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*
Fast Adaptive Séquence Estimation over
Frequency Sélective Fading Channels

Serge Forest and David Haccoun

Abstract

Séquence estimation is an equalization procédure that may be used for intersymbol

interference réduction in frequency sélective channels. Like other equalizers, this procédure must

be adaptive in order to keep up with chaimel variations. Unfortunately, convendonal adaptive

séquence estimators suffer from substantial performance dégradations under fast channel

variations. Here, a new approach is considered to the adaptive séquence estimation problem in fast

fading frequency sélective channels. A model for a combined channel and séquence estimation

(CCSE) is proposed. This model is used to assess the existing algorithms and to présent viable

solutions that provide significant improvements in error performances. An analysis of the pairwise

distances in the framework of CCSE is also presented. Finally, computer simulation results

supporting the theoretical analysis and demonstrating the superionty of the new approach over

existing methods in fast fading channels are provided.

* This research bas been supported in part by the Natural Scienœs and Engineering Research Council of Canada.



I. Introduction

Forney introduced maximum-likelihood séquence estimation (MLSE) in the early 1970s as

an efficient way to reduce intersymbol interference (ISI) problems in time-dispersive channels [l].

Since then, this technique bas been implemented in a variety of applications including equalization

in frequency sélective, fast fading channels. MLSE is performed on the premise that the ISI channel

can be modeled as a finite state machine. AU possible channel state variations are then searched in

a maximum-likelihood fashion. When the total number of possible channel states is small, an

optimum search procédure (a modified Viterbi algorithm) can be used as a séquence estimator. This

type of equalizer can eliminate most of the harmful effects due to intersymbol interference [l].

In order to construct an accurate model of the finite state machine at the receiver,

instantaneous channel characteristics must be known at all times. Hence, in a frequency sélective

fading channel, the séquence esdmator must be made adaptive in order to track channel variations.

Historically, the first adaptive séquence estimators used decision-directed channel estimators

(employing a stochastic gradient algorithm) in conjuncdon with MLSE [2],[3]. Unfortunately,

thèse estimators have a very slow convergence rate and hence are unable to keep up with fast

channel variations. Recently, a number of algorithms désignée to improve the convergence and

tracking properties of adaptive séquence estimation have been proposed [4]-[7]. As described in

some détails in section II, all of thèse algorithms use several channel estimâtes that are

independently adapted to their associated data séquence. For the tracking of channel parameters

under fast fading conditions, this approach does not provide a significant improvement of the error

performance over the traditional method unless it opérâtes at a fairiy high signal-to-noise rado [5].

Taking into account the significant increase in complexity over the traditional procédure, this

approach may not be very interesting from an engineering point of view. This paper présents an

analysis of the problems associated with adaptive séquence esdmation and proposes practical

solutions that provide substantial error performance improvements in firequency sélective, fast

fading channels. In our approach, the problem is considered as a combined channel and séquence



estimation (CCSE) where theoretical models and analysis provide much insight about adaptive

séquence estimation, leading to viable solutions.

The paper is organized as follows. Section n présents an overview of existing adaptive

séquence estimation techniques. In section m, a model for the combined chaimel and séquence

estimation (CCSE) problem is proposed. Based on that model, a new algorithm is présentée!

together with a theoretical analysis of the pairwise distance properties of CCSE. Results of

computer simulations showing that the new algorithm leads to an improvement of the bit error rate

by a factor of 5 over the existing methods at E^/NQ = 25 dB in certain fast fading channels are

provided in section IV and some conclusions are presented in section V.



II. Adaptive séquence estimation

In this section, we review the basic principles of adaptive séquence estimation and présent

known equalization procédures for frequency sélective fading channels.

A. M aximum-likelihood séquence estimation

Let us consider the time dispersive channel model of memory length L shown in figure l.

This model assumes a whitening matched filter is used at the receiver. Each ofthe L + l tap gain

coefficients is independent from the others. Purthermore, in a fading environment, each coefficient

n-L

Fig. l: Model for a time dispersive channel.

has a Rayleigh distributed ampUtude and a uniform distoributed phase [8]. The complex received

signal in the présence of noise at time n is given by

r«=f^+^=^+^ n =1,2,3,... (l)

where y^, called the filtered data, is the output of the finite state machine, w^ is a zéro mean

gaussian random variable and where X^ and f^ are respectively the data symbols vector and the

channel tap gain (CTG) vector defined as follows:



xn= {^\-^-^n-L^ <2a)

F n = rôÀ-^]t (2b)

where [ ] indicates vector transposition.

The MLSE receiver exploits the channel model of figure l by searching among all possible

state variations the data séquence that yields the closest filtered data séquence, in Euclidean

distance, to the received séquence. The channel state &„ is defined as the last L entries in the finite

state machme:

an= ^xn'xn-ï'-'xn-L+^ <3)

For a modulation scheme using m signais, there is a total of m" possible channel states.

The algorithm must select the data séquence {x} . of length N symbols that offers the

highest cumulative metric:

max

w,

N .N

rN,i=-^\rn-EW=-L^.i
n= l n = l

2
(4)

where F^ . is the cumulative metric for the N symbols associated with the data séquence {Je} ^

A
X^ i is the associated data symbols vector at time n and where y^ ; is the branch metric ofpath ;

at tune n. The search proœdure is usually implemented as a modified Viterbi algonthm if the total

number ofchannel states is small [l].

The major drawback of this procédure is that the calculation of the optimal metric in (4)

requires knowledge of the channel tap gain vector F at each instant. Since that vector is unknown

at the receiver, an estimate F must be used. In order to make the technique suitable under fast

varying channel conditions, one should examine adaptive channel estimators. Some of thèse

adaptive channel estimators used in conjunction with MLSE are presented in the remainder of this

section.



B. Conventional adaptive procédure

A decision-directed channel estimator may be used in conjunction with MLSE to make the

procédure adaptive. The channel estimâtes can be condnuously adjusted according to a stochasdc

gradient or recursive least squares (RLS) algorithm [8]. Tentative décisions of the séquence

estimator are used to form an error signal which is then employed to make appropriate changes to

the current channel estimate. Of course, the efficiency of the procédure is strongly related to the

reliability of the tentative décisions. Unfortunately, reliable décisions are not readily available at

the output of the MLSE algorithm. A delay ô, called the symbol estimation delay, is necessary

between the réception of a given signal and the use of the corresponding décision by the séquence

estimator. Using a stochastic gradient algorithm, the channel estimate F^ at time n is updated as

follows:

f«+l = Fn+a(^_5-F^_5)J «_5 (5)

where r^_^ is the received signal at time /i-ô, Jn-5 is the estimate for the data symbols

contained in the finite state machine at time n - ô (but available only at dme n), ( ) indicates

complex conjugate and where a is the step-size parameter. The paths metiics are computed

according to (4), but use the channel estimâtes:

N l .t. |2 ^

ÏM<=-EK-FAJ =-£^- (6)
n=\ n=\

where T^ ^ and y ^ are the cumulative and branch metrics of the path l, using the channel estunate

En- The overall proœdure is depicted in figure 2.

There is an inhérent compromise in the choice of the symbol estimation delay Ô. A short

delay permits a faster response to channel variations while a long delay insures a greater reliabUity

in symbol estimation, resulting m a better long term convergence. In a fast fading channel, a short



Fig. 2: Conventional adaptive procédure.
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delay is essential to keep up with channel variations. A poor reliabiUty of symbol estimâtes and a

substantial decrease in the overall performance are thus unavoidable.

C. Parallel channel estimâtes

By considering as many independent channel estimâtes as there are surviving data séquences

at each instant, it is possible to shorten the symbol estimation delay while maintaining a certain

reliability of the symbol estimâtes. Each channel estimate is independently adjusted in a decision-

directed manner according to their associated data séquence. A number of algonthms using this

technique have been recenûy proposed [4]-[7]. A variety of adaptive procédures were used to

condnuaUy adjust the channel estimâtes associated with a particular data séquence [5]. Since

recursive least squares (RLS) algorithms do not provide a clear performance improvement over the

gradient algorithm for the fracking of fast fading channels and taking into account the relatively

high computational complexity of RLS procédures, the gradient algorithm is preferred for the

applications considérée in this paper.



Using a modified Viterbi algorithm as a séquence estimator in conjuncdon with the parallel

channel estimâtes technique, each one of the m surviving séquences at each instant (m is the

number of signais in the constellation and L is the channel memory) must have its own channel

estimate based on the tentative décisions contained in its path history. Using a stochastic gradient

algorithm, the channel estimate at time n associated with the data séquence {x} ., F^ p is updated

as foUows:

F n +1. ;• = En, i+ a (/•„ - F^ ,J«, ;.) X^, (7)

where r is the received signal, X^ ;• is the column vector of the last L + l symbols contained in

the path history ;' at time n and where a is the step-size parameter. For each extension, the path

metric is computed as in (4) but uses the associated channel estunate as follows:

N l .t . |2 ^

rN,i=-^\rn-Fn.ixn.i\ = - E V. (8)
n = l n = l

which is essentially the same as (6), except that in this case each branch metric is evaluated using

its own channel estimate.

Once the cumulative metrics have been computed for every possible path extension, the best

paths merging at each channel state are selected as survivors. Then, the associated channel

estimâtes are updated according to (7). Thus, the symbol estimation delay is reduced to zéro while

the uncertainty about this estimation is compensated by considering many possibilities for the

transmitted séquence at that time. We refer to this algorithm as the Viterbi séquence estimator with

parallel channel estimâtes (VSE-PCE).

This technique does not however offer a significant performance improvement over

conventional methods for the tracking of fast fading channels unless it opérâtes at a fairly high

signal-to-noise ratio (SNR>25dB) [5]. Considering the important increase in computational

complexity and in memory requirements, this approach seems to have very Umited advantages over



the conventional adaptive procédure. In the next section, we address the problem of adaptive

séquence estimation with a model for a combined channel and séquence estimation. This model is

used to assess the above algonthm and to propose a new technique that provides substantial

improvement of the overall error performance in frequency sélective fading channels.



III. Combined channel and séquence estimation

Every séquence estimator that continuously adjusts its channel estimâtes, such as the two

procédures described in section îl, can be considered as an algorithm performing some form of

combined channel and séquence estimation (CCSE). But a maximum-likelihood CCSE would

require the détermination of both the estimated data séquence {x} ^ and the estimated séquence of

channel tap gain (CTG) vectors {£} ; which satisfy the foUowing critenon:

max

{x}„ {F}, p[{r}lw = {^} ^' {E} = {F}J] (9)

where {r} is the received signal séquence. An exhaustive search considering all possible data

séquences and CTG vector séquences is of course prohibited due to its complexity. In fact, the

number of CTG vector séquences alone is infinite if we consider that any channel realization is

possible. Below, a simplified search criterion, doser to implementation requirements, is presented.

A. Model ofthe restricîed combined estimation

Let us assume that the available adaptive algorithm can yield only one estimate of the CTG

vector séquence, given a spécifie received signal séquence and a data séquence used as a référence

to construct the error signal. This is a reasonable assumption for the RLS algorithms using a fixed

forgetting factor and the gradient algorithm using a fixed step-size parameter [8]. Hence, the

restriction imposed by the adaptive algorithm can be used to limit the search according to (9). Data

séquence estimâtes and CTG vector séquence estimâtes are no longer independent. We associate

each possible data séquence to the CTG vector séquence that would be delivered by the adaptive

algorithm using this data séquence as a référence [4]. For a given channel realization and a received

signal séquence, and considering data séquences of length N symbols and a modulation scheme

using m signais, the search is thus performed on m" possible pairs of data/channel estimâtes. In

the restricted CCSE, the algorithm must deliver the pair of data/channel estimâtes {S, F} ^ which

satisfies the following rule:

10



max
P[{r}\{x,F} = {x,F}i] (10)

{x,F}i

The optimal restricted CCSE algorithm delivers the {x, E} pair having the best cumulative

metric, as calculated in (8), among the m" possibilities. The data structure for the restricted CCSE

may be représentée by a tree, as shown in figure 3 for binary transmission Cm = 2) and a two-

symbol memory channel (L = 2). In figure 3, F^ ; is the channel estimate associated with the path

; at time n and the channel state is given under each branch. An upper branch corresponds to a bit

0 in the data séquence at that position while a lower branch corresponds to a bit l.

F3,0

"t
•l

Fo.o

(00)

F1.0

(00)

A

Fl,i

(10)

F2,0

(00)

F 1,1

(10)

E 2, l

(01)

^

Eî,3

(11)

(00)

F3.4

(10)
^

F3,2

(01)

î- \ 6
(11)

^

F3.1

(00)
^3,5

(10)

F3,3

(01)

F3,7

(11)

Pig. 3: Restncted CCSE data structure.

Exhaustive exploration of this data structure is obviously very complex even for relatively

small séquences. But many sub-optimal search procédures may be considered for the restricted

11



combined estimation. In order to keep a constant computational complexity and delay, breadth-first

search algorithms having a fixed number of surviving paths at each instant are considered. Oae way

to explore the data structure depicted in figure 3 is to exploit the merging properties of channel

states. As in section U-C, a Viterbi algorithm using parallel channel estimâtes can be used to

perform a sub-optimal search to find the pair {x, F} ^ satisfying (10). By doing so, only the mi

best paths merging into différent channel states are selected at each stage. This sélection is made

regardless of its impact on the estimation of the channel.

From the above discussion, we see that the major drawback of the VSE-PCE technique

présentée! in section II-C is that the sélection of the sumving paths does not dépend on the path

metrics only. The procédure is also constrained by the sélection of paths merging into différent

channel states. In the case of perfect channel knowledge, this aspect of the sélection procédure

decreases the number ofpaths to be explored at no cost to the error performance. However, in the

context of restricted CCSE, such a selecdon rule impairs the algorithm as it forces an additional

constraint on the sélection of the surviving paths. To avoid this problem, Seshadri [4] proposed to

increase the receiver complexity by accepting many survivors per channel state. This approach

removes some (but not all) of the constraints associated with the VSE-PCE algorithm at the cost of

an important increase in computational load and memory requirements.

We propose to remove all the constraints due to VSE-PCE and to keep an équivalent

computational load by usmg the M-algorithm, also called M-path algorithm, onginally introduced

in the context of source coding [9]. The M-algorithm has been shown to produce better

performance than constrained sub-optimal algorithms having an équivalent complexity [10].

Applied to the restncted CCSE, this algorithm simply selects at each instant the M paths having

the highest cumulative metrics, independently of their channel states, and discard the others. By

choosing a fixed number of survivors M = mtj, the overall algorithm keeps a roughly équivalent

computational load as the VSE-PCE [11]. One way to implement this restricted CCSE procédure

12



is to use an M-path séquence estimation in conjunction with parallel channel estimâtes, which is

referred in the following as MSE-PCE. The algorithm can be described, at time n, as follows:

Aleorithm

l. Make all data extensions from all surviving pairs at time n - l and compute their metrics

according to (8).

2. Select the M pairs having the highest metrics.

3. Update all the associated channel estimâtes according to (7).

Here, the CCSE model has been used to assess the exisdng techniques and to propose a new

adaptive séquence estimator. In section IV, we présent computer simulation results showing that

this algorithm outperforms both the traditional method and the VSE-PCE technique. In the

following, we utilize the CCSE model to détermine the error performance properties of all adaptive

séquence estimators using an analysis of the pairwise distances.

B. Pairwise distance properties

The pairwise distances provide much insight about the error performance in the présence of

white noise since they aUow the détermination of the pairwise enror probabilities. Thèse

probabilities can then be used to upper bound the overall error performance [8]. Here, we focus on

the détermination of the {x, F} pair distance properdes as perceived by a receiver in the context

of CCSE. Let us define D^ [ {x. F] ^ as the Euclidean distance between a given pair {x, F} ;• in

the CCSE data structure and the pair corresponding to the correct data séquence. It may be

evaluated as the distance between the filtered data séquence {y} • corresponding to the pair

A
{x, F} . and the filtered data séquence {y} ^ corresponding to the correct data séquence and the

CTG vector séquence {F} ^ associated to that path. It is thus given by:

13



N

D2[{x,È},] = ^ \^apt- V n, if
n=\

N

El
n» l

where the subscnpt opt is associated with the {Je, F} pair corresponding to the correct data

.t .(

= S \Fn,optxn~Fn,ixn,i\

(11)

séquence. To develop this équation further, it is convenient to define the following vectors called

respectively the data error vector e and the channel error vector Ç as:

e. = X-Xi (12a)

and

^.= f-F, (12b)

^
For the pair {x, F} ^ corresponding to the correct data séquence, we have s.^^ = o and

Ç f = E- î.opf The channel error vector ^ is the smallest achievable vector Ç with the given

adaptive procédure since it corresponds to the error made using the correct référence. Substituting

(12a) and (12b) in (11), we obtain

D2 [ ix, F} ,] = ^ \^ ^ - ^ ^, - ^ ^ + F^ j' (13)
N

£.1
n=T

where the subscript n is the time index and where the subscripts opt and / correspond respectively

to the pair of référence {x, F} ^ and the given pair {x, F] .. Using the properdes \a\ = a • a

and 2Re {ab } = ab^ + d^b, (13) may be written, after a few algebraic manipulations, as [11]:

D2 [ {x, F} ,] = D2 [ {x} ;] + ^ [ {x, F},] (14)

where D [ {^} ^ is the data séquence Euclidean distance and where ^> [ [x, F} .] is an error

term called the tracking perturbation. Thèse terms are given by

14



N 2
D2[Wi] = Elf^J (15a)

n=\

and

pw,t},} = E.(K,,^--<,-E»,,--<^|'+
n= l

2«{(^.,,) o«-ç;,,A,,,-.e,,^.)') >n.oprn- - / (15b)

Equations (14), (15a) and (15b) give the expression of the distance between the pair {^, f},

and the référence {x, F} ^ as a fùnction of the CTG vectors, the transmitted data symbols and

the error vectors. In the above équations, the effect of the error on the channel estimation has been

carefully isolated from the perfèct channel knowledge pairwise distance, showing the two factors,

(15a) and (15b), that influence the {x, F} pairwise distances: the data séquence distances and the

tracking perturbation. The former correspond to the pairwise distances obtained with perfect

channel state information (CSI) while the latter is the effect of imperfect channel estimâtes. The

two factors combine to yield the total distance.

It is interesting to note the effect of imperfect channel estimâtes on the pairwise distances.

From (15b), we note that the tracking perturbation is not necessarily proportional to the channel

error vector ^. Hence, a path may have a large error vector Ç and still have a small perturbation on

its distance from the correct séquence or vice versa. Purthermore, for a given channel realization

and a transmitted data séquence, the tracking perturbation may be either constructive in the sense

3 ^
that the pair distance D" [ {x, F} .] is larger with that perturbation than with perfect CSI, that is

/<

^ [ {xf E} ;•] > 0, or may be destrucdve in the sense that it reduces the distance as compared with

the perfect CSI réception, that is ^? [ {x, F] .] < 0. In the perfect CSI case, the painvise data

séquence distances détermine, for a certain channel reaUzation {F} , the overall error

performance. In a CCSE receiver, each one of thèse pairwise distances is differently modified by

the tracking perturbation, sometimes for the better, sometimes for the worse. Only one large

15



destructive perturbation is needed to cause an error event that would not have taken place with an

idéal receiver (perfect CSI).

A receiver that has perfect channel knowledge direcfly improves its error performance with

an increase in transmitting power, because of the increase in pairwise distances in (15a). In a CCSE

receiver, the effect is somewhat mitigated. A rise in transmitting power is reflected as an increase

in data séquence distances because of larger data error vectors but, unfortunately, it is also reflected

t ^ ^
in higherchannel estimation errors on incorrect paths(i.e.increase in f l Ç'^ ;^ ;"' | ). Thus, for the

same set of CTG vectors and the same transmitted séquence, the vanance of the tracking

perturbation increases, mcreasing with it the proportion of error events due to imperfect channel

estimâtes. At high SNR, the tracking perturbadon becomes the dominant factor and limits the

improvement of the error performance as the transmitdng power increases. At a certain point, a

greater signal power does not systematically produce an increase in pairwise {Je, F} distances for

a given channel realization. This important considération should be kept in mind when designing

a communication System using adaptive séquence estimation. Note finally that all the sub-optimal

algorithms (such as the MSE-PCE and the VSE-PCE) are even more sensible to thèse phenomena,

since they make premature décisions by eliminating certain paths at each instant.

16



IV. Computer simulations

Several computer simulations were performed in order to assess the algorithms and the

analysis présentée in the preceding section. The System model (presented below) was not chosen

to be especially realistic for a wide-band mobile-radio System, but rather to provide insight about

the tracking of fast fading channel parameters and to verify the assertions made in the previous

section. The model is described and simulation results are provided in fhis section.

A. System model

The channel model described in section II was used, with independent Rayleigh fading on

each tap. The fading rate was determined by the maximum normalized Doppler frequency f^T,

where T is the symbol duration and f^ is the Doppler shift given by

v vfc
/,4— <16>

where v is the speed of the mobile, À is the wavelength, e is the speed of light and where / is the

carrier frequency. We présent results for a System having a net transmission rate of 200 Kb/s, using

a QPSK modulation and a carrier frequency of 1.2 GHz. Each data séquence contains 500

information bits (N = 250 channel symbols). In order to compare the différent algorithms in their

idealized versions, we have neglected to incorporate all impairmenfcs due to mobile-radio Systems

(other than the ISI problem): imperfect traming of the coefficients at the begimung of each

séquence, adjacent channel and co-channel interference, phase jitter, etc. In particular, we assumed

perfect CSI at the beginning of each séquence and a perfectly cohérent receiver.

One channel has played an important rôle in the computer simulations that were run. This

channel uses the "mountainous terrain multipath profile", in which three main paths are présent

[ 12]. The second path has a 5dB attenuation compared to the first path and the third path has a 15dB

attenuation. Thus, we used a two-symbol memory channel (L = 2) with the following mean

17



coefficients: [/)| = 0.861, [fl\ = 0.484 and [/2[ = 0.153. Other channels, with différent impulse

responses were also used for the simulations.

The gradient algorithm was used for each adaptive séquence estimator and the step-size

parameter was optimized in each situation. The symbol estimation delay ô for the conventional

adaptive procédure was also optimized in each channel to produce the best en-or performance.

Pinally, aU adapdve séquence estimation algorithms were compared to an idealized procédure: a

maximum-likelihood séquence estimator with perfect CSI.

B. Simulation results

The first simulations were performed on the mountainous terrain channel model presented

above. Figures 4, 5 and 6 illustrate the performances of différent algorithms for f^T = 5x10 -r,

>—3 -l r rr, ^ l- . .< n—3

f^T = 1x10 and f^T = 2.5x10 respectively, which correspond to maxunum Doppler shifts

of 50 Hz, 100 Hz and 250 Hz in the System described above. Four curves are presented in each

figure, which correspond to the foUowing algorithms: the Viterbi séquence estimator with the

conventional adapdve procédure, the VSE-PCE algonthm, the MSE-PCE algorithm proposed in

section HI and the idealized procédure with perfect CSI. For each of the adaptive processes, the

step-size parameter having a value a « 0.15 was found to produce the best error performances. The

best symbol estimation delay was found tobeô =4,0 = 2 and 0=0 respectively in figures 4,

5 and 6. Finally, a QPSK modulation was used and since the channel has a two-symbol memory,

2
there are 4A = 16 chaimel states. Hence, we chose M = 16 for the M-algorithm so that it would

have a similar level of complexity to the Yiterbi algorithm.

Prom figures 4, 5 and 6, one can note that the VSE-PCE algorithm does not provide

significant error performance improvements over the conventional adaptive proœdure. However,

the new MSE-PCE algorithm offers substantial gains over both methods, especially at a SNR of

20dB or more. One can also observe that the error performance of aU the adaptive séquence

estimators tend to level-off at high SNR. This occurs when the tracking perturbation begins to have

18



l.Oe-02

l.Oe-03

l.Oe-04

l.Oe-05

v

Conventional

VSE-PCE

MSE-PCE

Perfect CSI

\^
\

s

...A-.-

\̂

10 15 20 25

Signal-to-noise ratio E^/NQ (dB)

30

Fig. 4: Bit error probabilities for a 16-state channel with [/1 = 0.861, [/1| = 0.484 and

[/2| = 0.153, ^F= 5xl0~4
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Fig.5: Bit error probabiUties for a 16-state channel with |/°| = 0.861, [/'l = 0.484 and

W = 0.153, f^T = lxl0~3.
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Fig. 6: Bit error probabilities for a 16-state channel wiA \fi\ = 0.861, [/1| = 0.484 and

W = 0.153, f^T = 2.5xl0~3.
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a noticeable effect. In that respect, the computer simulations tend to support the theoretical

assertions made in section m since the analysis predicted that the tracking perturbation would

become the dominant factor at high SNR. Indeed, figures 4, 5 and 6 show that the différence

between the perfect CSI procédure and the adaptive algorithms increases as the SNR grows.

PinaUy, the improvements provided by the new approach seem to be valid for a wide range of

channel variation rates. When the fadings become faster, all the curves corresponding to the three

adaptive séquence estimators are shifted away about equally from the performance curve of the

idealized procédure.

One of the advantages provided by the M-path algorithm is that its complexity is not directly

related to the number of channel states, even though we chose M = rrf in order to compare its

computadonal effort to that of the \^terbi algonthm. In fact, the total computational load can easily

be modified by changing the number M of surviving paths at each instant. The effect of M on the

error performance for the same channel as above is iUustrated in figure 7. We can see that even with

half its original computational effort, the MSE-PCE stiU outperforms both the VSE-PCE algorithm

and the conventional adaptive procédure.

A number of simulations were performed to verify that the above results were not spécifie to

the chosen channel. Figure 8 illustrâtes the performances of the différent algorithms in a 16-state

and two-symbol memory channel which has the following mean coefficients: [/"| = \f\ = 0.407

and [H = 0.815. This model was used in [6] to characterize the GSM mobile-radio System. In

figure 9, the performances of the algorithms are presented for a 64-state channel (L = 3) which

has the foUowing coefficients: |/)| = 0.831, |/1| = 0.467, [/2| = 0.263 and [/3| = 0.148. We

used M = 64 in that channel for the M-path algorithm to keep its computational load at the same

level as the Viterbi algorithm. Finally, figure 10 shows the bit error probabilities in a 4-state channel

(L = l) which has the foUowing coefficients: [/)[ = |fl| = 0.707. This time, the MSE-PCE

algorithm used M = 4. In all thèse simulations, we used f^T = IxlO"'' which corresponds to a

100 Hz Doppler shift.
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Fig. 7: Bit error probabilities for différent values of M in a 16-state channel with

|/)| = 0.861, [/1| = 0.484 and [/2| = 0.153, ^F = lxl0~3.
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25



l.Oe-01

l.Oe-02 -l

l.Oe-03 -

l.Oe-04

l.Oe-05

Conventional

VSE-PCE

MSE-PCE

Perfect CSI

10 15 20 25

Signal-to-noise ratio E^/NQ (dB)

30

Fig. 10:Bit error probabilities for a 4-state channel with W = \f \ = 0.707 ,

f/ = lxl0~3.

26



Figure 8 shows that the same général trends observed for the previous channel are maintained

for the error performances of the différent algorithms in that channel. Figure 9 shows that the

performances différences between the adaptive algorithms are amplified with an increase of the

channel memory. This could be explained by the foUowing facts: the efficiency and flexibility of

the M-path algonthm are fully exploited by choosing a large M value since it provides better

protection against correct path loss; and the VSE-PCE algorithm has a reaUy clear advantage in

computing power for the channel estimation over the conventional adaptive procédure when there

is a large number of sundving paths at each instant. Thèse arguments can be reversed to explain

why aU the procédures have équivalent performances in the one-symbol memory channel, as

depicted in figure 10. Simulations performed on other channels having L = l supported the

hypothesis that the new approach does not fuUy exploit its potential unless it is applied to a channel

having L S: 2. An extensive study of all the algorithms presented here can be found in [11].

27



V. Conclusions

In this paper, we have developed a model for the combined channel and séquence estimation

problem. This model has been used to assess the existing algorithms and to develop a new

algorithm that fully exploits the pnnciples ofthe combined estimation. Furthermore, the model has

been used to détermine error performance properties common to aU adaptive séquence estimators

with the analysis ofthe pairwise distances. Thus, two major conclusions may be drawned from this

work. First, in adaptive séquence estimation a non-constrained, sub-optimal, équivalent

complexity, M-path algorithm used in the combined channel and séquence estimation (CCSE)

framework outperforms the traditional Viterbi séquence estimator which is far from optimal in this

case. A model for the CCSE problem using a tree data structure has been used to demonstrate that

the Viterbi séquence estimator using the parallel channel estimâtes is Umited by the sélection of

paths merging into différent channel states. Computer simulations in fast fading channels have

showed that the M-path algorithm, applied to the CCSE of a channel of memory L ^ 2 symbols

could provide significant error perfonnance improvements over traditional methods, even with

reduced computational load. The second major conclusion is that all adaptive séquence esdmators

have very limited performances at high SNR. In fact, from the two factors influencing the error

performance, the data séquence distance properties and~the tracking perturbation, the latter

becomes dominant as the input power increases. Hence, the tracking perturbadon limits the

improvement of the error performance as the SNR increases. This considération must be taken into

account in the design ofequalizers based on adaptive séquence estimation for fast fading frequency

sélective channels.
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