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RÉSUMÉ

Les vibrations induites par un écoulement doivent être considérées pour la conception des
structures d’ingénierie. Le galop est un type de vibration induite par un écoulement qui se
produit sur les lignes de transmission d’énergie, les faisceaux de câbles et les structures en
hauteur. Ce mémoire propose une revue de la littérature qui explique brièvement le méca-
nisme de galop d’un prisme carré, puis aborde une revue historique sur les absorbeurs de
vibrations passifs et leurs applications dans la suppression des vibrations de divers systèmes.
Les suppresseurs passifs sont preferables pour leur construction simple qui ne comprend
pas de capteurs ou d’actionneurs lourds. Parmi ces dispositifs, les absorbeurs d’énergie non
linéaire (Nonlinear Energy sink. NES) n’affectent pas les caractéristiques du système pri-
maire. Dans la présente recherche, nous introduisons un absorbeur purement non linéaire
(NES) composé d’une bille se déplaçant librement sur une piste circulaire afin d’atténuer le
galop d’un prisme carré. La bille est couplée à la vibration du prisme par une interaction
dynamique non linéaire. Les essais en soufflerie évaluent l’impact de ce NES sur l’atténuation
du galop en comparant les réponses du prisme avec et sans celui-ci. Ce NES réussit à retarder
l’apparition du galop, en présentant différents modes de réponse : oscillatoire, intermittent et
rotationnel. Nous définissons le comportement de la bille dans chaque régime et discutons de
son effet sur la réponse du prisme. Aux faibles vitesses d’écoulement, le mode de réponse os-
cillatoire apparaît, dans lequel la bille et le prisme oscillent avec une faible amplitude. Pour
des vitesses plus élevées, le régime intermittent apparaît dans une petite plage de vitesse
comme mode de transition. À une vitesse d’écoulement encore plus élevée, la bille effectue
des révolutions avec des vitesses angulaires relativement élevées dans le régime rotationnel,
ce qui entraîne une forte réponse modulée du prisme. La conception simple du NES permet
de modifier les dimensions de la piste en échangeant des pièces pour utiliser des billes de
différentes masses et tailles. Nous illustrons donc l’effet des principaux paramètres du NES :
la masse de la bille, le rayon de la piste du NES, le frottement de la bille et le jeu entre les
parois de la piste du NES et la bille en rotation, sur l’amplitude du prisme et la dynamique
de la bille. Un modèle proposé, utilisant les mesures du coefficient de force induites par le
galop et celle de l’amortissement de la bille, simule la dynamique du prisme carré couplé avec
ce NES et prévoit le comportement du système à des vitesses d’écoulement élevées au-delà
des limites des expériences. Les expériences statiques en soufflerie ont permis de mesurer le
coefficient de force de galop Cy en fonction de l’angle d’attaque du prisme, tandis que les
essais de rotation libre ont permis de mesurer le coefficient d’amortissement de la bille cθ.
Les expériences démontrent qu’au-delà d’une certaine vitesse angulaire l’amortissement de la
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balle augmente fortement. La variation de cet amortissement est un avantage du NES ; un
amortissement moindre à de faibles vitesses angulaires permet à la bille de démarrer sa ro-
tation, tandis qu’un amortissement relativement important dissipe plus d’énergie de vitesses
élevées. Les simulations présentent les trois modes de réponse observés lors des expériences.
En outre, elles prédisent un quatrième mode, le régime inefficace, à des vitesses d’écoulement
élevées hors de la plage d’efficacité du NES. Dans ce régime, la bille tourne, de façon aleatoire
dans les deux directions sans effet d’amortissement sur les amplitudes du prisme. De plus,
des estimations analytiques définissent la limite du régime oscillatoire et de la plage effective
du NES. La modélisation de la masse primaire comme une excitation paramétrique pour le
NES fournit des amplitudes de prisme qui coïncident avec les oscillations stables de la bille,
représentant la limite de transition entre les régimes oscillatoire et intermittent. Une analyse
développée de la puissance transmise à travers le système intégré prisme-NES explique le
comportement du NES et prédit la limite de son efficacité. Nos simulations sont en accord
avec les attentes analytiques et les résultats expérimentaux. Enfin, nous utilisons plusieurs
billes au lieu d’une seule grande bille de masse totale équivalente pour améliorer l’efficacité
du NES. Les collisions entre les billes permettent d’absorber de l’énergie tout en changeant
également la dynamique des billes du NES. L’augmentation du nombre de billes déplace le
centre de masse effectif de l’ensemble des billes et encombre la piste du NES. L’essai de
diverses configurations de NES à plusieurs billes de masse équivalente fournit une valeur
optimale pour le taux d’encombrement de la piste. Les expériences confirment également
l’efficacité accrue des NES à plusieurs billes par rapport aux NES à une seule bille. Alors
qu’un NES à une bille dont la masse est de 8% de celle du prisme peut retarder la vitesse
critique réduite de 68%, un NES à 2 ou 3 billes de masse équivalente retarde cette vitesse de
87%.
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ABSTRACT

Flow-induced vibration (FIV) leads to critical design considerations for engineering struc-
tures. Galloping is a type of such vibration arising on power transmission lines, cables
bundles and high-rising structures. The literature briefly explains the galloping mechanism
of a square prism, then addresses a historical review on passive vibration absorbers and their
applications in suppressing the vibration of various systems. Among these devices, nonlinear
energy sinks (NESs) do not affect the characteristics of the primary system.

In the current research, we introduce a purely nonlinear energy sink (NES) composed of a
ball moving freely in a circular track to mitigate the galloping of a square prism. The ball is
coupled to the prism vibration through a nonlinear dynamic interaction. Wind tunnel tests
assess the NES impact on mitigating the galloping by comparing the prism responses with
and without the NES. The ball-in-track NES (BIT-NES) successfully delayed the galloping
occurrence, exhibiting different response modes: oscillatory, intermittent, and rotational.
At low flow speeds, the oscillatory responseămode arises, in which both the ball and the
prism oscillate with small amplitude. The intermittent regime then appears at higher flow
speeds within a small range as a transition mode. At high flow speed, the ball oscillates with
relatively high angular velocities in the rotational regime, resulting in a strong modulated
response of the prism. The NES simple design allows changing the track dimensions by
swapping parts to use a ball of various masses and sizes. Hence, we illustrate the effect
of the main NES parameters: the ball mass, NES track radius, ball friction, and radial
clearance between NES track walls and the rotating ball, on the prism amplitude and the
ball dynamics.

A proposed model, employing the measurements of the galloping force coefficient and the ball
damping as inputs, simulates the dynamics of the square prism coupled with the BIT-NES
and expects the system behaviour at high flow speeds beyond the limits of the experiments.
Wind tunnel static experiments describe the galloping force coefficient Cy as a function of the
prism angle of attack, while proposed free rotation tests define the ball damping coefficient
cθ. The experiments provide a certain angular speed beyond which the ball damping highly
rises. The damping variation is an advantage of the BIT-NES; less damping at low angular
velocities helps the ball start rotation, while relatively large damping dissipates more energy
at high speeds. The simulations exhibit the three response modes observed in the experi-
ments. Besides, it predicts a fourth mode, the random regime, at high flow speeds out of the
NES effective range. In this regime, the ball rotates, alternating in both directions with no
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damping effect on the prism amplitudes.

Moreover, analytical estimations define the limit boundary of the oscillatory regime and the
NES effective range. Modelling the primary mass as a parametric excitation for the NES
provides prism amplitudes that coincide with the ball’s stable oscillations, representing the
transition boundary between oscillatory and intermittent regimes. A developed power flow
analysis across the integrated prism-NES system explains the NES behaviour in the rotational
regime and predicts the limit of its effective range. Our simulations agree with the analytical
estimations and the experimental findings.

Finally, we use multiple balls instead of a large one of equivalent mass to improve the
suppression efficiency of the NES. Besides the effect of the collision between balls in absorbing
energy, it interrupts the ball dynamics. Increasing the ball’s number shifts the mass center
and crowds the NES track. Testing various configurations of multi-ball NES of equivalent
mass provides optimal value for the track crowdedness ratio. The experiments also approve
the enhanced suppression efficiency of multi-ball NES compared to the single ball NES.
Whereas a single ball NES with a mass 8% that of the prism can delay the critical reduced
velocity by 68%, a 2 or 3-ball NES of equivalent mass delays this speed by 87%.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

Vibration is a typically undesired response generated by various structural and mechanical
systems due to a certain excitation. This critical problem generally increases the dynamic
stresses and may damage the system. Accordingly, it is a common subject in civil, mechanical,
automotive, aeronautical, and many other fields of engineering. Many types of vibration
arise from the fluid-structure interaction and usually lead to self-excited oscillations. Among
these flow-induced vibrations (FIV), vortex-induced vibrations (VIV), flutter and galloping
represent important phenomena. The textbooks written by Blevins [2] and Païdoussis et
al. [3] are examples of reliable surveys on FIV. We can observe the FIV on the trembling of
tree branches and the vibrations of highway mounted signages and long slender structures.
Galloping amplitudes particularly increase after a certain speed in a dramatic way with the
flow speed resulting in great danger on structures. Galloping was the main reason for the mass
failure of the windows of the Hancock skyscraper in Boston during the construction [4]. The
mounting of the huge windows was very stiff and did not consider such a critical phenomenon.
As a result, the panels cracked and plummeted to the sidewalk below. This well-known
catastrophe has attracted worldwide concern showing the great danger of FIV for high towers.

1.2 Development of vibration absorbers

The reduction of vibration is a great challenge for engineers to enhance system resistance
against different excitations. Since Frahm [5] invented the first tuned vibration absorber
(TVA), it has been widely extended to many systems for its simplicity. This device can
efficiently absorb the vibration for a small range of frequencies. But, it changes the sys-
tem properties by adding new frequencies. Housner et al. [6] provided an extensive review
of the work done later to overcome the TMD drawbacks. A system of multiple TVAs in-
creases the absorber damping range compared to a single one [7]. Semi-active TVAs can
adapt their properties with time according to the main system frequency improving dam-
per behaviours [8, 9]. The tunable Stiffness Absorber (TSA) is another type that adapts its
stiffness for a higher working range [10, 11]. Advanced TVAs are more effective than the
typical TVA. Nevertheless, they lose the advantage of being a simple and low-cost vibration
absorber. Moreover, the collision of a free mass attached to a vibrating primary structure
promotes energy dissipation through a complex nonlinear dynamical interaction. Depending
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on this concept, the impact damper was developed by Masri [12] representing another kind
of vibration suppressor applicable for broadband vibrations.

Under the class of nonlinear stiffness absorbers (NSA), nonlinear energy sinks (NES) have
appeared as a more robust kind of passive suppressors. The NES consists of an auxiliary
mass coupled to the primary structure by a spring element of non-linearizable stiffness and
a damper. It is different from the TMD by its nonlinear stiffness that enables the device
to interact with the dynamics of the primary system reducing its vibration over a higher
range of frequencies [13]. The attention to the nonlinear energy absorption phenomenon has
resulted in the introduction of many types of NESs. The first one is the typical translative
NES that only makes a translational motion and has many configurations; the grounded
NES [14], the ungrounded NES [15], the NES with limited amplitude [16], the bistable NES
[17], and the multi-DOF NES [18]. The second type is the rotative NES, where a rigid arm
attaches a tip mass able to rotate only [19] or makes both rotational and translational motion
[20]. The Vibro-impact NES [21], the third type, appeared as an advanced NES depending
on the impact of the attached mass with the primary structure walls to dissipate more
energy [22]. Another type with no spring elements known as the track NES [23] utilizes a
given racetrack to restrict the motion of the attached mass for the indirect coupling with the
primary structure. The track shape defines a smoother non-contact restoring force of such
NESs. More explanations for the behaviour of each of the NES mentioned types are to be
illustrated in the literature.

Vibration absorbers exhibit different techniques for nonlinear energy absorption. Developing
an efficient absorber requires the combination of more than one technique. The vibro-impact
NES, as an example, combines the advantages of both an impact damper and a typical NES.
It absorbs energy from a vibrating structure in two forms, kinetic energy in the motion of
the NES mass and momentum transfer due to the impact of the secondary mass with a
rigid wall. Thus, the vibro-impact NES is more efficient than the typical translative NES in
mitigating the vibration of structures. Recently, a vibro-impact track NES [24] has appeared
as a modified version of a track NES with a rigid wall on one side to limit the motion of the
NES mass, using the impact between them to improve its energy absorption ability. In the
same way, the bistable track NES [25] combines the advantages of both the bistable NES and
the track NES showing an efficient and practical NES of two stable equilibrium points. The
suppressor using more than one technique for energy absorption improves its suppression
capability and increases its effective range.
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1.3 NES applications

The NES firstly appeared as a suppressor for structures under impulsive load [26]. Hence, it
has been implemented as a vibration absorber in several engineering applications, including
civil engineering structures, mechanical systems, aeronautics and energy harvesting. In the
civil engineering field, the NES controls the structural response due to seismic excitation [27,
28], and mitigates the vibrations of buildings during earthquakes [29]. The NES also absorbs
the vibration of structural elements such as beams [30], and plates [31]. Many studies applied
the NES as a suppressor in mechanical systems; flywheel [32], rotary systems [33], and self-
excited systems [34]. The NES as well damps the vibrations of the helicopter blades [35]. In
addition to the NES damping effect, integrating such oscillators in a magneto-electric [36],
or a piezoelectric [37] systems is a technique to harvest the energy of an oscillating system.

Regarding the mitigation of FIV, the NES could delay the flutter instability of wings [38, 39],
mitigate the oscillations of pipes conveying fluid [40]. NES designs as well have been coupled
with cylindrical structures to reduce the danger of wind-induced vibrations. A numerical
study [41] addressed the effect of a translative NES on the vortex-induced vibration (VIV)
of a cylinder. The NES could reduce the vortex shedding amplitudes to 75 % of its original
value. Mehmood et al. [42] discussed the great effect of the initial conditions on the sup-
pression efficiency of the NES. Further, Dai et al. [43] adopted the wake-oscillator models
to estimate the fluid forces due to VIV and demonstrated how the energy transfer with the
translative NES strongly modulated the cylinder dynamics. In a comparable study, Blan-
chard et al. [44] conversely estimated the fluid loads using computational fluid dynamics
(CFD) and illustrated that a rotative NES likewise modulates the cylinder response. NES
parameters, particularly the mass, have a great effect on its suppression efficiency [45]. Only
a few researchers have advanced the NES as a passive absorber for transverse galloping. A
numerical study [46] examined the impact of a translative NES in delaying the occurrence of
square prism galloping, illustrating the effect of NES parameters variation on its behaviour.
In a comparable problem, Teixeira et al. [47] reported a 50 % reduction in the prism galloping
amplitudes by using a rotative NES.

Despite the number of theoretical investigations addressing the feasibility of such vibration
absorbers in various applications, experimental works were much less and most of them
introduced the NES as a vibration absorber for buildings [18, 48]. Regarding the mitigation
of FIV, Dongyang et al. [49], Dai et al. [43] only validated the VIV model of the cylinder
without the suppression effect of the NES. No considerable contributions, at least to our
knowledge, exist in terms of the experimental mitigation of galloping by NES.
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1.4 Ball-in-track configuration

Referring to an interesting phenomenon, a free ball in a circular track can efficiently reduce
rotor vibration generated from system imbalance at high rotating speeds [50]. The Automatic
Ball Balancer (ABB) represents a passive balancer found in washing machines and optical
disks. I experimentally validated the effect of ABB in reducing rotors vibration during my
master’s research. Contrary to the NES, the ball in this balancer moves to find the desired
position counteracting the system imbalance. This concept is different from the NES theory
that depends on the ball rotation to absorb energy from the vibrating system. However, the
simple structure of ABB is inspiring for the design of a purely rotative NES with no direct
coupling to the primary structure.

1.5 Originality and Impact

The originality of this work is to provide a purely rotative nonlinear energy sink (NES)
depending on the ball-in-track NES configuration. Although the structure of the proposed
NES resembles that of the ABB, their concepts are different. The ABB is a balancer in which
the balls tend to reach positions counteracting the system imbalance then stops relative to
the rotor. This balancer works properly at high angular speeds beyond the critical speed of
the rotor, as the balls tend to move away from the imbalance mass. Differently, the ball of the
NES rotates due to a dynamic coupling with the primary structure to absorb and dissipate its
vibrational energy. The idea of using a multi-ball NES to benefit from the collisions between
them as an additional mechanism for energy absorption has not been considered before.

The current research dives from the realm of conceptual and theoretical studies into the real
physical world with a working prototype for the ball-in-track NES. The simple structure and
the low fabrication cost of the proposed NES may extend its applicability to many systems.
It can mitigate wind-induced vibrations of power lines and sign support structures. With
further investigations, considering a large scale for the ball-in-track NES, it can play the
same role as the tuned mass damper in absorbing the vibration of skyscrapers and other civil
engineering structures.

1.6 Research question

This research discusses the advantages of passive vibration absorbers and aims to contribute
a simple, economical suppressor applicable for practical implementation in many systems.
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We introduce a free ball rotating in a circular track race as a purely rotative NES. Hence,
the current study answers the following questions :

• Can the ball-in-track rotative NES mitigate the galloping of a square prism?
• What is the key parameter of the proposed NES and how does it affect its behaviour?
• Is the ball friction with the NES track enough for the dissipation of vibrational energy?
• How does the energy transfer across the integrated prism-NES system?
• What is the maximum power capacity of the NES?
• How does the usage of multiple balls influence the NES suppression efficiency?
• Are the collisions between balls beneficial in a multi-ball NES?

1.7 Thesis structure

The current thesis includes seven chapters, each one starts with a brief introduction exposing
the goals of the related content and ends with a summary of the main findings. Following
the introduction chapter, we structured the thesis as follows.

• Chapter 2 - Literature Review - briefly explains the galloping mechanism of a square
prism and introduces different types of vibration absorbers, including tuned mass dam-
per, quasi-zero stiffness isolator, impact damper, and nonlinear energy sink. Moreover,
it addresses the NES various designs and how it was adopted as a suppressor for FIV.

• Chapter 3 - Problem Statement - identifies the problem and the objectives of our
research.

• Chapter 4 - Wind Tunnel Demonstration of Galloping Mitigation with a
Purely Nonlinear Energy Sink - presents the design of a purely rotative NES and
the experimental setup of the wind tunnel tests that demonstrated the effect of the
proposed NES on mitigating the galloping of a square prism. The experiments showed
variable dynamics experienced by the NES at different flow speeds and the influence of
main NES parameters on its behaviour.

• Chapter 5 - How a ball free to orbit in a circular track mitigates the galloping
of a square prism - explains the methodology used in simulating the dynamics of the
prism-NES system employing the experimental data measured for the galloping force and
the ball damping coefficients as inputs for a numerical model. The proposed free rotation
tests provide an efficient way for measuring the damping of rotating particles. Moreover,
this chapter addresses analytical estimations for the transition boundary between NES
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regimes. A proposed power analysis came up with an analytical expression for the NES
maximum power analysis, thus expects a limit for its effective range.

• Chapter 6 - Multi balls rotating in a circular track experimentally mitigate
the galloping of a square prism - illustrates the advantage of using multiple balls,
instead of a large one of equivalent mass, in improving the suppression efficiency of the
NES through wind tunnel experiments. Furthermore, it highlights the NES crowdedness
ratio and the maximum radius of the NES mass center as key parameters affecting the
behaviour of a multi-ball NES.

• Chapter 7 - General Discussion - explains the findings of the whole study and
compares the simulation results with the analytical estimations and the experimental
results.

• Chapter 8 - Conclusions and future work - brings the main contributions of the
research, pointing out the limitations and the expected future work. Finally, it addresses
the publications that came out of this project.
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CHAPTER 2 LITERATURE REVIEW

The literature starts with a brief description of the galloping phenomenon of a square prism
describing the leading parameters of this instability. That is followed by a review of the
different kinds of passive vibration absorbers. We start with the linear TMD and present
other nonlinear absorbers that appeared to overcome the limitation of the TMD effective
range as the quasi-zero stiffness isolators and impact dampers. Moreover, a wide class of
nonlinear energy sinks (NESs) have received exceptional interest and been developed in
many configurations. The literature outlines the various designs and applications of NESs,
coming up with a new design idea of a simple-structured rotative NES.

2.1 Galloping Phenomenon

Galloping instability is a type of flow-induced vibration (FIV) characterized by low-frequency
and high amplitude. Lanchester [51] was the first to describe galloping of a D-section prism
with a flat surface that resembles the shape formed during the icing of power lines. Gallo-
ping appears in different forms [52]; transverse galloping of high structures and power lines,
torsional galloping appeared in bridge decks and the flutter of wings. The structure cross-
section significantly affects the instability characteristics [53]; the square prism (rectangular
prism with side ratio 1) only experiences a high-speed galloping or vortex shedding in the
transverse direction to the flow. In general, galloping occurs at relatively high speeds, after
which the amplitude of the oscillations increases dramatically with the flow speed.

2.1.1 Galloping mechanism of a square prism

Following the textbook of Païdoussis et al. [3], we considered an elastically mounted square
prism of a side length D allowed only to oscillate in the transverse direction to a steady flow
(Figure 2.1). The prism vibration about its static equilibrium position changes its velocity
relative to the flow according to the relative angle of attack α.

α = tan
(

ẏ

U

)
, (2.1)

where y is the prism displacement, (.) means derivative with respect to time and U is the
flow velocity. The flow affects the square prism by two forces: a drag force FD always in
relative direction of the flow and a lift force FL perpendicular to it. The resolution of these
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Figure 0.1 Galloping mechanism of a square prism, mounted by an elastic dissipative support
of stiffness k and damping coefficient c. The prism is free to oscillate in the y direction
transversely to the flow of speed U , Urel is the flow speed relative to a prism vibrates by a
velocity ẏ.

Figure 2.1 Galloping mechanism of a square prism, mounted by an elastic dissipative support
of stiffness k and damping coefficient c. The prism is free to oscillate in the y direction
transversely to the flow of speed U , Urel is the flow speed relative to a prism vibrates by a
velocity ẏ.

non-dimensional forces in the direction of the prism vibration provides a transverse force Fy.
Fy varies as a function of the flow density ρ and speed U and the square prism side length
D,

Fy = −FL cosα − FD sinα = 1
2 ρU2 D Cy. (2.2)

To evaluate the stability of an undamped system, we focus on the derivative of the transverse
force to the angle of attack dFy

dα . An increase in the square prism oscillating velocity (ẏ ↑)
raises the relative angle of attack (α ↑). For negative derivative dFy

dα < 0, when the angle
of attack increases (α ↑), transverse force affecting the square prism decreases (Fy ↓ ). On
contrary, any increase in the velocity increases the normal force component if the system is
unstable when dFy

dα > 0. That briefly explains the galloping instability phenomena of a square
prism.

For an elastically supported square prism of mass per unit length m, and side length D. The
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equation of motion in the y-direction describes the galloping mechanism,

mÿ + 2mωζẏ + mω2y = 1
2 ρU2 D Cy. (2.3)

where ζ and ω are the damping ratio and natural frequency [rad/s], and Cy is the normal
force coefficient. This coefficient varies with the relative angle of attack and can be expanded
in a Taylor series considering a small angle of attack α ' 0 :

Cy = Cy|αo + ∂Cy

∂α
|αo α + 0

(
α2
)

+ ... , (2.4)

By substituting in equation 2.3, we get

mÿ + 2mω

(
ζ − ρUU2D

4mω

∂Cy

∂α
|αo

)
ẏ + mω2y = 1

2 ρU2 D Cy|αo . (2.5)

The expression between brackets represents the total damping of the system, which equals
the sum of the aerodynamic damping and the structural damping,

ζtot = ζ − ρUD

4mω

∂Cy

∂α
|αo . (2.6)

The total damping term plays a significant role in system instability. As long as it is positive,
the system remains stable. From this term, we can estimate the galloping onset speed U∗

g

that corresponds to zero damping ζ = 0 as

U∗
g = Ucrit

fnD
= 4m(2π)ζ

ρD2

(
∂Cy

∂α

)−1
. (2.7)

Where fn is the natural frequency in Hz (ω/2π).

2.1.2 Quasi-steady approach

The variation of the normal force coefficient Cy relative to the angle of attack α is a principal
parameter in the square prism galloping. Since the prism vibration is slow compared to the
flow speed, the force coefficients of the vibrating prism are equal to the values measured
statically at the modified angles of attack in the wind tunnel, according to the Quasi-steady
approach. Depending on measurements of the normal force coefficient of a square prism Cy
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Figure 0.2 Cy variation with square prism angle of attack [? ] ; • experimental data ,
7th order polynomial fitting (A1 = 2.69, A3 = -168, A5 = 6270, A7 = -59900).

Figure 2.2 Cy variation with square prism angle of attack [54] ; • experimental data ,
7th order polynomial fitting (A1 = 2.69, A3 = -168, A5 = 6270, A7 = -59900).

at different angles of attack, Parkinson and Smith [54] obtained a polynomial fitting :

Cy = A1

(
ẏ

U

)
+ A3

(
ẏ

U

)3
+ A5

(
ẏ

U

)5
+ A7

(
ẏ

U

)7
. (2.8)

Where, A1, A2 and A3 are constants obtained from the fitting of experimental data.

After the substitution with the polynomial of Cy, Parkinson and Smith [54] solved the system
governing equation presenting the square prism amplitude response, galloping onset speed,
and hysteresis phenomena during transverse galloping. Figure 2.3 shows two stable limit
cycles obtained from the directions of increasing or decreasing the flow velocities. The prism
response in the region between U1 and U2 is variable depending on the initial conditions. We
may have a stable limit cycle (small or large) or an unstable cycle.

This approach is convenient only for pure galloping. However, it is not applicable in the region
of interference by vortex shedding. Thus, Parkinson found that the quasi-steady approach is
quite applicable when U/fnD ≥ 30 [55].
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Figure 2.3 A square prism response during galloping [54] ; increasing flow velocity,
decreasing flow velocity, • unstable cycle.

2.1.3 Normal force coefficient estimation

Parkinson and Smith fitting, obtained from their experiments, is commonly used for simu-
lating the galloping of square prism [46, 47]. However, we can find other published data
presenting different measurements for the normal force coefficient of a square prism. For
that reason, Bearman et al. [56] compared some measurements for Cy and reported a mini-
mum deviation of ±10 in the value of A1 required as an input of the quasi-steady approach
(equation 2.8). In Figure 2.4, we present experimental data of Cy measured by Naudascher et
al. [57], Wawzonek [58], Bearman et al. [56] and Parkinson and Smith [54]. The slope of the
curve at zero angles of attack is not constant for the different measurements. Moreover, the
maximum value of Cy measured by Naudascher is 0.4 corresponding to an angle of nearly
11o. While Parkinson and Wawzonek measured a maximum cy of 0.55 at different angles
of attack 12o and 13o, respectively. The deviation in the measurements of Cy might arise
due to the difference in Reynolds number or measurement accuracy. Besides, most of these
experiments have been performed in the last century without reporting the measurement
uncertainties.
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2.2 Types of vibration absorbers

2.2.1 The Tunned Vibration Absorber (TVA)

Housner et al. [6] provided an extensive review of the work done regarding TVA, which was
referred as Tuned Mass Damper (TMD) in some references. The TVA is a mass attachment
with a spring element and proper damping properties to keep the mass motion out of phase
with the principle system vibration. TVA effectively suppresses vibration only in narrow-band
near its natural frequency [59, 60]. The TMD is used to eliminate the first vibrational mode
in several systems. The main drawback of this absorber is changing the characteristics of the
primary system by adding new frequencies due to its linear stiffness (Figure 2.5). Besides,
such absorbers require accurate tunning with the system parameters, which is difficult to
remain with the system ageing.

To overcome the drawbacks of the classical TVA, researchers introduced other configurations
for the TVA. A system of multiple TVAs increases the absorber damping range compared to
the single one [7]. The semi-active TVAs can adapt their properties with time according to
the main system frequency improving damper behaviors [8, 9]. Tunable Stiffness Absorber
(TSA) is another type that adapts its stiffness for a higher working range [10, 11]. The
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advanced TVAs are more complicated contraptions that lose the typical TVA’s advantage
as a simple and low-cost vibration absorber.

2.2.2 The Quasi-Zero Stiffness Absorbers (QZS)

The design of these oscillators aims to minimise dynamic stiffness at the equilibrium position
to enable the oscillator excitation by low-frequency vibrations. For this reason, some refe-
rences refered to it as an ultra-low frequency vibration isolator [61]. Minimizing the stiffness
reduces the natural frequency of a quasi-zero stiffness absorber but results in high static de-
flection. Combining the oscillator positive stiffness with a spring element of negative stiffness
reduces the dynamic stiffness, and prevents the undesired deflection. The quasi-zero stiffness
absorbers generally gain their non-linearity from the initial geometry of the spring’s confi-
guration [62]. While the advanced type of such absorbers combines the physical nonlinear
stiffness of the springs [63] or buckled beams [63] with the non-linearity of the geometry to
improve the oscillator characteristics.

Figure 2.6 a shows a common mechanism of these vibration isolators in the unloaded condi-
tion, where two oblique springs are used with a vertical spring. The designer optimized system
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Figure 2.6 A three-spring model of a quasi-zero stiffness mechanism [64]. (a) Unloaded condi-
tion, (b) Loaded with a mass.

properties of the spring stiffness k, initial geometry (a, h) and pre-stress (δ) for obtaining zero
dynamic stiffness in the loaded condition, after adding the supported mass m (Figure 2.6 b).
A considerable study [64] provided a dynamic analysis for the mentioned mechanism consi-
dering linear stiffness for the vertical spring k1 and three different configurations for the
oblique springs; linear springs k1 either without pre-stress I or with pre-stress II, or nonlinear
springs k1, k3 with pre-stress III. The nonlinear pre-stressed springs improved the oscillator
behaviours by decreasing the minimum exciting frequency of the oscillator.
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2.2.3 Impact Damper

Impact damper is another absorber that mitigates the vibration due to a momentum transfer
from the primary structure to the free mass. There are various configurations for the impact
dampers. For the typical single unit damper (Figure 2.7 a), optimal energy absorption requi-
red a free mass of 10 − 15% of the total mass of the structure and a clearance of 10 − 20
times the main excitation amplitude of the primary structure [65]. In the multi-unit damper
(Figure 2.7 b), multiple masses are used instead of a larger single one. The multi-unit damper
is more beneficial than the single-unit damper in mitigating vibration and noise due to the
lower contact forces of small masses that facilitate its motion [12]. Another type of lower
noise level is the bean bag impact damper [67] which consists of a flexible bag filled with
small particles. Figure 2.7 d presents the particle impact damper [68] that consists of small
metal particles filling cavities of the primary structure. Adding spring-damper systems can
absorb impact forces and increase the collision time, improving the behaviour of the damper
in the two advanced types: the resilient impact damper [69] and the buffered impact damper
[70, 71] (Figures 2.7 e and f, respectively). Another type consists of a series of large and small
balls shown in Figure 2.7 g is called the linear particle chain [66]. The multiple collisions of
small and large balls during vibration dissipate the kinetic energy and improve the behaviour
of the damper compared to the single impact damper.

The energy absorbed by the impact damper depends on the number of effective collisions [65]
between the free ball and the walls of the vibrating structure. The high noise and effect of
impact on shortening the structure life are the main drawbacks of the impact damper. Fur-
thermore, primary system dynamics and the kind of excitation strongly affect its behaviour.

2.2.4 Nonlinear Energy Sink (NES)

Another type of nonlinear stiffness absorbers is the nonlinear energy sink (NES), which
typically consists of a mass attached to a spring element of nonlinear stiffness and almost a
linear damper (Figure 2.9). The absence of a linear natural frequency [13] enables the NES to
interact with the dynamics of a primary system over a broad range of frequencies, which is a
considerable advantage for the NES over other types of vibration absorbers. The NES firstly
appeared as a vibration absorber for structures [72]. During structure vibration, a portion
of the vibrational energy is transferred irreversibly from the primary system to the NES,
reducing the vibration amplitudes. This key-concept has been known as Targeted Energy
Transfer (TET) [73].
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Figure 0.7 Different types of impact dampers [? ] ; (a)single unit impact damper, (b) multi
unit impact damper, (c) bean bag impact damper, (d) particle/granular impact damper, (e)
resilient impact damper, and (f) buffered impact damper.
Figure 2.7 Different types of impact dampers [66] ; (a)single unit impact damper, (b) multi
unit impact damper, (c) bean bag impact damper, (d) particle/granular impact damper, (e)
resilient impact damper, and (f) buffered impact damper.
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Targeted energy transfer (TET)

Gendelman [74] observed this phenomenon in a weakly coupled 2-DOF system of a linear
damped oscillator (acted as a primary system) and a NES, referring to it as nonlinear energy
pumping. A further study [75] numerically analyzed the energy transfer behaviour between
the linear oscillator (LO) and a NES at three different energy levels. Figure 2.8 shows the
transient responses of both the linear oscillator and the NES due to the direct excitation
of the first one, where h is the non-dimensional energy at t=0. Both oscillators showed free
damped vibration at the low initial energy level (Figure 2.8 a). Contrarily, the higher initial
energy levels resulted in a transfer of energy from the primary system to the NES. After a
certain time, the NES absorbed most of the system energy (Figure 2.8 b, c).

Gendelman et al. extended their study to a second part [76] through a resonance capture
analysis for the same coupled system. They found that an advantage of the nonlinear stiffness
enables the NES to adapt its properties and engage with the dynamics of the primary system.
Thus, the NES experiences high-speed oscillations nearly at the resonance frequency of the
primary system.

2.3 Classification of nonlinear energy sinks (NESs)

2.3.1 Translative NES

The typical NES [72] consists of a small mass attached to the main structure by an essentially
nonlinear spring and a dashpot. This mass is allowed only to make a transnational motion
during the system excitation. The great interest in the field of nonlinear energy absorption
has continued for the last two decades leading to various configurations of the translative
NES.

Grounded Configuration

Vakakis [72] demonstrated the nonlinear TET phenomena in a coupled system of multi-linear
oscillators. This study introduced a nonlinear energy sink (NES) in a grounded configuration
(Figure 2.9 a), where the NES mass is attached by a nonlinear spring element and a linear
damper to the ground and by a linear stiffness spring to the primary structure. The NES
was able to mitigate the system vibration during an impulsive load. This study extended the
usage of the NES to a multi-DOF system and pointed out the applicability of using an NES
as a shock absorber for large structures. Later, Vakakis et al. [77] addressed the importance
of the NES damping properties for the dissipation of the transferred energy from a primary
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Figure 0.8 Non-dimensional transient responses of a linear oscillator ( ) and an NES ( )
in a weakly coupled system at different excitation levels [? ] (a) h=0.5, (b) h=0.8, and (c)
h=1.25.

Figure 2.8 Non-dimensional transient responses of a linear oscillator ( ) and a NES ( )
in a weakly coupled system at different excitation levels [75] (a) h=0.5, (b) h=0.8, and (c)
h=1.25.

system of linear oscillators. The energy of the NES returns to the primary system in the case
of insufficient NES damping. In the same year, Vakakis [78] highlighted the zero nonlinear
frequency component of the NES as an essential factor for energy pumping that enables it
to engage with the system resonance in any mode.

Returning to the 2-DOF system of weakly coupled linear oscillator and a NES [14], the
absence of NES linear natural frequency leads to the appearance of synchronous motions
(nonlinear normal modes). These dynamics result in the resonance capture phenomena in
certain conditions using a damped NES [79]. In a later study, an analytical and numerical
analysis for the dynamics of the given system [80] provided a wide range of system parameters
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where the energy can successfully transfer over the coupled system.

Energy transfer still occurs with uncertain system parameters [81]. However, optimization
techniques could define the best ranges for the system parameters and initial conditions that
achieve the ideal transfer of energy between a linear oscillator and a NES [82]. Moreover,
introducing any non-smooth friction in the dynamics of the primary structure affects the
TET efficiency [83]. By considering these non-smooth terms in the design, we can obtain a
more efficient NES.
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Ungrounded Configuration

The unground NES appeared as a simpler configuration of the NES [84]. Despite using a
relatively lighter mass attachment in such a configuration (Figure 2.9 b), it resulted in two
mechanisms of pumping. The first one showed a 1:1 resonance capture for the NES and a
primary system of a linear oscillator, while the second exhibited a series of sub-harmonic
frequencies. The energy pumping in the system was initiated by nonlinear beats that acti-
vated one of the two mentioned mechanisms. That was also studied analytically considering
different energy levels of impulsive oscillations in an extended study [85]. Under some condi-
tions, both the different configurations of the grounded and the ungrounded NESs may lead
to the same system dynamics [15]. However, the grounded NES can improve the energy
pumping phenomena according to the design parameters [86]. A series of studies [87, 88, 89]
addressed the favourable system parameters and initial conditions required for the ideal irre-
versible TET. A later study [90] introduced some analytical formulas to describe the decay
in displacement, velocity, and energy of the NES.

Sapsis et al. [91] used oblique intentional springs, similar to what is seen in the quasi-stiffness
absorbers, and dampers to introduce three different configurations of NESs. The stiffness
nonlinearity came from the initial geometry of springs (Figure 2.10). In this study, the zero
linear stiffness component of the proposed NESs enabled resonance interaction at several
modes over a wide range of frequencies. The damping nonlinearity enhanced the effective
damping of the primary structure with no considerable effect on the effective stiffness.

NES with limited amplitude

Due to the absence of linear stiffness, the expected high amplitude of the ungrounded NES
was inacceptable in many applications. Geng et al. [16] developed a limited-amplitude NES
by adding a linear stiffness spring restricting the motion of the NES mass to limit the NES
amplitude (Figure 2.9 c). The numerical simulations illustrated that introducing piecewise
spring in the limited-amplitude NES weakened its vibration suppression effect. However, the
optimization of the piecewise stiffness and the gap width between the linear stiffness spring
and the NES mass highly improved the behaviour of such a NES. Moreover, the experiments
validated the suppression effect of the limited-amplitude NES and its sensitivity to the added
linear stiffness and the gap width. Limiting the NES amplitudes reduces its space requirement
and expands its applicability to more systems.
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Bi-stable NES

AL-Shudeifat [17] improved the NES behaviour by changing the geometry of the springs
attaching the NES mass to add a negative stiffness component (Figure 2.11). At low energy
levels, the modified NES vibrated around its initial position. While increasing the excitation
energy level surprisingly raised the NES stroke to find another equilibrium position at the
right side (Figure 2.11 b). The bi-stability increased the capacity of the translative NES
showing a considerable improvement in the NES robustness. The bi-stable NES could absorb
97-99% of the energy of the primary structure over a wide range of energy levels [17]. Fang et
al. [92] provided a deeper view of the dynamics of the bi-stable NES through an analytical and
experimental study. The author presented a different configuration of a bi-stable NES using
an Euler beam as a spring element. The experiments validated all the mentioned dynamics
of the bi-stability, the resonance capture, and the nonlinear oscillations.

The bi-stable NES is a more stabilized vibration absorber, even out of the tuning range, com-
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pared to the cubic-stiffness NES and the linear TMD [93]. Nevertheless, later work enhanced
the behaviour of the bistable NES by optimizing its parameters. Qiu et al. [94] applied the
multiple scales method to study a periodically excited system of a linear oscillator coupled
with a bi-stable NES. The bi-stable NES was robust over a wide range of exciting ampli-
tudes and experienced four different response modes depending on the energy level. This
study confirmed that the 1 : 1 resonance capture phenomenon results in an efficient energy
transfer, arguing that 1 : 3 sub-harmonic resonance can benefit the energy transfer. Moreover,
it addressed a criterion for the optimum design of bi-stable NES. Recently, an interesting
study [27] introduced permanent magnets, generating a non-contact restoring force in and
smoother way, to replace springs of the bi-stable NES. That magnetic bi-stable NES showed
a better transient response when coupled with a primary structure under a seismic load.
Finally, we can say that the bi-stable NES improves the TET phenomena compared to the
typical NES over a broad range of energy levels but with more complex mechanisms.
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Multi-DOF NES

The multi-DOF NES (Figure 2.12), introduced by Tsakirtzis et al. [95], absorbs energy at
different frequencies contrary to the resonance capture phenomenon observed for the single-
DOF NES. Musienko et al. [96] provided the design procedures for a multi-DOF NES and
explained its advantage. The author showed that the interaction between the two oscillators
of lighter mass attachments enhanced the efficiency of energy pumping, reducing the displa-
cements of the two oscillators below that of the primary system. Besides, the multi-DOF
NES broadened the range of energy levels at which the TET can occur [97]. A compari-
son between three different configurations of multi-ball NESs [91], presented in Figure 2.10,
confirmed that the 2-DOF NES was more effective in the absorption of impulsive load, sho-
wing slow and fast energy transfer over a wide range of initial excitations. An experimental
study [18] validated the high effectiveness of a 2-DOF NES in damping impulsive excitation
over a wide range of initial energy levels. Although the multi-DOF NES can enhance the
energy pumping phenomenon, it increases the complexity of the NES dynamics.

2.3.2 Vibro-impact NES (VI-NES)

Refs. [21, 98] described a similar structure of a single unit impact damper as a VI-NES,
showing the effect of ball impact in mitigating the vibration that resulted from a harmonically
forced linear oscillator. Tao et al. [99] highlighted the chaotic characteristics of a linear
oscillator coupled with a VI-NES with no spring elements. The multi-unit impact damper
also appeared as two parallel VI-NESs in another study [100] showing its efficiency in the
vibration reduction compared to a single VI-NES.

The VI-NES combining the advantages of both the translative NES and the impact damper
has appeared in various studies. Figure 2.13 shows two different configurations of the single
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and double-sided VI-NESs [101]. Optimal behaviour for such a kind of NESs requires low stiff-
ness and relatively high mass, as well it depends on the clearance between the NES mass and
the primary structure wall [102]. The single-sided VI-NES (Figure 2.13 b) showed the best
performance in mitigating vibration of structures over a wide range of energy levels[103].
For the mitigation of multi-floor structures, Nucera et al. [104] found that this non-smooth
stiffness NES was more efficient on the ground floor. While the smooth cubic stiffness NES
is favourable at the higher floor for its relatively light mass. Many studies investigated the
efficiency of the single-sided VI-NES in eliminating the vibrational energy of large-scale struc-
tures [48, 105, 106]. While others focused on studying the system dynamics [107, 108] and
optimizing the mechanisms of TET for VI- NESs [109]. Wang et al. [110] introduced another
configuration for the VI-NES with a modified track for the impact mass. Advanced types
of VI-NESs used magnetic-nonlinear forces with the impact coupling to improve the energy
absorption close to what was observed by the single-sided VI-NES [111, 112].

2.3.3 Track NES

Wang et al. [23] proposed the track NES, in which the auxiliary mass moves in a smooth and
symmetric racetrack without spring elements (Figure 2.14 a). The shape of the given track
defines the damping and restoring force of such NESs. This study compared the effect of a
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tune-in TMD, a typical cubic stiffness NES and a track NES in reducing the vibration of a
2-DOF structure due to an impulsive or seismic load. The authors highlighted the robustness
of the track NES and the flexibility of its restoring force. An optimization for the design of
a fourth polynomial order track shape followed the numerical analysis. In the same year, the
first experiments of the track NES [113] validated its efficiency to mitigate the vibration of 2-
DOF structures. The energy transfer across high modes enabled by the track NES accelerated
the dissipation rate to control the structure response over a wide band of frequencies. Moving
to a larger-scale structure, Lu et al. [114] experimentally reduced the vibration response of
a five-story steel structure by an optimized track NES. The track NES of a mass 10% that
of the primary structure could absorb the vibration of a seismic excitation over a broad
frequency range.

Later, Wang et al. [116] analytically investigated a single-sided vibro-impact track NES
(Figure 2.14 b) to mitigate the response of a multi-story building. Although, the single-sided
track NES requires smaller space compared with a smooth track NES. It was more effective
in reducing the structure vibration due to the collision of the NES mass with the walls of
the primary system. In a numerical study [24], an optimal designed single-sided track NES
effectively reduced the seismic response of a 32-story structure. The short-stroke and the
slight damping of such NES reduced its potential cost. Thus, the single-sided track NES is a
low-cost promising device that provides alternatives for costly strategies used in controlling
high building response against seismic excitations.

A two-phased track NES is a modified version of such NESs [115] with higher efficiency in
mitigating the response of large-scale structures. The two-phased trackrace defined by two
different radii (Figure 2.15 b) provided a low phase to accommodate the auxiliary mass at
small displacement and a high phase adapting higher-amplitude dynamics. A larger track ra-

NES track

(a) (b)

NES track

NES mass

Rigid wall

NES mass

Figure 2.14 Track NES configurations [24] : (a) typical track NES, (b) singlesided vibroimpact
track NES.
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dius decreases the restoring force at the edges of the track. The numerical simulations showed
that a two-phased track NES of 10% mass ratio could reduce the maximum displacement of
the structure base by 40%.

Wang et al. [117] referred to the restoring force decrease following the increase in the NES
displacement as the peaking behaviour. That behaviour is responsible for the high frequencies
experienced by the track NES and improves the energy absorption of the track NES. The
deep understanding of the track NES dynamics facilitated its practical implementation for
advanced vibration control strategies. Recently, an experimental and theoretical study [25]
validated the extended working range and the better energy robustness of a new bi-stable
track NES that combined the advantages of both the peaking behaviour of the track NES and
the negative stiffness of the bi-stable NES. The track design of this integrated NES granted
two stable equilibrium points, leading to a restoring force of linear and nonlinear terms. The
interaction of the linear and nonlinear dynamics increased the rate of the irreversible energy
transfer at higher vibration modes.
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2.3.4 Rotative NES

Considering the main advantage of the NES to interact with the dynamics of a primary struc-
ture over a wide range of frequencies, Gendelman et al. [118] introduced a simple rotator with
a rigid coupling to the primary structure as a new type of NES (Figure 2.16 a). The ability
of the NES to rotate with variable frequencies without any spring elements simplified the
device construction. However, the dynamics of the rotative NES showed more complexity.
The rotative NES experienced three different regimes: oscillatory, intermittent, and rotatio-
nal. The third one is the most effective regime characterized by a high rate of energy transfer
and results in a strongly modulated response (SMR) for the primary structure.

An analytical study [119] demonstrated how a rotative NES engaged with the resonance of a
linear oscillator at different modes by adapting its dynamics to mitigate the vibration of the
primary system. The rotator experienced two different angular speeds; the slower coincides
with the frequency of the primary system, and the higher speed is a multiple of it by integer
number depending on the system energy. A later study [19], discussing the rotational NES
effect on a cylinder in three-dimensional turbulent VIV, introduced a line mass (thin cylinder)
as a rotating mass. The proposed rotative NES reduced the amplitudes of the cylinder VIV.

Instead of the rigid bar attaching the tip mass in the typical rotative NES, Saeed et al.
[20] used an elastic one with a radial DOF in a rotary-oscillatory NES (Figure 2.16 b). This
adaptation increased the capacity of the NES and reduced the required number of oscillations
experienced by the device to absorb the same amount of energy. Hence, the rotary-oscillatory
NES is more effective in mitigating the undesired response of structures due to rapid excita-
tion over a high range of energy levels.

2.4 The NES as a suppressor for FIV

The NES has widely appeared as a suppressor for types of FIV in many structures. Many
studies have implemented the NES to reduce the wing flutter. As well, NESs mitigate the
vibrations of pipes conveying fluids. Moreover, various designs of NESs, integrated with
cylindrical structures, can reduce the amplitudes of VIV and delay the galloping of prisms.

2.4.1 Wing instabilities

Lee et al. [120, 121] integrated a typical translative NES into a two-DOF wing model and
demonstrated the beneficial role of the NES in delaying the wing flutter. The analytical
and numerical analyses [120] exhibited three different regimes; periodic cycles of attenuation
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and growing of oscillations, intermediate suppression, and complete absorption. A series of
resonance captures affecting the system dynamics was the main reason for the observed
regimes. The experimental realization of the problem [121] validated the NES capability in
reducing the limit cycle oscillations (LCO) of a rigid NACA 0015 airfoil in heave and pitch.
The NES engaged with the wing dynamics experiencing 1 : 1 resonance captures with the
aeroelastic modes of the wing section. As a result, it increased the wing critical speed by 26%
of its original value. Decreasing NES stiffness or damping and enlarging the mass provided the
best suppression efficiency for the NES. This study pointed out the light NES as a low-cost
and robust solution for suppressing wing instabilities. A comparable study [122] confirmed
the NES suppression effect on the amplitudes of the pitch and heave of an airfoil through
numerical investigations. The mass and location were leading parameters for NES design.
Besides, the decaying characteristics of the NES were important in dissipating the energy
absorbed from the primary system. Later, Bharath and Samy [123] optimized the NES design
for maximizing its suppression effect on the pitch and heave responses of wings.

Lee et al. [124] enhanced the suppression efficiency by using multi-DOF NES. The authors
presented two configurations for the multi-DOF NES, where the NES masses were linked
in series or parallel. The masses-in-series configuration is superior and more robust than the
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single-DOF NES of the same total mass. Nevertheless, the parallel type was not efficient in
reducing the limit cycle oscillations of the wing. Hubbard et al. [125] added a rotative NES at
the tip of a flexible swept wing of constant-thickness to control its response. The analytical
analysis of the given system and the experiments provided a minimum amount of energy
beyond which the NES can engage in a 1 : 1 resonance with the wing in the second bending
mode, absorbing its vibration. The numerical simulations approved that the rotative NES of
higher stiffness also interacted with the wing dynamics in the first torsional mode at a higher
excitation energy level. Thus, the rotative NES can passively suppress the wing response in
one or more aeroelastic modes depending on design considerations.

Zhang et al. [126] coupled two NESs at the leading and trailing edges of a 2-DOF wing section
to delay wing instabilities to larger speeds compared to a single NES. The NESs interacted
with the wing dynamics, exhibiting 1 : 1 and 3 : 1 resonance captures and resulting in a high
rate of energy transfer at various modes of the wing. The rate of energy transfer depended on
the NES location and the vibrational mode. Thus, the NES at the leading edge suppressed
the heave mode, while the one at the trailing edge controlled the wing response in the pitch
mode. A later study [127] found that the NES was no longer able to suppress wing response
when the natural frequency of the pitch mode equals three times that of the heave mode.

Guo et al. [128] numerically studied the NES effect on an airfoil with a free-play control
surface and nonlinear stiffness in pitching. The NES was able to increase the flutter speed of
the wing and limited its oscillation to small values. The larger NES mass led to the higher
suppression efficiency. The study recommended the aileron position as the best location
for NES in the case of an airfoil with a control surface. Hubbard et al. [129] mounted a
NES at the wingtip to control its transonic aeroelastic instability in wind tunnel tests. The
winglet-mounted NES design stabilized the wing over a wide range of working conditions
and increased its flutter speed. The experimental realization confirmed the suppression effect
of the NES in the second bending mode, contrary to the torsional mode where the NES
was ineffective. The computational analysis provided the insignificance of moderate friction
damping effect on the NES behaviour. The NES parameters were optimized [130] to increase
the dynamic pressure by 40% at the critical conditions compared to the wing without NES.

Panel flutter is another type of aeroelastic instability that affects aircraft skin at high speeds.
In the first study presenting the NES as a passive absorber for panel flutter, Pacheco et al.
[131] numerically compared the energy injected by the flow to that absorbed by the NES to
assess the NES effect. The NES increased the panel stability against perturbation at speeds
lower than the flutter speed. Besides the capability of the NES in delaying the flutter, it still
absorbed energy at high velocities reducing the amplitudes of limit cycle oscillations. The
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authors highlighted the NES stiffness and damping and the streamwise location of the NES as
leading parameters for the design. The NES as well controlled the response of transonic flutter
of wings [132]. The NES interaction modulated the system dynamics forming new equilibrium
positions and leading to a region of elimination for the LCO. At higher speeds, the NES
partially suppressed the wing response depending on the initial conditions. The optimal design
of the NES required a minimum damping coefficient and optimized stiffness to maximize
its efficiency. Moreover, the NES mitigated the nonlinear response of a three-dimensional
hypersonic wing [38]. The NES increased the flutter speed and improved the stability of the
wing at pre-flutter speeds. Beyond flutter speed, the NES engaged with the system dynamics
in a 1 : 1 resonance capture. Thus, it eliminated the nonlinear oscillations but did not last
for higher dynamic pressures. Besides the great effect of the NES mass and location on
its suppression efficiency, these parameters controlled the aeroelastic shapes of the wing.
Recently, Fernandez-Escudero et al. delayed the wing flutter occurrence by implementing a
NES as a wings flap [39]. The advantage of stiffness nonlinearities in controlling the wing
response was validated experimentally and numerically.

2.4.2 Vibration of fluid-conveying pipes

NESs can suppress the excessive vibration of pipes conveying fluid over a wide range of
velocities compared to traditional passive methods. Yang et al. [133] numerically examined
the energy transfer across apipe conveying fluid coupled with a typical NES and approved the
capability of the NES in absorbing the induced vibration. Mamaghani et al. [134] illustrated
the NES effect on suppressing the response of a conveying-fluid pipe under periodic excitation.
The NES absorbed the vibration due to the external harmonic load leading to a strongly
modulated response for the pipe. The optimization of the damping and location of the NES
with the predicted force magnitude and flow velocities could lead to the maximum benefit of
the NES. The authors recommended the midspan of a fixed-fixed pipe as the best location
for a coupled NES. The study compared the responses of the pipe with an optimized linear
absorber and with the NES, highlighting the NES’s beneficial role in suppressing the vibration
without changing the system characteristics.

Zhao et al. [135] considered the nonlinearity of the pipe response in a similar problem. The
study confirmed the NES suppression efficiency related to the TET phenomena. NES stiffness
variation resulted in complexity in the system’s nonlinear response. A NES also was able to
control the flutter instabilities of a cantilevered pipe conveying fluid. Zhou et al. [136] used
a NES to increase the flutter critical speed and reduce the amplitude of its oscillations.
A parametric study showed that the increase in the NES mass and damping delayed the
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occurrence of flutter. NES parameters controlled the system response, while the best location
of the NES was affected by the flutter mode shape.

Khazaee et al. [40] implemented more than one NES in series and parallel configurations
to suppress the response of a transporting-fluid pipe. The suppression region of the multi
NESs exceeded that of a single NES, which enhanced the energy transfer mechanism. An
optimization considering the uncertainties effect provided a critical number for NESs, above
which the NES suppression efficiency decreased. The bi-stable NES as well interacted with
the pipe dynamics and was able to suppress its vibration. Yang et al. [137] promoted the
bi-stable NES over the typical one as it was faster in absorbing energy and had a higher
robustness and suppression efficiency. The optimal design of the bi-stable NES was able to
dissipate 98.2% of the system energy.

2.4.3 VIV and galloping instabilities of cylindrical structures

In the last decade, the NES has appeared as a solution for suppressing flow-induced vibration
(FIV) of cylindrical structures. Many studies investigated the effect of the translative NES
on the VIV of a cylinder. Tumkur et al. [41] used a two-DOF reduced-order model for VIV
to investigate the dynamics of a cylinder coupled with a translative NES. The NES 1:1
resonance capture phenomena resulted in the energy transfer across the system, reducing the
amplitudes of VIV. Mehmood et al. [42] employed a similar approach showing the dependence
of the suppression efficiency on the initial conditions. The numerical simulations provided a
critical mass ratio and a value for the NES damping below which the NES was ineffective
in suppressing the cylinder response. Chen et al. [138] simulated the response of a two-
DOF elastically supported cylinder with an NES. The NES effectiveness in reducing VIV
amplitudes was improved by increasing its mass and stiffness. The change only in the NES
mass shifted the lock-in region. The authors succeeded in suppressing the wake-induced
vibration of two identical cylinders by the same technique. Dai et al. [43] employed the
wake-oscillator models for evaluating the fluid forces due to VIV and confirmed the NES’s
capability in suppressing VIV. The authors explained the various dynamics of the NES,
pointing out the effect of the multiple stable responses in enhancing the energy transfer
and reducing vibration amplitudes. A recent study [139] addressing a similar problem at low
Reynolds number revealed a chaotic response for the cylinder coupled by NES. The numerical
simulations provided a range of mass ratios for the NES, out of which the NES would be
ineffective in suppressing the cylinder vibration.

Analytical and numerical studies have investigated the suppression efficiency of the rotative
NES on VIV of cylindrical structures. Blanchard et al. [140] employed the multi scales me-
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thod and complexification-averaging to study the dynamics of a two-dimensional cylinder
coupled with a rotative NES. The authors used a reduced-order model for the fluid loads and
highlighted strongly modulated responses of the cylinder due to TET from the cylinder to the
rotator. The numerical simulations provided that the lighter NES requires a larger radius and
higher damping to sustain a convenient suppression efficiency. Moreover, the NES indirectly
affected the flow surrounding the cylinder [141], and a proper NES mass could elongate the
wake increasing the cylinder stability. Tumkur et al. [142] pointed to the complex responses
arising due to the dynamic interaction between a vibrating cylinder and a rotative NES.
Besides the effect of such NESs on the wake vorticity, it led to chaotic responses at low Rey-
nolds number. Ueno and Franzini [45] studied the effect of NES parameters by presenting
the oscillation amplitude of the cylinder as functions of the mass, the radius and the damping
of the NES for the lock-in range of reduced velocities. A developed rotative NES composed
of a line mass mitigated the vibration of a cylinder in a turbulent three-dimensional flow
[44]. The energy absorption capability of the NES mitigated the cylinder oscillations and
reduced the drag load by 50%. Locking up the rotating mass directly permitted the VIV
to start [143]. The indirect effect of the NES on the surrounding flow raised an interesting
problem concerning the fluid-structure interaction. Chen et al. [144] found that the NES was
more functional in mitigating the VIV of high mass ratio cylinders than lower ones. The
study confirmed that increasing the NES mass and radius enhanced the NES suppression
effect and mentioned the dependence of the optimal NES damping on the mass ratio of the
structure. Recently, Franzini [145] replaced the rigid bar attaching the rotating mass with an
elastic one with a radial DOF. The elastic rotative NES reduced the amplitude of the VIV
by 25%, which is better than the suppression effect of an identical NES with a fixed radius.

We can only find a few contributions regarding passive suppression of galloping by NES. Dai
et al. [46] analytically investigated the response of a square prism fitted with a translative
NES. This study pointed out the influence of the NES parameters on the onset speed of
galloping and the strongly modulated responses of the prism. Teixeira [47] addressed a similar
problem with considering a rotative NES. Throughout the numerical simulations, the NES
could reduce the vibration amplitudes of the prism to half its original values.

2.5 Automatic Ball Balancer (ABB)

While the rotative NES uses a rotating rigid bar with a tip mass, an automatic Ball Balancer
(ABB) consists of free metal balls. These balls rotate in a circular track due to dynamic
interaction with a vibrating rotor [50, 146]. I experimentally validated the great effect of the
device on reducing unbalanced rotor vibration [147] during my master research. The auto-
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matic balancing phenomenon works properly at speeds beyond the angular natural frequency
of the rotor, where the ball tends to move away from the imbalance, as the rotor geometric
centre and the imbalance mass are located on opposite sides, relative to the mass centre. At
low speeds below the rotor natural frequency, the ABB can not balance the system when
the rotor geometric centre and the imbalance mass are in phase. The ball friction with the
balancer track is considered as a critical parameter affecting the balancer behaviour [148].
An increase in friction widens the stable range of the balancer with an undesired effect on the
transient responses. In addition to the conventional ball balancer presented in Figure 2.17,
we can find other configurations. Adding a nonlinear suspension to the conventional ball
balancer improved its effectiveness in damping the rotor vibration [149]. In another study
[150], the balancing mass can move radially along a rigid bar beside the tangential motion
to enhance the transient response. Although rotor dynamics are different from the galloping
mechanism presented in the current research, we value the simplicity of the ball balancer
that helps in its implementation in practical applications.

Figure 2.17 Automatic Ball Balancer
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CHAPTER 3 PROBLEM STATEMENT

NESs possess consierable advantage in comparison to other vibration absorbers: the absence
of a linear natural frequency, and their ability to interact with the dynamics of a primary
system over a broad range of frequencies. The experimental work on NESs is limited com-
paring to the theoretical work found in the literature and mostly deals with the NES as a
passive suppressor for buildings vibration. A few contributions are concerned with the pas-
sive suppression of wing aeroelastic instabilities by a NES. In terms of cylindrical structure
instabilities, experiments only validated the VIV model of the cylinder without examining
the NES capability in modulating its responses. Most of the proposed experimental NESs are
complicated and difficult to be practically implemented in industrial applications. The ball-
track configuration of an ABB is inspiring for developing a purely rotative NES, applicable
for practical implementation.

In the current research, we introduce a ball-in-track configuration as a purely rotative NES.
The design simplicity and the low-cost production of the proposed NES facilitate its practical
implementation with a square prism model in wind tunnel tests. Moreover, we improve the
suppression efficiency of the proposed NES by using multiple balls instead of a large one of
equivalent mass. The collisions between balls enhances the energy transfer across the coupled
system of the prism and the ball-in-track (BIT) NES.

3.1 Research objectives

3.1.1 Main objective

The main objective of our research is to develop a simple and robust nonlinear energy sink
(NES), based on the ball-in-track configuration, capable of mitigating the galloping of a
square prism.

3.1.2 Specific objectives

For achieving the main objective and enhancing the ability of the rotative vibration absorber,
we pass through three specific objectives.
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Demonstrate and characterize the proposed NES experimentally

Design, and fabricate a ball-in-track rotative NES to be easily mounted on a square prism
model, as depicted in Figure 3.1. Test the rotative NES experimentally by comparing the gal-
loping amplitudes of a prism with and without the NES. Explain the different NES dynamics
and their effect on the prism response. Define the main NES parameters and demonstrate
their influence on NES behaviour.

Simulate and explain the dynamics of the prism-NES system at high flow speeds
beyond the limit of experiments

Derive a mathematical model for the prism-NES system. Measure the normal force coefficient
affecting the square prism as a function of angle of attack and introduce it as an input for the
numerical model (see Fig. 3.2). Obtain an accurate expression for the ball damping coefficient
through free rotation tests. Validate the model with the experiments of objective 1. Then
use the model to explore the system dynamics at high flow speeds out of the experiment’s
limitation. Resolve the power flow analytically across the prism-NES integrated system to
explain the NES dynamics and predict its maximum power capacity.
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Figure 0.2 The proposed model for simulating the dynamics of prism-NES integrated system.
Figure 3.2 The proposed model for simulating the dynamics of prism-NES integrated system.

Improve the suppression efficiency of the NES by using multiple balls

Test different multi-ball NESs highlighting the effect of ball number on the suppression
efficiency of the NES in mitigating the galloping of a square prism model (see Fig. 3.3).
Identify the main parameters affecting the behaviour of a multi-ball NES. Explain the effect
of ball collisions on the NES behaviour. Illustrate how increasing the ball’s number affects
the NES track crowdedness and shifts the NES mass centre.

3.2 Description of research progression

This research focus on applying a ball-in-track NES to mitigate the galloping of a square
prism. We introduces the research contributions in three journal articles:

- Article 1: Wind Tunnel Demonstration of Galloping Mitigation with a Purely Nonlinear
Energy Sink.
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Figure 0.1 Three-dimensional drawing of the proposed NES coupled with a square prism
model.

Figure 3.3 Multi-ball NES coupled with a square prism model.

- Article 2: How a Ball Free to Orbit in a Circular Track Mitigates the Galloping of a
Square Prism.

- Article 3: Multiple Balls Rotating in a Circular Track Experimentally Mitigate the Gal-
loping of a Square Prism.

Each article presents a specific objective. Article 1 addresses the first specific objective,
experimentally validating the effect of the ball-in-track NES on mitigating the galloping
of a square prism model. Wind tunnel tests illustrate the different NES response modes :
oscillatory, intermittent and rotational, and show their impact on the prism response. A
parametric study is followed to demonstrate the influence of the main NES parameters on
its behaviours. Article 2 advances the second specific objective of our research providing
numerical simulations and analytical for the dynamics of the prism-NES integrated system.
A model employing the fitting of experimental data for the ball damping coefficient Cθ and
the square prism normal force coefficient Cy as inputs is developed for the realistic simulation
of the system dynamics. The simulations illustrate the different NES dynamics observed in
the experiments and predict an ineffective regime at high flow speeds that we cannot test due
to the limit of the experimental setup. A proposed power flow analysis clarifies the energy
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transfer mechanism across the coupled system, which gives more insight into how the ball-
in-track NES works. The numerical and analytical work done in Article 2 complies with the
experimental results of Article 1, explaining the behaviour of the NES and predicting its
effective range.

After approving the idea of the ball-in-track NES experimentally in Article 1 and explaining
its working theory in Article 2, Article 3 covers the third specific objective of the current
research by presenting how the suppression efficiency of the proposed NES increases by using
multiple balls instead of one. Ball collision is an additional mechanism for energy absorption
in the multi-ball NES. Besides, the interaction between multiple balls in the same track
prevents the continuous rotational response and leads to different dynamics compared to the
single ball NES. We explain the concept of the multi-ball NES and theoretically express the
main parameters affecting its behaviour. Additionally, Wind tunnel testing of NES different
configurations illustrates the ball number effect on the behaviour of the multi-ball NES.
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CHAPTER 4 ARTICLE 1: WIND TUNNEL DEMONSTRATION OF
GALLOPING MITIGATION WITH A PURELY NONLINEAR ENERGY

SINK

Michael M.Selwanis, Guilherme R.Franzini, Cédric Béguin, and Frédérick P.Gosselin

This chapter represents the first article, published at "Journal of fluids and structures" in
January 2021. DOI : http://dx.doi.org/10.1016/j.jfluidstructs.2020.103169.

Abstract

Galloping is a critical type of flow-induced vibration (FIV) arising on power transmission
lines, high rise buildings, pipe and cables bundles in the oil and gas industry. In this paper,
we present a purely nonlinear energy sink (NES) that mitigates the galloping of a square
prism. The NES is composed of a ball rotating freely in a circular track attached to the prism.
The ball’s dynamics is coupled to that of the prism in a purely nonlinear way by inertia.
We experimentally assess how this simple NES reduces the prism vibration by comparing
the prism amplitude responses with and without the NES. A supplementary video presents
these experiments, during which the NES ball exhibits different dynamics in three regimes ;
oscillatory, intermittent, and rotational. We characterize the ball behaviour and its effect on
the prism response in each regime. The oscillatory regime appears at low flow speeds at which
both the prism and the ball oscillate with small amplitude. The intermittent regime represents
a transition mode within a small range of flow speeds and corresponds to a small jump in
the vibration amplitude of the prism. The rotational regime appears at higher flow speeds,
where the ball oscillates with relatively high angular speeds resulting in a strong modulated
response of the prism. The design of the NES allows to easily vary its track dimensions to
use a ball of different sizes and masses. Accordingly, we demonstrate the influence of the
main NES parameters, which are the ball mass, NES track radius, ball friction, and radial
clearance between NES track walls and the rotating ball, on both the prism response and
the ball behaviour. The NES we present is directly amenable to mitigate other types of FIV.

Keywords : Non-linear energy sink, Vibration suppression, Square prism, Galloping, Energy
transfer, Wind tunnel tests.

http://dx.doi.org/ 10.1016/j.jfluidstructs.2020.103169
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4.1 Introduction

Transverse galloping is a critical type of flow-induced vibration (FIV) that commonly occurs
at high flow speeds. During heavy wind, galloping may have destructive effects on many
structures such as skyscrapers, transmission lines, and road signs. A linear Tuned Mass
Damper (TMD) is a simple device used for damping vibration of structures. This mass-
spring-damper system [151] is tuned to change the natural frequency of the system. A TMD
works efficiently in a narrow frequency band but adds new potential resonances to the main
structure. Contrary to the TMD, another particular class of suppressors known as nonlinear
energy sinks (NES) have no linear natural frequency [13] and can engage with the primary
vibrating systems over a broad range of frequencies reducing its vibration amplitude.

A NES is a passive vibration suppressor that consists of a mass added to a primary structure
and characterized by a non-linearizable stiffness and usually linear damping properties [13].
A NES without direct attachment to the primary structure [98, 99] is a special type of such
devices with zero-stiffness, their dynamics is purely nonlinear. A NES works by Targeted
Energy Transfer (TET) [73, 152] : during vibration, a portion of the energy is transferred
irreversibly from the primary structure to the NES reducing vibration amplitudes.

The great interest in the field of nonlinear energy absorption has led to various NES designs.
In a vibro-impact NES, the impacts of balls with rigid walls dissipate energy [22]. In a
translative NES, a small mass attached to the main structure by an essentially non-linear
spring and a dashpot absorbs vibration during its translational motion [49, 153]. While in
a rotative NES [20], a rotating rigid bar with a tip-mass attached to the main structure
represents another technique for vibration suppression. The rotative NES is a simple and
promising device that can damp vibration without a spring element [45].

Only a few contributions are concerned with the passive suppression of galloping by a NES.
Dai et al. [46] analytically and numerically studied the response of a square prism fitted with
a translative NES. This study pointed out the influence of the NES parameters on the onset
of the critical galloping velocity, as well as the strongly modulated responses of the prism.
Teixeira et al. [47] addressed a similar problem with considering a rotative NES. Throughout
the numerical simulations, the NES can reduce the vibration amplitudes of the prism to half
its original values.

However, in the last decade, researchers have used various NES designs to suppress a par-
ticular type of FIV different from galopping, e.g., vortex-induced vibrations (VIV). Tumkur
et al. [41] investigated the dynamics of a cylinder fitted with a translative NES using Com-
putational Fluids Dynamics (CFD) and reported a 75 % reduction in the cylinder vibration
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amplitudes due to vortex shedding. A similar approach was employed by Mehmood et al.
[42], who pointed out the dependence of the suppression efficiency with the initial conditions.
Blanchard et al. [44] focused on VIV suppression using a rotative NES. The authors used
CFD approaches for computing the fluid loads and highlighted the significant energy transfer
that appears in the strongly modulated responses of the cylinder. Conversely, Dai et al. [43]
employed the wake-oscillator models for evaluating the fluid forces due to VIV and showed
that a translative NES can similarly modulate the cylinder responses. s. Ueno and Franzini
[45] studied the effect of the NES parameters on the oscillation amplitude of the cylinder.

Experimental investigations related to NESs are fewer than theoretical ones and mostly deal
with the NES as a passive suppressor for building vibration. Wierschem et al. [18] tested
a 2-DOF NES to damp impulsive excitation showing a good effect for TET on improving
the structural damping. In a similar study [154], a vibro-impact NES highly enhanced the
damping properties of a structure. Wang et al. [110] examined a different vibro-impact NES
showing its effect on mitigating impulsive and seismic excitation. Wierschem et al. [48] used
a system of NESs to reduce the structural vibrations generated from transient loads due to
blast testing of a large scale steel structure.

In terms of mitigating FIV with a NES, few experiments are available in the literature.
Dongyang et al. [49], Dai et al. [43] performed experiments only to validate the VIV model
of the cylinder. Despite a number of theoretical studies concerning various NES designs,
few experimental demonstrations are available and even fewer industrial applications are
reported. This is possibly due to the practical difficulties of implementing complex NES
designs with cams, springs and other moving structures.

The automatic ball balancer (ABB) [147] is a different type of passive devices used for the
reduction of rotor vibration generated from system imbalance. An ABB consists of metal
balls rotating freely in a circular track due to dynamic interaction with rotor vibration
[50]. The balls are required to reach a certain position to counteract the system imbalance
then stop relative to the rotor. The simplicity of such balancers has extended their use to
some applications such as optical disc drives [155] and washing machines [156]. However,
the concept of ABB is different from a rotative NES that depends on energy dissipation to
damp the vibrating structure. Whereas ABBs are fabricated with minimal friction to allow
the balls to counter the rotary imbalance, a rotative NES requires dissipative forces for
damping. Nevertheless, the simplicity and robustness of the ABB is highly inspiring for the
design of a rotative NES.

This paper experimentally demonstrates the mitigation of the galloping of a square prism due
to the dynamic interaction with a purely NES. As schematized in Figure 4.1, we use a ball free
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Figure 0.4 Schematic drawing of the vibrating prism with the rotative NES

Figure 4.1 Three-dimensional drawing of the square prism model with the proposed NES

to roll in a circular track as a simple NES without direct attachment to the primary system.
The paper is structured in four sections. Following this introduction, section 4.2 presents
the experimental arrangement and the model description. Section 4.3 presents the results in
three parts : the influence of the proposed NES on reducing the galloping amplitude, the
different dynamical regimes, and the effect of the main NES parameters on its behaviour and
the prism galloping response. Finally, section 4.4 brings the conclusion. In the supplementary
information, we provide a video succinctly presenting the experimental setup and highlighting
the article’s main conclusion.

4.2 Methodology

We performed the experiments in the closed-loop wind tunnel (Model 407-B, ELD, Lake
City, MN, USA) of the mechanical engineering department of Polytechnique Montréal. The
wind tunnel test section is 60 × 60 cm2 and the maximum air speed produced is 90 m/s.
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Figure 0.4 Schematic drawing of the vibrating prism with the rotative NESFigure 4.2 Schematic drawing of the vibrating prism with the rotative NES

4.2.1 Model description

The schematic drawing of our model (Figure 4.2) shows a square prism of side length D

mounted on two identical supports of equivalent stiffness k, and a damping coefficient c.
The prism can only vibrate transversely, with displacement y, to a free stream of velocity U ,
resulting in automatic rotation of the NES ball in a circular track of mean radius r. The ball
angular displacement θ is positive counter-clockwise. A ball damping coefficient cθ affects the
ball rotation due to friction and air resistance. The ball moves on a horizontal plane. Hence,
its motion is not affected by the gravitational acceleration.

We designed a lightweight prism spanning almost the entire height of the wind tunnel test
section without too much blockage effect. Figure 4.3(a) presents the square prism model of
5 cm side length and 58 cm height made of balsa wood and covered with a vinyl smooth. The
prism blocks 8.1% of the test section area. Two end plates (2) made of light Formica with
33 cm length, 13 cm width, and 0.1 cm thickness installed at the two ends of the square prism
prevent air from escaping the wind tunnel test section.Another pair of smaller plates (3) of
15 cm length and 14 cm width are installed 8 cm away from each end. These inner plates help
approach two-dimensional flow conditions ; see ref. [56]. The square prism is mounted onto
two identical elastic supports allowing cross-wise oscillations. Each support consists of two
leaf springs (4) as shown in Figure 4.3(b). The length of the leaf springs is long compared
to the maximum allowed vibration amplitude. Therefore, the square prism is assumed to
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behave as a single degree of freedom (DOF) system vibrating transversely to the flow.

Free vibration tests allowed evaluating the equivalent total oscillating mass M = 1.39 kg , the
natural frequency fn = ω/2π = 2.56 ± 0.01 Hz and structural damping ratio ζy = δ/2π = 0.01,
see Table 4.1. In our experiments, the prism transverse vibration is restricted by the slot
length of 15 cm in the top and bottom boards of the wind tunnel test section, which allows a
maximum amplitude A of 7.5 cm (equal to 1.5 times the square prism side length). We only
tested one mass ratio for the prism and cannot infer about other mass ratios that can be a
question of future work, notably modelling work.

This paper provides parametric study on the effect of main NES parameters in the non-
dimensional form for easier generalization. Consequently, we define the following dimen-
sionless parameters : the non-dimensional vibration displacement Ŷ and amplitude Â ; the
reduced velocity Ur ; the NES mass ratio m̂ and radius ratio r̂ ; and the relative radial clea-
rance µ̂ that relates the radial clearance µ between the NES track walls and the ball to the
ball radius rb :

Ŷ = y

D
, Â = A

D
, Ur = U

ωD
, m̂ = mb

(M + mb)
, r̂ = r

D
, µ̂ = µ

rb
. (4.1)

4.2.2 NES design and fabrication

We propose a simple NES design (Figure 4.4) consisting of the main body (1), various size
bushings (2), steel balls (3), and a lubricating fluid (4). We built the NES to be about the size
of the prism dimension and made it as light as possible. A 3D printer (Ultimaker3, Ultimaker)
printed the NES components with white Poly-Lactic Acid (PLA) plastic. This modular design
aims to easily vary the main NES parameters by swapping some parts. Bushings of various

Table 4.1 Physical parameters of the experiment

Cross-section side length, D 5 cm
Prism length, L 58 cm

Equivalent stiffness, k 360 N/m
Total oscillating mass, M 1.39 kg

Natural frequency, fn 2.56 Hz
Structural damping ratio, ζy 0.01

Critical flow speed, Uc 6.5 m/s
The lock-in flow speed, Ulock−in = fvsD/St 0.96 m/s

Onset velocity ratio, Λ = Uc/Ulock−in 6.8
Reduced flow velocity, Ur = U/ωD 2.6 - 28.5
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Figure 0.5 Experimental set-up showing (a) the model inside the wind tunnel test section and
(b) the test section top view. The main components are numbered : (1) the manufactured
square prism, (2) outer plates, (3) inner plates, (4) the support that mainly consists of two
leaf springs, (5) the NES main body attached to the upper end of the square prism, (6) a
slot of 15 cm length

Figure 4.3 Experimental set-up showing (a) the model inside the wind tunnel test section and
(b) the test section top view. The main components are numbered : (1) the manufactured
square prism, (2) outer plates, (3) inner plates, (4) the support that mainly consists of two
leaf springs, (5) the NES main body attached to the upper end of the square prism, (6) a
slot of 15 cm length

sizes allow varying the racetrack inner and outer radii. Lubrication of the NES track decreases
the friction between the rotating ball and the NES body, thus changes the ball damping.

4.2.3 Measuring system

A high-speed Camera (Motion BLITZ Cube 4, MIKROTRON) captured the motion of both
the prism and the NES ball with a resolution of 0.085 mm to allow for post-treatment image
analysis. The memory of the high-speed camera and the frame dimensions limit the recording
time to 40 seconds. A MATLAB code was written to process the recorded image series and
plot the prism vibrating displacement y and the ball angular displacement θ with time t. To
ensure a steady-state, three minutes elapsed each time between setting the new wind tunnel
flow speed and starting the camera recording. We repeated the measurement for incrementing
flow speed with increasing values to plot the prism maximum amplitude A (max abs y(t))
versus flow speed U demonstrating the system response.



465

3

1
2

4

Figure 0.6 Exploded view for NES parts : (1) NES main body, (2) various size bushings, (3)
metal balls, and (4) a lubricating fluid.
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Figure 0.7 The prism responses with and without the NES of mass ratio m̂=0.1, and a radius
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Figure 4.4 Exploded view for NES parts : (1) NES main body, (2) various size bushings, (3)
metal balls, and (4) a lubricating fluid.

4.3 Results

We present the results of this study in three parts : the NES effect on mitigating the
galloping of the square prism ; the different dynamical regimes experienced by the NES ;
and a parametric study on the NES parameters. Original data of the current study, in-
cluding all measurements and the image-processing code, are available at Mendeley data
http://dx.doi.org/10.17632/7kzcgvsx2x.2.

4.3.1 NES Effect on the Prism Response

We recorded the dynamics of the prism without NES for incrementing flow speed. To clarify
the nature of the vibrations, we compare the critical velocity measured for galloping versus
the expected lock-in velocity for VIV. We define a critical flow speed Uc at which the prism
starts to gallop exceeding 4 mm amplitude. This speed is observed experimentally as 6.5 m/s.
Considering a Strouhal number St of 0.133 for a square prism [56], the lock-in flow speed of our
model Ulock−in = fvsD/St = 0.96 m/s. Hence, the onset velocity ratio, Λ = Uc/Ulock−in = 6.8
(table 4.1), and the square prism response without the NES shows a pure galloping with
minimal interaction with vortex shedding. We repeated the measurement with a NES of
mass ratio m̂ = 0.08, and a radius ratio r̂ = 0.6. In this subsection, the measured data is

http://dx.doi.org/10.17632/7kzcgvsx2x.2
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presented in dimensional form without any post-treatment.

Figure 4.5 compares the maximum vibration amplitudes of the prism with and without the
NES at different flow speeds. Beyond the critical speed Uc, the prism galloping amplitude
dramatically increases with the flow speed to exceed the limit of our experiment 75 mm at
a flow speed of 12.7 m/s. The prism response with the NES, presented in Figure 4.5 by the
dashed line, shows a significant decrease in vibration amplitude. The NES maintains the
prism vibration displacements below 5 mm up to a flow speed of 11.2 m/s. With increasing
flow speed, a little jump in the vibration amplitude occurs at a flow speed of 12.7 m/s. Then,
the amplitude of the prism with the NES plateaus until a flow speed of 20.2 m/s. In this flow
speed range, the vibration amplitude does not exceed 30 mm. Above this flow speed, the NES
is ineffective and unable to keep the prism vibration below the maximum allowed amplitude.
The NES increases the flow speed at which the prim galloping amplitude reaches the limit
of our experiment from 12.7 to 21.7 m/s.

Figures 4.6(a-c) present the amplitude spectra obtained from the Fast Fourier Transform
(FFT) of the vibrating prism displacement in semi-log scale at different flow speeds 9.7,
11.2 and 12.7 m/s. Figures 4.5(a) and (b) compare the frequency response of the prism with
and without the NES. The NES has no significant effect on the natural frequency of the
prism fn = 2.56 Hz even at higher flow speed U = 12.7 m/s where the ball rotates achieving
complete revolutions.

We can observe that the NES engages with the system dynamics resulting in the transfer
of energy from the vibrating prism to the NES in the form of ball rotation kinetic energy.
Hence, the NES delays galloping occurrence and significantly mitigates the prism amplitudes
for flow speeds between 9.7 m/s and 20.2 m/s. This range of flow speeds can be referred to
as the NES effective range. At higher flow speeds, the galloping of the prism increases and
the prism energy is too high to be absorbed by the NES. One of the main advantages of the
NES is that it does not change the characteristics of the primary system contrary to other
vibration absorbers of linear stiffness.

4.3.2 Different NES Dynamics

We demonstrate the different NES dynamics from the time history of the NES ball angular
displacement and its effect on the prism response at different flow speeds. The NES expe-
riences three different response modes ; oscillatory, intermittent, and rotational. Figure 4.7
shows the time histories of the prism displacements and the ball angular displacements at
nine flow speeds U between 9 and 20.2 m/s. For the three lower speeds, Figures 4.7 (a-c)
present both the dynamics with and without NES. For Figures 4.7 (d-i), U ≥ 12.7 m/s, the
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Figure 0.6 Exploded view for NES parts : (1) NES main body, (2) various size bushings, (3)
metal balls, and (4) a lubricating fluid.
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Figure 0.7 The prism responses with and without the NES of mass ratio m̂=0.1, and a radius
ratio r̂=0.65, presenting oscillatory �, intermittent 4, and rotational ◦ regimes, and the point
that reaches the maximum allowed amplitude � .

Figure 4.5 The prism responses with and without the NES of mass ratio m̂=0.1, and a radius
ratio r̂=0.6, presenting oscillatory �, intermittent 4, and rotational ◦ regimes, and the point
that reaches the maximum allowed amplitude � .
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Figure 0.8 The amplitude spectrum of the vibrating prism with NES (red curve) at different
flow speeds U = : (a) 9.7 m/s ; (b) 11.2 m/s ; (c) 12.7 m/s. The amplitude spectrum of the
vibrating prism without NES (grey curve) is shown only in (a) and (b).

Figure 4.6 The amplitude spectrum of the vibrating prism with NES (red curve) at different
flow speeds U = : (a) 9.7 m/s ; (b) 11.2 m/s ; (c) 12.7 m/s. The amplitude spectrum of the
vibrating prism without NES (grey curve) is shown only in (a) and (b).



497

0 40
-20

20

0 5 10 15 20 25
Free stream velocity, U [m/s]

0

20

40

60

80

100

T
ra

ns
ve

rs
e

am
pl

itu
de

A
[m

m
]

Maximum

With NES

Without NES

-80

80

0 40 0 40
-40

40

0 40
-40

40

0 40
-40

40

0 40
-40

40

0 40
-40

40

0 40
-40

40

(b) (c) (d) (e)

(f) (g) (h) (i)

-20

20

-80

80

0 40 0 40(a) (b) (c)

0 40

-40

40

(e) 0 40

-40

40

(f)

-40

40

-40

40

-40

40

0 40(h)0 40(g) 0 40(i)

0 40

-40

40

(d)

0 40
-20

20

0 5 10 15 20 25
Free stream velocity, U [m/s]

0

20

40

60

80

100

T
ra

ns
ve

rs
e

am
pl

itu
de

A
[m

m
]

Maximum

With NES

Without NES-80

80

0 40

0 40
-40

40

0 40
-40

40

0 40
-40

40

(b)

(c)

0 40
-40

40

(d) 0 40
-40

40

(e) (f) (g)

0 40
-40

40

(h)

(i)(a)

(a)

-8

8

Without NES With NES

150

350

0 40
250

350

y
[m

m
]

θ[
o
]

250

350

0

2000

y
[m

m
]

θ[
o
]

-3000

1000

-4000

2000

y
[m

m
]

θ[
o
]

-7000

1000

-7000

1000

-14000

1000

Figure 0.9 Time histories of the prism displacement y(t) and NES ball angular displacement
θ(t) in degrees at different flow speeds U = : (a) 9.0 m/s ; (b) 9.7 m/s ; (c) 11.2 m/s ; (d)
12.7 m/s ; (e) 14.2 m/s ; (f) 15.7 m/s ; (g) 17.2 m/s ; (h) 18.7 m/s ; and (i) 20.2 m/s.
Figure 4.7 Time histories of the prism displacement y(t) and NES ball angular displacement
θ(t) in degrees at different flow speeds U = : (a) 9.0 m/s ; (b) 9.7 m/s ; (c) 11.2 m/s ; (d) 12.7
m/s ; (e) 14.2 m/s ; (f) 15.7 m/s ; (g) 17.2 m/s ; (h) 18.7 m/s ; and (i) 20.2m/s.
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prism without NES reaches the maximum allowed amplitude of the setup. The behaviour of
the NES and its impact on the dynamics of the prism can be broken down into three regimes,
which we named according to the ball behaviour.

The oscillatory regime is shown in Figures 4.7 (a-c), where the NES ball angular displace-
ment does not exceed 75o. However, it reduces the prism galloping amplitude. Figure 4.7 c
shows a significant reduction in the maximum amplitude by the NES from 70 mm to 5 mm
at a flow speed U = 11.2 m/s.

The intermittent regime, shown in Figure 4.7 (d), appears as a transition between two
different regimes in a small range of flow speeds. The ball rotates with relatively low angular
speed keeping the prism vibration amplitude below 28 mm. This regime is characterized by
a nearly steady vibration for the prism and a ball rotation of a small number of successive
complete revolutions not exceeding five revolutions.

The rotational regime appears in a higher range of flow speeds from 14.2 to 20.2 m/s, as
shown in Figures 4.7 (e-i). The prism shows a strongly modulated response of periodic cycles of
attenuation and growing vibration amplitude. During each cycle, the prism vibration ampli-
tude grows to reach a maximum value of 30 mm, then decreases sharply due to ball rotation.
The vibrating prism transfers energy to the NES in the form of kinetic energy resulting in
high angular speeds of the rotating ball. The ball rotation and the consequent energy dissipa-
tion through the TET mechanism drastically mitigate the prism galloping amplitude to less
than 0.1 mm. From Figures 4.7 (e-i), we can also observe that the frequency of the repeated
periodic cycles of the reducing and growing amplitudes increases at higher flow speed. The
strongly modulated response of the vibrating prism observed experimentally in the rotational
regime is similar to that previously predicted by Tumkur et al. [142], and demonstrates the
energy transfer between the prism and the rotative NES during its galloping.

At large reduced velocities, beyond the rotational regime, the NES is ineffective and the
galloping amplitude is above the limits of our experimental setup. We can say that the
amount of energy extracted by the vibrating prism from the airflow exceeds the energy
dissipation rate of the NES. Another hypothesis is that the inertial coupling between the
NES and the prism is no longer beneficial at large amplitudes. Testing these hypotheses
should be part of future work.

4.3.3 Influence of main NES parameters

We explore the influence of each of the main NES parameters individually. The modular
NES design presented in section 4.2.2 allows easy modification of the main parameters.



51

Depending on the ball mass, the mass ratio m̂ can be varied between 0.02 and 0.08. Bushings
of different sizes allow varying the NES radius ratio r̂ (from 0.4 to 0.7) and the NES track
relative clearance µ̂ (from 0.066 to 0.33). We reduce the ball friction with the NES track by
adding a lubricating fluid to investigate the effect of the friction.

We compare the prism response with various NES configurations and define NES regimes
based on the difference between the non-dimensional maximum and minimum vibration am-
plitudes. This difference is variable across the different regimes: a large value in the rotational
regime and a small one in the oscillatory regime. We developed a MATLAB code to auto-
matically categorizes the NES regimes depending on this difference and plot a NES regime
mapping for each configuration of parameters based on the following criterion:

if max(Â) − min(Â) > 0.2 ⇒ rotational regime,
else if max(Â) − min(Â) > 0.1 ⇒ intermittent regime,

else ⇒ oscillatory regime.

Mass ratio m̂

Figure 4.8 a presents the non-dimensional maximum amplitude Â versus the reduced flow
velocities Ur for the prism with NES configurations with different mass ratios m̂ of 0.02,
0.04, and 0.08, considering a constant radius ratio r̂ = 0.6 and a relative radial clearance µ̂ =
0.066. The NES of the smallest mass ratio m̂ = 0.02 reduces the maximum amplitude in a
small range of flow speeds Ur ≤ 19.2. For mass ratios m̂ = 0.04 and 0.08, the prism maximum
amplitude increases steadily with flow speeds until reduced flow velocities of 15.6 and 13.7,
respectively. Then, it jumps at higher flow speed coinciding with the NES transition from
the oscillatory to the intermittent regime and continues with slight changes until another
higher jump exceeding the limit of the experiment at reduced flow velocities Ur = 25 and
27, respectively. This means that increasing the NES mass ratio expands the NES effective
range. However, lower mass ratio NES configurations result in smaller vibration amplitudes
in the low-speed range.

Figure 4.8 b shows a NES regime mapping for the three different mass ratios. The oscillatory
regime ends at a reduced flow velocity between 14.7 and 16.5 for both mass ratios 0.04 and
0.08. The intermittent regime starts and remains only for a small range of velocities until
Ur = 16.5. While for the smallest mass ratio, m̂ = 0.02, the oscillatory regime range expands
to eliminate the occurrence of the intermittent regime. For the three different mass ratios,
the rotational regime starts at the same reduced velocity of 16.5 until reaching the maximum
allowed amplitude.
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Figure 0.10 (a) Prism responses without × and with different mass ratio NESs m̂= 0.025
(gray marks), m̂ =0.05 (black marks), and m̂=0.1 (white marks) at a constant r̂ =0.65, (b)
NES regime mapping presenting oscillatory �, Intermittent 4, and Rotational ◦ regimes, and
the points that reach the maximum allowed amplitude � .

Figure 4.8 (a) Prism responses without × and with different mass ratio NESs m̂= 0.02 (gray
marks), m̂ =0.04 (black marks), and m̂=0.08 (white marks) at a constant r̂ =0.6, (b) NES
regime mapping presenting oscillatory �, Intermittent 4, and Rotational ◦ regimes, and the
points that reach the maximum allowed amplitude � .

Radius ratio r̂

The behaviour of the NES is greatly affected by the NES radius ratio. A ball of 56 g mass
and 24 mm diameter is used to obtain three different radius ratios r̂ = 0.4, 0.6 and 0.7,
considering a constant mass ratio m̂ = 0.04 and relative radial clearance µ̂ = 0.066.

Figure 4.9 a compares the prism responses with the three different NES configurations. The
prism with the smaller radius ratio NES oscillates with lower amplitude. The NES effective
range at a radius ratio r̂ = 0.7 is smaller than that at lower radius ratios of 0.4 and 0.6.
Thus, increasing the NES radius ratio results in increasing the prism vibration amplitudes
and decreasing the NES effective range.
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Figure 0.11 (a) Prism responses without × and with different radius ratio NESs r̂= 0.7
(gray marks), r̂ =0.6 (black marks), and r̂=0.4 (white marks) at a constant m̂ =0.05, (b)
NES regime mapping presenting oscillatory �, Intermittent 4, and Rotational ◦ regimes, and
the points that reach the maximum allowed amplitude � .

Figure 4.9 (a) Prism responses without × and with different radius ratio NESs r̂= 0.7 (gray
marks), r̂ =0.6 (black marks), and r̂=0.4 (white marks) at a constant m̂ =0.04, (b) NES
regime mapping presenting oscillatory �, Intermittent 4, and Rotational ◦ regimes, and the
points that reach the maximum allowed amplitude � .

The NES regime mapping in Figure 4.9b shows the effect of NES radius ratio variation on
the ball behaviour. The oscillating regime range is the same for both radius ratios 0.4 and 0.6
and expands to eliminate the occurrence of the intermittent regime at the radius ratio of 0.7.
The intermittent regime is observed from a reduced velocity Ur = 14.7 and ends at reduced
velocities of 20.3 and 16.5 for NES configurations with radius ratios 0.4 and 0.6, respectively.
For the highest value of radius ratio r̂ = 0.7, the rotational regime starts directly after
the oscillatory regime at a reduced velocity of 16.5. The starting reduced velocities of the
rotational regime are 20.3, 16.5, and 16.5 at the different radius ratios of 0.4, 0.6 and 0.7,
respectively. Hence, increasing the NES radius ratio has a significant effect in narrowing the
intermittent regime range.
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Ball friction

The ball damping ratio ζθ has an important effect on the NES behaviour. Ball damping
comes predominantly from the friction between the ball and the NES track. It is difficult to
get an exact value for the ball damping ratio as it depends on uncertain parameters such as
air resistance, and the ball behaviour (rolling or slipping). We added lubricating oil to reduce
the ball friction with the NES track walls. We tested a lubricated and a dry NESs with the
same parameters m̂ = 0.08, r̂ = 0.6 and µ̂ = 0.066 to investigate the effect of ball damping
variation.

The prism responses with the two NES configurations are presented in Figure 4.10 a. The
lubricated NES is more effective than the dry one in reducing the galloping amplitudes of the
prism at the reduced flow velocities 13.6 < Ur < 17.4. Figure 4.10 b shows the NES regime
mapping for both the lubricated and the dry NES. The oscillatory regime range expands
in the case of the lubricated NES to eliminate the appearance of the intermittent regime.
While the rotational regime range is delayed by the lubricating fluid to start at a reduced
velocity Ur = 19.3 instead of 17.4. A possible explanation for this finding is that the ball can
rotate with higher angular speeds and absorb more energy from the system in the presence
of lubrication due to decreased friction.

NES track relative clearance µ̂

Increasing the radial clearance µ̂ affects the ball rotation and increases the magnitude of the
impacts between the ball and the NES track walls leading to different dynamics. Changing
the inner bushing size allows achieving three relative NES track clearance values of 0.066,
0.2, and 0.33 for the same NES of mass ratio m̂ = 0.08 and radius ratio r̂ = 0.61 ± 0.01.

The NES responses, presented in Figure 4.11 a, are highly affected by the radial clearance.
Increasing the radial clearance reduces the prism galloping amplitude, however, it does not
change the NES effective range. Figure 4.11 b presents the NES regime mapping for the three
different radial clearances. Increasing the radial clearance widens the oscillatory regime range
and shifts the intermittent regime with no change in its range. We observe the oscillatory
regime up to reduced flow velocities of 14.7, 18.3, and 20.2 at different radial clearances of
1, 3, and 5 mm, respectively. The findings at higher radial clearance may be explained by
the effect of the ball impact with the NES track walls that appear as an additional way for
nonlinear energy absorption.
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Figure 0.12 (a) Prism responses without × and with a dry (white marks) and lubricated
(black marks) NESs with the same mass and radius ratios m̂= 0.1, r̂ =0.65, (b) NES regime
mapping presenting oscillatory �, Intermittent 4, and Rotational ◦ regimes, and the points
that reach the maximum allowed amplitude � .

Figure 4.10 (a) Prism responses without × and with a dry (white marks) and lubricated
(black marks) NESs with the same mass and radius ratios m̂= 0.08, r̂ =0.6, (b) NES regime
mapping presenting oscillatory �, Intermittent 4, and Rotational ◦ regimes, and the points
that reach the maximum allowed amplitude � .

4.4 Conclusion

The typical form of a rotative NES presented in the literature consists of a tip mass coupled
to a primary structure by a rigid bar of fixed length. In this research, we designed a new
rotative NES using a free metal ball moving in a circular track without direct coupling to the
primary system proposing a simple, robust and effective way of nonlinear energy absorption.
At least to the authors’ knowledge, experimental investigation focusing on the galloping
suppression using NES is not found in the literature and is the major novelty of this paper.

The rotative NES proposed in this study successfully mitigates the galloping of a square prism
with no effect on its natural frequency. Wind tunnel experiments exposed the mechanism of
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Figure 0.13 (a) Prism responses without × and with NESs of varying track relative clearance ;
µ̂= 0.0.33 (gray marks), µ̂=0.2 (black marks), and µ̂=0.066 (white marks) at a constant
mass and radius ratios m̂ =0.1, r̂ =0.65, (b) NES regime mapping presenting oscillatory �,
Intermittent 4, and Rotational ◦ regimes, and the points that reach the maximum allowed
amplitude � .

Figure 4.11 (a) Prism responses without × and with NESs of varying track relative clearance ;
µ̂= 0.33 (gray marks), µ̂=0.2 (black marks), and µ̂=0.066 (white marks) at a constant mass
and radius ratios m̂ =0.08, r̂ =0.61 ±0.01, (b) NES regime mapping presenting oscillatory �,
Intermittent 4, and Rotational ◦ regimes, and the points that reach the maximum allowed
amplitude � .

action of the proposed NES and highlighted its three different response modes: oscillatory
regime, intermittent regime, and rotational regime. At low flow speeds in the oscillatory
regime, the NES ball oscillates with a small amplitude not exceeding 70 degrees, however,
it increases the critical galloping velocity. At higher flow speeds, the intermittent regime
appears within a small flow speed range. The ball oscillates with relatively low angular
speeds to keep the prism amplitude less than 30 mm resulting in a nearly steady vibration of
the prism. At higher flow speeds still, the rotational regime shows the maximum reduction
for the prism vibration, where the NES ball rotates with high angular speeds and absorbs a
high amount of energy. The ball rotation directly reduces the prism vibrations resulting in
periodic cycles of reduction and growing in the prism vibration displacement.



57

The design of the NES allows for easy changes of its main parameters by swapping some
components. Capitalising on this advantage, we experimentally quantified the influence of
the main NES parameters on both the prism galloping response and the NES regime map-
ping over flow velocities. Increasing the mass ratio increases the NES effective range, and
leads to the appearance of the intermittent regime coinciding with a small jump in the prism
amplitude response. On the contrary, increasing the radius ratio decreases the NES effective
range, and reduces the intermittent regime range rising the prism vibration amplitudes. De-
creasing the ball friction with the NES track increases the NES effective range, and reduces
the intermittent regime range. Hence, it eliminates the small jump in prism amplitude coin-
ciding with the starting of the intermittent regime. We highlight the clearance between the
NES track walls and the rotating ball as an effective parameter. Increasing the radial clea-
rance significantly reduces the prism vibration amplitudes. For the range of parameter values
considered here, the most efficient NES possess the highest mass ratio and radial clearance,
and the lowest radius ratio.

The simple structure of the presented NES may extend its usage to many applications. It
can damp wind-induced galloping on different types of structures such as power lines, high
mounted signboards, long slender structures and skyscrapers. Our experiments are limited to
a maximum non-dimensional amplitude of 1.5. Consequently, an accurate numerical model is
important in future work to predict the NES behaviour and prism dynamics at high vibration
amplitudes. These mathematical models are under development.
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CHAPTER 5 ARTICLE 2: HOW A BALL FREE TO ORBIT IN A
CIRCULAR TRACK MITIGATES THE GALLOPING OF A SQUARE

PRISM

Michael M.Selwanis, Guilherme R.Franzini, Cédric Béguin, and Frédérick P.Gosselin

This chapter represents the second article, submitted to "Nonlinear Dynamics" in October
2021. Preprint DOI : https://doi.org/10.21203/rs.3.rs-973095/v1.

Abstract

Transverse galloping is a type of flow-induced vibration (FIV) that leads to critical design
considerations for engineering structures. A purely nonlinear energy sink (NES) composed of
a ball free to rotate in a circular track experimentally mitigated the galloping of a square in
a previous study. The current study introduces a model for simulating the dynamics of the
square prism coupled with a ball-in-track (BIT) NES and predicting the system behaviour
at high flow speeds beyond the limits of the previously presented experiments. Numerical
simulations employ the fitting of experimental data as inputs to define parameters. Wind
tunnel static experiments provide the galloping force coefficient Cy relative to the prism angle
of attack. Additionally, free rotation tests allow evaluating the ball damping coefficient cθ

as a function of its mass and the NES track radius. The result of the rotation tests provides
a critical angular speed beyond which the ball damping increases non-linearly. We point
out the damping variation as an advantage of the BIT-NES ; less damping at low angular
velocities helps the ball start its rotation, while relatively large damping at higher speeds
dissipates more energy from the vibrating system. Numerical results exhibit four response
modes for the NES ; oscillatory at low flow speeds, intermittent within a small range of
higher flow speeds, rotational at higher flow speeds, and ineffective regime at flow speeds out
of the NES effective range. Modelling the primary mass as a parametric excitation source
for the NES provides an analytical estimation of the boundary between the oscillatory and
intermittent regimes. Furthermore, we advance an analytical analysis of the power flow across
the integrated prism-NES system to explain the NES behaviour and predict the limit of its
effective range.

Keywords : Nonlinear energy sink, Ball-in-track (BIT) NES, Vibration suppression, Square
prism, Galloping, Energy transfer, Wind tunnel tests, Ball Friction, Power analysis.
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5.1 Introduction

Nonlinear energy sinks (NESs) represent a specific class of vibration absorbers. A typical NES
is composed of a mass attached to the primary system by a spring element of non-linearizable
stiffness and appropriate damping properties. The absence of linear natural frequencies en-
ables such absorbers to engage with the dynamics of the primary structure and reduce its
vibration amplitudes over a wide range of frequencies [13]. Purely nonlinear energy sinks are a
particular type of these devices with no direct coupling to the primary structure [98, 99], and
interact with the principal vibrating system only due to dynamical interaction. In general,
the NES works according to the Targeted Energy Transfer (TET) theory of Gendelman [73],
which is also referred to as energy pumping [152]. This key-concept states that a portion of
the energy is transferred irreversibly from the vibrating system to the NES as kinetic energy
during the NES motion, reducing the vibration amplitude without a significant change in
the system characteristics.

The interest in the area of nonlinear energy absorption has resulted in the development of
many designs for NESs. Depending on the NES degree of freedom, we can find two different
types ; the translative NES that only makes a translational motion [49, 153], and the rotative
NES [20] composed of a rotating masss. A Vibro-impact NES is a more advanced type [22]
that uses the impact of the NES mass with the walls of the structure as an additional way of
energy absorption. The purely rotative NES is a simple and promising device that can damp
vibration without a spring element [45].

Following the explanation of the energy transfer phenomena that automatically occurs bet-
ween a primary linear oscillator and a nonlinear damper [74], Vakakis [26] applied the NES to
mitigate the response of a structure subjected to an impulse load. Since then, engineers have
applied the NES in several applications, including civil engineering structures, mechanical
systems, aeronautics and energy harvesting. In the civil engineering field, the NES absorbs
the seismic excitation [28] of structures, and protects buildings from earthquake loading [29].
The NES was presented as a suppressor for structural elements such as beams [30], and plates
[31]. Many studies implemented the NES as a vibration absorber in different mechanical sys-
tems ; rotary systems [33], flywheel [32], and self-excited systems [34]. Moreover, NESs can
suppress the vibrations of helicopter blades [35]. Besides the NES damping effect, integrating
such oscillators in piezoelectric [37] or magneto-electric [36] systems is an intriguing way for
harvesting the energy of a vibrating system.

Concerning the mitigation of flow-induced vibrations, NESs were able to delay the flut-
ter instability of wings [38, 157] and mitigate the oscillations of pipes conveying fluid [40].
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NESs of various designs have been implemented in many structures to reduce the impact
of flow-induced vibrations. Tumkur et al. [41] computationally simulated the vortex-induced
vibration (VIV) of a cylinder coupled with a translative NES, which could reduce the VIV
amplitudes by 70 %. In a comparable study, Mehmood et al. [42] discussed the effect of ini-
tial conditions considered in the simulation on the NES efficiency. Further, Dai et al. [43]
computed the fluid loads affecting a cylinder due to VIV using the wake-oscillator models
and highlighted the strongly modulated response resulting from the energy transfer with
a translative NES. Blanchard et al. [44] adopted computational fluid dynamics (CFD) for
estimating the fluid forces and demonstrated that a rotative NES similarly modulates the
cylinder dynamics. NES parameters, particularly the mass, affect its capability of reducing
the vibration amplitude of the cylinder [45]. Recently, Franzini [145] has used an extensible
arm with a tip-mass added to add a radial degree of freedom to the traditional rotative NES,
which increased the NES suppression resulting in a 25% decrease in the maximum amplitude
of a cylinder in VIV.

Only a few researchers have introduced the NES as a suppressor for transverse galloping,
which is another type of flow-induced vibration generated by heavy winds that can lead
to catastrophic effects on high rising structures. A numerical study [46] investigated the
effect of a translative NES in delaying the galloping of a square prism, demonstrating the
influence of NES parameters on its behaviour. In a similar problem, a rotative NES reduced
the galloping amplitudes of a prism to 50 % of its original values [47]. The Quasi-steady
approach [54] was used for describing the galloping forces. Indeed, square prism galloping
involves a hysteresis phenomenon due to a pitchfork bifurcation of the galloping solution
within a small range of flow speeds beyond the galloping onset velocity. In this parameter
range, the prism amplitude depends on the initial conditions ; it exhibits a lower limit cycle
for increasing flow speed (small initial displacement) and follows the upper branch limit
cycle on decreasing flow speed (large initial displacement). In studies using NESs to mitigate
galloping, this phenomenon is ignored by considering only small initial displacements for
the vibrating prism. The discussion stated that the NES delayed the galloping but did not
address the NES ability to absorb the high-amplitude galloping that already occurred. We
proposed a purely rotative NES composed of a free ball rotating freely in a circular track to
mitigate the galloping of a square prism in a previous study [158]. The rotating ball engaged
with the system dynamics and successfully reduced the galloping amplitudes over a wide
range of flow speeds in wind tunnel experiments. The limitation of the experimental setup
restricted the tests of high-amplitude galloping.

Here we present a mathematical model for the coupled system of the galloping prism and the
BIT-NES to simulate its dynamics in a parameter range not easily accessible in experiments.
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ments and the proposed model that employs these experimental data as inputs to integrate
position and velocity of prism y, dy

dt and ball θ, dθ
dt from time ti−1 to time ti.

Quasi-static experiments characterise the galloping force coefficient of the prism model Cy

as a function of the angle of attack. Additionally, we estimate the ball damping coefficient
cθ from the decay rate of the ball angular speed in free rotation tests. The developed model,
schematized in Figure 5.1, employs the measurements of Cy and cθ as inputs to compute the
prism response.

The paper is structured in four sections. Following the introduction, Section 5.2 presents the
proposed model and the evaluation of of each of the galloping force Cy and the ball damping
coefficients. Additionally, this section demonstrates the experimental setup and the results
of both the wind tunnel static experiments and the free rotation tests. Section 5.3 exhibits
the numerical results for the prism response with and without the NES, showing the NES
capability in delaying the galloping occurrence and its dynamics at different response modes.
In Section 5.4, we derive an analytical estimation for the limit boundary of the NES oscillatory
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regime, depending on modelling the primary system mass as a parametric excitation source
for the NES. Besides, a power flow analysis of the prism-NES coupled system provides an
analytical expectation for the critical flow speed, beyond which the NES can not mitigate
high-amplitude galloping. Finally, Section 5.5 addresses the conclusion.

5.2 Mathematical model

Our model simulates the dynamics of a square prism system coupled with a rotative NES
(Figure 5.2). We consider an elastically supported square prism of mass M , length l and side
length D that vibrates transversely to a free stream of velocity U under the effect of the
supporting equivalent stiffness k, and the structural damping coefficient c . A ball of mass
mb rotating freely in a circular track of mean radius r represents the rotative NES. The
friction between the rotating ball and the NES track results in a ball damping coefficient
cθ. The NES ball rotates due to dynamic interaction with the prism vibration reaching its
own angular coordinate θ (positive in counter-clockwise direction) independently of the prism
displacement y. Hence, a 2-DOF mathematical model simulates the dynamics of our system ;
the equation of motion of the vibrating prism in the transverse direction to the flow and ball
equation of motion in the tangential direction.

(M + mb)
d2y

dt2 + mbr

(
d2θ

dt2 sinθ + (dθ

dt
)2cosθ

)
+ cẏ + ky = 1

2ρU2lD Cy, (5.1)

mbr
2 d2θ

dt2 + mbr
d2y

dt2 sinθ + cθ
dθ

dt
= 0. (5.2)

where Cy is the galloping force coefficient, and the natural frequency of the prism is defined
as ω =

√
k

M+mb
. To evaluate the parameters of our experimental system, we experimentally

estimate the galloping force coefficient Cy and the ball damping coefficient cθ, to use them
as inputs for the numerical model.

5.2.1 Measurement of the galloping force coefficient

Through static experiments in the closed-loop wind tunnel of the mechanical engineering
department of Polytechnique Montréal (Model 407-B, ELD, Lake City, MN, USA), a 6-
axis force/torque balance of 0.0125 N and 0.001 N.m resolution (GAMMA, ATI Industrial
Automation, Apex city, NC, USA) measured the galloping force coefficient of a square prism
(Figure 5.3). A square prism model, Figure 5.3a, of length l and side length D made of balsa
wood, the same model presented in our previous study [158], is fixed to the force balance (5)
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from the upper end. A thin plate of Formica (8) attached to the lower side of the test section
supports the other end of the prism preventing any deflection in the X-Y plane. We install
two plates (7), of 15 cm length and 14 cm width, 8 cm away from the ends of the prism to help
approach two-dimensional flow conditions ; see Bearman et al. [56]. The lengths between the
ends of the prism and the supporting are l1 and l2 at the lower and upper ends, respectively.
The force balance rotates with a servo motor (BE231FJ-NPSN, Parker, Cleveland city, OH,
USA) to directly measure the reaction force Ry and the moment Mx as shown in Figure 5.3 a.

To eliminate any error that may arise from the deviation in the angle measurement, the
KolmogorovSmirnov (K-S) test compared the Cy values measured at the positive and those
measured at the negative angles of attack. This statistical method mainly quantifies how the
distribution functions of two data samples are similar. A developed MATLAB code shifted
the measured Cy curves within the uncertainty ranges by 0.65o to achieve the best symmetry
based on the KolmogorovSmirnov test, see appendix A. A spline of a smoothing parameter
p = 0.999995 fitted the measured data after eliminating the systematic error representing the
final Cy curve as a function of the prism angle of attack, α = (dy/dt)/U .

Cy = 1.813
(

dy/dt

U

)
+ 24.15

(
dy/dt

U

)3
− 563.3

(
dy/dt

U

)5
+ 459

(
dy/dt

U

)7
. (5.3)

Based on the static equilibrium state of the prism (Figure 5.3b) and assuming a uniform
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Figure 5.3 (a) Static experiments setup ; 1- servo motor, 2- gear reducer, 3- aluminum frame,
4- Force balance, 5- a wooden panel, 6- square prism model, 7- inner plates, 8- outer plates.
(b) Free body diagram of the square prism. (c) Cy variation with square prism angle of
attack α ; Cy curve of the current study at Re = 101 × 103,(see Appx. A for more details),
� Naudascher et al. [57] at Re = 106 × 103, ♦ Wawzonek [159] at Re = 12.4 × 103,

Parkinson and Smith [54] at Re = 22.3 × 103, × Bearman et al. [56] at Re = 14 × 103.

distributed aerodynamic loading along its length, we compute the galloping force Fy from
the measured loads Mx and R2. R1 and R2 are the reaction forces in y-direction at the lower
and upper ends of the prism, respectively, and Mx is the moment measured by the force
balance at the upper end of the prism in x-direction.

Fy =
(

l + l1 + l2
l/2 + l1

)
R2 +

(
1

l/2 + l1

)
Mx = 1

2Cy(α) ρ U2lD, (5.4)

where ρ is the flow density, U is the speed of air stream, l is the length of the prism, D is the
side length of the square prism, and Cy is the galloping force coefficient. We measured Fy at
different angles of attack α, starting from 0o to 27o using a step of 3o in both directions. For
each angle, the measurement starts after setting the zero value of the sensor at a stationary
flow condition to avoid any residual force with the motor due to rotation. We measure



65

the aerodynamic coefficient at a fixed flow speed U = 30 m/s that corresponds to Re =
101 × 103. In each test, two minutes elapsed after reaching the required flow speed to ensure
a steady-state. Then, we recorded 150 values of the force coefficient Cy in the consecutive 30
seconds, from which we estimate the average value with a range of fluctuation. Measurement
fluctuation was always below 2.5% for all reported readings.

In Figure 5.3b, we compare our measurements to some of the previously published data
[54, 56, 57, 159]. Comparing to Naudascher et al. [57], the measured Cy curve has a small
difference of 0.05 in the maximum value of Cy and a shift of 2 degrees in the angle of attack
corresponding to it. Other measurements at lower Reynolds number 12×103 < Re < 23×103

show a higher maximum value for Cy that corresponds to higher angles of attack. Otherwise,
all measurements are close for angles of attack below 12o. Accordingly, we use the Cy fitting
of our experiments as an input for the numerical model to introduce accurate values for
Cy(α), presenting the specificity of our model.

5.2.2 Representation of the ball damping coefficient

The ball dynamics is more complicated than that of an attached mass in the traditional ro-
tative NES. The ball behaviour exhibits a combination of sliding and rolling. Characterizing
the ball damping is a considerable challenge for the realistic simulation of the prism-NES
dynamics. We performed free-rotation tests for estimating the ball damping coefficient. The
exponential decay curve of the maximum amplitude represents the damping in a traditional
mass-spring system. For the ball’s continuous rotation in our NES, it is convenient to cal-
culate the ball damping from the decay of its angular speed. Since the decay curve varies
exponentially, the exponential power used for estimating the damping coefficient does not
change.

In the free-rotation tests, a step motor (CM231FJ-115753, Parker) clamped on a wooden plate
of a metal-frame test rig rotates the NES track (Figure 5.4a). A precise metal adaptor directly
connects the motor axis with the NES track to enable fast rotation. For safety requirements,
a hollow cylindrical shield of acrylic surrounds the NES to prevent any damages that could
result from the ball flying out of the track. We control the angular position, speed and
acceleration of the motor to rotate the NES for six complete revolutions at a 50 rad/s angular
speed. Then, stopping the motor allows the ball to rotate freely, overcoming the friction
with the track walls. A high-speed camera captures the angular position of the ball with a
resolution of 0.2o to allow for post-treatment image analysis. A developed MATLAB code
traces the position of the ball and estimates its average speeds over a revolution (dθ/dt)i =
2π/Ti, where Ti is the time taken by the ball to complete the ith revolution.
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Figure 5.4 Free-rotation tests : (a) Experimental setup ; 1- servo motor, 2- test rig, 3- the
rotative NES, 4- cylindrical shield, 5- high-speed camera. (b) Exploded view of the NES.

Depending on the linear variation of the ball angular positions in the free rotation test
(Figure 5.5a), we assume a constant ball angular speed (dθ/dt)i over each complete revolu-
tion. Figure 5.5b presents the decay of the angular speed of a 111 g ball rotating in a circular
track of a mean radius r = 30 mm. The ball speed θ̇ decreases rapidly from 40 to 7.7 rad/s,
then the rate of decay diminishes for (dθ/dt) < 8 rad/s. Two exponential curves were requi-
red for the best fitting of all the estimated values of the ball angular velocity. Each of them
provides a ball damping coefficient for a certain angular speed range. The exponential term
ebt represents the decay rate of the ball angular speed, where b = cθ/2mbr

2 based on the
equation of motion of a free-rotating ball in the tangential direction

d2θ

dt2 + cθ

mb r2
dθ

dt
= 0. (5.5)

The free-rotation test of this NES configuration provides a damping coefficient cθ2 = 0.00018
kg.m2/s at high ball angular speeds (dθ/dt) > 7.5 rad/s, and a smaller one cθ1 = 0.000017
kg.m2/s at lower speeds.

The NES design (Figure 5.4b) allows for changing the width and the mean radius of the
track using 3D-printed bushings of small thickness to accommodate different ball sizes. We
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performed free-rotation tests for many NES configurations. The behaviour observed using
the 111 g ball was a general behaviour observed in the free-rotation tests of other NES
configurations, whose results are shown in Table 5.1. We fitted each of the two damping
coefficients by a spline curve to express it as a function of the ball mass (mb) and the NES
track mean radius (r). Then employ it as an input for the numerical model working with
different NES configurations.

cθ1 = (0.4 + 1.7 mb − 45.1 r − 52.6 m2
b + 23.9 mb r + 1694 r2

+35.6 m3
b + 1917 m2

b r − 5483 mb r2 − 19940 r3) × 10−4,
(5.6)

cθ2 = (−0.3 + 0.2 mb + 32.2 r − 2.4 m2
b − 15.1 mb r − 1232 r2

−52.5 m3
b + 352.9 m2

b r − 1818 mb r2 + 15590 r3) × 10−3.
(5.7)

The ball damping experiments come with a critical angular speed (dθ/dt)c = 8 ±1.2 rad/s,
above which we can not ignore the ball contact with the NES sidewall.At higher angular
speeds, the ball contacts two surfaces, the NES flour and the outer sidewall. As a result, it
slides and experiences more friction. The friction variation is a considerable advantage for
the ball-in-track NES over the traditional rotative NES. Less friction at low speeds helps the
ball to rotate, while the increased friction at high speeds dissipates more energy from the
system.

5.2.3 Non-dimensional analysis and Model validation

For generalisation, we define non-dimensional parameters : non-dimensional vibration displa-
cement Y ; dimensionless time τ ; structural damping ratio ζy ; ball damping ratio ζθ ; mass

Table 5.1 Ball damping coefficients [kg.m/s] of different NES configurations.

mb = 0.014 kg mb = 0.028 kg mb = 0.056 kg mb = 0.111 kg
r [m] cθ1 cθ2 cθ1 cθ2 cθ1 cθ2 cθ1 cθ2
0.02 2 11 3.4 24 5.4 44
0.025 2.9 15 4.7 34 8.3 61 14.2 134
0.03 3.8 22 7.1 48 11.3 88 16.8 183
0.036 5.2 26 8.9 55 18.7 115
Note : All the values in the table should be multiplied by ×10−6 to define the ball

damping coefficient cθ in kg.m2/s.
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Figure 5.5 Results of the free rotation tests ; (a) Ball angular position vs time, marking
the end of each revolution (◦). (b) The decay in the ball angular speed over each revo-
lution, representing the measured values (•) and the exponential fittings ( 61.3 e−0.915 t,

9.2 e−0.0841 t ).

ratio (reference air-flow) m∗ ; reduced velocity Ur ; NES mass ratio m̂ and radius ratio r̂ :

Y = y

D
, τ = ωt, ζy = c

2 (M + mb) ω
, ζθ = cθ

2mbr2 ω
,

Ur = U

ωD
, m∗ = M + mb

ρlD2 , m̂ = mb

M + mb
, r̂ = r

D
.

(5.8)

Accordingly, the governing equations can be expressed in the non-dimensional form as

Ÿ + 2ζyẎ + r̂ m̂
(
θ̈ sin θ + θ̇2 cos θ

)
+ Y = U2

r

2m∗ Cy, (5.9)

θ̈ + 2ζθ θ̇ + Ÿ

r̂
sin θ = 0. (5.10)

where ; (.) is the derivative with respect to the dimensionless time τ .

To validate our model, the simulated response of the prism-NES system, as well as the boun-
daries between NES regimes, are compared with the experiments reported by Michael M.
Selwanis et al. [158]. We consider different NES configurations presented in the reference
experiments ; m̂ = 0.08, 0.04 and 0.02 at a constant r̂ of 0.6 (Figure 5.6a), and r̂ = 0.7, 0.6
and 0.5 at a constant m̂ of 0.04 (Figure 5.6b). All the comparisons are done for low ampli-
tude galloping responses below Â = 1.5 due to the experiment’s amplitude limitation. The
experiments provided measurements at certain flow speeds for the galloping amplitudes and
characterized three regimes for the NES, which we present with different marks. While the
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Figure 5.6 Model validation comparing the our simulations for the prism response (continuous
curves) and the NES regime mapping with the previous experiments [158], represented by
marks for each of the NES regimes ; oscillatory �, Intermittent Î, and Rotational • regimes,
and the points that reach the maximum allowed amplitude � . The comparison are done for
six various configuration of the NES : (a) m̂ = 0.08 (red), m̂ = 0.04 (black) and m̂ = 0.02
(blue) at constant r̂ = 0.6, (b) r̂ = 0.7 (red), r̂ = 0.6 (black) and r̂ = 0.4 (blue) at constant
m̂ = 0.04.

simulations are presented by continuous lines and the boundaries estimated for each regime
are shaded by different colours to exhibit the NES regime mapping.

The prism response curves present the maximum amplitude of the prism versus the reduced
flow velocity. At low flow speeds, the prism is stable with the NESs of r̂ = 0.6 (Figure 5.6a)
until the galloping onset speed Uc = 11, beyond which the prism amplitude jumps to Â = 0.6
in the experiments and to 0.4 in the simulations. The NES mitigates the prism vibration
delaying the occurrence of large-amplitude galloping to a critical flow speed Ucrit. The ex-
periments reveal a range for Ucrit between the velocity at which the prism amplitude hits
the setup limitation (Â = 1.5) and the previously recorded point. The numerical predictions
for Ucrit agree with the range of experiments for most cases. However, we observe a small
deviation between the estimated value and the experiments in the case of m̂ = 0.08 and
r̂ = 0.6. Figure 5.6 b presents the prism responses with NESs of m̂ = 0.04 and variable r̂.
Decreasing the NES radius reduces the prism amplitudes and increases Ucrit. The estimated
prism amplitudes show an acceptable deviation compared to the measured values. Regar-
ding the NES regime mapping, the boundaries between the oscillatory and the intermittent
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regimes predicted by the numerical model match with the experiments in all cases except
two : the NES of m̂ = 0.02 and r̂ = 0.6, Ucrit =14 instead of 16, and the NES of m̂ = 0.04
and r̂ = 0.7, Ucrit =15 instead of 16. The numerical predictions of the transition between
the intermittent and the rotational regimes differ from the experiments only for a NES of
m̂ = 0.08 and r̂ = 0.6 and that of m̂ = 0.04 and r̂ = 0.4, Ucrit =18 and 16.5 instead of 17
and 20, respectively.

The simulations predict the same behaviour observed in experiments. Increasing m̂ from 0.02
to 0.04 and 0.08 at a constant r̂ = 0.6 expands the NES effective range and widens the range
of the intermittent regime. While the decrease of r̂ from 0.7 to 0.6 and 0.4 at a constant
m̂ = 0.04 reduces the galloping amplitudes, expands the intermittent regime and delays the
large-amplitude galloping.

5.3 Numerical results

In the current simulations, ode45 numerically integrates Eqs. 5.9 and 5.10 with a constant
time step ∆τ =0.01 and maximum simulation time τmax = 3000. The selected initial condi-
tions Y (0) = 0.5, θ(0) = 0.1, Ẏ (0) = 0 and θ̇(0) = 0, lead to zero initial energy of the
NES. The characteristic non-dimensional amplitude Â represents the maximum value of
Y (τ > τmax/3) to avoid transient response. Our numerical model simulates the dynamics of
the prism-NES system at incrementing reduced velocities 3.5 < Ur < 30, substituting the
initial displacement Y (0) of the prism at each flow speed by the maximum amplitude Â at
the previous velocity.

5.3.1 NES Effect on galloping response of a prism

To assess how the NES of mass ratio m̂=0.08 and a radius ratio r̂=0.6 mitigates the prism
galloping, we compared the prism non-dimensional amplitudes Â with and without the NES
in Figure 5.7 at different flow reduced velocities. We incremented the reduced flow velocity by
a step of 0.5 starting from Ur = 3.5 up to 30, then decremented it back down with the same
velocity step. In the direction of increasing flow speed, the prism amplitude without the NES
starts to rise at the galloping onset speed Uc = 11.5, which we determined when the prism
non-dimensional amplitude Â reaches 0.1. Then, the prism response increases significantly
and reaches a lower limit cycle up to a reduced flow velocity Ur = 17.5. Above this speed,
the prism amplitude Â grows linearly from 4.2 to reach 8.7 at Ur = 30. The NES affects the
prism galloping response ; it increases the galloping onset speed Uc to 13.5 as compared to
without NES 11.5. The prism amplitude with the NES does not exceed 0.6 in a wide range
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Figure 5.7 Numerical simulation of the prism responses with (red curves) and without a
NES (gray curves), of a mass ratio m̂=0.08, and a radius ratio r̂=0.6, in the directions of
increasing Ur = 3.5 : 0.5 : 30 ( ) and decreasing flow velocity Ur = 30 : −0.5 : 3.5 ( ).
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Figure 0.7 Numerical simulation of the prism responses with (red curves) and without a
NES (gray curves), of a mass ratio m̂=0.08, and a radius ratio r̂=0.6, in the directions of
increasing Ur = 3.5 : 0.5 : 30 ( ) and decreasing flow velocity Ur = 30 : −0.5 : 3.5 ( ).
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Figure 5.8 The time response and amplitude spectrum of the vibrating prism with (red
curve) and without the NES (gray curve), of m̂ = 0.08 and r̂ = 0.6, at different flow reduced
velocities Ur = : (a) 12.5, (b) 17.5, (c) 22.5, (d) 27.5. The frequency responses are presented
on a semi-log scale.
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of flow speeds 14 < Ur < 27 ; which we termed as the NES effective range. At higher flow
speeds, the NES is ineffective and may cause an increase in the prism amplitudes. For the
prism without NES, we only observed two limit cycle branches between 14 < Ur < 17. With
the NES, the simulation predicts a larger velocity range with two branches 16 < Ur < 27.
For the upper branch (decreasing flow speeds), the NES has no considerable effect on the
galloping amplitudes of the prism at high flow speeds 30 > Ur > 16. At a reduced flow
velocity Ur = 15.5, the NES can mitigate the prism galloping and reduces its non-dimensional
amplitude Â from 3.5 down to nearly 0.35. The NES maintains the prism amplitudes around
this value for a range of lower speeds 15 > Ur > 13 and kills the prism vibration at Ur = 12.

Galloping of the square prism considered here involves a hysteresis phenomenon over a range
of flow speeds 14.5 < Ur < 17.5, at which the prism response depends on the initial condi-
tions. With increasing flow speed, the prism follows the lower limit cycle branch. The NES
delays the galloping occurrence in this case to much higher flow speeds, mitigating the prism
amplitudes in a wide range of flow speeds. With decreasing flow speed, the prism amplitude
reaches the upper limit cycle due to the relatively large initial displacement of the prism.
The NES is much less effective or ineffective in absorbing high-amplitude galloping of the
upper branch. Since the NES behaviour depends on the excitation level, the NES is efficient
to delay the occurrence of galloping but less effective in stabilizing a prism experiencing very
large amplitude galloping.

To evaluate the NES influence on the prism response in the direction of increasing flow speed,
we present the displacement time histories and the frequency responses of the prism with
and without the NES at reduced flow velocities Ur of 12.5, 17.5, 22.5, and 27.5 (Figure 5.8).
While the prism without NES starts to gallop at Ur = 12.5 (Figure 5.8a), increasing its
non-dimensional displacement Y to 0.9, the prism-NES system is still stable exhibiting the
same natural frequency. At Ur = 17.5 (Figure 5.8b), the NES limits the prism amplitude to
Â = 0.3 in comparison to 4.2 for the prism without NES. At Ur = 22.5 (Figure 5.8c), adding
the NES reduces the prism amplitude from Â = 6 to 0.5, resulting in a strongly modulated
response of the prism. The NES does not change the natural frequency of the prism at
Ur = 17.5 and Ur = 22.5. At a reduced flow velocity Ur = 27.5 (Figure 5.8d), the NES of
mass ratio m̂=0.08 is no longer effective in reducing the prism amplitudes. Generally, the
NES delays the galloping occurrence and mitigates the prism amplitudes without affecting
its natural frequency, even in the NES effective range. That is the main advantage of the
NES compared to other vibration absorbers.
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5.3.2 Different dynamics experienced by the NES

Since the NES behaviour depends on the excitation level, the change in the galloping force at
each flow speed affects the NES dynamics. Based on the NES behaviour, we classify the prism-
NES system dynamics into four regimes ; oscillatory, intermittent, rotational, and ineffective.
The time histories of the prism displacement and the NES ball angular displacement and
speed at reduced flow velocities Ur = 12.5, 15, 17.5, 25 and 27.5 exhibit the different dynamics
of the system in the four regimes (Figure 5.9). Figure 5.9 a shows the selected points on the
prism response curve and presents the NES regime mapping in the two cases of increasing
and decreasing the flow velocity.

The oscillatory regime appears at low reduced flow velocities Ur < 14. Figs. 5.9 b presents the
NES and the prism responses in this regime at Ur = 12.5 : the ball oscillates slowly with a
small angular displacement not exceeding 10o, then stops in the 0◦ position. The ball angular
speed does not exceed 2% of the prism natural frequency. Despite the small oscillations of the
NES ball, the NES mitigates the prism amplitudes delaying the occurrence of high-amplitude
galloping.

The intermittent regime, characterized by almost steady vibration of the prism (Figs. 5.9 c and
5.9d), appears as a transition regime existing within a small range of reduced flow velocities
14 < Ur < 18. The ball oscillates back and forth with an amplitude close to 200◦ at the
beginning of this regime Ur = 15. While, at the end of this regime Ur = 17.5, the ball
behaviour changes to rotate in a few complete revolutions with a low non-dimensional angular
speed θ̇ < 0.8 and thus out of sync with the prism vibrating at a dimensionless frequency of
1. The NES maintains the prism galloping amplitudes Â below 0.35 during the whole range
of the intermittent regime.

In the rotational regime (Figure 5.9 e), the NES ball rotates continuously for more than 5
revolutions with higher angular speed θ̇ that fluctuates around 1, i.e., approximately equal
to the prism frequency. The ball rotation directly reduces the galloping amplitudes from 0.5
to 0.05 before stopping. Then the prism amplitude grows again. This cycle of reduction and
growing of the prism amplitude is repeated, resulting in a strongly modulated response of
the vibrating prism.

At higher flow speeds Ur ≥ 27.5, the ineffective regime (Figure 5.9 f) appears, in which the
ball can not engage with the system frequency at high amplitude galloping. Thus, the ball
rotates, alternating its directions with high angular speeds approaching 4 times the prism
natural angular frequency. These fast rotations of the ball are insufficient to damp the prism
motion. In the ineffective regime, the NES is no longer beneficial in mitigating the galloping
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Figure 5.9 Time histories of the prism non-dimensional displacement Y (red curve), NES
ball angular displacement θ in degrees (blue curve), and the the ball angular speed θ̇ (black
curve) showing NES dynamics at various flow speeds. (b) Oscillatory, Ur = 12.5 ; (c, d)
Intermittent, Ur = 15 and 17.5, respectively ; (e) Rotational, Ur = 25 ; (f) ineffective regime,
Ur = 27.5 ; (e’ and d’) are the NES different dynamics observed in case of slowing down the
flow to Ur = 17.5 and 25, respectively. Only the interval 0 ≤ τ ≤ 1500 is shown.
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amplitude at high flow speeds out of its effective range as the energy extracted by the
vibrating prism from the airflow exceeds the energy dissipation rate of the NES.

Upon slowing down the flow from Ur = 30, the prism-NES system experiences an ineffective
regime for Ur ≥ 27.5. Then the system behaviour changes at Ur = 25 and 17.5 (Figs. 5.9 e’
and d’, respectively). The NES ball experiences ineffective rotation at Ur = 25, which changes
to large oscillations at 17.5 with no damping effect on the prism amplitudes. At Ur < 16,
the NES can damp the galloping of the prism, reducing its non-dimensional amplitude from
Â = 3.8 to 0.3 (Figs. 5.9 a). We observe the NES intermittent response when slowing down
the flow in a narrow range of reduced flow speeds 14 < Ur < 16. While, the oscillatory regime
appears at the same flow speed range Ur < 14, comparing to the case of accelerating flow.

We confirm that the NES response depends on the excitation level of the primary system.
In the oscillatory regime, the kinetic energy consumed to oscillate the NES ball with small
oscillations is enough to absorb the energy extracted from the flow by the prism at low
flow speeds and delay the galloping occurrence. When the energy extracted by the prism
from the air stream increases at higher flow speeds, the balls rotates fast in the intermittent
regime and faster in the rotational regime to absorb the prism energy. According to the
targeted energy transfer TET mechanism in the prism-NES system, the rotational regime
is the most efficient. The NES ball engages with the prism dynamics and rotates with the
prism natural frequency in a so-called 1:1 resonance capture phenomenon. That leads to the
strongly modulated response of the prism illustrating the nonlinear energy transfer in the
prism-NES system. At higher flow velocities, the energy of the prism exceeds the maximum
energy absorbed by a ball rotating with the prism natural frequency, which we define as the
capacity of the NES. Thus, the ball rotation is ineffective and can not mitigate the galloping
amplitudes.

5.4 Analytical estimations

In this section, we analytically determine the boundary between the NES oscillatory and
intermittent regimes by modelling the primary mass as a parametric excitation for the NES.
Additionally, a proposed power flow analysis estimates the limit of the NES working range
and explains the dynamics of the NES in the rotational regime.

5.4.1 Parametric excitations

Based on the method presented by Gentelman [118], we qualitatively distinguishes between
NES different regimes by examining the behaviour of the NES ball from the perspective of a
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parametric excitation. Assuming a sinusoidal motion for the prism, and substituting in the
equation of motion of the rotating ball, equation 5.10, we obtain :

Y = Y0 cos τ, (5.11)

θ̈ + 2ζθ θ̇ − Y0
r̂

cos τ sin θ = 0. (5.12)

By setting θ̈ = θ̇ = 0, we obtain the equilibrium points at θ = 0, π. The oscillatory regime
is characterized by the ball’s small oscillations around these points at which sinθ ' θ. By
substituting in equation 5.12, we obtain a particular case of the damped Mathieu equation,
θ̈ + λ θ̇ − (δ + η cos τ) θ = 0 [160].

θ̈ + 2ζθ θ̇ − Y0
r̂

θ cos τ = 0, (5.13)

where here λ = 2ζθ, δ = 0, and η = −Y0
r̂

.

In the previous section, we characterize the oscillatory regime a one with small ball oscil-
lations. Thus, the stability analysis of equation 5.13 can determine the transition boundary
from the oscillatory regime to the intermittent regime ; stable equilibrium points indicate
the oscillatory regime, while the unstable ones refers to the intermittent regime. The Ince-
Strutt diagram representing a stability chart for the Mathieu equation defines the bounda-
ries of parametric instability of equation 5.9. Based on the expression developed by Kovacic
et al. [161] for the boundary of the Ince-Strutt diagram in the case with linear damping
(ηcrit = 1

2
√

1 + 4λ2), we can estimate the critical amplitude corresponding to the transition
from the oscillatory to the intermittent regime, i.e,

Y0crit = r̂

√
1
4 + 4ζ2

θ , (5.14)

where ζθ is the ball damping for small oscillations at low angular speed, = c/2mbr
2 ω.

5.4.2 Power flow analysis

Numerical results exhibited four different responses for the NES depending on the excitation
level. Tracking the energy transfer by the fundamental principles of power flow can explain
some critical dynamics for the prism-NES integrated system. We define the non-dimensional
power terms of the external and the internal forces affecting our system as the scalar product
of the velocity with a given force component : the fluid load power PF y, the power of the
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damping force of the support Pd, and the power Ptr transferred by the NES track reaction on
the ball. Besides, terms representing the change in the prism potential energy ∆Ēp as well
as the kinetic energy change due to translation ∆Ēktran and rotation ∆Ēkrot are presented.
We multiply Eqs. 5.9 and 5.10 by Ẏ and θ̇ respectively and integrate over a period T to find

1
T

∫ T

0

d
dτ

[1
2 Ẏ 2

]
dτ︸ ︷︷ ︸

∆Ēktran

+ 1
T

∫ T

0

d
dτ

[1
2Y 2

]
dτ︸ ︷︷ ︸

∆Ēp

= 1
T

∫ T

0

U2
r

2m∗ Cy Ẏ dτ︸ ︷︷ ︸
P̄Fy

− 1
T

∫ T

0
2ζyẎ 2 dτ︸ ︷︷ ︸
P̄d

− 1
T

∫ T

0
r̂ m̂

(
θ̈ sin θ + θ̇2 cos θ

)
Ẏ dτ︸ ︷︷ ︸

P̄tr

,

(5.15)

1
T

∫ T

0
m̂r̂2θ̈θ̇dτ = 1

T

∫ T

0
−2 m̂ r̂ ζθ θ̇2 dτ − 1

T

∫ T

0
m̂ r̂ Ÿ sin θ θ̇dτ, (5.16)

We integrate by part the last term of Eq. 5.16 and rearrange to get

1
T

∫ T

0
d
(1

2m̂r̂2θ̇2
)

+ 1
T

[
m̂r̂Ẏ sin θθ̇

]T
0︸ ︷︷ ︸

∆Ēkrot

= − 1
T

∫ T

0
2m̂r̂2ζθθ̇2dτ︸ ︷︷ ︸

P̄dis

+ 1
T

∫ T

0
m̂r̂

(
θ̈ sin θ + θ̇2 cos θ

)
Ẏ dτ︸ ︷︷ ︸

P̄tr

.

(5.17)

The input power into the prism-NES integrated system Pin and the power transferred to the
NES Ptr are important parameters informing about the NES effectiveness. The initial stage
of the prism response without the NES damping effect represents the NES excitation form.
By describing the prism displacement in a sinusoidal form (Eq. 5.11), we estimate P̄in as
follow.

P̄in = P̄F y + P̄d

= U3
r

4m∗

[
A1

(
Y0
Ur

)2
+ 3

4A2

(
Y0
Ur

)4
+ 5

8A3

(
Y0
Ur

)6
+ 35

64A4

(
Y0
Ur

)8]
− Y 2

0 ζy,
(5.18)

where A1, A2, A3 and A4 are the constants of the Cy polynomial fitting presented in Eq.
5.3. To assess the NES effective range, we compare the averaged value of the input power
P̄in with the NES power capacity. Since the rotational mode represents the most efficient
regime in terms of power absorption, at which the ball exhibits a 1:1 resonance capture with
the vibrating prism, we estimate the NES maximum power capacity at the rotational regime
P̄rot assuming θ̇rot = 1 and θrot = τ + φ, where φ is the phase difference that achieves the
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maximum transfer rate of energy, which we solved numerically as 0. By substituting Eq. 5.11
in the transferred power term presented in Eq.5.17, P̄rot can be expressed as

P̄rot = 1
2π

∫ 2π

0
m̂r̂

(
θ̈ sin θ + θ̇2 cos θ

)
Ẏ dτ = 1

2m̂r̂Y0. (5.19)

Comparing the NES maximum power capacity P̄rot with the input power P̄in at various flow
speeds provides an estimation for the critical reduced flow velocity, at which the NES is
no longer effective in absorbing the energy of the galloping prism. Figure 5.10 presents the
input power at reduced flow velocities Ur = 23, 24, 24.5, and 25 with the NES maximum
power capacity. Since a higher flow speed pumps more energy into the prism-NES system, the
input power curve approaches that of the NES capacity by increasing Ur. The intersection
between the P̄in and P̄rot curves, observed at Ur = 24.5, indicates that the NES can absorb
the input power when it works with its maximum capacity. This defines the critical speed
Ucrit representing the limit of the NES working range, beyond which the input power will
exceed the NES maximum capacity as occurs at Ur = 25. Gathering the intersection points of
P̄rot curve with P̄in curves at various flow velocities leads to the predicted limit of successful
energy transfer presented in Figure 5.10b.

In the perspective of the NES, the transferred power P̄tr is the power gained by the NES, and
the power dissipated by ball friction P̄dis is the power consumed. Consequently, comparing
these two values during the ball rotational response ( θ̇rot = 1, θrot = τ) can explain the ball
behaviour, i.e.,

P̄tr = P̄rot = 1
2m̂r̂Y0, (5.20)

P̄dis = 1
2π

∫ 2π

0
2m̂r̂2ζθθ̇2dτ = 2m̂r̂2ζθ. (5.21)

As long as P̄tr ≥ P̄dis, the ball can sustain its rotation to dissipate power until P̄dis reaches
the value of the power in the NES P̄tr. When P̄dis exceeds P̄tr, the ball stops rotating. From
this comparison, we can get an inequation giving us a minimal limit on the prism amplitude
that can sustain the ball :

Y0 ≥ 4r̂ζθ. (5.22)

For a NES of m̂ = 0.08 and r̂ = 0.6 as considered here, 4r̂ζθ = 0.147. Figure 5.11 presents the
amplitude limit Âmin below which the ball rotational response is impossible. We defined Âmin

as the minimum prism amplitude observed in each of the periodic cycles of the rotational
regime, presented by blue and black points in Figure 5.11a. Estimated values of Âmin obtained
from simulations at different flow speeds are almost all below the amplitude limit Âmin =
0.147 derived analytically (Figure 5.11b). The rotational regime is a competition between
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Figure 5.11 The limit of the ball rotational response : (a) time histories of the prism non-
dimensional displacements Y (τ) at the beginning (Ur = 18) and the end (Ur = 27) of the
NES rotational regime presenting the minimum amplitudes Âmin in the +y (•) and −y (•)
directions. (b) comparing Âmin estimated by simulations at different flow velocities Ur with
the analytical limit Âmin = 0.147 provided by Eq. 5.21 ( ).
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the ability of the system to transmit energy from the prism to the ball, and the capacity
of the ball to dissipate energy. The prism accumulates energy from the wind over multiple
cycles until the ball is excited, at which point it spins and dissipates energy until the prism
amplitude is too small to sustain the motion. This gives rise to the modulated response of
the rotating regime (Figure 5.9e).

5.4.3 Regime Boundaries

Figure 5.12 presents analytical estimations of the boundaries between the NES regimes.
Considering the ball in the NES as a parametric excitation problem allows predicting the
maximum amplitude below which the oscillatory regime is possible, Eq. 5.14. This limit is
traced as a horizontal red line in Figure 5.12. It accurately separates observations of the os-
cillatory and intermittent regimes, be they experimental or numerical. We can interpret that
above a certain amplitude of motion of the prism, the ball undergoes a form of parametric
instability and oscillates with great amplitude.

From the power analysis, we can compare the power that can be extracted from the flow by
the prism (minus its structural damping) with the maximum energy the ball could dissipate
in ideal 1:1 resonance capture where it rotates with a practically constant angular velocity
θ̇ = 1. From this reasoning, we obtain the energy transfer limit curve in blue in Figure 5.12.
This forms a theoretical limit to the region of effectiveness of the NES. Any imperfection in
the functioning of the NES would move this curve to the left as well as make it expand faster.
This simple analytical expression found where Eqs.5.18-5.19 intersect provides a reasonable
limit and sheds light on the functioning of the ball-in-track NES for mitigating galloping.

5.5 Conclusion

The ball-in-track (BIT) NES presented in the literature is a purely rotative NES designed to
mitigate the galloping of a square prism in wind tunnel tests. Nevertheless, the limitation in
the maximum amplitude of the setup restricted the experiments to a definite range of flow
speeds.

The current research proposes a numerical model employing experimental data of the gal-
loping force Cy and the ball damping cθ coefficients as inputs for simulating the dynamics
of the prism-NES system. Static experiments provided a fitting for the galloping force coef-
ficient Cy as a function of the square prism angle of attack α after eliminating systematic
errors using the KolmogorovSmirnov (K-S) test. We developed a new method to estimate
the ball damping coefficient cθ through free rotation tests. The experiments provide a critical
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Figure 5.12 Physical interruption of our simulation for the prism response with a NES of m̂ =
0.08 and r̂ = 0.6, with experimental results [158] and analytical estimations ( parametric
excitation limit coinciding with the transition between the oscillatory and the intermittent
regimes, the limit of successful energy transfer). The amplitude limitation of the setup is
presented by � .

angular speed, beyond which the ball damping automatically grows due to its contact with
both the NES track sidewall and floor. The damping variation is a particular advantage of
the BIT-NES ; small damping at low angular speeds facilitates the ball’s rotation, while re-
latively large damping allows the ball to absorb more energy at high angular velocities. The
simulations exhibit four different responses for the NES ball ; oscillatory, intermittent, rota-
tional and ineffective. The oscillatory response of the ball appears at low flow speeds Ur < 14.
Within a small range of reduced flow velocities 14 < Ur < 18, we observe the intermittent
regime at which the ball completes a few revolutions with low angular speeds θ̇ < 0.8. The
rotational response seen at higher flow speeds 18 < Ur < 27.5 is the most efficient regime in
terms of energy absorption. In this regime, the NES ball rotates continuously for more than
five revolutions, during which it engages with the prism dynamics showing 1:1 resonance
capture. Above a critical flow speed Ur > 27.5, the ball experiences an ineffective response
with varying speed, and the NES becomes ineffective in reducing galloping amplitudes.

Under a large perturbation or highly energetic initial conditions, the NES can be ineffective
in mitigating galloping as the prism vibrates on the upper branch limit cycle. Moreover,
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the current study provides analytical estimations of the boundaries between NES regimes.
Considering the prism mass as a parametric excitation for the NES ball predicts the prism
maximum amplitude coinciding with the limit boundary of the oscillatory regime. The propo-
sed power flow analysis across the integrated system of a prism with a BIT-NES of m̂ = 0.08
and r̂ = 0.6 leads to an analytical prediction for the limit of the NES effective range as
Ur = 24.5. Power flow analysis in the perspective of the BIT-NES explains the ball dynamics
at the rotational regime, pointing out a value of prism amplitude Âmin ≥ 4r̂ζθ below which
the ball rotation stops.

The realistic simulation of the prism-NES dynamics at high flow speeds with the analytical
predictions of the NES effective range can help in optimizing the BIT-NES design according to
the given parameters of a primary system. That also may extend the practical implementation
of such NESs to mitigate vibrations of high rising engineering structures.
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CHAPTER 6 ARTICLE 3: MULTIPLE BALLS ROTATING IN A
CIRCULAR TRACK EXPERIMENTALLY MITIGATE THE GALLOPING

OF A SQUARE PRISM

Michael M.Selwanis, Guilherme R.Franzini, Cédric Béguin, and Frédérick P.Gosselin

This chapter represents the third article, submitted to "Journal of sound and vibration" in
November 2021.

Abstract

Galloping is a destructive type of flow-induced vibration (FIV) affecting engineering struc-
tures subjected to wind. In this paper, we introduce a simple, low-cost device able to passively
absorb the energy of vibrating structures and reduce the galloping amplitudes. This purely
nonlinear energy sink (NES) consists of multiple balls rotating freely in a circular track
without direct mechanical coupling with the primary system. We assess the benefit of the
proposed NES in mitigating the galloping of a square prism through wind tunnel tests and
explain the main factors affecting its behaviour. The NES balls rotate due to dynamic in-
teraction with the prism exhibiting a way of nonlinear energy absorption, which is enhanced
by ball collisions. We test different NES configurations varying the number of NES balls to
highlight the number of balls’ effect on shifting the mass centre and changing the dynamics
of the NES. Whereas a single ball NES with a mass 8% that of the prism can delay the
critical reduced velocity by 68%, a 2 or 3-ball NES of equivalent mass delays this speed by
87%.

Keywords : Non-linear energy sink (NES), Multi-ball NES, Vibration suppression, Square
prism, Galloping, Energy transfer, and Wind tunnel tests.

6.1 Introduction

Transverse galloping generated during heavy winds can lead to natural disasters putting
bridges and skyscrapers at risk. A linear tuned mass damper (TMD) is a simple solution for
damping the vibration of high buildings. However, it works only in a narrow frequency band
and changes the characteristics of the primary system, adding new frequencies. Under the
class of nonlinear stiffness absorbers, nonlinear energy sinks (NES) overcome the drawbacks of
the TMD. A typical NES consists of an auxiliary mass coupled to the primary system through
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inertia or by a spring element of non-linearizable stiffness and proper damping properties.
The absence of linear stiffness enables such absorbers to engage with the dynamics of the
primary structure, mitigating its vibration amplitudes over a wide band of frequencies [162].

Several NES designs have been proposed. The first one is the translative NES that only makes
a translational motion and comes in many configurations; the grounded configuration with
an auxiliary mass that is linked by springs to the primary structure and stationary ground,
the ungrounded configuration, the NES with limited amplitude [16], the bistable NES [94],
and the multi-DOF NES that consists of several masses. The second type is the rotative
NES, where a rigid arm attaches a tip mass free to rotate [19] ; and which can also combine
radial motion in the elastic rotative NES [145]. Another type with no spring elements known
as the track NES [115] is based on a racetrack to restrict the motion of the auxillary mass for
the indirect coupling with the primary structure. The track shape defines smooth impact-free
restoring force.

NESs rely on different mechanisms to absorb energy from a vibrating primary structure.
The combination of more than one of these mechanisms in a NES increases its suppression
efficiency. The Vibro-impact NES, for example, combines the advantages of both a typical
NES and an impact damper [21]. The momentum transfer due to the impacts of the auxiliary
mass with a rigid wall in such a NES enhances its suppression effect compared to a traditional
NES. Recently, a Vibro-impact track NES [24] was proposed as a modified version of a track
NES with a rigid wall on one side to limit the motion of the NES mass, using the impacts to
improve the energy transfer. A bistable track NES [25] combines the advantages of both the
bistable NES and the track NES representing an efficient and practical NES of two stable
equilibrium points.

A purely rotative NES, composed of a ball free to rotate in a circular track without any direct
link with the primary structure, was a considerable simplification in the NES design [158].
Instead of that, this work combines the advantages of rotative and impact NESs. Here, we
introduce a multi-ball NES as a novel contribution relying on inertial coupling with enhanced
suppression efficiency due to the impact between balls. The current study is an experimental
evaluation of the multi-ball NES capability to mitigate the galloping of a square prism. As
presented in Figure 5.1, we propose a purely rotative NES composed of multiple balls free
to rotate in a circular track without direct coupling to the prism. The paper is organised
into four sections. Following the introduction, section 6.2 presents the experimental setup
and the construction of the proposed NES. In section 6.3, We explain the concept of the
multi-ball NES, highlighting the main parameters that affect on its behaviour. Section 6.4
demonstrates the results comparing the suppression efficiency of different configurations of
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Figure 0.1 Three-dimensional drawing of the proposed NES coupled with a square prism
model.

Figure 6.1 Three-dimensional drawing of the proposed NES coupled with a square prism
model.

the multi-ball NES. Conclusions are brought in section 6.5.

6.2 Methodology

We follow a similar methodology used for testing the single ball-in-track NES of Ref. [158],
performing the experiments in the closed-loop wind tunnel (Model 407-B, ELD, Lake City,
MN, USA) of the mechanical engineering department of Polytechnique Montréal. The sche-
matic of our model (Figure 4.2) presents a square prism of side length D vibrating with a
single solid-body degree of freedom of displacement y transverse to a free stream of velocity U .
The prism is spring mounted with an equivalent stiffness k, and a damping coefficient c. The
balls in the NES are free to rotate in a circular track of mean radius r. The ball angular dis-
placement θi is positive counter-clockwise, where the NES balls are numbered 1, 2, ... i ... N .
The friction of each ball rotating in the track is modeled with a damping coefficient cθ. For
easier generalization, we define the following dimensionless parameters : the non-dimensional
vibration displacement Ŷ = y/D and amplitude Â = A/D; the damping ratio ζy = c/2mtω;
the NES mass ratio m̂ = ∑

mi/M and radius ratio r̂ = r/D; and the reduced flow velocity
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Ur = U/ωD, where mt is the summation of the vibrating mass (M) and the balls’ mass
(∑mi), and ω is the angular natural frequency of the primary system.

Figure 6.3 (a) presents the experimental set up in detail : a lightweight model of a square prism
of 5 cm side length and 58 cm height is mounted on two identical elastic supports, located
above and under the wind tunnel test section. We installed a pair of plates at the two ends
of the square prism to prevent the escape of airflow from the wind tunnel test section. Two
smaller plates were installed 8 cm away from each end to help approach two-dimensional
flow conditions. Our experimental setup allows a maximum amplitude A of 7.5 cm (Â = 1.5).
The proposed multi-ball NES, shown in Figure 6.3 (b), consists of the main body (1), various
size bushings (2), and steel balls (3). We printed the main body and the bushings using a
3D printer with white Poly-Lactic Acid (PLA) plastic. Swapping some parts allows to easily
change the dimension of the NES track to accommodate different ball sizes. To assess the
effect of the ball number variation on the NES behaviour, we tested several configurations
of multi-ball NES of an equivalent mass.

A high-speed Camera (Motion BLITZ Cube 4, MIKROTRON) recorded the motion of the
vibrating prism as well as the balls’ positions with a resolution of 0.085 mm. A MATLAB code,
developed for image analysis, traces the time histories of the prism vibration displacement
y. We repeated the measurement at various flow speeds to capture the prism response by
plotting the maximum amplitude A versus flow speed U .

6.3 The concept and the main parameters of the multi-ball NES

The mass distribution of balls and the collisions between them significantly affect the beha-
viour of the multi-ball NES. Thus, we highlight two leading parameters in the design of the
multi-ball NES : the theoretical maximum radius of the NES mass centre ρc.max and the NES
track crowdedness ratio γt, which indicates the track portion filled with balls. The maximum

Table 6.1 Parameters of the experimental model.

Cross-section side length, D 5 cm
Prism length, L 58 cm

Limitation of the experimental setup 7.5 cm
Equivalent stiffness, k 360 N/m

Structural damping ratio, ζy 0.01
Mass ratio with reference to air-flow, m∗ = mt/ρLD2 859

NES mass ratio, m̂ =
∑

mi/M 0.079 ± 0.002
NES radius ratio, r̂ = r/D 0.5 ± 0.001
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radius of the NES mass centre ρc.max is estimated considering all the balls touching each
other. This forms a theoretical maximum limit as any spacing between the balls decreases
the radial position of the NES mass centre. We define the arc angle between the two tangents
of a ball passing by the NES centre as ϕ (Figure 6.4 a), where

ϕ

2 = tan−1(rb

r
). (6.1)

The arc angle leads to analytical estimates of the maximum radius of the NES mass centre
ρc.max and the NES track crowdedness ratio γt (Figure 6.4).

ρc.max =
∑i=1

n ρi

n
, γt = nϕ

360 , (6.2)

where for an odd number of balls

ρ1 = r, ρ2,3 = r cos ϕ, ρ4,5 = r cos 2ϕ, ρ6,7 = r cos 3ϕ, ... (6.3)

And for an even number of balls

ρ1,2 = r cos ϕ

2 , ρ3,4 = r cos 3ϕ

2 , ρ5,6 = r cos 5ϕ

2 , ρ7,8 = r cos 7ϕ

2 , ρ9,10 = r cos 9ϕ

2 , .....

(6.4)

Table 6.2 presents the ball radius rb, the arc angle ϕ, the maximum radius of the NES
mass centre ρc.max and the NES track crowdedness ratio γt for tested configurations of the
multi-ball NES. Increasing the number of balls decreases ρc.max and increases γ. Since the
decrease in the radius ratio r̂ of the 1-ball NES from 0.7 to 0.4 improved its suppression
efficiency [158], we expect that decreasing ρc.max in the multi-ball NES is favourable unless
it is too small to sustain the dynamical coupling between the prism and the NES. Regarding
the NES track crowdedness, more collisions occur for a higher number of balls, but they are

Table 6.2 Multi-ball NES tested configurations of equivalent m̂ = 0.08 and r̂ = 0.5.

ball no. rb [mm] ϕ [◦] ρc.max γt

10 5.00 31.28 3.71 0.87
8 4.00 33.40 7.88 0.74
5 2.50 38.50 15.07 0.53
4 2.00 41.71 17.44 0.46
3 1.50 44.86 20.15 0.37
2 1.00 51.28 22.54 0.28
1 0.50 62.20 25.00 0.17
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m̂ = 0.079 ± 0.002 and radius ratio r̂ = 0.5 ± 0.001 for all the tested configurations.

Figure 6.4 Estimating the main parameters of the multi-ball NES : (a) the arc angle ϕ, (b,
c) the mass centre radius of odd and even numbers of balls.

less effective due to the increased γt that limits the mean free path of each ball. The energy
consumed due to ball impacts is the summation of the kinetic energy loss of each collision.
Thus, we can expect that there exists an optimal γt that lead to the maximum benefit of ball
impacts.

6.4 Experimental results

Theăfindings of the current study are divided into two parts : assessing the effect of va-
rious multi-ball NES configurations on the prism galloping response, and understanding the
dynamics of the multi-ball NES.

6.4.1 NES damping effect on galloping response

The NES can reduce the vibration amplitude of the prism in a range of flow speeds termed as
the NES working range. Figure 6.5 a compares the responses of the prism without a NES, with
1 ball, 2 balls, 3 balls and 4 balls at different flow speeds. All tested NES configurations are
successful in delaying the occurrence of large amplitude galloping to higher reduced velocities
and maintaining vibration amplitudes below 0.5. Using two balls instead of one significantly
reduces the prism vibration amplitude and eliminates the amplitude jump which appears
between reduced velocities of 15 and 16. The working range of the 2-ball NES increases to
Ur = 30.2 as compared to 26.7 for the 1-ball NES. Increasing the number of balls to three
then four, reduces the vibration amplitudes of the prism at Ur ≥ 21.1 with no effect on the
NES working range. However, the prism amplitude with the 2-ball NES is smaller than that
with the 3-ball or the 4-ball NESs at Ur = 19.3. At Ur between 13.8 and 15.6, we can observe
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Figure 6.5 Amplitude response of : (a) the prism without NES × , with 1-ball NES •, with
2-ball NES Ï, with 3-ball NES �, and with 4-ball NES � ; (b) the prism without NES × , with
4-ball NES �, with 5-ball NES ◦, with 8-ball NES +, and with 10-ball NES 4. NES mass ratio
m̂ = 0.079 ± 0.002 and radius ratio r̂ = 0.5 ± 0.001 for all the tested configurations.

a jump in the amplitude of the prism with the 1-ball NES. Increasing the number of balls
mitigates and delays this jump changing it instead into a gradual increase in the case of the
4-ball NES. Figure 6.5 b presents the responses of the prism with 4-balls, 5-balls, 8-balls and
10-balls. At low flow speeds Ur < 17.4, no considerable change appears in the behavior of the
prism with the different NESs. For higher flow speeds, increasing the number of balls above
four reduces the vibration amplitudes of the prism. Additionally, it limits the NES working
range to reduced flow velocities 24.8, 23 and 21.1 for the 5-ball, 8-ball, and 10-ball NESs.
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6.4.2 Dynamics of different NES configurations

We compare the dynamics of the 4-ball NES, an example of a multi-ball NES, with that of the
single ball NES and discuss their effects on the prism displacement. A developed MATLAB
code, using the wind-rose toolbox [163], plots the probability distributions of the NES mass
centre location in terms of direction (represented by the length of the radial columns) and
radius ρc (represented by various colours). A total of 36 bins, each of 10◦ size, are used
around the cycle. Due to the high-speed camera storage limitation of ∼ 37 seconds at the
resolution used, the sampling size does not capture the full distribution of the ball positions.
This fact explains the lack of symmetry in the distributions.

Figure 6.6 depicts the location of the mass centre of the tested 1-ball and 4-ball NESs,
traced at different reduced flow velocities Ur =: 17.4, 21.1, 24.8, and 28.5. For the 1-ball
NES (Figure 6.6 a, b, c), the radius of the mass centre ρc is constant and equals 25mm, the
racetrack radius. We observe the ball to be located around 0◦ for 20% of the time at Ur = 17.4
(Figure 6.6 a). That percentage increases to 30% and 38% in Figure 6.6 b, c for Ur = 21.1
and 24.8, respectively. While the radial position of the four balls’ mass centre ρc varies
between 0 and the theoretical maximum of ρc.max = 17.44 mm depending on the flow speed
(Figure 6.6 d, e, f, g). At Ur = 17.4, ρc of the 4 balls ranges from 10 to ρc.max = 17.44 mm
and oscillates between 280◦ and 300◦ (Figure 6.6 d). As Ur increases to 21.1 and 24.8, the
range of most probable directions of the mass centre becomes wider, it varies between 260◦

and 330◦ for 5% of the time at Ur = 21.1. Whereas, ρc changes between 0 and 15 mm. In
Figure 6.6 d, the balls oscillate with little amplitude all close together. While in Figure 6.6 e, f,
they move around, increasing the ball spacing, which is reflected in the many colours. The
appearance of several colours in Figure 6.6 e, f indicates the wide fluctuation range of ρc,
which we point out as a leading parameter to characterise the multi-ball NES response. At
Ur = 28.5 (Figure 6.6 g), the mass centre is likely located around 0◦, while ρc decreases and
mostly ranges between 0 − 10 mm.

The oscillatory, intermittent and rotational response modes of the 1-ball NES were previously
observed experimentally [158] and explained [164]. The ball experiences small oscillations in
the oscillatory regime. While, in the rotational regime, the ball rotates for complete revolu-
tions to kill the galloping, then stops until the prism amplitude reaches a critical threshold
and repeats this cycle periodically. The intermittent regime is a transition between the os-
cillatory and the rotational ones. Here, the ball is observed to stay fixed at 0◦ and oscillate
completing a few revolutions at Ur = 17.4 (Figure 6.6 a), as characterised by the intermittent
regime. For higher flow speeds, the ball behaviour follows the rotational response, which
increases the probability of finding the ball stopping around 0◦.
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Figure 6.6 The probability distribution of the mass centre location of the 1-ball, and 4-ball
NESs traced at different reduced flow velocities Ur = : (a, d) 17.4 ; (b, e) 21.1 ; (c, f) 24.8 ;
and (g) 28.5, using a bin size of 10◦. Notice that two different probability scales are used.

Using multiple balls in the same track certainly changes the NES dynamics compared to
one ball. In a multi-ball NES, besides the effect of ball collisions in absorbing energy, the
presence of multiple balls interrupts their rotational response. The 4-ball NES exhibits weak
and strong response modes, which we characterise depending on the fluctuation range of the
NES mass centre ρc. In the weak response, ρc variation is minimal as the balls stay together
during small oscillations that are important enough to absorb the energy of the prism at
Ur = 17.4. Increasing flow speed to Ur = 21.1 and 24.8 represents a higher excitation level
and leads to the strong response mode where the balls oscillate expanding the fluctuation
range of ρc to 0 − 17.44 mm. At Ur = 21.1, the ball oscillations increase to the maximum,
thus decreasing ρc below 5 mm most of the time. Above this speed, ρc is too small to sustain
the dynamical coupling with the prism and the 4-ball NES is ineffective in mitigating the
galloping amplitudes.

To assess the influence of the NES dynamics on the prism response, Figure 4.7 presents the
displacement time histories of the prism equipped with each of the 1-ball and the 4-ball
NES, focusing on the NES effective range 15 < Ur < 29. At Ur = 17.4 (Figure 4.7 a), the 4-
ball NES kills the prism galloping to an amplitude smaller than 0.15, whereas the 1-ball NES
reduces its non-dimensional amplitudes below 0.35 resulting in a nearly steady vibration of
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Figure 0.7 Time histories Ŷ of the prism displacement equipped with a 4-ball NES (red
curve) measured at different reduced flow velocities Ur = : (a) 17.4 ; (b) 21.1 ; (c) 24.8 ; and
(d) 28.5. Dynamics of the prism equipped with a 1-ball NES (grey curve) is shown in (a)-(c).
At the larger reduced velocities (d), the 1-ball NES system could not be studied as vibration
amplitudes were too large.

Figure 6.7 Time histories Ŷ of the prism displacement equipped with a 4-ball NES (red
curve) measured at different reduced flow velocities Ur = : (a) 17.4 ; (b) 21.1 ; (c) 24.8 ; and
(d) 28.5. Dynamics of the prism equipped with a 1-ball NES (grey curve) is shown in (a)-(c).
At the larger reduced velocities (d), the 1-ball NES system could not be studied as vibration
amplitudes were too large.

the prism. At flow speeds Ur = 21.1 and 24.8, the 1-ball NES mitigates the prism galloping
response. However, its dynamics in the rotational regime lead to periodic cycles of growing and
attenuation of the prism amplitudes (Figure 4.7 b, c). The prism non-dimensional amplitude
Â with the 4-ball NES varies at these flow speeds, not exceeding 0.3. The prism with the
1-ball NES reaches the limit of the experiments at Ur = 26.7 (Figure 6.5 a) whereas, the
4-ball NES is still effective until Ur = 28.5, at which point the prism amplitude is reduced
nearly to 0.35 as presented in Figure 4.7 d.

The dynamics of the 1-ball NES directly affects the prism response ; in the intermittent
regime, the prism exhibits almost steady vibration, whereas it shows a strongly modulated
response of periodic cycles rising and decreasing its amplitude in the rotational regime. In
each cycle, the ball rotates continuously to mitigate the prism amplitudes then stops at an
equilibrium position for a time, during which the prism amplitude grows again to a critical
value that breaks the ball equilibrium and cause its rotation. Multiple balls in the same track
cannot hit the equilibrium position (θ = 0◦ or 180◦) simultaneously. As a result, we can not
observe the rotational regime experienced by a single ball. The balls oscillate in the multi-
ball NES instead of stopping, preventing the prism vibration from reaching the amplitude
threshold reached by the prism coupled with the 1-ball NES. Multiple balls do not experience
the regular periodic cycles observed in the rotational regime of the 1-ball NES. Thus, the
4-ball NES can mitigate the prism galloping without periodic sudden decreases in the prism
displacements that cause a fatigue risk to the system coupled with a 1-ball NES.
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6.5 Conclusion

The single ball NES presented in the literature is a simple, low-cost way for damping flow-
induced vibration. In this paper, we propose a multi-ball NES of equivalent mass that is more
effective as it absorbs energy in two ways; the presence of multiple balls disrupts the motion
of one another, and the dissipation of their collisions. We highlight the radial location of the
balls’ mass centre and the track crowdedness as two important factors affecting the behaviour
of the multi-ball NES. The increase in ball numbers decreases the maximum radius of the
NES mass centre ρc.max, which can improve the NES suppression efficiency within a certain
range unless the radius is too small to sustain the dynamic coupling of the prism and the balls.
Although a high number of balls in the same track leads to more collisions, these collisions
can be less effective due to the limited free paths for each ball. Accordingly, an optimal NES
track crowdedness ratio γt probably exists which would lead to the maximum benefit of ball
impacts. The optimization of ρc.max and γt can be a question for future work, notably through
numerical modelling. Testing various configurations of equivalent mass NESs showed that
the vibration amplitude of the prism decreases by increasing the number of balls throughout
all experiments involving one to ten balls. Two conflicting trends were observed regarding
the NES working range ; it expands by using two balls instead of a large one of equivalent
mass and remains the same for three and four balls. Any further increase in the number of
balls overcrowds the NES track, limiting the motion of the balls and resulting in less effective
impacts, which reduces the working range of the 5-ball, 8-ball, and 10-ball NESs. For a NES
of mass ratio r̂ = 0.08 and radius ratio r̂ = 0.5, four balls is the best configuration that
increases the reduced velocity of large-amplitude galloping by 10% compared to a single ball
of equivalent mass. Moreover, using multiple balls reduces the fatigue risk as its dynamic
coupling with the prism does not lead to the strongly modulated response experienced by a
prism coupled with a 1-ball NES.

The prism galloping in our tests was limited to a non-dimensional amplitude of 1.5. Therefore,
a numerical model will be a future challenge to simulate the effect of impact between NES
balls and consider the dynamics of the prism coupled with multi-ball NES at large galloping
amplitudes.
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CHAPTER 7 GENERAL DISCUSSION

We considered the design simplicity and the low fabrication cost of a vibration absorber
as important parameters for extending its practical implementation to many systems. The
literature reviewed different kinds of passive vibration absorbers and highlighted our interest
in the class of nonlinear energy sinks. The typical form of a rotative NES presented in the
literature consists of a tip mass coupled to a primary structure by a rigid bar of fixed length.
The originality of this work is to introduce a purely rotative NES using a free metal ball
moving in a circular track without direct coupling to the primary system. The proposed NES,
which we named ball-in-track (BIT) NES, is a simple, low-cost and robust passive vibration
absorber able to mitigate the galloping of a square prism.

Chapter 4 presented the galloping experiments that validated the BIT-NES effectiveness in
delaying the galloping of a square prism [158]. Wind tunnel tests of the BIT-NES exhibited
three different response modes ; oscillatory, intermittent and rotational, and provided the
boundaries of each regime and the critical flow speed, beyond which the NES was no longer
able to mitigate galloping amplitudes. The ball response changes from one mode to another
depending on the excitation level of the primary system vibration. In the oscillatory regime,
the kinetic energy consumed by the NES ball during its small oscillations is enough to absorb
the energy extracted from the flow by the prism at low flow speeds and delay the galloping
occurrence. When the energy of the prism increases at higher flow speeds, the ball rotates
fast and faster in the intermittent and rotational regimes to absorb the prism energy. Accor-
ding to the concept of targeted energy transfer across the integrated prism-NES system, the
rotational regime is the most efficient. The NES ball engages with the prism dynamics and
rotates with the prism natural frequency experiencing 1:1 resonance capture. This results in
a strongly modulated response of the prism illustrating the energy transfer between the gal-
loping prism and the NES. At higher flow velocities, a ball rotating with the prism frequency
cannot absorb the energy of the prism. Thus, the ball motion becomes out of sync with the
prism vibration and ineffective in mitigating the galloping amplitudes. The experimental se-
tup limitation in the maximum amplitude did not allow for testing the system dynamics at
high reduced flow velocities. The experiments [158] demonstrated the NES effect in delaying
the galloping upon speeding up the flow without tackling the problem in the case of slowing
down the flow.

In chapter 5, we developed a model employing measured data of the galloping and the
ball damping coefficients to realistically simulate the dynamics of the prism-NES system
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in a parameter range, difficultly accessible by experiments. The simulations investigated
the NES effect considering both increasing and decreasing flow speeds. Galloping of the
square prism considered here involved a hysteresis phenomenon over a range of flow speeds
14.5 < Ur < 17.5, at which the prism response depends on the initial conditions. With
increasing flow speed, the NES delayed the galloping occurrence to much higher flow speeds,
and the prism follows the lower limit cycle branch. While in decreasing flow speed, the prism
amplitude reached the upper limit cycle due to the relatively large initial displacement of
the prism. Since the NES behaviour depends on the excitation level, the NES was efficient
in delaying the occurrence of galloping but less effective in stabilizing a prism experiencing
a high excitation level due to very large amplitude galloping.

Upon increasing the flow speed, the simulations demonstrated the oscillatory, intermittent
and rotational regimes observed in experiments and predicted an ineffective response mode
characterised with high-amplitude galloping. It was hard to experimentally define exact boun-
daries for the intermittent response mode because it is a transition regime between the os-
cillatory and rotational responses. In the numerical analysis, considering the angular speed
of the ball was useful to accurately specify the limit of the intermittent regime coinciding
with θ̇ < 0.8 times the angular natural frequency of the prism. The NES ball interacted with
the system dynamics in the rotational regime and adapted its behaviour with increasing flow
speeds to mitigate galloping amplitudes over a wide range of flow speeds. Above a critical
flow speed Ucrit, the simulations demonstrated an ineffective regime in which the ball cannot
engage with the system frequency. The ball rotated with high angular speeds, approximately
4 times the prism natural angular frequency in an irregular manner, often changing direction.
The ball’s fast revolutions in this regime were insufficient to suppress the prism vibration.
Therefore, the NES was no longer beneficial in absorbing the high-amplitude galloping as
the energy extracted by the vibrating prism from the airflow exceeds the energy dissipation
rate of the NES. Upon slowing down the flow from Ur = 30, we observed the ineffective NES
regime at high flow speeds. Then the ball behaviour changed to random rotations at Ur = 25
and large oscillations at 17.5 with ineffective damping effect on the prism amplitudes. It was
hard for the ball to interact with the dynamics of the prism at large-amplitude galloping,
which led to the absence of the NES rotational response and reduced the NES effective range
compared to the first case. At lower flow velocities, the intermittent response appears in a
narrow range of reduced flow speeds. While, the oscillatory regime was observed at the same
flow speed range Ur < 14, comparing to the case of accelerating flow.

The analytical analysis, presented in chapter 5, estimated boundaries between NES regimes.
Considering the prism mass as an excitation source of the NES provided a value for the
prism amplitude (Y0crit = r̂

√
1
4 + 4ζ2

θ ) above which the oscillatory regime is impossible.
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This amplitude boundary defined the transition between the oscillatory and the intermittent
regime. Additionally, the proposed power flow analysis of the integrated prism-NES system
came out with an analytical estimation for the limit of the NES effective range and explained
the behaviour of the ball in the rotational regime. Figure 7.1 presents the mechanism of
energy transfer in the prism-NES system, illustrating the power terms of the aerodynamic
load P̄F y, the damping forces of the support P̄d, the power Ptr transferred to the NES and
the power dissipated due to the ball friction Pdis. We compared the power extracted from the
flow by the prism PFy (minus its structural damping Pd) with the maximum energy the ball
could dissipate in ideal 1:1 resonance capture, where it rotates with a practically constant
angular velocity equals to that of the prism, to obtain the limit of successful energy transfer.
This limit defines the critical flow speed Ucrit = 24.5, above which the NES of m̂ = 0.08 and
r̂ = 0.6 is ineffective. In the perspective of the NES, comparing the transferred power P̄tr,
gained by the NES, and the power dissipated P̄dis by ball friction in the rotational response
provided a minimum value of the prism amplitude that sustains ball rotation (Amin ≥ 4r̂ζθ).
We explained the rotational regime as a competition between the ability of the system to
transfer energy from the vibrating prism to the NES, and the capacity of the NES to dissipate
energy. The prism accumulates energy from the flow over multiple cycles until the ball is
excited, at which point it spins and dissipates energy until the prism amplitude is too small
to sustain the motion. Repetition of this cycle leads to the strongly modulated response of
the prism, observed in the rotational regime.

Figure 7.2 compares the NES regime boundaries obtained from the numerical simulations with
both the analytical estimations and the previous experiments. We could define the boundaries
between the oscillatory, intermittent and rotational regimes as Uosc/int , and Uint/rot and the
limit of the NES effective range Ucrit. The numerical simulations estimated Uosc/int, and
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Figure 0.8 The energy transfer mechanism in the prism-NES integrated system, illustrating
the power terms of the aerodynamic load P̄F y, the damping forces of the support P̄d, the
power Ptr transferred to the NES and the power dissipated due to the ball friction Pdis.
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colours for NES regimes : oscillatoy (white), intermittent (gray), rotational (black), and the
ineffective (red).

Figure 7.1 The energy transfer mechanism in the prism-NES integrated system, illustrating
the power terms of the aerodynamic load P̄F y, the damping forces of the support P̄d, the
power Ptr transferred to the NES and the power dissipated due to the ball friction Pdis.
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the power terms of the aerodynamic load P̄F y, the damping forces of the support P̄d, the
power Ptr transferred to the NES and the power dissipated due to the ball friction Pdis.
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Figure 7.2 Comparing NES regime boundaries obtained from our simulation considering a
NES of m̂ = 0.08 and r̂ = 0.6, with experimental results (oscillatory �, Intermittent 4, and
Rotational ◦ regimes, and analytical estimations. The flow speed range is shaded by different
colours for NES regimes : oscillatoy (white), intermittent (gray), rotational (black), and the
ineffective (red).

Uint/rot as 14 and 18, respectively. Comparing with the boundaries defined experimentally,
14.7 and 16.5, we evaluated a relative error of 0.05 and 0.1. The experiments provided a
range for the critical reduced flow velocity 25 < Ucrit ≤ 27, which was defined numerically
as 27.5, where the proposed power flow analysis evaluated this critical value as 24.5.

As presented in chapter 6, we used multiple balls to take advantage from the collisions bet-
ween them in improving the NES suppression efficiency. Testing various configurations of
multi-ball NES demonstrated its higher suppression efficiency compared to a single-ball NES
of equivalent mass. In a multi-ball NES, besides the effect of ball collisions in absorbing
energy, they also interrupt the rotation of balls. As a result, multiple balls do not experience
the periodic cycles of rotating and stopping observed in the rotational regime of the 1-ball
NES. Multiple balls in the same track cannot hit the equilibrium position (θ = 0◦ or 180◦)
simultaneously. Thus, they oscillate instead of stopping, preventing the prism vibration from
reaching the amplitude threshold reached by the prism coupled with 1-ball NES. Additio-
nally, the change of the mass distribution in the multi-ball NES, that occurs due to ball
motion, affect the dynamic coupling with the galloping prism. These explanations revealed
the reason for the outperformance of the multi-ball NES compared to the single-ball NES.
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The experiments showed that increasing the ball number reduces the vibration amplitude of
the prism through all testing involving one to ten balls. Regarding the NES effective range,
two opposing trends were observed. Using twoăballs instead of a large one of equivalent mass
expanded the NES working range, which remained the same for the 3-ball and 4-ball NESs.
Further increasing the ball number above four overcrowded the NES track and limited the
balls’ motion, resulting in less effective impacts between them. Thus, the working ranges of
the 5-ball, 8-ball, and 10-ball NESs were reduced compared to the 4-ball NES.

The current research introduced the ball-in-track (BIT) NES as a purely rotative NES able
to absorb the galloping of a square prism. The experiments and the realistic simulations
investigated the efficiency of the proposed NES in mitigating the galloping of a square prism.
Besides, analytical analysis for the power flow across the prism-NES integrated system ex-
plained the behaviour of the BIT-NES. This research also advanced a new technique for
measuring the damping of a rotating ball through free rotation tests. The simple structure
of the BIT-NES and the deep understanding of its behaviour may extend its usage to many
applications. In particular, it can damp wind-induced galloping on power lines, high-mounted
signboards, long slender structures, and skyscrapers.
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CHAPTER 8 CONCLUSION AND FUTURE WORK

8.1 Conclusion

The nonlinear energy sink (NES) was recommended in the literature review over other types
of linear absorbers due to its ability to mitigate the vibration of the primary structure,
coupled to it, without introducing new frequencies to the system. The rotative NES is a type
of such absorbers, typically consisting of a tip mass linked to the primary structure by a
rigid bar of fixed length. We emphasized that the design simplicity and the low fabrication
cost of a vibration absorber are important factors that extend its practical implementation
to various systems. Accordingly, the main contributions of our research are:

• Introducing a purely rotative NES composed of a free metal ball moving in a circular
track without direct coupling to the primary system. Wind tunnel tests demonstrated
the advantage of the proposed NES in mitigating the galloping of a square prism model
without changing the prism characteristics.

• Experimental investigation of the dynamics of the prism-NES system. The proposed NES
exhibited three different regimes: oscillatory, intermittent, and rotational, which we na-
med based on the response of the NES ball. The oscillatory regime is observed at low flow
speeds and characterized by small oscillations for both the prism and the NES ball. Al-
though the ball’s angular displacement did not exceed 70 degrees, it delays the galloping
occurrence. The intermittent regime appears at higher flow speeds within a narrow range,
in which the ball oscillates with low angular velocities leading to almost steady vibration
of the prism with a maximum amplitude below 30 mm. The more powerful excitation
at higher flow speeds results in more stable rotations of the NES ball in the rotational
regime. The NES ball rotates with high angular velocities to kill the galloping amplitudes.
Then, it stops until the prism amplitude reaches a critical threshold. The repetition of
that cycle leads to a strongly modulated response (SMR) of the prism, showing periodic
cycles of attenuation and rising in the prism vibration displacement.

• Quantifying the impact of the main NES parameters on its behaviour. The simple design
of the NES allowed to easily change the dimensions of its track to accommodate various
size balls. The increase of the mass ratio expands the NES working range. Regarding the
NES regime mapping, we observed the intermittent regime with the NES of higher mass
only coinciding with a small jump in the prism amplitude response. While increasing the
radius ratio increases the prism vibration amplitudes and reduces both the NES effective
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range and the range of the intermittent regime. The effective range of the lubricated NES
of less friction is greater than that of the dry one. Reduced friction in the lubricated NES
also reduces the intermittent regime range eliminating the small jump in prism amplitude,
which occurs at the beginning of the intermittent regime. The radial clearance between the
NES track walls and the rotating ball is an important parameter, its increase significantly
decreases the prism vibration amplitudes. The most effective NES has the largest mass
ratio, the lowest radius ratio and the greatest radial clearance within the range of NES
parameter values tested in our experiments.

• Providing a precise fitting for the galloping force coefficient Cy as a function of the
square prism angle of attack α. Through static wind tunnel experiments, we measured
Cy at different angles of attack α. Then Kolmogorov-Smirnov (K-S) test was applied to
eliminate systematic errors in measuring the angle of attack.

• Developing a new approach to estimate the ball damping coefficient cθ through free rota-
tion tests. The experiments provided a certain angular speed, over which the ball contact
with the track sidewalls becomes significant and increases the friction of the NES rotating
ball. The damping variation is a unique advantage of the Ball-in-track NES ; small dam-
ping at low angular speeds allows the ball to rotate easily, while relatively large damping
at high angular velocities dissipates more energy.

• Simulating the dynamics of the prism-NES integrated system with employing experimen-
tal data of the galloping force Cy and the ball damping Cθ coefficients for the numerical
model. The simulations exhibited the oscillatory, intermittent, and rotational response
modes observed in the experiments. Moreover, it expected an ineffective regime at high
flow speeds that we could not examine experimentally. In this fourth regime, the NES is
ineffective in mitigating the galloping amplitudes.

• Analytical estimations for the oscillatory regime boundary and the limit of the NES
effective range. Considering the mass of the prism as a parametric excitation source for
the NES ball provided an analytical expression for the amplitude, below which the ball’s
stable oscillations are impossible Y0crit = r̂

√
1
4 + 4ζ2

θ . Additionally, a power flow analysis
across the prism-NES integrated system predicted the critical flow speed, at which the
NES of mass ratio m̂ = 0.08 and radius ratio r̂ = 0.6, is ineffective as Ur = 24.5, with a
relative error 0.07 compared to the experiments. Looking at the power flow in perspective
to the NES explained the ball behaviour in the rotational regime. The ball stops rotating
when the transferred power to the NES power balances out the power dissipated by ball
friction. The proposed analysis provided the minimum prism amplitude sustaining the
ball rotational response Amin = 4r̂ζθ.
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• Developing a multi-ball NES composed of many balls moving in the same circular track.
Experimental testing revealed the high suppression efficiency of the multi-ball NES com-
pared to a single-ball NES of equivalent mass. The single ball rotates continuously to kill
the galloping, then stops until the prism vibrations reach a threshold amplitude. This
cycle is repeated, leading to a rotational regime. In the multi-ball NES, besides ball col-
lisions absorbing energy, they also interrupt the rotation of balls. As a result, multiple
balls do not experience the regular periodic cycles observed in the rotational regime of
the 1-ball NES. Many balls in the same track cannot hit the equilibrium position (θ = 0◦

or 180◦) simultaneously. Thus, they oscillate instead of stopping, preventing the prism
vibration from reaching the amplitude threshold reached by the prism coupled with 1-ball
NES.

• Demonstrating the influence of the ball number on the behaviour of the multi-ball NES
experimentally. Testing various configurations of equivalent mass NESs showed that the
vibration amplitude of the prism decreases by increasing the ball number throughout all
experiments involving one to ten balls. Two conflicting trends were observed regarding
the NES working range ; it expands by using two balls instead of a large one of equivalent
mass and remains the same for the 3-ball and 4-ball NESs. Any further increase in the
number of balls overcrowds the NES track, which reduces the working range of the 5-ball,
8-ball, and 10-ball NESs. For a NES of mass ratio r̂ = 0.08 and radius ratio r̂ = 0.5,
the 4-ball NES is the most efficient multi-ball NES that increases the reduced velocity of
large-amplitude galloping by 10% compared to the 1-ball NES of equivalent mass.

• Identifying the key parameters controlling the behaviour of the multi-ball NES. The mass
distribution of balls and the collisions between them significantly affect the behaviour of
the multi-ball NES. Thus, we highlighted two leading parameters in the design of the
multi-ball NES: the maximum radius of the NES mass centre ρc and the NES track
crowdedness ratio γt, which indicates the track portion filled with balls. Increasing the
number of balls reduces the maximum radius of the NES mass centre ρc and increases
the NES track crowdedness ratio γt. High track crowdedness ratios limit the motion of
the balls, resulting in less effective collisions

8.2 Limitations

The experimental setup, used for the galloping experiments, limited the maximum amplitude
of the prism in galloping experiments to 75mm, which equals 1.5 times the square prism side
length. As a result, it restricted the testing of large amplitude galloping at high flow speeds.
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Regarding the square prism model, we developed a lightweight prism spanning almost the
entire height of the wind tunnel test section without too much blockage effect. We only
tested this model whose mass ratio with reference to air-flow m∗ = M/ρLD2 = 750 and
cannot infer about other mass ratios. In the Quasi-static experiments, We neglected the
variation of the galloping force coefficient (Cy) with Reynolds number (Re). The wind tunnel
static experiments provided Cy as a function of the square prism angle of attack (α), at a
constant flow speed of U = 30 m/s, which is equivalent to Re = 101 × 103. The numerical
model employed the obtained fitting in simulating the prism galloping response, ignoring its
variation with flow speed.

8.3 Future work and recommendations

The simple-structured NES that we introduced is applicable to many systems. It could miti-
gate wind-induced vibrations on various structures such as power lines, high-rise structures
and skyscrapers. The proposed model and the analytical investigations predict the dynamics
of the integrated prism-NES system at high vibration amplitudes, covering the limitation
of experiments. This can extend the practical implementation of such NESs and help in
optimizing the NES design based on the characteristics of a primary system. Accordingly,
we recommend testing the proposed NES with square prism models of various mass ratios
with reference to air flow (may be extended to rectangular prisms of different aspect ra-
tios) to illustrate the influence of the primary system characteristics on the NES behaviour.
Employing various NES track shapes, even inclined ones, can detect their effect on the ball
behaviour and the NES suppression efficiency. Regarding the multi-ball NES, the experimen-
tal characterisation of the impact between balls will assess its role in improving the energy
absorption capability of the multi-ball NES. Considering this effect in simulating the prism
galloping response with multi-ball NES will help in a deep understanding of the multi-ball
NES complicated dynamics. Finally, we recommend the examination of the ball-in-track
NESeffectiveness in mitigating other types of FIV such as wing instabilities, vibrations of
fluid-conveying pipes, and the VIV of cylinders.
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8.4 Research Outcomes

Journal articles

1. "Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink".
Journal of Fluids and Structures (2021). - Published: January 2021 -

DOI : http://dx.doi.org/10.1016/j.jfluidstructs.2020.103169

2. "How a ball free to orbit in a circular track mitigates the galloping of a square prism".
Nonlinear Dynamics. - Submitted: October 2021 -

Preprint DOI : https://doi.org/10.21203/rs.3.rs-973095/v1

3. "Multiple balls rotating in a circular track experimentally mitigates the galloping of a
square prism". Journal of Sound and Vibration. - Submitted: November 2021 -

Conferences

1. "Going in circles to mitigate flow-induced vibrations" Virtual Technical Meeting of the
Society of Engineering Science (SES). September, 2020.

2. "Multi balls rotating in a circular track efficiently mitigates flow-induced vibrations" 25th
International Congress of Theoretical and Applied Mechanics (ICTAM 2021), Milan,
Italy.

- Awarded the Bureau Prize for the best seminar presentation out of 388 participants -

http://dx.doi.org/ 10.1016/j.jfluidstructs.2020.103169
https://doi.org/10.21203/rs.3.rs-973095/v1
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APPENDIX A MEASUREMENT UNCERTAINTIES CALCULATION

We use a protractor read by naked eye to fix the square prism angle of attack expecting
a small deviation from the required angle. To eliminate any error that may arise from this
deviation, we use the KolmogorovSmirnov (K-S) test. This statistical method mainly quanti-
fies how the distribution functions of two data samples are similar. After reflecting Cy values
measured at negative angles about the origin, we compare it to Cy values measured at po-
sitive angles (figure A.1a). The KolmogorovSmirnov test indicates the dissimilarity between
the two Cy curves by converting the two samples of normal force coefficient data to another
form, Cy_sum (table A.1), where:

Cy_ sumi =
i∑

j=1
Cyj , (A.1)

D =|
n∑

j=1
(Cy1_ sumj − Cy2_ sumj) | . (A.2)

The absolute value of summation of the differences, D, indicates how the two data samples
follow the same distribution and increases when the data samples are highly dissimilar. For
the Cy curve, a shift in α changes the value of Cy at each angle of attack according to the
slope of the curve at this point.

δCy = δα · slope (A.3)

Based on the KolmogorovSmirnov test, a MATLAB code is written to get the optimum shift
in α (not exceeding the angle measurement resolution of ±1o) that achieves the best sym-
metry between the measured data of Cy at the positive and negative values, see Figure A.1.

Figure A.1b shows the Cy values measured for negative and positive angles of attack with a
0.65o shift. Using a smoothing parameter p= 0.999995, a spline fits the measured data after
eliminating the systematic error (Figure A.1c). This fitting works as input for the NES-prism
mathematical model to introduce accurate values for the galloping force coefficient of the
square prism at different angles of attack.
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Figure 0.1 The normal force coefficient Cy ; Î measured at positive angles of attack +α,
È measured at −α, Ï the reflection of the Cy curve of negative angles about the origin. (a)

direct measurement, (b) measurements shifted by 0.65o to eliminate the systematic error in
the angles’ reading, (c) Cy fitting ( ).

Figure A.1 The normal force coefficient Cy ; Î measured at positive angles of attack +α,
È measured at −α, Ï the reflection of the Cy curve of negative angles about the origin. (a)

direct measurement, (b) measurements shifted by 0.65o to eliminate the systematic error in
the angles’ reading, (c) Cy fitting ( ).

Table A.1 K-S test for the two data samples of the measured Cy at positive and negative
angles of attack.

i Angle Cy1 Cy2 Cy1_sum Cy2_sum Difference
1 0o 0.0084 -0.0084 0.0084 -0.0084 0.0168
2 3o 0.1071 0.1612 0.1155 0.1528 -0.0373
3 6o 0.1789 0.2206 0.2944 0.3734 -0.079
4 9o 0.2268 0.3320 0.5212 0.7054 -0.1842
5 12o 0.4834 0.3891 1.0046 1.0945 -0.0899
6 15o 0.2722 0.1588 1.2768 1.2533 0.0235
7 18o -0.0913 -0.2050 1.1855 1.0483 0.1372
8 21o -0.4123 -0.5385 0.7732 0.5098 0.2634
9 24o -0.7401 -0.9188 0.0331 -0.4090 0.4421
10 27o -1.0348 -1.1807 -1.0017 -1.5897 0.588

D=∑ Difference= 1.08
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