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RÉSUMÉ

Les réseaux de neurones profonds sont capables de résoudre de nombreux problèmes d’appren-
tissage automatique et aptes à atteindre des performances de pointe en raison de leur flexi-
bilité, mais les modèles d’apprentissage profond sont difficiles à interpréter et souffrent d’un
sur-ajustement statistique qui affecte leurs capacités de généralisation; en effet, ces derniers
ont tendance à surestimer l’intervalle de confiance par rapport à leurs prédictions. Ceci peut
être problématique pour les champs d’applications réels tels que les diagnostics médicaux ou
les voitures autonomes. L’inférence bayésienne fournit des outils utiles pour s’attaquer à ces
problèmes, mais cela a un coût, l’inférence bayésienne (exacte) pour les réseaux de neurones
est dans la plupart des cas complexe dû à l’absence de forme analytique. L’apprentissage
bayésien reste un bon choix pour concevoir des méthodes efficaces en fournissant une solu-
tion approximative. En effet, cette méthode combine inférence approximative et un cadre
d’optimisation plus flexible. Cependant, l’efficacité des réseaux de neurones bayésiens est
limitée à des distributions spécifiques et dans la majorité des cas la distribution a posteriori
n’a pas de forme explicite.

Dans ce mémoire, nous abordons ces problèmes en démystifiant la relation entre l’inférence ap-
proximative et les méthodes d’optimisation à l’aide de la méthode de Gauss-Newton général-
isée. Les réseaux de neuronnes bayésiens affichent de bons résultats en combinant la méthode
de Gauss-Newton généralisée avec l’approximation de Laplace et gaussienne. Les deux méth-
odes calculent une approximation gaussienne de la distribution a posteriori, mais on ne sait
pas comment elles affectent le modèle probabiliste sous-jacent. Les deux méthodes se basent
sur un traitement rigoureux du modèle probabiliste sous-jacent mais l’interprétation de leurs
résultats est moins claire. Nous cherchons à être en mesure de distinguer lorsqu’un modèle
particulier échoue et la capacité de quantifier son incertitude. Nous avons constaté que la
méthode de Gauss-Newton généralisée simplifie le modèle probabiliste sous-jacent et fournit
un degré d’incertitude. En particulier, l’approximation de Laplace et l’approximation gaussi-
enne fournissent une distribution a posteriori plus flexible qui peut être appliquée lorsque
l’échantillon de données est assez grand. Dans ce travail, nous présentons une méthode
d’inférence qui relie les deux approches. En fait, l’approximation gaussienne est consid-
érée comme un concurrent direct de l’approximation de Laplace, fournit une inférence dans
l’espace de fonction tandis que Laplace manifeste une inférence dans l’espace de paramètres.
La combinaison de l’une ou l’autre à la méthode de Gauss-Newton doit être considérée comme
une linéarisation locale du réseau de neurones bayésien. Ainsi, on obtient un modèle linéaire
généralisé (GLM). Ce cadre permet de résoudre les problèmes courants de sous-ajustement
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de l’approximation de Laplace. Plus intéressant même, nous sommes capables de faire la
conversion d’un modèle GLM à un processus gaussien; ceci permet de faire le lien entre
l’inférence dans l’espace de paramètres et l’inférence dans l’espace de fonctions dans le cadre
de réseaux de neurones bayésiens.
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ABSTRACT

Deep neural networks provide ways to tackle many real-world machine learning problems,
achieving state-of-the-art performance due to their flexibility. However, deep learning models
can be hard to interpret, sometimes suffer from overfitting, which affects their generalization
capabilities, and tend to overstate the confidence of their predictions. This can be prob-
lematic for real-world applications such as medical diagnostics or self-driving cars. Bayesian
pragmatism provides useful tools to tackle these issues, but it comes at a cost: the exact
Bayesian inference appropriate to a neural network is often intractable. Bayesian deep learn-
ing remains a good choice to design efficient methods by providing an approximate solution;
combining as it does approximate inference and a scalable optimization framework. How-
ever, the practical effectiveness of Bayesian neural networks is limited by the need to specify
meaningful prior distributions, and by the intractability of posterior inference.

In this thesis, we address these issues by attempting to demystify the relationship between
approximate inference and optimization approaches through the generalized Gauss–Newton
method. Bayesian deep learning yields good results, combining Gauss–Newton with Laplace
and Gaussian variational approximation. Both methods compute a Gaussian approximation
to the posterior; however, it remains unclear how these methods affect the underlying prob-
abilistic model and the posterior approximation. Both methods allow a rigorous analysis of
how a particular model fails and the ability to quantify its uncertainty. We found that the
generalized Gauss–Newton method simplifies the underlying probabilistic model and provides
a meaningful uncertainty quantification. In particular, the Laplace and Gaussian variational
approximations provide a tractable and scalable approach to posterior approximation, appli-
cable to large datasets. In this work, we use the Bayesian approach to infer neural networks
based on two approximate inference techniques. In fact, the Gaussian variational approxima-
tion is considered as a direct competitor to Laplace approximation, providing function-space
inference while Laplace performs weight-space inference. The combination of either method
with Gauss–Newton should be understood as a local linearization of the Bayesian neural net-
work, which becomes a generalized linear model (GLM). This approach enables us to resolve
common underfitting problems with the Laplace approximation; the conversion to Gaussian
processes enables inference schemes for Bayesian neural networks in function space.

Key words: Bayesian optimization, deep learning, variational inference, Laplace approxi-
mation, neural networks.
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CHAPTER 1 INTRODUCTION

Bayesian methods are very powerful tools for inferring hidden representations from data. A
significant body of work has extended their application to deep learning, but they remain
impractical and rarely match the performances of standard methods. Two major challenges
have been related to the success of application of deep learning; scalability which is the
ability to make generalization on large datasets and tractability which measures the effi-
ciency of the model. Bayesian neural networks (BNNs) have the potential to combine the
scalability and predictive performance of neural networks with the principle of Bayesian un-
certainty modelling [1; 2]. However, the practical effectiveness of BNNs is limited by our
ability to specify meaningful prior distributions and by the intractability of its posterior
inference. Bayesian neural networks are probabilistic models in which the likelihood is pa-
rameterized by a neural network and the prior is a distribution over the neural network
parameters. Bayesian inference in these models is particularly challenging and combining
Bayesian estimation and posterior optimization has therefore played a major role in tack-
ling these problems [3]. Approximate Bayesian inference for probabilistic neural network
models remains a good alternative. Specifically, instead of obtaining an exact posterior of
the Bayesian inference problem, an approximation to the posterior is constructed. The use
of approximate inference techniques with BNNs affords parameter uncertainties that allow
predictive uncertainties while maintaining the computational and performance advantages of
deep learning. A key concept of Bayesian deep learning algorithms is to combine scalable
optimization and probabilistic inference. The combination of the generalized Gauss–Newton
method and Gaussian posterior approximations make Bayesian deep learning competitive
with traditional deep learning techniques, but their connection is still unclear. In this work
we address this issue, showing how Gaussian posterior approximations and the generalized
Gauss–Newton method allow to better understand these algorithms and improve them to a
larger set of problems such as out-of-distribution detection and uncertainty quantification.

1.1 Approximate Inference in Neural Networks

In Bayesian learning we deal with the posterior distribution which captures global informa-
tion about the data; by contrast, point estimates such as the maximum a posteriori (MAP)
estimate carry only local information. In particular, in the case of the regression task,
Bayesian inference is preferred and moreover provides additional advantages over MAP esti-
mates. First, it enables the uncertainty of predictions to be quantified. Second, the Bayesian
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formalism has the capability to capture the marginal likelihood of the data, which allows us
to compare different models and select the one that best explains the data. Interestingly, we
can combine Bayesian formalism with MAP estimation. Formally, in deep learning we are
given a neural network denoted by f(x; w) : RD × RP −→ RK that maps inputs x ∈ RD to
an output f ∈ RK contingent on parameters w ∈ RP . Let’s consider the case of a supervised
learning task with a pair-dataset D = {(xn,yn)}Nn=1 comprising a set of inputs xn ∈ RD and
labels yn ∈ RK . We assume the data points are identically distributed and independent. In
Bayesian inference we use Bayes’ rule to compute the posterior distribution p(w|D) over the
parameters as follows:

p(w|D) = p(D|w)p(w)∫
p(D|w)p(w)dw = p(D,w)

p(D) ∝ p(D,w);

here p(D) denotes the marginal likelihood, which plays the role of normalization constant
and in most cases is intractable. This expression makes apparent the combination of prior
belief p(w) and the likelihood of observing the data label y denoted by p(y|x; w). For a
neural network model, the likelihood is given by

p(D|w) =
N∏
n=1

p(yn|f(xn; w)).

The goal is to optimize the objective function by the MAP estimate; in practice we maximize
the following log joint distribution known as the empirical risk minimization. From Bayes’
rule we have

wMAP = arg max
w

log p(D|w)p(w)

= arg max
w

N∑
n=1

log p(yn|f(xn; w)) + log p(w);

this objective exhibits a decomposition of the likelihood term that depends on data points
and the prior, the latter acting as a regularizer. To enable a tractable form, the likelihood
can be restricted to the exponential family of distributions due to their desirable properties
for deep learning inference.

1.2 Approximate Inference in Function Space

Alternatively, we can apply Bayesian inference in the function space instead of parameter
space by making use of Gaussian processes. Gaussian processes (GPs) are stochastic processes
that provide a flexible non-parametric framework to perform probabilistic inference [4]. A
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Gaussian process models a distribution over function values such that any combination of a
finite number of dimensions is Gaussian distributed. Remarkable properties of GPs enable
tractable posterior inference (closed-form for Gaussian likelihoods) and calibrated uncertainty
estimates. For a simple regression problem, the inputs x and the output y are generated by an
unknown mapping f with Gaussian-distributed noise ε ∼ N (0, σ2

n). We consider the standard
linear regression model with Gaussian noise y = f(x) + ε. A remarkable property of GPs
is that, for any finite number of inputs X = [x1, . . . ,xn]T , the marginal distribution of the
function values f = [f(x1), . . . , f(xn)]T for f ∈ RK , is a multivariate Gaussian distribution.
The goal is to compute the posterior distribution over the function f(x) evaluated at arbitrary
test inputs x. First we need to assume that f ∼ GP(m(x),κ(x,x′;λ)) is a Gaussian process
characterised by its mean m(x) and covariance function κ(x,x′;λ). We apply Bayesian
formalism by modelling the joint probability of the system {y,X, f} as follows

f |X,λ ∼ GP(m(x),K(x,x′;λ)),

p(y|f ,X;λ) = p(f |X;λ)
N∏
n=1

p(yn|f ,xn), (1.2.1)

where K(., .;λ) is the covariance matrix induced by the covariance function κ(., .;λ) evalu-
ated at every pair of inputs, and the vector parameter λ = {λj}Jj=1 stores the parameters
of the corresponding covariance functions. The mean prior m(x) is generally set to zero
and the covariance function K ∈ RN×N is a positive definite kernel which depends on the
hyperparameters λ. The likelihood function denoted by p(y|f ,x) can take different forms
depending on whether we consider a regression or a classification problem. Given such a prior
distribution, the goal of Bayesian inference is to compute the posterior distribution over the
function f(xn) evaluated at arbitrary test inputs xn. When the likelihood is Gaussian dis-
tributed, the posterior distribution takes a convenient closed-form solution on account of its
conjugacy prior; therefore the predictive distribution at a test location x? can be written in
closed form as follows:

f(x?)|y,X ∼ N
(

K(x?,X;λ)
(
K(X,X;λ) + σ2

nIn
)−1

(y−m(X)),

κ (x?,x?;λ)−K(x?,X;λ)
(
K
(
X,X;λ) + σ2

nIn
)−1

K (X,x?;λ)
))
.

To determine the hyperparameters λ and σ2
n, we require the marginal likelihood of the data

p(D|X,λ, σ2
n) =

∫
p(y|f , σ2

n)p(f |X,λ)df
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In the case of multi-class classification, we construct k independent Gaussian process func-
tions which are passed through a softmax function. Although we no longer have a closed-form
marginal likelihood function, it can generally be approximated by a Monte Carlo approxima-
tion. Another limitation of GPs is that even though an exact posterior is available, scaling
to large datasets is computationally expensive because of the complexity cost of the marginal
likelihood computation, which is due to the cost of matrix inversion scaling as O(N3). To be
able to scale to large datasets we resort to sparse approximation, which reduces the compu-
tational cost but could result in lesser-quality estimates.

Sparse Approximation of GPs

To reduce the computation cost, sparse approximation methods can be applied; these consist
of choosing a small number M of "inducing" points, where M � N . A variety of sparse
approximations have been proposed in [5] and they mostly differ in how the selection is made
to process the matrix inversion. We describe below a method presented by [6] that considers
a subset of M function values u = {un}Mn=1 from the infinite-dimensional object f = {f6=u,u}
induced by a set of inducing points Z = {zn}Mn=1. We can now rewrite equation (1.2.1) as
follows:

p(y, f |X;λ) = p(u|Z;λ)p(f6=u|X,u,Z;λ)p(y|f ,X).

The key idea is to approximate the posterior f by restricting the variational approximation.
That is, we construct a factored variational distribution such that q(f) = q(u)p(f6=u|X,u,Z;λ)
in order to obtain a tractable expression of the variational lower bound to the log marginal
likelihood, given by

L(q) : = Eq(f)

[
log p(u|λ)p(u|Z;λ)p(y|f ,X)

q(u)p(u|Z;λ)

]

=
N∑
n=1

Eq(f) [log p(yn|f ,xn)]−DKL (q(u)||p(u|λ)) , (1.2.2)

where DKL denotes the Kullback–Leibler (KL) divergence measure. This formulation enables
us to apply stochastic variational inference as proposed in [7], in which the authors showed
that by sub-sampling the likelihood term they were able to obtain noisy but unbiased esti-
mates of the hyperparameters. Interestingly, Gaussian processes can provide function space
inference entailing rich structures, which allows us to illustrate the connection from weight
space to function space and thus enrich Bayesian learning.
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1.3 Thesis Outline

In this thesis we establish a connection between approximate inference and optimization
methods that accomplishes a twofold objective: scalability and tractability. More specifically,
we apply Laplace and the generalized Gauss–Newton (GGN) approximation, which give
rise to the generalized linear model (GLM) due to the linearizing property of the GGN.
Subsequently, we will be able to specify a weight space Bayesian inference and equivalently
identify a Gaussian process model for the neural network in function space. This formulation
yields a better understanding of uncertainty and can potentially enhance our understanding
of our probabilistic model.

In Chapter 2 we give the necessary background on Laplace approximation and the gener-
alized Gauss–Newton method for probabilistic neural network models. We show how the
combination of the Laplace approximation with GGN can efficiently optimize the neural net-
work. Then, we introduce Gaussian variational approximation and show how this method
differs from Laplace approximation, albeit both lead to a GLM. Chapter 3 makes the connec-
tion between approximate inference for GLM neural networks and Gaussian process models.
We discuss how the conversion from weight space to function space allows scalability and
tractability of neural networks. Further, we show how to compute the posterior predictive
and marginal likelihood approximations of neural network models. Chapter 4 sets out the
impact of the generalized Gauss–Newton method on variational inference; we also present
the computational considerations involved in scaling the Bayesian inference to large datasets.
Chapter 5 reports experiments that explain and complement the theoretical connections: we
show how to tune hyperparameters using the marginal likelihood and the posterior predictive.
We also extend our analysis to different covariance matrix structures. Further, we illustrate
how these methods can solve common deep learning problems such as uncertainty quantifi-
cation and out-of-distribution detection. Finally, we highlight interesting future directions
in Chapter 6 and conclude this work in Chapter 7.
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CHAPTER 2 BAYESIAN NEURAL NETWORKS

2.1 Introducing Bayesian Neural Networks

A Bayesian neural network (BNN) can be defined as a stochastic artificial neural network
that is trained using Bayesian inference without restricting to any deep neural network archi-
tecture. The first step is to choose a likelihood and a prior distribution. Due to their desirable
theoretical properties, generalized linear models (GLMs) are a family of likelihoods often used
in deep learning that allow tractable inference and provide efficient gradient computations
[8]. Let’s consider a response random vector Y; we define an invertible link function g that
expresses the mean of the response vector as E[Y] = g−1(f). A generic exponential family
can have the natural form

p(y|f) = h(y)e〈T (y),f〉−A(f), (2.1.1)

where T (y) is a sufficient statistic, h(y) is a base measure, A(f) is the log-partition and f
is the vector of natural parameters. It is common to set T (y) = y as the identity, so that
equation (2.1.1) yields the form h(y)e〈y,f〉−A(f). This formulation makes the derivatives of the
log-likelihood with respect to the function f convenient. Therefore we can directly relate f
to the moments of Y. The first derivative can be written as a residual between the observed
label and the mean of the response variable, identified as the link function g. The second
derivative is directly related to the variance of the response variable. For an exponential
family distribution p(y|f) of the form in (2.1.1), [4] generalizes this result by providing the
first and the second derivative of the log likelihood as follows:

R(f) := ∇f log p(y|f) = y−∇fA(f) = y− E[Y] = y− g−1(f)

−Λ(f) := ∇2
ff log p(y|f) = −∇2

ffA(f) = −Var(Y),

where the inverse-link function g−1(f) gives the mean of Y. The residual is denoted by
R(f) ∈ RK and Λ(f) ∈ RK×K denotes the Hessian of the negative log likelihood, also termed
the noise precision. For the choice of the prior, multiple techniques have been proposed
depending on the nature of the task. Since we are dealing with deep neural networks, we
restrict ourselves to a multivariate Gaussian which allows a connection to be made with
Laplace and Gaussian variational approximation [9], thereby illustrating the scalablility and
tractablility of the predictive distribution. In deep learning, it is common to use Gaussian and
Bernoulli likelihoods; when optimizing the objective function, the Gaussian likelihood yields
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a least-square loss in the regression case [4]. For the classification case, we use Bernoulli and
categorical distributions, for which the cross-entropy is used as a loss function. A common
choice of the prior is a multivariate Gaussian, because in the context of the MAP estimation
a Gaussian prior corresponds to an `2 regularization (weight decay). Therefore, we assume
the prior of w has the following distribution:

w ∼ p(w) = N (µ0,S0),

where the mean is denoted by µ0 ∈ RP and the covariance by S0 ∈ RP×P . A common
choice is to set the mean to zero and the covariance to a diagonal matrix. For a probabilistic
neural network model, the exact Bayesian inference is in most cases intractable. One way to
deal with this issue is to resort to approximate inference methods that enable computation
of the marginal likelihood. Approximate inference produces a scalable and tractable form
based on Laplace approximation or the Gaussian variational approximation. Both techniques
are constructed on a Gaussian approximation to the true posterior distribution. The Gaus-
sian variational approximation consists of maximizing the evidence lower bound of the log
marginal likelihood; this method is popular because it better captures the shape of the poste-
rior [10]. In contrast, the Laplace approach approximates the marginal likelihood by using a
second-order approximation of the joint distribution (or log joint distribution). We consider
the posterior approximation q(w) = N (w;µ,Σ) ≈ p(w|D), where µ ∈ RP and Σ ∈ RP×P

are Gaussian parameters. In the next section we present both methods.

2.2 The Laplace Approximation

The Laplace approximation fits a Gaussian distribution locally at the MAP estimate. This
approximation is divided in two steps: first, wMAP is obtained through optimization, and
then the log joint distribution is approximated using the second-order Taylor expansion.
One advantage to this method, which provides an approximation to both the posterior and
the marginal likelihood, is that the marginal likelihood is obtained in closed form. Since
wMAP is a minimizer, the gradient of the log joint with respect to w is equal to zero, and the
second-order Taylor approximation evaluated at wMAP is

log p(D,w) ≈ log p(D,wMAP) + 1
2 (w−wMAP)T ∇2

ww log p(D,wMAP) (w−wMAP) ;
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following [10], we can therefore obtain the Laplace approximation to the marginal likelihood
in a closed form as follows:

p(D) ≈ p(D,wMAP)(2π)P/2|∇2
ww log p(D,wMAP)|−1/2,

where |.| denotes the determinant. We are now able to obtain the distribution

p(w|D) = p(D,w)
p(D) ≈ p(w|µ,Σ),

where we have identified a Gaussian form of the Laplace approximation with

µ = wMAP and Σ−1 = −∇2
ww log p(D,wMAP).

The Laplace approximation is well suited to deep learning optimizers, because we only need to
find a MAP estimate and compute the Hessian of the log joint distribution at that estimate.
However, this method is not scalable in the case of large networks due to the computational
cost of the Hessian, and in fact there is no guarantee that the Hessian at the MAP is
necessarily positive definite. To tackle this problem, the Gauss–Newton method ensures
an invertible Hessian approximation [11; 12]. In the next section we discuss the Gaussian
variational approximation and introduce the generalized Gauss–Newton method.

Variational Approximation as a Competitor to Laplace Approximation

When the function value takes the form of a neural network, the variational approximation
problem is restricted to optimizing the KL-divergence of the true posterior p(w|D) :≈ q(w).
In particular, when the approximate distribution belongs to the mean-field familyQ, then the
variational approximation consists of minimizing the KL-divergence. Since the KL-divergence
is non-negative, we have

q(w) = arg min
q∈Q

DKL [q(w)||p(w|D)]

= arg min
q∈Q

∫
q(w) log

(
q(w)
p(D,w)

)
dw + log p(D)

≥ arg min
q∈Q

∫
q(w) log

(
q(w)
p(D,w)

)
dw + Eq

[
log p(D,w)

q(w)

]
.

Gaussian variational approximation restricts the mean-field family to multivariate Gaussian
distributions (often termed variational inference, or VI) parametrized by its mean µ and
covariance Σ. Therefore, the evidence lower bound (ELBO) for a probabilistic neural network
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model with Gaussian prior can be decomposed into an expected log likelihood denoted by
Llik(q(w)) and a KL-divergence term denoted by LKL(q(w)). The lower bound is given by

log p(D) ≥ LKL(q(w)) + Llik(q(w))

= Eq [log p(D|w)]−DKL [q(w;µ,Σ)||p(w|D)] := L(w;µ,Σ); (2.2.1)

since both prior and approximate distribution are Gaussian, we can obtain a closed form of
the KL-divergence term.

2.3 Differences Between Laplace and Variational Gaussian Approximation

In this section we highlight the differences between Laplace approximation and the varia-
tional approximation when restricted to a Gaussian family. The stationary conditions for
the variational Gaussian approximation can be obtained by optimizing the parameters of
the ELBO; for a probabilistic neural network model with Gaussian prior, the gradients of
L(w;µ,Σ) with respect to its (variational) parameters µ and Σ are given by

∇µL(w;µ,Σ) = ∇µ
(
Eq [log p(D|w)]−DKL [q(w;µ,Σ)||p(w|D)]

)

and

∇ΣL(w;µ,Σ) = ∇Σ

(
Eq [log p(D|w)]−DKL [q(w;µ,Σ)||p(w|D)]

)
.

[12] and [13] respectively provided simplified derivatives for the expected log likelihood, es-
tablishing a close connection to second-order approximation which can be useful for deep
learning optimizers. Therefore the expected log likelihood ELBO term can be simplified us-
ing the derivatives with respect to µ and Σ of the expected log likelihood. This formulation
reduces determining the gradient of the variational parameters to a sampling process that
takes the following form:

∇µEq(w) [log p(D|w)] = Eq(w) [∇w log p(D|w)] (2.3.1)

and

∇ΣEq(w) [log p(D|w)] = 1
2Eq(w)

[
∇2

ww log p(D|w)
]
. (2.3.2)
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[14] showed that the equalities in (2.3.1) and (2.3.2) are also applicable for the joint dis-
tribution; we can therefore determine our stationary conditions using these equalities. The
condition for the mean is trivial, while the condition for the inverse covariance consists of
differentiating with respect to the variational parameters such that ∇ΣL(w;µ,Σ) = 0, which
yields

Σ−1 = 2∇ΣEq(w) [− log p(D,w)] . (2.3.3)

We obtain the stationarity conditions as follows:

Eq(w) [∇w log p(D,w)] = 0 and Σ−1 = Eq(w)
[
−∇2

ww log p(D,w)
]
. (2.3.4)

Similarly, following [14], the optimality conditions for the Laplace approximation are given
by

∇w log p(D,µ) = 0 and −∇2
ww log p(D,µ) = Σ−1. (2.3.5)

Despite the computational framework, the Gaussian variational approximation is considered
a more powerful method than Laplace approximation since the inference is performed in
function space. The main difference between the approximations in equations (2.3.5) and
(2.3.4) is that Laplace approximation is only defined locally at the MAP estimate while vari-
ational approximation holds globally. Note that due to the stochasticity in the parameters,
the variational approximation provides a more global view of the joint distribution; see [14]
for a more detailed analysis.

2.4 Approximation with the Generalized Gauss-Newton Method

Training neural networks using approximate Bayesian inference is computational expensive,
due to the computation of second-order derivatives of the log likelihood. Generalized Gauss–
Newton (GGN) approximation is often used for the Laplace and Gaussian variational approx-
imation since it provides a positive semi-definite approximation to the Hessian. More scalable
GGN techniques have been proposed, including diagonal [9] or Kronecker factorization [15].
In the case of probabilistic neural network models, we have defined a generalized linear model
(GLM) likelihood as log p(D|w) = ∑N

n=1 log p(yn|f(xn; w)). We obtain the MAP estimate
by optimizing wMAP. In deep learning we generally have a loss function `(y, f(xn; w)); the
Bayesian learning problem is a generalization of Bayesian inference which requires a prob-
abilistic model [16], and when the loss corresponds to the log of a probability distribution
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`(y, f(xn; w)) = − log p(y|f(xn; w)), then the objective function takes the form

min
q∈Q
−Eq(w) [log p(D|w)] +DKL [q(w;µ,Σ)||p(w|D)] , (2.4.1)

known as empirical risk minimization. The solution q(w) allows us to identify the posterior
distribution of a probabilistic model with likelihood p(y|f(xn; w)) and prior p(w) [16]. If the
approximation family Q contains the true posterior distribution, then the variational approx-
imation is exact and reduces the KL-divergence to zero. With this setting, the likelihood
acts as a loss per data point and the prior can be understood as a regularizer. To optimize
log p(D|w) we take the first and second derivatives with respect to the parameter vector w.
Applying the chain rule we can first differentiate with respect to f and then with respect to
the parameters, as follows:

[J(x; w)]ij = ∂fi(x; w)
∂wj

and [H(x; w)]ijk = ∂2fi(x; w)
∂wj∂wk

,

where J(x; w) ∈ RK×P is the Jacobian of f(x; w), which we assume to be twice differentiable
with respect to the parameters. Similarly, the Hessian of the second derivatives corresponds
to H(x; w) ∈ RK×P×P . When p(y|f) is an exponential distribution of the form of p(y|f) =
h(y) exp(〈y, f〉 − A(f)) we can use the properties of the first and second derivatives of the
GLM log likelihood, obtaining the following gradient expression:

∇w log p(y|f(x; w)) = J(x; w)T∇f log p(y|f). (2.4.2)

This expression is easy to compute even with complex neural network architecture. The
Hessian of the log likelihood takes the form

∇ww log p(y|f(x; w)) = H(x; w)T∇w log p(y|f)− J(x; w)T∇2
ff log p(y|f)J(x; w)

= H(x; w)T∇w log p(y|f)− J(x; w)TΛ(f)J(x; w), (2.4.3)

where Λ(f) := ∇2
ff log p(y|f). Equation (2.4.3) is intractable, however, first because we need

to differentiate the neural network twice, and second, in some neural network architectures the
second derivative for particular activation functions is not defined everywhere [17]. To solve
this problem, we can use the GGN approximation to the Hessian to remove the intractable
term, so that the Hessian becomes

∇2
ww log p(y|f(x; w) = H(x; w)T∇w log p(y|f)− J(x; w)TΛ(f)J(x; w)

≈ −J(x; w)Λ(f)J(x; w)T . (2.4.4)
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This form guarantees that the Hessian stays positive semi-definite and allows an easy com-
putation since we only need first-order derivatives with respect to the neural network. This
approximation assumes that H(x)T∇w log p(y|f) = 0. [18] provided two independent suf-
ficient conditions as a justification: i) if the neural network is a perfect predictor, then
∇w log p(y|f) vanishes for all data points (x,y), but this can indicate overfitting and can
thus be unrealistic; ii) the network model is linear, causing the Hessian to vanish. We follow
the second alternative as in [19] and formulate a local linearization of the network function
evaluated at the MAP denoted by w? as follows:

fw?
lin (x; w) = f(x; w?) + J(x; w?)(w−w?).

This linearization reduces the Bayesian neural network (BNN) to a Bayesian GLM. The
corresponding log joint distribution is given by

`glm(w,D) =
N∑
n=1

log p(yn|fw?
lin (xn; w)) + log p(w),

where the linearization appears in the parameters and not in the inputs x. The GGN ap-
proximation brings two benefits: the Hessian H is guaranteed to be positive semi-definite,
and applying this approximation to the Hessian of the likelihood transforms the underly-
ing probabilistic model locally from a BNN into a GLM. The Laplace-GGN approximation
jointly applies the Laplace approximation and the GGN approximation [11]; we define the
posterior approximation as q(w) := N (w?,Σggn), with

Σ−1
ggn =

N∑
n=1
J(xn; w?)TΛ(fn)J(xn; w?) + S−1

0 , (2.4.5)

where S0 denotes the prior covariance such that p(w) = N (m0,S0). Therefore by linearizing
the neural network we are able to compute the Hessian at w?. Interestingly, this formulation
allows better local reasoning of the neural network and enables it to be mapped in the feature
space using a Gaussian process that allows function space inference.
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CHAPTER 3 GENERALIZED GAUSS–NEWTON APPROXIMATION
FOR NEURAL NETWORKS

In this chapter we seek to combine the results of the Laplace and generalized Gauss–Newton
(GGN) approximations to reveal their implications for neural networks. We are interested in
showing how to apply the generalized Gauss-Newton method to the neural network model
and analyzing the implications. One major consequence is that the combination gives rise
to a generalized linear model due to the linearizing property of GGN, which establishes a
connection to Gaussian process models.

3.1 Generalized Linear Model for Neural Networks

We recall that GGN applies a linearization on its parameter vector as follows:

fw?
lin (x; w) = f(x; w?) + J(x; w?)(w−w?).

Given a probabilistic neural network model f(x; w?), its linearized version fw?
lin (x; w) is shifted

locally, allowing us to obtain the posterior of a generalized linear model (GLM) [20]. A GLM
is a special case of an exponential family distribution in which the natural parameters are a
linear function of the inputs. Given a linearized neural network, let us denote the approximate
distribution by p̂GL(w|D) := qGL(w), which takes the form

p̂GL(w|D) ∝ p(w)
N∏
n=1

p(yn|fw?
lin (xn; w)), (3.1.1)

where fw?
lin (xn; w) is linear in the parameter w; consequently, the Jacobian can be represented

as a local feature map of the inputs. We can show now that the exact posterior of the GP
regression model corresponds to the Laplace–GGN approximation. As a result, applying
Laplace approximation to this GLM leads to an exact inference in a Bayesian linear regression
model.

Theorem 3.1.1. For a Bayesian neural network model, the Laplace–GGN approximation
is equivalent to the exact posterior of a Bayesian linear regression model. Using Laplace
approximation, the approximate distribution corresponds to

qGL(w) ∝
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p(w)
N∏
n=1
N
(
yn|g−1(f(xn; w?)) + Λ(f?)J(xn; w?)(w−w?),Λ(f?)

)
.

Proof : We use the log density for convenience, and to simplify notation we drop the depen-
dency on x and w as follows:

f? =: f(x; w?), J? := J(x; w?), Λ? := Λ(f(x; w?)).

First, since the prior remains unchanged, we derive the log-likelihood of the GLM using the
second-order Taylor expansion around w?,

log p(y|fw?
lin (x; w)) ≈ log p(y|fw?

lin (x; w?)) + (w−w?)T∇w log p(y|f(x; w))

− 1
2(w−w?)T∇2

ww log p(y|f(x; w)(w−w?)

= log p(y|fw?
lin (x; w?)) +

(
y− g−1(f?)

)
J?(w−w?)

− 1
2(w−w?)TJT? Λ?J?(w−w?)

= log p(y|f?)−
(
g−1(f?)− y

)
(J?(w−w?))

− 1
2 (J?(w−w?))T Λ? (J?(w−w?))

= log p(y|f?) + 1
2
(
g−1(f?)− y

)T
Λ−1
?

(
g−1(f?)− y

)
−

1
2
(
g−1(f?) + Λ?J?(w−w?)− y

)T
Λ−1
?

(
g−1(f?) + Λ?J?(w−w?)− y

)
,

where in the last step we completed the square and isolated the w-independent terms. Ex-
ponentiating this expression gives

p(y|f?) exp
{
−1

2
(
g−1(f?) + Λ?J?(w−w?)− y

)T
Λ−1
?

(
g−1(f?) + Λ?J?(w−w?)− y

)
+ 1

2
(
g−1(f?)− y

)T
Λ−1
?

(
g−1(f?)− y

)}
;

the last factor in the expression can be resolved by the Gaussian integral, which gives
(2π)P/2|Λ?|−1/2. Finally, we identify the covariance as Λ? and the mean as g−1(f?)+Λ?J?(w−
w?). This result shows when using the Laplace approximation to a linearized model, it be-
comes a Bayesian linear regression model that matches the moments of the original likelihood
at the MAP estimate w?. Similarly, one can transform the inference problem from the weight
space to the function space; we explain this method in the next section.
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3.2 Generalized Gauss–Newton Aproximation in Function Space

For a linearized neural network with a prior p(w) = N (µ0,S0) we identify a GP prior denoted
by p(fGP) ∼ GP(m(x),κ(x,x′)) and characterized by its mean and the kernel function as
follows [4]:

m(x) = Ep(w) [fw?
lin (x; w)] = fw?

lin (x;µ0) (3.2.1)

κ(x,x′) = Covp(w) [fw?
lin (x; w), fw?

lin (x′; w)] = J(x; w?)TS0J(x′; w?). (3.2.2)

Following [21], we can define the posterior Gaussian process in line with equation (3.1.1)
given by

p̂GL(fGP |D) ∝ p(fGP)
N∏
n=1

p(yn|fGP); (3.2.3)

we obtain the same posterior predictive for both the GLM and the GP model when we
specify the same prior over functions [4]. To be able to perform inference, we apply the
Laplace approximation to the GLM; this formulation is equivalent to solving a Gaussian
process regression model. Therefore the generalized linear model can be interpreted as a
generalized Gaussian process model due to the GGN approximation in equation (3.2.3). We
next want to show that the Laplace approximation to this model can indeed be cast as a
Gaussian process regression model. This will allow us to interpret the Laplace–GGN in the
function space instead of the parameter space, permitting a trade-off in computational cost
between quantity of data points and number of data dimensions. In addition, the function
space approximation holds for the posterior, posterior predictive, and marginal likelihood.
This method is very well suited to Gaussian process inference for finite-width neural networks
[22]. Below we present the connection of the Laplace–GGN to Gaussian processes and develop
its key implications. Let us consider a classification problem, denoting the Laplace–GGN
posterior approximation in function space by q(fGP). The linearized neural network with its
link function has the following form [4]:

g−1
lin (x; w) = g−1(f(x; w?)) + Λ(x)J(x)(w−w?).

To derive the approximate distribution in the function space we need to define a GP-prior
and apply the Laplace approximation to the GLM model.

Theorem 3.2.1. Let us consider a GP prior p̂(f̂GP) with mean and covariance functions
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defined as f̂GP ∼ GP(m̂(x), κ̂(x,x′)):

m̂(x) = g−1
lin (x,µ0) and κ̂(x,x′) = Λ(x)J(x)TS0J(x′)Λ(x′).

The Laplace approximation to the generalized Gaussian process model of equation (3.2.3)
evaluated at f(x; w?) corresponds to

q(fGP) = p̂(fGP |D) ∝ p̂(f̂GP)
N∏
n=1

p(yn|f̂GP ,Λ(xn)).

Proof : Since the prior is Gaussian due to its GP construction, we derive the likelihood of the
GLM using the second-order Taylor expansion around w? as follows:

p(y|fGP) ≈ p(y|f?) exp
{(

g−1(f?)− y
)

(fGP − f?)−
1
2 (fGP − f?)T Λ? (fGP − f?)

}

= p(y|f?) exp
{

1
2
(
g−1(f?)− y

)T
Λ−1
?

(
g−1(f?)− y

)
− 1

2
(
g−1(f?) + Λ?fGP −Λ?f? − y

)
Λ−1
?

(
g−1(f?) + Λ?fGP −Λf? − y

)}
.

This shows that Laplace–GGN approximation in function space enables inference correspond-
ing to a full posterior covariance for neural networks. The computational cost of the kernel
inversion and the Jacobian computation is equal to O(N3K3 +NPK). To reduce the compu-
tational cost we can resort to low-rank approximation. In the following sections, we derive the
posterior and the predictive function of this model and the corresponding marginal likelihood.

3.3 The Laplace–GGN Posterior Approximation

Since the Bayesian linear regression model has a closed mean and covariance form, we can
compute the Laplace–GGN approximation to the posterior distribution of the neural network
model by using Theorem 3.1.1. We first consider the parameters of the Gaussian approxi-
mation q(w) = N (µ; Σ). Following [10] the Gaussian posterior p̂(w|D) has the distribution
parameters

Σ =
(

N∑
n=1
J(xn)TΛ(xn)J(xn)T + S−1

0

)−1

(3.3.1)
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and

µ = Σ
(

N∑
n=1
J(xn)T

(
yn − g−1(f(xn))

)
+ J(xn)TΛ(xn)J(xn)w? + S−1

0 µ0

)
, (3.3.2)

where Λ(xn) := Λ(f(xn; w)) and we recognise the covariance as the inverse of the nega-
tive log-joint distribution. In particular, for the mean, when a local minimum exists, from
equation (3.3.2) using the optimal conditions we have

N∑
n=1
J(xn)T

(
yn − g−1(f(xn)

)
− S−1

0 (w? − µ0) = 0,

which yields µ = w? since it is a minimizer of the Laplace approximation constructed at
the MAP. We are now able to cast the posterior of the generalized Gaussian process in the
function space, so we can use the results of equations (3.2.1) and (3.2.2). When the GLM and
the GP coincide with w? = wMAP, we can construct the Laplace approximation at flin(x; w?).
We choose an isotropic prior on the parameters with covariance S0 = δ−1IP for a scalar δ > 0
and zero mean m0 = 0. In the case of K multi-output predictions, the kernel maps to a block
diagonal covariance matrix due to the independence of the GPs for each output and now has
a size of NK×NK instead of N×N . We denote the block diagonal matrix LXX ∈ RNK×NK

defined by N(K × K) blocks where the n-th block is the negative log-likelihood Hessian
Λ(f(xn; w?)). Following [4], we have∇2

ff log p(D, f(X)) = −LXX−δ
(
J(X; w?)J(X; w?)T

)−1
;

for a test input x? the approximate posterior takes the form

q(f?|x?,D) = N
(
f(x?; w?),Kx?x? −Kx?X

(
KXX + L−1

XX

)−1
KT

Xx?

)
,

where Kx?X is the kernel between the input test locations and the N training examples. Since
we have applied the GGN approximation, the kernel is given by Kx?X = δ−1J(x?; w?)J(X; w?).
Interestingly, [23] assume independent prior GPs for each output, yielding p(fGP) = ∏K

k=1 p(fGP)k;
this independence property speeds up the computation and reduces the computational cost
of GPs.

3.4 Approximate Posterior Predictive

In this section we highlight how the GGN approximation method impacts the posterior pre-
dictive. The first case, naive BNN, is simply a neural network based only on the MAP
estimate and obtained by Monte Carlo sampling. For the second case, we apply the GGN
method, which changes the original model to a generalized linear or Gaussian process model.



18

In the subcase of regression, the Laplace approximation gives rise to exact inference in a
Bayesian linear or Gaussian process regression model. In the classification subcase, we re-
sort to approximate techniques. We illustrate the approximate posterior predictives for the
different models as follows:

• Predictive naive BNN

To make a prediction with a naive neural network, we need to approximate the posterior
predictive integral by sampling S Monte Carlo samples with w1, . . . ,wS ∼ q(w). For
a new test input x? we have

p̂mc(y?|D,x?) ≈
∫
p(y?|f(x?; w))q(w)dw ≈ 1

S

S∑
i=1

p(y?|f(x?; wi)).

• Predictive GLM

Using a linearized neural network, the Laplace approximation to the posterior q(w) =
N (wMAP,Σ) results in a Gaussian distribution on the neural network outputs f(x?)
and takes the form

p̂(f?|x?,D) ≈ N (f?; f(w?; x?),J(x?)TΣJ(x?));

this formulation is efficient since it has a lower dimension (number of outputs K instead
of parameters P ) [24]. The predictive distribution can be obtained by integrating the
likelihood as follows:

p(y|x?,D) =
∫
p(y|f?)p(f?|x?,D)dw

≈ N (f?; f(w?; x?),J(x?)TΣJ(x?) + σ2I),

where σ2 is the variance of the Gaussian likelihood.

In the case where the likelihood is not Gaussian (e.g., classification), we need further
approximation. That is, we want to compute the following intractable integral:

p(y?|x?,D) =
∫
p(y|f(x?; w?))N (f?|µ?,Σ?)df?.

GLMs enable generalization of loss functions, with the inverse link function g−1(f?)
chosen as the sigmoid function σ(f?) or as a softmax function. [25] proposed to ap-
proximate the sigmoid function σ with the probit function Φ−the standard Normal
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cumulative distribution function, which provides a closed-form expression of the pre-
dictive. In practice, the GLM sampling method consists of using a second-order Taylor
expansion of the sigmoid function around the mean. Given a Gaussian p(f?|x?,D), we
can easily compute the integral as Ep(f?|x?,D) [σ(f?)]. However, we can obtain a closed-
form expression when the inverse link function g−1(f?) corresponds to a log probability
distribution. That is, assume the loss `(y, f(x; w)) := − log p(y|g−1(x; w)), where
g−1(.) is the inverse link function and y ∈ {0, 1} follows a Bernoulli distribution. The
Bernoulli likelihood function is σ(f(x; w?)), where σ is the sigmoid function and the
noise precision corresponds to Λ(f?) := σ(f(x; w?)) (1− σ(f(x; w?))). Therefore given
g−1

lin (f?), which is linear in the parameter w, then the predictive distribution is given by

N
(
y|g−1

lin (x?),Λ(f?)J(x?)ΣJ(x?)TΛ(f?) + Λ(f?)
)
.

Computing different predictive posteriors will enable a better choice of model; in the ex-
periments chapter we will show how these different models vary in term of accuracy. More
interestingly, we will show that the naive Bayesian neural network with MAP estimate suffers
from underfitting, while in the GLM case this problem could be reduced substantially. In the
next section we turn our attention to model selection by computing the marginal likelihood.

3.5 The Marginal Likelihood Approximation and Hyperparameter Tuning

In the deep learning literature, cross-validation is generally used to tune hyperparameters; in
Bayesian model selection, however, we use the marginal likelihood to tune these hyperparam-
eters in the training phase, an adaptation known as empirical Bayes or type-II-maximum-
likelihood learning [4] which is closely related to Occam’s razor [10]. This procedure is rarely
performed in deep learning due to the computational challenges. Using this technique with
variational inference, [26] found that optimizing the hyperparameters does not always give
good results and it is challenging to estimate. In this section, we are interested in deriving the
marginal likelihood using the Laplace method with Gauss–Newton approximation, showing
how we can identify a closed form of the marginal likelihood. We will use these results in the
experiments chapter for model selection. In particular, we demonstrate how the marginal
likelihood approximation could calibrate the given model, improving model performance.
We therefore derive the Laplace–GGN marginal likelihood approximation by using the exact
marginal likelihood given the Bayesian linear regression or GP regression models. First, we
use the result from Laplace approximation to derive the marginal likelihood of the GLM.

Theorem 3.5.1. Following Theorems 3.1.1 and 3.2.1, we can derive the marginal likelihood
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of the Bayesian linear or Gaussian process regression model denoted by p̂(D) for a given
model M, where M encodes the neural network architecture, hyperparameter priors, and
so on. We denote by qGL(D) the Laplace approximation to the marginal likelihood of the
generalized linear model, which takes the following form:

log qGL(D|M) =
N∑
n=1

[
log p(yn|f(xn; w?))− logN

(
yn|g−1(f(xn; w?)),Λ(fn)

)]
(3.5.1)

+ log p̂(D|M).

Proof : To derive the marginal likelihood of the GLM or the GP model, we make use of the
second-order Taylor approximation around w? to the log-joint distribution as follows:

log qGL(D|M) =
∫

log p(D,w|M)dw

≈
∫ (

log p(D,w|M)− (w−w?)T∇w log p(D,w|M)

− 1
2(w−w?)T∇2

ww log p(D,w|M)(w−w?)
)
dw

= 1
2
(
g−1(f(x; w?))− y

)T
Λ−1

(
g−1(f(x; w?))− y

)
− 1

2

(
g−1(f(x; w?))

+ ΛJ(w−w?)− y
)T

Λ−1
(
g−1(f(x; w?)) + ΛJ(w−w?)− y

)
+ log p(w?|M) + log p(y|f(x; w?))

=
N∑
n=1

[
log p(yn|f(xn; w?))− logN

(
yn|g−1(f(xn; w?)),Λ(fn)

)]
+ log p̂(D|M),

where in the third line we add and subtract 1
2 log(2π)k|Λ| to match the Gaussian likelihood

and collect the terms with no dependency on w?. Then, we combine the second term and
the prior to obtain the marginal likelihood of the Bayesian linear regression model or the GP
model. The marginal likelihood of the GLM or GP depends on the marginal likelihood of the
linear or GP regression model. When the neural network likelihood is Gaussian this leads to
p̂(D); otherwise we need to add a correction term. The marginal density for a given model
M takes the form

log p̂(D|M) =
N∑
n=1

logN (yn|g−1(f(xn))− 1
2 log |S0|

|Σ|
− 1

2 (µ− µ0)T S−1
0 (µ− µ0) .
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In function space, the kernel is composed of N2(K × K) sub-matrices with K ∈ RNK×NK

and the block diagonal matrix of the N Hessians Λ ∈ RNK×NK . Following [4], the marginal
likelihood of the GP regression model is given by

log qGP(D) = −1
2(m− y)T (K + Λ)−1(m− y)− 1

2 |K + Λ|+ constant,

where the mean function m ∈ RNK comprises the individual mean functions of the N data
points and y is the concatenation of the labels.

3.6 KFAC Approximation of the Hessian

We can proceed to a further approximation of the GGN Hessian to enable fast computation
and storage for large datasets. [27] proposed the Laplace approximation given by Kronecker-
factored approximate curvature (KFAC), which uses a special posterior structure to combine
a Gaussian prior with the Hessian approximation. The approximation uses Kronecker factors,
comprising block-diagonal matrices while maintaining greater expressiveness than diagonal
approximation. That is, each block corresponds to a neural network termed as a parameter
group; for the l-th parameter group of the GGN, the approximation takes the form

[HGGN ]l =
∑N

n=1

[
J(xn)TΛ(yn; fn)J(xn)

]
l
≈ Ql ⊗W l

where Ql denotes the covariance of the activation and is quadratic in the number of neurons
of the l-th layer while W l denotes the output of the layer l and is quadratic in the number
of neurons of the previous layer. Both Ql and W l are positive semi-definite, which enables
fast inversion since the inversion is done individually.
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CHAPTER 4 VARIATIONAL INFERENCE WITH GGN

Variational inference (VI), often referred to as Gaussian variational approximation, provides
similar results to Laplace approximation since they are equally scalable and use the same
approximating family. However, the optimization step is different for VI because it is not
sequential: the algorithm maximizes the evidence lower bound (ELBO) as described in equa-
tion (2.2.1). Desirable properties of the generalized Gauss–Newton method induce us to
combine it with VI, leading to the identification of a new algorithm. Thus, using GGN
provides a better understanding of approximate inference learning for each step of the VI
algorithm. In fact, with the Gaussian process formulation we are able to suggest posterior
predictive distributions and updates in function space. To maximize the ELBO, we make use
of natural-gradient variational inference (NGVI). This method, used principally in the field
of Bayesian deep learning [11; 28], exploits the information geometry to improve convergence
[29]. In this chapter we specify the parameter updates of an NGVI method and introduce
the variational online generalized Gauss–Newton (VOGGN) algorithm, which is derived from
the NGVI updates to a Gaussian posterior approximation.

4.1 Natural-Gradient Variational Inference

Natural-gradient variational inference is mathematically convenient and very efficient because
the parameters are updated sequentially. The natural-gradient method, often termed natural-
gradient descent, uses a very different approach than classical gradient descent. While the
classical approach uses Euclidean geometry parameter updates, natural-gradient descent uses
information geometry, the updates in our case being applied to the parameters of the Gaussian
posterior approximation, so that they are performed in the distribution space. In this section
we derive the natural variational inference in the natural parameter space. Therefore we need
to define natural and expectation parametrization of the Gaussian posterior approximation.
Denoting the first natural parameters by {ν(1), ν(2)} and the mean parameters by {φ(1),
φ(2)}, we have

ν(1) = Σ−1µ and ν(2) = −1
2Σ−1, (4.1.1)

φ(1) = µ and φ(2) = µµTΣ−1. (4.1.2)

Let F(ν) be the Fisher information matrix of the approximate distribution q(w) and L the
loss function commonly termed the ELBO. Following [16], we can express the update rule of
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the NGVI in natural space as follows:

νt+1 = νt + βF(ν)−1∇νL(ν)

= νt + βCovq(w) [∇ν log q(w)]−1∇νL(ν)

= νt + β∇φL(φ), (4.1.3)

where β is a step size and the ELBO is parametrized in natural rather than Gaussian pa-
rameters. This formulation enables us to compute the gradients with respect to expectations
and natural parameters. Interestingly, we are able to update the natural parameters without
computing the Fisher information matrix, thereby reducing the computational cost. In a
second step, we establish the connection with our Gaussian parameter, making use of the
chain rule to express the expectation parameter gradients in terms of gradients with respect
to µ and Σ such that µ = φ(1) and Σ = φ(2) −φ(1)2 . Indeed, applying the chain rule to the
natural gradient with respect to the Gaussian parameters gives

∇φ(1)L(φ(1),φ(2)) = ∇µL(µ,Σ)− 2∇ΣL(µ,Σ)φ(1)

= Eq(w) [log p(D|w)] + S−1
0 µ0 − S−1

0 µ (4.1.4)

and

∇φ(2)L(φ(1),φ(2)) = ∇ΣL(µ,Σ)

= ∇ΣEq(w) [log p(D|w)] + 1
2Σ−1 − 1

2S−1
0 , (4.1.5)

where we have used the closed-form derivatives of the KL-divergence between the prior and its
approximate distribution as proposed by [12; 13] and defined in equations (2.3.1) and (2.3.2).
Finally, plugging equations (4.1.4) and (4.1.5) into (4.1.3) we obtain the NGVI with natural
parameter-space updates. For a Gaussian variational approximation with the posterior at
iteration t denoted by qt(w) = N (µt,Σt), we have

Σ−1
t+1µt+1 = β

[
∇µE [log p(D|w)]− 2∇ΣE [log p(D|w)]µt

+ S−1
0 µ0 −Σ−1

t µt

]
+ Σ−1

t µt

and

−1
2Σ−1

t+1 = β

[
∇ΣE [log p(D|w)] + 1

2Σ−1
t −

1
2S−1

0

]
− 1

2Σ−1
t .
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Therefore, after rearranging the terms, the updates of the first and second natural parameters
are given by

Σ−1
t+1µt+1 = β

[
∇µE [log p(D|w)]− 2∇ΣE [log p(D|w)]µt

]
+

(1− β)Σ−1
t µt + βS−1

0 µ0, (4.1.6)

and

−1
2Σ−1

t+1 = β∇ΣE [log p(D|w)] + (1− β)
[
−1

2Σ−1
t

]
+
[
−1

2S−1
0

]
, (4.1.7)

where we usually choose β < 1 to force a convex combination of the current posterior approx-
imation qt and the prior. The updates are performed through expectation over the posterior
approximation qt at iteration t. Using the linearity property of the expectation, computation
of the gradient of the log-likelihood becomes highly simplified. The data dependency (reliant
on the log-likelihood expression) is only due to the gradients with respect to the mean and
the covariance of the expected log-likelihood terms. Different algorithms use these NGVI
updates: the only significant differences are how estimation of the derivatives is processed for
∇µE [log p(D|w)] and ∇ΣE [log p(D|w)]. [14] proposed estimating the derivative with respect
to the mean and covariance by sampling individual gradients, as we presented in equation
(2.3.1) and (2.3.2). In particular, consider the neural network function denoted by fw?

lin (x; w)
where we apply the GGN method, linearized at w?, and S denotes the Monte Carlo sam-
ples from the approximate distribution qt(w) = N (µt,Σt) with w1, . . . ,wS; we obtain the
gradient samples

∇µEq(ws) [log p(y|f(x; ws))] = Eq(ws) [∇w log p(y|f(x; ws))] (4.1.8)

and

∇ΣEq(ws) [log p(y|f(x; ws))] = 1
2Eq(ws)

[
∇2

ww log p(y|f(x; ws))
]
. (4.1.9)

We now derive a natural-gradient variational inference algorithm, the variational online gen-
eralized Gauss–Newton (VOGGN) algorithm, presented below. This algorithm first samples
the parameters from the approximating distribution and then applies the GGN approxima-
tion. For the first derivative, we use S Monte Carlo samples to approximate the expected
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gradient:

Eq(ws) [∇w log p(y|f(x; ws))] ≈
1
S

S∑
i=1
J(x; wi)T∇f log p(y|f).

For the Hessian, we need to sample S neural network models and then linearize these models
individually with respect to ws, as follows:

Eq(ws)
[
∇2

ww log p(y|f(x; ws))
]
≈ 1

2

S∑
i=1
∇2

wwp(y|f(x; wi)

≈ 1
2

S∑
i=1
∇2

wwp(y|fw?
lin (x; wi)

= −1
2

S∑
i=1
J(x; wi)TΛ(f(wi))J(x; wi).

This form of approximation can therefore be applied to the variational inference algorithm to
solve the scalability issue. In the next section, to show how the VOGGN algorithm can solve
the Bayesian linear regression problem, we describe a suitable approximation to large-scale
data that can be adapted to natural-gradient algorithms.

4.2 Bayesian Linear Regression with VOGGN Algorithm

In this section we want to make use of the natural gradient to solve Bayesian linear regression
through Monte Carlo sampling using the VOGGN algorithm [24]. In line with equations
(4.1.6) and (4.1.7), we can obtain an approximate update at each iteration of qt+1(w) by
linking the prior and the corresponding posterior approximation at iteration t. The key idea
is to parametrize the natural-parameter vector of the Gaussian as in equation (4.1.1), as
follows:

Σ−1
t+1µt+1 = βtS−1

0 µ0 + (1− βt)Σ−1
t µt,

−1
2Σ−1

t+1 = −1
2βt

[
S−1

0

]
− 1

2(1− β)
[
Σ−1
t

]
,

where β is a step size. We identify the natural parameters of p(w) and q(w) at each iter-
ation t, which can be determined by the expected log-likelihood. Now we make use of the
exponential family, denoting the natural parameter by ν̂ and the sufficient statistic by T (w).
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The posterior approximation at each iteration t takes the update

qt+1(w) ∝ qt(w)(1−β)p(w)β exp
{
βT (w)ν̂

}
,

where the gradients are updated in the natural parameter ν̂, so that the family of the posterior
update depends on the exponential family term given by [24]:

exp
{
βT (w)ν̂

}
= exp

{
β〈w,∇φ(1)L(φ(1), φ(2))〉+ β〈wwT ,∇φ(2)L(φ(1), φ(2))〉

}

= exp
{
β〈w,∇µEq(w) [log p(D|w)]

− 2∇ΣE [log p(D|w)µt]〉+ β〈wwT ,∇ΣE [log p(D|w)]〉
}
.

Using the linear property of expectation and the inner product, we can therefore use the
product over N data points as follows:

N∏
n=1

exp
{
β〈w,∇µEq(w) [log p(yn|w)]

− 2∇ΣE [log p(yn|w)µt]〉+ β〈wwT ,∇ΣE [log p(yn|w)]〉
}
,

using S Monte Carlo samples {w}Si=1 ∼ qt(w) to evaluate the mean over the S samples.
Similarly, since the sum is a linear operator we can take the product over these S samples,
given by

N∏
n=1

S∏
i=1

exp
{
β

S
〈w,∇w log p(yn|wi)µt〉+ β

2S 〈wwT ,∇2
ww log p(yn|wi)〉

}
.

For a single sample we have

exp
{
β

S
〈w,J i(x,w)T∇f̂ log p(y|f̂i) + J i(x,w)TΛi(f̂i(x; w))J i(x,w)µ〉

− β

2S 〈w
Tw,J i(x; w)TΛi(f̂i(x; w))J i(x; w)〉

}
,

where f̂i(x; w) denotes the function values for the i-th sample. We have used the linear
property of the inner product and then completed the square to obtain a Gaussian form. We
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finally express each term as a Gaussian distribution product as follows:

qt+1(w) ∝ N (w|mt,St)
N∏
n=1

S∏
i=1
N
(

yn|g−1(f̂i(xn; wi))

+ Λif̂i(xn; wi)Ĵ i(xn; wi)(wi − µt),
S

β
Λif̂i(xn; wi)

)
.

(4.2.1)

The VOGGN is characterised by a variational update at each iteration instead of relying
solely on stationary point. In particular, when the step size β = 1 and the Monte Carlo
sample is i = 1 we recover the Laplace–GGN approximation. In summary, VOGGN provides
a more flexible posterior approximation at each iteration. All algorithms for variational
inference use the same formalism, varying only in their approximation to these expectations
and the log likelihood. Other algorithms have been proposed in the same spirit using low-
rank approximation to the Hessian [26; 30]. Interestingly, Kronecker-factored approximation
to the Hessian, proposed by [27], enables us to work with more flexible covariance structures
with lower complexity.
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CHAPTER 5 EXPERIMENTS

In this chapter, we investigate the Gaussian variational approximation and the generalized
Gauss–Newton method experimentally to explore how they impact the posterior predictive.
We also use both the GLM and the Gaussian process model to approximate the marginal
likelihood of a neural network. Finally, we discuss the implications of these approaches for
uncertainty quantification and out-of-distribution detection. We conduct our experiments on
toy and real datasets for both the regression and classification tasks.

5.1 Bayesian-Model Selection with Marginal Likelihood

Figure 5.1 shows the marginal likelihood for different hyperparameters in the regression case
with the Wine-dataset from UCI Machine Learning Repository. When we have a weak
regularizer (δ very small), the neural network seems to overfit. We use the GP marginal
likelihood to tune the hyperparameters of the deep neural network during training. The
neural network is trained with a single hidden layer of 20 units and we apply a nonlinear tanh
activation function. Our goal is to determine the best regularisation parameter δ to trade
off between underfitting and overfitting. More precisely, Figure 5.1 shows the training log
marginal likelihood of the GP-predictive model using the GGN approximation. We illustrate
the mean squared error (MSE) along with the training and testing losses. The black star
indicates the optimal hyperparameter according to the test loss and the training log marginal
likelihood. The marginal likelihood chooses the hyperparameter value for which the test
error is the lowest. In order to evaluate the quality of the trade-off on the predictive, we can
perform different covariance structures. That is, in Figure 5.2 we illustrate the generalized
linear model predictives (predictive means) under the three variants of covariance matrix
structures: full, diagonal and KFAC (Kronecker-factored approximate curvature). On the
upper panel we evaluate the underfit model; below, the overfit model. We depict in this
figure the trade-off between complexity and capacity. The overfit model tries to fits the noise
while the underfit model fails to provide clear confidence. Similarly, in the classification case
with Two Moons dataset shown in Figure 5.3 we obtain similar results, the optimal model
exhibiting better results; however, the decision boundary becomes wider farther away from
the data. In the next section we continue our analysis of the approximate posterior predictive
distribution.

https://archive.ics.uci.edu/ml/datasets.php
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Figure 5.1 Regression: Hyperparameter tuning using the GP with Laplace approximation for
model selection on Wine dataset.
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Underfit Model

Overfit Model

Figure 5.2 Regresion: Predictive Means for regression case: GLM-GGN solves the underfit-
ting and overfitting problems on Wine dataset.
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Figure 5.3 Classification: Predictive means E[y?|x?,D] under the three approximation vari-
ants on Two Moon dataset.

5.2 Posterior Predictive Distributions

We consider toy datasets, Two moons and Banana for the classification task where we are
given inputs xn ∈ R2 and targets yn ∈ {0, 1}, and Snelson for the regression task where
we are given inputs xn, yn ∈ R. These datasets [31] are well known in the literature for
training toy problems to benchmark nonlinear models such as neural networks. Both tasks
use a multilayer perceptron with three layers and bias parameters, 25 hidden units per layer,
and a tanh activation function. The neural network function f(x; w) with parameter vector
w ∈ RP maps the inputs to the outputs. For the classification case, we use a Bernoulli likeli-
hood where the model is defined as Y ∼ Bernoulli(f(x; w)). For the regression case, we have
an additional hyperparameter σ2 with Gaussian likelihood defined as Y ∼ N (f(x; w), σ2).
We use a diagonal prior such that p(w) = N (µ0 = 0,S0 = δ−1IP ), where δ/N denotes the
weight decay factor and is chosen based on the validation dataset structure (the negative
log likelihood, architecture and method). To compute the approximation of the marginal
likelihood we make use of the Laplace–GGN method. The marginal likelihood critically
informs the decision on whether to choose one model over the other. We prefer a model
with suitable parameters δ and σ2; this method can replace the cross-validation technique
usually employed in deep learning. [32] explored this technique in the context of Laplace
approximation and variational inference with Gaussian processes. To estimate the general-
ization error, we use the average likelihood on the test dataset at the maximum a posteriori
(MAP) estimate. We first train the network to obtain the MAP estimate with the objective
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function 1
|Dtest|`(w?,D) = ∑N

n=1 log p(yn|f(xn; w?)) + log p(w?) using Adam optimizer. That
is, Adam is an algorithm for first-order gradient-based optimization of stochastic objective
functions, based on adaptive estimates of lower-order moment. The choice of Adam is be-
cause it is straightforward to implement, is computationally efficient and has little memory
requirements. In a second step, we compute the different posteriors and predictives with
the parameters obtained after training the optimal weights w?. Finally, we use our pro-
posed methods to understand the predictions of our models. We empirically evaluate the
GLM predictive for the Laplace–GGN approximated posterior and compare it to the (naive)
BNN predictive. Figure 5.4 shows that the GLM predictive for the Laplace–GGN approxi-
mated posterior consistently outperforms the BNN predictive for different values of the prior
precision δ.

Figure 5.4 Effect of hyperparameter δ on different performance metrics for Banana dataset
(clockwise: accuracy, negative log likelihood (NLL) and expected calibration error (ECE)).

5.3 Impact of the Generalized Gauss–Newton Method on Evidence Learning

Uncertainty quantification is often termed as evidence learning in deep learning; [10] provided
a useful interpretation for the predictive variance, which decomposes the source of uncertainty
of a model into epistemic (model noise) and aleatoric uncertainty (label noise). One way
to better quantify the aleatoric uncertainty (due to the presence of noise in the data) is by
increasing the sample size of the data; reducing this uncertainty is not possible. However, this
procedure could reduce the epistemic uncertainty due to lack of knowledge of the data. This
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trade-off will allow us to establish to what extent a model is uncertain about its predictions.
This decomposition could be useful in the case of continual learning, where the data in the
old tasks are no longer available for training new ones. [33] proposed a formal decomposition
of two sources of uncertainty of the total variance, which can be written as

V arpGL(y?|x?,D)(y?) =
∫ (

EpGL(y?|x?,w)(y?)− EpGL(y?|x?,D)(y?)
)2

q(w)dw︸ ︷︷ ︸
epistemic uncertainty

+
∫
V arpGL(y?|x?,w)(y?)q(w)dw︸ ︷︷ ︸

aleatoric uncertainty

.

In practice, to analyze the model confidence we inspect the uncertainty in the posterior dis-
tribution: in most cases, the epistemic uncertainty is low outside the data when it is distant
from the decision boundary, due to the non-stationary kernel. In this section we analyze
the model confidence of different predictive approximate posteriors in the Bayesian neural
network case. We analyze the naive BNN and the GLM predictive under different covariance
posteriors: full, Kronecker-factored (KRON or KFAC), or diagonal. We consider the clas-
sification case of the Banana datatset from UCI [31], using a neural network of two hidden
layers with 50 units each and applying the tanh activation function. Figure 5.6 illustrates the
different Bayesian neural network predictives for the classification task. We see that the naive
BNN predictive suffers from underfitting compared to the GLM. That is, the model is unable
to display the decision boundary and exhibits huge variance. Underfitting is due to samples
from the mismatched region of the posteriors. The GLM method resolves the underfitting
problem, the predictive variance increasing when distant from the data. Interestingly, we see
that the GLM model decomposes the predictive variance into meaningful uncertainty quan-
tities: the aleatoric uncertainty, which is data-inherent, shows a clear separation between
classes identified by the decision boundary, while the epistemic uncertainty, which is model-
specific, increases away from the data. The Kronecker-factored (KRON) posterior is capable
making a clear separation between classes even under the naive BNN model. These results
are in line with [33] findings. That is, the GLM predictive is adaptive to deep neural net-
works where the model is more involved (nonlinear) due to a more complex architecture and
presents good performance results shown in Figure 5.5 with the Banana dataset. As claimed
in the previous experiments, the naive BNN predictive underfits in comparison to the GLM.
For the GLM, the underfitting is resolved due to the linear structure of the predictive. In
fact, we see that the GLM predictive with Laplace–GGN posterior decomposes the variance
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into an aleatoric uncertainty at class boundaries and epistemic uncertainty when less data is
present. This proves that the GLM/Laplace–GGN approach adapts for deeper (more non-
linear) architecture and yields better qualitative results, whereas the BNN approach yields
worse results when the neural network is deeper.

Figure 5.5 Classification: (harder task) Decomposition of uncertainty V ar[y?|x?,D] for GLM-
GGN model: Epistemic and aleatoric uncertainty with two hidden layers and 50 units using
a tanh activation function on Banana dataset.
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Figure 5.6 Classification: Decomposition of uncertainty V ar[y?|x?,D] for GLM (top) vs BNN
(bottom): epistemic and aleatoric uncertainty with two hidden layers and 50 units using a
tanh activation function on Two-Moons dataset.

Figure 5.7 demonstrates the Laplace–GGN approximation under the GLM method yields
to more confident predictions. In particular, for the GLM/Laplace–GGN approach with
diagonal posterior, we see a less confident behaviour. In other words, the epistemic and the
aleatoric uncertainty are not very meaningful in the case of the diagonal posterior. One way
to explain this behaviour is due to the rigid nature of diagonal approximations, which makes
them less meaningful. In fact, the diagonal approximation cannot capture all the correlations,
and therefore neglects important correlations among the weights.
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Figure 5.7 Classification: Predictive Means E[y?|x?,D] under different covariance structures
with two hidden layers and 50 units using a tanh activation function on Banana dataset.

5.3.1 Predictive Distribution with Variational Inference

In this section, we want to compare the quality of the posterior predictives generated by
Laplace-GGN approximation and variational inference. Understanding predictions of neural
networks using feature learning can help with data explainability and improves bias uncer-
tainty by identifying inconsistency in the training data. In Figure 5.8 we consider a regression
task with the Snelson dataset available from the UCI Machine Learning Repository. We use
two hidden layers in the multilayer perceptron and 64 units with a sigmoidal transfer func-
tion. We construct the posterior predictive distributions on the regression task based on
Laplace approximation and on variational inference. For the Laplace approximation, we
illustrate the BNN based on GGN approximation and its corresponding Gaussian process
view, denoted by BNN-GGN-GP, and we seek to compare this to the vartiational inference
approximation, denoted by BNN-VOGGN. Since these two methods use different objectives,
they lead to different approximate posterior predictives. We want to compare the marginal
mean and variance for each model. First, we note that the BNN–Laplace approach with
GGN provides reasonable uncertainty estimates with accurate predictions for both Bayesian
linear regression and the GP method. In contrast, the BNN-VOGGN displays huge variance
when data are missing.

https://archive.ics.uci.edu/ml/datasets.php
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Figure 5.8 Regression: Visualization of predictive distributions based on Laplace–GGN ap-
proximation and variational inference with Snelson dataset.

5.4 Out-of-Distribution Detection with Generalized Gauss–Newton

5.4.1 Impact of Hyperparameter Tuning

It is worth emphasizing that different neural network architectures induce different feature
maps and therefore different Jacobians. More interestingly, some prior choices lead to good
inductive biases for Bayesian neural networks. Figure 5.4 shows how performance can be
substantially affected by the prior choice of the hyperparameter δ. The ultimate goal is to
retain the optimal model by choosing the δ that minimizes the negative log likelihood (NLL).
We consider the classification Banana dataset available from the UCI Machine Learning
Repository. We wish to compare neural network based on the naive BNN and the GLM.
The GLM is constructed under the GGN-approximation with full covariance matrix, the
diagonal matrix, and the GP model. We split the data into training, testing and validation
datasets with proportions of 80%, 10% and 10% respectively. To avoid class imbalance, we
stratified the class label and obtained a proportioned sample for each particular class. We
used 16 different prior precision hyperparameters δ on a log-space grid from 0.01 to 100. The
network architecture is constructed with 50 hidden units and two layers with a tanh activation
function on each hidden layer. After selecting the optimal value for the hyperparameter δ,
we report performance on test accuracy, the negative test log likelihood, and the expected
calibration error (ECE). For the first metric a higher number is better while for the second
and third a lower number is preferable. From Table 5.1 we notice that the GP predictive
with GGN approximation outperforms the other methods on all metrics and in particular is

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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well calibrated according to the ECE, which measures how well the predicted uncertainty is
adjusted to the empirical accuracy. In fact, the GP-GGN shows good calibration performance
due its functional inference properties.

Table 5.1 Method Evaluations on Banana dataset

Method NLL Accuracy ECE
BNN 0.4289 0.8251 0.1295
GLM-GGN 0.2151 0.8955 0.0288
GP-GGN 0.2137 0.8968 0.0251
GP-GGN-diag 0.2485 0.8855 0.0226

Table 5.2 Method Evaluations on FMNIST Image Classification

Method FMNIST
Accuracy NLL ECE

BNN 91.39±0.11 0.269±0.003 0.172±0.011
GLM-GGN-Full 85.60±0.21 0.254±0.032 0.061±0.034

GLM-GGN-KFAC 91.88±0.21 0.274±0.093 0.015±0.071
GP-GGN 92.18±0.24 0.376±0.011 0.016±0.021

Table 5.3 Method Evaluations on CIFAR Image Classification

Method CIFAR
Accuracy NLL ECE

BNN 67.19±0.512 0.567±0.043 0.255±0.071
GLM-GGN-Full 82.76±0.76 0.342±0.053 0.088±0.051

GLM-GGN-KFAC 80.26±0.18 0.701±0.091 0.089±0.035
GP-GGN 81.78±0.77 0.541±0.009 0.032±0.017

5.4.2 Scalability

For larger datasets, we use MNIST [34], FMNIST [35] and CIFAR [36] datasets for image
classification. This will allow us to evaluate scalability performance for the proposed ap-
proaches. We use a naive BNN with Laplace approximation, the GLM–Laplace with full
GGN approximation, the GLM with KFAC–Laplace–GGN approximation, and a GLM-GP
model with a sparse posterior approximation on a subset of M = 400 data points. We con-
sider a convolution neural network (CNN) architecture for the MNIST and CIFAR datasets,
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training with four hidden layers with sizes of 1024, 512, 256 and 128. The GLM predictive
shows superior performance results in terms of accuracy and NLL in comparison with other
methods. Interestingly, despite the fact that the GP model uses a subset of the training data
to make predictions, it outperforms in terms of expected calibration error (ECE) [37] (which
simply takes a weighted average over the absolute accuracy/confidence difference). This is
because the GP model makes use of the full Laplace–GGN covariance matrix, whereas in the
case of the parametric model, only a posterior KFAC covariance approximation is used. We
compare the probabilities using the following metrics: accuracy, NLL and ECE. To evaluate
the efficacy of the approach in detecting the out-of-distribution data, we evaluate the pre-
dictives on out-of-distribution (MNIST) and in-distribution (FMNIST) datasets respectively.
First, we compute the predictive entropies of the output and compare the out-of-distribution
and in-distribution datasets against each other. More specifically, we compute the predic-
tive entropy of the underlying output probability (obtained by sampling). When the output
distribution is a uniform distribution then the predictive entropy is at its maximum. For out-
of-distribution we desire higher predictive entropies, in contrast for in-distribution data we
desire lower predictive entropies. Figure 5.9 illustrates the predictive entropy density under
different posterior methods using the MNIST and FMNIST datasets for out-of-distribution
and in-distribution data respectively. We note that the GLM predictive outperforms the
other methods. The naive BNN is overconfident while the GLM predictive is underconfident
with a better out-of-distribution detection reflected by good results on calibration metrics
(ECE), as shown in Tables 5.2 and 5.3. In summary, the GLM predictive outperforms based
on test accuracy while the naive BNN shows the worst results. We obtain similar results
with the GP-GGN model shown in Figure 5.10 for different sparse GP models as we increase
the number of inducing points. In conclusion, the three tables 5.1, 5.2 and 5.3 show clearly
that the Laplace approximation with GGN outperforms the naive BNN in all metrics. In a
second analysis, when taking only the GLM–GGN method itself, we note that, depending
on which covariance structure is used, different results are obtained. That is, the KFAC
structured covariance provides a good trade-off between expressiveness and speed. Diagonal
approximations perform significantly worse than KFAC but are very cheap to compute and
are therefore not suggested in most cases.
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Figure 5.9 Out-of-distribution (MNIST) vs in-distribution (FMNIST) detection with CNN
architecture incorporating two fully connected classification layers.
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Figure 5.10 Effect on entropy of inducing points under the GP-GGN model: out-of-
distribution (MNIST) vs in-distribution (FMNIST) with CNN architecture incorporating
two fully connected classification layers.
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CHAPTER 6 FUTURE WORK

In this thesis we have complemented our theoretical results with experiments that can be used
for future work. In fact, the generalized Gauss–Newton method and approximate inference
in Bayesian deep learning can be combined to extend theoretical work and to investigate
convergence, the choice of priors and domain representation.

We have presented different approximations that rely on the Gauss–Newton approximation,
each having its own strengths and weaknesses. Approaching Bayesian deep learning with
these approximate inferences from a probabilistic perspective allows us to understand how
accurate these approximations are. Traditionally, Bayesian deep learning methods rely heav-
ily on MAP estimation which plays a role as a weight space regularizer, but it is worth
investigating how we could add perturbations to this regularizer in function space. This for-
mulation has already been discovered but not as yet extended to a large scale. One particular
example is that the approximation of this regularizer in function space yields better perfor-
mance results than classical weight methods discussed in the application of continual learning
by [23]. We have shown that GLMs become GPs due to the Gauss–Newton method, which
permits analysis of the form of the Jacobians under different neural network architectures and
helps us to understand GP kernel structures. A more recent but still ambiguous development
is the understanding of the structure of posterior covariance approximations, especially for
low-rank covariances. A key advantage of linear transformation from a probabilistic neural
network to a GLM or a GP model is the reduction of the computational complexity. This
enables us to obtain a closed form of the functional posterior for regularizing neural networks
in the function space as opposed to the weight or parameter space. In addition, the function-
space approximation leads to the same posterior predictive as a full posterior covariance in
the parametric space and therefore enables an interesting application in transfer learning.



43

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

In this thesis, we have given an account of Bayesian deep learning under approximate inference
using the generalized Gauss–Newton method. In particular, approximating the posterior of
the GLM gives us an approximate formulation of the neural network. Using this formulation
the GLM becomes a Gaussian process, allowing identification of a function-space posterior
approximation for neural networks. Interestingly, linearizing the neural network results in
a closed-form posterior predictive distribution and thereby reduces the computational cost.
This work has enabled a detailed investigation into how the accuracy of approximate Bayesian
inference can solve common problems for large datasets. That is, this method solves the
underfitting problem from which Bayesian neural networks tend to suffer. In addition, we
have shown how uncertainty quantification and out-of-distribution detection can be handled
even with large datasets.

We have shown that the combination of Laplace approximation and the generalized Gauss–
Newton approach yields an improvement in BNN learning. The process is accomplished
in two principal steps. The first step consists in optimizing the neural network with the
MAP (maximum a posteriori) estimate; the second step applies GGN, which linearlizes the
neural network at the MAP estimate. This approximation allows us to identify the GLM
via moment matching between the Laplace and the GLM likelihood when the likelihood is
Gaussian. In particular, this GLM turns into a Bayesian linear regression model and we
therefore obtain a posterior approximation of the neural network. Interestingly, this GLM
can easily identify a Gaussian process model, enabling us to obtain a closed-form posterior
predictive and marginal likelihood. This connection supports inference in the function space
under Laplace-GGN posterior approximation, a formulation that is interesting when the
number of parameters is much larger than the number of data points. In fact, we have two
views, the GLM model in the weight space and the GLM-GP in the function space. We
have shown for Bayesian linear regression that these models are both useful for the posterior
predictive and marginal likelihood computation in the Bayesian model selection case, and
have provided robust predictions even though we do not have the true likelihood. That is, we
illustrated in the regression and classification cases that using the GLM yields more consistent
posterior distributions than neural network sampling. In addition, the marginal likelihood
approximation to the GLM creates an automated way to select the optimal hyperparameters
of the neural network in the training phase.

Variational inference remains a direct competitor to the Laplace approximation for deep
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learning algorithms, differing from the latter on how to update the variational parameters;
basically we need to compute an expectation to obtain the updates and identify the station-
arity conditions generally approximated by sampling. We showed by applying the GGN in
the VI framework we can derive a new algorithm: the variational online generalized Gauss–
Newton algorithm. At each step, VOGGN samples the neural network and obtains different
neural network feature maps, leading to a better generalization of the predictive approxima-
tion. Despite its accurate predictions based on the posterior approximation, VOGGN shows
huge variance when data are missing. In summary, both variational inference and Laplace–
GGN approximation algorithm provide consistent results for uncertainty quantification and
out-of-distribution detection. However, a significant issue from which these algorithms suffer
is their highly correlated parameters. In fact, they fail to capture correlations with a Gaussian
approximating family and are difficult to scale to large models due to computational costs
and high variance of gradient updates. [38] proposed adding correlation in the hidden units.
This technique could potentially reduce the gap between the true and the corresponding
variational posterior, which might improve performance.
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APPENDIX A GAUSSIAN PROCESSES

We define the general case for a regression task where we assume the observations follow a
Gaussian distribution

y ∼ N
(
f , σ2

n

)
.

The main goal is to compute the posterior distribution of the latent Gaussian process (GP);
applying Bayes’ rule we have

p(f |y) = p(y|f)p(f)
p(y) . (A.0.1)

The posterior distribution of the latent function given the data is a Gaussian,

f |D,λ ∼ N
(
Kff

(
Kff + σ2

nI
)−1

y,Kff −Kff
(
Kff + σ2

nI
)−1

Kff

)
,

where λ denotes the kernel hyperparameters and Kff is the covariance matrix induced by
the covariance function κ(., .;λ) evaluated at every pair of inputs. When the likelihood and
the posterior of the latent function are both Gaussian distributed, integration over a product
of Gaussians produces a Gaussian distribution. For test points x?, we make a prediction for
new labels y? as follows:

y?|x?,D,λ, σ2
n ∼ N

(
µ(x?),Σ(x?,x′?) + σ2

nI
)
,

where

µ(x?) = κ(x?,X)
(
Kff + σ2

nI
)−1

y

and

Σ(x?,x′?) = κ(x?,x?)− κ(X,x?)
(
Kff + σ2

nI
)−1

κ(X,x?).

We note that the mean and the kernel depend on the model’s hyperparameter vector λ, which
governs the quality of the Gaussian process’s fit to the data. Estimating these parameters
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requires the marginal likelihood of the data,

p(D|λ, σ) =
∫
p(y?|f , σ2

n)p(f |X,λ)df ; (A.0.2)

integrating (marginalizing) over the latent function values f gives the marginal distribution

p(y|X,λ, σ2) = N
(
0,Kff + σ2

nI
)
.

For convenience of optimization we work with the log marginal likelihood

log p(D|λ, σ2) = −n2 log 2π − 1
2 log |Kff + σ2

n| −
1
2yT

(
Kff + σ2

nI
)−1

y.

In the presence of a closed-form solution, the log marginal likelihood is computed through ef-
ficient gradient-based optimization techniques such as L-BFGS or conjugate gradients. When
the likelihood p(y|f ,λ) is non-Gaussian (due to the loss of conjugacy) the posterior distri-
bution of the latent function given the data p(f |D,λ) does not have a closed-form solution;
approximation-based inference could be applied to approximate p(f |X,λ) in equation (A.0.2)
but we need to deal with two fundamental components; first, the cost of computing the prior
and the posterior, and second, the likelihoods that are not conjugate to the Gaussian dis-
tribution. Despite having an analytic closed form, using these equations quickly becomes
intractable even for small datasets. The issue comes from the O(N3) computational cost
for computing the inverse and determinant of Kff . Usually, Bayesian models have tractable
priors and likelihoods, and any intractability comes from the fact that there is no closed-form
solution for the marginal likelihood, referred to as the normalizing constant of the posterior.
The prior p(f) could also be intractable, as this density already contains the inverse and
the determinant calculations. Popular approximation techniques have been proposed such as
Laplace approximation [39], expectation propagation [40] and variational inference [9]. Al-
ternatively, instead of seeking a tractable approximation (of the posterior), we could sample
from it and use the sample as a stochastic approximation, evaluating the marginal distri-
bution through Monte Carlo integration. The most popular sampling methods are Markov
chain Monte Carlo (MCMC) and Gibbs sampling. However, these methods scale poorly even
for moderately large datasets, especially when the posterior distribution is high-dimensional.
We can approach the problem by variational inference, however, solving it using sparse ap-
proximation.
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APPENDIX B VARIATIONAL INFERENCE WITH GAUSSIAN
PROCESS MODELS

We aim to achieve two goals: efficient computation and tractability. To deal with the in-
tractable posterior in (A.0.1) we employ the variational inference formalism developed by
[41]. The tractability issue is solved via an optimization problem based on finding the closest
approximate distribution according to the Kullback–Leibler divergence measure. In infor-
mation theory, to approximate an unknown distribution p from an arbitrary distribution q,
a frequently used dissimilarity measure between p and q is the forward KL divergence or
relative entropy [42], defined as:

DKL(p‖q) =
∫
p(x) ln p(x)

q(x)dx

=
∫
p(x) ln p(x)dx−

∫
p(x) ln q(x)dx

= −Le(p) + Lc(p, q),

where Le(p) is the entropy of the distribution p and Lc(p, q) is the cross-entropy between p
and q. Similarly, the reverse KL divergence DKL(q‖p) can be defined as

DKL(q‖p) =
∫
q(x) ln q(x)

p(x)dx

=
∫
q(x) ln q(x)dx−

∫
q(x) ln p(x)dx

= −Le(q) + Lc(q, p).

To see why the DKL divergence can be used as a dissimilarity measure, one can use Jensen’s
inequality, see [10]. (The DKL divergence is not a distance measure since DKL(p‖q) 6=
DKL(q‖p); hence it is not symmetric [43].) The key idea of the variational inference formalism
proposed by [41] is to choose a family of tractable variational distributions q(f ;λ) (where
λ corresponds to the variational parameters) to approximate the true posterior p(f |y). We
determine the closest family member by minimizing the Kullback–Leibler divergence with
respect to λ:

DKL(q(f ;λ)||p(f |y)) = Eq(f ;λ) [log q(f ;λ)− log p(f |y)] .
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In most cases we cannot compute the KL divergence, so we need an alternative objective to
optimize. A clever way to do this is by minimizing the KL divergence, which is equivalent to
maximizing the lower bound of the log marginal likelihood (ELBO) L given by

log p(y) ≥ Eq(f ;λ) [log p(y, f)− log q(f ;λ)] := L(λ).

Therefore we have two challenges, model complexity and tractability. The latter deals with
an intractable posterior and can be resolved using variational inference, while the former
deals with the issue of matrix inversion and can be resolved using covariance approximation.
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