559, 938
versus 87, 046 cells.

The work of Wang [59] is a body-fitted application for the anisotropic hierarchical local re-
finement, but this methodology was extended and implemented for the IBM local refinement.
de Tullio et al. [11] implemented an anisotropic grid to simulate viscous compressible flow
over a sphere, shown in Fig. 2.4. This implementation was extended by De Marinis et al.
by applying the anisotropic local refinement to the IBM to solve a conjugate heat transfer
problem. Moreover, Tran [73] developed a ghost-cell-based IBM with anisotropic local grid
refinement that holds both refinement and coarsening features. This was achieved by patch-
ing the refined siblings over the parents so that the parents’ information was always stored

16

and linked to the siblings.

(a) The immersed boundary. (b) The immersed boundary
and the wake.

(c) The immersed boundary,
the wake, and the shock.

Figure 2.4 Local anisotropic grid refinement [11].

2.2.2 Non-uniform Cartesian grid refinement

Many researchers adopted the non-uniform structured/Cartesian grids to localize the grid
resolution near the immersed boundary [12, 45, 56, 89–92]. It uses a concentration function
that redistributes the density of grid nodes in a given direction. This is illustrated in Fig. 2.5,
a non-uniform Cartesian grid used by De Palma et al. [12] for the solution of Navier Stokes
equations to solve both steady and unsteady flows past cylinders and NACA0012 profile in a
compressible flow. Unfortunately, no valuable details about the non-uniform grid refinement
were reported by the IBM researchers.

2.2.3 Unstructured grid refinement

An additional approach to control the grid resolution locally is the use of an unstructured
grid. Despite its capability to fit complex geometry, few publications reported using an
unstructured grid with IBM [13, 93–95], Fig. 2.6. The use of unstructured grids for very
complex cases impacts the cost of the computations, which is remarkably reported by [13,
95]. Their computational cost was comparably similar to their corresponding body-fitted

17

Figure 2.5 Local non-uniform grid refinement [12].

unstructured cases.

2.3 Tagging

Since the sharp interface is suitable for simulating rigid bodies, the Eulerian grid cells clas-
sification becomes a necessary process called "Tagging." This process links the grid to the
immersed boundary, often not aligned with the grid lines.

Different tagging approaches have been developed: the Ray Tracing approach, the Level Set
(signed-distance), and the explicit minimum distance approach.

Regardless of the type of tagging approach, the outcome of the tagging process is the grid
cell type, which is generally classified into fluid cells or solid cells. The solid cells adjacent
to the boundary are classified as solid interface cells or "Ghost cells." Those adjacent to
the fluid domain are then classified as fluid interface cells. This process is carried out in
conjunction with the representation of the geometric boundary by a set of Lagrangian markers
generated by the discretization of the boundary. In addition, the tagging process can deliver
additional information along with the classification of the cells, such as the normal vector at
the boundary segments, the intersection points between the boundary and the Eulerian grid,
the intersection of the normal vector connecting the ghost cells with the boundary, as well

18

Figure 2.6 Unstructured grid refinement for IBM with the contours of density distribution
over a wedge [13].

as the distance from the nearest fluid cell to the boundary.

2.3.1 The Ray Tracing approach

Several researchers adopted the Ray Tracing approach [11, 12, 14, 15, 62, 74, 78, 90, 91, 96–
100], which is fundamentally based on the work of reference [101]. This approach casts
a half-infinite ray from a given point (e.g., the cell center) in a specific direction (e.g., x-
direction). The status of the cell, whether it is a fluid or solid, is determined by the number of
intersections (even or odd respectively) encountered by this ray with the immersed boundary.

The number of intersections indicates how many times the ray penetrates different phases,
as shown in Fig. 2.7. Starting with the ray launched from cell (A), which lies inside the
fluid boundary, the ray encounters an even number of intersections, which means that the
cell belongs to the fluid zone. Conversely, the ray launched from cell (B) encounters an odd
number of intersections, which implies that the ray remains in the same phase so that cell
(B) is solid.

The extension to three-dimensional applications was performed on simple geometries. Com-
pressible flow over a sphere [11,15,62,78,90,96], compressible flows over cylinders [15,78,90],
while other investigations were applied to compressible flows over wings [62, 78, 90]. The

19

Figure 2.7 Illustration of ray tracing the concept [14].

performance of this algorithm is acceptable as long as the geometry is not complicated. The
ray-tracing algorithm fails with complex geometries, and this issue was recovered by launch-
ing several random rays in different directions to assure an appropriate tagging procedure,
which makes the computational cost high [96].

2.3.2 The Level Set approach

Another tagging approach is the Level Set approach. Osher and Sethian introduced this
approach [102] which many subsequently adopted for the IBM application [15, 46, 71, 72, 77,
82, 98, 103–109]. This approach is basically for tracking propagating interfaces and adopted
to tag the rigid and flexible immersed boundaries.

A boundary Γ is assigned as the zero level of a signed function φ that will always match the
boundary with its evolution with time.

φ(x(t), y(t), t) = 0

The zero level value identifies the boundary location at any time t such that:

Γ(t) = {x, y : φ(x, y, t) = 0}

This identification procedure partitions the boundary interface’s computational domain into

20

fluid and solid zones. Each zone type corresponds to a sign of the level set function φ, e.g.
φ > 0 assigns the solid zone while φ < 0 assigns the fluid zone, Fig. 2.8.

Figure 2.8 Illustration of Level Set function [15].

The usage of a Level Set function with simple geometries allows the implicit representation
of the Level Set function. However, with more complex geometries, where the analytical
representation is no longer achievable, the representation of the Level Set function is acquired
numerically with a conjunction of other approaches, like Ray Tracing [15,98].

2.3.3 The explicit minimum distance approach

A simple way to perform tagging presented by Luo et al. [80, 110] is the explicit minimum
distance approach. After immersing an oriented boundary, a cross product is performed
between the two vectors connecting the boundary segment to each cell center, a directional
sign divides the computational domain into fluid and solid sub-domains, i.e., positive cross
product means the cell center is inside, otherwise the cell center is located outside. A typical
illustration of the methodology is shown in Fig. 2.9.

In order to decide whether the boundary intercepts a cell or not, the shortest distance between
the cell center and the boundary points is evaluated; if it is less than the grid size, then the cell
is intercepted. Further verification is made by checking the neighbors next to the intercepted
cell to ensure that the cell has an incomplete stencil.

Despite the simplicity and the straightforward implementation of this approach, it is limited
and valid only for regularly shaped objects, i.e., wholly convex or concave, not a mixture of

21

Figure 2.9 Illustration of explicit tagging.

both [80]. In addition, it necessitates looping over the entire grid cells to perform the tagging,
which could be quite costly in high-resolution grids [43].

After reviewing different tagging approaches, the present work will propose a robust tagging
approach to overcome the overhead cost and shortcomings of the presented methodologies.
The proposed algorithm does not require to loop over the entire grid to identify the location of
the immersed boundary; instead, it loops over the geometric boundary. A detailed discussion
about this approach will be presented in Chapter 3.

2.4 Reconstruction schemes

The sharp interface method [53] is essentially formulated on the reconstruction of the flow
variables at the Image Point (for the case of ghost cell approach) or the Interface Fluid Point
(for the case of immersed interface approach) using an interpolation stencil composed from
the surrounding fluid nodes and/or boundary nodes.

In that sense, various reconstruction schemes have been associated with IBM, such as the
linear interpolation, implemented by [12,83,99]. Reconstruction by linear interpolation is ac-
ceptable with high grid resolution or for laminar flows. However, linear interpolation for high
Reynolds number flows can lead to inaccurate prediction without adequate grid resolution,
i.e., the grid resolution near the boundary has to be considerably fine [111]. An extension to
the linear interpolation is the Bi-Linear Interpolation (BLI)/Tri-Linear Interpolation (TLI)
schemes for 2D/3D interpolation. For the application for compressible flows, the BLI has
been implemented by numerous authors [14,52,71,72,77,80,89,90,92,104,106,110].

22

The Inverse Distance Weighting (IDW) scheme was also adopted by [11, 15, 41, 78, 96, 97,
108], and it is recommended for low Reynolds number due to its smooth behavior for that
regime [112].

The moving/weighted/constrained least square is an extension to the least-square interpo-
lation that is carried out for the IBM application by [14, 60, 92, 100, 107, 113]. The moving
least-square enables the formulation of higher-order polynomials with flexible interpolation
stencils; the variable order in interpolation stencil aims to prevent the system from being
ill-conditioned. However, using high-order polynomials for interpolation could be a source of
oscillatory behavior in the solution [15].

He et al. [112] invoked a Power Law interpolant to simulate 2D viscous compressible flow over
NACA0012 airfoil and a wedge. Another interpolation scheme has been proposed, the Radial
Basis Function (RBF), implemented by Liu et al. [91] to simulate viscous compressible flow
problems. A reconstruction stencil of an interface cell is illustrated in Fig. 2.10, where the
information is reconstructed from the fluid side and boundary conditions points.

Figure 2.10 Reconstruction stencil of an interface cell based on three fluid cells and two
boundary condition points.

23

2.5 IBM with moving boundaries

For a stationary immersed boundary, the computational domain is divided into two zones,
fluid and solid, through the immersed boundary. When a boundary moves across the Eulerian
grid, a given cell can lie in a different zone, i.e., a fluid cell emerges in the solid zone, or
vice-versa, a solid cell emerges in the fluid zone. These fresh newborn cells, called Fresh
Cleared Cells (FCC) do not have a previous physical state, and it was reported [54, 114]
that the FCCs are the reason for spurious oscillations that appear in the solution of moving
boundary problems. These result from the spatial and temporal discontinuity caused by the
appearance of such FCC.

To introduce boundary motion with the IBM, the tagging should be performed for each time
step to locate the boundary position and re-identify the cell types. This re-tagging process
is optimized by Mo et al. [108], trying to localize the re-tagging procedure by predicting the
time step needed to repeat the tagging.

In order to keep a smooth solution during motion nearby the boundary interface, particular
techniques are required for the FCC treatment. The field extension approach by Yang and
Balaras [115] and direct reconstruction by Udaykumar et al. [114] are proposed to treat the
spurious oscillations caused by the FCC. Another body-fitted approach was also introduced
by Udaykumar et al. [116] but applied to the cut-cell approach, called the cell merging
approach. It aims to merge the FCC with the nearest fluid cell.

2.5.1 Field Extension approach

The Field Extension was named due to the extension performed to the flowfield variables
into the solid body to treat the FCC issue. In Fig. 2.11, the boundary is retracted to the left
from time tn to time tn+1, and this leads to the appearance of a new cell (i− 1) as which was
a Ghost Cell and becomes a Fluid Interface Cell. At time tn+1 the cell (i− 1) is designated
as an FCC with no previous history in the fluid domain. The field extension procedure is
then applied to the flow variables at time tn to the cell (i− 1) in the following sequence:

1. At the time tn tagging is performed, the cell (i− 1) is flagged as GC.

2. The flow variables for the cell (i−1) are reconstructed using the fluid nodes at time tn.

3. The reconstructed solution of the cell (i− 1) is then extrapolated to the cell (i− 1).

4. At time tn+1, the value of the flow variables for the cell (i − 1) at time (tn) are incor-
porated as previous "known" values.

24

5. Advancement in time stepping is performed and the procedure is repeated.

Figure 2.11 Field Extension Approach for FCC Treatment.

2.5.2 Direct reconstruction approach

The direct interpolation approach is similar to the scheme used for body-fitted moving grid
methods. As shown in Fig. 2.12 for a retracted boundary to the left, the treatment of the
cell (i− 1) at time tn+1 is directly achieved by the reconstruction of the flow variables at the
new time tn+1 based on the physical state at the boundary φn+1

B and the computed values at
cell (i) φn+1

i , such that:

φn+1
i−1 = δαφ

n+1
i + δβφ

n+1
B

δα + δβ

Both approaches reduce the spurious oscillations [114], following non-body-fitted approaches.
In the present work, the direct interpolation approach will be used to integrate the moving
overset grids with the proposed IBM. This approach is the strategy to transfer the information
between the overlapped grids during the grids assembly process.

2.5.3 Overset grids

Dealing with a moving boundary requires re-examining and re-visit every building element
of the IB methodology, i.e., meshing, tagging, and reconstruction. Further, each of these
processes has to be repeated at each time step. Moreover, the time marching may constraint
the usage of some of these elements. For example, the explicit tagging approach applied to

25

Figure 2.12 Direct Interpolation Approach for FCC Treatment.

moving boundaries is limited to a time step that does not exceed one grid per time step;
otherwise, the tagging approach will fail to detect the boundary [80].

Generally, the process of re-meshing and/or re-tagging for each time step increase the compu-
tational cost, in addition to the reconstruction of the FCC. In order to reduce this, Borazjani
et al. [16] used a hybrid IBM/body-fitted overset approach for incompressible biological appli-
cation. This application was a body-fitted-like approach, where a curvilinear grid to enclose
the boundary is used, as shown in Fig. 2.13. Another hybrid-IBM approach was presented
that embodied the IB with the overset method [117, 118]; the integration was performed by
using a body-fitted grid to describe the boundary interface; this grid is then overlapped with
a Cartesian grid, where the communication between the two grids was performed via the
interpolation between the two grids through a band of overlapping cells.

This type of integration permits a reduction of the computational cost of re-meshing. In
addition, the interpolation is not made adjacent to the boundary, which reduces the influence
of interpolation errors. This integration is accomplished by constraining the motion of the
overset grid to one cell per time step.

2.6 Critical literature

The review of previous research progress in the IBM application for compressible flow opened
new insights for the current project. A critical analysis has led to objective choices for some
building blocks for the algorithm, and summarized as follows:

• IB method: The Immersed Interface Approach/Sharp Interface Method is suitable

26

Figure 2.13 Overset grids around a mackerel, the geometry is descretized by a body-fitted
tetrahedral elements [16].

for describing a physical non-diffusive geometry description. It is more convenient to
use than the ghost cell approach, especially for the cases of compressible flow with
discontinuities (shock waves), where the solution is not extrapolated at the ghost cell;
the reconstructions are always made from the fluid side.

• Tagging: The reviewed tagging approaches are based on looping over the entire domain
to localize the immersed boundary; this observation leaves some room to contribute
with a new tagging methodology that relies on the geometry marching to reduce the
computational effort.

• Grid adaptation: The hierarchical grid refinement is chosen to refine the Eulerian
grid locally. This choice is based on its wide application with IBM, with its solid
foundation and robustness.

• Reconstruction scheme: The bi-linear and IDW are the most used approaches for
the IBM application. These explicit approaches are constrained to an ill-conditioned
reconstruction system with insufficient information for the reconstruction. While, the
Least-square reconstruction comes in the third place, it can be emphasized to evaluate
a new robust spatial implicit version to reconstruct the BC information, where all the
reconstructed cells will be coupled by the implicit system that will add more information
to the system to avoid the ill-conditioned constraint.

27

• Boundary motion: To treat boundary motion efficiently, the overset approach is pro-
posed to describe the body motion. This approach eliminates the re-tagging procedure
at each time step.

To our best knowledge, no fully IBM approach was integrated with the overset method to
introduce the boundary motion. This led to the decision to go through this idea to explore
and exploit this strategy through the present work.

28

CHAPTER 3 HIERARCHICAL GRID GENERATION - OVERSET GRID
AND TAGGING

Based on the literature review, the development of an IBM-based algorithm consist of inte-
grating several building blocks: Geometry/Discrete topology, hierarchical grid definition and
management, mesh tagging, overset tagging, grid refinement criteria, solution reconstruction,
and the flow solver.

The structure of this chapter consists of seven sections. Section 3.1 addresses the different
nature of the overall development, the fundamental functionality, and their integration into
an overall code. Sections 3.2-3.7 tackle in detail the methodologies proposed to develop the
first five building blocks (Geometry/Discrete topology, hierarchical grid, mesh tagging, over-
set tagging, and refinement criteria/grid controls). Reconstruction and flow solver building
blocks are discussed in Chapter 4.

3.1 Global methodology

The proposed methodology defines each necessary building block for the development of the
IBM code. It consists of seven main building blocks as listed:

• Geometry/Discrete topology

• Hierarchical grid

• Mesh tagging

• Overset grid

• Grid refinement criteria

• Solution reconstruction

• Flow solver

The main tasks performed by each building block in the focus of this project are listed in the
following subsections.

29

3.1.1 Geometry/Discrete topology

This building block represents the immersed geometry by its discrete form, known as the
discrete topology. The elements of a discrete topology are defined, formatted, and exported
in a file as input to the tagging building block as the immersed boundary representation.

The list of tasks related to this building block:

• Define the basic entities of the discrete topology that represent the immersed geometry.

• Define a file format to store the discrete topology.

• Integrate the developed algorithm with the exported file format to read the discrete
topology and share its information with other building blocks.

3.1.2 Hierarchical grid

This building block manages the overlapped grids and performs the necessary operations to
adapt them according to their configurations. The tasks related to the overset grid building
block are as follows:

• Analyse and identify the hierarchical structure for the quadtree grids.

• Identify an approach for hierarchical grid connectivity (i.e., neighboring cells, cell sides,
cell vertices).

• Implement a quadtree grid generator.

• Implement a grid refinement functionality to control the grid resolution.

• Define the data structure of the generated grids.

3.1.3 Mesh tagging

This building block is responsible for geometry tagging and grid topology control. It links the
immersed geometry to the hierarchical grid generation through the tagging process, which
localizes the immersed geometry within the grid and identifies whether the grid cells are
inside or outside the geometry boundaries. The tasks related to this building block are as
follows:

• Read the topology object and recognize its entities.

30

• Read the generated grid.

• Tag the interface cells by the geometry marching technique.

• Perform face discretization to classify the different types of cells inside the computa-
tional domain.

• Verify tagging on Cartesian and hierarchical grids.

• Conform the input/output data structure with other building blocks.

3.1.4 Overset grid

This building block is responsible for managing the overlapped grids and performing the
necessary operations to adapt them according to their configurations. The tasks related to
the overset grid building block are as follows:

• Identify the overlap region between grids.

• Define the list of activated/deactivated cells on each grid.

• Generate the list of interpolated cells within the overlapped grids responsible for trans-
ferring data between those grids.

• Define and integrate the output data structure of the building block with other building
blocks.

• Verify and assess the coupling of the overset module with other modules.

3.1.5 Refinement criteria and grid controls

This building block provides an additional layer of grid control through the mesh tagging
building block. The grid controls are proposed as follows::

• Control of grid resolution through the tagging.

• Define and implement different refinement criteria based on both geometry curvature
and proximity.

• Introduce grid pre-adaptation capability.

• Export hierarchical grid elements in a vectored form.

31

3.1.6 Solution reconstruction

This building block is responsible for reconstructing the information in the interface cells.
The reconstruction building block methodology is proposed as follows:

• Develop a robust reconstruction scheme to apply boundary conditions imposed for the
flow solver.

• Generalize the reconstruction scheme to reconstruct the Overset information transferred
between overlapped grids.

• Verify the reconstruction scheme for boundary conditions and overset reconstructions.

3.1.7 Flow solver

This building block is responsible for initializing the domain with a solution and advancing
the solution in time. The main tasks related to this building block are:

• Define Euler’s boundary conditions and assess the reconstruction scheme to reconstruct
the defined boundary conditions.

• Implement Roe’s scheme to solve the flowfield.

• Implement the ALE method to introduce the grid motion to Euler’s equation.

• Conform the input/output data structure with all building blocks

• Verify and validate the developed algorithm.

3.2 Geometry/Discrete topology

The foundation of the IBM concept is to immerse a computational domain bounded by a
curve in an Eulerian grid to solve Partial Differential Equation (PDE) on the face bounded
by this curve. To treat this geometry numerically, it has to be discretized to approximate
its continuous description. This discrete form is called "TheDiscrete Topology," as shown in
Fig. 3.1.

The discrete topology consists of faces bounded by loops (curves). These are oriented in the
trigonometric sense. The enclosed surface/face corresponds to the computational domain,
that is made up of the boundary and internal nodes.

32

(a) Geometry Curve. (b) Discrete Topology.

Figure 3.1 Representation of the immersed geometry.

In the present work, these various entities are generated using GMSH open-source software,
which uses the B-rep formalism. In addition, the software has a graphical user interface, a
built-in CAD kernel, various meshing tools, and an Application Programming Interface (API)
available in multiple computer languages.

The discrete topology is represented by a set of entities to accurately represent the compu-
tational domain description and the actual geometry, as in Fig. 3.1. The employed entities
for the discrete topology representation are illustrated in Fig. 3.2 and are described in the
following part.

Points: The coordinate points that define the discrete curves are stored in two vectors (x)
and (y). The position of each point in the list is given by PointID.

A posed hypothesis is to have a PointID at the location where there is a change in BC
type at a given geometry line. As an example in Fig. 3.1a, three different types of BC (φR,
φN , φD) are imposed at arbitrary locations along the geometry curve. Following the posed
hypothesis, these locations must have three PointIDs (PointID1, PointID4, and PointID6),
as in Fig. 3.1b.

33

Lines: A list of PointID’s defines a line or a polyline, which requires a minimum of two
PointID. The position of a line/polyline in the list of lines corresponds to its LineID. The
polyline can be an open or closed path (if the first and last points refer to the same PointID).

The presence of a PointID at the location of an alternated BC, as in Fig. 3.1, permits the
imposition of the BC at its proper location. So that, BC φN is applied on the polyline
LineID3, BC φD is applied on the polyline LineID1, and BC φR is applied on the polyline
LineID2.

(a) Points of the discrete topology. (b) Lines formed by the set of points.

(c) Two loops formed by the points and lines,
inner loop is a hole.

(d) A face with a hole formed by the two
loops.

Figure 3.2 Entities of discrete topology.

34

Loops: A loop is a sequence of oriented lines/polylines. The LineID identifies the lines
defining the loop. This entity forms a closed loop, as a set of lines in a trigonometric sense.
A LineID is positive if the direction of the loop follows the natural definition of the line and
is negative if the direction of the loop follows the reverse definition of the line. Each loop
has a LoopID, which identifies its position in the list of loops. A minimum of one LineID is
required to define a loop.

Faces: A list of LoopID’s defines a face. Each face is identified by a FaceID, which defines
its position in the list of faces. A minimum of one loop per face is required to define the face.
The first loop in the list is the outer loop of the face and follows the positive trigonometric
sense. The following loops in the list define negative loops, or holes in the face, following the
negative trigonometric sense.

A discrete topology file format is proposed to store this information. The *.tdt extension
is used to store the file and stands for “Text Discrete Topology.” This file is read by the
DiscreteTopology class, which reads and stores the entities’ information in the class property
and passes this information to other classes.

The same analogy could be used with other entities to represent 3D bodies. For example, for
a 3D geometry represented by an elementary triangulation entity, two points represent a side
or a line, three sides represent an element (triangle), a set of elements represent a surface, a
set of surfaces represents a shell (loops in 2D), a set of shells represent the 3D volume.

3.3 Hierarchical grid

The Eulerian grid is represented by the hierarchical representation of quadtree grids to rep-
resent the immersed bodies accurately through hierarchical adaptation.

This approach aims to enrich an initial mesh by subdividing its elements locally into four sub-
elements for 2D. The refined initial element is called the parent cell situated at a refinement
level L0, and the newly introduced sub-elements are called siblings, which are located at a
refinement level L1, as an example of one level of refinement. The four siblings generated by
the cell refinement replace the parent cell in its four quadrants (SE, SW, NE, NW). Thus, a
uniform subdivision into quads produces symmetrically isotropic cells with successive levels
of refinement [84]. An illustration of the quadtree subdivision is shown in Fig. 3.3.

35

Figure 3.3 Quadtree representation with two levels of refinement. Refined siblings’ location
relative to the parent cell is indicated (SW, SE, NW, NE).

The depth of the tree is determined by the maximum levels of refinement in the tree, the
terminal cells resulting in every refinement are called leaves, and any non-terminal cell is
called an internal cell.

Based on the literature, hierarchical grids for IBM applications are widely used, as they
combine the simplicity of a Cartesian structure for generating the grid, with the adaptivity
of local refinement. This feature makes the hierarchical grid a suitable candidate as an
adaptive grid scheme to the immersed boundary method. Several libraries were found in
the literature that manage the hierarchical grids, such as AMRex and py4est. However,
the proposed algorithm did not employ any of these libraries. This path is drilled to have
complete control over the implemented code and help understand the details behind each
implemented module better.

The linear quad/oct trees are one of the forms that represent the hierarchical data structure
to describe the grid. Other representation schemes for quadtree are addressed in [84]. In
linear quadtree, each leaf node of a quadtree may be represented by a unique spatial address
named the location code (The node ID), and l is the node level. The way to encode or
generate the node ID comprises the spatial location and the path traversed in the tree from
root to leaf. Thus, we can find that the following characterizes the linear quadtree:

• Only the leaves are stored.

• The encoding used for each node incorporates adjacency properties in the four/eight
principal directions.

• The node representation implicitly encodes the path from the root to the node.

36

The advantages offered by linear quad/oct trees representation as discussed in [84]:

• Pointers are eliminated.

• Reduction of storage demand compared to pointer-based.

• Ability to better performance with parallelization, allowing for High Performance Com-
puting (HPC).

The linear quadtree is illustrated in the following subsection, covering the spatial addressing
structure and numbering scheme.

3.3.1 Numbering scheme

The starting point is a Cartesian grid with Nx × Ny cells, where every cell is located at a
level LK , initially is said to be the unrefined level L0, illustrated in Fig. 3.5a. The numbering
pattern, as illustrated, starts from 1 to Nc, where Nc = Nx ×Ny. At the initial level L0, all
cells are initialized at level 0 (root level), and every cell is assigned by a local index (i , j)
stored at each level. For subsequent levels of refinement, the cell numbering at the new level
LK+1 is considered a continuation from the previous level LK , as shown in Fig. 3.5b. As if a
new layer of finer grid level starts from NC +1. So that, an offset at each level is calculated
as:

offset(LK) = Nc

(
2DLK

)
− 1

2D − 1 , K = 0, 1, 2, 3, ... (3.1)

where D is the dimension (for binary tree D = 1, quadtree D = 2, and octree D = 3), and
since the refinement advances one level at a time, so LK+1 = LK + 1, and LK is the current
level of the refined cell before refinement.

For the Parent-Sibling relation, where for each newly generated siblings, the local index
(is , js) is retrieved from the parent cell indices (ip , jp) as follows:

is = 2 ip − 1 , 2 ip
js = 2 jp − 1 , 2 jp

(3.2)

The four sibling indices are formed by combining the four sibling indices in the following
arrangement (2 ip − 1 , 2 jp − 1) , (2 ip , 2 jp − 1) , (2 ip − 1 , 2 jp) , (2 ip , 2 jp) as shown in
Fig. 3.4

37

Figure 3.4 Siblings indices generated from a parent cell refinement.

Every generated cell inside the tree is defined by its own local index (i , j) and its refinement
level LK to generate a local address LocalID. This LocalID is defined as follows:

LocalID = i+ (j − 1) ∗ (Nx ∗ 2LK) , K = 0, 1, 2, 3, ... (3.3)

The global address cellID is obtained by adding the local address LocalID of Eq. 3.3 to
the offset presented in Eq. 3.1.The global cellID is a unique cell address used as the cell
identifier and from which the grid generator retrieves all necessary spatial information.

cellID = LocalID + offset (3.4)

38

(a) Initial Cartesian grid Nx×Ny =
2× 2.

(b) First level of refinement for
cells #1 and #4.

(c) Second level of refinement for
cells #5 and #20.

(d) Refinement of arbitrary cells to
the second level of refinement

Figure 3.5 Numbering scheme adopted to represent a linear quadtree data structure.

3.3.2 Grid balancing

After performing all possible successive refinements in the computational grid, all the sub-
divided cells do not need to be at the same level. However, this consideration might result
in an abrupt difference in cell levels, as illustrated in Fig. 3.6a. A grid is unbalanced if the
level difference between two adjacent cells is greater than one. A balanced grid is a grid that
conserves a maximum level difference of one, Fig. 3.6b.

The proposed procedure is inspired by [119, 120], where the information about the level
difference between cardinal neighbors (WESN) is stored during the grid generation.

39

Initially, at the base Cartesian grid, all level differences between cardinal neighbors are set
to zero because all cell levels are equal at this step, Fig. 3.7a. However, as the first cell,
cellID = 1, is being refined, the level difference between the refined cell and its four cardinal
neighbors will decrease by one in the direction (cell-neighbors) and increase by one in the
direction (neighbors-cell).

If the NE sibling of the cellID = 1 is refined, the new siblings will be placed at two levels
deeper relative to the cells #3 and #2. In this situation, to limit the level difference to ±1,
cells #2 and #3 are refined as long as the NE sibling of the cellID = 1 is refined. Thus,
the refinement of the cells #2 and #3 one level deeper retains the level difference limit to
±1 with neighbors when the recalled sibling is refined, Fig. 3.7c.

So, by tracking the evolution of the level differences between neighboring cells during the
refinement, the algorithm captures the refinement that may lead to grid unbalance and
perform the necessary refinements to the neighboring cells, according to the unbalanced
direction (WESN), to limit the maximum level differences between neighbors to ±1.

The procedure of a cell refinement with grid balancing is described in Algorithm 1.

(a) Unbalanced grid. (b) Balanced grid.

Figure 3.6 Hierarchical grid 2:1 balancing rule.

40

Algorithm 1 Refine(cellID) - Refine a given cell with grid balancing
1: Get the identifier cellID of the given cell.
2: Get the cell level cellLvL.
3: Get the level difference in the four cardinal directions cellLvLDiffd , d = (W,E, S,N).
4: Find the four cardinal neighbors neighborIDd , d = (W,E, S,N).
5: Get the level difference of each cardinal neighbor neighborLvLDiffd, d = (W,E, S,N).
6: if neighborLvLDiffd = −1 then
7: Refine(neighborID)
8: end if
9: Create four quads (Identifiers, and vertices).

10: Update the level difference of cellID.
11: Update the level difference of neighborID.
12: Remove the parent cell cellID from the tree.
13: Update the tree.

(a) Initial grid with a level dif-
ference of zero with neighbors
of the same level, and -99 if no
neighbor is found.

(b) Refinement of cellID =
1 with new level differences
with neighbors.

(c) Refinement of the NE sib-
ling of cellID = 1. cellID =
2 and 3 are refined to keep the
grid balanced.

Figure 3.7 Example of procedures of grid balance, using the level difference between neighbors.

41

3.3.3 Neighbors localization

Finding neighbors in a hierarchical structure efficiently is a demanding task. This is expected
from the possibility of a cell having more than one neighbor when the neighbor has been
refined. Furthermore, other cells could have coarser neighbors located at a higher level.
Classical search-based algorithms could be an option, like the ones used by [121], but these
algorithms are based on searching the cells that share common vertices/edges in multiple
linked lists with pointers. The common feature between all these algorithms is the high
computational cost of search algorithms, impacting the whole "package" performance.

In this work, an algorithm is adopted to locate cell neighbors efficiently with an order of
complexity of O(1), without depending on a search-based technique. Instead, it is based
on simple arithmetic operations to locate the neighboring cells from their spatial address
cellID.

Neighbors localization in hierarchical grids falls into three possibilities, as illustrated in
Fig. 3.8:

• Neighbors of same levels.

• Neighbors of finer levels.

• Neighbors of coarser levels.

This approach profits from the natural numbering scheme and the adopted grid balancing
approach to identify cardinal neighbors of a given cell.

Neighbors of same level

To locate cardinal neighbors of the same level for a given cell, the cell indices (icell , jcell)
and level LK are sufficient information to find these neighbors. The neighbor’s local address
localID is calculated using Eq. 3.3 according to its position, i.e., the neighbor’s i or j index
differs by ±1 to the cell (East/West: i = ±1, North/South: j = ±1), so that;

LocalIDE = (icell + 1) + (jcell − 1) ∗ (Nx ∗ 2LK)

LocalIDW = (icell − 1) + (jcell − 1) ∗ (Nx ∗ 2LK)

LocalIDN = icell + (jcell) ∗ (Nx ∗ 2LK)

LocalIDS = icell + (jcell − 2) ∗ (Nx ∗ 2LK)

(3.5)

42

Since the neighbor level LK is known, the offset is evaluated using Eq. 3.1. The neighbor’s
cellID is calculated using Eq. 3.4 evaluated in the corresponding cardinal direction, such
that;

neighborIDd = LocalIDd + offset , (d = W,E, S,N) (3.6)

This configuration is represented in Fig. 3.8a, where cell P has a neighbor in East direction
of same level. The level difference between cell P and its neighbor E is zero; in that case,
the neighbor E is found using Eqs. 3.1, 3.5, and 3.6 directly.

(a) Same Level Neighboring.

(b) Neighbors of cell P of finer level.

(c) Neighbors of cell P of coarser level.

(d) Cardinal Neighbors of Cell P .

Figure 3.8 Neighboring possibilities of balanced grid.

Neighbors of finer Level

The second possibility is that the cell neighbors are located at a finer level, as illustrated in
Fig. 3.8b. The neighbor’s level in East direction of cell P is less by one level; in that case,
cell P will have two neighbors E1, and E2, representing the SW , and NW siblings of cell E.

43

The neighbor’s localization of finer/coarser levels is always restrained to the grid balancing,
resulting in a maximum number of neighbors of two in any cardinal direction.

The procedure to find neighbors of finer levels follows the same procedure of finding neighbors
of same level. But instead of finding the neighbor of same level of the given cell, the neighbors
are identified by finding the cell sibling’s neighbors of same levels.

For a given cellID and a cardinal direction, the indices of the siblings (is , js) of cellID
are evaluated using Eq. 3.2. The cardinal direction determines which pair of siblings replace
cellID to find its same-level neighbor. The neighbors are calculated using Eqs. 3.5 and 3.6.
Table 3.1 and Fig. 3.4 indicate the siblings’ indices (icell , jcell) of the parent cellID that
replace the parent cell index (ip , jp) in Eq. 3.3 to find the corresponding neighbor according
to the cardinal direction.

Table 3.1 Siblings pair of a parent cell and the corresponding indices in four cardinal directions

Cardinal Direction Siblings pair Sibling Index

West SW is = 2ip − 1 , js = 2jp − 1

NW is = 2ip − 1 , js = 2jp

East SE is = 2ip , js = 2jp − 1

NE is = 2ip , js = 2jp

South SW is = 2ip − 1 , js = 2jp − 1

SE is = 2ip , js = 2jp − 1

North NW is = 2ip − 1 , js = 2jp
NE is = 2ip , js = 2jp

The neighbor of finer level neighborID is then identified using Eqs. 3.3 and 3.6, after calcu-
lating the local index of the sibling pair and the sibling level as LK+1, where LK is the level
of the parent cell.

Neighbors of coarser level

The third possibility is that the neighbor level to a cell is located at a coarser level than
the cell, as illustrated in Fig. 3.8c. The neighbor’s level of Cell P in the West direction is
greater by one than the level of cell P , i.e., the level difference of cell P in the west direction

44

equals −1. This implies that cell P has only one neighbor on the west direction W , which is
the west same level neighbor of the parent cell of P .

To find the same level neighbor of a parent cell, the parent index (ip , jp) is calculated from
Eq. 3.2 based on the position of the siblings relative to the parent cell, or it can be directly
calculated using a rounding function that rounds toward the nearest greater integer, as the
function ceil in Matlab, so that;

ip = ceil(icell/2) , jp = ceil(jcell/2) (3.7)

These indices are then used to calculate LocalIDd in a given direction d and neighborID
using Eqns. 3.5 and 3.6 respectively, with a neighbor level of Lk−1.

This procedure is straightforward without searching inside the tree and eliminates many
searches to find the neighbors in hierarchical grids. This feature enables the extension of the
algorithm to 3D without any constraints, since the algorithm is of order of complexity of
O(1). Algorithm 2 shows this procedure with the three possibilities.

Algorithm 2 getNeighbor(cellID , d) - Locate the neighbors to a cellID in a given
direction d
1: Get the cell level LK , and index (iK , jK) of the given cellID.
2: Get the level difference in the given cardinal directions cellLvLDiffd, d = (W,E, S,N).
3: if cellLvLDiffd = 0 then
4: icell = iK , jcell = jK
5: Ld = LK
6: else if cellLvLDiffd = 1 then
7: Find the sibling couple in the given direction from Table3.1
8: Evaluate the index (is , js) for each sibling
9: icell = is , jcell = js (for sibling pair)

10: Ld = LK+1
11: else if cellLvLDiffd = −1 then
12: Calculate the index (ip , jp) for the parent cell of cellID from Eqn. 3.7
13: icell = ip , jcell = jp
14: Ld = LK−1
15: else
16: The cell neighbor is a boundary
17: end if
18: Calculate LocalIDd using icell , jcell , Ld from Eq. 3.5
19: Find neighborIDd of same level using Eq. 3.6

45

3.3.4 Side list generation of hierarchical grid

The generation of side lists is an essential output from this class and as is required by the
solver to evaluate the fluxes at the boundaries of the control volume (cell) at some stages,
that requires the number of sides that contours this grid.

Since the grid generator is based on hierarchical grids, more than one side can construct the
cell boundaries when the hierarchical refinement is applied to a given cell. Furthermore, in
order to keep the solver vectorized, a data structure of the side list has to be established to
offer the ability to describe the cell boundaries by the set of sides in vector form and pass this
information directly to the solver, without the need to loop over the cells to identify the level
difference between the cells to calculate the flux. All this information will be prepared and
delivered directly in vector form to the solver, who will receive two linked lists that describe
the grid’s list hierarchy.

The sides lists consist of two main lists (Vertical sides list and Horizontal sides list). These
lists are linked with other lists that describes the cell elements by the side ID (WESN)
directions.

The sides numbering follows the grid cellIDs numbering, starting from coarser to finer cells
following their address. The left vertical and the bottom horizontal sides are appended in
the sides list until the grid interface for each traveled cell is reached. The four bounding sides
are appended until reaching the grid interface. This description is illustrated in Fig. 3.9 for
both horizontal and vertical list numbering.

Each appended side will points to the cellIDs index in the grid container that shares this
side. For example, for the vertical side list, each vertical side points to the left and right
cells that share the vertical side. While for horizontal sides list, each side points to the
bottom and top cells that share this horizontal side. An illustrated example of the vertical
side list is shown in Fig. 3.9, and an example of a sample vertical side list is tabulated in
Tables 3.2 and 3.3 .

46

Table 3.2 Example of a vertical side list

Side Index Left Cell Index Right Cell Index
V01 3 1
V02 5 1
V03 1 -99
V04 -99 2
V05 10 3
V06 12 3
V07 -99 4
V08 4 5
...

Table 3.3 List of cell index vs.cellID

Cell Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cellID 2 3 6 9 10 15 16 19 21 22 29 30 75 76 83 84

(a) Hierarchical sample grid. (b) Horizontal sides number-
ing.

(c) Vertical sides numbering.

Figure 3.9 Numbering of sides of a hierarchical grid.

3.4 Mesh tagging

The tagging is the process that generates an enriched link between the immersed boundary
(discrete topology) and the hierarchical bounding grid. It aims to identify the different types
of cells in the computational domain according to their relative position to the immersed
boundary. Accordingly, the computational domain is divided into two regions (inside the
face/ outside the face) regions where the face here is defined as the computational face

47

containing the computational nodes.

The tagging algorithm functionality is listed as follows:

• Identify different types of cells to be treated according to their types: (i)cells inside the
face (Inner Cells), (ii)cells outside the face (Outer Cells).

• Apply local grid refinement over desired targeted regions based on geometric-based/physics-
based criteria specified by the user.

• Generate the necessary information about topology behavior inside the intersected cell,
i.e.,(normal unit vector at grid boundaries, intersection points between the geometry
and topology, the ID of the cut curve...etc.). This information is for boundary condition
imposition, especially for the Neuman boundary condition, where normal fluxes are
computed and will be discussed in detail in upcoming subsections.

• Retrieve the list of sides for the computational domain elements for flux calculations
in the fluid solver.

This information underlines the importance of the data structure definition supplied to each
building block, where tasks are mutually interconnected via the data structure.

3.4.1 Basic terminologies and definitions

This section introduces the terminologies and properties linked to the tagging that will be
used often in the following sections.

This process is based on identifying the position of the cell center with respect to the immersed
boundary. This cell-centered based tagging agrees with the control volume approach, where
all necessary information is stored and represented by the cell center itself.

Some definitions are given to define the tagging key elements and illustrated in Fig. 3.10 as
follows:

48

Figure 3.10 Cells classification of a tagged immersed topology.

• Inner Cell: An Inner Cell as represented by its cell center, has its cell center inside
the face defined by the discrete topology. They are marked by either a solid or hollow
square , .

• Face Cell (FC): A Face Cell is an Inner Cell having four Inner Cells neighbors, and
marked with a solid square colored in blue .

• Interface Cell (IC): An IC is an Inner Cell where at least one of its neighbors is an
Outer Cell. They are marked with a hollow square . This type of cell is classified
into two internal groups:

– Intersected Interface Cell (IIC): An IICs are Interface Cells intersected by a dis-
crete topology segment and colored by red .

– Non-Intersected Interface Cell (NIIC): A NIICs are Interface Cells not intersected
by the discrete topology segments and colored by orange .

• Interface Outside Cell (IOC): An IOC is an Outer Cell intersected by the discrete
topology. They are marked by a hollow circle and colored by gray .

• Outer Cell (OC): An OCs are cells where their centers are outside the face. They are
marked by solid circles and colored by white .

49

3.4.2 Properties of intersected cells

Intersected cells are the cells that represent the geometric boundary, where the boundary
condition will be applied. So, it is crucial to identify the set of properties and information that
represent these intersected cells because, throughout the simulation, the immersed boundary
is no longer used. Instead, it is represented by the layer of interface cells. Therefore, a set
of information is always stored for each intersected cell (inside or outside the face). This
information is the link between the cell and the part of the discrete topology that intercepts
it.

Consider a cell P with dimensions ∆x, and ∆y, and vertices (P1, P2), intersected by a topology
edge ~L1, as illustrated in Fig. 3.11. The topology edge will intersect the cell while entering,
at its west side, at an intersection point ζin, and exiting the cell by intersecting its south side
at the point ζout. An entering/exiting of a topology edge is considered as one cut, so the
intersected cell P is cut only once by the edge ~L1. The valence is the normalized intersection
fraction following the x-axis and y-axis, from left to right and bottom to top, and is evaluated
as follows:

Figure 3.11 Properties of an intersected cell.

V alencex in/out = ζx in/out
∆x , V alencey in/out = ζy in/out

∆y

The role of the tagging algorithm is to establish the following properties for each intersected
cell:

50

• Detect the number of cuts that intersect each intersected cell.

• Detect the entering and exiting sides of each cell.

• Find the intersection points and the valence of the intersection at entering/exiting
locations.

• Calculate the normal vectors at the intersection points.

• Store the LineID and LoopID of each intercepting entity.

The tagging procedure begins by identifying the intersected cells, storing their properties,
and using them to perform the complete domain tagging to categorize the remaining cells
(FC or OC).

The algorithm starts by locating the first cell that contains a discrete topology point. Then,
from this cell, the algorithm loops over all the topology sides until all loops inside the face
are exhausted. During this geometry marching, each intersected cell is categorized either as
an IIC or IOC . The process of the geometry marching is explained in detail in the next
section.

3.4.3 Geometry marching algorithm

Various types of tagging approaches for IBM applications were presented in the literature.
In this work, a boundary tracking approach is proposed for this step. To ensure a simple,
robust, and cost effective procedure, the algorithm loops over the boundary points rather
than the entire domain cells. The implemented approach aims to reduce the number of
tested cells to identify the immersed boundary without relying on nested looping. A similar
idea was adopted by the algorithm x-ray [122] that relies on reducing the numbers of cells
that shed rays to identify the hole boundary on overset grids. Unlike the Ray-Tracing, a ray
must travel from each cell inside the domain and be examined with every segment on the
boundary.

For a given topology, the tagging is applied for each computational face. Each face is formed
by a list of signed loops, and a list of oriented edges forms every loop.

The geometry marching algorithm loops over every loop inside the computational face so
that each tagging object points to its own face that corresponds to the face orientation.

Supposing that the first cell identified to begin the geometry marching is the cell that bounds
the point P in Fig. 3.12, where P is the initial point of the segments that ends by the points

51

(S1, S2, and S3) situated outside the cell. Then, to identify the cells crossed by the geometry
lines, a methodology is posed to mark all the intersected cells and establish the necessary
information during this marching.

(a) Step 1 (b) Step 2

Figure 3.12 Geometry marching procedure to find intersected cells.

The methodology begins by looping over the geometry segments, and during this scan, the
marching algorithm allocates the cell that bound the initial segment point and verifies if the
segment crosses the cell or not. If the segment crosses the cell, i.e., the extent point of the
segment is bounded by another cell; then a two-step test is performed.

Step1: The first step is to find whether the geometry line intersects one of the vertical rays
~V1 or ~V2 that bounds the left and right extent of the cell under test. If an intersection I

is found with the vertical rays ~V , the y − coordinate of this intersection point I is then
compared to the horizontal rays H1 and H2, and then the exiting side of the intersected cell
is determined.

As in Fig. 3.12a. The first segment ←→PS1 intersects the vertical ray ~V2 at point I1. By
comparing the y − coordinate of the intersection point with the horizontal rays ~H1 and
~H2, we can admit that the point I1 is above ~H2. This implication gives one, and the only
possibility is that the Northside of the cell is the exiting side, and the intersection point ζ1

can be determined.

The same procedure can also be tested on the segment ←→PS3, where it intersects the vertical

52

ray ~V2 at point I3. The y−coordinates of the intersection point I3 is below the horizontal ray
~H1, which implies that the Southside of the intersected cell is the exiting side, accordingly
the intersection point at the exit side ζ3 is determined.

If none of the above scenarios apply, and there is an intersection between the geometry
segment and the ray ~V2, then the only possibility is that the intersection point lies on the
East side of the tested cell, represented by the segment ←→PS2.

The procedure of the first step is valid for the illustrated case and its vertical mirror, where
the intersections cross the vertical ray ~V1. In that case, the points I1, I2, and I3 will intersect
the North, West, South cell sides, respectively.

If the first step applies, i.e. there is an intersection between the geometry segment and
the vertical sides of the cell, so the exiting sides of the tested cell are identified at this
step. However, if there are no intersections captured between the geometry segment and the
vertical sides of the cell, then the second step of the test is applied.

Step2: The second step detects possible intersections between geometry segment and hor-
izontal rays ~H1 and ~H2 that bound the tested cell. For example, if the geometry segment
intersects the upper ray ~H2, then the Northside is the exiting side of the cell, and the in-
tersection point ζ1 is determined. Otherwise, if the geometry segment intersects the lower
ray ~H1, then the Southside is the exiting side of the cell, and the intersection point ζ2 is
determined.

The first cell that bounds the first topology point is automatically identified as intersected
and marked as a pivot cell. All pivot cells are intersected cells, but are named as pivot cell
because these change with the geometry marching. The marching occurs when the algorithm
identifies the exiting side of a pivot cell, which implies that the neighbor cell at the exit
direction is the next pivot cell. So, the algorithm jumps to the next pivot cell and performs
the two-step test to find the next pivot cell, and so on. This process is illustrated in Fig. 3.13.

53

(a) Pivot cell#1. (b) Pivot cell#4. (c) Pivot cell#5.

(d) Pivot cell#8. (e) Pivot cell#9.

Figure 3.13 Geometry marching procedure on a Cartesian grid.

Similarly, the marching algorithm can loop over the immersed boundary inside a hierarchical
grid. The only difference is that the algorithm checks the status of the level difference at the
exit direction, and the next pivot cell is determined according to the local level difference
and the position of the intersection point.

There are three possible configurations for the geometry marching procedure in a hierarchical
grid, illustrated in Fig. 3.14:

1. The neighbor is situated at a finer level, as in North neighbor of cell#1.

2. The neighbor is of the same level as the East neighbor of cell #13.

3. The neighbor is situated at a coarser level than the East neighbor of cell #14.

54

Figure 3.14 Geometry marching in hierarchical grid.

From these three configurations, the first requires special consideration. The neighbors in
the exiting direction are finer than the pivot cell. In this case, the position of the intersection
point is compared to the position of the pivot cell center. Accordingly, the intersection point
is assigned to one of the two siblings next to the pivot cell.

In the North and South directions, the algorithm compares the x-coordinate of the intersec-
tion point with the x-coordinate of the cell center. For the East and West directions, the
algorithm compares the y-coordinate of the intersection point with the y-coordinate of the
cell center.

So, by applying the geometry marching algorithm to each loop of the computational face,
the following information will be available:

• CellIDs of all intersected cells.

• The entering/exiting directions of the intercepting geometry curve.

• The location of intersection points at entering and exiting sides.

• The valence at entering and exiting sides.

• LineID that intersects the cell at both entering and exiting intersection points.

• LoopID that intersects the cell at both entering and exiting intersection points.

55

3.4.4 Types of intersected cells

During the geometry marching procedure, additional verification is carried out to determine
whether the pivot cell is inside or outside the face. If the intersected cell is marked as inside
the face, it will be tagged as Intersected Interface Cell , and if the intersected cell is marked
as outside the face, it will be tagged as Interface Outside Cell .

This step identifies the types of intersected cells and utilizes the cut information provided
by the marching algorithm to calculate the normal vectors of the immersed boundary at
the intersection points. Hence, the geometry is described inside the cell by two points of
intersection and two normal vectors at these points. This information allows the algorithm
to capture the variation in directions of the curve inside the cell and tags the cell without
any ambiguity.

Using a vector product between the vector tangent to the geometry at the intersection points,
and the vector connecting the intersection points to the cell center, allows to determine
whether the cell center lies on the same side of the face. If the two cross products are
positive, then the cell center is inside the face, and the cell is tagged as IIC. Otherwise, the
cell center lies outside the face, and the cell is tagged as IOC. This procedure is illustrated
for the two different cases in Fig. 3.15.

This completes the intersected cells properties with the normal vectors at the entering and
exiting directions of each intersected cell and classifies the intersected cells into IIC or
IOC .

(a) A cell inside the face IIC. (b) Cell outside the face IOC.

Figure 3.15 Illustration of two cases of intersected cells.

56

3.4.5 Types of Interface Cells (IC)

The analysis of the interface tagging is presented in this section to demonstrate different
types of interface cells as a result of tagging.

The tagging of a closed topology is represented by a layer of watertight interface cells, as
represented in Fig. 3.10, implying that some interface cells might be tagged as IC even though
they are not intersected by the topology. The analysis of different types of IC is exposed by
two configurations:

1. One-Corner cut IC: Shown in Fig. 3.16a, and Fig. 3.16b, the topology segment cuts
two consecutive cell sides (WS, SW, SE, ES, EN, NE, NW, WN). The cell is identified
either as IIC, or IOC according to the direction of the topology polyline.

2. Two-Corner cut IC: Shown in Fig. 3.16c, and Fig. 3.16d, two parallel cell sides are
intersected (WE, EW, SN, NS).

(a) One-corner cut
IIC.

(b) One-corner cut
IOC.

(c) Two-corners cut
IIC.

(d) Two-corners cut
IOC.

Figure 3.16 Four possibilities of intersected cells.

These configurations are illustrated on a global grid in Fig. 3.17. In Fig. 3.17a, the cells
P and W are one-corner cut cells identified as IIC. Cells N and S are two-corners, and
one-corner cut cells, respectively, identified as IOC. The interface is then represented by the
intersection points of cells W and P .

The possibility of two-corners cuts IIC is illustrated in Fig. 3.17b, and in this case, cell W is
considered an OC. This observation correlates the presence of an OC, usually perpendicular
to the cut sides of a two-corner cut cell, relative to the direction of the polyline. In other
words, if the polyline enters from the north side and exits from the south side, as illustrated in
Fig.3.17b, this implies that the cells located in the west direction (the direction perpendicular
to the cut sides) will be tagged as OC.

57

(a) One-corner cut inside P . (b) Two-corners cut inside P .

Figure 3.17 one corner cut vs. two corners cut IIC.

If the position of the polyline in Fig. 3.17b extends to the left cutting cell W , as in Fig. 3.18,
and cell W is tagged as IOC. Then, all the intersected cells are tagged as IOC, and there
are no interface cells that can represent the current situation. From the observation of the
preceding paragraph, a cell with a two-corner cut IOC must have at least one interface cell in
the position perpendicular to the cut sides, relative to the direction of the polyline. So, cell
P is considered a Non-Intersected Interface Cell, and this leads to the notion of the NIIC,
Fig. 3.18b.

(a) Point P is not a NIIC. (b) Point P imposed as a NIIC.

Figure 3.18 Determination of NIIC by two-corners cut IOC of cell W .

58

A watertight interface layer must bind the computational face/volume to treat a closed
boundary, and this requires the detection of Non-Intersected Interface Cell . Identifying
the NIIC is mainly based on verifying if there is an IOC with two-corner cuts. Additional
algorithm is used to verify the tagging of a watertight interface layer. It is based on verifying
the neighbours of FCs, these neighbours should be Inner Cells. If one neighbor is detected as
an IOC, so the FC is then tagged as NIIC. This procedure is illustrated in Fig. 3.19, where
North and South neighbors of cell P are FC, by verifying their neighborhood, cell P is found
as IOC, so cell N and S are then tagged as NIIC, as shown in Fig. 3.19b.

(a) Cells S and N are FC with IOC neighbor
(cell P). (b) Cells S and N are tagged as NIIC.

Figure 3.19 Interface tagging verification by neighborhood check.

3.4.6 Face discretization

After the completion of the boundary tagging, (i.e. identifying the intersected cells [,],
establishing all cut information inside each intersected cell, and identifying the presence of
NIIC needed to close the interface boundary), the next step is to identify the internal
cells FC , where its four neighbors are inside the face. Then, locating the outside cells
OC , where its cell centers are outside the face, and are identified by binary intersection
algorithms.

Tagging the FC is performed using a Flood-Fill algorithm which starts by locating a cell inside
the face and sweeps the face boundary-to-boundary until the face is filled. The remaining
cells that are not tagged after this process are the OC. Fig. 3.20 illustrates the four steps of
the complete tagging algorithm.

59

(a) Tagging of intersected cells IIC, and IOC. (b) Tagging of NIIC to close the boundary.

(c) Tagging of FC by Flood-Fill. (d) Tagging of OC.

Figure 3.20 The four steps of the tagging algorithm.

3.5 Overset grid

In this section, we present the methodology adopted to integrate the overset grids into the
overall strategy. The overset grid approach is adopted to deal with moving boundaries,
essentially it simplifies the complex domains, principally with the treatment of moving ge-
ometries in IBM application. The moving geometry is introduced by a tagged overset grid,

60

that will move entirely (tagged grid enclosing the immersed boundary) overlapping a refer-
ence grid. The usage of Cartesian overset grids turns the management of the grids into a
simple task without resorting to libraries such as Tioga, which may defeat the simplicity of
the implementation.

The hypothesis posed in our research to describe the overset approach is as follows:

• The computational domain consists of a background stationary grid fixed to the main
global frame of reference and called the Reference Grid.

• All other grids that overlap the Reference Grid are allowed to move and called
Overlapping Grid.

• There is no overlap between Overlapping Grids during the grid motion.

• All Overlapping Grids lie within the Reference Grid along the entire grid trajectory,
as shown in Fig. 3.21.

(a) Invalid configuration: topology in-
tersections Reference-Overlapping and
Overlapping-Overlapping.

(b) Valid configuration: no Topology inter-
sections.

Figure 3.21 Overset supported configuration.

To demonstrate the data flow of the overset grid generation procedure, the Overset building
block receives the refined and tagged grids from Mesh Tagging building block flagged by
their type (Reference/Overlapping). Hence, the overset algorithm identifies the overlapping

61

zones between the grids. This information identifies the enabled/disabled cells on Reference
Grid. The disabled cells are those that lie within the overlap zone of the corresponding grid.
This strategy is performed by two steps:

• Hole Cutting: This procedure is performed only on Reference Grid, Fig. 3.22b, and
it aims to find the shadow of Overset Grid on Reference Grid and disable the cells
that lie within this shadow, subject to some tolerance parameters.

• Identification of Interpolated Cells: This procedure aims to generate a layer of
cells that contours the hole cut on Reference Grid, and the outer loop of Overset
Grid. This type of cells is responsible for the transfer of information between the grids,
known as Interpolated Cells. The overset tagging is shown in Figs. 3.22b, and Fig. 3.22c.

Each list of interpolated cells retrieves their flow field values from the values stored at the
face cells of the opposite grid. This process illustrated in Fig. 3.23 is carried out such that
the procedure of identification of disabled cells always ensures that the interpolated cells that
bound the hole and the boundaries of overlapping grids have correspondent face cells in the
opposite grid, the arrows in the figure indicate the transfer directions and the correspondence.

The Overset building process is responsible for generating the overset grids and consists of
the following tasks:

• Identify the overlap zones between Reference and Overset grids, Fig. 3.22a.

• Identify the list of disabled cells in Reference Grid (Hole Cutting procedures), Fig. 3.22b.

• Identify the list of interpolated cells necessary for the information transfer between
grids, Figs. 3.22b and Fig. 3.22c.

• Export the updated grids into an object with the proper data structure of the main
algorithm.

62

(a) Initial two hierarchical grids with topolo-
gies.

(b) Hole Cutting procedure on Reference grid,
the shadow of the moving grid is disabled. The
interpolated cells are filled in red, and interface
cells are filled in green.

(c) Interpolated Cells are filled in blue on
Overlapping grid, and interface cells are filled
in green.

(d) Overlapped overset grids after treatment.

Figure 3.22 Overset treatment for overlapped grids.

63

Figure 3.23 Representation of the interpolated cells conditioning for 1D overset configuration.

3.6 Refinement criteria

In addition to identifying and classifying the cell types of the computational domain, the
tagging procedure also controls the generation of locally refined regions according to some
input refinement criteria developed during this research. These control the local grid resolu-
tion via the tagging algorithm as the grid resolution is the foremost parameter that strongly
affects the stability and precision of any numerical solution. The refinement criteria chosen
as control parameters are broadly classified into two families:

Geometric-based criteria

1. Criteria#1: Refinement based on the curvature of the geometry

This criterion aims to limit the number of points of the geometry contained by a given
cell. The process begins by locating the set of cells containing geometric points at the
Cartesian level of the grid. This process does not include any search; it is based on
locating the index of the Cartesian cell that contains the geometric point.

Given that the geometric point is Pg(x, y), grid extends Xmin, Xmax, Ymin, Ymax, and the
initial grid subdivisions in x and y directions respectively is Nx, Ny, with a resolution
of dx, dy.

Since the location of the geometric point is calculated in the initial Cartesian grid, so
the indices I, J of the bounding cell can be found using the following formula;

I = floor[(Pgx −Xmin)/dx+ 1]

64

J = floor[(Pgy − Ymin)/dy + 1]

where the truncation to the lower bounds of the the indices is performed by using the
built-in function floor.

The initial cellIDs that bounds the geometric points are then computed as :

cellID = I + (J − 1) ∗Nx

This approach is valid to locate any coordinate point inside the hierarchical grid. Given
the cell level, LK , and the corresponding resolution of the refined cell dx, dy. The
bounding cellID can be found as:

cellID = I + (J − 1) ∗Nx ∗ 2(LK−1)

The cell is refined if the number of bounded points exceeds the given maximum number
of points Nb_PTS_max. The bounded points are then transferred to the children
of the refined cell. Dichotomy algorithm is used during this process to allocate the
geometric points to the generated siblings, as illustrated in Algorithm 3. In Fig. 3.24,
an illustrative example of the procedure to limit the number of geometric points inside
a sample cell to four points.

65

Algorithm 3 Dichotomy algorithm with four quadrants to reallocate geometry points to the
refined children bounding cells.
1: Get the cellID of the bounding cell
2: Get the nubmer of points Nb_PTS bounded by the cell
3: if NB_Pts > NB_PTS_max then
4: Get the cell center position xc, yc of cellID
5: Refine(cellID)
6: Get the four siblings
7: if (Pgx < xc) && (Pgy < yc) then
8: The point is allocated in the SW Quadrant
9: I = 2 ∗ IcellID − 1

10: J = 2 ∗ JcellID − 1
11: else if (Pgx >= xc) && (Pgy < yc) then
12: The point is allocated in the SE Quadrant
13: I = 2 ∗ IcellID

14: J = 2 ∗ JcellID − 1
15: else if (Pgx < xc) && (Pgy >= yc) then
16: The point is allocated in the NW Quadrant
17: I = 2 ∗ IcellID − 1
18: J = 2 ∗ JcellID

19: else
20: The point is allocated in the NE Quadrant
21: I = 2 ∗ IcellID

22: J = 2 ∗ JcellID

23: end if
24: end if

66

(a) (b)

(c) (d)

Figure 3.24 Application of the first criteria of refinement to limit to 4 the number of geometric
points inside a cell.

2. Criteria#2: Minimum Curve Level

This criterion controls the level of refinement of the cells traversed by the geometric
curve. The minimum level of refinement for the cut cells Min_Curv_Lvl is given as
input by the user. The algorithm applies this criterion during the geometry marching
process presented in Section 3.4.3 to control the resolution of interface cells representing
the discrete topology.

This criterion provides an additional level of mesh resolution control to the first crite-
rion. This feature is illustrated in Fig. 3.25, which considers the straight horizontal line
for the given topology curve to be tagged. Based on the first criteria, if the user limits
the number of points Nb_PTS_Max bounded by a cell to one, the criteria will refine
only the cells that contain the geometric points to the level that satisfies that every cell
bounds only one point. Nevertheless, this boundary may need more resolution for the
physical interpretation of the solver’s numerical solution. So, the level of refinement of
the remaining interface cells needs to be controlled to achieve the required grid resolu-
tion that accurately represents the boundary. Fig. 3.25 shows the difference between

67

applying the first criteria and a minimum curve level of 3 to refine all intersected cells
to the third level.

This complementary mesh control is given by the Min_Curv_Lvl that is applied to
each loop of the discrete topology.

(a) Application of the first Criteria to limit the number of geometric
points to one inside the cells.

(b) Application of both Criteria#1, and #2 to apply a level of refine-
ment of three to the intersected cells.

Figure 3.25 Application of refinement criteria #2.

Proximity-based criteria

1. Criteria#3: One Cell - One Loop (OCOL)

The OCOL concept limits the number of loops that intercept a cell to one loop so that
each intersected cell is intersected by only one loop. If the cell is cut by more than one
loop, this cell is refined until it is traversed by only one loop.

This criterion is used to refine the region of proximity to isolate the interface cells from
each other by considering that each interface layer will represent its own intercepting
loop.

The cut information established during the geometry marching process counts the num-
ber of cuts at each intersected cell. One counted cut has Entering/Exiting information.
If the number of cuts is greater than one, the cell is cut by more than one loop, and
consequently the cell is refined.

An illustration of this criterion is shown in Fig. 3.26a. The bottom line of this grid is
cut by two topology curves (an outer and inner loop); the refinement criteria #3 will
apply a refinement to these cells to isolate each cell to be cut by one loop, Fig. 3.26b.

68

2. Criteria#4: Refinement of curves in proximity

This criterion adds another complementary tool for grid management. It controls the
number of layers that will be added between two neighbors’ intersected cells. More-
over, this criteria allows the insertion of computational nodes between interface cells in
proximity, which solvers will use to solve problems in the vicinity of two curves.

Criteria#4 is controlled by the number of refinement cycles processed to the captured
cells in proximity zones. Fig. 3.26c illustrates the application of Criteria#4 for the
curves being isolated from the third criteria. The criteria applies recursive refinement
to the cells in neighborhoods cut by different curves. The refinement cycles are the
number of recursive refinements applied to the cells identified in proximity regions.

69

(a) Initial grid with cells detected as cut by two
different loops.

(b) Application of Criteria#3 to limit each cell
to be cut by one loop.

(c) Application of Criteria#4 to add computa-
tional points in the proximity zone (After one
cycle).

Figure 3.26 Application of the proximity refinement criteria.

70

3.7 Grid management and control Add-ons

In order to have the maximum functionality possible for the meshing and tagging algorithms,
additional ’Add− ons’ are implemented to provide more control on the grid generation and
refinement process. Furthermore, these ’Add− ons’ are integrated with the tagging class to
leverage the output from the integration of other classes (Reconstruction, Solvers).

Uniform interface level control

Since the second criterion is applied to the intersected cells, the input refinement level will
be applied only to the intersected cells (The IIC and the IOC). However, the NIIC

are not subjected to those constraints so that they may have a level different from their
intersected cells (usually coarser than the intersected cell).

This functionality is introduced to adjust the level of refinement of the interface-non-intersected
cells so that all the interface cells at the end of the tagging process are at the same level of
refinement.

This feature is presented in Fig. 3.27 for a NACA 0012 profile immersed in an hierarchical
grid with five levels of refinement applied to the profile. The figure presents the results of the
refined grid with and without the application of this feature. In Fig. 3.27b the levels around
the profile boundaries are equal, including the NIIC.

(a) A boundary without uniform refine-
ment.

(b) The boundary with uniform refine-
ment.

Figure 3.27 Five levels of refinement with vs. without uniform refinement around a NACA
0012 profile.

71

Local grid pre-adaptation

A pre-adaptation step is introduced by processing a topology file that represents the curve/volume
of the target region, with the corresponding desired refinement levels. The algorithm applies
the same tagging procedure; it marches the input adaptation topology and applies the re-
quired refinement according to the given adaptation topology.

An arbitrary adaptation topology is illustrated in Fig. 3.28, the generated grid results from
applying both refinement criteria and pre-adaptation parameters.

(a) Pre-adaptation topology. (b) Grid pre-adaptation is realized follow-
ing the adaptation topology.

Figure 3.28 Grid pre-adaptation with three levels of refinement following the adaptation
topology.

Regeneration of hierarchical grid topology to uniformly finer levels

This feature is motivated for grid convergence studies. Since the grid is hierarchical, a sys-
tematic refinement must be offered in all directions to calculate a given metric’s convergence.

Consider a simple initial grid Nx = 3, Ny = 1 with a Min_Curv_Lvl = 3. In order to
have a systematic refinement, doubling the initial grid resolution to Nx = 6, Ny = 2 will
not lead to halving the whole grid elements, as illustrated in Fig. 3.29. For that case,
the RefineUniformGrid capability is in place to refine the whole computational domain
one level deeper so that the factor between all grid elements of the two grids is always a
factor of 1/2, Fig. 3.30.

72

(a) Initial Grid Nx = 3, Ny = 1, Min_Curv_Lvl = 3.

(b) Initial grid resolution doubled Nx = 6, Ny = 2, Min_Curv_Lvl = 3.

Figure 3.29 Representation of doubling the grid resolution will not lead to a grid topology
finer by a factor 1/2 for all grid elements.

(a) Initial Grid Nx = 3, Ny = 1, Min_Curv_Lvl = 3.

(b) RefineUniformGrid reduces the initial grid elements size by a factor of 1/2.

Figure 3.30 The application of RefineUniformGrid function to generate the same grid
topology with 1/2N factors of reduction.

73

CHAPTER 4 FLOW SOLVER

This chapter presents the development procedure of a flow solver for an inviscid compressible
flows model for Euler’s equations on overset hierarchical grids in the context of the IBM
application. First, it presents the governing equations discretized with the flux difference
splitting scheme (Roe’s Scheme). Next, it introduces the development of the reconstruction
scheme used to apply the boundary conditions on the interface cells. Then it presents different
types of boundary conditions for Euler’s equations, adopted in the context of this research.
Finally, the integration of the ALE with the flow solver is presented to introduce the grid
motion for overset grids.

4.1 Governing equations

The proposed IBM methodology is applied to the solution of 2D inviscid compressible flow.
Four equations govern the flowfield: the mass conservation law, the momentum conservation,
and the energy equation. This system of equations is represented in the conservative compact
form as follows:

Wt + F (W)x +G(W)y = 0 (4.1)

W =

ρ

ρu

ρv

E

 F =

ρu

ρu2 + p

ρuv

(E + p)u

 G =

ρv

ρuv

ρv2 + p

(E + p)v

 (4.2)

where the flow density is noted by ρ, the static pressure by p, thermodynamic temperature T ,
flow velocity by V(x, y) = (u, v). The total energy per unit mass E, described as a function
of the internal energy per unit mass e, is defined as follows:

E = V2

2 + e (4.3)

Two additional equations are required, namely, the equation of state,

p = ρRT (4.4)

74

which for an ideal gas gives,
e = cvT = p

ρ(γ − 1) (4.5)

where R and γ are the gas constant and the specific heat ratio of the fluid, respectively.
Specific heat at constant volume cv is given by,

cv = R

γ − 1

4.2 Numerical scheme

Euler’s equations are discretized using a cell-centered finite-volume scheme, and each control
volume is represented by the cell face which in Cartesian coordinate is presented in Fig. 4.1.

Figure 4.1 Cell-centered control volume definition in Cartesian grids.

The Euler equations are numerically cast as an Initial Boundary Value Problem (IBVP) with
the explicit conservation form in the physical Cartesian frame of reference as:

W n+1
i,j = W n

i,j + ∆t
∆x∆y

[(
F n
i− 1

2 ,j
− F n

i+ 1
2 ,j

)
∆y +

(
Gn
i,j− 1

2
−Gn

i,j+ 1
2

)
∆x

]
(4.6)

This hyperbolic system of equations takes the form of a Riemann problem, and the adopted
resolution scheme is the approximate Roe solver. This scheme is a commonly used for solv-
ing Euler’s equations for compressible flows for its capability to resolve flow discontinuities

75

accurately [123].

Roe’s scheme is based on evaluating convective fluxes F and G at the boundaries of the
control volume

(
i± 1

2 , j ±
1
2

)
by averaging the quantities stored in the neighboring cells,

where the properties are computed. For 2-D notation, the neighbors are denoted in the left,
right, top and bottom directions as L, R, T , and B, respectively, as illustrated in Fig. 4.2.
For Cartesian coordinates, Roe’s average properties are evaluated in x and y directions by
averaging the quantities at (L,R) and (B, T) neighbors respectively. For hierarchical Roe’s
average properties are expressed in Eq. 4.7

(a) Left and Right states. (b) Bottom and Top states.

Figure 4.2 Evaluation of average properties at the control volume boundaries.

ρ̃ =√ρLρR ,

ũ =
uL
√
ρL + uR

√
ρR√

ρL +√ρR
,

ṽ =
vL
√
ρL + vR

√
ρR√

ρL +√ρR
,

H̃ =
HL
√
ρL +HR

√
ρR√

ρL +√ρR
,

ã =
√

(γ − 1)(H̃ − q̃2/2) ,

Ṽ =[ũ ṽ] ,

q̃2 =ũ2 + ṽ2

(4.7)

76

Roe’s fluxes at the control volume boundary F̃ and G̃ are decomposed into the sum of wave
contributions,

F̃i+ 1
2 ,j

=1
2(Fi,j + Fi+1,j)−

1
2

4∑
kx=1

αkx | λkx |
⇀
e kx

G̃i,j+ 1
2

=1
2(Gi,j +Gi,j+1)− 1

2

4∑
ky=1

αky | λky |
⇀
e ky

(4.8)

where λk and ⇀
e k are the eigen values and the corresponding eigen vectors, such that:

λkx
=

ũ− ã
ũ

ũ

ũ− ã

 , λky
=

ṽ − ã
ṽ

ṽ

ṽ − ã

 , k = 1, 2, 3, 4. (4.9)

⇀
e 1x

=

1

ũ− ã
ṽ

h̃− ũã

 ,
⇀
e 2x

=

1
ũ

ṽ
1
2 q̃

2

 ,
⇀
e 3x

=

0
0
1
ṽ

 ,
⇀
e 4x

=

1

ũ+ ã

ṽ

h̃+ ũã

 (4.10)

⇀
e 1y

=

1
ũ

ṽ − ã
h̃− ṽã

 ,
⇀
e 2y

=

1
ũ

ṽ
1
2 q̃

2

 ,
⇀
e 3y

=

0
−1
0
−ũ

 ,
⇀
e 4y

=

1
ũ

ṽ + ã

h̃+ ṽã

 (4.11)

αkx
=

∆px−ρ̃ã∆ux

2ã2

∆ρ−∆px

ã2

ρ̃∆vx
∆px+ρ̃ã∆ux

2ã2

 , αky
=

∆py−ρ̃ã∆vy

2ã2

∆ρ− ∆py

ã2

−ρ̃∆ux
∆px+ρ̃ã∆vx

2ã2

 , k = 1, 2, 3, 4. (4.12)

77

where, the properties variations across the cells are calculated as:

∆px = pL − pR , ∆py = pB − pT
∆ρx = ρL − ρR , ∆ρy = ρB − ρT
∆ux = uL − uR , ∆uy = uB − uT
∆vx = vL − vR , ∆vy = vB − vT

(4.13)

The finite volume discrete form of the Roe’s scheme in Cartesian coordinates with averaged
fluxes, given by Eqs. 4.8 is written as:

W n+1
i,j = W n

i,j −
∆t

∆x∆y
[(
F̃i+ 1

2 ,j
− F̃i− 1

2 ,j

)
∆y +

(
G̃i,j+ 1

2
− G̃i,j− 1

2

)
∆x

]
(4.14)

For hierarchical grid application, the finite volume discrete form of Roe’s scheme presented
in Eq. 4.14 will be written in general form as follows:

W n+1
i,j = W n

i,j −
∆t

∆x∆y

(
nE∑
k=1

F̃i+ 1
2 ,jk

∆yk −
nW∑
k=1

F̃i− 1
2 ,jk

∆yk
)

+ ∆t
∆x∆y

(
nN∑
k=1

G̃ik,j+ 1
2
∆xk −

nS∑
k=1

G̃ik,j− 1
2
∆xk

) (4.15)

where nE, nW , nN , and nS are the number of neighbors in cardinal directions EWNS

respectively. The discrete form represented in Eq. 4.15 relies on integrating the fluxes over
the control volume, by summing the contribution of every neighbor’s flux (Roe’s average
flux) in cardinal directions. An illustration of the hierarchical flux representation is shown
in Fig. 4.3.

Figure 4.3 Flux representation in hierarchical grids in x-direction.

78

Time step calculation

The temporal integration being an explicit type, and in order to ensure the stability of the
numerical scheme, the time step calculation is constrained by the CFL condition. For 1D,
the CFL is presented as:

CFL = (a+ | u |) ∆t
∆x ≤ 1

To ensure a stable numerical scheme, the time step ∆t is calculated by respecting the CFL
condition,

∆t = min

(
CFL∆x
a+ | u |

)

4.3 Reconstruction scheme

To impose boundary conditions on a physical immersed boundary, the essence of the IBM
is the reconstruction of the imposed boundary to the interface cells. This consists in the
calculation of flow properties at the interface cells that represent the physical boundary. In
addition, this reconstruction approach is adopted for transferring the information between
overset grids. Generally speaking, BCs usually falls into three types:

• Dirichlet : φ = D(x)

• Neumann : ∂φ/∂n = N(x)

• Robin : ∂φ/∂n = φR(x)

where D(x), N(x) and R(x) are functions that describe the boundary condition, and n is the
normal to the boundary. And x is the curvilinear coordinate along the boundary.

For a given grid, the layer of interface cells is the list of targeted cells to be reconstructed
because of its proximity to the boundary. These cells do not have a complete stencil, so
the information of the imposed boundary condition is transmitted to these cells by the
reconstruction scheme.

The reconstruction approach is applicable to two instances:

• Interface Reconstruction: This case is applied to the cells that replace the presence of
a physical boundary containing boundary condition information.

79

• Overset Reconstruction: This case concerns the reconstruction used to transfer infor-
mation between the two overset grids.

4.3.1 Reconstruction methodology

The methodology proposed to reconstruct the unknown values at the centers of the interface
cells is based on the information at Face Cell (FC) centers and the intersection points asso-
ciated with Interface Cell (IC), where the boundary condition is imposed. For a given cell
P , the reconstruction stencil is based on finding the available information for reconstruction
in the four cardinal directions (WESN) as illustrated in Fig. 4.4.

Figure 4.4 Reconstruction stencil of interface cell P .

The reconstruction polynomial φ is a linear function defined at the cell center of each interface
cell that represents the reconstructed physical quantity.

φP = a+ bx+ cy (4.16)

This polynomial has three unknown coefficients a, b and c such that,

b = ∂φP

∂x
, c = ∂φP

∂y
(4.17)

To describe this polynomial in terms of the reconstruction stencil, it is written as,

φi = a+ b(xi − xP) + c(yi − yP) , i = W,E, S,N (4.18)

Where φi is the reconstructed physical quantity, and i is the index of any arbitrary point in

80

the cardinal directions.

For a Dirichlet BC φin applied at point Ein , as illustrated in Fig. 4.5, Eq. 4.18 is given as,

φin = a+ b(xEin
− xP) + c(yEin

− yP) (4.19)

Similarly, for a Neumann BC ∂φout

∂n
applied at point Eout, the BC is expressed using Eq. 4.17

as,

∂φout
∂n

=∂φout
∂x
· nx + ∂φout

∂y
· ny

∂φout
∂n

=b · nx + c · ny
(4.20)

Figure 4.5 Reconstruction of Dirichlet and Neumann BC’s of cell P from East side.

The reconstruction polynomial is evaluated in the four cardinal directions (WESN), expressed
in Eq. 4.18 for face cells and using Eq. 4.19 and/or Eq. 4.20 according to the type of applied
BC (i.e. Dirichlet or Neumann) as follows,

• Evaluate the BC polynomial of the applied BC f(φ) at the center of the reconstructed
cell. This BC is evaluated at the intersection points of the discrete topology and the
cell’s boundaries. This information is delivered by the tagging procedure.

• Develop a local least-square system of equations that represents the linear polynomial.
The system consists of four equations representing the cardinal directions with three un-
known a, b, and c, representing the polynomial coefficients. As a result, the least-square
system of reconstruction is always of fixed dimensions 4×3. A method of averaging will
be presented to keep the system dimension within the dimensions mentioned above.

81

• Evaluate the least-square weight coefficients of each influencing neighbor.

• Solve an implicit system for all interface cells using the weighting coefficients that satisfy
the imposed BC.

Fig. 4.6 illustrates a case that includes both Dirichlet and Neumann BC. The neighbors
in each of the cardinal directions are identified to reconstruct the information in cell P ,
surrounded by FC at West and North sides, IOC at East and south directions. A Neumann
BC Kφ is applied at segment L1, and a Dirichlet BC is applied at segment L2. The values
of these BCs are applied at the intersection points (Sin, Sout, Ein, Eout), where the normal
vectors (nSin

, nSout , nEin
, nEout) are defined.

Figure 4.6 Dirichlet and Neumann BC reconstruction for cell P .

The evaluation of the BC polynomial in the four cardinal directions is written as:

West: f(φ)W = a+ b(xW − xP) + c(yW − yP) = φW

East:
f(φ)Ein

= a+ b(xEin
− xP) + c(yEin

− yP) = φ2(xEin
, yEin

)
f(φ)Eout = a+ b(xEout − xP) + c(yEout − yP) = φ2(xEout , yEout)

South:
f(φ)Sin

= b · nx,Sin
+ c · ny,Ein

= ∂φSin

∂n
= KΦin

f(φ)Sout = b · nx,Sout + c · ny,Eout = ∂φSout

∂n
= KΦout

North: f(φ)N = a+ b(xN − xP) + c(yN − yP) = φN

82

In order to keep the system represented by four equations and three unknowns (a, b, c) 4× 3,
an averaging procedure [124] is conducted at the sides with multiple BC, as at East and
South directions, such that:

f(φ)E = f(φEin
) + f(φEout)

2

f(φ)S = f(φSin
) + f(φSout)

2

So that the four cardinal equations are substituted by :

West: f(φ)W = a+ b(xW − xP) + c(yW − yP) = φW

East: f(φ)E = a+ b
[
xEin

+xEout

2 − xP
]

+ c
[
yEin

+yEout

2 − yP
]

= φ2(xEin
,yEin

)+φ2(xEout ,yEout)
2 = φ2avg

South: f(φ)S = b
[
nx,Sin

+nx,Sout

2

]
+ c

[
nx,Sin

+ny,Sout

2

]
= KΦin

+KΦout

2 = Kφavg

North: f(φ)N = a+ b(xN − xP) + c(yN − yP) = φN

This system of equation can be represented in the form:

Ax = b

1 xW − xP yW − yP
1 xEin

+xEout

2 − xP (yEin
+yEout

2 − xP)
0 nx,Sin

+nx,Sout

2
ny,Sin

+ny,Sout

2

0 xN − xP yN − yP

a

b

c

 =

φW

φ2avg

Kφavg

φN

 (4.21)

The general form of the local system of reconstruction is represented by :

AaW AbW AcW

AaE AbE AcE

AaS AbS AcS

AaN AbN AcN

a

b

c

 =

bW

bE

bS

bN

 (4.22)

Using the least-square formulation [78] to construct the least square reconstruction matrix

83

AR, such that:
(ATA)x = AT b

x = (ATA)−1AT b

x = ARb

where AR is evaluated as:

AR = (ATA)−1AT (4.23)

So that the solution of the least-square system is found as:

x =

a

b

c

 =

ARaW ARaE ARaS ARaN

ARbW ARbE ARbS ARbN

ARcW ARcE ARcS ARcN

bW

bE

bS

bN

 (4.24)

The above equation contains the local reconstruction coefficients representing the cardinal
neighbors’ contribution in the reconstructed value φP . Each column in the reconstruction
matrix AR denoted in Eq. 4.24 represents the neighbor’s contribution corresponding to the
indicated cardinal direction to the reconstructed value. Each row represents the linear com-
bination of the four cardinal directions to impart the polynomial coefficients (a, b, c). So
that;

a = ARaW bW + ARaEbE + ARaSbS + ARaNbN

b = ARbW bW + ARbEbE + ARbSbS + ARbNbN

c = ARcW bW + ARcEbE + ARcSbS + ARcNbN

(4.25)

Since the reconstruction polynomial in Eq 4.16 is defined at the center of the reconstructed
cell, the reconstructed value at the cell center is given by,

φP = a = ARaW bW + ARaEbE + ARaSbS + ARaNbN (4.26)

which gives the reconstruction formula at the cell center of a given arbitrary interface cell as
a function of its four Cardinal neighbors values.

84

The last step in the presented methodology is to assemble a matrix of unknowns to reconstruct
all the interface cells in one system. In such a way, the elements of the reconstruction matrix
AR represented in Eq. 4.26 will be placed in a global reconstruction system, each element
being placed in its relative position, according to its order in the list of interface cells.

The following example demonstrates a simple implicit reconstruction system for clarification
of the proposed methodology, without relying on a physical topology or tagging. Consider-
ing the given grid in Fig. 4.7, Cells (7, 8, 9) are assumed to be interface cells with unknown
values(φ7, φ8, φ9) and should be reconstructed implicitly using the known values of the re-
maining cells (1 : 5, 6, 10, 11 : 15). The reconstruction coefficients AR of the interface cells
are assumed to be evaluated using Eq. 4.23.

Figure 4.7 Illustration to implicitly reconstruct the gray cells (7,8 and 9).

The reconstructed values at the interface cells are formulated using Eq. 4.26;

φ7 = ARa6φ6 + ARa8φ8 + ARa2φ2 + ARa12φ12

φ8 = ARa7φ7 + ARa9φ9 + ARa3φ3 + ARa13φ13

φ9 = ARa8φ8 + ARa10φ10 + ARa4φ4 + ARa14φ14

(4.27)

Rearranging Eq. 4.27 to move all the unknowns to the left side of the equation, such that:

φ7 − ARa8φ8 = ARa6φ6 + ARa2φ2 + ARa12φ12

−ARa7φ7 + φ8 − ARa9φ9 = ARa3φ3 + ARa13φ13

−ARa8φ8 + φ9 = ARa10φ10 + ARa4φ4 + ARa14φ14

(4.28)

The solution of the implicit system of Eq. 4.28 leads to assemble the matrix of implicit
reconstruction as follows:

85

1 −ARa8 0

−ARa7 1 −ARa9

0 −ARa8 1

φ7

φ8

φ9

 =

ARa6φ6 + ARa2φ2 + ARa12φ12

ARa3φ3 + ARa13φ13

ARa10φ10 + ARa4φ4 + ARa14φ14

 (4.29)

The assembled matrix is a square matrix of the size of number of the reconstructed interface
cells NIC ×NIC , and is viewed generally in the following form,

ARi[NIC ×NIC] · φi[NIC × 1] =
∑

BCi[NIC × 1]

4.3.2 Reconstruction verification

A test is performed to verify the proposed reconstruction methodology’s accuracy with Neu-
mann and Dirichlet BCs. The test consists of imposing an analytical solution to the compu-
tational domain illustrated in Fig. 4.8, following the analytical representation of Eq. 4.30.

φ(x, y) = 2x+ 5y + 10
∂φ

∂n
= ∂φ

∂x
nx + ∂φ

∂y
ny

(4.30)

Since the reconstruction polynomial of Eq. 4.16 is linear, as the imposed analytical function,
it is expected that the reconstructed values will be exact. A Dirichlet BC is imposed at two
opposite boundaries of the domain, as shown in Fig. 4.8a, and a Neumann BC is imposed at
the two other opposite boundaries. All internal nodes FC are imposed with the analytical
values evaluated by Eq. 4.30, and all interface cells are reconstructed implicitly. The resulting
reconstructed values of the interface cells are found to match the exact analytical values, with
an average error (L2 Norm) of 3.563e−15.

86

(a) Computational grid with BC. (b) Analytical function represented on inter-
face cells.

(c) Reconstructed solution on interface cells. (d) Reconstruction error.

Figure 4.8 Verification of reconstruction scheme using analytical function.

4.4 Boundary conditions for Euler equations

The boundary conditions for Euler equations are directly imposed at the intersection points
between the discrete topology and the intersected cells. These points are identified during
the tagging operation as presented in Section 3.4.3. Taking advantage of these points allows
imposing the BC at a physical point that lies on the topology without approximating the
position of the BC.

The imposed BC is used to reconstruct the interface cells values via the implicit approach
presented in Section 4.3. The position of the stored values of the BC relative to the interface
cell leads to two possible configurations:

• The interface cell is an intersected IIC: in this case, the reconstruction of the cell P

87

retrieves the BC information stored in the same cell, as illustrated in Fig. 4.9a

• The interface cell is not an intersected cell NIIC: in that case, the reconstruction
employs the BC information stored in the nearest IOC, as shown in Fig. 4.9b, point P
retrieves the BC information from the nearest IOC cell E.

(a) The interface cell P is intersected
and retrieves the BC information within
the same cell.

(b) The interface cell P is not inter-
sected and retrieves the BC information
from the nearest IOC cell E.

Figure 4.9 Possible configurations for BC reconstruction.

For Euler’s equations, the primitive variables U = [ρ, u, v, p] are reconstructed in each inter-
face cell (IIC and NIIC) according to the BC type at the intersection points. The different
types of implemented BC are as follows:

Supersonic Inlet

For a supersonic inlet BC, the free-stream values are applied at the inlet. When at least
one intersection point associated with an IIC or NIIC interface cell is indicated as supersonic
inlet BC, then all flow variables are imposed at the interface cell center. The pressure at the
inlet pin, the Mach number Min, the temperature Tin and the flow angle θin. The imposed
values are sufficient to evaluate all other flow quantities as:

ain =
√
γRTin

Vin = Minain

ρin = pin

RTin

uin = Vincos(θin)
vin = Vinsin(θin)

(4.31)

88

Supersonic Outlet

The flow variables at a supersonic outlet are reconstructed from the fluid side using the Neu-
mann null condition (dφ/dn = 0), implying no gradients at the supersonic outlet boundary.

Subsonic Inlet

For subsonic inlet BC, the total pressure P0 and total temperature T0 are imposed. The
pressure is evaluated at the interface cell centers of the subsonic inlet by applying a Neumann
null condition on pressure (dpin/dn = 0). The reconstructed pressure at cell centers is then
used to evaluate the pressure values at the intersection points at the subsonic inlet. This
evaluation is performed using the reconstruction polynomial defined in Eq. 4.16. The pressure
values at the intersection points are then employed to evaluate the remaining flow properties
(ρ, u, v) at the boundary using isentropic flow relations. The properties are then treated
as Dirichlet BC in the reconstruction scheme. The treatment of subsonic BC is detailed in
Algorithm 4.

Algorithm 4 Treatment of subsonic BC
1: Impose P0,T0, γ, θin.
2: Impose dpin

dn
= 0 at the boundary.

3: Reconstruct the pressure at the interface cell centers using the imposed Neumann condi-
tion.

4: Evaluate the pressure Pin at the boundary using Eq. 4.16.
5: Using isentropic flow relations, evaluate at the boundary:
6: Tin using P0

pin
=
(
T0
Tin

)γ/(γ−1)

7: ρin = pin/RTin
8: ain =

√
γRTin

9: Min using P0
pin

= (1 + 0.5(γ − 1)M2
in)γ/(γ−1)

10: Vin = Minain
11: uin = Vincos(θin), vin = Vinsin(θin)
12: Reconstruct ρ, u, v in the interface cells using the values in the above steps 6 : 11 as

Dirichlet BC.

Subsonic Outlet

For the subsonic outlet BC, the pressure at the outlet boundary is imposed such that
pout/P0 < 1 and treated as Dirichlet BC. The remaining flow properties (ρ, u,v) are re-
constructed by imposing a Neumann null BC at the outlet boundary (dρ

dn
= du

dn
= dv

dn
= 0).

89

Slip Wall

A slip wall BC application is realized by subtracting the normal vector component VN from
the reconstructed velocity vector V . This reconstructed velocity V is obtained by applying
a Neumann BC (dV/dn = 0). The result is a projection into the boundary’s tangential
direction, resulting in VT . This procedure is illustrated in Fig. 4.32, where the reconstructed
velocity is denoted by V , projected to the normal and tangential direction to the boundary,
and denoted by VN and VT respectively. The projected tangential component VT is then
decomposed to the Cartesian coordinates (uT , vT).

VT = V − VN

VT = V − (V · n)nuT
vT

 =
u
v

 − (u · nx + v · ny)
nx
ny

 (4.32)

(a) The reconstructed ve-
locity vector V .

(b) The reconstructed ve-
locity V is decomposed into
the tangential VT and nor-
mal VN components to the
boundary.

(c) The reconstructed veloc-
ity V is projected to the
tangential component VT .

Figure 4.10 Slip boundary condition application by vector projection.

Overset Interface

This type of BC is imposed on the set of interpolated cells handled by the overset algorithm.
These cells are responsible for transferring the information between overlapping grids. The
overset algorithm always ensures well-conditioned interpolated cells, i.e., an interpolated cell
is always interpolated through a set of internal nodes on the underlying/overlying grid. This
conditioning is previously demonstrated in Section 3.5.

90

A 2-D illustration of the overset reconstruction methodology is illustrated in Fig. 4.11. The
interpolated cell on grid #2 is mapped on grid #1 to the coordinate ξ(x, y). This mapped
coordinate is the reference point where each interpolated cell’s reconstruction polynomial is
defined, following Eq. 4.16. Since the hypothesis of the well-conditioned interpolated cells is
taken into account, then the mapped point ξ is always surrounded by internal nodes (P , N ,
S, W , E).

Figure 4.11 Reconstruction stencil on a 2-D overset grid.

For the illustrated case in Fig. 4.11, the bounding cell on grid #1 of the mapped point ξ is
the cell P . The reconstruction stencil at the mapped point ξ employs the value stored at the
bounding cell P , and the contribution of the derivatives from the neighbours (N , S, W , E),
such that:

φξ = φP + b(xξ − xP) + c(yξ − yP) (4.33)

where the coefficients b and c are evaluated following the same approach of the implicit
reconstruction scheme for a polynomial defined at the point ξ, and it is found using Eq. 4.25,
or it can be written as:

E

W

N

S

1 xξ − xE yξ − yE
1 xξ − xW yξ − yW
1 xξ − xN yξ − yN
1 xξ − xS yξ − yS

a

b

c

 =

φE

φW

φN

φS

 (4.34)

The overset reconstruction employs the values at the cell centers of the overlapped cells

91

so that the overset reconstruction type is imposed as Dirichlet BC’s on the reconstruction
system.

Boundary conditions summary

Table 4.1 Reconstruction types of boundary conditions

Boundary Condition Density Velocity Pressure
Supersonic Inlet Dirichlet Dirichlet Dirichlet
Supersonic Outlet Neumann=0 Neumann=0 Neumann=0
Subsonic Inlet Dirichlet Dirichlet Neumann=0
Subsonic Outlet Neumann=0 Neumann=0 Dirichlet
Slip Wall Neumann=0 Neumann=0 Neumann=0
Overset Interface Dirichlet Dirichlet Dirichlet

4.5 Treatment of overset grid motion

The ALE approach supports the concept of grid motion. This formulation, in link with the
overset approach, simplifies the implementation of moving geometries, especially the case
with rigid boundaries.

The motion of rigid boundary with the overset grid implies that the Geometric Conservation
Laws (GCL) are always conserved, with no nodes deformation for the adopted approach.

The introduction of a grid velocity Vg modifies the governing equations of flow field in Eq. 4.2
to take into account the grid velocity for the calculation of the convective terms, such that:

Vg = ug î+ vg ĵ (4.35)

F =

ρ(u− ug)

ρu(u− ug) + p

ρv(u− ug)
(E + p)(u− ug) + ugp

 G =

ρ(v − vg)
ρu(v − vg)

ρv(v − vg) + p

(E + p)(v − vg) + vgp

 (4.36)

This grid motion modifies also the eigen-values λi of Roe’s scheme, and can be written as
below,

92

λkx
=

ũ− ug − ã
ũ− ug
ũ− ug

ũ− ug − ã

 , λky
=

ṽ − vg − ã
ṽ − vg
ṽ − vg

ṽ − vg − ã

 , k = 1, 2, 3, 4. (4.37)

The corresponding eigen-vectors ei and the wave strength αi remains unchanged. Another
modification to account for the presence of the grid motion is the slip wall BC, for the relative
velocity of the moving boundary. The tangential velocity component is written as:

VT = V − ((V − Vg) · n)nuT
vT

 =
u
v

 − ((u− ug) · nx + (v − vg) · ny)
nx
ny

 (4.38)

Finally, the time step calculation is also modified to account for the grid velocity.

∆tx = min

(
CFL∆x

a+ | u− ug |

)

∆ty = min

(
CFL∆y

a+ | v − vg |

)

∆t = min(∆tx,∆ty)

93

CHAPTER 5 VERIFICATION AND VALIDATION OF THE ALGORITHM

This chapter presents the implementation of the algorithm, and a set of conducted test cases
with the goal of validate and verify the developed code.

5.1 Algorithm implementation

The IBM code is developed in an object-oriented architecture, where each building block
is encapsulated into a class. The UML scheme of the developed code is presented in Ap-
pendix A, where five main classes are essentially developed, namely, (DiscreteTopology,
HierarchicalGrid, ComputationalGrid, OversetGrid, Reconstruction, and FlowSolver).

The programming environment for this code isMatlab. Architecture classes and all visualisa-
tions employedMatlab for execution. The usage of this tool facilitates the programming and
prototyping, as this research is the first version of the proposed algorithm. This interpreted-
based environment puts a limitation on the computational performance, and as such it may
not be the suitable choice for test cases with a very large number of cells.

5.2 General aspects

For most of test cases, unless otherwise stated, the upcoming generalization is applied.

• A perfect gas model is adopted with a specific heat ratio γ of 1.4, and a gas constant
R of 287.05 J Kg−1 K−1.

• The order of accuracy is calculated by the evaluation of L2 norm of the error εL2 versus
a mean grid resolution h̃ as follows:

εL2 =

√√√√ 1
Ω

N∑
i=1

ωi | φRef − φNum |2 (5.1)

h̃ =
√∑N

i=1 ωi
N

(5.2)

where :

– ωi : Cell area.

– N : Number of cells of the computational domain.

94

– Ω : Total area of the domain.

– φRef : Reference solution of a given physical property.

– φNum : Numerical solution of a given physical property.

5.3 Test cases classification

The test cases are arranged into four groups, categorized by the type of computational grid
(single or overset grid) and the type of flow-field (steady or unsteady). This classification is
listed in Table 5.1, and the test cases listing is illustrated are Tables 5.2-5.5

Table 5.1 Classification of test cases

Category Tests Type
1 Steady flows on a single grid
2 Unsteady flows on a single grid
3 Steady flows on a overset grids
4 Unsteady flows on a overset grids

Table 5.2 Test cases - Category#1: Steady flows on a single grid

Test ID Test Objective

CAT11 Subsonic flow in a tube
Test basic solver consistency and test inlet
and outlet subsonic boundary conditions

CAT12 Supersonic flow in a tube
Test basic solver consistency and test inlet
and outlet supersonic boundary conditions

CAT13 Subsonic Rayleigh flow Test source terms handling to subsonic flow

CAT14 Supersonic Rayleigh flow
Test source terms handling to supersonic
flow

CAT15 Subsonic radial flow Test basic 2D solution

CAT16
Confluence of two supersonic
flows

Test shock capturing capabilities and slip
line solution in 2D

CAT17 Supersonic flow over a bump Test transonic case on a curved boundary

95

Table 5.3 Test cases - Category#2: Unsteady flows on a single grid

Test ID Test Objective
CAT21 Shock tube flow Test the scheme accuracy for unsteady flows

CAT22 Tube in impulsive motion
Verify grid motion treatment and ALE im-
plementation

CAT23
Unsteady supersonic flow over a
symmetric wedge

Reference case to test grid motion

Table 5.4 Test cases - Category#3: Steady flows on overset grids

Test ID Test Objective

CAT31
Subsonic tube flow with station-
ary overset grid

Test the treatment of interpolated cells in
two directions

CAT32
Subsonic tube flow with moving
overset grid

Verify grid motion treatment and ALE im-
plementation

Table 5.5 Test cases - Category#4: Unsteady flows on overset grids

Test ID Test Objective

CAT41
Unsteady supersonic flow over
symmetric wedge with stationary
overset grid

Reference case for unsteady flow with per-
turbations crossing the overset interface

CAT42
Unsteady supersonic flow over
symmetric wedge with moving
overset grid

Reference case for testing a single grid with
uniform motion

CAT43
Unsteady supersonic flow over
three accelerated wedges with
moving grids

Reference case for testing multiple grids
with accelerated motion.

5.4 Steady flows on single grids

This category of tests aims to verify the developed algorithm to solve steady flows on single
grids, and to demonstrate the ability to manage both single and overset grids by the same
tool. These tests span subsonic/supersonic flows, shock wave interactions of multi-flows and
interaction with solid boundaries.

96

5.4.1 Subsonic flow in tube (CAT11)

This basic test case aims to verify the implementation of the algorithm classes, by solving
a constant subsonic flow inside a tube to test the implementation of subsonic inlet/outlet
boundary conditions. The tube length and diameters are of one meter, the test setup is
illustrated in Fig. 5.1a. The types of boundary conditions of the computational domain are
Subsonic Inlet at M = 0.6, Subsonic Outlet and Slip Wall for the horizontal sides. This test
is conducted on a coarse grid of 15x15, shown in Fig. 5.1b

(a) Subsonic tube operating boundary conditions. (b) Immersed boundary on a Cartesian grid of
15x15 with colored tagged cells.

Figure 5.1 Subsonic tube test setup and computational domain.

The flow enters the domain horizontally at zero incidence angle, the flow-field is initialized
by the values that corresponds to the farfield conditions. Since the flow is parallel to the
walls, it is expected that the solution remains unchanged with the iterations and equal to
the imposed initial conditions, as shown in Figs. 5.2 and 5.3. In these figures the numerical
solution of the Mach number and pressure distributions inside the tube are illustrated. The
error in Mach number and pressure value are in the order of 10e−15 and 10e−11 respectively,
implying that the numerical solution is almost exact.

97

(a) Analytical Mach num-
ber.

(b) Numerical Mach num-
ber.

(c) Mach number error.

Figure 5.2 Comparison of numerical solution of Mach number for the subsonic flow in a tube.

(a) Analytical pressure dis-
tribution.

(b) Numerical pressure dis-
tribution.

(c) Pressure error.

Figure 5.3 Comparison of numerical solution of pressure for the subsonic flow in a tube.

5.4.2 Supersonic flow in tube (CAT12)

This test verifies the solution of a constant supersonic flow inside a constant diameter tube
and examines the implementation of the supersonic inlet/outlet boundary conditions. The
immersed geometry is the same as test (CAT11) in Section 5.4.1, a tube length and diameter
of one meter. The imposed boundary conditions are given in Fig. 5.4, for a supersonic inlet
Mach number of two is given, with zero incidence angle, the pressure is set to 150e3 Pa

and the temperature of 400 K is imposed. The test is performed on a grid of 15x15, as in
Fig. 5.1b to verify the capability to achieve a solution close to the exact solution of a uniform
supersonic flow.

98

Figure 5.4 Supersonic tube test setup.

The flow-field is initialized from the inlet conditions, the solution converged from the first iter-
ation, and achieved an error order close to the machine zero, as illustrated in Figs. 5.5 and 5.6.

(a) Analytical Mach num-
ber.

(b) Numerical Mach num-
ber.

(c) Mach number error.

Figure 5.5 Comparison of numerical solution of Mach number for the supersonic flow in a
tube.

99

(a) Analytical Pressure. (b) Numerical Pressure. (c) Pressure error.

Figure 5.6 Comparison of numerical solution of Pressure for the supersonic flow in a tube.

5.4.3 Subsonic Rayleigh flow (CAT13)

This test is to verify the ability to solve Euler’s equations with source terms in a subsonic
regime. Rayleigh flow is an inviscid confined flow between two walls with heat addition Q̇.
Euler’s equations presented in Eq. 4.1 becomes;

Wt + F (W)x +G(W)y = S , S = [0 0 0 Q̇] (5.3)

where S is the source term vector. The addition of heat to a flow increases its stagnation
enthalpy, which in turn increases its total temperature T0. This drives the subsonic flow to
accelerate while it is heated. The analytical solution of a Rayleigh flow and its governing
equations can be found in reference [125].

Four grids were tested (10 × 10, 20 × 20, 40 × 40, and 80 × 80) with the given boundary
conditions in Fig. 5.7.

100

Figure 5.7 Subsonic Rayleigh flow test setup and operating boundary conditions.

The analytical solution of Rayleigh flow demonstrates that the flow quantities’ variation along
the tube is not linear, following Eq. 5.4, where the pressure varies with the Mach square.
This implies that the imposition of a Neumann null condition at the inlet and the outlet will
not describe the analytical solution exactly.

To accurately approach the analytical solution, the analytical gradient is calculated and
applied as Neumann boundary condition. At the exit, the gradients of density and velocities
(dρ
dn

and dV
dn
) are evaluated analytically, where at the inlet the analytical pressure gradient

dP
dn

is applied. The analytical gradients are obtained by evaluating the total temperature
gradient dT0

dn
from the expression for the energy equation within a unit control volume, with

boundaries 1 and 2, as expressed in Eqs. 5.5.

p

p∗
= γ + 1

1 + γM2 (5.4)

Q̇ = ṁCp(T02 − T01)

q = Cp(T02 − T01)

q = CpdT0

dT0

dn
= q

Cp

(5.5)

101

The expression of dT0/dn in Eq. 5.5 is valid for the evaluation of all other gradients following
the governing equations of Rayleigh flow.

The solution shown in Figs. 5.8 and 5.9 illustrate the numerical solution of Mach number
on the coarser (10 × 10) and finer (80 × 80) grids. Both grids were capable to capture the
property variation along the midsection with accuracy.

(a) Numerical Mach num-
ber.

(b) Mach number error. (c) Mach number variation
along the mid-section.

Figure 5.8 Mach number variation for subsonic Rayleigh flow on a 10x10 grid.

(a) Numerical Mach num-
ber.

(b) Mach number error. (c) Mach number variation
along the mid-section.

Figure 5.9 Mach number variation for subsonic Rayleigh flow on a 80x80 grid.

The error on the coarser grid at the mid section is bounded by (0.0368%-0.0792%). The
order of convergence for the entire domain is calculated for the L2 norm of Mach error, and is
evaluated by 0.886, as shown in Fig. 5.10. The achieved order of convergence is lower than 1
due to the imposition of the analytical gradient. This may slow down the convergence of the
solution, but this degradation of the order of convergence does not impact the accuracy since

102

the order of the error is low, even with the coarser grid. A slight difference in the solution
near the wall was noticed; it might be related to the implicit reconstruction; this assumption
should be precised with further investigation in future work.

Figure 5.10 Mach number L2 norm convergence for subsonic Rayleigh flow.

5.4.4 Supersonic Rayleigh flow (CAT14)

This test is an extension of the previous one (CAT13), and aims to evaluate the Rayleigh
flow in supersonic regime. The setup is illustrated in Fig. 5.11. All flow properties are
imposed at the inlet and the outlet is set as a Supersonic Outlet with the imposed values
of the analytical gradients of the Rayleigh solution. As in the subsonic Rayleigh flow case,
the imposition of analytical gradients at the outlet is applied because the condition of null
Neumann is not sufficient to describe the analytical solution. A better choice would be the
application of "Free" boundary condition, but this requires a higher order reconstruction
(quadratic polynomial as example) to have enough information to reconstruct the gradients
from the numerical solution.

103

Figure 5.11 Test case setup for supersonic Rayleigh flow.

Five grids were tested (10 × 10, 20 × 20, 40 × 40, 80 × 80 and 160 × 160) to evaluate the
order of convergence and to assess the accuracy of the numerical solution.

The maximum error observed on the coarser grid in Fig. 5.12c deviates by 1.7% of the
analytical solution, while on the finer grid, Fig. 5.13c, this error is 0.02%.

(a) Analytical Pressure. (b) Numerical Pressure. (c) Pressure error.

Figure 5.12 Supersonic Rayleigh flow solution on a 10x10 grid.

104

(a) Analytical Pressure. (b) Numerical Pressure. (c) Pressure error.

Figure 5.13 Supersonic Rayleigh flow solution on a 160x160 grid.

The imposition of analytical gradient at the outlet introduces a small upstream disturbance
that converges toward the analytical solution, respecting a second order convergence as illus-
trated in Fig. 5.14. The shown order of accuracy is an average order that may be refined to
reach an order close to 2 with finer grids.

(a) Pressure. (b) Density.

Figure 5.14 L2 norm convergence for supersonic Rayleigh flow.

105

5.4.5 Subsonic radial flow (CAT15)

This test case is to verify a 2D subsonic solution, as well as the subsonic inlet/outlet recon-
struction normal to a curved boundary. The geometry consists of a 2D quarter annular disk,
with outer radius R1 of 2 m and inner radius R2 of 1 m. The flow enters from the outer
radius and leaves the domain from the inner radius radially, as illustrated in Fig. 5.15. The
vertical and horizontal boundaries are set as slip walls.

Figure 5.15 Test case setup for subsonic radial flow.

In this test case, the outer radius R1 is set as a Subsonic inlet, where the physical quantities
are reconstructed normal to the boundary to ensure the radial flow direction. The recon-
struction employs the normal vectors of the immersed topology generated during the tagging
process. The inner radius R2 is set as a Subsonic Outlet where a null Neumann boundary
condition is used to reconstruct the density and velocity quantities. A pressure ratio pout/P0

of 0.8 is applied at the outlet.

The analytical solution of the radial flow is the quasi-1D isentropic flow solution [125], where
the flow converges to the annuls center, and flow properties vary along the radial direction,
as in a convergent nozzle.

Four grids are tested (13 × 13, 24 × 24, 44 × 44, and 85 × 85) using the developed IBM
solver. In addition to the comparison to analytical solution, the IBM solution is verified by
a comparison to an unstructured grid flow solver applied on four unstructured body-fitted
grids of nearly the same resolution. The grid element lengths were approximately (0.2, 0.1,
0.05, and 0.025) m, respectively. The two codes employ the same solver (Roe’s solver) with

106

the same spatial and temporal discretisation scheme.

Pressure distributions obtained by the two solvers are shown in Fig. 5.16 for an IBM grid
resolution of 24× 24 versus the corresponding unstructured body-fitted grid. Qualitatively,
the two solvers give the same behavior, with an underestimation of the IBM solver for the
pressure value at the exit section of approximately 4.5% for the given resolution.

(a) IBM solution on a Cartesian grid 24 × 24,
average element length is 0.98 m.

(b) Body-fitted solution on an unstructured
grid, average element length is 0.1 m.

Figure 5.16 Pressure distribution of IBM vs. unstructured solvers.

To better analyse these solutions, the order of convergence for the two solvers is evaluated.
Each grid is verified with respect to the analytical solution as presented in Fig. 5.17, where
the pressure distribution of the IBM solver is compared to the analytical solution. The
maximum error is evaluated at the exit radius. This is because of the application of a null
Neumann boundary condition at the exit to reconstruct the density and the velocity where
the gradients at the exit section are not equal to zero. This limitation is imposed by the linear
reconstruction scheme. A higher order reconstruction could solve this issue, by imposing a
"free" boundary condition at the outlet.

The order of convergence of the two solver is examined and shown in Fig. 5.18. The two
solvers show the same order of error for all grid resolutions, and it follows nearly the same
order on convergence (0.62 − 0.71 for pressure) and (0.704 − 0.9 for density). These results
show a consistent error trend for both solvers, with the estimation of a lower absolute value
of error for the unstructured solver.

107

(a) Analytical solution. (b) IBM solution. (c) Pressure error.

Figure 5.17 Pressure distribution of IBM vs. analytical solution on a Cartesian grid of 85×85
(average element length of 0.0247 m).

(a) Density L2 norm convergence. (b) Pressure L2 norm convergence.

Figure 5.18 Density and pressure L2 norm convergence for IBM vs. unstructured solvers.

5.4.6 Confluence of two supersonic flows (CAT16)

The confluence of two supersonic flows is the merging of two flows at different operating
conditions leaving a trailing edge of a wedge. The incidence angle of the flow is denoted

108

by θ′, where it represents the wedge angle, as shown in Fig. 5.19. Each flow generates a
shock wave at the trailing edge denoted by β as measured from the extension of the wedge
surface. The region between the shock is characterized by the presence of a slip line, where
the properties of the two flows equalize. The aim of this test is to evaluate the capability
to solve flows in confluence and capture the shock waves and slip line. The verification is
carried out with the analytical solution [126].

The dimensions of the computational domain is (Lx = 3 m, Ly = 10 m). The inlet is divided
into two parts by the location of the trailing edge; the upper inlet, which consists of the upper
half of the vertical inlet and the upper horizontal boundary of the domain. At this inlet the
flow properties of flow 1 are imposed (M1, θ′1, p1, and T1). The second inlet is the mirror of
the upper inlet, where the flow properties of flow 2 are imposed (M2, θ′2, p2, and T2). The
outlet of the domain is set as a Supersonic outlet represented by the vertical boundary at
the right of the domain. This configuration with the boundary conditions are illustrated in
Fig. 5.19.

Figure 5.19 Test case configuration, flow angles, and boundary conditions for the confluence
of two supersonic flows.

The location of shock wave is predicted analytically, and is used to pre-adapt the grids to
follow the predicted shock waves. Four grids where used in this test, the base grid 15× 150
with one level finer of adaptation that follows the shock line, as illustrated in Fig. 5.20a.

109

Each finer grid is discretized by a multiple of two with respect to the previous one, these
grids are generated using the Add − on feature (RefineUniformGrid) presented in Section
3.7.

(a) Base grid 15× 150 with
one level of local refinement.

(b) Level 1 grid is one level
finer than the base grid.

(c) Level 2 grid is one level
finer than the level 1.

Figure 5.20 Computational domains of pre-adapted refined grids for confluence test case.

The solution at the outlet is captured and compared to the analytical solution. The numerical
solutions at the exit for the four grids are shown in Fig. 5.21. The results show a convergence
toward the analytical solution with grid refinement, and the error becomes more localized
as shown in Fig. 5.22. The order of convergence of the pressure L2 norm is of around 0.45,
shown in Fig. 5.23, which agrees with similar test cases that give an order of around 0.5 for
the cases of flow discontinuities and shock waves for a first order flow solver [127].

The pressure and density distribution is given in Fig. 5.24a, where the slip line is captured
in Fig. 5.24b.

110

(a) Base grid. (b) Level 1 grid.

(c) Level 2 grid. (d) Level 3 grid.

Figure 5.21 Pressure distribution along the outlet section for different grid resolutions.

111

(a) Base grid. (b) Level 1 grid.

(c) Level 2 grid. (d) Level 3 grid.

Figure 5.22 Pressure error along the outlet section for different grid resolutions.

112

Figure 5.23 Pressure L2 norm convergence for supersonic confluence of two flows.

(a) Pressure distribution. (b) Density distribution.

Figure 5.24 Numerical results on a Level 3 grid.

113

5.4.7 Supersonic flow over a bump (CAT17)

This test aims to verify supersonic flow solution over curved boundaries. The test consists
of a channel 3 m long, with a 1 m bump located at half length of the channel. The ratio of
bump thickness to length (t/L) is 4%. The inlet Mach number is 1.4. Four Cartesian grids
are tested (50× 20, 100× 40, 200× 80, and 400× 160). The test case configuration and grids
are illustrated in Fig. 5.25.

(a) Configuration and boundary conditions of the supersonic bump test case.

(b) Supersonic bump topology immersed in a Cartesian grid (50× 20).

Figure 5.25 Test case setup for a supersonic bump configuration.

The flow properties contours are shown in Fig. 5.26, where the shock waves interference and
reflection from walls is captured. The numerical results are compared to Ni [128], while
others also conducted the same test case [129]. The Mach number distribution along the
upper and lower walls is shown in Fig. 5.27, the solution converges to the reference solution
with grid refinement. The first order numerical scheme shows a diffusive behaviour around
flow discontinuities, as presented in Fig. 5.27a and 5.27b. This behaviour is reduced by grid
refinement, where the flow features are better defined on finer grids, as shown in Fig. 5.27d.

A second order discretization scheme could capture flow discontinuities in higher accuracy

114

for the same grid resolution.

(a) Mach number. (b) Pressure.

(c) u-velocity. (d) v-velocity.

Figure 5.26 Distribution of physical properties over a supersonic bump M = 1.4.

Since no analytical solution for the current test is available, a grid convergence method is
conducted to evaluate the apparent order of accuracy of the tested grids [130].

The apparent order of accuracy p is evaluated using the three tested grids as follows:

p = 1
ln (r21) | ln | ε32/ε21 || (5.6)

where r = h2/h1, and h is the representative mesh size, or cell area. For the given meshes;
h1 < h2 < h3, and εij is the L2 norm of the error between mesh i and j. Since the grids are
uniformly refined, so r = 2. The apparent order of accuracy is evaluated as 0.551, this value
is consistent with the predicted order of accuracy to be around 0.5.

115

(a) Grid 50× 20. (b) Grid 100× 40.

(c) Grid 200× 80. (d) Grid 400× 160.

Figure 5.27 Mach number distribution on upper and lower walls.

5.5 Unsteady flows on a single grid

This category of tests is to verify the numerical solution of unsteady flows on single grids. It
consists of three cases: a) Shock tube flow, b) Tube in impulsive motion, and c) Unsteady
flow over a wedge.

116

5.5.1 Shock tube flow (CAT21)

The shock tube test case consists of a tube closed at its two ends, and divided into two
regions by a membrane placed inside the tube. Each part of the tube is filled with the same
gas at different conditions (pressure, Mach number, temperature) initially at rest (at t = 0,
u = 0). The high pressure region is designated by the subscript L and located in the left part
of the tube, and the low pressure region is designated by the subscript R and located in the
right part of the tube, as illustrated in Fig. 5.28.

Figure 5.28 Shock tube configuration.

A sudden fracture of the membrane will cause the flow to go through the equilibrium state
to equalize the pressure inside the tube, the high pressure region will expand, and generate
an expansion wave that travels to the left, the region of expansion is called (expansion fan)
and designated in Fig. 5.28 by Region (E). The low pressure region is compressed by the
the expansion from the left side, and a shock wave is formed at the low pressure region that
travels to the right. The expansion fan and the shock wave are separated by the contact
discontinuity where entropy is discontinuous.

A 2D shock tube (1 m × 1 m) is constructed and the solution at midsection is compared
to the exact solution [131] at different times. The developed IBM code is able to capture
the flow discontinuities, as shown in Figs. 5.29-5.31. The figures show the displacement
of the shock and the expansion waves with time, and agree with the exact solution at the
contact discontinuity, where the pressure and velocity are continuous, while the density is
discontinuous.

117

(a) t = 0.10051 (b) t = 0.2095 (c) t = 0.29797

Figure 5.29 Pressure distribution at mid-section of a shock tube at different times, grid size
81× 81.

(a) t = 0.10051 (b) t = 0.2095 (c) t = 0.29797

Figure 5.30 u-velocity distribution at mid-section of a shock tube at different time frame,
grid size 81× 81.

(a) t = 0.10051 (b) t = 0.2095 (c) t = 0.29797

Figure 5.31 Density distribution at mid-section of a shock tube at different time frame, grid
size 81× 81.

118

The order of convergence of density, pressure, and u-velocity is 0.42, 0.47, and 0.58 respec-
tively, as shown in Fig. 5.32.This agrees with the predicted value where a flow discontinuity
occurs [127].

(a) Density. (b) Pressure.

(c) u-velocity.

Figure 5.32 Order of convergence of L2 norm of physical quantities of shock tube.

119

5.5.2 Tube in impulsive motion (CAT22)

This test aims to verify the implementation of the ALE approach to the IBM solver presented
in Section 4.5, by evaluating the solvers’ ability to handle the grid motion.

The test consists of a tube closed at its two ends filled with a homogeneous gas with a given
thermodynamic parameters (p, T , u). Initially the confined gas and the tube are set at rest
(at t = 0 → u = 0, utube = 0).

As the tube moves impulsively to the right (i.e., at t > 0 → utube > 0), the left wall of
the tube will hit the stagnant flow, and a shock wave propagates to the right at a constant
speed greater than the speed of sound. The motion of the tube to the right will produce
an under-pressure on the right wall, and an expansion fan will propagates to the left. This
propagation of waves divides the tube into four regions: a) Region 2 behind the shock wave
and limited to the location of the traveling shock wave xs. The velocity in this region is
equal to the velocity of the tube utube. b) Region 3 behind the expansion fan and limited to
the tail of the expansion fan located at xt. The velocity in this region is also equal to utube.
c) Region 4 as the expansion region of the fan. d) Region 1 is the region between the shock
wave at xs and the advancing front of the expansion fan at xadv. This is the non affected
region by the motion before reaching the steady state condition. A schematic representation
of this configuration is illustrated in Fig. 5.33

Figure 5.33 Schematic representation of a tube in impulsive motion with operating zones.

120

The computational domain is a tube of 10 m length and 1 m of diameter, tested on four grids
(50× 5, 100× 10, 200× 20, 400× 40). The operating conditions of the test case are listed in
Table 5.6

Table 5.6 Operating conditions of tube in impulsive motion

Parameter Value
p 45 KPa
u0 0 m/s
T 280 K
utube 102.5 m/s

The solution at mid-section of the tube is illustrated in Fig. 5.34 compared to the analytical
solution [132] at t = 0.0089s for a grid resolution of 200 × 20. The results shows a good
agreement with the analytical solution. The numerical order of convergence of the flow
variables is near the 0.6 as shown in Fig. 5.35.

121

(a) Pressure. (b) Density.

(c) u-velocity.

Figure 5.34 Flow properties at mid-section of a tube in impulsive motion for a grid resolution
of 200× 20 at t = 0.0089s.

122

(a) Pressure. (b) Density.

(c) u-velocity.

Figure 5.35 Flow properties L2 norm convergence of a tube in impulsive motion.

123

The flow properties distribution inside the moving tube is illustrated at Fig. 5.36 at t =
0.0089s, which shows the sharp discontinuity along the shock, at approximately 2.6 m. The
2D solution is consistent with the 1D solution, the flow inside the tube remains unidirectional
for all cells.

(a) Pressure

(b) Density

(c) u-velocity

(d) Temperature

Figure 5.36 2D flow properties distribution in a tube in impulsive motion, grid 400 × 40 at
t = 0.0089s.

5.5.3 Unsteady supersonic flow over a Wedge (CAT23)

This test is conducted to assess the ability to capture unsteady shock development over a
static symmetric wedge at Mach 2. In addition, this test case will be used as a reference
case to verify the solution of a supersonic flow over the same wedge on overset grids. This

124

comparison will be addressed later in Section 5.7.1.

The computational domain is a uniform channel of 2 m diameter, as shown in Fig. 5.37 where
a symmetric wedge is placed at the center line of the channel, placed at 1 m far from the
domain inlet. The wedge angle and length are 30 deg and 1 m, respectively.

Figure 5.37 Computational domain of supersonic wedge test case.

The wedge boundaries are set as Slip Walls, the domain inlet operating conditions are listed
in Table 5.7. All other boundaries are set as Supersonic Outlet. Three Cartesian meshes are
examined (90× 80, 180× 160, and 360× 320), two sample grids are illustrated in Fig. 5.38.

(a) Grid resolution 90× 80. (b) Grid resolution 180× 160.

Figure 5.38 Immersed wedge topology in Cartesian grid for different grid resolutions.

125

Table 5.7 Operating conditions of supersonic wedge on single grid

Parameter Value
p 100 KPa
M 2
T 300 K
α 0 deg

The flow enters the domain horizontally (α = 0) at Mach 2, hits the wedge boundary, and
a shock wave is developed at the leading edge of the wedge. The development of the shock
with time is illustrated in Fig. 5.39. The solution attains the steady state condition after
2000 time steps at a CFL of 0.75. At 4000 time steps, after 0.26 seconds, in Fig. 5.39k, the
shock wave, the expansion wave and the wake are fully developed and stabilized.

The verification of this test case with the analytical solution of shock wave theory and Prandtl
Meyer expansion is not straight forward. This is due to the presence of the wake behind the
body that contributes to a complex structure of the flow field.

126

(a) nt = 20. (b) nt = 60. (c) nt = 100.

(d) nt = 140. (e) nt = 180. (f) nt = 220.

(g) nt = 260. (h) nt = 300. (i) nt = 600.

(j) nt = 1000. (k) nt = 4000.

Figure 5.39 Density distribution of the shock development over a wedge at Mach 2, grid
resolution of 90× 80.

A better definition of the flow structure is shown in Fig. 5.40, where all flow variables are
illustrated on the finest grid 360× 320.

127

(a) Density. (b) Mach number. (c) Pressure.

(d) Density. (e) u-velocity. (f) v-velocity.

Figure 5.40 Flowfield properties distribution of the shock development over a wedge at Mach
2, grid resolution is 360× 320 at steady state conditions.

5.6 Steady flows on overset grids

This category of tests aims to verify the implementation of the overset module with the IBM
solver, and verify the solution of steady flows on overset grids.

5.6.1 Supersonic tube flow with stationary overset grid (CAT31)

This is the first test to verify the overset integration with stationary overlapping grids. The
test aims to evaluate a constant supersonic flow inside a tube with the presence of an over-
lapping empty grid inside the tube. The computational domain consists of two grids, the
reference grid and the overlapping grid. The reference grid contains the tube topology with
dimensions of (16×1 m). The horizontal boundaries of the tube are set as Slip walls, the ver-
tical boundaries are set as supersonic inlet/outlet. An empty overlapping gird of dimensions
(1× 0.5 m) patches the reference grid as illustrated in Fig. 5.41.

128

Figure 5.41 Computational domain of a stationary overset supersonic tube.

The reference grid resolution is 100× 20, the mesh tagging is illustrated in Fig. 5.42a, where
the green cells represents the interface cells where the boundary condition is applied. A set
of cells are disabled by the Hole Cutting procedure to de-activate the cells in the shadow
of the overlapping grid. Around the hole, a layer of interpolated cells are tagged by the
overset module, these cells are the cells responsible for data transfer between the two grids
and colored by red.

The overlapping grid resolution is 40×40, tagged by the overset module to identify the list of
interpolated cells. These cells are the outer layer of the overlapping grid and colored by blue,
as shown in Fig. 5.42b. The assembled computational domain is illustrated in Fig. 5.42c.

129

(a) Reference grid, 100× 20, with mesh tagging and overset tagging.

(b) overlapping grid, 40× 40, with overset tagging.

(c) Assembled grid - Reference grid and overlapping grid.

Figure 5.42 Overset computational domain for supersonic flow tube.

An inlet Mach number of 2 at a static pressure of 100 KPa and static temperature of 300 K are
applied at the domain inlet. The numerical flow solution is compared to the inlet conditions
to assess the accuracy of the numerical solution.

The error on each grid is illustrated in Figs. 5.43 and 5.44, the observed error on both grids is
of the order of machine zero. This result agrees with what is expected from the reconstruction
scheme. Since the flowfield is constant, the reconstruction is expected to be exact since it
employs a linear reconstruction polynomial. The solution on the overset grid is illustrated in
Fig. 5.52, where the flow variables are constant along the entire domain with an error at the
overset interface close to machine zero.

130

(a) Pressure error.

(b) Density error.

Figure 5.43 Solution error of flow properties on the reference grid.

131

(a) Pressure error.

(b) Density error.

Figure 5.44 Solution error of flow properties on the overlapping grid.

132

(a) Pressure.

(b) Density.

Figure 5.45 Solution of flow properties on the overset grids.

5.6.2 Supersonic tube flow with moving overset grid (CAT32)

This test evaluates the flow solution and the overset reconstruction of a moving overset
grid through a constant supersonic flow. The same computational domain of test CAT31,
presented in Section 5.6.1, is used with the same boundary conditions. In this test the overset
grid moves with a travel speed uGrid = 100 m/s, as illustrated in Fig. 5.46.

133

Figure 5.46 Computational domain of moving overset supersonic tube.

The error of the numerical solution is evaluated along the trajectory, and reported in Figs. 5.47 and 5.48
at three positions; the initial position, at 500 time steps (nearly at mid-trajectory), and at
999 time steps (before reaching the end of tube). The pressure error along the grid motion is
bounded by 5× 10−10 on both, reference and overlapping grids. The consistent results show
the ability of the reconstruction scheme to reconstruct the solution for stationary and moving
grids in uniform flows without triggering an error of high order than the CPU precision of
the overset reconstruction.

The pressure distributions along the trajectory remain constant on both grids, as illustrated
in Figs. 5.48 and 5.50.

Figure 5.47 Pressure error on reference grid at initial position, mid-trajectory, and at the end
of trajectory. The position of the hole changes with the mobile grid motion.

134

Figure 5.48 Pressure error on overset grid at initial position, mid-trajectory, and at the end
of trajectory.

Figure 5.49 Pressure distributions on reference grid at initial position, mid-trajectory, and at
the end of trajectory. The position of the hole changes with the mobile grid motion.

135

Figure 5.50 Pressure distributions on overset grid at initial position, mid-trajectory, and at
the end of trajectory.

5.7 Unsteady flows on overset grids

This category of tests verifies the ability of the developed IBM algorithm to fulfill the required
research objective: The ability to solve unsteady compressible flow over a stationary and
moving bodies using overset grids.

5.7.1 Unsteady supersonic flow over a wedge with stationary overset grid (CAT41)

The test aims to verify the unsteady flow over a symmetric stationary wedge immersed on an
overset grid. The wedge dimensions and operating conditions are the same as CAT23 test,
presented in Section 5.5.3. The test verifies the solution on overset grids with respect to the
solution of the same conditions and geometry preformed on a single grid in CAT23. Moreover,
it verifies the overset reconstruction for the case of perfectly overlapped grids (grids of same
cell size, with identical overlap cell center position).

The dimensions of the reference grid are identical to that of CAT23 (3× 2 m). The overset
grid is placed at 0.5 m far from the domain inlet along the center line of the computational
domain, its dimension is (2 × 1 m), where the topology is centered inside the overset grid.
This configuration is illustrated in Fig.5.51

136

Figure 5.51 Computational domain dimensions for a symmetric wedge on an overset grid.

The grid resolution of the reference grid that of CAT23 test (90 × 80). The overset grid
resolution is 60× 40, which generates the same grid size (dx, dy) as the reference grid. The
overset grid is placed on the reference grid so that the cells are perfectly overlapped, so that
the overset grid is seen as the complementary of the reference grid with zero overlap between
the two grids. The generated grids with the tagging are illustrated in Fig. 5.52. In Fig. 5.52a
the transition between the two grids is zoomed, to verify that the cells are perfectly aligned.

137

(a) Overset grids with perfect alignment at grid boundaries.

(b) Reference grid with hole cutting. The inner red cells layer are the interpolated cells, the outer
green cells layer are interface cells. Grid resolution (90× 80).

(c) Overset grid. The outer blue cells layer are interpolated cells, the inner green cells layer are
interface cells. Grid resolution (60× 40).

Figure 5.52 Computational domain with perfectly aligned overset grids.

138

In order to assess the overset grid alignment, the offset between the interpolated cell centers
with the corresponding cells in the opposite grid is evaluated, and illustrated in Fig. 5.58.
The outer layer in this figure is the offset of the interpolated cells of the overset grid with
its corresponding Inner Cells on the reference grid. While, the inner layer is the interpolated
cells offset with the corresponding Inner Cells of the overset grid. The figure shows a precise
overlap with an offset error of machine zero, which ensures a perfect alignment of the two
grids.

(a) Grid offset - dx. (b) Grid offset - dy.

Figure 5.53 Grid offset of interpolated cell centers.

Since the generated overset grid is identical to the single grid presented in the CAT23 test.
The comparison between the two solutions could be accomplished vis − à − vis, such that,
each grid is compared to its corresponding region located on the single grid. The comparison
between a single grid versus an overset grid solution is illustrated in Figs. 5.54-5.57 after 100
time steps solution. The error between the overset solution and the single grid solution is
near machine zero for all flow properties at all time steps. It is important to note is that the
solver setup for the two cases has to be carried out with the same solver parameters (CFL,
number of time steps) to ensure that the solutions can be always compared at the same time
level.

139

(a) Density distribution on
single grid.

(b) Density distribution on
reference grid - Reference
part.

(c) Density error between sin-
gle and reference grids.

Figure 5.54 Density distribution on single and reference grids, nt = 100.

(a) Density distribution on
single grid - Overset part.

(b) Density distribution on
overset grid.

(c) Density error between sin-
gle and overset grids.

Figure 5.55 Density distribution on single and overset Cartesian grids, nt = 100.

140

(a) Pressure distribution on
single grid.

(b) Pressure distribution on
reference grid - Reference
part.

(c) Pressure error between
single and reference grids.

Figure 5.56 Pressure distribution on single and reference girds, nt = 100.

(a) Pressure distribution on
single grid - Overset part.

(b) Pressure distribution on
overset grid.

(c) Pressure error between
single and overset grids.

Figure 5.57 Pressure distribution on single and overset Cartesian girds, nt = 100.

From results it can be concluded that the adopted overset approach does not impact the
solution if the overset grids are perfectly aligned, i.e., the overset reconstruction is exact.
To demonstrates the error introduced by the overset reconstruction, the solution on the
interpolated interface of the two grids is analyzed and illustrated in Fig. 5.58. The overset
reconstruction error is of the order of machine zero in the case of perfectly aligned cells,
which agrees the analytical synthesis of the reconstruction scheme presented in Section 4.4.

141

(a) Density error. (b) Pressure error.

(c) u-velocity error. (d) v-velocity error.

Figure 5.58 Overset reconstruction error of flow properties. Outer loop: overset grid. Inner
loop: reference grid.

5.7.2 Unsteady supersonic flow over a wedge with moving overset grid (CAT42)

This test aims to demonstrate the capability of the developed code to simulate moving
geometries in compressible flows using the proposed IBM-Overset-ALE integration. The test
consists of an immersed topology of a symmetric wedge, the same wedge geometry used in
previous tests, immersed in an overset grid. This overset grid will move with constant velocity
that corresponds to Mach 2 inside a 21 m long tube, filled with a stagnant gas. The test case
setup is shown in Fig. 5.59.

142

Figure 5.59 Computational domain of moving overset supersonic tube.

Two grid resolutions are tested, (630× 80, and 1260× 160) for reference grid discretization,
and (60 × 40, and 120 × 80) for overset grid discretization. The implementation has been
realized with MatLab software, and the grid refinement is limited by the computational
resources available and by the computation time required for the finer grid. The coarser
grids are illustrated in Fig. 5.60.

The test case operating conditions are listed in Table 5.8.

Table 5.8 Operating conditions of moving supersonic wedge on overset grid

Parameter Value
p 100 KPa

MFluid 0
T 300 K
α 0 deg

uGrid −694.377 m/s
vGrid 0 m/s

The unsteady evolution of flow field around the moving wedge is shown in Fig.5.61 at different
times. The shock strength developed at the leading edge of the wedge becomes stronger, so
that after 2500 time steps the shock is fully developed. At this stage, the flow simulation
time is 0.089 seconds.

143

(a) Reference grid discretization (630 × 80), the hole corresponds to the initial position of overset
grid.

(b) Mobile grid discretization (60× 40).

(c) Assembled overset grids.

Figure 5.60 Computational domain discretization at initial position t = 0.

144

Figure 5.61 Unsteady density distribution of supersonic moving wedge at Mach 2, grid reso-
lution 1260× 160/ 120× 80 at different time steps.

5.7.3 Unsteady supersonic flow over three moving accelerated wedges on overset
grids (CAT43)

This test illustrates the ability of the developed code to manage multiple grids in accelerated
motion for arbitrary trajectories. It consists of three independent symmetric wedges immersed
in the center of an (2 × 1 m) overset grid, aligned initially at the same position (x = 0).
Each overset grid is defined by its trajectory and velocity profile along a reference grid. The
designed trajectories do not allow the overset grids to overlaps on each other. The mobile
grid trajectories and the corresponding velocity profiles are shown in Figs. 5.62 and 5.63.

The computational domain consists of a reference grid of dimensions (15× 8 m), discretized
by 315× 180, and the overlapping grids are discretized by 60× 40, as illustrated in Fig. 5.64.
The overlapping grids are initially aligned at x = 0, referred to the overlapping grid centers.
The middle overlapping grid is centered vertically to the reference grid, and each grid distant

145

Figure 5.62 Overset grids trajectories for three wedges, aligned initially at x = 0.

1 m apart.

The grid velocity components (ugrid , vGrid) are determined by the decomposition of the
velocity magnitude to the Cartesian coordinate given by the slope of the trajectory at any
grid position.

A set of sample frames from the unsteady solution are illustrated in Fig. 5.65. The density
distribution at nt = 200 shows a wave interference between the middle and the bottom wedge,
which becomes more pronounced at nt = 300. At nt = 800 a strong shock begin to propagates
from the lower wall of the upper wedge, where a shock reflection occurs between the upper
and the middle wedge that was identified afterward at (nt>800). The interpretation of the
flow field is based on the observation of the results, which can be verified in details later in
future work. The goal of this test is to show the capabilities to manage multiple grids with
non-uniform motion in compressible flow conditions, and the preliminary results agree with
the physical comprehension of the presented phenomena.

146

(a) Upper wedge.

(b) Middle wedge.

(c) Lower wedge.

Figure 5.63 Trajectory and corresponding velocity profiles for the three moving wedges

147

(a) Reference grid (315× 180). (b) Overlapping grids (60 ×
40).

(c) Assembled overset grids.

Figure 5.64 Computational overset domain at t = 0.

148

(a) nt = 200. (b) nt = 300.

(c) nt = 600. (d) nt = 800.

Figure 5.65 Unsteady density distribution of an accelerated three wedges.

149

(e) nt = 1000. (f) nt = 1200.

(g) nt = 1300. (h) nt = 1400.

(i) nt = 1500.

Figure 5.65 Unsteady density distribution of an accelerated three wedges.

150

CHAPTER 6 CONCLUSION

This chapter summarizes the presented work, discusses the limitation of the proposed solu-
tion, and suggests future work that could enhance the proposed methodology.

6.1 Summary of work

This work introduced the development of a 2D algorithm for compressible flow simulation over
stationary and moving bodies using Immersed Boundary Method integrated with hierarchical
overset grids, as the first step towards 3D extended version with a multi-physics solver based
on the IBM-Overset approach.

The development methodology and theoretical representation of each building block of the
algorithm (Discrete topology, Hierarchical grid, Mesh tagging, Overset tagging, Refinement
criteria/grid controls, Solution reconstruction, and Flow solver) have been successfully devel-
oped and presented. A defined format for the discrete topology representation is generated.
A linear quad-tree data structure is employed to generate hierarchical grids. The adopted
spatial numbering scheme is used to leverage the computational efficiency of hierarchical grid
generation and management.

A robust tagging approach, based on "geometry marching" showed a capability to tag dif-
ferent geometrical configurations in accordance with hierarchical refinements to tag complex
geometries. The tagging class is responsible to create the link between the immersed geometry
and the hierarchical grid, as it identifies the different types of cells inside the computational
domain. In addition, it controls the grid refinement through various criteria, and other grid
management features. The tagging algorithm succeeded in tagging different topologies with
different configurations and can support complex geometric scenarios without ambiguity, as
the tagging of the trailing edge of an airfoil (NACA0012). The difficulty of this case is that
the geometric line enters and exits from the same cell side, which is regarded as a complex
tagging case and was found not supported by some libraries as AMRex.

The overset module has shown the ability to manage overlapped grids, under the posed hy-
pothesis of always having the entire overset grid inside the reference grid, with no interference
between any overset-to-overset grid. This module is able to perform the necessary grid adap-
tations (Overset tagging and hole cutting) efficiently for stationary and mobile cases. The
integration of Cartesian grids with the overset module simplifies its implementation, where
the procedure of the hole cutting stays as simple as finding the four corners of a rectangle

151

that bounds the hole. The challenge that comes with this integration relies with the tagging
of interpolated cells, when it shares the characteristic of both (interface & interpolated cells)
at the same time. This situation takes place when the outer boundary of the overlapped grid
(interpolated layer) coincide an the interface cell boundary on the reference grid, and it needs
to be considered for further investigation. For the purpose of this work, the implemented
test cases avoids this configuration.

An implicit least square reconstruction scheme is introduced to reconstruct the solution along
the interface cell layers and the overset cell layers. The proposed scheme has been verified
analytically and numerically to reconstruct Dirichlet and Neumann boundary conditions
linked to the flow solver.

An inviscid compressible cell-centered finite volume flow solver is implemented, based on a
first order discretization in space and time of Roe’s scheme. A set of test cases are reported to
demonstrate the ability of the developed algorithm to simulate steady/unsteady compressible
flow cases for stationary/moving bodies. The results show good agreement with the available
analytical data, as well as the expected order of convergence of the numerical scheme. The
test cases span tests on steady/unsteady flows over single grids, stationary overset grids,
uniformly moving overset grids, and accelerated overset grids.

This research succeeded to lay the foundation of a first version of a 2D fully IBM-Overset
algorithm to simulate compressible flows with bodies in relative motion with a first order
accuracy.

6.2 Limitations

The adopted numerical scheme has some limitations for the simulation of subsonic compress-
ible flows, where the simulation time is very long, specially in steady state. The adopted
numerical scheme is more efficient for high Mach number flows.

The motion of overset grids in the presented work is limited to translation motion only.
Rotation of moving bodies is not supported in the present work. Another constraint is
posed for grid motion in that the moving grids are not allowed to overlap the reference grid
boundary, or overlap each other, i.e. each grid is limited to its free of obstacle path.

The development of the present algorithm on Matlab environment puts another limitation
on the computing performance, where this interpreted language limits the speed of compu-
tations, and put a limitation for a HPC.

The spatial and temporal schemes are of first order. A higher order schemes could be intro-
duced to enhance the solution accuracy.

152

The reconstruction scheme employs a linear polynomial being in second order accuracy for
Dirichlet reconstruction, and first order accuracy for Neumann reconstruction. A higher
order polynomial degree could be implemented to achieve higher order of accuracy for the
reconstructed values.

Finally, certain parts of the implemented algorithm could be optimized to improve the com-
putational efficiency, and hence for parallelization compatibility.

6.3 Future research

• The implementation of higher order discretization for spatial and temporal numerical
scheme. In order to achieve higher order of accuracy for spatial scheme with attenuated
oscillations within the discontinuities, several approaches are proposed from the liter-
ature. The Monotone Upstream-Centered Scheme for Conservation Laws (MUSCL)
scheme can be used to construct the convective flux by higher order extrapolation, and
allow the variation of the state variables within the control volume to capture the dis-
continuity. However, MUSCL schemes usually require a limiter to control the overshoots
introduced at higher orders [123], hence the Total Variance Diminishing (TVD) scheme
could be used as limiting scheme. In general, the implementation of limiters should
be done with care to do not impact the solution accuracy. A MUSCL scheme with
limiter was implemented with the IBM solver by [103]. Another high order schemes,
extensively used for higher order implementation with IBM are the Essentially Non-
Oscillatory (ENO) and Weighted Essentially Non-Oscillatory (WENO) schemes. These
schemes are especially suitable for complex problems that include shock waves, shock
interactions with complex flows over complex geometries [133]. These approaches are
implemented with the IBM for compressible flow problems by [96, 100, 104, 113, 134].
The proposed explicit higher order temporal integration could be Runge-Kutta 4.

• The analysis and introduction of rotational motion for moving bodies. The analysis
comprises the ALE approach to verify the Geometric Conservation Laws during the
rotational motion.

• The integration of distance field solver to the overset module to support the overlap
regions between grids. This distance field solver will be based on solving Eikonal field
equation [135].

• Additional verification test cases could be conducted based on the Method of Manu-
factured Solution (MMS) and other tests found in the literature to assess the different
aspects of the developed code.

153

• The transfer of the developed code into a compiled environment such as C++ to enhance
the computing performance, and expand the capability for 3D extension.

154

REFERENCES

[1] D. W. Newsletter, “Saab gripen e conducts missile firing, fuel tank drop tests,”
2018. [Online]. Available: https://www.defenseworld.net/news/23573/Saab_Gripen_
E_Conducts_Missile_Firing__Fuel_Tank_Drop_Tests

[2] A. Cenko et al., “Integrated T&E Approach to Store Separation – Dim Past, Exciting
Future,” pp. 541–551, Sep. 1996.

[3] A. Viviani, G. Pezzella, and E. DAmato, “Aerodynamic Analysis with Separation Dy-
namics of a Launcher at Staging Conditions,” in 30th Congress of the International
Council of the Aeronautical Sciences, Daejeon, Korea, 2016.

[4] D. J. Dalle et al., “Inviscid and Viscous CFD Analysis of Booster Separation for the
Space Launch System Vehicle,” in 54th AIAA Aerospace Sciences Meeting. San Diego,
California, USA: American Institute of Aeronautics and Astronautics, Jan. 2016.

[5] C. Srikanth and C. Bhasker, “Flow analysis in valve with moving grids through CFD
techniques,” Advances in Engineering Software, vol. 40, no. 3, pp. 193–201, Mar. 2009.

[6] X. Song et al., “A CFD analysis of the dynamics of a direct-operated safety relief
valve mounted on a pressure vessel,” Energy Conversion and Management, vol. 81, pp.
407–419, May 2014.

[7] R. Gomez et al., “STS-107 Investigation Ascent CFD Support,” in 34th AIAA Fluid
Dynamics Conference and Exhibit. Portland, Oregon: American Institute of Aeronau-
tics and Astronautics, Jun. 2004.

[8] L. Peng et al., “Overset structured grids assembly method for numerical simulations
of multi-bodies and moving objects,” Computers & Fluids, vol. 175, pp. 260–275, Oct.
2018.

[9] W.-X. Huang and F.-B. Tian, “Recent trends and progress in the immersed boundary
method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 233, no. 23-24, pp. 7617–7636, Dec. 2019.

[10] S. Popinet, “Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries,” Journal of Computational Physics, vol. 190, no. 2,
pp. 572–600, Sep. 2003. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0021999103002985

https://www.defenseworld.net/news/23573/Saab_Gripen_E_Conducts_Missile_Firing__Fuel_Tank_Drop_Tests
https://www.defenseworld.net/news/23573/Saab_Gripen_E_Conducts_Missile_Firing__Fuel_Tank_Drop_Tests
https://linkinghub.elsevier.com/retrieve/pii/S0021999103002985
https://linkinghub.elsevier.com/retrieve/pii/S0021999103002985

155

[11] M. de Tullio et al., “An immersed boundary method for compressible flows using local
grid refinement,” Journal of Computational Physics, vol. 225, no. 2, pp. 2098–2117,
Aug. 2007.

[12] P. De Palma et al., “An immersed-boundary method for compressible viscous flows,”
Computers & Fluids, vol. 35, no. 7, pp. 693–702, Aug. 2006.

[13] R. Abgrall, H. Beaugendre, and C. Dobrzynski, “An immersed boundary method using
unstructured anisotropic mesh adaptation combined with level-sets and penalization
techniques,” Journal of Computational Physics, vol. 257, pp. 83–101, Jan. 2014.

[14] M. E. Khalili, M. Larsson, and B. Müller, “High-order ghost-point immersed bound-
ary method for viscous compressible flows based on summation-by-parts operators:
High-order immersed boundary method for viscous compressible flows,” International
Journal for Numerical Methods in Fluids, vol. 89, no. 7, pp. 256–282, Mar. 2019.

[15] M. Al-Marouf and R. Samtaney, “A versatile embedded boundary adaptive mesh
method for compressible flow in complex geometry,” Journal of Computational Physics,
vol. 337, pp. 339–378, May 2017.

[16] I. Borazjani et al., “A parallel overset-curvilinear-immersed boundary framework for
simulating complex 3D incompressible flows,” Computers & Fluids, vol. 77, pp. 76–96,
Apr. 2013.

[17] A. A. Osman et al., “Numerical Analysis of an External Store Separation From an
Airplane,” in AIAA Modeling and Simulation Technologies Conference. San Diego,
California, USA: American Institute of Aeronautics and Astronautics, Jan. 2016.

[18] O. Mahmood, J. Masud, and Z. G. Toor, “Trajectory Simulation of a Standard Store
and Generic Wing Pylon using CFD,” in 2018 AIAA Aerospace Sciences Meeting.
Kissimmee, Florida: American Institute of Aeronautics and Astronautics, Jan. 2018.

[19] Y. Jiang, A. Valdiero, and P. Andrighetto, “Analysis of pneumatic directional propor-
tional valve with CFX mesh motion technique,” ABCM Sympos Serial Mechatr, vol. 3,
pp. 510–518, 2008.

[20] E. Atta, “Component-adaptive grid interfacing,” in 19th Aerospace Sciences Meeting.
St. Louis,MO,U.S.A.: American Institute of Aeronautics and Astronautics, Jan. 1981.

[21] E. H. Atta and J. Vadyak, “A grid interfacing zonal algorithm for three-dimensional
transonic flows about aircraft configurations,” in Eighth International Conference on

156

Numerical Methods in Fluid Dynamics, E. Krause, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1982, vol. 170, pp. 107–114.

[22] J. Benek, J. Steger, and F. Dougherty, “A flexible grid embedding technique with
application to the Euler equations,” in 6th Computational Fluid Dynamics Conference
Danvers. Danvers,MA,U.S.A.: American Institute of Aeronautics and Astronautics,
Jul. 1983.

[23] J. Hooker and J. Gudenkauf, “Application of the Unstructured Chimera Method for
Rapid Weapons Trajectory Simulations,” in 45th AIAA Aerospace Sciences Meeting
and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, Jan.
2007.

[24] T. J. Flora et al., “Dynamic Store Release of Ice Models from a Cavity into Mach 2.9
Flow,” Journal of Aircraft, vol. 51, no. 6, pp. 1927–1941, Nov. 2014.

[25] L. Xuefei, L. Yuan, and Q. Zhansen, “Applications of Overset Grid Technique to CFD
Simulation of High Mach Number Multi-body Interaction/Separation Flow,” Procedia
Engineering, vol. 99, pp. 458–476, 2015.

[26] W. Wang et al., “An efficient, robust and automatic overlapping grid assembly ap-
proach for partitioned multi-block structured grids,” Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 4, pp.
1217–1236, Mar. 2019.

[27] A. Khaware et al., “Numerical Simulation of Store Separation Trajectories for EGLIN
Test Case using Overset Mesh,” in 2018 AIAA Aerospace Sciences Meeting. Kissim-
mee, Florida: American Institute of Aeronautics and Astronautics, Jan. 2018.

[28] R. Meakin and N. Suhs, “Unsteady aerodynamic simulation of multiple bodies in rela-
tive motion,” in 9th Computational Fluid Dynamics Conference. Buffalo,NY,U.S.A.:
American Institute of Aeronautics and Astronautics, Jun. 1989.

[29] S. E. Rogers, D. J. Dalle, and W. M. Chan, “CFD Simulations of the Space Launch Sys-
tem Ascent Aerodynamics and Booster Separation,” in 53rd AIAA Aerospace Sciences
Meeting. Kissimmee, Florida: American Institute of Aeronautics and Astronautics,
Jan. 2015.

[30] J. W. Purvis and J. E. Burkhalter, “Prediction of critical Mach number for store
configurations,” AIAA Journal, vol. 17, no. 11, pp. 1170–1177, Nov. 1979.

157

[31] B. Wedan and J. South, Jr., “A method for solving the transonic full-potential equation
for general configurations,” in 6th Computational Fluid Dynamics Conference Danvers.
Danvers,MA,U.S.A.: American Institute of Aeronautics and Astronautics, Jul. 1983.

[32] D. K. Clarke, M. D. Salas, and H. A. Hassan, “Euler calculations for multielement
airfoils using Cartesian grids,” AIAA Journal, vol. 24, no. 3, pp. 353–358, Mar. 1986.

[33] R. Gaffney, Jr. and H. Hassan, “Euler calculations for wings using Cartesian grids,”
in 25th AIAA Aerospace Sciences Meeting. Reno,NV,U.S.A.: American Institute of
Aeronautics and Astronautics, Mar. 1987.

[34] M. J. Aftosmis, M. J. Berger, and J. E. Melton, “Robust and Efficient Cartesian Mesh
Generation for Component-Based Geometry,” AIAA Journal, vol. 36, no. 6, pp. 952–
960, Jun. 1998.

[35] M. Nemec, M. Aftosmis, and M. Wintzer, “Adjoint-Based Adaptive Mesh Refine-
ment for Complex Geometries,” in 46th AIAA Aerospace Sciences Meeting and Exhibit.
Reno, Nevada: American Institute of Aeronautics and Astronautics, Jan. 2008.

[36] M. W. Johnson, “A novel Cartesian CFD cut cell approach,” Computers & Fluids,
vol. 79, pp. 105–119, Jun. 2013.

[37] M. Yousuf et al., “Demonstration of Automated CFD Process using Mesh-less Tech-
nology,” in 6th European Conference on Computational Fluid Dynamics (ECFD VI),
Barcelona, Spain, Jul. 2014.

[38] C. S. Peskin, “Flow patterns around heart valves: A numerical method,” Journal of
Computational Physics, vol. 10, no. 2, pp. 252–271, Oct. 1972.

[39] Y. Kim and C. S. Peskin, “Penalty immersed boundary method for an elastic boundary
with mass,” Physics of Fluids, vol. 19, no. 5, p. 053103, May 2007.

[40] R. Mittal and G. Iaccarino, “IMMERSED BOUNDARY METHODS,” Annual Review
of Fluid Mechanics, vol. 37, no. 1, pp. 239–261, Jan. 2005.

[41] Y. Jianming, “Sharp interface direct forcing immersed boundary methods: A summary
of some algorithms and applications,” Journal of Hydrodynamics, vol. 28, no. 5, pp.
713–730, Oct. 2016.

[42] D. Goldstein, R. Handler, and L. Sirovich, “Modeling a No-Slip Flow Boundary with an
External Force Field,” Journal of Computational Physics, vol. 105, no. 2, pp. 354–366,
Apr. 1993.

158

[43] W. Kim and H. Choi, “Immersed boundary methods for fluid-structure interaction: A
review,” International Journal of Heat and Fluid Flow, vol. 75, pp. 301–309, Feb. 2019.

[44] J. Wu and C. Shu, “Implicit velocity correction-based immersed boundary-lattice Boltz-
mann method and its applications,” Journal of Computational Physics, vol. 228, no. 6,
pp. 1963–1979, Apr. 2009.

[45] Y. Qiu et al., “A boundary condition-enforced immersed boundary method for com-
pressible viscous flows,” Computers & Fluids, vol. 136, pp. 104–113, Sep. 2016.

[46] J. R. Edwards et al., “An Immersed Boundary Method for General Flow Applications,”
in ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume
1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada: ASMEDC, Jan. 2010,
pp. 2461–2469.

[47] H. Luo et al., “On the numerical oscillation of the direct-forcing immersed-boundary
method for moving boundaries,” Computers & Fluids, vol. 56, pp. 61–76, Mar. 2012.

[48] F.-B. Tian et al., “Fluid–structure interaction involving large deformations: 3d simu-
lations and applications to biological systems,” Journal of Computational Physics, vol.
258, pp. 451–469, Feb. 2014.

[49] S. Manoorkar et al., “Suspension flow through an asymmetric T-junction,” Journal of
Fluid Mechanics, vol. 844, pp. 247–273, Jun. 2018.

[50] E. Stavropoulos Vasilakis et al., “Cavitation induction by projectile impacting on a
water jet,” International Journal of Multiphase Flow, vol. 114, pp. 128–139, May 2019.

[51] A. Nasar et al., “Eulerian weakly compressible smoothed particle hydrodynamics (SPH)
with the immersed boundary method for thin slender bodies,” Journal of Fluids and
Structures, vol. 84, pp. 263–282, Jan. 2019.

[52] A. Piquet, O. Roussel, and A. Hadjadj, “A comparative study of Brinkman penaliza-
tion and direct-forcing immersed boundary methods for compressible viscous flows,”
Computers & Fluids, vol. 136, pp. 272–284, Sep. 2016.

[53] J. Mohd-Yusof, “Combined immersed-boundary / B-spline methods for simulations of
flow in complex geometries,” pp. 317–327, 1997.

[54] E. Fadlun et al., “Combined Immersed-Boundary Finite-Difference Methods for Three-
Dimensional Complex Flow Simulations,” Journal of Computational Physics, vol. 161,
no. 1, pp. 35–60, Jun. 2000.

159

[55] F. Sotiropoulos and X. Yang, “Immersed boundary methods for simulating
fluid–structure interaction,” Progress in Aerospace Sciences, vol. 65, pp. 1–21, Feb.
2014.

[56] B. Khalighi, S. Jindal, and G. Iaccarino, “Aerodynamic flow around a sport utility
vehicle—Computational and experimental investigation,” Journal of Wind Engineering
and Industrial Aerodynamics, vol. 107-108, pp. 140–148, Aug. 2012.

[57] C. S. Peskin and D. M. McQueen, “A three-dimensional computational method for
blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid,”
Journal of Computational Physics, vol. 81, no. 2, pp. 372–405, Apr. 1989.

[58] A. M. Roma, “A Multilevel Self-Adaptive Version of the Immersed Boundary Method,”
PhD thesis, Courant Institute of Mathematical Sciences - New York University, United
States, Jan. 1996, university Microfilms #9621828.

[59] Z. Wang et al., “A 2^N Tree Based Automated Viscous Cartesian Grid Methodology
For Feature Capturing,” 1999.

[60] D. Kirshman and F. Liu, “A gridless boundary condition method for the solution
of the Euler equations on embedded Cartesian meshes with multigrid,” Journal of
Computational Physics, vol. 201, no. 1, pp. 119–147, Nov. 2004.

[61] A. Dadone and B. Grossman, “Ghost-Cell Method with far-field coarsening and mesh
adaptation for Cartesian grids,” Computers & Fluids, vol. 35, no. 7, pp. 676–687, Aug.
2006.

[62] F. Capizzano, “A Compressible Flow Simulation System Based on Cartesian Grids
with Anisotropic Refinements,” in 45th AIAA Aerospace Sciences Meeting and Exhibit.
Reno, Nevada: American Institute of Aeronautics and Astronautics, Jan. 2007.

[63] Y. Cho, J. Chopra, and P. Morris, “Immersed Boundary Method for Compressible
High-Reynolds Number Viscous Flow around Moving Bodies,” in 45th AIAA Aerospace
Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and
Astronautics, Jan. 2007.

[64] A. Dadone and B. Grossman, “Ghost-cell method for analysis of inviscid three-
dimensional flows on Cartesian-grids,” Computers & Fluids, vol. 36, no. 10, pp. 1513–
1528, Dec. 2007.

160

[65] K. Karagiozis, R. Kamakoti, and C. Pantano, “A low numerical dissipation immersed
interface method for the compressible Navier–Stokes equations,” Journal of Computa-
tional Physics, vol. 229, no. 3, pp. 701–727, Feb. 2010.

[66] D. Hartmann, M. Meinke, and W. Schröder, “A strictly conservative Cartesian cut-
cell method for compressible viscous flows on adaptive grids,” Computer Methods in
Applied Mechanics and Engineering, vol. 200, no. 9-12, pp. 1038–1052, Feb. 2011.

[67] J. H. Seo and R. Mittal, “A high-order immersed boundary method for acoustic wave
scattering and low-Mach number flow-induced sound in complex geometries,” Journal
of Computational Physics, vol. 230, no. 4, pp. 1000–1019, Feb. 2011.

[68] M. Berger and M. Aftosmis, “Progress Towards a Cartesian Cut-Cell Method for Vis-
cous Compressible Flow,” in 50th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition. Nashville, Tennessee: American Institute
of Aeronautics and Astronautics, Jan. 2012.

[69] J. P. Johnson et al., “High Reynolds Number Airfoil Simulations Using the Immersed
Boundary Method,” in Volume 1: Symposia, Parts A and B. Rio Grande, Puerto
Rico, USA: American Society of Mechanical Engineers, Jul. 2012, pp. 1359–1368.

[70] R. E. Harris, “Adaptive Cartesian Immersed Boundary Method for Simulation of Flow
over Flexible Geometries,” AIAA Journal, vol. 51, no. 1, pp. 53–69, Jan. 2013.

[71] A. Kapahi et al., “Parallel, sharp interface Eulerian approach to high-speed multi-
material flows,” Computers & Fluids, vol. 83, pp. 144–156, Aug. 2013.

[72] A. Kapahi, S. Sambasivan, and H. Udaykumar, “A three-dimensional sharp interface
Cartesian grid method for solving high speed multi-material impact, penetration and
fragmentation problems,” Journal of Computational Physics, vol. 241, pp. 308–332,
May 2013.

[73] P. H. Tran and F. Plourde, “Computing compressible internal flows by means of an
Immersed Boundary Method,” Computers & Fluids, vol. 97, pp. 21–30, Jun. 2014.

[74] F. Capizzano and E. Iuliano, “A Eulerian Method for Water Droplet Impingement by
Means of an Immersed Boundary Technique,” Journal of Fluids Engineering, vol. 136,
no. 4, p. 040906, Apr. 2014.

[75] C. Brehm, C. Hader, and H. Fasel, “A locally stabilized immersed boundary method
for the compressible Navier–Stokes equations,” Journal of Computational Physics, vol.
295, pp. 475–504, Aug. 2015.

161

[76] F. Capizzano, “Coupling a Wall Diffusion Model with an Immersed Boundary Tech-
nique,” AIAA Journal, vol. 54, no. 2, pp. 728–734, Feb. 2016.

[77] C. Chi, B. J. Lee, and H. G. Im, “An improved ghost-cell immersed boundary method
for compressible flow simulations: AN IMPROVED GHOST-CELL IMMERSED
BOUNDARY METHOD,” International Journal for Numerical Methods in Fluids,
vol. 83, no. 2, pp. 132–148, Jan. 2017.

[78] D. De Marinis et al., “Improving a conjugate-heat-transfer immersed-boundary
method,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26,
no. 3/4, pp. 1272–1288, May 2016.

[79] C. Zhu, H. Luo, and G. Li, “High-Order Immersed-Boundary Method for Incompress-
ible Flows,” AIAA Journal, vol. 54, no. 9, pp. 2734–2741, Sep. 2016.

[80] K. Luo et al., “A ghost-cell immersed boundary method for the simulations of heat
transfer in compressible flows under different boundary conditions Part-II: Complex
geometries,” International Journal of Heat and Mass Transfer, vol. 104, pp. 98–111,
Jan. 2017.

[81] Y. Tamaki, M. Harada, and T. Imamura, “Near-Wall Modification of Spalart–Allmaras
Turbulence Model for Immersed Boundary Method,” AIAA Journal, vol. 55, no. 9, pp.
3027–3039, Sep. 2017.

[82] B. Muralidharan and S. Menon, “Simulation of moving boundaries interacting with
compressible reacting flows using a second-order adaptive Cartesian cut-cell method,”
Journal of Computational Physics, vol. 357, pp. 230–262, Mar. 2018.

[83] R. Yuan and C. Zhong, “An immersed-boundary method for compressible viscous flows
and its application in the gas-kinetic BGK scheme,” Applied Mathematical Modelling,
vol. 55, pp. 417–446, Mar. 2018.

[84] P. J. Frey and P. L. George, Mesh generation: application to finite elements, 2nd ed.
Hoboken, NJ: Wiley [u.a.], 2008, oCLC: 836701426.

[85] W. Zhang et al., “AMReX: a framework for block-structured adaptive mesh refine-
ment,” Journal of Open Source Software, vol. 4, no. 37, p. 1370, May 2019.

[86] J. Bell et al., “BoxLib User Guide,” Center for Computational Sciences and Engineer-
ing, Lawrence Berkeley National Laboratory, Berkeley, CA, Technical Report, 2013.

162

[87] M. Adams et al., “Chombo Software Package for AMR Applications Design Document,”
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley,
CA, Technical Report, Dec. 2015.

[88] P. Durbin and G. Iaccarino, “An Approach to Local Refinement of Structured Grids,”
Journal of Computational Physics, vol. 181, no. 2, pp. 639–653, Sep. 2002.

[89] R. Ghias, R. Mittal, and T. Lund, “A Non-Body Conformal Grid Method for Simulation
of Compressible Flows with Complex Immersed Boundaries,” in 42nd AIAA Aerospace
Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and
Astronautics, Jan. 2004.

[90] R. Ghias, R. Mittal, and H. Dong, “A sharp interface immersed boundary method
for compressible viscous flows,” Journal of Computational Physics, vol. 225, no. 1, pp.
528–553, Jul. 2007.

[91] J. Liu et al., “A new immersed boundary method for compressible Navier–Stokes equa-
tions,” International Journal of Computational Fluid Dynamics, vol. 27, no. 3, pp.
151–163, Mar. 2013.

[92] M. Ehsan Khalili, M. Larsson, and B. Müller, “Immersed boundary method for viscous
compressible flows around moving bodies,” Computers & Fluids, vol. 170, pp. 77–92,
Jul. 2018.

[93] L. Sun, S. R. Mathur, and J. Y. Murthy, “An Unstructured Finite-Volume Method for
Incompressible Flows with Complex Immersed Boundaries,” Numerical Heat Transfer,
Part B: Fundamentals, vol. 58, no. 4, pp. 217–241, Sep. 2010.

[94] P.-j. Ming et al., “Unstructured grid immersed boundary method for numerical simula-
tion of fluid structure interaction,” Journal of Marine Science and Application, vol. 9,
no. 2, pp. 181–186, Jun. 2010.

[95] P. Ouro et al., “An immersed boundary method for unstructured meshes in depth av-
eraged shallow water models,” International Journal for Numerical Methods in Fluids,
vol. 81, no. 11, pp. 672–688, Aug. 2015.

[96] R. Boukharfane et al., “A combined ghost-point-forcing / direct-forcing immersed
boundary method (IBM) for compressible flow simulations,” Computers & Fluids, vol.
162, pp. 91–112, Jan. 2018.

163

[97] S. Brahmachary et al., “A sharp-interface immersed boundary framework for simula-
tions of high-speed inviscid compressible flows: Sharp Interface Immersed Boundary
Solver for Compressible Flows,” International Journal for Numerical Methods in Fluids,
vol. 86, no. 12, pp. 770–791, Apr. 2018.

[98] X. Hu et al., “A conservative interface method for compressible flows,” Journal of
Computational Physics, vol. 219, no. 2, pp. 553–578, Dec. 2006. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0021999106001926

[99] O. Hu, N. Zhao, and J. Liu, “A Ghost Cell Method for Turbulent Compressible Viscous
Flows on Adaptive Cartesian Grids,” Procedia Engineering, vol. 67, pp. 241–249, 2013.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1877705813018560

[100] Y. Qu and R. C. Batra, “Constrained moving least-squares immersed boundary method
for fluid-structure interaction analysis,” International Journal for Numerical Methods
in Fluids, vol. 85, no. 12, pp. 675–692, Dec. 2017.

[101] J. O’Rourke, Computational Geometry in C, 2nd ed. Cambridge University Press,
Oct. 1998.

[102] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Al-
gorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics,
vol. 79, no. 1, pp. 12–49, Nov. 1988.

[103] Y. Gorsse et al., “A simple second order cartesian scheme for compressible Euler flows,”
Journal of Computational Physics, vol. 231, no. 23, pp. 7780–7794, Oct. 2012.

[104] C. Liu and C. Hu, “An immersed boundary solver for inviscid compressible flows,”
International Journal for Numerical Methods in Fluids, vol. 85, no. 11, pp. 619–640,
Dec. 2017.

[105] Y. Mizuno et al., “A Simple Immersed Boundary Method for Compressible Flow Sim-
ulation around a Stationary and Moving Sphere,” Mathematical Problems in Engineer-
ing, vol. 2015, pp. 1–17, 2015.

[106] S. Takahashi, T. Nonomura, and K. Fukuda, “A Numerical Scheme Based on an Im-
mersed Boundary Method for Compressible Turbulent Flows with Shocks: Application
to Two-Dimensional Flows around Cylinders,” Journal of Applied Mathematics, vol.
2014, pp. 1–21, 2014.

https://linkinghub.elsevier.com/retrieve/pii/S0021999106001926
https://linkinghub.elsevier.com/retrieve/pii/S1877705813018560

164

[107] H. Uddin, R. Kramer, and C. Pantano, “A Cartesian-based embedded geometry tech-
nique with adaptive high-order finite differences for compressible flow around complex
geometries,” Journal of Computational Physics, vol. 262, pp. 379–407, Apr. 2014.

[108] H. Mo et al., “An immersed boundary method for solving compressible flow with ar-
bitrarily irregular and moving geometry: Immersed boundary method for flow with
irregular and moving geometry,” International Journal for Numerical Methods in Flu-
ids, vol. 88, no. 5, pp. 239–263, Oct. 2018.

[109] R. Ramakrishnan, A. Girdhar, and S. Ghosh, “Immersed boundary methods for com-
pressible laminar flows,” 01 2016, pp. 7029–7044.

[110] K. Luo et al., “A ghost-cell immersed boundary method for simulations of heat transfer
in compressible flows under different boundary conditions,” International Journal of
Heat and Mass Transfer, vol. 92, pp. 708–717, Jan. 2016.

[111] G. Iaccarino and R. Verzicco, “Immersed boundary technique for turbulent flow simu-
lations,” Applied Mechanics Reviews, vol. 56, no. 3, pp. 331–347, May 2003.

[112] Y. He et al., “An Immersed Boundary Method Based on Volume Fraction,” Procedia
Engineering, vol. 99, pp. 677–685, 2015.

[113] Y. Qu, R. Shi, and R. C. Batra, “An immersed boundary formulation for simulating
high-speed compressible viscous flows with moving solids,” Journal of Computational
Physics, vol. 354, pp. 672–691, Feb. 2018.

[114] H. Udaykumar, R. Mittal, and W. Shyy, “Computation of Solid–Liquid Phase Fronts
in the Sharp Interface Limit on Fixed Grids,” Journal of Computational Physics, vol.
153, no. 2, pp. 535–574, Aug. 1999.

[115] J. Yang and E. Balaras, “An embedded-boundary formulation for large-eddy simula-
tion of turbulent flows interacting with moving boundaries,” Journal of Computational
Physics, vol. 215, no. 1, pp. 12–40, Jun. 2006.

[116] H. Udaykumar et al., “A Sharp Interface Cartesian Grid Method for Simulating Flows
with Complex Moving Boundaries,” Journal of Computational Physics, vol. 174, no. 1,
pp. 345–380, Nov. 2001.

[117] S. Péron et al., “A mixed overset grid/immersed boundary approach for CFD simula-
tions of complex geometries,” in 54th AIAA Aerospace Sciences Meeting. San Diego,
California, USA: American Institute of Aeronautics and Astronautics, Jan. 2016.

165

[118] J. R. Aarnes et al., “Treatment of solid objects in the Pencil Code using an immersed
boundary method and overset grids,” Geophysical & Astrophysical Fluid Dynamics, vol.
114, no. 1-2, pp. 35–57, Mar. 2020.

[119] K. Aizawa and S. Tanaka, “A Constant-Time Algorithm for Finding Neighbors
in Quadtrees,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 7, pp. 1178–1183, Jul. 2009. [Online]. Available: http://ieeexplore.ieee.
org/document/4538229/

[120] S. W. and A. A., “Cardinal Neighbor Quadtree: a New Quadtree-based
Structure for Constant-Time Neighbor Finding,” International Journal of Computer
Applications, vol. 132, no. 8, pp. 22–30, Dec. 2015. [Online]. Available:
http://www.ijcaonline.org/research/volume132/number8/qasem-2015-ijca-907501.pdf

[121] H. Samet, “Neighbor finding in images represented by octrees,” Computer Vision,
Graphics, and Image Processing, vol. 46, no. 3, pp. 367–386, Jun. 1989. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/0734189X89900388

[122] R. Meakin, “Object X-rays for cutting holes in composite overset structured grids,”
in 15th AIAA Computational Fluid Dynamics Conference, ser. Fluid Dynamics and
Co-located Conferences. American Institute of Aeronautics and Astronautics, Jun.
2001. [Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2001-2537

[123] J. Blazek, Computational fluid dynamics: principles and applications, 1st ed. Ams-
terdam ; New York: Elsevier, 2001.

[124] G. Dahlquist, B. Sj{öberg, and P. Svensson, “Comparison of the method of averages
with the method of least squares.” Mathematics of Computation, vol. 22, no. 104, pp.
833–833, Jan. 1968. [Online]. Available: http://www.ams.org/jourcgi/jour-getitem?
pii=S0025-5718-1968-0239742-X

[125] F. M. White, Fluid mechanics, 4th ed., ser. McGraw-Hill series in mechanical engineer-
ing. Boston, Mass: WCB/McGraw-Hill, 1999.

[126] S. Arabi, J.-Y. Trépanier, and R. Camarero, “A simple extension of Roe’s scheme
for multi-component real gas flows,” Journal of Computational Physics, vol. 388, pp.
178–194, Jul. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0021999119301901

[127] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing.
Cambridge: Cambridge University Press, 2010.

http://ieeexplore.ieee.org/document/4538229/
http://ieeexplore.ieee.org/document/4538229/
http://www.ijcaonline.org/research/volume132/number8/qasem-2015-ijca-907501.pdf
https://linkinghub.elsevier.com/retrieve/pii/0734189X89900388
https://arc.aiaa.org/doi/10.2514/6.2001-2537
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1968-0239742-X
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1968-0239742-X
https://linkinghub.elsevier.com/retrieve/pii/S0021999119301901
https://linkinghub.elsevier.com/retrieve/pii/S0021999119301901

166

[128] R.-H. Ni, “A multiple grid scheme for solving the Euler equations,” in 5th
Computational Fluid Dynamics Conference, ser. Fluid Dynamics and Co-located
Conferences. American Institute of Aeronautics and Astronautics, Jun. 1981. [Online].
Available: https://arc.aiaa.org/doi/10.2514/6.1981-1025

[129] A. Madadi, M. Kermani, and H. Khazaei, “Improvement of a solution of inviscid
compressible flows using a mixed wall boundary condition,” Engineering Applications
of Computational Fluid Mechanics, vol. 9, no. 1, pp. 126–138, Jan. 2015. [Online].
Available: http://www.tandfonline.com/doi/full/10.1080/19942060.2015.1004815

[130] “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in
CFD Applications,” Journal of Fluids Engineering, vol. 130, no. 7, p. 078001, 2008.
[Online]. Available: http://FluidsEngineering.asmedigitalcollection.asme.org/article.
aspx?articleid=1434171

[131] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical
introduction, 3rd ed. Dordrecht ; New York: Springer, 2009, oCLC: ocn401321914.

[132] J. D. Anderson and J. D. Anderson, Fundamentals of aerodynamics, 5th ed., ser. An-
derson series. New York: McGraw-Hill, 2011, oCLC: ocn463634144.

[133] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws,” in Advanced Numerical Approximation of
Nonlinear Hyperbolic Equations, A. Quarteroni, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, vol. 1697, pp. 325–432.

[134] T. Ershova et al., “Numerical Simulation of Heterogeneous Flows and Heat-Mass Trans-
fer in Complex Domains on Rectangular Grids,” in 2010 14th International Heat Trans-
fer Conference, IHTC 14, vol. 1, 2010.

[135] H. Xia and P. G. Tucker, “Finite volume distance field and its application
to medial axis transforms,” International Journal for Numerical Methods in
Engineering, vol. 82, no. 1, pp. 114–134, 2010. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nme.2762

https://arc.aiaa.org/doi/10.2514/6.1981-1025
http://www.tandfonline.com/doi/full/10.1080/19942060.2015.1004815
http://FluidsEngineering.asmedigitalcollection.asme.org/article.aspx?articleid=1434171
http://FluidsEngineering.asmedigitalcollection.asme.org/article.aspx?articleid=1434171
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2762
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2762

167

APPENDIX A ALGORITHM IMPLEMENTATION

In this section, the implementation of the developed code is presented in more details. The
architecture of the code is object-oriented and its Unified Modeling Language (UML) diagram
is illustrated in Fig. A.2.

The algorithm is built basically on seven main classes, namely, DiscreteTopo, HierarchicalGrid,
MeshTagging, OversetGrid, GridControls, Reconstruction, and FlowSolver. Three sup-
plementary classes are implemented to facilitate data handling and visualization, such as,
MobileDiscreteTopo, BoundaryConditions, and Solution classes. The type of all imple-
mented classes is handle, where the instances of all classes refer to the class object, with no
duplicate data copies.

The discrete topology is managed by a parent class DiscreteTopo that reads the topology
*.tdt file and instantiates the topology elements (points, sides, loops and faces). A subclass
MobileDiscreteTopo is derived from the parent class DiscreteTopo to manage moving
topology, where the topology trajectory is defined within this class. This subclass is a com-
position of the OversetGrid class that passes the spatial information of the moving topology
to the overset grid.

Hierarchical grids are generated by the parent class HierarchicalGrid. This class manages
the hierarchical grid generation through its fundamental methods, including elements gen-
eration, neighbor localization, siblings finding, parent cell finding, cell refinement, and grid
balancing. The grid is defined by its border extents (xmin, xmax, ymin, ymax) and its initial
Cartesian resolution (Nx, Ny). Grid element is defined by its lower-left (x1,y1) and upper-
right vertices (x2,y2) , level of refinement, level difference in cardinal directions ∆Ld, and
local index (i,j). The hierarchical grid is stored in hash-table or container using a built-in
library in Matlab called containers.Map. This type of data structure facilitates the grid man-
agement, where each cellID contains its own information within the hash-table. A sample
of the stored data in grid hash-table is illustrated in Table A.1 and Fig. A.1.

Table A.1 Hash-table information of a given key (cellID) in hierarchical grid.

cellID cell Level x1 x2 y1 y2 ∆LW ∆LE ∆LS ∆LN i j

The tagging algorithm is implemented through the MeshTagging class which is a subclass of
HierarchicalGrid and inherits all its functionality and attributes to perform the tagging
process, flood fill, and grid controls. Grid controls is executed by the GridControls class,

168

Figure A.1 Hierarchical grid element definition.

as a part of MeshTagging by an aggregation relationship. The four classes DiscreteTopo,
HierarchicalGrid, MeshTagging, and GridControls represent the computational grid con-
stituted by the tagged immersed boundary and the adapted hierarchical grid.

The tagging is performed for each computational face and stored in hash-table, with a key-
value of faceID. Each key-value in the hash-table returns an array of cellID integers of the
corresponding type. This tagging information are presented in Table A.2

Table A.2 Hash-table tagging information of a given key faceID.

fa
ce

ID

Intersected Interface Cells
Non-Intersected Interface Cells
Face Cells
Interface Cells
Inside Cells
Intersected Outside Cells
Outside Cells

Boundary conditions are managed by the BoundaryConditions class, where the imposed
boundary condition value and type are linked to their corresponding interface cells that
represent the boundary. The reconstruction class, Reconstruction, employs the bound-
ary conditions and tagging information to reconstruct flow solution in Interface Cells and
Interpolated Cells, as part of the flow solver.

169

Figure A.2 UML diagram of the developed code

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Context
	1.2 Numerical treatment of unsteady compressible flows with bodies in relative motion
	1.2.1 Dynamic meshes
	1.2.2 Overset grids
	1.2.3 Cartesian grid approach (Cut-cell approach)
	1.2.4 Numerical treatments conclusion

	1.3 The Immersed Boundary Method
	1.4 Objectives of the present work
	1.5 Research originality
	1.6 Thesis structure

	2 LITERATURE REVIEW
	2.1 Background of the Immersed Boundary Method
	2.1.1 Diffused Interface Method (DIM)
	2.1.2 Sharp Interface Method (SIM)

	2.2 Eulerian mesh
	2.2.1 Adaptive Mesh Refinement (AMR)
	2.2.2 Non-uniform Cartesian grid refinement
	2.2.3 Unstructured grid refinement

	2.3 Tagging
	2.3.1 The Ray Tracing approach
	2.3.2 The Level Set approach
	2.3.3 The explicit minimum distance approach

	2.4 Reconstruction schemes
	2.5 IBM with moving boundaries
	2.5.1 Field Extension approach
	2.5.2 Direct reconstruction approach
	2.5.3 Overset grids

	2.6 Critical literature

	3 HIERARCHICAL GRID GENERATION - OVERSET GRID AND TAGGING
	3.1 Global methodology
	3.1.1 Geometry/Discrete topology
	3.1.2 Hierarchical grid
	3.1.3 Mesh tagging
	3.1.4 Overset grid
	3.1.5 Refinement criteria and grid controls
	3.1.6 Solution reconstruction
	3.1.7 Flow solver

	3.2 Geometry/Discrete topology
	3.3 Hierarchical grid
	3.3.1 Numbering scheme
	3.3.2 Grid balancing
	3.3.3 Neighbors localization
	3.3.4 Side list generation of hierarchical grid

	3.4 Mesh tagging
	3.4.1 Basic terminologies and definitions
	3.4.2 Properties of intersected cells
	3.4.3 Geometry marching algorithm
	3.4.4 Types of intersected cells
	3.4.5 Types of Interface Cells (IC)
	3.4.6 Face discretization

	3.5 Overset grid
	3.6 Refinement criteria
	3.7 Grid management and control Add-ons

	4 FLOW SOLVER
	4.1 Governing equations
	4.2 Numerical scheme
	4.3 Reconstruction scheme
	4.3.1 Reconstruction methodology
	4.3.2 Reconstruction verification

	4.4 Boundary conditions for Euler equations
	4.5 Treatment of overset grid motion

	5 VERIFICATION AND VALIDATION OF THE ALGORITHM
	5.1 Algorithm implementation
	5.2 General aspects
	5.3 Test cases classification
	5.4 Steady flows on single grids
	5.4.1 Subsonic flow in tube (CAT11)
	5.4.2 Supersonic flow in tube (CAT12)
	5.4.3 Subsonic Rayleigh flow (CAT13)
	5.4.4 Supersonic Rayleigh flow (CAT14)
	5.4.5 Subsonic radial flow (CAT15)
	5.4.6 Confluence of two supersonic flows (CAT16)
	5.4.7 Supersonic flow over a bump (CAT17)

	5.5 Unsteady flows on a single grid
	5.5.1 Shock tube flow (CAT21)
	5.5.2 Tube in impulsive motion (CAT22)
	5.5.3 Unsteady supersonic flow over a Wedge (CAT23)

	5.6 Steady flows on overset grids
	5.6.1 Supersonic tube flow with stationary overset grid (CAT31)
	5.6.2 Supersonic tube flow with moving overset grid (CAT32)

	5.7 Unsteady flows on overset grids
	5.7.1 Unsteady supersonic flow over a wedge with stationary overset grid (CAT41)
	5.7.2 Unsteady supersonic flow over a wedge with moving overset grid (CAT42)
	5.7.3 Unsteady supersonic flow over three moving accelerated wedges on overset grids (CAT43)

	6 CONCLUSION
	6.1 Summary of work
	6.2 Limitations
	6.3 Future research

	REFERENCES
	APPENDICES

