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RÉSUMÉ

Le réseau hétérogène de véhicules « Heterogeneous Vehicular Network » (HetVNET) est
conçu pour fournir des services de sécurité et de non-sécurité en utilisant la communication
dédiée à courte portée (DSRC) pour les communications de véhicule à véhicule « Dedicated
Short-Range Communication » (V2V) et l’évolution à long terme « Long Term Evolution
» (LTE) pour les communications de véhicule à infrastructure « Vehicle-to-Infrastructure
» (V2I). HetVNET peut fournir une large couverture avec un débit de données élevé via
LTE et un échange de données en temps réel via DSRC. D’après la littérature, HetVNET
peut fournir divers services nécessaires au système de transport intelligent (ITS). Toutefois,
dans un réseau HetVNET dense, les énormes données générées par les véhicules doivent
disposer de suffisamment de ressources pour être acheminées correctement et avec une faible
latence. Dans le cas contraire, les données sont reçues à destination avec un retard important
ou peuvent même être abandonnées par les dispositifs du réseau. Cette situation conduit
à la congestion du réseau. Par conséquent, le problème de congestion du réseau affecte
négativement la qualité des services « Quality of Services » (QoS) et les performances du
réseau.

Dans les réseaux véhiculaires, la gestion de la congestion comporte deux phases principales
: la détection de la congestion et le contrôle de la congestion. La plupart des détections de
congestion sont basées sur des seuils prédéfinis pour le niveau d’utilisation des canaux ou
le nombre de véhicules. Dans la littérature, les chercheurs ont fait des efforts significatifs
pour la phase de contrôle de la congestion et pour la phase de détection de la congestion. Ils
ont utilisé des hypothèses, par exemple, lorsque plus de 70% du canal de communication est
utilisé ou lorsque le taux de génération de données dépasse une valeur prédéfinie. Cependant,
trouver la valeur optimale pour le seuil reste un défi car il peut y avoir un risque de sous-
utilisation du canal. De plus, l’utilisation d’un seuil élevé pour la détection de la congestion
pourrait augmenter la perte de paquets dans un environnement véhiculaire très dense.

Dans la littérature, les méthodes proposées pour contrôler la congestion du réseau sont cen-
tralisées ou distribuées. Dans la méthode centralisée, une unité centrale est chargée de
prendre les décisions de contrôle et les véhicules doivent obéir aux commandes de l’unité
centrale. Dans les méthodes distribuées, les véhicules décident de la manière de contrôler
la congestion du réseau, en se basant principalement sur les informations reçues des autres
véhicules environnants. La surveillance, la collecte et l’analyse des données nécessitent des
ressources de calcul et de stockage suffisamment robustes. Sinon, des frais généraux et des
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retards élevés sont inévitables. Néanmoins, les méthodes distribuées sont largement consid-
érées dans la littérature. Cependant, l’émergence de technologies récentes tels que le réseau
défini par logiciel (SDN), l’informatique en brouillard et la virtualisation des réseaux, qui
peuvent fournir une programmabilité, une vue globale et des ressources de calcul, de réseau
et de stockage appropriées, encouragent les auteurs à considérer les méthodes centralisées
plus qu’auparavant.

Dans cette thèse, la première phase de la gestion de la congestion est considérée mais d’une
manière différente. Des méthodes d’intelligence artificielle (IA) sont envisagées pour générer
des méthodes de prédiction de la congestion pour HetVNET. Le problème de prédiction
est défini dans les deux styles de problème de classification et de régression. Les données
simulées extraites de la simulation de la mobilité urbaine « Simulation of Urban Mobility »
(SUMO) et du simulateur Veins LTE sont utilisées comme données d’entrée des méthodes
d’apprentissage automatique « Machine Learning » (ML) supervisées.

Les classes d’alerte et de non-alerte sont définies à l’aide du taux de livraison des don-
nées « Data Delivery Ratio » (DDR) et de l’intensité du signal reçu « Received Signal
Strength » (RSS). L’algorithme Naïve Bayes est appliqué pour prédire les états d’alerte et
de non-alerte de congestion du réseau HetVNET. En outre, une architecture centralisée et
dynamique de nuage-brouillard est proposée. Cette architecture comporte deux composants
principaux : une unité de gestion centralisée « Centralized Management Unit » (CMU) et
des unités de prédiction de la congestion du brouillard « Fog Congestion Predictor Units
» (FCPU). La méthode de classification d’alerte de congestion Naïve Bayes proposée peut
être appliquée dans la FCPU. De plus, un mécanisme de classification centralisée de la con-
gestion du réseau « Network Congestion Classification » (CNCC) est proposé pour prouver
l’efficacité de l’approche de classification proposée pour éviter la congestion du réseau dans
HetVNET. Les résultats montrent que la méthode proposée peut améliorer les performances
du réseau en termes de taux de perte de paquets, de retard moyen et de débit moyen.

De plus, une fonction d’utilité est proposée dans cette thèse. Dans cette étape, l’objectif de
la méthode de prédiction par régression est de prédire la valeur de la fonction d’utilité. Un
modèle de prédiction par régression linéaire multiple « Multiple Linear Regression » (MLR)
et une méthode de prédiction par réseau neuronal de régression généralisée « Generalized
Regression Neural Network » (GRNN) sont proposés pour prédire la valeur de la fonction
d’utilité. La valeur prédite fournit une vision de l’avenir et peut être utilisée comme un
indice pour la gestion de congestion des réseaux en prenant des décisions et en appliquant
des politiques. Cette approche permet de créer une gestion de congestion intelligente pour
un HetVNET adaptatif et autonome. En outre, le mécanisme de prévention de la congestion
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intelligente « Intelligent Congestion Avoidance Mechanism » (ICAM), qui est une technique
de transmission adaptative puissante utilisant la méthode de prédiction GRNN, a été proposé.
Les résultats obtenus prouvent que GRNN est une méthode précise, fiable et stable. De plus,
les résultats de simulation montrent que l’ICAM peut améliorer les performances du réseau
en termes de taux de perte de paquets et de délai moyen.

En ce qui concerne le concept de découpage du réseau dans la 5g et au-delà, une méthode
« Conditional Generative Adversarial Network » (CGAN) est appliquée pour générer des
tranches de réseau dans HetVNET. Dans cette partie de la thèse, une architecture hybride
est proposée en utilisant les technologies SDN et « Network Function Virtualization » (NFV).
L’objectif de cette partie de la thèse est de générer dynamiquement des configurations pour
les tranches de réseau qui ont un faible potentiel d’occurrence de congestion du réseau.

Les méthodes proposées basées sur l’IA sont entraînées et testées à l’aide du langage de
programmation Python. La précision et la fiabilité des méthodes proposées ont ensuite
été évaluées. Les résultats obtenus montrent que les méthodes proposées basées sur l’IA
(Naïve Bayes, GRNN et CGAN) peuvent accomplir leurs tâches avec précision. En outre,
les résultats de la simulation montrent que l’application du CNCC et de l’ICAM proposés
pourrait améliorer les performances du réseau.
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ABSTRACT

Heterogeneous Vehicular Network (HetVNET) is designed to provide safety and non-safety
services using Dedicated Short Range Communication (DSRC) for Vehicle-to-Vehicle (V2V)
and Long Term Evolution (LTE) for Vehicle-to-Infrastructure (V2I) communications. Het-
VNET can provide a wide coverage range with high data rate via LTE and real-time data
exchange via DSRC. Based on the literature, HetVNET may well provide various required
services of the Intelligent Transportation System (ITS). However, in a dense HetVNET, enor-
mous data generated by vehicles need enough available resources to be successfully delivered
with low latency. Otherwise, the data received in destinations with notably delay or even it
might be dropped by the network devices. This situation leads to network congestion in the
network. Network congestion problem consequently affects Quality of Services (QoS) and
network performance negatively.

In vehicular networks, congestion management has two main phases: congestion detection
and congestion control. Most of the congestion detection is based on the predefined thresh-
olds for channel usage level or number of vehicles. Regarding the literature, researchers
significantly made efforts for the congestion control phase and for the congestion detection
phase they used assumptions (e.g., when more than 70% of the communication channel is
used or when data generation rate exceeds a predefined value). However, finding the optimal
value for the threshold still is a challenge since it may have a risk of channel under-utilization.
Moreover, using a high amount of threshold for congestion detection could increase packet
loss in a highly dense vehicular environment.

In the literature, the proposed controlling network congestion methods are centralized or
distributed. In a centralized method, a central unit is responsible for making controlling
decisions and vehicles must obey the commands of the central unit. In distributed methods,
the vehicles decide how to control the network congestion, mostly based on the information
receives from other vehicles around. Monitoring, data gathering and data analyzing required
robust enough computation resources and storage. Otherwise, high overheads and delay are
inevitable. Nevertheless, distributed methods are widely considered in the literature. How-
ever, emerging recent technologies such as Software Defined Network (SDN), fog computing
and network virtualization which can provide programmability, global view and suitable
computing, networking and storage resources encourage the authors to consider centralized
methods more than before.

In this dissertation, the first phase of congestion management is considered but in a different
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way. Artificial Intelligence (AI) methods are considered to generate congestion prediction
methods for HetVNET. The prediction problem is defined in both styles of classification
problem and regression problem. Simulated data extracted from Simulation of Urban Mobil-
ity (SUMO) and Veins LTE simulator is used as input of the supervised Machine Learning
(ML) methods.

The warning and non-warning classes are defined using Data Delivery Ratio (DDR) and Re-
ceived Signal Strength (RSS). Then Naive Bayes algorithm is applied to predict congestion
warning/non-warning states of the HetVNET. Moreover, a centralized and dynamic cloudy-
fog architecture is proposed. This architecture has two main components: a Centralized
Management Unit (CMU) and Fog Congestion Predictor Units (FCPUs). The proposed
Naive Bayes congestion warning classification method can be applied in the FCPU. Addi-
tionally, a Centralized Network Congestion Classification (CNCC) mechanism is proposed
to show how the proposed classification approach is effective to avoid network congestion in
HetVNET. The results show that the proposed method could improve performance of the
network in terms of packet loss ratio, average delay and average throughput.

Moreover, a utility function is proposed in this dissertation. In this step, the aim of the re-
gression prediction method is to predict the value of the utility function. A Multiple Linear
Regression (MLR) prediction model and a Generalized Regression Neural Network (GRNN)
prediction method are proposed to predict the value of the utility function. Predicted value
provides a vision about the future and can be used as a clue for congestion network man-
agement in making decisions and running policies. This approach helps create intelligent
congestion management for an adaptive and autonomous HetVNET. Additionally, the Intel-
ligent Congestion Avoidance Mechanism (ICAM) which is an adaptive transmission power
technique that uses GRNN prediction method has been proposed. Obtained results show
that GRNN is an accurate, reliable and stable method. Moreover, simulation results show
that ICAM could improve network performance in terms of packet loss ratio and average
delay.

Regarding the Network Slicing concept in 5g and beyond, a Conditional Generative Adver-
sarial Network (CGAN) method is applied to generate network slices in HetVNET. In this
part of the dissertation, a hybrid architecture is proposed using SDN and Network Function
Virtualization (NFV). The aim of this part of the dissertation is to dynamically generate con-
figurations for network slices which have the low potential of occurring network congestion
in them.

The proposed AI-based methods are trained and tested using the Python programming lan-
guage. Then accuracy and reliability of the proposed methods were evaluated. The obtained
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results show that the AI-based proposed methods (Naive Bayes, GRNN and CGAN) could
accurately perform their tasks. Moreover, the simulation results show that applying the
proposed CNCC and ICAM could improve network performance.
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CHAPTER 1 INTRODUCTION

In vehicular networks, connected vehicles can communicate with other devices via various
wireless technologies. Providing safe, efficient and comfortable experiences for road travelers
are the main objective to equip vehicles in order to initiate and use wireless communications.
Beside all of the advantages that vehicular networks have for the users, occurring congestion
in the network is a significant concern for researchers. Increasing number of vehicular users
and consequently generating huge data in the network, make the communication resources
saturated. This situation plummets the network performance and Quality of Service (QoS)
by significantly increasing packet loss and latency in the network.

Congestion detection mechanism and congestion control mechanism are the main strategies
to solve congestion problem in vehicular networks [1]. In closed-loop congestion control
mechanisms, initially the congestion occurs and then it is detected and controlled in the
network. However, in open-loop congestion controlling mechanisms, the measurements and
strategies run in order to cope with congestion problem before it occurs in the network [1].
Controlling the transmission rate and controlling the transmission power are the key parts
of network congestion solutions [1].

Network dynamicity, fast and huge data generation and strict and diverse service require-
ments are the characteristics of the vehicular networks. Regarding these features, intelligent
based congestion management strategies could be an approach to meet the dynamic and
various requirements of the vehicular networks. Although significant progress has been made
by researchers to regrade congestion problem in vehicular networks, insufficient intelligent
congestion management strategies (congestion prediction and congestion control) is sensible
in the literature [1].

1.1 Definitions and Basic Concepts

1.1.1 Heterogeneous Vehicular Network (HetVNET)

Architecture of HetVNET: Communications, Components and Scenarios

Dedicated Short Range Communication (DSRC) and Long-Term Evolution (LTE) are two
technologies that are used in Heterogeneous Vehicular Network (HetVNET). DSRC is used for
Vehicle-to-Vehicle (V2V) communication and LTE is assigned for Vehicle-to-Infrastructure
(V2I) Communication. These communications are shown in Fig. 1.1.
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As shown in Fig. 1.1, Radio Access Network (RAN), Core Network and Service Center are
the main components of HetVNET [2]. Authentication, switching, aggregation and many
more are the functions in core the network. Various services are provided to the users by
service providers and through the service center.

Fig. 1.1 illustrates the architecture of HetVNET considering two types of scenarios: urban
scenario and expressway scenario. Each of the scenarios has their own characteristics such as
the vehicles speed, the vehicles maneuvers, road capacity in terms of the maximum number
of vehicles on the road, barriers, stop points and etc..

As Fig. 1.1 shows, when an accident occurs in the road, a crash warning safety message is
broadcast to other vehicles in the path via V2V and V2I connections. This kind of safety
message is generated by the safety applications. Safety services and non-safety services and
their requirements are explained in the next subsection.

Figure 1.1 HetVNET architecture with showing urban and expressway scenarios.

Applications and Service Requirements in HetVNET

Safety and non-safety services are provided for vehicular users by various applications. The
mentioned service types have their own requirements for various user cases [2]. These re-
quirements and user cases are listed in the Table 1.1 and Table 1.2.
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Safety services help users to have safer travels with a very low risk of accident, fatality and
injury. As Table 1.1 shows, the safety services provide warnings for several specific cases
such as the car accident, collision and road hazards. Network reliability is highly demanded
for safety services. Since the safety messages should be transmitted in a specific time and
before they expire and be useless, timing has significant importance in the safety services.
As mentioned in Table 1.1, the safety services are time sensitive and maximum latency time
is 100 ms for most of them.

Table 1.1 Safety services and their requirements [2]

Safety Services User Case Usage Communication
Mode

Security/
Reliability

Requirements

Maximum
Latency

Vehicle
status
warning

Emergency elec-
tronic brake lights

Warn a sudden
slowdown of the
following vehicle

Time limited peri-
odic broadcast on
event

High/High 100 ms

Abnormal
condition warning

Warn the abnormal
vehicle state

Time limited peri-
odic broadcast on
event

High/High 100 ms

Emergency vehicle
warnings

Reduce emergency
vehicle’s interven-
tion time

Periodic triggered
by vehicle mode High/High 100 ms

Vehicle
type
warning

Slow vehicle
warning

Improve the traffic
fluidity

Periodic triggered
by vehicle mode High/High 100 ms

Motorcycle
warning

Collision avoidance V2X co-operative
awareness

High/High 100 ms

Vulnerable road
user warning

Collision avoidance V2X co-operative
awareness

High/High 100 ms

Wrong way driving
warning

Wrong way driving
warning

Time limited peri-
odic broadcast on
event

High/High 100 ms

Stationary vehicle
warning

Avoid succession of
collisions

Time limited peri-
odic broadcast on
event

High/High 100 ms

Traffic
hazard
warning

Traffic condition
warning

Reduce the risk of
longitudinal colli-
sion on traffic jam
forming

Time limited
periodic broad-
cast/authoritative
message triggered

High/High 100 ms

Signal violation
warning

Reduce the risk of
stop/traffic viola-
tion

Temporary mes-
sages broadcasting
on event

High/High 100 ms

Roadwork warning Reduce the risk
of accident at the
level of roadwork

Temporary mes-
sages broadcasting
on event

High/High 100 ms

Decentralized
floating car data

Improve safety and
traffic

Time limited pe-
riodic broadcasting
on event

High/High 100 ms

Overtaking vehicle
warnings

Reduce the risk of
accident

V2X co-operative
awareness

High/High 100 ms

Dynamic
vehicle
warning

Lane change
assistance

Active road safety V2X co-operative
awareness High/High 100 ms

Pre-crash sensing
warning

Accident impact
mitigation

Broadcast of pre-
crash state High/High 50 ms

Co-operative glare
reduction

Avoid the frontal
collision

V2X co-operative
awareness

High/High 100 ms

For example, in Table 1.1, time for pre-crash sensing warning is very tight; it has a maximum
latency of 50 ms. Therefore, any difficulty in data flow (such as congestion) could jeopardize
the performance of safety application and consequently involves a serious risk for human life.
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Non-safety services are provided by infotainment applications. The aim of these applications
is to make travel pleasant for the drivers and passengers of vehicles. Media streaming, web
browsing and map downloading are examples of services that are provided by non-safety
applications. As Table 1.2 shows, most of these services are less time sensitive than safety
services. Maximum latency is 500 ms in most of the non-safety services.

Table 1.2 Non-safety services and their requirements [2]

Non-safety Services User Case Usage Communication
Mode

Security/
Reliability

Requirements

Maximum
Latency

Regulatory/
contextual speed
limits

Enhance the traffic
efficiency/reduce
the vehicle’s pollu-
tion

Time limited peri-
odic broadcast on
event

High/High N/A

Traffic light opti-
mal speed advisory

Traffic regulation
at an intersection

Periodic, per-
manent message
broadcasting

High/High 100 ms

Traffic
management Intersection man-

agement
Road safety and
traffic regulation at
an intersection

Periodic, per-
manent message
broadcasting

High/High 100 ms

Co-operative flexi-
ble lane change

Enhancement of
mobility efficiency

Periodic broadcast-
ing messages

High/High 500 ms

Electronic toll col-
lect

Traffic fluidity at
the toll collection

I2V broadcasting
and uni-cast full
duplex session

High/High 500 ms

Point of interest
notification

Driver and passen-
gers comfort

Periodic broadcast-
ing messages

Medium/Medium 500 ms

Infotainment Local electronic
commerce

Vehicle
driver/passenger
comfort

Duplex commu-
nication between
RSU and vehicles

High/High 500 ms

Media download Passenger enter-
tainment

User access to In-
ternet for multime-
dia download

Medium/Medium 500 ms

Map download and
update

Efficiency and
comfort

Access to Internet
for map download
and update

Medium/Medium 500 ms

1.1.2 Software-Defined Network (SDN)

Notion of detaching control tasks from physical devices in network infrastructure and defining
the network control duties to the central control plane, has been emerged by SDN technology
[3–5]. SDN has three layers and these layers are interacted by Application Programming
Interface (API) [4]. As Fig. 1.2 shows, two types of API are using in SDN architecture:

• Northbound API: to create connection between application layer and control plane [4];

• Southbound API: is used for interconnection between data plane and control plane [4].

SDN provides programmability, agility, and flexibility to the network, also it brings an effi-
cient, simple and advanced control to the network [3].
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Figure 1.2 SDN architecture

1.1.3 Fog Computing

Equipping devices for using the Internet gives the opportunity of inter connectivity to de-
vices in order to generate, collect, and exchange data with each other. In the Internet of
Things (IoT) paradigm, these devices have not sufficient computation or storage resources.
Therefore, these devices need to communicate with the cloud to carry out several complex
computational tasks. Because of security, and long geographical distance between IoT devices
and cloud, it is efficient to have a local object like fog with enough computation resources and
close to IoT devices [6]. In fog computing technology, a fog device has the ability of storage,
compute, and processing data in order to do some kind of data computations locally and
geography close to the user [7, 8]. Indeed, fog is placed between cloud and end user in order
to efficiently enhance QoS with providing services with lower latency and disturbance [7].
Using fog computing supports mobility, location awareness, and real-time interaction, it can
improve QoS and reduce latency in network [6, 8, 9].

1.1.4 Network Slicing

Network slicing is defined using three layers: Service instant layer, Network slice instant layer
and resource layer. Each network slice instant has features that are necessary in order to meet
requirements of the corresponding Service instants. A network operator needs the blueprint
of a network slice instant to create it. Two or more service instants can use a common network
slice instant. A network slice instant can have no or one and more sub-network instants. Fig.
1.3 shows three layers of network slicing concept [10].
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Figure 1.3 The three layers of network slicing concept, proposed by NGMN [10]

1.2 Congestion Problem

The condition that demands for network resources become more than network resource ca-
pacity is called network congestion. Network resources can be the link’s bandwidth, memory,
and devices buffer (e.g. buffer of network router device). Based on the rate of increasing de-
mands for network resources and finite network resources capacities, the network may suffer
from congestion situations for a long time or transitory.

When data transmission rate by source nodes is more than network bandwidth capacity then
network devices will be overflowed by excessive data load. Therefore, to avoid congestion
in the network, the sender node must not send data over bandwidth capacity. Moreover,
transmission time in bottleneck is lower than other links in the network.

Data load, which is generated by source nodes and flows towards receiver nodes, is input
traffic. Data traffic, which network links can handle (based on link bandwidth capacity)
is output traffic. If huge data traffic needs to go through several routers with fixed buffer
capacity and via finite bandwidth links to reach the destination node, then as Fig. 1.4
illustrates we will have two states including desired state and congestion state in this scenario.

As long as the ratio of output traffic over input traffic equals one, which indicates that input
traffic and output traffic are identical, then we have the desired situation in the network.
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Figure 1.4 Desired state and congestion state of network

Because it shows that data is smoothly flowing in the network. In the desired condition,
amount of packet loss and delay are minimum, network throughput is high, QoS is at ac-
ceptable level, and consequently user satisfaction from network performance is at excellence
level. However, by collapsing the ratio of output traffic over input traffic to less than one,
congestion situations gradually will appear in the network.

In the scenario that input data traffic load exceeds output link bandwidth capacity, packets
must be waited in the router’s buffer to pass through the router and go towards destination
nodes. If we use a router with unlimited buffer size in the network, then we will have a
long queue of arrived packets in the buffer and destination nodes must wait a long time
for receiving packets. Also, in the same scenario a router with a fixed buffer capacity in
the network, will discard the incoming packets whenever its buffer gets full. So, as long
as the buffer remains saturated, the number of dropped packets is increased. Regarding
the network reliability, under this network situation, which source nodes will not receive
any acknowledgement about receiving packets from destination nodes, they re-transmit the
packets again and it leads to heavy load in the network, which makes network congestion
worse. Besides, by dropping packets, all the resources that are used for reaching discarded
packets to the congested point in the network are wasted. Thus, congestion in the network
leads to the reduction in network throughput, increase in both delay and packet loss, growth
in number of packet copies, and waste network resource capacities. Regarding the importance
of network congestion problem, it has been considered in many scientific works [11–17] and
several congestion control protocols are provided by researchers.
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1.3 Open Problems

Lack of centralized approaches

There is a lack in providing efficient reliable congestion control solutions that concede calcu-
lations related to the congestion avoidance and control at the infrastructure level instead of
vehicles like [18–22] . In [20], results show good efficiency, high packet delivery and low chan-
nel busy ratio. However, vehicles must execute too much computations using information of
each received beacon from vehicles around. Also, the calculations that are needed to find
closest and furthest ahead and behind vehicles, must be done in a limited time. Therefore,
having time restriction for running several computations is a challenging problem for the pro-
posed method, because beacon’s information will expire after each 100 milliseconds. In [22],
all the calculations (specially for predicting value of utility function which use Markov chain
method) need computation resources and also are time restricted for vehicles. Since infor-
mation is changed dynamically and quickly in vehicular networks, therefore the calculations
must be done before that new update of information received, and these make a big task to
do in a short time for vehicle users. In this regard, using SDN technology gives opportunity
to the researchers for providing congestion control mechanisms at controllers of SDN archi-
tecture and apart from vehicle user level. However, to the best of our knowledge number of
research works which proposed SDN based architecture to solve network congestion problem
in vehicular networks are very limited currently.

Underestimating the importance of applying congestion prediction

Congestion avoidance is an open-loop problem. Logically, we keep away from situations or
events in which we are sure about occurring or they have a high possibility of occurrence.
Therefore, using powerful network prediction mechanisms are vital and valuable for saving
energy, time, costs and resources.

Need to take the best actions in golden time

Furthermore, latency is another parameter which is very important in real-time situations. In
critical conditions like when an accident happens real-time solutions are vital, and decisions
must be made in efficient time, therefore latency must be as less as human life saved. An
unfavorable result of network congestion is high latency in time sensitive situations. Minimum
human reaction time is 500 ms [23], therefore if an emergency message is received with a
delay more than 500 ms, then it means that safety applications are useless because of weak
network performance. In [24], results show that average delay in some scheduling algorithms
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like First-In First-Out (FIFO), Enhanced Distributed Channel Access (EDCA), Distributed-
Fair Power Adjustment for Vehicular environment(D-FPAV), and Context Awareness Beacon
Scheduling (CABS) is more than 500 ms.

Deficient of adaptable methods applicable for HetVNET as a dynamic environ-
ment

Besides, the dynamicity of HetVNET makes anticipating a network situation a challenging
problem, because mobility and variation is in the nature of vehicular networks. In other
words, each fundamental parameter of the vehicular network is free to change each time.
Big necessity of having a dynamic model which shows high flexibility in face of dynamic
conversions with minimum error in making suitable solutions, exists. A mechanism that
learns from the parameter’s changing pattern in order to create a robust model which will
be accountable in different dynamic changes, is highly needed.

Handling difficulties result from the crucial roles of the clouds in the vehicular
networks

In the IoT environment, all data generated by connected devices are sent to the cloud in
order to process, analyze, and find solutions [25, 26]. Then the cloud sends solutions to the
devices, but sending many solutions from the cloud to a large number of devices needs huge
bandwidth [6, 7]. Furthermore, sending the huge volume of data to the cloud that is not
geographically close to the vehicles, makes difficulties in security, time latency and reliability,
particularly in time-sensitive conditions.

Shortage of intelligent strategies

Absence of intelligent methods in case of congestion prediction and control in vehicular net-
works is sensible in [22,27–30]. The methods which use learning algorithms at infrastructure
level for solving congestion problems in the vehicular network. In [29], authors proposed
an architecture exploited from SDN and concept of edge as a service to solve congestion
problems with no intelligence mechanism for congestion prediction.

1.3.1 Open problems Considered in This Dissertation

Congestion problems can impair network performance and even network service providing
becomes very slow. This situation for a high dynamic network type like vehicular network
is dangerous for human life. For example, in using the autonomous vehicles, which almost
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all the decisions are made using the information coming from smart surrounding objects and
the data generated by the vehicles sensors, any intolerable delay in receiving safety related
data may negatively affect human life and costs.

Regarding the importance of congestion problems and its negative consequences on vehicular
network behaviour, many researchers proposed solutions to avoid congestion and many others
tried to find mechanisms to control it in the network. In closed-loop congestion control mech-
anisms, the authors proposed methods to recover the vehicular network situation quickly. For
example, in many of the proposed congestion control methods, transmission power and trans-
mission rate are reduced to control the congestion state of the vehicular network. In open-loop
congestion control methods, the authors proposed approaches to prevent conditions in which
the network will experience congestion. For example, they define a threshold for channel
usage level and whenever the channel busy level meets the threshold, a mechanism will be
executed to alleviate channel loads. The proposed congestion controlling mechanisms are
mostly based on decentralized methods. In these methods, vehicles execute the controlling
mechanisms and make decisions. However, in centralized approaches congestion controlling
strategies are employed in a central system and vehicles must obey the congestion controlling
policies decided in the centralized system. Decentralized approaches need high vehicle co-
operation, since vehicles need information received from other vehicles to make appropriate
decisions. Moreover, data analyzing and carrying out multiple computations create overhead
for vehicles. Due to limited computation and storage resources of vehicles, with increasing
the number of vehicle overhead and delay may go up a lot. However, centralized methods
are easier in implementing, updating and debugging. Besides, applying powerful resources
in the central unit can make a boosted congestion management mechanism.

Congestion detection is a main part of network congestion management. However, it is not
significantly considered in the literature. In most of the research works, the authors consid-
ered several assumptions for this step. In heterogeneous types of networks like HetVNET,
when more than one technology is used by users, the assumptions for one technology may
not apply to all the used technologies. Therefore, lack of methods in congestion detection
is sensible in the literature. Besides, we believe that to cope with congestion problem in
heterogeneous networks we need solutions, which consist of congestion prediction instead of
congestion detection. Because, when congestion is detected means it exists and now we just
discovered it. However, if we want to have a tolerable heterogeneous network, instead of
letting congestion occur and then control it, we need to avoid congestion, and this is feasible
by predicting network congestion.

Artificial Intelligence (AI) methods are widely used for various prediction problems such as
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regression and classification problems. Machine learning methods help devices and machines
to learn from existing data and utilize what they learned for new data, which the device
may have never seen before. Machine Learning algorithms are categorized to supervised
and unsupervised learning. An unsupervised learning method is capable of learning and
making solutions but with no error evaluation in the decision models. However, a supervised
method is an error correction method, and learning will be matured by training set and
experiences. Supervised learning methods are suitable in non-linear real time problems such
as prediction [31]. Prediction methods are in the supervised category. Using supervised
machine learning methods to predict network congestion in HetVNET is an open problem
yet.

Moreover, the learning process and making predictions with accuracy have challenges due
to massive information needed and highly computation and storage power. However, with
recent technologies such as fog computing and SDN, it is not unlikely that researchers in this
area will consider network congestion prediction more than before.

In fog computing technology, a fog device has the ability of storage, compute, and processing
data in order to do some kinds of data computations locally and geography close to the user
[7, 8]. Using fog computing supports mobility, location awareness, and real-time interaction,
it can improve QoS and reduce latency in the network [6, 8]. On the other hand, the notion
of detaching control tasks from physical devices in network infrastructure and defining the
network control duties to the central control plane has been emerged by SDN technology [3–5].
SDN provides programmability, agility, and flexibility to the network. Also, it brings an
efficient, simple and advanced control to the network [3]. Therefore, considering recent
technologies, proposing intelligent network congestion prediction and avoidance techniques
employed in a centralized architecture are considered in this dissertation.

1.3.2 Research Questions

Regarding the aforesaid open challenges, following main research question may arise:

With regard to the influence role of ML methods to create intelligent communication tech-
nology, and advantages of applying SDN and NFV technologies in the centralized network
management systems, how can we deal with network congestion problem and its disruptive
effects in the HetVNET?

More specifically:

• Regarding the high dynamic nature of vehicular networks, how we can propose an algo-
rithm which is able to precisely avoid network congestion using a congestion prediction
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model?

• Considering advantages of using fog computing, how can we design an architecture,
which intelligently and reliably predict and control network congestion in HetVNET?

• If we suppose that 5G is the main communication system, how does the notion of
network slicing help us to alleviate congestion problem in HetVNET?

1.4 Research Objectives

The main objective of this dissertation is to propose AI-based congestion prediction and
avoidance methods that can be employed in designated hybrid, centralized and intelligent ar-
chitectures of HetVNET. The three following sub-objectives are considered towards achieving
the main objective of this dissertation:

1. Devising a centralized and dynamic Cloud-Fog based Intelligent Congestion Prediction
Architecture of HetVNET;

2. Proposing an Intelligent Congestion Avoidance Mechanism (ICAM) using Artificial
Neural Networks (ANN);

3. Augmenting data applicable in creating network slices in HetVNET, using Conditional
Generative Adversarial Nets (CGAN) and designing a hybrid CGAN-SDN architecture;

4. Evaluating performance of the proposed methods.

1.5 Global Research Methodology

Network management in high dynamic networks such as HetVNET is a challenge. Resource
management, mobility management, debugging and failure recovery are to name a few of
network problems. In a high dynamic network the solutions for the regular challenges must
be generated and executed precisely, quickly and dynamically too. Autonomous networks
is the next evolution in network management in which networks can be self-provisioning,
self-diagnosing and self-healing. Indeed, these networks can dynamically adapt themselves
with the variety of network situations. They monitor the network and analyze the network
situation and prepare themselves to solve any probable problem. Recent technologies such
as SDN, NFV, fog computing and network slicing along with AI methods can help create
autonomous networks. The notion of emerging autonomous networks are based on propos-
ing and applying centralized AI-based mechanisms using the mentioned recent technologies.
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In this regard and toward generating autonomous and adaptive networks, it is required to
propose the SDN and fog-based architectures that are programmable and have enough com-
puting and storage resources. Regarding the main objective and with considering network
congestion in HetVNET, in this dissertation, novel solutions for this problem are proposed
with the aim to generate autonomousity in this type of network.

Congestion prediction is a way toward having an adaptive and tolerable network. Since the
difficulty in data flow and congestion could be anticipated by machine learning methods,
networks can be prepared for preventing or controlling the congestion state in the network.
Therefore, the negative consequences of occurring network congestion such as lots of packet
loss, high delay and consequently low QoS can be improved or at least remain at a fine level.
In this regard, the concept of congestion and happening it in the network is inferred using
these red flags like low network throughput and high packet loss. Indeed, network congestion
is a state of the network not an independent network parameter which can be modified and set
easily. In the other words, congestion can be discovered based on the network behaviour. For
example, if there are plenty of lost packets then it infers to a congestion state in the network.
On the other hand, network parameters such as the transmission power, the data rate, and
the bandwidth have an impact on occurring congestion in the network. In many congestion
related works like [32–38], the authors proposed methods to control network congestion by
modifying the amount of the transmission power and data rate. Therefore, considering the
key role of both network behaviour and network parameters in making congestion prediction
models is a worthy approach, since we can avoid congestion based on network behaviour and
modifying the value of effectiveness parameters.

Predicting network congestion can be considered as both the regression and the classification
problem. In the former, the prediction model anticipates a quantity, which in this work can
be a value which shows performance of the network. In the later, prediction models can
predict a discrete class level of state of the network in terms of data flow. After predicting by
any of these methods, the HetVNET congestion management system is able to execute any
controlling methods to prevent congestion in the network. One of the avoidance approaches
can be to modify the value of transmission power and data rate which are important in
controlling network congestion in vehicular networks.

Data analyzing is the main part of any AI prediction method. In this dissertation, simulated
data is used. Indeed, the HetVNET environment is generated using two simulators: the Sim-
ulation of Urban Mobility (SUMO) and Veins LTE. Parameters such as number of vehicles,
data rate, transmission power of DSRC, Transmission power of LTE and LTE bandwidth are
considered as features of data set. These parameters were changed in the simulation scenar-
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ios. The data is gathered in a dataset and the dataset is used as an input of the AI predicting
algorithm. Therefore, these five parameters are predictors in the prediction models. In other
words, the congestion situation in HetVNET can be predicted using the five parameters.

In the first specific objective of this dissertation, congestion is inferred using a utility function
which shows performance of network in terms of smooth data flowing. Therefore, a predic-
tion model must predict the value of the utility function. The network throughput and data
generation rate are components of the utility function. To reach the first specific objective,
regression congestion prediction model is generated. First of all, several regression algo-
rithms were considered such as Multiple linear regression, support vector machine, decision
tree regression and Generalized Regression Neural Network (GRNN). Congestion prediction
model of the mentioned methods was generated using Python. The algorithms applied a
training dataset to generate the prediction model and tested using a test dataset. Therefore,
performance of the algorithms are compared in the same condition. Accuracy, reliability and
stability of the algorithms have been evaluated. GRNN is an ANN method which employs
the Gaussian activation function in the hidden layer. GRNN is a feed forwarding algorithm
which need one step training model (no need to back propagation). This feature makes it a
fast learner that can converge to an optimal solution in a short time. Moreover, GRNN can
provide accurate prediction model without necessarily needing a huge amount of data. A
Python library for ANN named NeuPy is applied to generate GRNN congestion prediction
model.

After predicting network congestion we need a controlling strategy that prevents from occur-
ring congestion in HetVNET. Therefore, ICAM has two main components: prediction and
avoidance mechanisms. As explained, in the prediction step, GRNN method is applied to
generate a congestion prediction model. This model is used to predict the value of utility
function. Then, based on the result of the GRNN congestion prediction model, an avoidance
mechanism is initiated to work. The avoidance mechanism is based on adapting transmission
power using the prediction model.

In the second specific objective, packet loss is considered to determine congestion in Het-
VNET. Congestion is the reason for packet loss in the network, however, it is not the only
reason for lost packets. Indeed, packet loss may happen because of weak signal or bad chan-
nel condition. In this situation the strength of the received signal is low. Therefore, we
considered data delivery ratio along with received signal strength to infer network congestion
in HetVNET.

Moreover, in the second specific objective, the congestion prediction problem is defined as a
classification problem. Naive Bayesian congestion classification method is applied to gener-
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ate a network classification algorithm. In addition to the Naive Bayesian method, Support
Vector Machine (SVM), K Nearest Neighbor (KNN) and Random Forest classifier, have been
considered in this dissertation. Python is used to generate the network congestion prediction
methods. A well-known Python library named Scikit-learn is applied to implement the net-
work congestion classification methods. A centralized and intelligent congestion management
approach will be proposed to predict network data flowing classes. To attain this objective,
data analyzing and required computations for predicting congestion are accomplished in fog
devices. Unlike the decentralized methods, the vehicles do not predict the network congestion
and they are informed about the result of the prediction and based on the result, they must
run the avoidance strategy. The avoidance mechanism is based on adapting the value of data
rate and contention window.

Network slicing approach in 5G networks to provide reliable services using finite network re-
sources is another notion to consider in this dissertation. Using a generative neural network
method to tailor the HetVNET slices quickly and based on the previous successful experi-
ences is a novel method which can be applied in SDN based architecture of HetVNET. To
accomplish the third specific objective, network slices must be created dynamically based on
network situation. In this regard, the past successful experiences in terms of smooth data
following in the network must be considered to form the new network slices. Regarding dy-
namicity of the vehicular network and the quick changes in the topology, service requirements
and number of users, the network congestion management system should be compatible with
the changes. Therefore, an invariable congestion management strategy could not be the an-
swer for all the variant states of such a network. In the unstable network conditions with
rapid changes in the network situation, searching for one optimum solution is difficult and far
from realism. However, applying slice configurations that are close to the previous successful
experiences could be a potential solution.

In this regard, we can augment information of successful experiences using the CGAN
method. The CGAN is based on a min-max game and trains during backpropagation and
using feedback. CGAN is a deep learning model, and we need a Python library such as
Keras to implement it. The task of CGAN is to generate data similar to real data from
the noise. This CGAN method can apply in the controller of SDN to generate new network
slices. Then, based on the blueprints created in the controller, various slices are formed with
different numbers of vehicles in the infrastructure layer. To boost the controller to accomplish
the CGAN’s tasks, we can employ fog devices in the control layer of SDN.

The metrics used to evaluate performance of the regression and classification prediction
models are different. In the regression prediction problems, Root Mean Square Error (RMSE)
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shows how much the predicted values vary from actual values. A model with high RMSE is
more accurate than that with a low RMSE. Coefficient of determination (R2) indicates how
much variability in the dependent variable is predictable using the predictors. A value close
to one shows that the significant amount of variations of dependent variable can be explained
by predictors, and it is an advantage for the prediction model. F-statistics shows the link
between the predictors and the response (dependent variable). Indeed, we need a large
amount of F-statistic to prove that at least one predictor must be related to the response.
Therefore, in this dissertation the mentioned parameters are used to evaluate performance
of the regression prediction methods.

Regarding the classification problems, metrics such as recall, precision, F1 score and accuracy
are typically used to measure the performance of the prediction methods. Recall shows that
how many times could the prediction model accurately predict the actual positive data.
Precision shows among all the positive predictions how many of them are truly predicted. F1
score combines recall and precision into one parameter. F1 score is typically an important
metric in problems where the cost of recall and precision are the same. Accuracy shows how
much the prediction results are accurate. In the second specific objective of this dissertation,
recall, precision, F1 score and accuracy are used to evaluate performance of the classifiers.

Performance of the CGANs are evaluated by measuring accuracy and loss of the discriminator.
In a CGAN, the discriminator is responsible to recognize real data from fake data. The
generator trains to create data similar to the real data to deceive the discriminator. Indeed,
the discriminator and the generator are players of a min-max game. The best result achieved
when the discriminator labeled the data with accuracy around 50%. This means that the
discriminator finds the real data from fake data, randomly. Therefore, in the third specific
objective of this dissertation, accuracy and loss of the discriminator are measured to evaluate
performance of the proposed CGAN model. Since CGAN is a deep learning method, the
evaluations are based on implementing the proposed CGAN with different numbers of hidden
layers and various batch sizes. Moreover, required training time corresponding to the number
of hidden layers and batch sizes are considered. Then the CGAN with the best performance
is selected as a final model.

To evaluate performance of the proposed approach in HetVNET various metrics such as
packet delivery ratio, packet loss ratio, average throughput and average delay are considered.
The comparisons between the proposed methods in this dissertation and the other congestion
controlling methods in the literature are made using the mentioned metrics.
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1.6 Research Contributions

Regarding the notion of autonomous and adaptive networks, centralized and intelligent meth-
ods to predict and avoid network congestion in the HetVNET are proposed in this disserta-
tion. These methods enabled the HetVNET to self-control the network congestion using AI
techniques along with employing recent technologies such as SDN, fog computing, network
virtualization and network slicing. Additionally, the contributions of this dissertation are as
follows:

1. Proposing a centralized congestion classification approach to predict conges-
tion warning states of the HetVNET: The network congestion states of HetVNET
can be classified to warning and nonwarning states, using the amounts of delivered data
and signal strength. By integrating these two parameters we can be sure that the packet
loss is due to congestion in the network. The five predictors that are used are the pa-
rameters that have significant effects on network congestion. Moreover, a cloudy-fog
intelligent congestion prediction architecture of HetVNET is proposed to apply the
congestion prediction method in the fog devices. The centralized congestion classifica-
tion approach could improve performance of the network in terms of packet loss ratio,
average delay and average throughput.

2. Developing an intelligent congestion avoidance technique for HetVNET: A
utility function is proposed to show performance of the HetVNET and the GRNN is
applied to predict the value of the utility function. Then, based on the sensitivity
of the network and roads, the predicted value can be inferred as a safe or a warning
or a congestion state in the network. Afterward, the proposed avoidance mechanism
modifies the value of transmission power and data rate to avoid congestion in the Het-
VNET. Therefore, the proposed congestion avoidance mechanism contains two steps:
predicting network congestion state (the value of utility function), and adapting the
value of transmission power and data rate accordingly. The proposed GRNN conges-
tion prediction model is an accurate, reliable and stable model. Applying the proposed
intelligent congestion avoidance technique could improve packet loss ratio and average
delay in HetVNET.

3. Applying the proposed mechanisms increases stability in the performance of
the high dynamic HetVNET: This is the main contribution of this dissertation. By
applying the proposed methods, network prepares for the conditions that are likely to
accrue in the future. Therefore, with this self-preparation against network congestion
situations in advance, network performance should be more stable than before. Because
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occurring congestion is not an unexpected event any more. The results show that the
network could perfectly prepare itself in a manner to avoid future network congestion in
the dense traffic situation. Indeed, this stability is the result of applying a self-adaptive
network.

4. Augmenting data comes from the past successful network experiences to
create HetVNET slices: CGAN is used in a SDN-based architecture of HetVNET
with the aim of avoiding congestion in HetVNET slices. The proposed deep learning
method is presented in a fog-controller of SDN-based architecture to create network
slices intelligently and dynamically. In this method, network slices are categorized
by number of the vehicles. Then, the information to configure the network slices are
generated by the CGAN. In other words, the network slices are dynamically generated
using the value of parameters generated by CGAN. To the best of our knowledge, it is
the first time that the CGAN is applied in a SDN-NFV architecture of HetVNET to
generate network slices. In the proposed method, the CGAN could accurately augment
the data required to create network slices.

1.7 Outline of Dissertation

This dissertation contains eight chapters. Related works are reviewed in Chapter 2. In this
chapter standards and congestion control mechanisms are presented and discussed.

In Chapter 3, a Naive Bayes prediction method is proposed to predict the warning state
of data flow in the HetVNET. Indeed, the congestion warning prediction is proposed as a
classification problem. Moreover, a centralized cloudy-fog based architecture is proposed in
which the proposed Naive Bayes prediction method can be applied.

In Chapters 4 and 5, the states of the network are defined and predicting the state of the
network in terms of congestion is proposed as a regression problem. A utility function is
proposed to show performance of the network. In Chapter 4, a multiple linear regression
method is proposed to make a congestion prediction model. Then, in Chapter 5, a neural
network method is applied to predict the value of the utility function. Moreover, a congestion
avoiding mechanism based on an adaptive transmission power method is presented in this
chapter.

In Chapter 6, the network slicing concept in a highly dynamic environment like HetVNET is
considered. A deep learning algorithm is applied to augment data from the most successful
past experiences. The generated data can be used to configure the network slices dynamically.
Moreover, an intelligent hybrid CGAN-SDN architecture is proposed for HetVNET.
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In Chapter 7, a general discussion is presented about the proposed methods in this disserta-
tion. Finally, in Chapter 8 the contributions, the limitations and future works are presented.
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CHAPTER 2 LITERATURE REVIEW

2.1 Network Congestion Control Mechanisms

Regarding the importance of network congestion problem, it has been considered in many
scientific works [11–17] and several network congestion control protocols are provided by
researchers.

Transmission Control Protocol (TCP) contains two phases of slow start and congestion avoid-
ance. In the slow start phase, it uses a variable like congestion window (CW) to show network
capacity, and gives an initial value to the CW. Mostly, CW gives a value of 1 MSS (Maxi-
mum Segment Size) initially. TCP exponentially increases value of CW by 1 for each received
acknowledgment during a Round-Trip Time (RTT), for example in first RTT sender sends
1 segment, for second RTT it sends 2 segments, and for next RTT sender sends 4 segments
and so on, till the value exceeds a predefined threshold or sender node finds out a segment
is lost. Then in order to avoid congestion in the network, the value of CW will be increased
slowly by 1 for each acknowledgment that is received during a RTT, also the sender node
reduces the volume of data which it wants to send via TCP connection [39]. In TCP Tahoe
when CW exceed a predefined slow start threshold “ssthresh” or when an acknowledgement
is not received (it means segment is lost so it is signal of congestion in network), then value
of “ssthresh” is changed to the half of CW and value of CW is reset to one and start to
re-transmit loss segment [11]. After that, CW is increased for each acknowledgement that is
received by the source node. TCP Reno uses two mechanisms for solving congestion problem
in the network, Fast Retransmit and Fast Recovery. In fast retransmit, if the sender node
receives three duplicate acknowledgments, then it supposes that congestion has occurred in
the network, it immediately retransmits the segment again and reduces the number of seg-
ments, which are going to be sent. Then, TCP Reno will start fast recovery, hence firstly
it reduces value of slow start threshold “ssthresh” to the half of CW and secondly updates
CW to the new value of “ssthresh” and finally for each received duplicate acknowledgement
it increases CW by 1 [11].

TCP with ‘Selective Acknowledgments’ (TCP Sack) is based on a notion that acknowledge-
ment can be generated for a group of data segments (instead of an acknowledgement for a
segment) that are received by a destination node. Indeed, in the TCP Sack, the receiver node
produces an acknowledgement that shows which segment has been received. Whenever, the
sender node discovers a segment loss then it retransmits the segment and same to the TCP
Reno, fast recovery phase will be started [11]. TCP Vegas is based on congestion avoidance.
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Indeed, source node controls RTT to inform about load level in buffers of intermediate routers
between itself and destination node. If the source node receives a packet acknowledgement
with delay it means that the communication link may have been congested. In TCP Vegas,
expected transmission rate for a packet is computed. Expected transmission rate equals the
ratio of CW over minimum of all RTTs. Then, the source node calculates actual sending
rate and compares this value with expected transmission rate. If expected transmission rate
equals to a predefined value like α plus actual sending rate then CW will be linearly increased.
If expected transmission rate equals to a predefined value like β plus actual sending rate,
then CW will be linearly reduced. Otherwise, the value of CW will not be changed [11].

Random Early Detection (RED) congestion control protocol helps source node to reduce
transmission rate before that router buffer becomes full and packets are dropped. RED
defined two variables of maximum threshold and minimum threshold for queue length in
the buffer. It also computes average queue length. If average queue length is less than
minimum threshold then packet will be buffered in router. If average queue length is more
than minimum threshold and also less than maximum threshold, then packet may be dropped
with a probability like P. Otherwise (average queue length is more than maximum threshold),
then packet will be dropped certainly [12]. Therefore, if the probability of dropping packets
(P ) in the buffer is high, the sender should reduce packet transmission rate.

Another queuing management algorithm is Blue, which calculates the probability of dropping
a packet (P ) from a queue in the router’s buffer. Each time that buffer gets full, Blue increases
P and if data traffic in the buffer is alleviated, then probability of dropping a packet will be
reduced [13]. Most of the mentioned congestion control algorithms are based on data loss in
the network, which is considered that packet/segment is lost because of limited buffer capacity
of middle nodes like routers. Indeed, these algorithms use packet loss as a signal of congestion
and as soon as a packet loss is recognized they switch to the congestion repair/avoidance
phase. However, packet loss may happen because a momentary traffic bursts or it may come
after applying a security policy at intermediate nodes between source node and destination
node. In this regard, Explicit Congestion Notification (ECN) and Bottleneck Bandwidth and
Round-trip propagation time (BBR) are two congestion control protocols, which use another
parameter except packet loss for congestion detection and control in the network.

ECN provides a congestion control mechanism as an extension of TCP and Internet Protocol
(IP). In ECN two end nodes inform each other about congestion by setting an ECN code point
in two bits of IP header in each packet. Code points can have four values, each indicating
a state of the network in terms of congestion. Following table contains possible code points
and corresponding meaning of each ones [14]:
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Table 2.1 ECN code points and descriptions[14]

Cod Points Descriptions
(00) Non ECN (a packet with no use of ECN)
(10) ECN Capable Transport and called ECT(0)
(01) ECN Capable Transport and called ECT(1)
(11) Congestion Encounter (CE)

In the case that each of the end nodes do not support ECN they can use (00) as code point
in the header of the packet. ECT (0) and ECT (1) have the same meaning and nodes can
use them for the condition that transferring data has no difficulty in terms of congestion.
Congestion Encounter (CE) is used by routers with overloaded buffer. Actually, the router
(which is encountered by congestion problem and its buffer capacity is full) uses CE code
point in the header of the packets which are coming after overloading buffer state instead
of dropping these packets. In this case, if an end-node receives a packet with CE at the
header, it informs that there is a traffic burst at the router point, thus the node reduces its
transmission rate [14].

Moreover, BBR that has been proposed by Google recently is not a packet loss based con-
gestion protocol [15]. In BBR, bandwidth and data transmission rate is considered as two
main parameters to cope with congestion in the network. After sending data from source
node to the destination node, sender node can estimate actual bandwidth between itself and
receiver node by computing total delivered data over a time interval. For the next time, the
sender node takes risk and increases the amount of data to send in order to know if network
bandwidth still can tolerate this volume of data or cannot. Again from calculating delivered
data over a time interval, source node decides to prepare more data to send or cease raising
it. If the ratio of delivered data over a time interval is reduced in comparison to the previous
time interval, then the source node decides to diminish the volume of data to send, otherwise
it continues to increase the amount of data for transmission at the next time of sending data.
Reduction in data prepared to transmit may not be a stable state for the source node and
it is possible that the sender node again decides to increase the volume of data to transmit
in order to find out if the congestion was a transient problem in the network or not. Once
the ratio of delivered data over a next time interval is improved in comparison with previous
ones, then again the source node can consider more data to transmit [15]. In BBR sender
nodes perform estimations based on the network throughput and make decisions according to
the network performance. Indeed, congestion situations are inferred regarding data delivery
level during specific times in the network.
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In case of congestion problems, Datagram Congestion Control Protocol (DCCP) provides a
way that two end points can cooperatively decide about which congestion control is used [16].
DCCP uses ECN code point of CE, which is used when congestion is experienced by a router.
Indeed, several kinds of dropped packets (which are explained at the following) or ECN code
point (CE) are considered as signals of congestion in the network. One byte in Congestion
Control Identifier (CCID) is used for the congestion control mechanisms negotiation between
source node and destination node. CCID can have a positive integer value in the interval
of [0, 255], which except CCID 2 and CCID 3 other CCIDs are reserved. The CCID 2 is
about applying a congestion control mechanism, which is similar to the TCP congestion
protocol. It means that, for each delivered packet receiver produces an acknowledgment for
the transmitter node. A CW is defined for the sender. This node sends packets until reaching
the CW value. The strategy for coping with congestion is to cut down CW to half of the
current value. Besides, the receiver node generates an acknowledgment containing a sequence
number of received packets and sends it to the sender node. In CCID 3, which is similar
to the TFRC congestion control protocol, the receiver node produces an estimation about
packet loss for the transmitter node. Transmit rate at the sender side is updated using the
estimation. DCCP uses a code to define the reason for dropping packets and the sender node
informs about why a packet is dropped. Table 2.2 contains drop codes and meaning of each
ones [16]:

Table 2.2 Drop codes and descriptions[16]

Drop Code Descriptions
0 Protocol restrictions
1 Application is not listening
2 Overloaded traffic in buffer
3 Corrupt data in packet
4-6 Reserved
7 Delivered corrupt data packet at receiver node

When a sender node receives an acknowledgment with drop code 0, it informs that packet is
discarded due to protocol limitation and not for congestion problem. Therefore, the sender
must cease sending packets until the restriction is resolved. If a packet is dropped with drop
code 1, it means that the application at the receiver node stopped listening for data, so it
is not a congestion situation and the sender node should not transmit data any more. Drop
code 2 must be considered a congestion situation by the sender node and the transmitter
should react appropriately to alleviate congestion in the network. Moreover, using drop codes
3, 4-6, and 7 do not indicate congestion problem in the network, except they come with ECN
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code point (CE) [16]. As explained before, in the DCCP, congestion is recognized with one
of the two conditions: first, dropped packet and second, ECN code point. It means, if each
one of the two conditions is met then end points must react based on congestion control
strategies (CCID 2 or CCID 3). Indeed, all the dropping packet types are not considered as
the congestion situation except packet dropping happens along with ECN code point [16].
The main difference between TCP based congestion control protocols (e.g. TCP Tahoe, TCP
Reno, TCP Sack, TCP Vegas, and etc.) and DCCP is that DCCP does not accept dropping
packets for any reason as an indispensable sign of congestion in the network. The DCCP
gives the opportunity of selective reaction to the sender node against dropping packets in
the network. However, if a malicious node tries to modify drop code in acknowledgement
packets, for example it changes drop code from 2 to 3 or removes ECN code point, then
sender node does not inform about congestion and it continues to send packets even with
more data transmission rate.

TCP Friendly Rate Control (TFRC) controls the congestion problem in the network using a
throughput based formula to find appropriate transmission rate for sender nodes. In TFRC,
the sender node sends a group of packets to the destination node under a particular transmit
rate. Destination node calculates the rate of loss event and sends this information for the
sender. Loss event refers to a situation where one or more packets belonging to a window of
data have been lost. Sender node uses the rate of loss event to compute RTT. Then, rate
of loss event and RTT are applied as input of throughput formula in order to find a proper
transmission rate for sender node [17].

According to the above mentioned congestion control protocols, we can say that the conges-
tion problem is detected mostly by dropping packets, while reduction in throughput can be
another sign of congestion which is considered in BBR.

2.2 Analyzing the Conventional Solutions for Congestion Problem in Vehicular
Networks

The proposed congestion control mechanisms for vehicular networks are mainly based on two
standards of the European Telecommunications Standards Institute (ETSI) and the Wireless
Access in Vehicular Environments (WAVE). As Fig. 2.1 shows, IEEE 802.11p is used in the
physical and data link layer of both ETSI and WAVE standards. WAVE is adopted in the
United States, and all the proposed methods in this dissertation are based on the WAVE
standard.
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Figure 2.1 VANET protocol stacks [38].

2.2.1 Decentralized Congestion Control (DCC) Mechanism

ETSI defined Cooperative Awareness Messages (CAM) for safety related applications. ETSI
applies Decentralized Congestion Control (DCC) in the MAC layer. DCC is a state machine-
based approach which switches between three states of relax, active and restrictive based on
channel load. These states are shown in Fig. 2.2.

Figure 2.2 Illustration of DCC’s states based on the value of CBR.

Switching between the states is based on the load of the channel. Channel Busy Ratio (CBR)
shows the load of channel. Indeed, whenever the value of CBR for a specific duration of time
is more than a predefined threshold for minimum channel level usage or CBRminth, then the
state machine will switch from relax to active state. If the value of CBR for a specific duration
of time is more than a predefined threshold for maximum channel level usage or CBRmaxth,
then the state machine will switch from active to restrictive state. In the restrictive state,
the message generation rate will be slower than the active state. Most of the proposed ETSI
DCC based methods include transmission power control, message generation rate control and
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transmission data rate control. In fact, in each state, the DCC applies different transmission
power, data rate, message rate and receiver sensitivity. For example, Table 2.3 shows the
value of mentioned parameters that are used in [40]:

Table 2.3 Parameters and their values used in [40] for each state of DCC

State Packet Transmission Data transmission Receiver
interval power rate sensibility

Restrictive 1000 ms -10 dBm 3 Mbps -65 dBm
Active 500 ms 23 dBm 6 Mbps -85 dBm
Relax 40 ms 23 dBm 12 Mbps -95 dBm

Considering Table 2.3, when the CBR increased and the state of the machine was switched to
the restrictive state, in order to control congestion in the network, the value of transmission
power reduced. This parameter has the same value with no changes during active and
relax states. Transmission data rate is another parameter that we can see reduction in its
value, from relax to the restrictive state. Despite these two parameters, the time interval
between packets grew, from relax to the restrictive state. This is to reduce the load in the
communication channel.

Finding an optimal value for the thresholds in the DCC mechanisms is a big challenge.
Moreover, lack of a value setting procedure for transmission power and data transmission
rate that could assign optimal value to them, exists in the literature. For example, in [36],
the authors proposed a method in which each vehicle could tune the transmission power
based on its speed.

In [41], an utility function optimization method has been proposed to control the amount
of transmit power in a cooperative VANET. In [38], the authors proposed channel aware
congestion control (CACC) that is based on adjusting the value of transmission power and the
value of data transmission rate. In this method, they increased the transmission power and
reduced the data transmission rate. Unfair channel allocation, imbalance channel utilization
and oscillate between the states are to name but few about current concerns related to the
DCC in ETSI especially under critical channel load conditions [42, 43]. Indeed, ETSI DCC
suffers from a good configuration, which could respond to the under-utilization and unfair
use of the communication channel.

The method named "LIMERIC" presented in [44] is based on controlling message rate in
the vehicular networks. In this work, it is assumed that each vehicle can calculate message
rate (rc) using the total channel capacity. The authors assumed that vehicles calculate same
amount of message rate at the same time like t. To reach a local fairness among the vehicles,
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Table 2.4 Comparison of several proposed congestion control algorithms

Algorithm Controlling parameter Required information
DCC Transmission power, data rate, CBR

channel sensitivity, message rate
CACC [38] Transmission power, data rate Received signal strength,

Packet loss
LIMERIC [44] Message rate CBR
PULSA [45] Message rate CBR, rate from neighbors
ECPR [46] Transmission power, message rate CBR, power from neighbors

Transmission power from
SBCC [47] Transmission power neighbors, number of

vehicular
Enhanced Reactive [48] Data rate Channel Resource Limit
DCC (CRL)
MD-DCC [49] Message rate, data rate Minimum channel load

they assumed the desired message rate like rg which is one share of the total rate. The
total rate was equally divided among k vehicles. In calculating rc, exempting rg, two other
parameters are important: α which is forgetting factor used to decrease effect of the last
message rate, and β is weight of the error in the last message rate (e(t− 1) = rg − rc(t− 1)).
In this work, it was assumed that the value of α, β and rg are constant. The authors believe
that when α= 0.1 and β =1/150 for the maximum 284 number of vehicles the proposed
algorithm converges to a message rate in which the channel’s capacity is fairly shared among
the vehicles. Therefore, they used these values for implementing their proposed method. The
big challenge in applying LIMERIC is that we do not know about the optimum value of α,
β and rg. Regarding dynamic change in number of vehicles, for more than 284 vehicles what
are the ideal values of α, β and rg.

In [45], an adaptive transmission range and rate is proposed to control congestion and keep
the value of CBR below a threshold. The authors believe that the transmission range is
independent from vehicle density, however, the transmission rate depends on the number of
vehicles. Therefore, at the first step they used a constant value for transmission range and
adjusted the transmission rate. In this method, a target transmission rate was considered.
When the value of current transmission rate is less than the value of target rate, the value
of transmission rate was multiplied by two. If the value of current transmission rate is more
than the value of target transmission rate, the value of current transmission rate must be
divided by two. The optimum value for channel threshold is not defined. Besides, it is
assumed that each vehicle must exchange channel information which provides extra load for
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the network.

In the method presented in [46], transmission power and data rate were adjusted in order to
increase awareness ratio and control congestion in the communication channel. The range of
the vehicles that could receive broadcast messages can be changed by modifying the amount
of transmission power. The author applied transmission power adapting technique to affect
awareness in the network. They proposed a combined algorithm in which the vehicles can
independently modify the value of transmission power and the value of data rate. In this
method, vehicles receive the value of transmission power of neighboring vehicles and sort
them. Then each vehicle can choose the lowest value of the received transmission power.
The vehicles increase the amount of transmission power and data rate with respect to the
CBR. In this work, awareness and channel load have the same priority. However, in the
real world scenarios, increasing both the transmission power and data rate can escalate the
risk of saturating the communication channel. The authors considered a threshold for CBR,
however, the optimal value for CBR was not mentioned. Moreover, the proposed approach is
a distributed method, thus, the vehicles estimate the channel situation and calculate the value
of CBR asymmetrically. In a dynamic environment like vehicular network with an unknown
number of vehicles it is difficult to measure CBR correctly by all the vehicles. Hence, the
centralized strategies might be a better choice to apply.

Statistical Beaconing Congestion Control (SBCC) has been proposed in [47]. SBCC is a
distributed method in which each vehicle calculates how much transmission power must be
for beacon messages, regarding the maximum given beacon load in the channel. The amount
of transmission power can be computed using number of vehicles and beaconing range and
rate. In this method, every vehicle must gather information of transmission power, location
and receipt power of the other vehicles for a period of time and store the information in a
table. Based on the information of the table, each vehicle estimates the load of the beacon
messages in the network. Then each vehicle calculates the amount of transmission power.
Since the vehicles calculate transmission power asymmetrically, the beaconing load could not
exactly below the predefined maximum allowed beaconing load. Moreover, it is not clear
who is responsible for defining the value of maximum allowed beaconing rate in the network.
This is an important issue, because a low amount of maximum allowed beaconing load could
improve channel busy time in the dense scenarios. In a dense scenario, as the result showed,
the authors could not reduce channel busy time very well.

In [48], the problem of under-utilization in the communication channel has been considered.
The authors provided an approach to have maximum utilization of the channel when it is
busy. In this work, the channel resource limitation was formulated. Then, the time that each
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node can use the channel with maximum transmission rate could be calculated using the
proposed formula. They considered 40 Hz as the maximum transmission rate. This amount
can be applied for transmitting packets with size of 400 bytes to 600 bytes and when channel
load is less than 64%. However, based on the results, when 70% of the channel is busy and
the channel is shared between 100 number of vehicles, the maximum transmission rate for a
400 bytes packet and a 1000 bytes packet is 13.1 Hz and 5.3 Hz, respectively. Note that these
low transmission rates are not sufficient for several services in vehicular communications.

In [49], a decentralized combined Message-rate and Data-rate Congestion Control(MD-DCC)
has been proposed for V2V communications. In MD-DCC, a threshold for minimum channel
load like rmin was considered and the beacon frequency must not be less than the value of
rmin. For this aim, the vehicles must reduce the message rate for beacon messages. However,
in dense vehicular scenarios, decreasing the message rate might not be sufficient to control
the network congestion. Therefore, in the dense traffic situation the data rate must increase
to extend the channel capacity.

2.2.2 Congestion Management in WAVE Standardization

WAVE uses Basic Safety Message (BSM) instead of CAM. In WAVE, the communication
channel is divided into seven channels (each 10 MHz), of which channel 172 is dedicated
for V2V safety application messages. High Availability Low Latency (HALL) is the other
name of this channel. Channel 184 is dedicated to public safety messages and also named
High Power Long Range (HPLR). Among the remaining five channels, channel 178 is Control
Channel (CCH). The other four channels are Service Channel (SCH) [50]. Fig 2.3 shows the
DSRC channel arrangements in the United States.

Figure 2.3 DSRC channel arrangement in WAVE.

From the network congestion management point of view, network congestion related solutions
(based on WAVE standard) have mainly two phases: network congestion detection, and
network congestion control [1]. In the network congestion detection phase, the network
management unit discovers that congestion occurred. This phase is the first mandatory step,
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since if the congestion does not happen, the second phase is not initiated. In the second
phase, a congestion controlling mechanism runs to reduce congestion in the network.

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is the default method
for accessing the communication channel in WAVE [51]. In this mechanism, vehicles have
the same priority to access the channel. The vehicle that has data to transfer must sense
the medium and if the channel is idle for an Arbitrary Inter- Frame Space (AIFS) period
of time, then it could send the data. Otherwise, the vehicle must wait a random time and
then run an exponential back-off mechanism and wait for a random amount of time in the
range of zero to CW . When the random waiting time is finished, the vehicle sends the data
via the communication channel. At the receiver side, when the vehicle received it must send
Acknowledgement (ACK) to the sender. If the sender did not receive the ACK, it must
double the amount of CW and wait for a new random back-off time and then resend the
data. The amount of CW can be increased until it reaches to the maximum value of the
CW (CWmax). This mechanism is not efficient especially in the dense network since it is
very likely that the random back-off periods overlapped and the channel is congested.

Table 2.5 Priorities and parameters of EDCA [52]

Priority CWmin CWmax AIFS
Voice (AC(3)) (CWmin + 1)/4-1 CWmin + 1)/2 1
Video (AC(2)) (CWmin + 1)/2-1 CWmin 1
Best effort (AC(1)) CWmin CWmax 1
Background (AC(0)) CWmin CWmax 2

In CSMA/CA, the Enhanced Distributed Channel Access (EDCA) mechanism gives priority
to messages based on the application. The large CW and AIFS is assigned to the low priority
messages [52]. Table 2.5 listed the message priorities and the corresponding CW size and
AIFS. The level of priority is shown by Access Category (AC). The highest priority belongs
to the AC(3) which has the lowest amount of CWmin and CWmax. The weakness of the
EDCA is that the vehicle with high AC messages has always the highest priority to get the
channel. Therefore, a vehicle with lower AC messages should wait a long time to use the
channel. This can lead to a greedy behaviour and unfairness in the network.

Congestion Detection and Prediction Methods

In the literature, authors defined strategies for the congestion detection phase. In these meth-
ods, they used several assumptions about network congestion happening and then whenever



31

these assumptions got true, they considered that congestion occurred in the vehicular net-
work. The metrics which have influence on congestion in the network are considered to
create the assumptions such as vehicle density and channel busy level. For example in [23],
the proposed congestion control mechanism is applied when more than 70% of the commu-
nication channel is saturated. In [53], authors defined a threshold for channel busy level and
whenever the channel is occupied more than the threshold, then the controlling strategy is
applied. The authors in [20] considered vehicle’s density around vehicles to detect conges-
tion in the VANET. In [27], authors defined several clusters for vehicles and the proposed
congestion controlling method is applied for active nodes. By considering several vehicles in
each cluster as active nodes, they tuned active vehicle density in clusters. Similar work is
presented in [18], the authors distributes vehicle’s density in several predefined segments and
to avoid network congestion the dedicated bandwidth for each segment must be used just by
a member of that segment.

In [54], the authors considered several parameters like Message Delivery Ratio (MDR), av-
erage delay, throughput, and network load to propose an aggregate parameter named Q for
congestion in VANET. Then, authors normalized Q and used the aggregate parameter for
detecting congestion in the network. Also, Zang et al. [55] did the same work in case of con-
gestion detection based on parameters. In the proposed work whenever each of two following
conditions are happening they supposed that congestion will occur and then the congestion
control mechanism will be executed automatically. First is based on receiving or sending
a safety message with high priority, and second is based on channel usage level. Different
congestion control mechanisms are assigned for states of when more than 95% of channel and
when more than 70% of channel is used. In the proposed mechanism they used a static and
fixed threshold for channel usage while from the results congestion may happened also in the
interval of [60%,70%] channel usage.

Detection is about something that exists, however it is not discovered or it is hidden.Therefore,
when we speak about detecting network congestion it means that it has occurred (or very
close that happening) and needs to be discovered, like the works that are mentioned above.
However, network congestion prediction is about predicting a congestion state of network
before it happens. Logically, we keep away from situations or events that we are sure about
happening them or they have a high possibility of occurrence. Therefore, usually we start
to analyze evidence and parameters then create an accurate anticipation about the event
happening and then based on results we start to use strategy to prevent events occurring
in the near future. If we assume that congestion is like that event and we do not want it
to happen, hence we try to predict it before happening and then do avoidance strategies.
Network congestion prediction is not considered by authors in literature.
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Moreover, the first phase of network congestion management which is highly important is
not considered very well in the literature. Authors did not explain well about the congestion
detection step and they put all of their efforts to control congestion in the network, not to
detect or beyond that to predict it.

Congestion Control Methods

Based on the layers of TCP/IP model, the proposed congestion controlling mechanisms are
considering congestion problem in one or more layers. In cross-layer techniques the congestion
controlling methods consider all the layers [1]. Fig. 2.4 shows the schema of the proposed
congestion controlling methods in networking layers. In the application layer, applications
can help control network congestion by reducing the number of generated packets per unit
of time. In the transport layer, data stream adjustment is a method to control congestion
in the network. Proposing new routing methods and creating fair bandwidth allocation
techniques are considered as the network layer congestion controlling approaches. Most of the
congestion controlling methods have been proposed to apply in the Medium Access Control
(MAC) layer such as transmission power and data rate adaptation methods and prioritizing
and scheduling techniques. Physical layer has a key role in the most proposed congestion
management approach, since channel sensing and measuring the channel load are the main
part of detecting congestion in the vehicular networks.

Kumar et al. [56], explained three types of messages: beacon, emergency and query. The
query message is about information that the vehicle needs to know. The proposed congestion
control algorithm throw-off the same messages by using a neighbor table. For each received
message the values of type, identity, current location, message, directions, and speed will be
compared with records in the neighbor table. Afterwards, if an incoming message is already
in the neighbor table, the new message will be discarded, otherwise the message will be
added to the table. Besides, the congestion control algorithm uses a counter, if the counter
is zero the message is deleted from the table. This method has several drawbacks. First of
all, the delay is significantly high due to comparing the information of the recently received
message with the other recorded messages to find similar messages is a time consuming task.
Moreover, recording the messages needs enough memory especially in dense traffic situations.
Therefore, this method make extra overhead for vehicles. Additionally, in high dense regions,
eliminating the similar messages may reduce the traffic load, however, it is not enough that
could significantly reduce the risk of occurring congestion in the vehicular network.

In [18], the authors defined several segments and assigned each vehicle to a segment. The
segments are different in the number of assigned vehicles. A node in each segment determines
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Figure 2.4 Schema of the proposed congestion control approaches in TCP/IP networking
model [1]

which node of the segment can use dedicated bandwidth during a specific time interval. Since
segment densities are not equal, bandwidth allocation is not fair. Because, a node in a denser
segment has to wait more to use dedicated bandwidth. Moreover, time of using bandwidth
for a node in a crowded segment is less than a node in a non-crowded segment.

In [23], the authors improved packet loss, average delay and probability of collision by apply-
ing K-means clustering technique (unsupervised algorithm). As Fig. 2.5 shows the proposed
strategy is divided into the three parts: congestion detection, data control and congestion
control. In the congestion detection unit, it is assumed that congestion happens whenever
channel usage comes up to 70%. In data control unit messages are collected, filtered and
then clustered. In the congestion control unit appropriate communication parameters are
assigned to each cluster. In data collecting, it is assumed that all sent and received messages
by vehicles are gathered in the Road Side Unit (RSU). Message filtering process is briefly
mentioned like “removing same messages in RSU”. For each buffered message in RSU like
“m”, a search algorithm must be executed to find message/s with the same information to
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“m” in all containing portions (a message involves several portions). Performing a search
method for all collected messages in RSU should be done before a message gets outdated.
Therefore, it was better to explain more about how many messages are assumed in simulation
and also which searching algorithm has been used for finding same messages.

Figure 2.5 Flowchart of the machine learning congestion control strategy proposed in [23]

In [19], the authors worked on solving congestion problem for emergency messages with high,
medium and low priority. They added one byte header to the safety messages named Hopcpt.
The value in the Hopcpt shows the level of priority of the message. Messages with highest
priority have the lowest value in theHopcpt. Moreover, the lower value ofHopcpt indicates that
a safety message came from a vehicle close to the receiver vehicle. Therefore, it could mean
that a road danger is very close to the receiver and the safety message must be transmitted
very soon. A large value of Hopcpt shows that the road danger is far from the vehicle.
Consequently, transmitting the safety message with delay could not make a serious risk for
the receiver vehicle. The congestion control mechanism was based on three steps of assigning
priority to each emergency message, finding congestion, and tuning transmission power and
beaconing rate. To detect congestion in the VANET, the vehicles must calculate the average
waiting time to access the channel, collision rate and beacon reception rate, for a period
of time. Moreover, each vehicle must record information of: vehicle ID, direction, speed,
transmit power and expiration time. Then, the vehicle selects the minimum value between
the current transmit power and the transmit power of the received message. Then beacon
rate must be calculated and assigned in a manner that the bandwidth divides fairly between
the vehicles. Applying this method in a dense vehicular environment could make overload
and increase end-to-end delay, since the vehicles must do all the tasks and computations for
each safety message.
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Broadcast storming enhances both reliability and probability of congestion occurrence for
emergency and beacon messages. In [21], the authors introduced “fully distributed conges-
tion control (FD2C)” and “Unicast Multi-hop Data Dissemination (UM2D)” techniques in
order to achieve high data delivery plus avoiding congestion. They tuned transmission power
of each vehicle based on the crowding level surrounding the vehicle. In the proposed FD2C
algorithm, as long as local communication congestion does not exceed communication con-
gestion threshold, transmission power will be increased, and otherwise transmission power
will be diminished. In the work, the value of communication congestion threshold is not
defined clearly.

In [57], authors proposed a congestion control mechanism which works in profit to safety mes-
sages transmission in VANET. They believed that vehicle’s location and vehicle’s velocity are
two factors that must be considered in control channel allocation. Therefore, authors defined
a utility function for probability of message transmission in a network, in which delivering
safety messages to the nearest neighbors has highest priority. Moreover, the maximum value
of utility function can provide the minimum delay for VANET.

Taherkhani and Pierre [24] proposed a method for solving network congestion problem in
Vehicular Ad hoc Network (VANET) by using an open-loop strategy. From the simulation
results, the authors were successful in reducing average delay and number of packet loss.
Indeed, they could control the congestion before it occurred by using a mechanism based on
giving priority to each message and then scheduling them in two different CCH and SCH.
With improving in average delay and number of lost packets, they could increase average
throughput in the network. Main feature of VANET is changing dynamically in the number
of vehicles, the speeds, distance, the direction of vehicles, and network topology, hence deci-
sions must be made by using dynamic factors. In [24], authors used priority and scheduling
techniques by considering dynamic parameters like velocity of sender’s vehicle, usefulness
metric, message validity, distance between sender and receiver, and direction of sender and
receiver in order to assign priority to each message. Then, they used two different dynamic
scheduling strategies: first based on priority (DySch) and second based on minimizing delay
(TaSch) and jitter. Logical concept of the work is congestion acceptance like an asleep prob-
lem that must not be waked, by using proposed mechanisms. Moreover, end-to-end delay
in the proposed method is high because the vehicle must reschedule the service channel and
control channel which make overheads for them.

Zemouri et al. [20] proposed a model to predict density around a vehicle in the next time
window by using beacon’s information. They supposed a beacon message contains: ID,
current position, speed, destination, number of vehicles ahead, and number of vehicles behind.
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By using information of received beacon messages, a vehicle like “V” can find out: furthest
back vehicle like “B”, furthest forth vehicle like “C”, closest back vehicle like “D” and closest
forth vehicle like “E”. Next, from speed information in beacon messages, if “C” is slower
than “V”, then the number of vehicles ahead of “E” will be used as predicted forth density
for “V” in the next time window. Also, if “B” is faster than “V”, then the number of vehicles
behind “D” will be used as predicted rear density for “V” in the next time window. Then
based on density prediction, the vehicle can adjust parameters in order to avoid congestion
for the next time window.

Hasanabadi and Valaee [27] proposed Synchronized Persistent Coded Repetition (SPCR)
algorithm. By SPCR, each active vehicle node broadcasts composition linear coding of mes-
sages which are selected randomly from its queue. If the number of vehicles in a cluster is
N , then the congestion control mechanism randomly selects n node as active node (which
is defined as n ≤ N) and abandons all messages from (N − n) inactive nodes. Therefore,
the value of n can be maximally equal to N and minimally equal to zero. If n = N , it
means that all N vehicles in the cluster are active and all can broadcast messages. It is
like no congestion control mechanism is applied, because as the authors mentioned in their
work, the objective of proposing the congestion control mechanism is to control the amount
of messages by abandoning . On the other hand, if n = 0, it means all nodes are passive and
whole safety messages will be dropped and it is dangerous especially in critical situations like
facing road hazards.

Two goals of 1) avoiding congestion in channel by keeping beaconing rate for each transmis-
sion power less than threshold like C and 2) enhancing number of delivered beacons messages
by assigning minimum beaconing rate like rmin, are considered together in [58]. The authors
proposed “fair adaptive beaconing rate with multiple power levels for inter vehicular com-
munications (FABRIC-P)”. In FABRIC-P each vehicle must calculate best rate for a beacon
message with use transmission power p which rmin ≤ best beacon rate ≤ Rmax (the topmost
beacon rate for a vehicle is Rmax). Moreover, every vehicle informs a neighbor’s vehicles
about its beaconing rate, transmitting power, and traffic level of the wireless channel by
broadcasting each beacon.

Controlling congestion by proposing adaptation methods for the amount of CW is considered
in several research works. In [59], a deep Q-learning adaptive method is proposed to find
optimum value of CW . Three actions of: keeping, increasing and decreasing the amount
of CW were considered. The method is proposed in two different models: discrete and
continuous changes in the CW ’s value. "Binary exponential back-off algorithm" was applied
for the discrete model. Results show that the proposed method could improve performance
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of VANET in comparison with the simple Q-learning method and DSRC with CW=31.
However, as the results indicate, a dense vehicular environment still suffers from low packet
delivery ratio and high average end to end delay.

In [52], transmission power and CW joint adaptation technique has been proposed to control
congestion in VANET. Inspired by EDCA technique, in the proposed method messages have
priorities, however the size of CW is not consent and can be doubled or halved. The size
of CW is doubled if the estimated collision rate is more than a predefined threshold. This
value is halved if the estimated collision rate is less than a predefined threshold. Moreover,
the vehicles must calculate vehicle density. If the vehicle density is less than a predefined
threshold, then the vehicle can apply the maximum transmission range. Otherwise the vehicle
must calculate the transmission range. Then, the vehicle must use the lookup Table 2.6 to
find the corresponding value of transmission power using the transmission range.

Table 2.6 Transmission ranges and corresponding transmission powers [52]

Transmission range (m) Transmission Power (dBm)
0—9 −20
10—49 −12
50—100 −5
100—125 −3
126—149 1
150—209 4
210—299 6
300—349 10
350—379 12
380—449 14
450—549 17
550—649 20
650—749 24
750—849 27
850—929 29
930—970 31
971—1000 32
>1000 N/A in DSRC

In [60], a lookup table is considered to help vehicles find appropriate transmission power of
each transmission rate. Then, the value of CW for emergency messages and basic safety
messages must be defined. A low value of CW for emergency messages was assigned in
order to minimize waiting time for this type of messages. The basic safety messages could
be transmitted using a higher value of CW . Therefore, the basic safety messages might be
awaited more than emergency messages in this work. The obtained results show that the
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emergency packet delivery ratio was improved, however, this metric remains at a low level for
basic safety messages. Moreover, based on the results, average delay for basic safety messages
still requires significant improvements.

In [61], the vehicles can access to the communication channel during predefined time slots.
Vehicles can make reservations for the time slots in advance. When a vehicle wants to transmit
a beacon message, it must see if there is a reservation for the coming time slot or not. If
the vehicle was reserved for the next time slot, it can use it and start the data transmission.
Otherwise, the coming time slot is assigned to the other vehicle that reserved it before. If
there is not any available time slot to reserve, the vehicle must wait for a random back-off
time and after passing that time, the vehicle should check if there is any available time slot
to reserve. The vehicle can only transfer the beacon messages during their reserved time slot
or when the next time slot is available and was not reserved by other vehicles. Moreover, the
vehicle should transfer the messages based on the EDCA priorities (Tabla 2.5).

In [62,63], Tabu Search method has been considered to adjust the value of transmission range
and data rate. The authors believe that finding optimal value for these parameters in such
a dynamic environment like VANET is a NP-hard problem that should be solved by Meta-
heuristic techniques. In [62], authors proposed the Uni-Objective Tabu Search (UOTabu)
method to control congestion problem in VANET. Congestion is detected by estimating the
channel load. A short-term memory was applied to find the transmission range and rate
in which the network has minimum delay. Therefore, delay is the objective function in the
UOTabu. In [63], Multi-Objective Tabu Search (MOTabu) method is proposed to control
network congestion. MOTabu has two components: congestion detection and congestion
control. The congestion detection unit is the same as the UOTabu and detects congestion
by measuring the channel usage level. In the congestion control unit; same as UOTabu; the
objective is to find a close to optimal value for transmission range and rate. However, in
MOTabu the Tabue search method was applied to minimize delay and jitter. In MOTabu, a
short term memory is applied to make sure that the new solution had not been considered
in the past. A list of solutions is kept in the short memory and the new solution must be
checked with the solutions in the table. If it is a repetitive solution and there is already
the same solution in the table, then the new solution must be ignored. Otherwise, the new
solution is added to the end of the table. The capacity of the table is limited and when it is
reached, the solutions from the top of the list are removed. Mid-term memory of MOTabu
selects the recent best solution from the end of the table to find the new solutions in their
neighborhood. However, the MOTabu might be caught in a local minimum trap. Therefore,
long-term memory was applied to restart searching and generating new solutions. Fig. 2.6
shows the components of the MOTabu mechanism [63].
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Figure 2.6 MOTabu mechanism.

In the heterogeneous vehicular network, vehicles may tend to switch between different tech-
nologies based on their preferences like achieving better data transmission. Using WiFi
instead of cellular network when congestion happens in vehicular environment is proposed
in [22]. In this scenario, when vehicle user which is connected to cellular network encounters
delay in performing an application (e.g. because of lack of required resources in cellular net-
work), then by computing utility function, vehicle user estimates whether it is cost effective
to wait for cellular network or stop using cellular network and connect to WiFi. From the
utility function’s result, each vehicle decides whether to use WiFi or not. If the utility func-
tion shows that the vehicle cannot use WiFi, then it may wait for time t till utility function’s
result is changed to WiFi intended value, or the vehicle may use cellular network. When a
vehicle like v decides to use WiFi, it announces intelligent offloading Engine (IoE) in Base
Station (BS), but IoE randomly replies to the vehicles, which have the same request as v has.
So, it is possible that a vehicle waits a long time for response from IoE and consequently with
changing effective parameters in value of utility function like location, number of vehicles,
which use the requested WiFi and etc. the result of utility function for the vehicle v will
be changed. In this scenario, having desires resulting from utility functions alone cannot
solve congestion problems and having a good chance of being selected by IoE to respond is
mandatory. In [22], as mentioned for any change in value of: cost of using cellular network,
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cost of using WiFi, and number of users that are served by access point, vehicle user should
calculate utility function. In a dynamic environment like the vehicular network, the topology
of the network changed quickly because of the fact that vehicular nodes move and change
their location very frequently, it seems that vehicle users should calculate utility function
very frequently as well. These many calculations consume energy, resources and time for
vehicle users. In [22], for the case that value of utility function is zero, the authors believe
that if vehicle user can find out that whether value of utility function will be changed in near
future or not, then it can help vehicle user to make better decision among the choices such
as wait or connect to the cellular network. If the vehicle user estimates that the value of the
utility function will be increased to a positive value very soon (for example in the case of
reduction in the number of vehicles in the same access point’s coverage area), then maybe
it prefers to wait instead of using cellular networks. But, a good prediction needs accurate
information such as the exact place of other vehicles, direction of vehicle movement, etc. to
determine if they are going to leave the coverage area of the access point or not. As results
show in [22], the authors could mitigate traffic load in cellular networks. However, in this
work all the computations and decisions must be done by vehicle users that have not widely
network view. Therefore, it was better if these calculations and decisions had been made
at infrastructure level. As a suggestion, applying a SDN-based architecture can be a good
choice, since global view and programmability of controllers are two advantages of SDN that
can help performance of proposed mechanisms especially in terms of prediction of next value
of utility function which discussed above.

Another form of data offloading is considered in [64]. Huge volumes of delay tolerant data (for
example with tolerance of 5 hours in delay) are transferred from a vehicle node which stores
the big data to the destination node [64]. During big data transmission vehicles which have
idle resources are used to store and forward data, instead of using other network resources.

Network selection based on a utility function is another solution that has been worked in [28].
In [28], based on the vehicle’s Global Position System (GPS) location, cloud generates and
sends a list of RSUs with their information to the vehicle. By using received information, the
vehicle computes utility function. Then, an alliance of vehicles with fair and equal profit from
the selected network will be created. Afterwards, handoff will be executed by each vehicle in
order to start data transmission between vehicles and RSUs. In [28], regarding the extensive
area that every cloud can support, for any location update of every single vehicle, cloud must
create a new list of RSUs and other related information. It means many computations, huge
data generation and dissemination, and even delay in response. In such a scenario, dividing
a large covered area of cloud to the small regions and then using a local computing object
for storing and retrieving information of local RSUs in each region, can be more efficient



41

than applying a cloud base system. Moreover, as authors mentioned in the work, because of
vehicles’ movement, location of vehicles in near future can be changed. So, a strong analysis
and prediction of the future location of vehicles can prevent the problem of useless data
generation. Because, it is possible that in the time that vehicle receives information from
the cloud, vehicle location has been changed and consequently the delivered information gets
invalid.

In several existing works, authors decided to cope with congestion in the network by adjusting
data transmission rate. For instance, tuning transmission rate along with transmission power
have been considered in some works related to the congestion problem in vehicular network
[36,42,46].

In [65], authors considered 5G network slicing for vehicular networks and more specifically for
autonomous car users. They proposed Radio Access Technology (RAT) slicing, core network
slicing and user device slicing for vehicle to everything (V2X) communications, with the aim
of improving data transmission and QoS.

In [66], two different architectures are proposed for network resources sharing. In the pro-
posed gateway core network model, authors applied common mobility management entities.
However, in the multi operator core network model, they used separate interfaces to make
links between Shared Radio Access Network (RAN) and network operators entities. Although
the former is more cost effective, the later is more flexible.

In [67], authors proposed a service model by which cellular operators could sell their network
slices as a service. They believe that creating several data pipes with different QoS and
offering various guarantied services are the advantages of the proposed approach.

In [68], four mathematical models are proposed for resource allocation in network slicing
of 5G. The first proposed model named "General Model” is based on linear and nonlinear
optimization methods with the aim of improving packet delay, throughput and reliability
of networks. In the second proposed model, the three main actors of: network operator,
the tenant, and the network users are the players of a game. They try to maximize the
profits for the network resource owners while satisfying the users by offering affordable prices
for users service requirements. For example, offering various types of network slices with
varied services and resource capacities at different prices. The third proposed model is
prediction models, which are based on analyzing past experiences and current situation of
the network. The last proposed model is about boosting networks, specifically fast recovery in
unpredictable network states like network congestion. Our proposed network slicing method
for heterogeneous vehicular networks belongs to the last two categorized models.
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In [69], the idle time of a service channel of DSRC technology is used to transmit non safety
messages. Control Channel is used to transmit safety message transmission and reserving a
service channel for non safety messages.

In [70], a network slicing perspective is proposed for vehicular networks. In the proposed
network slicing model, network slices can be created based on the application needs. For
example, low latency is required for safety based applications and can be provided by a
network slice.

In [71], the four RAN slicing approaches and their challenges for vehicular networks are
studied. The resource allocation policy for safety data traffic is considered. When a huge
volume of safety driving data is generated and there are not enough available free resources
in a slice to dedicate, the available network resources of other network slices are used. In this
approach, safety data has higher priority than other types of data in vehicular networks.

2.2.3 Taxonomy of the Proposed Congestion Management Mechanisms

Fig. 2.7 shows the taxonomy of the congestion management strategies proposed in the lit-
erature. In this figure, the proposed methods are divided into two standards of ETSI and
WAVE. Then the metric used in the congestion detection part of the methods are shown
in the gray rectangles. In the lower levels of the taxonomy, the orange rectangles show the
congestion controlling strategies. The proposed methods applied a single or combination of
strategies (orange rectangles) using novel methodology.

In the literature, the proposed congestion control mechanisms are following ETSI or WAVE
standardization. ETSI-based controlling methods, mostly consider CBR to detect the con-
gestion in the communication channel and consider one or combination of transmission power
tuning, data rate adjustment, message rate controlling and channel sensitivity, for controlling
congestion in the vehicular network. The big challenge of these methods is to find the opti-
mum value of CBR to use as a threshold. In most of these methods, the controlling strategy
is designed in a way that the channel usage does not exceed the threshold. Therefore, the
value of the threshold is important because a low threshold has a risk of under-utilizing the
channel. This means that vehicles do not use all the available and accessible capacity of the
channel due to the channel congestion phobia. On the other hand, considering a high value
for the threshold of CBR can put the network at risk of congestion.

ETSI methods are distributed methods, therefore, vehicles must sense the channel, calculate
the channel busy level and run the other necessary computations to control the congestion.
In the real world scenarios, it is difficult to say that sensing the channel and calculating the
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Figure 2.7 Taxonomy of the proposed congestion management methods.

CBR are done at the same time by all the vehicles. It may cause asymmetry in channel
busy levels. Consequently, it is likely that all the vehicles do not calculate exactly the same
(and real) value of the CBR, especially in such a high dynamic environment like vehicular
network. This issue brings unfairness to the network.

Considering ETSI-based approaches, the congestion controlling mechanisms are mainly based
on the four strategies of: tuning the transmission power, data rate adjustment, message rate
controlling and channel sensitivity.

Congestion management mechanisms using the WAVE method have been considered in the
literature. In the proposed methods, vehicle density, channel usage level and packet loss
are the metrics used to detect congestion in the vehicular networks. The proposed methods
are mostly distributed in which vehicles must sense the environment using the received and
stored information from other vehicles, do computations and make congestion controlling
decisions. However, in some of the works, centralized methods have been considered in which
an infrastructure unit such as RSU is responsible to monitor the vehicular environment and
make congestion controlling decisions if it is necessary.

Considering the (high number of) proposed distributed methods to control congestion in the
vehicular networks, vehicles need enough and appropriate computation and storage resources
to monitor the network and analyze the huge received information and make the controlling
decisions. However, the vehicles have small and limited resources. The high dense vehic-
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ular environment that changes dynamically, these resources are not enough to analyze the
network situation and make decisions. Therefore, high overhead and end-to-end delay are
the weaknesses of the proposed methods. Moreover, these methods need significant vehicle
cooperation, otherwise, the delays and overhead can be even higher.

In the proposed methods, estimating the number of vehicles around, measuring the channel
usage level and calculating the amount of lost packets were the predominant strategies to
detect congestion in the vehicular networks. In the proposed mechanisms, there are two dif-
ferent approaches: first, the authors considered that congestion occurred and then detection
strategies should recognize the happening of congestion in the vehicular network. This ap-
proach is applied in the closed-loop solution to control congestion in the network. Based on
the second approach, the thresholds are predefined for the amount of metrics such as channel
usage level or packet loss, then the controlling mechanism executes when the value of thresh-
old is met or exceeded. This approach is employed in the open-loop congestion controlling
strategies. Indeed, the network congestion is controlled before it occurs in the network.

Adaptive techniques for the value of transmission power, data rate and CW or combination
of them are common congestion controlling strategies among all methods.

Prioritizing and scheduling is another technique that has been applied to control congestion
in the vehicular network. This method could improve delay for the high priority messages.
However, the applications with lower priority messages may wait longer to access the com-
munication channel. Therefore, they experience significant delay. Besides, scheduling a large
number of messages in a high dense and dynamic environment like vehicular network makes
high overhead in the network.

Resource allocation is another approach for Congestion controlling in the vehicular networks.
In this regard, assigning extra bandwidth to the high priority messages is a method to
reduce suffering safety related applications from network congestion. However, this approach
may cause unfairness in the network since the lower priority messages must wait longer and
be received with delay because the higher portion of available bandwidth is dedicated to
the high priority messages. Offloading data to control congestion in VANET using other
technologies such as WiFi and cellular network requires further authentication and extra
cost for the vehicle’s users. RAN slicing is a novel method introduced in 5G technology to
share the network resources with the aim of improving QoS ,providing service requirements
and preventing congestion in the network. Network slices are created and modified as needed
and based on the users requirements. Consequently, flexibility and compatibility of vehicular
networks are increased using this method.

Published and submitted papers are the main parts of this dissertation. The next four
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chapters contain the published/submitted papers.

The main objective of this dissertation is to propose intelligent congestion prediction and
avoidance methods using AI methods for HetVNET. As mentioned in Chapter 1, regarding
the main objective, we defined three sub-objectives in this dissertation. In each sub-objective,
we employ an AI method to solve a regression or a classification problem along with apply-
ing new network technologies and with the aim of predicting or avoiding congestion in the
HetVNET.

The article presented in Chapter 3, considers the network prediction problem as a clas-
sification problem. This article entitled "A Centralized and Dynamic Network Congestion
Classification Approach for Heterogeneous Vehicular Networks" has been published as a jour-
nal paper in "IEEE Access" journal. A Naive Bayesian classification method is proposed to
predict the network congestion warning states of the HetVNET. Moreover, SDN and fog com-
puting technologies are applied to propose a centralized and dynamic cloudy-fog intelligent
congestion prediction architecture for HetVNET. In this approach, roads are segmented by
a centralized management unit and based on the number of vehicles in each segment in the
future time t, the Naive Bayesian classification method predicts a congestion warning/non-
warning state in the network.

The article presented in Chapter 4, considers the network prediction problem as a regression
problem. A utility function is proposed to show the network performance in terms of smooth
data flow in the HetVNET. A Multiple Linear Regression method is applied for regression
prediction. This part of the dissertation was published as a conference paper with the title of
"A Multiple Linear Regression Model for Predicting Congestion in Heterogeneous Vehicular
Networks" by IEEE publisher. In Chapter 5, a GRNN method is proposed to predict the
value of the utility function. Then, based on the prediction result an avoidance mechanism
executes to prevent congestion in the network. A transmission power adaptive method is
proposed to avoid network congestion using the result of the GRNN prediction model. This
chapter of dissertation is submitted in "IEEE Transactions on Intelligent Vehicles" with the
title of "An Intelligent Congestion Avoidance Mechanism Based on Generalized Regression
Neural Network for Heterogeneous Vehicular Networks".

The article presented in Chapter 6, considers a deep learning method and network slicing
technique to help control the congestion problem in a dynamic environment like HetVNET.
This article was published in "Telecom" journal with the title of "A Conditional Generative
Adversarial Network Based Approach for Network Slicing in Heterogeneous Vehicular Net-
works". A CGAN is proposed to provide configurations used to create new network slices.
In this approach a CGAN-SDN architecture is proposed to apply the CGAN method in the
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controller of the SDN. Regarding the high dynamicity of the HetvNET, the aim of this article
is to propose a method that can be used to generate network slices fast and based on the
previous successful experiences in terms of occurring network congestion in the HetVNET.

Thus, the main objective and the three sub-objective of this dissertation are met and will
be extensively explained in more detail in the following four chapters. Predicting network
behaviour in terms of how smooth data flowing is in the network is significantly important
and helpful in order to make appropriate decisions and executing controlling mechanisms
and consequently preventing congestion occurring in the network. Therefore, the contribu-
tions of this dissertation help improve the network performance, QoS and user experience of
HetVNET. Moreover, the presented methods help us towards forming an autonomous and
adaptive HetVNET.
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Abstract Network congestion-related studies consist mainly of two parts: congestion de-
tection and congestion control. Several researchers have proposed different mechanisms to
control congestion and used channel loads or other factors to detect congestion. However,
the number of studies concerning congestion detection and going beyond into congestion pre-
diction is low. On this basis, we decide to propose a method for congestion prediction using
supervised machine learning. In this paper, we propose a Naive Bayesian network congestion
warning classification method for Heterogeneous Vehicular Networks (HetVNETs) using sim-
ulated data that can be locally applied in a fog device in a HetVNET. In addition, we propose
a centralized and dynamic cloud-fog-based architecture for HetVNET. The Naive Bayesian
network congestion warning classification method can be applied in this architecture. Sup-
port Vector Machine (SVM), K Nearest Neighbor (KNN) and Random Forest classifiers,
which are popular methods in classification problems, are considered to generate conges-
tion warning prediction models. Numerical results show that the proposed Naive Bayesian
classifier is more reliable and stable and can accurately predict the data flow warning state
in HetVNET. Moreover, based on the obtained simulation results, applying the proposed
congestion classification approach can improve the network’s performance in terms of the
packet loss ratio, average delay and average throughput, especially in the dense vehicular
environments of HetVNET.

Keywords: Vehicular networks, congestion control, classification methods, network congestion
prediction, WAVE.
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3.1 Introduction

A Heterogeneous Vehicular Network (HetVNET) enables a connected vehicle to inform other
smart vehicles on the road by sending and receiving safety driving information (e.g., the
location, speed, direction, road hazards, road traffic congestion, and road accidents) using
Dedicated Short Range (DSRC) and Long Term Evolution (LTE) technologies [2]. Minimum
human reaction time is 500 ms [23]. Due to network congestion, if an emergency message is
received with a delay of more than 500 ms, then the safety applications are useless due to
weak network performance.

In the literature, there are usually two phases of network congestion: the first is the detection
of congestion, and the second is the relief of congestion by the use of a control method or
a prevention mechanism. However, the approach to solve the problem of network conges-
tion has focused mainly on controlling congestion, which is in the second phase. For the
first phase, the authors used assumptions to determine the congestion, such as defining a
threshold for the channel busy level [23, 32, 42], and vehicle density [18, 20, 27]. Although
congestion detection is not widely considered in current studies, it is a key part of addressing
network congestion problems. If network congestion is not sensed and detected, applying the
controlling mechanism (phase two) is meaningless. Indeed, to initiate the second phase, it is
necessary to meet the first phase, which is congestion detection [23]. The obtained results in
the related literature [23,72,73] demonstrate that congestion in a dynamic environment, such
as a vehicular network with a high number of vehicles, has not been completely controlled.
Consequently, this limitation could threaten the stability of the network performance, and
such instability is obvious in the published results. This challenge needs to place greater
emphasis on studying and proposing novel intelligent methods, which are based on analyzing
the network performance and establishing avoidance mechanisms before congestion occurs in
the network. With regard to the importance of reaching a stable performance in a highly
dynamic network environment such as HetVNET, we need to predict congestion in networks
and then execute an avoidance mechanism. In this paper, we propose an intelligent mecha-
nism for predicting congestion in such networks to solve the problem of instability in network
performance in dense vehicular scenarios.

Applying Machine Learning (ML) methods in building congestion management approaches
(congestion prediction and control) in a highly dynamic network such as a vehicular network
was considered in [1,74,75] to be an open challenge and new future path toward centralized
and dynamic congestion network management. Recent technologies, such as Software-Defined
Networks (SDNs), Network Function Virtualization (NFV) and fog computing, provide pro-
grammable features along with high storage and computing power to the networks. Relying
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on the advantages of applying these technologies, predicting the behavior of vehicular net-
works in terms of data flow, especially in the case of congestion in the network, is a novel and
worthwhile research path. Referring to this open challenge, as a contribution, we propose an
intelligent and dynamic network architecture using a Naive Bayesian classifier to predict the
warning state in the data flow situation in HetVNET.

Generally, ML methods must analyze data and perform computations to achieve accurate
and reliable results. With regard to this concern and many other advantages that will be
mentioned, fog computing is used in this work. Fog computing technology changes the
traditional architecture, in which only clouds play key roles, by using powerful objects close
to devices in the network [6, 7]. Fog computing supports mobility, location awareness, and
real-time interaction. Well designed and configured it can improve metrics [6, 8]. Although
the application of fog computing technology has significant advantages, there is still a lack
of intelligent methods that use fog computing technology to solve the HetVNET congestion
problem in the literature. With regard to computing, storage, data management and analysis,
in addition to network abilities of fog computing units [76], a novel approach is to implement
a robust, supervised network congestion classifier method in fog computing units with the aim
of improving the performance of HetVNET by providing a smooth data flow. The implanted
prediction model can be created and evaluated at the cloud level. Thus, a fog congestion
predictor unit can predict congestion locally using the current information on the parameters,
which make up the prediction model. In fact, data are sent to the fog devices that are close
to the vehicles, and any required computational process can be performed at the fog devices.
Making decisions using fog devices that are close to vehicles in a time-sensitive situation is
advantageous, because the latency is reduced and the reliability is improved [6]. Moreover,
the data in a local and limited area, such as traffic zones, are less than the big data generated
from unlimited vehicles located in different zones. Processing data that are more local and
smaller in volume at fog devices is less time-consuming and more efficient than processing
and analyzing enormous amounts of data remotely [74].

In addition, the proposed approach is compatible with both the European Telecommunica-
tions Standards Institute (ETSI) and the Wireless Access in Vehicular Environments (WAVE)
for V2V communication. Therefore, both standards can use the result of the proposed con-
gestion prediction, and then in the case of the congestion warning state, ETSI or WAVE
specific controlling mechanisms can be applied.

In this paper, we went beyond detection, and we proposed a classification congestion pre-
diction method. Congestion prediction using ML methods is a novel future path toward
creating intelligent congestion management in vehicular networks [1]. Predicting congestion
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before it occurs in the network and applying the controlling mechanisms in advance can in-
crease elasticity, sustainability and tolerance of such a dynamic network as HetVNET. Based
on the prediction approach, network parameters can be modified with the aim of preventing
congestion in the future. Compared to the literature, the proposed approach of this paper
makes significant contributions as follows:

• First, considering the importance of the congestion detection phase in heterogeneous
types of networks, predicting the warning state of network congestion (before congestion
occurs) in HetVNET using a supervised machine learning classification method;

• Second, a centralized and dynamic cloud-fog-based intelligent congestion prediction
architecture of HetVNET is proposed;

• Furthermore, the proposed congestion prediction and avoidance methods provide sta-
bility in the network performance.

We will show that the main achievements, including these contributions, are the precision
and novelty of the proposed HetVNET congestion classification approach in an intelligent
cloud-fog-based architecture, which is applicable in various vehicular 5G and beyond-based
scenarios.

The remainder of this paper is organized as follows. Section 3.2 presents related work. Section
3.3 describes the methodology and classification model. Data collection and performance
evaluation are presented and discussed in Section 3.4, and Section 3.5 concludes the study
and introduces future work.

3.2 Related Work

The lack of use of intelligent methods in the case of congestion avoidance and control in
vehicular networks and, more specifically, in HetVNET is evident in the current literature
[24, 29, 33, 77]. The authors in [29] proposed a congestion game to avoid congestion based
on scheduling the required services for safety-related applications in HetVNETs. In [23],
the authors used a clustering technique as an unsupervised machine learning method for
controlling congestion in a Vehicular Ad hoc Network (VANET). In this method, named
"Machine Learning Congestion Control (ML-CC)", the k-means technique was applied to
cluster messages based on the size, type and validity of the messages. Then, ML-CC assigned
appropriate values for the Content Window (CW), data transmission rate, Arbitration Inter-
frame Spacing (AIFS) and transmission range to each cluster of messages. In this method,
a Road-Side Unit (RSU) should cluster all of the generated messages and set the values at
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the same time. It could be difficult to perform these tasks before time-out of the messages,
considering the high dynamicity of the network, the increasing number of vehicles, and the
large number of generated messages. This issue negatively affects the performance of the
network in high density scenarios, and could make an unstable network. In [78], the proposed
"Dynamic Congestion Control Scheme (DCCS)" is based on the channel usage level and
the amount of CW. The authors considered three levels of 30%, 70% and 90% for channel
occupation. Then, based on these three thresholds, the value of CW decreases (for the channel
busy level of 30%) or increases (when 70% or 90% of the channel is occupied). In [24],
congestion avoidance strategies were executed without prediction. Even if no congestion
occurs, message priority and message scheduling will run by default during no-pick time,
as well as when the traffic density is low. In [29], the authors proposed an architecture
built on SDN and the concept of edges as a service to solve a congestion problem with no
intelligence mechanism for congestion prediction. The proposed prediction in [29] is mainly
based on the pattern of user demands during different times of the day. The Internet Service
Provider (ISP) provides clients with the required resources based on the pattern. Therefore,
in some intervals during a day, the demand for resources can be higher than other times
of the day; thus, the ISP will then adjust the resource allocation to maintain the network
performance at an excellent level. The results show that the authors could improve the quality
of the service and propose an efficient mechanism in resource allocation. Nevertheless, an
intelligent method could significantly improve the performance of the proposed mechanism.
In [33], the authors worked on a prediction method for controlling congestion in VANETs.
They proposed a new adaptation method for the transmission power and data rate based
on vehicle density prediction. However, the authors did not apply intelligent methods in
the proposed prediction method and relied solely on the information they received from the
vehicles in front of the targeted vehicles. This prediction is not accurate for scenarios in
which there is a malicious vehicle node in front of the targeted vehicles. In [79], the authors
proposed a dynamic vehicle clustering mechanism based on the estimation of the network
density and the speed of the vehicles to avoid congestion in VANETs. They could use a deep
learning regression method to predict the density and speed of the vehicles. Vehicle density
estimation was used in [34] to propose an approach for controlling congestion using dynamic
transmission power control. In [80] a predictive control model was used by a control agent
to define the optimum transmission rate for vehicle nodes in vehicular networks. Prediction
is a major task of machine learning methods, and it is not applied in the proposed predictive
control model in [80].

Moreover, the number of proposed methods for controlling congestion problems using a fog
computing-based architecture is very low in the current literature on vehicular networks.
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In [20], the results show good efficiency, high packet delivery, and a low channel busy ratio.
Vehicles in decentralized congestion controlling mechanisms must monitor and analyze a
large number of messages to detect and control congestion with a low delay (much less than
500 ms, which is the human reaction time). Therefore, in such a decentralized approach,
too many computations must be performed by the vehicles using the information of each
beacon received from the surrounding vehicles. Most safety services even need less than
100 ms of latency; for example, the maximum latency in precrash warning services is 50
ms [81]. Therefore, an emergency safety message must receive with a delay lower than 50
ms; otherwise, vehicular networks and applying safety applications could not do anything to
save a human life, especially in the presence of road hazards. In decentralized congestion
controlling mechanisms, vehicles must monitor and analyze a large number of messages to
detect and control congestion with a delay of less than 50 ms. Moreover, distributed methods
require high vehicle cooperation. Exchanging a substantial number of messages between the
vehicles causes overhead and significant delay. In the case of low cooperation among vehicles,
the delay increases even more. In addition, the calculations needed to find the closest and
furthest ahead and behind vehicles must be done within a limited period of time. Having
a time restriction for running multiple computations is therefore a challenging task for the
proposed method in [20]. These challenges exist in all of the proposed decentralized (or
distributed) congestion control mechanisms, such as [20] and [22]. In [22], based on the
proposed distributed approach, all of the calculations (especially for predicting the value of
the utility function, which makes use of the Markov chain method) require computational
resources and are time-restricted for a vehicle. Since the information changes dynamically and
quickly in vehicular networks, calculations must be made before a new information update is
received, which is a major task for vehicles in a short period of time. In [82], data offloading
from vehicles to infrastructure was proposed to control congestion in an SDN-based vehicular
network environment. The authors used a controller to make decisions on offloading the data
load from vehicles to each of the RSUs or Base Stations (BSs) of the cellular network. They
could use a fog device as a controller to locally manage the data offloading process.

Network performance and Quality of Service (QoS) metrics are critical in HetVNET. These
metrics are highly related to the network congestion levels. If we consider two levels of safe (no
congestion) and congestion for data flow in HetVNET [83], then the network performance
and QoS will drop when the network data flow shifts from safe to congestion level. The
approach that will be explained in the next parts of this paper is a novel solution to avoid a
drop in the network performance and QoS to a low level. In this solution, we define a warning
level (before the congestion level) and predict this warning state of the network data flow.
An accurate prediction method that uses the computing and storage power of fog devices
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can locally predict congestion before it occurs in a dynamic HetVNET. Therefore, targeted
HetVNETs have time to execute congestion control/avoidance mechanisms (phase two) to
prevent congestion. Accordingly, network performance and QoS will remain at an acceptable
level.

Considering the discussed issues of instability in the performance of the network by increas-
ing the number of vehicles and applying Artificial Intelligence (AI) methods in HetVNET
congestion-related works and the absence of a congestion avoidance mechanism using fog
computing technology in HetVNET-related literature, we propose a novel approach to pre-
dict congestion warnings using a supervised machine learning classification method in a
centralized and dynamic cloudy-fog-based architecture.

3.3 Methodology and Classification Model

Congestion in the network leads to a reduction in the data delivery ratio. This metric is
considered in vehicular network congestion-related work to detect congestion [1,38]. However,
packet loss could also accrue due to weak signals. It is necessary to be certain that congestion
is the only reason for packet loss. Therefore, in this paper, we consider the Data Delivery
Ratio (DDR) and Received Signal Strength (RSS) to interpret the congestion situation in
HetVNETs.

Moreover, due to the strong capacity of neural networks and deep learning methods to gen-
erate complex models, these methods have recently been widely used in a variety of research
fields and problems. Deep learning methods are worthwhile in applications to problems that
have a high-dimensional dataset that contains enormous amounts of data, while our prob-
lem in this paper is not in this category. We therefore decided to use a supervised machine
learning classification algorithm.

3.3.1 Classifying the Data Flow

This paper aims to predict the warning state in terms of network congestion in HetVNETs. If
we have knowledge about a warning state for a data flow situation, then we can save time by
executing an avoidance mechanism to prevent the network situation from attaining a critical
state. DDR is the ratio of the amount of data successfully received at destination points to
the amount of data sent by source nodes in the network. Therefore, DDR can have a value
between zero and one.

RSS is the power of the received signal at the receiver side. The RSS can be measured by
adding the transmit power and antenna gain minus the path loss [84]. The value of RSS in
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network congestion is higher than the value of RSS in situations in which path loss is the
cause of packet loss in the network. Therefore, defining a threshold for the value of RSS can
be useful for assuring that congestion is the reason for the packet loss. On this basis, if the
value of RSS in the received packet is more than a predefined threshold (RSSth), then the
packet loss is due to network congestion.

Based on the definition of DDR and RSS, the data flowing warning situation is defined based
on three thresholds for the minimum value of DDR (DDRminth), for the maximum value of
DDR (DDRmaxth), and for RSS (RSSth)which are just for the warning state. Accordingly,
we define two classes of warnings and nonwarnings in this work:

Data flowing classes =



Warning, if:

DDRminth ≤ DDR ≤ DDRmaxth

and,

RSSth ≤ RSS

Nonwarning, otherwise

(3.1)

The amount of DDRminth, DDRmaxth and RSSth can be defined by the network management
unit (in which DDRminth and DDRmaxth ∈ (0, 1) are not equal). In this way, the network
management can change the value of DDRminth and DDRmaxth any time and based on the
network situation. Thus, this method provides tolerable congestion management approach
that can define different congestion warning intervals over time and is based on the network’s
situation. For example, if the network management unit assigned −96.26 dBm for RSSth, 0.4
as a value for DDRminth and 0.6 as a value for DDRmaxth then it is a warning state while the
data is flowing, when DDR ∈ [0.4, 0.6] and the value of RSS is more than −96.26 dBm [38].

3.3.2 Proposing Naive Bayesian Network Congestion Classifier

Naive Bayesian classifier is a powerful ML method for solving current real-world classification
problems, such as spam filtering and text classification. This classifier is very fast compared
to other classification algorithms. Moreover, it does not necessarily require a large amount
of training data for good prediction. Thus, it is widely used in many scientific studies and in
research today. Considering Bayes theorem, the Naive Bayesian classifier provides minimum
error using independent features [85]. The Naive Bayesian classifier calculates the probability
that the hypothesis is true when the given data are used and is called the posterior probability.

In this paper, we consider five parameters, the number of vehicles (v), data transmission
rate (dr), DSRC transmission power (tpDSRC), LTE transmission power (tpLTE), and LTE
bandwidth (b), to propose a Naive Bayesian classifier. Therefore, x= [x1, x2, . . . , xn] is a set
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that contains n features, which corresponds to x= [x1, x2, x3, x4, x5] = [v, dr, tpDSRC , tpLTE, b]
(n = 5). Additionally, let us consider c= [c1, c2, . . . , cm] to show a set of classes that contains
m (m = 2) different classes.

We consider two types of classes: w0, which is a class for no congestion warning in Het-
VNET, and w1, which is a class for having congestion warning in HetVNET; hence, here
c= [c1, c2] = [w0, w1]. Therefore, the posterior probability, where class ci is true using
x= [v, dr, tpDSRC , tpLTE, b], is calculated as follows:

P (ci|x) = P (x|ci)P (ci)
P (x) (3.2)

The Naive Bayesian algorithm calculates as follows:

P (w0|v, dr, tpDSRC , tpLTE , b) =P (v|w0)P (dr|w0)P (tpDSRC |w0)P (tpLTE |w0)P (b|w0)P (w0)
P (v, dr, tpDSRC , tpLTE , b) (3.3)

and

P (w1|v, dr, tpDSRC , tpLTE , b) =P (v|w1)P (dr|w1)P (tpDSRC |w1)P (tpLTE |w1)P (b|w1)P (w1)
P (v, dr, tpDSRC , tpLTE , b) (3.4)

where P (w0 | v, dr, tpDSRC , tpLTE, b) is the probability of a no-congestion warning using input
data of x= [v, dr, tpDSRC , tpLTE, b], and P (w1 | v, dr, tpDSRC , tpLTE, b) is the probability that
a congestion warning situation is true using input data of x= [v, dr, tpDSRC , tpLTE, b]. Since
the value of the prior probability is the same for all given data of the dataset, it can be
removed, and (3.2) can be written as:

P (ci|x) ∝ P (ci)
n∏
j=1

P (xj|ci), (3.5)

i = 1, ...,m.

The Naive Bayesian classifier selects the maximum posterior as output, which is a class with
a higher probability of being true. There, if we assume ŷ = ci as output of the Naive Bayesian
classifier, then we have following:

ŷ = argmaxP (ci)
n∏
j=1

P (xj|ci), (3.6)

where n and m equal to five and two, respectively.
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3.3.3 Centralized and Dynamic Cloudy-fog Intelligent Congestion Prediction
Architecture

In a centralized and dynamic cloudy-fog intelligent congestion prediction architecture of Het-
VNET, as shown in Fig. 3.1, a Fog Congestion Predictor Unit (FCPU) is placed between the
cloud and end users like a skillful intermediary, to locally and efficiently predict the warning
state in the data flow using a prediction model. A Centralized Management Unit (CMU) is
connected to the FCPUs to orchestrate them and make decisions, such as setting the warning
interval using (3.1) by defining the values of DDRminth, DDRmaxth and RSSth. Therefore,
Fig. 3.1 shows a centralized and intelligent architecture in which FCPUs locally and dynam-
ically analyze data that came from vehicles and BSs. In this cloudy-fog architecture, there
are five types of connections, as follows:

• Cloud2fog: communication between a cloud and a fog device (FCPU);

• CMU2fog: communication between CMU and a fog device (FCPU);

• Fog2I: communication between a fog device (FCPU) and an infrastructure such as the
BS of the cellular network;

• V2I: communication between a vehicle and a BS, using LTE;

• V2V: communication between two vehicles, using DSRC.

Figure 3.1 A centralized, dynamic and intelligent cloudy-fog congestion prediction architec-
ture of HetVNET.
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As Fig. 3.2 shows, each of the FCPUs is connected to the CMU, other FCPUs and cloud.
The CMU is responsible for the following tasks:

• Defining the size of the segments, the amount of ∆t and j, and the value of RSSth,
DDRminth and DDRmaxth to be used by the FCPU;

• Assigning segments and BSs to the FCPUs.

According to Fig. 3.2, we divided the street area into several segments with equal lengths of
r meters, and an FCPU was assigned to a maximum number of segments s, where s ≥ 1.
In addition, we assumed that we had z FCPUs with z ≥ 1. For each vehicle such as v in
a segment, the corresponding FCPU estimates the distance of vehicle v to a location in the
next time unit such as t using the following formula:

D(v) = 1
2a(v)t

2 + q(v)t, (3.7)

where q(v) is the velocity of vehicle v, a(v) is the acceleration of v, and D(v) is the distance of
v to the next location at time t, where t = j∆t and j ≥ 1. ∆t has a preliminary amount,
and each time, the amount of j will be increased. The preliminary value of ∆t and the value
of j are defined by CMU. For example, if ∆t = t1 and j = {1, 2, 3, ..., N}, then for j = 1
and for each vehicle, FCPU calculates the value of D(v) with t = t1, and the next time,
FCPU calculates the value of D(v) with t = 2t1, and so on. Fig. 3.3 shows how predicting
a warning state of the network can save time for executing congestion control mechanisms
and preventing congestion in the network. The proposed vision in a highly dynamic network
type such as HetVNET (and any other type of vehicular network) can help the network
management system to have a dynamic and tolerable solution for any future challenge in the
network.

Since the estimation of D(v) is the distance to a location where v will reach at a future time
(next t) and we do not have information of a(v) and q(v) during the next time t, the FCPU
considers the average of both a(v) and q(v) from the previous time t. The FCPU uses D(v)

and the length of each segment (r meters) to estimate the corresponding segment that v
will reach in the next time t. FCPU can estimate the number of vehicles in each segment
located in its coverage area. Therefore, the vehicle densities of the segments at the future
time t are estimated by the corresponding FCPU. As an example, Fig. 3.2 depicts the case
when FPCU 1 estimates that the red vehicle in segment 2 (blue dashed vertical line) will
leave the coverage area of FCPU 1 and arrive at segment 1 in FCPU 2 (green dashed vertical
line); then, FCPU 1 sends the location information to FCPU 2. Therefore, the number of
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vehicles in a segment at future time t is estimated using the number of vehicles estimated
by the corresponding FCPU plus the number of vehicles estimated by a neighbor FCPU (if
applicable). Moreover, whenever a vehicle leaves an FCPU coverage area, the velocity and
acceleration during the last time t must be sent by the FCPU to the new FCPU.

Figure 3.2 Illustration of intelligent congestion prediction architecture of HetVNET.

Figure 3.3 Congestion warning state in a HetVNET.

The traffic situation in such a highly dynamic environment as HetVNET is changing fast
and can even vary substantially between segments of FCPUs. This variation can be due to
the specific conditions in the segments, such as holding special events during rush time and
locating high demand places such as hospitals or airports in the segments. For any change in
the value of v, which is the number of vehicles in a segment, the corresponding FCPU must
perform Naive Bayesian congestion prediction.
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Figure 3.4 A Flowchart of main steps in FCPU.

To apply the proposed Naive Bayesian classifier in the centralized and dynamic cloudy-fog-
based architecture of HetVNET, as shown in Fig. 3.4, a reference database is needed, which
is prepared at the cloud level. In this approach, information about five considered features,
such as the number of vehicles v, dr, tpDSRC , tpLTE, and b, must be gathered, each as a record
in a database. For each data record, DDR and RSS have been calculated. This database can
be updated and matures with time. First, the FCPU receives such a reference database from
the cloud and stores it. Then, based on the value of DDR and RSS and using DDRminth,
DDRmaxth, RSSth and (1), each data record obtains a class of w0 or w1. Afterward, the FCPU
calculates D(v) using (3.7) and locally estimates v for each segment at future time t. In the
case of an update in the value of v, the FCPU calculates P (w0|vnew, dr, tpDSRC , tpLTE, b) and
P (w1|vnew, dr, tpDSRC , tpLTE, b) using the updated value of v, the current value of dr, tpDSRC ,
tpLTE, b and the database. Then, based on the computation results, it predicts warning or
nonwarning state for data flowing in the target HetVNET at a future time t. In Algorithm 1,



60

the pseudocode of the proposed Naive Bayesian classifier algorithm in an FPCU is presented.
The values of Pw0 and Pw1 can be calculated using (3.3) and (3.4). Note that the task of
the FCPU is to predict the warning or nonwarning state of HetVNET based on the data of
five parameters: vnew, dr, tpDSRC , tpLTE, b. By this approach, we can implicitly infer that
independent variables such as vnew, dr, tpDSRC , tpLTE, and b have an effect on the value of
DDR and consequently mitigate or intensify the network congestion state of HetVNET.

Algorithm 1 Naive Bayesian network congestion classifier in a FCPU
1: Input 1: a reference database generated at cloud level and contains values of v, dr,
tpDSRC , tpLTE and b as features, values of DDR and RSS, and “warning state” as output.
For each data record, the output column can have a value of w0 as a nonwarning or w1
as a warning state (based on DRR and RSS, using (3.1)).

2: Information collection locally as x= [v, dr, tpDSRC , tpLTE, b] form HetVNET.
3: Calculate Dv and vnew.
4: if vnew 6= v then
5: Input 2: xupdated= [vnew, dr, tpDSRC , tpLTE, b]
6: Based on Input 1 and using Input 2, calculate:
7: Pw0 = P (w0|vnew, dr, tpDSRC , tpLTE, b)
8: Pw1 = P (w1|vnew, dr, tpDSRC , tpLTE, b)
9: if Pw0 < Pw1 then

10: it is a warning state.
11: else
12: it is a nonwarning state.
13: end if
14: end if

In the centralized cloudy-fog architecture, we consider LTE for V2I communications. There-
fore, the required information is exchanged between vehicles and FCPU using LTE BSs. Large
coverage and high downlink and uplink capacity are the advantages of the LTE [2], which help
to provide requirements for necessary data transmission in the proposed approach. However,
if the proposed congestion classification method is applied in a decentralized system, then
the vehicles should employ the Naive Bayesian network congestion prediction method. In
this case, and similar to most decentralized methods, network can encounter high overhead
and delay. Applying the edge computing concept by clustering the vehicles and selecting
cluster heads as edge nodes, can be a potential solution. The edge nodes are responsible
for gathering and analyzing data, running prediction functions, and distributing the result.
To select the cluster head vehicle, several metrics, such as available computing and storage
resource capacity, communication reliability and accessibility (in terms of distance to another
vehicle in the cluster), can be considered.
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3.3.4 Advantages and Challenges of the Proposed Centralized Architecture

The proposed cloudy-fog architecture is compatible with current standards. ETSI applies
Decentralized Congestion Control (DCC) in the Media Access Control (MAC) layer. DCC
is a state machine-based approach that switches between three states of relax, active and
restrictive based on the channel load. Most DCC-based algorithms, such as the Linear
Message Rate Integrated Control (LIMERIC) [44], Dual-α DCC [86], and Dynamic Beaconing
(DnyB) protocol [87], depend on the value of the Channel Busy Ratio (CBR). Based on the
literature, these algorithms have the challenge of finding and setting optimum values of the
parameters [86]. An optimal value for the CBR threshold can prevent the underutilization
of the channel [32]. Thus, applying the congestion prediction method instead of calculating
the current channel busy level can help the network management system develop policies for
using the channel to prevent congestion from occurring in the future. In other words, the
predicted warning state in terms of the congestion problem can be a complementary feature
for dynamic and tolerant network congestion management. For example, based on the result
of the proposed Naive Bayes congestion prediction, if we have a congestion warning in the
area covered by an FCPU at time t, the congestion control algorithm can switch between the
states and change the value of the data rate in a such manner that there will be no congestion
problem in the future.

Based on the literature, network congestion in VANET has been considered more during the
past decade, including cross-layer approaches, event driven and priority-based approaches,
topology-based approaches, and dynamic and adaptive approaches [1]. In the proposed
WAVE based congestion control algorithms, the solution part can be applied when a warning
state is predicted by the proposed Naive Bayesian congestion prediction method.

Therefore, the network management system will have one eye on the present and one eye
on the future by using the proposed congestion prediction result and creating policies and
applying them at the current time with the aim of avoiding congestion in the future.

Moreover, using multihop strategy instead of the proposed architecture to send traffic states
has other challenges. First, in multihop methods, the distance between the nodes has a
direct effect on the delay. Applying n-hop communication to transfer the data flow state to
a far node increases the delay in the network. In addition, there is a risk of unsuccessful
data delivery in multihop strategy due to fragile communication links between those nodes
that are in a long way from each other. Furthermore, multihop communication increases the
overhead for the middle vehicles. The nodes must apply an algorithm to choose the best next
hop. In addition, implementing, upgrading, and debugging centralized methods are easier
than decentralized methods.
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On the other hand, the centralized system should have fault tolerance ability. Otherwise, with
any fault in the system, it will crash. In case of failure in the system, the supporting (back
up) strategy must handle the situation and prevent crashing the system. In the proposed
centralized method, the centralized system contains cloud, FCPUs, and CMU. Therefore, we
can have three possible failures:

• Failure in communication with the cloud: In this case, FCPUs can use the last reference
database until the problem is solved.

• CMU Failure: In this case, the last update for the values of ∆t, j, DDRminth, DDRmaxth

and RSSth from CMU can be used until the problem is solved. Additionally, the last
assignment of segments and BSs to FCPUs can be applied until the CMU can join the
system again.

• FCPU failure: In this case, the CMU can assign the coverage area of the failed FCPU
to other neighboring FCPUs until recovering the FCPU failure.

In addition to these suggested backup strategies, improving the fault tolerance ability of the
centralized methods should be investigated more in the future.

Moreover, the part of assigning segments and BSs to FCPUs can be studied in the future
to find the optimum solution, especially in complex urban environments. For example, in
the most crowded parts of a city, it can be better to consider a low number of segments
for FCPUs to cut down the load of the FCPUs and share it among a greater number of
FCPUs. In this scenario, communication between a BS and more than one FCPU should be
considered since it is possible to assign a BS to several FCPUs.

3.4 Data Collection and Performance Evaluation

3.4.1 Data Collection and Simulation

The lack of datasets containing HetVNET information was the reason why we generated a
dataset using HetVNET simulation scenarios. Since we generated the dataset and we did
not have a large amount of data (a limitation in our work), we could not consider the deep
learning methods. Moreover, complex prediction methods are not necessarily the best choice
to use, and depending on the conditions of the problem, we might obtain better results with
simpler and faster methods such as ML prediction methods. Therefore, we study supervised
ML classification methods. Nevertheless, the proposed centralized and dynamic cloudy-fog
based architecture is compatible with more complex prediction methods such as deep learning
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algorithms. Indeed, the computation and storage power of FCPUs are suitable for executing
more complex prediction methods.

The dataset contains data records of five mentioned parameters, which are effective in network
congestion problems. We generate our data using the Simulation of Urban Mobility (SUMO)
0.26.0 [88] simulator and the Veins LTE version 1.3 [89], both in Linux (Ubuntu 16.04).
The boroughs of Montreal city in Canada are considered for simulating vehicular traffic and
heterogeneous network environment. “OpenStreetMap” [90] is used to extract the map data
related to a part of Montreal as an “.osm” file. SUMO is used to generate urban vehicular
traffic, and Veins LTE is simultaneously used as a network simulator. Vehicles are equipped
with both LTE and IEEE 802.11p interfaces. DSRC is used to exchange intragroup vehicle
information. LTE is used to exchange information on inter-groups of vehicles. Moreover, an
accident is defined to occur at a specific time (t= 70 s) when running the simulation scenario
to generate extra load of data. The duration of each run is 1000 s. The minimum path loss
coefficient is 2 [91] in the simulation scenarios. DCC (used in ETSI) is based on changing the
value of the data transmission rate and transmission power [32,46,86]. Additionally, most of
the proposed congestion controls in WAVE standard are based on adapting the transmission
power and data transmission rate [35,35,38,41]. Therefore, in each run, we changed the value
of v, dr, tpDSRC , tpLTE and b according to Table 3.1, and we calculated the values of DDR
and RSS. The values of DDRminth and DDRmaxth are 0.4 and 0.6, respectively [92]. The
amounts of generated and transmitted data (during 1000 s of running a simulation scenario)
are used to calculate the DDR.

In [38], the authors proposed an RSS cutoff value for V2V communication, in which if the
RSS is higher than the cutoff value, then the packet loss is due to network congestion.
They provide simulation results and technical discussions to support this issue. In [38], the
threshold value for RSS is −96.26 dBm for data rates of 3, 6 and 12 Mbps. On this basis, the
value of RSSth is −96.26 dBm in this paper. Based on the amount of DDR and RSS in each
simulation scenario and using (3.1), each data record belongs to a warning or nonwarning
class. In other words, among the simulated data gathered in the dataset, the data records
that their DDR value is in a warning range and the RSS value is greater than a threshold
value such as −96.26 dBm were labeled by w1 as a warning state.

For the implementation, we used Python version 3.6 with well-known libraries, such as Scikit-
learn, NumPy, Matplotlib, Pandas, and others, to generate the proposed Naive Bayesian
network congestion classifier and evaluate and compare its performance with the performance
of the Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Random Forest using
the same data. Moreover, normalization is performed on the data since the data extracted
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from the simulation scenario vary in unit and range. Normalizing data helps with accurate
prediction models. In addition, the training dataset is balanced.

Table 3.1 Parameters and corresponding values used in the simulation scenario.

Parameter Value
Bandwidth (IEEE802.11p) 10 MHz
Bandwidth (LTE) 5 MHz, 10 MHz, 20 MHz
Transmission power (IEEE802.11p) 30 dBm (Maximally)
Transmission power (LTE) 43 dBm, 46 dBm
Transmission rate (IEEE802.11p) 3 Mbps, 6 Mbps, 12 Mbps
Resource Blocks size 25, 50, 100
Minimum path loss coefficient 2
Message size 400 Bytes
Number of base station (eNB) 1
Simulation area 1000 m × 1000 m
Number of lanes 4 (two in each direction)
Simulation time 1000 s
Number of vehicles 30, 50, 100, 150, 200
Vehicles speed 0-40 km/h
Propagation model Nakagami (m=3)
Simulation runs 260

3.4.2 Performance Evaluation of the Congestion Classification Method

Table 3.2 is prepared to clarify the relationship between the actual and predicted classes [93].

If our target HetVNET is in a warning congestion situation but the predicted result incor-
rectly shows a nonwarning state that is introduced as False Negative (FN) in Table 3.2, then
it will have undesirable and unexpected consequences for vehicular users. Therefore, the cost
of FN prediction in our proposed problem is higher than the cost of False Positive (FP). In
the latter case, the actual state of congestion in the network is nonwarning, but it is pre-
dicted as a warning case. Although this case is a fault in the performance of the proposed
prediction model, vehicular users do not experience the result of the side-effects of this error
as much as the bad consequences from FNs. Regarding this issue, the recall factor helps us
to evaluate the proposed prediction classification model more efficiently. High recall values
show that most of the warning cases are correctly predicted and that the number of warning
states that are incorrectly predicted as a nonwarning state is low. Precision considers only
positive predictions, both those that are truly predicted warning state (TP) and those that
are falsely predicted warning state (FP). Therefore, for the proposed problem in this work,
the recall factor is more important than the precision because the costs of FP and FN vary for
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vehicular users. The False Positive Rate (FPR), which indicates the ratio of states, accounts
for the warning states but does so incorrectly. If it is not a warning case and it is predicted
truly, then we have a True Negative (TN) in our results. The True Negative Rate (TNR) is
called the specificity. The FPR is 1− specificity [94].

Regarding the above-mentioned discussion, we evaluated the performance of the proposed
Naive Bayesian classifier.

Table 3.2 Relationship between the actual and predicted classes.

Predicted class
Classw1 Classw0

Classw1 True Positive
(TP)

False Negative
(FN)

Actual Classes Classw0 False Positive
(FP)

True Negative
(TN)

We used Receiver Operating Characteristics (ROC), which is a common graphical tool, to
measure the performance of binary classifiers and the Area Under the Curve (AUC).

As shown in Figs. 3.5 and 3.6, the ROC curve plots the True Positive Rate (TPR), which
is the recall against the FPR for binary classification models. In the ROC curve, the x
axis shows the FPR, and the y axis illustrates the TPR. Each of the TPR and FPR can
be equal to a value in [0,1]. In a Roc curve, when both the TPR and FPR are zero (i.e.,
(0,0)), it indicated that the classification model predicts negative output in every prediction.
Therefore, this outcome indicates in our problem that the prediction model will predict
nonwarning state for every input data of x. Indeed, such a prediction model is useless since
its performance means that there is no warning state at any time. Thus, a nonwarning state
can be considered regardless of the value of the predicted variables every time. In other
words, there is no warning at all about the congestion that makes us worry. We know,
however, that this circumstance is not true in the real world. On the other hand, when the
TPR and FPR are equal to one (i.e., (1,1)), this case designates that the prediction model
predicts positive for every input data of x, regardless of whether it is truly predicted or not.
In other words, the probability of true positives and the probability of false positives are the
same. If the model predicts the warning state for every input data point, with a probability
of 0.5, it is correct, and with a probability of 0.5, it is false. The diagonal line that connects
the two points (0,0) and (1,1) shows a random classifier at which the probability of truly
predicting a warning state is equal to the probability of falsely predicting it. The AUC in a
random classifier model is 0.5 [94].
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Regarding the time sensitivity of the problem, we choose machine learning methods that are
stable and accurate but not complex. High levels of complexity in the methods mean more
time for training and predicting. Therefore, we apply SVM, KNN, Random Forest and Naive
Bayesian algorithms to the data using k-fold cross validation technique [95], with k=10. The
entire data is divided into 10 subsets or folds. We considered one of the folds as the test data
and the other 9 folds as the training data. Then, the classification algorithm uses training
data to generate the model. Afterward, the performance of the generated model is evaluated
using the test fold. At this step, the ROC curve was plotted, and the AUC was computed.
We iterate this procedure 10 times, and in each round, one of the 10-fold is selected as the
test fold and the other remaining 9 subsets as the training folds. Therefore, every fold was
considered a test subset one time. As mentioned above, the ROC curve is a graph used to
illustrate TPR and FPR, and then, after 10 repetitions of the procedure, the mean ROC
curve shows the average performance of the model during the K=10 iterations in terms of
the TPR and FPR. Figs 3.5 and 3.6 show the mean ROC curves of the 10 folds along with
AUCs for SVM, KNN, Random Forest and Naive Bayesian classifiers. In these figures, the
dotted lines show the ROC curves of the 10 fold. The black diagonal dashed line shows the
random classifier. The colored area around the mean ROC illustrates the variance around
the mean ROC. The variance area indicates confidence intervals of the models. The variance
area, mean ROC curve and its AUC help us to comprehend the stability of the classification
models. A perfect classifier has a ROC curve far from the diagonal line toward its upper left
side with an AUC value equal to one [94].

In Fig. 3.5, SVM and KNN congestion warning classifiers are compared with each other. From
this figure, in terms of having a higher AUC of the mean ROC, the KNN congestion warning
classifier shows better performance than the SVM. In addition, the variance area (red light
area) around the ROC mean curve for the KNN congestion warning classifier is smaller than
the variance area for SVM (green area), which indicates that the predicting behavior of the
KNN congestion warning classifier is more stable than that of the SVM congestion warning
classifier. Although KNN performs better than SVM in predicting congestion warning states
of HetVNET, its performance is slightly weak compared to the Random Forest classifier, as
shown by the AUC value in Fig. 3.6. However, from the variance area of KNN in Fig. 3.5 and
Random Forest (pink area) in Fig. 3.6, it is likely that the KNN congestion warning classifier
is more stable than the Random Forest congestion warning classifier, with larger variance
area. Due to the Random Forest progression mechanism, which is based on extending the
tree randomly, the algorithm is less stable than the KNN and Naive Bayes classifiers.

The farthest point from the random classifier is at the top-left corner of the ROC curve
plot, where the recall is one and the FPR is zero. When the FPR is zero, 1 − specificity
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Figure 3.5 ROC curve for SVM and KNN congestion warning classifiers of HetVNET.

equals zero; consequently, the specificity is one. Therefore, at this point of the curve (top-left
corner), both the recall and specificity have their best values that can be obtained, and in
this case it is one. The blue line in Fig. 3.6 shows the mean ROC curve of the Naive Bayesian
congestion warning classifier. As illustrated in the figure, among the four classifiers, the mean
ROC curve of Naive Bayesian classifier is farther from the random classifier and closer to the
top-left corner compared to the mean ROC curves of Random Forest, KNN and SVM (using
Fig. 3.5). As a result, the Naive Bayesian congestion warning classifier has the highest AUC
value of 0.94 compared to SVM, KNN, and Random Forest with AUC values of 0.77, 0.81,
and 0.82, respectively. In addition, in Fig. 3.6, the small light blue area around the mean
ROC of the Naive Bayesian classifier demonstrates its stability, which is more than the SVM,
KNN, and Random Forest classifiers.

Table 3.3 Confusion parameters.

Mean Accuracy (%) Mean Precision Mean F1
SVM 88.01 0.827 0.767
KNN 89.95 0.848 0.821
Random Forest 90.00 0.856 0.826
Naive Bayes 91.87 0.848 0.875
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Figure 3.6 ROC curve for Random Forest and Naive Bayesian congestion warning classifiers
of HetVNET.

In classification-related problems, other metrics, such as the accuracy, precision and F1 score
are used together with the recall and ROC curve. We also evaluated the performance of the
proposed Naive Bayesian congestion warning classifier in terms of the mentioned metrics.
For each of the 10 folds in the SVM, KNN, Random Forest, and Naive Bayesian congestion
warning classifiers, the accuracy, precision, and F1 score are calculated, and then, the average
values of the 10 folds belonging to each metric are listed in Table 3.3. The proposed Naive
Bayesian congestion warning classifier with a mean accuracy value of 91.87% is more accurate
than the SVM, KNN and Random Forest classifiers. In terms of the mean precision, the
KNN, Random Forest, and Naive Bayesian classifiers have close values, and SVM has the
least mean precision value. The merging of the mean recall and the mean precision gives
the mean F1 score. Indeed, the F1 score is the weighted harmonic mean of the recall and
precision. The best value for the F1 score is one, which signifies high precision and recall.
With a mean F1 score value of 0.875, the Naive Bayesian congestion warning classifier shows
better performance than the SVM, KNN, and Random Forest classifiers. The obtained results
in Table 3.3 affirm that the performance of the proposed Naive Bayesian congestion warning
classifier in almost all of the mentioned parameters is better than that of the other three
classifiers.
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CPU time is another metric that must be considered in machine learning related works.
If a method has good performance in terms of accuracy but requires high CPU time for
processing, this trend could be a significant weak point for that method, especially in time
sensitive problems. Therefore, we evaluate the performance of SVM, KNN, Naive Bayes and
Random Forest classifiers in terms of CPU time in microseconds. As shown in Fig. 3.7,
the CPU requires more time to execute KNN, SVM, and Random Forest, respectively than
the Naive Bayesian classifier. KNN needs time to calculate the distance between new data
and each existing data record. Accordingly, the CPU time for the KNN classifier is higher
than that of the other classifiers (using Fig. 3.7). In contrast, Naive Bayes does not require
a large dataset for estimations. Moreover, it assumes that the predictors are independent.
Therefore, as correctly shown in Fig. 3.7, Naive Bayes is a faster learner classifier than SVM,
KNN, and Random Forest.
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Figure 3.7 CPU time in microseconds for four classifiers.

Finally, considering the discussion about the results related to mean ROC curves, which are
demonstrated by Figs. 3.5 and 3.6, the obtained performance results in Table 3.3 and the
required CPU time indicate that the proposed Naive Bayesian congestion warning classifier
could accurately predict the network congestion warning state in a target HetVNET.

Unfortunately, similar work could not be found in the HetVNET-related literature to make
a comparison between the proposed Naive Bayesian congestion classifier and the legitimate
benchmark or state-of-the-art. This issue confirms the novelty of this work. Therefore, we
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compared the Naive Bayesian congestion classifier with three other well-known and powerful
supervised classification algorithms, SVM, KNN, and Random Forest.

3.4.3 Performance Analysis of the Proposed Approach

To show how the proposed congestion classification approach positively affects the data trans-
mission in the network, we perform a controlling mechanism named Centralized Network
Congestion Classification (CNCC), when a warning result is made by the prediction model.
In this mechanism, in nonwarning situation, the value of CW is 15, which is a minimum
allowed amount in DSRC, as mentioned in [29,95], and the data transmission rate is 3 Mbps.
This low data rate is selected to prevent noise and interference [38]. Moreover, based on a
study presented in [50], in a moderate channel load, data transmission rate of 3 Mbps has
a higher average reception rate than other transmission values. In the CNCC mechanism,
when the result of the Naive Bayes prediction is a warning state, the value of CW is set
to 1023, which is a maximum allowed value [29, 96], and the value of the transmission rate
increases. To determine how much the value of the data transmission rate must be increased,
we investigate the performance of the CNCC using a range of allowed data transmission
rates in DSRC. Figs. 3.8 to 3.10 show the variation in the packet loss ratio, the average
throughput and average delay of the CNCC using 3 Mbps, 6 Mbps, and 12 Mbps as the
data rate. According to the presented results in Figs. 3.8, 3.9 and 3.10, CNCC outperforms
when we applied a 6 Mbps data transmission rate. The aim of increasing the value of the
data rate is that the data that might have waited for a while (because of the large value of
CW) could be transferred quickly. Based on these figures, with an increase in the number of
vehicles that results in a high channel load, a data transmission rate of 6 Mbps is the best
selection. According to Figs. 3.8, 3.9 and 3.10, in the dense vehicular environment, apply-
ing a higher data transmission rate such as 12 Mbps, could increase noise and interference
and have a negative impact on the network performance. Moreover, this circumstance can
create a critical network congestion situation because increasing the value of the data rate
requires an increase in the transmission power, which can escalate channel collisions in a
dense environment.

In CNCC, the result of the Naive Bayes prediction model is announced by the FCPUs to the
corresponding vehicles in their range. In a predicted warning case, the vehicles must apply
the new values of CW and data rate (CW=1023 and 6 Mbps for data rate) until they receive
the new nonwarning result of the prediction from FCPU. Then, the vehicles can apply CW=
15 and 3 Mbps data rate.

In this architecture, the BSs are the gateway nodes that provide the required information for
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Figure 3.8 Variation in the packet loss ratio using the CNCC mechanism with the numbers
of vehicles for various values of the data transmission rate.
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Figure 3.9 Variation of the average throughput using the CNCC mechanism with the numbers
of vehicles for various values of the data transmission rate.

the FCPUs and the prediction results for the vehicles. The FCPUs have information on the
current values of the predictors, vehicle ID, location, average speed, and average acceleration
of every vehicle via gateways. FCPUs are well equipped with enough memory, storage, and
processing cores to analyze large amount of data and predict the network congestion state.
For example, to implement the proposed ML classification method and make predictions,
advanced hardware such as Graphics Processing Unit (GPU) can be employed in FCPUs [97].
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Figure 3.10 Variation in the average delay using the CNCC mechanism with the numbers of
vehicles for various values of the data transmission rate.

The FCPU computes D(v) and vnew and predicts the congestion state using (3.6). Then, the
prediction result must be sent via a gateway node to the vehicles located in the corresponding
segment. Based on the prediction result, if the vehicles receive w1, they apply CW=1023
and dr=6 Mbps to avoid congestion in the network, and if the vehicles receive w0, there is
no need for the vehicles to change the values of the parameters.
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Figure 3.11 Packet loss ratio of the four considered mechanisms with various numbers of
vehicles.

In this paper, we compare the performance of the CNCC to contention window-based methods
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Figure 3.12 Average delay of the four considered mechanisms with various numbers of vehicles.
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Figure 3.13 Average throughput of the four considered mechanisms with various numbers of
vehicles.

such as CSMA/CA, ML-CC and DCCS. The results of the packet loss ratio are presented
in Fig. 3.11. Applying CNCC could significantly improve the packet loss ratio compared to
CSMA/CA. Moreover, the variation in the value of the packet loss ratio in the CNCC is lower
than that in the ML-CC and DCCS with an increasing number of vehicles. Therefore, based
on Fig. 3.11, CNCC could improve the packet loss ratio compared to CSMA/CA, ML-CC
and DCCS.
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Fig. 3.12 shows the results of the average delay (in ms) for the four considered congestion
controlling mechanisms. Congestion in the network can increase end-to-end delays in data
transmissions. Based on Fig. 3.12, the CNCC could improve the average delay, especially in
dense vehicular environments. According to the results shown in Fig. 3.12, the performance
of the CNCC in terms of the average delay is much better than that of CSMA/CA and
DCCS. Moreover, in comparison to ML-CC, the CNCC could reduce the average delay in
scenarios with over 100 vehicles. With an increase in the number of vehicles, the CNCC
shows stability in the results that is due to applying the prediction method before congestion
occurs in the network.

In Fig. 3.13, the average throughput results of the four considered congestion controlling
mechanisms are presented. In a congested network, the amount of average data delivery
in seconds is low. Therefore, the results on the average throughput can show how much
the mechanisms control congestion in the network. Based on the previous figures, the ML-
CC was successful in decreasing the packet loss ratio and the average delay; however, it
could not increase the average throughput. As Fig. 3.13 shows, DCCS and CNCC have
better performance than ML-CC and CSMA/Ca. In other words, the average amount of
successfully received data in a second in the CNCC mechanism is higher than that in the
other three methods.

3.5 Conclusions and Future Work

In this paper, we have proposed a centralized and dynamic cloudy-fog-based architecture
of HetVNET. Moreover, we have proposed a classification method using a Naive Bayesian
algorithm to predict the congestion warning state in the data transmission of HetVNET.
The proposed Naive Bayesian classification approach can be applied in the centralized and
dynamic cloudy-fog-based architecture of HetVNET, to accurately predict warning situations
in data flow. We used the data delivery ratio and the received signal strength as metrics
to categorize the congestion warning and nonwarning states in HetVNET. We used five
features: the number of vehicles, data rate, DSRC transmission power, LTE transmission
power, and LTE bandwidth to predict the congestion warning state of HetVNET. In addition,
SVM, KNN, and Random Forest algorithms, which are widely used in current classification
problems, have been applied to generate prediction models. Numerical results emphasize that
the Naive Bayesian classification approach is not only more suited to the proposed problem
but is also more accurate than the other three approaches.

The aim of this approach is to improve the stability in the performance of the network. Em-
ploying a congestion prediction model helps us to prepare a network before congestion occurs.



75

As the results indicate, by applying this approach, we can make a network that is flexible
with various vehicle densities and shows stable performance. Based on the obtained simula-
tion results, applying the congestion classification approach could improve the performance
of HetVNET in terms of the packet loss ratio, average delay and average throughput.

We will consider the following open challenges as future works:

• Applying the proposed method using real data and evaluating the performance of the
method in the real environment of HetVNET;

• Considering other factors, such as the mobility model, modulation technique, complex-
ity of scenarios (urban, rural, straight highway and so on), number of eNBs, and number
of resource blocks as predictors to generate a more complex congestion prediction model
for HetVNET;

• A Recurrent Neural Network (RNN) method is implemented in real time to analyze
the sequential and time series network data of the dataset traces.
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Abstract

Finite capacity of network resources and enormous data generated by vehicles using safety
and comfort applications, have made network congestion a challenge to manage in Heteroge-
neous Vehicular Network (HetVNET). In this paper, we propose a reliable network congestion
model based on a Multiple Linear Regression (MLR), which is a supervised machine learning
algorithm to predict network congestion in HetVNET. We have evaluated the performance
of our proposed network congestion prediction model using a Cross-Validation test approach.
Numerical results show that the proposed linear congestion prediction model is reliable, which
can explain and support variability of the response as well. Moreover, we have weighted ef-
fectiveness of each considered HetVNET parameters, in association with congestion situation
in HetVNET.

Keywords: Heterogeneous Vehicular Networks(HetVNET), network congestion prediction,
supervised machine learning method, Intelligent Transportation System (ITS)

4.1 Introduction

In Heterogeneous Vehicular Network (HetVNET) connected vehicle’s users can be profited
from various services, which are provided by Dedicated Short Range Communication (DSRC)
and Long-Term Evolution (LTE) [98]. In vehicular networks, data generated by vehicles can
be transmitted via two types of communications: Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I). HetVNET applies DSRC and LTE in V2V and V2I communications
respectively [81].
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The growing number of smart vehicles and the significant tendency of people to enjoy diverse
services from Internet ubiquity generate high resource demands for data transmission through
network, which is a notable challenge. In the scenario that a huge volume of data needs to
be transmitted, but we do not have enough resources in HetVNET to dedicate, network will
experience congestion situations. Unfortunately, congestion can impair network performance
and user satisfaction by collapsing the Quality of Services (QoS). When a vehicular user finds
out that data transmission is low and has to wait for network respond, then his satisfaction
typically will drop. Therefore, congestion in a vehicular network is negatively related to
QoS. In a real time situation, when an accident has happened, two actions of warning other
vehicles on the way and sending an alarm to immediate health help must be done within
an appropriate time and with least latency. In such a scenario, if the HetVNET encounters
congestion problem and no congestion mechanisms are used, the direct effect of congestion on
QoS could have irreparable harms for human life, time consumption and money expenditures.

Intelligent learning methods help devices and machines to learn from existing data, and then
use what they learned for new data, which the device may have never seen those data before.
Machine learning algorithms are categorized into supervised and unsupervised learning. An
unsupervised learning method is capable to learn and making solutions with no error eval-
uation. However, a supervised method is an error correction method, and learning will be
matured by training [31].

Regarding to this preface, we decided to study current works related to network congestion in
vehicular networks, which the authors used machine learning algorithms in them. However,
the number of works in this area is limited. That being said, controlling congestion by apply-
ing an unsupervised algorithm for clustering information generated by vehicles in Vehicular
Ad hoc Network (VANET) has been proposed by Taherkhani and Pierre [23]. Although their
work is not about network congestion prediction, they succeeded in controlling congestion
by clustering data using learning K-means algorithm. In many similar works, authors as-
sumed congestion situation from channel busy level and then tried to propose a mechanism
to control network congestion. However, for the first time, in this work, we do not use any
assumption for network congestion, we propose a method to predict it, and results will show
to which extend the proposed prediction method is accurate and reliable.

Moreover, the concept of fracturing control unit and data plane has been emerged by Software-
Defined Networking (SDN) architecture [3,5]. In SDN, the control layer plays administrative
roles in the whole network. Therefore, the control layer is able to update, configure and opti-
mize network resources very fast and dynamically thanks to its programmability attribute [3].
SDN is adaptable, manageable, cost-effective, and ideal for dynamic environment like Het-
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VNET. In this regards, a network congestion prediction model at the control layer, can help
in forming and boosting an intelligent network management in SDN based architectures of
HetVNET. In this paper, we propose a multiple linear network congestion prediction model
for HetVNET.

This paper is organized as follows. In Section 4.2, we present a literature review, and in
Section 4.3 a methodology and the proposed prediction model. Simulation scenario and nu-
merical results are presented and discussed in Section 4.4. Concluding remarks are presented
in Section 4.5.

4.2 Related Work

In the literature, several authors decided to cope with network congestion by adjusting the
transmission power [21, 36, 46, 58]. For instance, Ali Shah et al. [36] defined a mechanism to
reduce the transmission power in order to control traffic load of control channel in VANET.
If a vehicle finds out that control channel is congested, it will inform other vehicles that they
may be affected by the congestion problem. Then, vehicles are sorted based on their current
transmission power. Vehicles formed several groups, and vehicles belonging to each group
start to reduce transmission power fairly. In this method, the congestion is alleviated by all
vehicles that are impacted by the effects of network congestion. Chakroun and Cherkaoui [21]
tuned transmitting power of each vehicle based on crowding level surrounding of the vehicle.
In the proposed algorithm, as far as local communication congestion does not exceed a
communication congestion threshold, the transmitting power is increased, and otherwise,
the transmitting power is decreased. In this paper, the value of communication congestion
threshold is not defined. Rostami et al. [42] compared the performance of two approaches
of reactive state based and linear adaptive approaches. In reactive state based approaches
three different states are defined for channel: idle, active, and high traffic load. Active level
is divided to three sub sets. Each channel occupancy level has a predefined related message
transmission policy in terms of time for transmission message and message transmission
rate. In linear adaptive approaches message transmission policy is defined to worthy channel
utilization. Simulation results illustrate that the message throughput with the linear adaptive
approach is higher than the message throughput with the stable reactive approach. Zang
et al. [55], used a static and fixed threshold for channel usage. Different congestion control
mechanisms are used according to the channel usage, for more than 95% and for more than
70%. However, as found by the authors, congestion may occurred with lower channel usage
figures.

Taherkhani and Pierre [23] improved packet loss, average delay and probability of collision
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metrics by applying the K-means clustering technique (unsupervised algorithm). Its pro-
posed strategy is divided in to three parts: congestion detection, data control and congestion
control. In the congestion detection unit, it is assumed that congestion is happened when-
ever channel usage comes up to 70%. In the control unit, messages are collected, filtered
and then clustered. In the congestion control unit, appropriate communication parameters
are assigned to each cluster. Lu et al. [53] proposed a method, which reduce the bandwidth
assigned to delay tolerant data and adding it to the bandwidth used by sensitive delay data.
The solution approach was applied where the channel queue length had been grown more
than a threshold and congestion happened. Zemouri et al. [20] proposed a model to predict
density around a vehicle in the next time window by using beacons’ information. Then based
on density prediction, the vehicle can adjust its parameters to avoid congestion for the next
time window. Hasanabadi et al. [27] proposed the Synchronized Persistent Coded Repeti-
tion (SPCR) algorithm. With SPCR, each active vehicle node broadcasts composition linear
coding of messages, which are selected randomly from its queue. If the number of vehicles
in a cluster is N , then the congestion control mechanism randomly selects n nodes as active
(which defined as n ≤ N) and abandons all messages from (N−n) inactive nodes. Therefore,
the value of n is from 0 to N. If n = N , it means that all N vehicles in the cluster are active
and can all broadcast messages. On the other hand, if n = 0, it means all nodes are passive
and all safety messages are dropped which is dangerous especially in critical situation like
road hazards. Kolte and Madnkar [18] defined several segments and assigned each vehicle to
a segment. In each segment, one node decides that which of the other nodes of the segment
can use dedicated bandwidth during specific time interval. Since, segments densities are not
equal, bandwidth allocation is not fair, as a node in a denser segment has to wait more to
use dedicated bandwidth. Besides, time of using bandwidth for a node in crowded segment
is less than a node in a non-crowded segment.

4.3 Methodology and Prediction Model

4.3.1 Designing Structure of Data set

Inspiring of current works, we consider a group of parameters, which each one has effect on
creating congestion in vehicular network. Indeed, analyzing a group of different parameters,
which have effect on congestion in vehicular network using learning algorithm, helps us to
produce prediction model with high accuracy in congestion prediction result. Besides, assign-
ing a weight to each parameter in prediction model can guide us to find out the importance
level of parameters in terms of their effects on congestion in the HetVNET. This approach
can guide us towards creating a congestion control mechanism based on most effective pa-
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rameters on congestion occurrence. We consider following five vehicular network parameters
in this work: Number of Vehicles (v), Data Rate (dr), DSRC Transmission Power (tpDSRC),
LTE Transmission Power (tpLTE), and LTE Bandwidth (b).

4.3.2 Proposing the Utility Function

The network throughput is the amount of data successfully received at the destination point
per unit of time. The data generation rate is the amount of data generated by the network
nodes per unit of time. As a result, in part of creating data set, we propose utility function
like U(vt) as a metric to detect congestion in the HetVNET. Indeed, congestion recognition is
based on two factors of network throughput ((τ)) and data generation rate (α) by v vehicles.
Value of U(vt) ∈ [0, 1] for time of t and with v vehicles. We can assume that if the value of
U(vt) grows towards one, the network condition in terms of congestion improves, and if value
of U(vt) collapsed towards zero then congestion is happened in the network:

U(vt) = (τDSRC)(vt) + (τLTE)(vt)
α(vt)

, (4.1)

where, α(vt) is the data generation rate by v vehicles for time unit t. Moreover, we consider
total throughput in the heterogeneous vehicular network as sum of throughput of DSRC
(tpDSRC(vt)) and throughput of LTE (tpLTE(vt)), both based on Bytes per second (Bps).
This vision helps us to investigate congestion problem based on sensitivity of urban roads.
For various scenarios and based on network sensibility, we define a threshold for value of
utility function like T (which T ∈ (0; 1)) and based on that, we can define three network
congestion states in HetVNET:

congestion state =


safe, if (T + γ) < U(vt) ≤ 1

warning, if T < U(vt) ≤ (T + γ)

congestion, if 0 ≤ U(vt) ≤ T

, (4.2)

where γ ∈ (0, 1) is used to define the warning interval and (T + γ) < 1. For instance, assume
that the HetVNET is implemented in a non-safe road with high risk of car accident and the
weather is rainy. In such a scenario, as the required emergency and safety services should be
provided smoothly, we may set U(vt) to 0.4 or over, so T= 0.4. If we assume that γ = 0.2,
then based on (5.2), we have:
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congestion state =


safe, if (0.6) < U(vt) ≤ 1

warning, if 0.4 < U(vt) ≤ (0.6)

congestion, if 0 ≤ U(vt) ≤ 0.4

In this example, the congestion prediction model must make a warning when it predicts
that the value of U(vt) will get less to below 0.6. Then, at this moment, the congestion
control/avoidance mechanism will be executed before the value of U(vt) is collapsed to 0.4,
and pushes it up to upper level like beyond 0.6. Therefore, we can be assured that in a
critical network situation in terms of data traffic, our target HetVNET can provide at least
an acceptable level of network services for vehicular users.

4.3.3 Multiple Linear Regression Prediction Model

In order to predict quantitative values such as for U(vt), linear regression is a popular method
[95]. According to the Multiple Linear Regression (MLR) method, we use the least squares
method in order to generate a best possible fitted prediction model by minimizing predicting
error. It means that by using least square approach we attempted to find model coefficients
(β) for our prediction model in the manner of minimizing Residual Sum of Squares (RSS). RSS
is the difference between observed values of U(vt) in training data set and response values that
are predicted by the prediction model [95, 99]. Based on MLR, if x= (x0, x1, x2, . . . , xm) =
(1, v, dr, tpDSRC , tpLTE, b) contains our predictor variables, and β is a set including of our
model coefficients (β) which β = (β0,β1,β2, . . . ,βm), then the quantitative value of U(vt)
(which we call ŷ) can be predicted as follows:

ŷ = β0 + β1v + β2dr + β3tpDSRC + β4tpLTE + β5b (4.3)

If we suppose that y is the observed value of U(vt) in the data set, then ei = yi − ŷi is
residual error for ith data record [95,99]. A prediction model can be trustful, where amount
of ei is at minimum value of itself. To achieve this goal, least squares method can help us
find a best fitted prediction model in linear regression problems. Therefore, according to the
least squares method, we propose different values for our predictor variables and output Y .
Therefore, if we consider a (n× 6) matrix of X and a (n× 1) matrix of Y as follows (which
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n is number of observed data records in data set):

X =


1 v1 dr1 tpDSRC1 tpLTE1 b1
... ... ... ... ... ...
1 vn drn tpDSRCn tpLTEn bn

 ,

Y =


y1

y2
...
yn

 =


U1(vt)
U2(vt)

...
Un(vt)

 ,

then, we can calculate ( XT ×X) as a (6× 6) matrix with subsequent members:

XT ×X =



x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

x31 x32 x33 x34 x35 x36

x41 x42 x43 x44 x45 x46

x51 x52 x53 x54 x55 x56

x61 x62 x63 x64 x65 x66


, (4.4)

where:

x11 = n x14 =
∑n
i=1(tpDSRC)i

x21 =
∑n
i=1 vi x24 =

∑n
i=1(vi)(tpDSRC)i

x31 =
∑n
i=1 dri x34 =

∑n
i=1(dri)(tpDSRC)i

x41 =
∑n
i=1(tpDSRC)i x44 =

∑n
i=1(tpDSRC)2

i

x51 =
∑n
i=1(tpLTE)i x54 =

∑n
i=1(tpLTE)i(tpDSRC)i

x61 =
∑n
i=1 bi x64 =

∑n
i=1(bi)(tpDSRC)i

x12 =
∑n
i=1 vi x15 =

∑n
i=1(tpLTE)i

x22 =
∑n
i=1(vi)2 x25 =

∑n
i=1(vi)(tpLTE)i

x32 =
∑n
i=1(dri)(vi) x35 =

∑n
i=1(dri)(tpLTE)i

x42 =
∑n
i=1(tpDSRC)i(vi) x45 =

∑n
i=1(tpDSRC)i(tpLTE)i

x52 =
∑n
i=1(tpLTE)i(vi) x55 =

∑n
i=1(tpLTE)2

i

x62 =
∑n
i=1(bi)(vi) x65 =

∑n
i=1(bi)(tpLTE)i

x13 =
∑n
i=1(dri) x16 =

∑n
i=1(bi)

x23 =
∑n
i=1(vi)(dri) x26 =

∑n
i=1(vi)(bi)

x33 =
∑n
i=1(dri)2 x36 =

∑n
i=1(dri)(bi)

x43 =
∑n
i=1(tpDSRC)i(dri) x46 =

∑n
i=1(tpDSRC)i(bi)

x53 =
∑n
i=1(tpLTE)i(dri) x56 =

∑n
i=1(tpLTE)i(bi)

x63 =
∑n
i=1(bi)(dri) x66 =

∑n
i=1(bi)2
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therefore, we can calculate XT ×Y as follows:

XT ×Y =



∑n
i=1 Ui(vt)∑n

i=1 vi × Ui(vt)∑n
i=1 dri × Ui(vt)∑n

i=1(tpDSRC)i × Ui(vt)∑n
i=1(tpLTE)i × Ui(vt)∑n

i=1 bi × Ui(vt)


, (4.5)

Finally, β contains the proposed model coefficients is computable using (4.6), and the multiple
linear regression congestion prediction model can be completed:

β = (XXT ×X)−1 × (XT ×Y) =



β0

β1

β2

β3

β4

β5


. (4.6)

4.4 Simulation Scenario and Numerical Results

4.4.1 Simulation Scenario

In this paper, as part of data generation and towards generating urban simulation scenario,
we use OpenStreetMap (OSM) to create map of boroughs of the city of Montreal in Canada.
Then, we used the “.osm” file in Simulation of Urban Mobility (SUMO) 0.26.0 to generate
road traffic. Finally, we worked with Veins LTE version 1.3 [89], which is standing on the
OMNeT++ (4.6) Network simulator to simulate heterogeneous vehicular network based on
IEEE 802.11p and LTE.

Table 4.1 contains attributes and parameters values, which are applied in each of the 260
running simulation scenarios. For each scenario, we set the values of v , dr, tpDSRC , tpLTE,
and b and then calculated the value of U(vt).

After generating data extracted from executing simulation scenarios and putting it in shape
of a data set, we use R programming language (using RStudio version 1.1.463) in order to
create multiple linear regression congestion prediction models and statistically analyzing their
performance to finally find a congestion prediction model most fitted to the observed data.
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Table 4.1 Configuration Used to Generate Simulated Environment

Parameter Value
Size of simulated area 1000 m ×1000 m
Number of lanes 4 (two in each direction)
Number of vehicles 30, 50, 100, 150, 200
Number of base station (eNB) 1
Bandwidth (IEEE802.11p) 10MHz
Bandwidth (LTE) 5 MHz, 10MHz, 20MHz
Transmission power (IEEE802.11p) 1 mW, 50 mW, 100 mW
Transmission rate (IEEE802.11p) 6-27 Mbps
Transmission power (LTE) 43 dBm, 46 dBm
Resource Blocks size 25, 50, 100
Message size 400 Bytes
Vehicles speed 0-40 km/h
Propagation model Nakagami
Simulation time 1000 s

4.4.2 Multiple Linear Regression Analysis: Assessing Congestion Prediction
Model

In the current HetVNET related works, we did not find any work that could be used as
a benchmark (until today), and make comparison with our proposed method. Therefore,
in order to evaluate congestion prediction model generated by multiple linear regression
method, we will respond to the following questions, which are mainly considered in regression
problems:

Q1) How much of variability in amount of U(vt) can be expressed by predictor variables (v
, dr, tpDSRC, tpLTE and b) in congestion prediction model? Or using a subset of predictor
variables is more effective for predicting U(vt) than having a congestion prediction model con-
tains all five predictor variables? R square parameter can show us that how much changing
in value of dependent variable like U(vt) is determined by independent variables like v , dr,
tpDSRC , tpLTE and b in our problem [95]. Fig. 4.1 illustrates amount of R2 for each possible
30 prediction models, which are generated using information of data set and MLR method.

Fig. 4.1 shows that in model 24, which we apply all five predictor variables to make a
congestion prediction model, as we expected, it has highest coefficient of determination (R2)
among all possible 30 congestion prediction models. It confirms that, information from the
variables like number of vehicles, data rate, DSRC transmission power, LTE transmission
power, and LTE bandwidth are helpful to better predict the network performance in terms
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of problem in data transmission in HetVNET. The regression congestion prediction model 24
composed of all five considered variables, with coefficient of determination of 0.82733 (which
is most close to one among other models), is most capable to express variability in amount
of U(vt). Therefore, in continue we just consider information of all five predictor variables in
order to generate congestion prediction models using MLR.

Figure 4.1 Value of R2 for each possible 30 prediction models.

Q2) Is proposed congestion prediction model a reliable model? Based on Cross-Validation test
method [95], we considered 80% of our observed data in a training data set and remaining
20% are used in a test data set. We performed this approach 20 times and for each time
data belonging to training data set and test data set are selected randomly among 260 data
records of our observed data. In each split of training data set, the MLR algorithm generates
a model based on data of training data set.

Table 4.2 Statistical Parameters About Congestion Prediction Model 19.

Estimate Std. Error t value Pr(>|t|)
(Intercept) −1.036e−02 1.943e−02 −0.533 0.594
v 1.555e−04 6.799e−06 22.876 >2e−16
dr 1.921e−06 5.555e−05 0.035 0.972
tpDSRC 1.754e−04 1.036e−05 16.930 >2e−16
tpLTE 2.371e−04 4.482e−04 0.529 0.597
b 3.281e−05 1.033e−04 0.318 0.751

We evaluate accuracy of generated prediction models using test data sets and based on
Root Mean Square Error (RMSE) parameter, which is one of the best parameter to show
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Figure 4.2 RMSE in different splits of data set using cross-validation test approach.

how much the prediction model can be trustful in terms of producing results close to actual
data [100]. Fig. 4.2 shows value of RMSE for different splits of data set using cross-validation
test approach. In prediction problems, a model with less RMSE is more accurate than
other model with higher RMSE value. As Fig. 4.2 indicates, the prediction model 19 has
minimum amount of RMSE in compare to other congestion prediction models. Table 4.2
contains coefficients of congestion prediction model 19 based on least squares in multiple
linear regression method. We can see values of matrix β for model 19 (related to formula
(4.6)) in estimate column of Table 4.2. Each of the five predictor variables has its own level
of effectiveness on U(vt). Estimate column in Table 4.2, shows effect of each five predictor
variable on smooth data transmission. Based on the estimate column, transmission power of
LTE has highest effect on boosting data transmission by increasing value of respond U(vt).
DSRC transmission power has been placed at second level of importance in terms of having
contribute on enhancing U(vt).

Table 4.3 Statistical Metrics of Congestion Prediction Model 19.

Parameter Value
Residual Standard Error 0.00607
R2 0.801
Mean Square Error 0.000021
F-statistic 162.7

Table 4.3 provides other information about the congestion prediction model 19, as well. F-
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statistic close to one indicates no relationship between U(vt) and five model’s predictors.
However, as Table 4.3 illustrates, F-statistic factor is far from one, which emphasizes that at
least one of predictor variables of number of vehicles, data rate, DSRC transmission power,
LTE transmission power, and LTE bandwidth has strong relationship with U(vt).

Even if we propose the most fitted prediction model, we could not say that our model
can predict exactly observed value of U(vt) with hundred percent of accuracy in prediction
results. If we apply the congestion prediction model, Residual Standard Error (RSE) helps
us to estimate variance of the error (σ2). Therefore, from Table 4.3, we can say that the
proposed congestion prediction model has a variance of error of about σ2 = 0.00607. Based
on this value, we infer that the predicted value of U(vt)) is as much as 0.0.00607 different
from exact observed value of U(vt).

All the assessments in this work is based on prediction models that are made from analyzing
and learning of data, which are generated by simulator tools. Having more and more data
generated from real HetVNET could help us toward proposing congestion prediction models
closer to real situations of HetVNE.

4.5 Conclusion

In the current literature related to congestion problem in vehicular networks, only a few
authors applied intelligent methods using machine learning algorithms. The reason for that
could be the absence of data needed for analyzing, learning and making congestion predic-
tion models applicable to HetVNET. In this paper, we proposed a utility function to explain
how the heterogeneous vehicular network can satisfy its vehicular users in terms of smooth
transmitting of data. Besides, we explained about how the proposed utility function can
help in having a tolerate HetVNET, which can provide required services even in critical
network traffic situation. Afterwards, we move toward generating a congestion prediction
model, which can predict the utility function. We generate a data set containing information
records extracted from simulation scenarios of HetVNET using Veins LTE 1.3 and SUMO
0.26.0. Moreover, we propose congestion prediction model using multiple linear regression,
which is a supervised machine learning method. We evaluate reliability of the proposed con-
gestion prediction model in terms of accuracy in predicted result by using various statistical
metrics such as RMSE, coefficient of determination (R2), and Fstatistic. The approach for
predicting congestion in such a proposed tolerable manner with respect to the target net-
work’s conditions and based on predicted value of defined utility function, can be applied for
5G based SDN architectures as well.
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Abstract

Information generated by safety and traffic efficiency applications need strict communica-
tion requirements to smoothly exchange in Intelligent Transportation System (ITS). Data
congestion in the vehicular network is a challenge that negatively affects data transmission
and network performance. In this paper, we present a dynamic DSRC transmission power
adaptation technique using a supervised machine learning method. This paper proposes
an Intelligent Congestion Avoidance Mechanism (ICAM) based on Generalized Regression
Neural Network (GRNN) to prevent congestion in the Heterogeneous Vehicular Network
(HetVNET). We compare performance of the proposed GRNN congestion prediction model
to other well-known methods in regression prediction problems such as Multiple Linear Re-
gression (MLR), Support Vector Machine (SVM) for regression and Decision Tree Regression
(DTR). Numerical results show that the GRNN congestion prediction model outperforms in
terms of accuracy, reliability and stability. Simulation results show a substantial improve-
ment in network performance compared to other congestion control methods in terms of
packet delivery ratio, average delay and packet loss ratio.

Keywords: Heterogeneous Vehicular Networks, network congestion prediction, supervised
machine learning method, Intelligent Transportation System (ITS)

5.1 Introduction

In Heterogeneous Vehicular Network (HetVNET), connected vehicle’s users can be profited
from various services, which are provided by Dedicated Short Range Communication (DSRC)
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and Long-Term Evolution (LTE) technologies [98]. In vehicular networks, data generated
by vehicles can be transmitted via two types of communications: Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I). HetVNET applies DSRC and LTE in V2V and V2I
communications respectively [2].

With the ever growing number of smart vehicles and significant use of diverse safety and
comfort applications by users, high resource demands for data transmission could create
congestion situations in HetVNET. Unfortunately, congestion typically impairs network per-
formance and user satisfaction by collapsing Quality of Services (QoS). When a vehicular
user feels that data transmission is low and has to wait for network to respond, then the user
satisfaction will drop. Therefore, congestion in vehicular networks has an adverse impact
on QoS. For example, when an accident has occurred, several event-driven safety messages
must be sent to alert the other vehicles and the emergency services. In a such scenario, if
HetVNET encounters congestion problems and a congestion control strategy is not in place
to solve it, low network performance could make irreparable harm for human life.

Controlling congestion in the network is widely considered in the literature. However, in
order to meet dynamic and strict communication requirements of the vehicular network such
as high QoS, ultra reliability and low latency, we still need efficient centralized computational
intelligence methods to controlling congestion. Considering European Telecommunications
Standards Institute (ETSI), Decentralized Congestion Control (DCC) based methods suffer
from instability due to oscillating between states, and unfairness [86, 101]. Moreover, defin-
ing an optimal threshold for the value of Channel Busy Ratio (CBR) is a challenge and
consequently, imbalance channel utilization is a problem in ETSI based methods [32]. These
challenges make DCC unreliable, especially in dense vehicular networks.

Prosperity of Artificial Intelligence (AI) based methods to solve network related problems
such as misbehaviour detection, driver assistance and traffic management shows that these
methods become promising approaches to provide efficient solutions for network concerns
such as data congestion. Indeed, we can use machine learning methods to create reliable
data traffic prediction models. Using the accurate data traffic prediction result can effec-
tively increase performance of the network by applying the congestion controlling policies in
advance.

In the literature, network congestion related papers have notably two steps: finding conges-
tion and then controlling it. Number of research works that applied AI methods in these
two steps are limited. Controlling congestion by applying an unsupervised machine learn-
ing algorithm to cluster the information generated by vehicles in Vehicular Ad-hoc network
(VANET) has been presented in [23] by Taherkhani and Pierre. Although their work is not
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about network congestion prediction in HetVNET, they succeeded in controlling congestion
by clustering data using learning K-means algorithm.

Moreover, distributed congestion controlling techniques are widely considered in research
works of VANET [36, 38, 102]. In these approaches, vehicles make decisions and execute
controlling mechanisms independently and relying on the information received from other
vehicles. Frequently processing the huge information and making appropriate congestion
controlling decisions within a short time, make overloads for vehicles. Therefore, they need
powerful computation and storage resources. Considering these challenges, applying cen-
tralized methods could improve quality of congestion controlling decisions using powerful
resource. The focused congestion management vision can help quick implementation of con-
gestion controlling decisions. Regarding implementing centralized methods, Software-Defined
Networking (SDN) architecture is a helpful technology. In SDN, the control layer plays ad-
ministration role in whole of the network. Therefore, the control layer as a manager has wide
information of network [3], [5]. It is able to update, configure and optimize network resources
very fast and dynamically thanks to its programmability attribute [3]. Using global view of
SDN to create centralized congestion management system is a privilege. In this regards,
generating and then applying network congestion prediction and avoidance mechanism at
the control layer, can help in forming and boosting an intelligent network management in
SDN based architectures of HetVNET.

In this paper, we propose an intelligent network congestion avoidance mechanism based
on an Artificial Neural Network (ANN) prediction method for HetVNET. This congestion
avoidance technique is applicable in the control layer of SDN in HetVNET.

Our contributions are listed below:

1. We propose a Generalized Regression Neural Network (GRNN) congestion prediction
model;

2. We devise an intelligent congestion avoidance mechanism;

3. We evaluate performance of: the GRNN congestion prediction method, and the pro-
posed Intelligent Congestion Avoidance Mechanism (ICAM), using numerical results.

We will show that the proposed intelligent congestion avoidance mechanism is a reliable
method, which can successfully keep the performance of HetVNET at a fine level for users,
even in a potentially congestion state of the network. A combination of defined utility function
and GRNN prediction method, assures stability and accuracy of the proposed intelligent
congestion avoidance mechanism.
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This paper is organized as follows. In section 5.2, we provide a review of the existing con-
gestion controlling methods. Section 5.3 presents methodology and the proposed ICAM.
Simulation scenario and numerical results are presented and discussed in section 5.4, and
Section 5.5 concludes this paper.

5.2 Related Work

Regarding importance of the network congestion problem, it has been widely considered in
scientific works and several congestion control protocols are provided by researchers [11, 13,
14,103].

Many of the congestion control algorithms, such as the numerous variants of the Transmis-
sion Control Protocol (TCP) and Blue [11, 13] are based on data loss in the network. The
authors considered that packets have been lost due to limited buffer capacity before they
are transmitted by routers. Indeed, these algorithms use packet loss as a signal of occur-
ring congestion in the network and as soon as a packet is lost they switch to congestion
repair/avoidance phase. However, packet loss may happen because of a momentary traffic
bursts or it may come after applying a security policy at intermediate nodes between the
source node and the destination node. In Bottleneck Bandwidth and Round-trip propaga-
tion time (BBR) that has been proposed by Google, sender node performs estimations based
on network throughput and making decisions are according to the evaluation of network per-
formance [103]. Throughput is widely used to show performance of the congestion controlling
mechanisms in the network. Therefore, we considered throughput in this paper as a main
component of the utility function.

We narrow down our study and consider existing research works specifically related to vehic-
ular networks.

In the literature, several adapting transmission power and data rate approaches have been
proposed to control congestion in the vehicular network [36, 46, 58]. Aygun et al. [46] pro-
posed an algorithm named “Environment and Context-aware Combined Power and Rate Dis-
tributed Congestion Control for Vehicular Communication (ECPR)”. This algorithm made a
trade off between two issues. First, enhancing awareness of vehicular users (by adjusting the
transmission power) and providing maximum message transmission rate. Second, controlling
channel load in VANET with respect to efficient utilizing of channel. Ali Shah et al. [36]
worked on controlling congestion in control channel in VANET. They defined a mechanism
to reduce transmission power, in order to control traffic load in control channel. If a vehicle
finds out that control channel is congested, it will inform other vehicles that may be affected
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by the congestion problem. In this method, congestion in control channel is alleviated by
all the vehicles that are suffered from congestion in control channel. After that congestion
is reduced, all vehicles have the right to rise transmission power step by step to reach a
standard level.

In [104], the authors proposed a method to adjust beaconing transmission power in which a
predefined value for Maximum Beaconing Load (MBL) should not be exceeded. According to
the Distributed Fair Power Adjustments for Vehicular environments (D-FPAV) mechanism,
each vehicle like j which applies transmission power of Pj receives the value of transmission
power Pi used by vehicle i in the range. If the value of Pi is lower than the value of Pj,
the vehicle j must select Pi as its new transmission power. Regarding fast changing in the
topology of vehicular networks, the new value of transmission power might not be usable,
since the vehicles have changed their locations and they are not in the same range. This
could reduce the possibility of successfully receiving beacons in the network.

Egea-Lopez and Pavon-Mariño [58] considered two steps: 1) avoiding congestion in channel
by keeping beacon rate for each transmission power less than a threshold like C, and 2)
enhancing the number of delivered beacons messages by assigning minimum beacon rate
(rmin), simultaneously. The authors proposed “fair adaptive beacon rate with multiple power
levels for inter-vehicular communications (FABRIC-P)”. In FABRIC-P each vehicle must
calculate best rate for a beacon message use transmission power p, where rmin ≤best beacon
rate ≤ Rmax (the topmost beacon rate for a vehicle is Rmax).

In [105], the authors considered DCC gatekeeper in ETSI TS 102687 [106] that has three main
components: prioritization, queuing, flow control and rate adaptation. The prioritization
mechanism are based on three categories: high priority Decentralized Environmental Noti-
fication Messages (DENM), regular DENM, and Cooperative Awareness Messages (CAM).
The high priority DENM must be transmitted immediately and without waiting in the queue.
In the flow control scheme, to prevent from saturating the channel, the messages that have
been waited for a time more than the maximum queuing time must be discarded. In the rate
adaptation, regarding the priority of the messages, the packet rate adaptation for each node
has been considered. The results showed that the DCC algorithms almost withheld CAMs
transmission. Therefore, the DCC gatekeeper queue required efficient strategies to increase
transmitting of CAMs in the medium to dense vehicular environments.

In [102], vehicles should adjust the beaconing transmission power using proposed non-cooperative
power control game theory. In this theory, a pay-off function is introduced that composed of
two parts: utility function and price function. The utility function encourages vehicles with
lower transmission power to enhance the beaconing transmission power. On the other hand,
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in dense vehicular environment, the value of price function is high for vehicles which use high
transmission power. Therefore, the utility function and the price function are the players of
the game. Although the proposed approach is a fairness method, in a very dense vehicular
environment a joint beaconing transmission power and transmission rate controlling method
is required to solve unfairness of ETSI DCC.

Moreover, estimating the vehicles density is widely used for generating network congestion
controlling mechanisms. In the proposed mechanisms mostly vehicles independently calculate
the vehicle density around. Zemouri et al. [20] proposed, a model to predict density around
a vehicle in the next time window by using beacon’s information. They assumed a beacon
message contains: ID, current position, speed, destination, number of vehicles ahead, and
number of vehicles behind. By using information of received beacon messages, a vehicle
can find out: furthest back, furthest forth, closest back and closest forth vehicles. Then
based on density estimation, the vehicle can adjust the network parameters in order to avoid
congestion in the next time window.

Hasanabadi and Valaee [27] proposed the Synchronized Persistent Coded Repetition (SPCR)
algorithm. With SPCR, each active vehicle node broadcasts composition linear coding of
messages selected randomly from its queue. If the number of vehicles in a cluster is N ,
then congestion control mechanism randomly selects n node as active node (which defined
as n ≤ N) and abandons all messages from (N − n) inactive nodes. However, if n = N ,
it means that all N vehicles in cluster are active and all can broadcast messages. It is like
no congestion control mechanism is applied, while, as mentioned in [27], the objective of
proposing the congestion control mechanism is to control amount of messages by omitting
a part of them. On the other side, if n = 0, it means all nodes are passive and all safety
messages will be dropped and it is dangerous especially in critical situation like facing road
hazards.

Kolte et al. [18] defined several segments and assigned each vehicle to a segment. A node
in each segment determines which node of the segment can use dedicated bandwidth during
specific time interval. Since, segments densities are not equal, bandwidth allocation is not
fair. As a node in a denser segment has to wait more to use dedicated bandwidth. Moreover,
time of using bandwidth for a node in crowded segment is less than a node in a non-crowded
segment.

In [107], a Density Histogram (DH) is created to estimate the vehicle density in a predefined
road segment. The authors believe that using information of vehicle density can improve
performance of Linear Message Rate Integrated Control (LIMERIC) algorithm [44]. The
results show that using estimated density of vehicles in the LIMERIC algorithm could improve
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awareness probability, especially in the scenario of using three packets in time window of one
second and in a dense vehicular network. However, awareness probability using five packets
in time window of one second still needs efficient methods.

As explained, different parameters have been considered in existing research works as effective
metrics on congestion in network, such as transmission power, data transmission rate and
vehicles density. Inspired by related works, we consider a group of parameters, which each
one has effect on creating and reducing congestion in vehicular network. Using learning
algorithm and analyzing different parameters that affect on congestion in a vehicular network,
help us produce a reliable prediction model with high accuracy and more stability in the
congestion prediction result. In this paper, a transmission power adaptation technique based
on a supervised machine learning method is proposed to avoid congestion in HetVNET.
Moreover, Wireless Access in Vehicular Environments (WAVE) standardization is considered
in this paper.

5.3 Methodology and Prediction Model

5.3.1 Proposing Utility Function

Network throughput is the amount of data successfully received at destination per unit of
time (e.g., s). Data generation rate is the amount of data generated by network nodes
per unit of time (e.g., s). Based on the network throughput and the data generation rate
definition, if a node generates data with rate of k bytes per unit of time and q bytes are
successfully received at destination per unit time (k 6= 0 and q ≤ k), therefore we can
calculate network performance in terms of smooth data transmission by dividing q over k.
Regarding this explanation, in part of creating dataset, we propose utility function like U(vt)
(which U(vt) ∈ [0, 1]) as a metric to detect congestion in the heterogeneous vehicular network.
Indeed, congestion recognition is based on two factors of network throughput (τ) (which in
our example is equal to q) and data generation rate (g) (which in our example is equal to k)
by v number of vehicles for time of t. We can suppose that, if the value of U(vt) increases
towards one, the network condition in terms of congestion goes to desired situation, and if
the value of U(vt) decreases towards zero then congestion is occurred in the network:

U(vt) = (τDSRC)(vt) + (τLTE)(vt)
g(vt)

. (5.1)

In (5.1), g(vt) is the data generation rate which is equal to number of generated data, by v
vehicles over time t (based on unit of time). Besides, we consider total throughput in the
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heterogeneous vehicular network as sum of throughput of DSRC (τDSRC(vt)) and throughput
of LTE (τLTE(vt)) both based on Bytes per second (Bps).

In the roads and the crosstown expressways, which vehicular users traveling cross-country, the
emergency information about road hazards or accidents is valuable and must be transmitted
within an appropriate time. Therefore, HetVNET performance should be as acceptable as
could save human’s life and their money expenses. For various scenarios and based on network
sensibility, we can define a threshold for value of utility function like T (which T ∈ (0, 1))
and based on that we can specify three states for network congestion situation in HetVNET
as follows:

congestion state =


safe, if (T + γ) < U(vt) ≤ 1

warning, if T < U(vt) ≤ (T + γ)

congestion, if 0 ≤ U(vt) ≤ T

, (5.2)

where γ ∈ (0, 1) is used to define the warning interval, and (T + γ) < 1. This will help us to
investigate congestion problem based on sensitivity of our urban roads. For clarifying more
about (5.2), assume that we are talking about a HetVNET implemented in one of non-safe
roads with high risk of car accident and the weather is rainy. In this kind of scenario, required
emergency and safety services should be provided smoothly by target HetVNET. Therefore,
the network manager may define at least value of 0.4 for U(vt) in target HetVNET, then T=
0.4. If we assume that γ= 0.2, then based on (2), we have:

congestion state =


safe, if (0.6) < U(vt) ≤ 1

warning, if 0.4 < U(vt) ≤ (0.6)

congestion, if 0 ≤ U(vt) ≤ 0.4

In this example (all these values are used as examples, just to clear to understand the
application of the utility function), congestion prediction model must make a warning when
it predicts that the value of utility function is less than 0.6. Therefore, at this moment
the congestion control/avoidance mechanism should be executed before the value of U(vt)
decreases to 0.4. Then, performing congestion avoidance mechanism pushes the value of U(vt)
up to an upper level like beyond 0.6. Therefore, we can be assured that in critical network
situation in terms of data traffic, our target HetVNET can provide at least an acceptable
level of network services for vehicular users. Thus, the vehicular users will not experience
disrupting in the required services, consequently the user satisfaction will stay at a fine level.
Furthermore, urban roads can be divide into several areas. A segment of road may have a
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transient condition for example for a bad weather condition or an especial event that are not
stable situations. Therefore, each part can have a different value of T based on sensitivity
of the road. Besides, In such cases, the network manager can consider a temporary value of
T , and after passing the particular conditions, the value of T may decrease. Therefore, the
network congestion management of HetVNET will be adaptable to the road conditions and
the congestion state defined in (5.2) has flexible intervals for each state, based on the road
conditions and network management policies.

5.3.2 Designing Structure of Dataset

Basically prediction is about forecasting an event or situation, which we are not sure to hap-
pen. Information acquired form previous experiences and knowledge about current network
situation are required to generate network congestion prediction model in the HetVNET.
The step of designing a dataset with features related to the problem is important in any
prediction problem, since erroneous prediction can be an effect of selecting unrelated and
useless parameters in training dataset.

Since there is not an accessible dataset contains information of these parameters extracted
from a real HetVNET, we generate simulated data. We consider the following five vehicular
network parameters in this work: number of vehicles (v), data rate (dr), DSRC transmission
power (tpDSRC), LTE transmission power (tpLTE), and LTE bandwidth (b). These are the
features of the dataset or predictor variables in the congestion prediction model. In this paper,
the considered congestion prediction problem is a regression prediction problem. Therefore,
as Fig. 5.1 shows, we do not have any label or class in the dataset, instead the value of utility
function is calculated using (5.1). Indeed, we apply value of five predictor variables of a row
of dataset shown in Fig. 5.1, to generate a simulation scenario and with this configuration the
simulation scenario runs for a specific time t. After terminating the simulation time t, the
value of utility function is calculated using (5.1) and the value is inserted in the corresponding
row. Since dataset is filled by data extracted from running simulation scenarios in time t, any
prediction model trained using the dataset can predict the value of utility function in next t
time. In subsection 5.4.1 Simulation Scenario, we will provide more details about generating
simulation scenarios, parameters and the values.

5.3.3 Generalized Regression Neural Network (GRNN) Prediction Model

Based on (5.1), the utility function makes an estimate of the network performance using
throughput and packet generation rate. The value of utility function is calculated using
the recent value of throughput and packet generation rate. We put this value (the value of
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Figure 5.1 Structure of dataset.

U(vt)) in the dataset. GRNN uses the dataset to train and after completing the training step,
the prediction model can predict the value of utility function using five predictors variable.
In other words, formula (5.1) calculates recent amount of utility function, and the GRNN
method predicts the value of utility function in the future and based on the five predictor
parameters. Indeed, amount of Û(vt) is a predicted future value of U(vt) without using the
utility function and based on the five predictors (here, the value of t in U(vt) defines that
how much does the future far from now).

By analyzing dataset information, our aim in this section of the paper is to define a prediction
model to predict the value of U(vt). In our previous example (in subsection 5.3.1 Proposing
Utility Function), if the prediction model predicts that Û(vt) is equal to 0.4 (this number is
used as an example), network congestion management can infer if it is a warning situation
in terms of congestion problem in network or not, using (5.2). In other words, in a part of
city, which is not crowded or there is not a serious risk of roads hazard, a low amount for T
might be defined by the network manager. Therefore, a value like 0.4 for the Û(vt) could be
an acceptable value with no worry and put the network state in the safe category. However,
in a dense vehicular scenarios that there are road hazards, this amount for U(vt) can provide
troubles for humans life.

To predict quantitative value, like the value of U(vt), regression methods are widely used [95].
In this paper, x= [x1, x2, . . . , xm] is a set containing m number of features, which corresponds
to x= [x1, x2, x3, x4, x5] = [v, dr, tpDSRC , tpLTE, b] (m = 5).

GRNN is a type of feed-forwarding neural network with associative memory which contains
four layers in its architecture. These layers are input layer, pattern layer, summation layer
and output layer [108]. We need a functional form to implement system identification; GRNN
applies joint probability density function (pdf) to generate the functional form like f(x, y).
Then, it uses a Parzen window [109] to estimate f̂(x, y). Following formula calculates ex-
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Figure 5.2 GRNN structure for congestion prediction model in HetVNET.

pected value of y using input value such as x:

E[y|x] =
∫∞
−∞ yf(x, y)dy∫∞
−∞ f(x, y)dy , (5.3)

which:
f̂(x, y) = 1

(2π)m+1
2 σm+1

.
1
n

n∑
i=1

exp(−D
2
i

2σ2 ).exp[−(y − yi)2

2σ2 ], (5.4)

where, n is the number of observed data records in the dataset andm, the number of predictor
variables. GRNN does not use learning rate as many of other neural networks, but it uses
smoothing factor (σ) (which σ ∈ (0.1, 1)). In (5.4), x and y are random variables. Indeed,
we need to estimate value of y using input vector like x, which x = [v, dr, tpDSRC , tpLTE, b].
In addition, xi and yi represent the ith sample that we have in dataset.

X =


v1 dr1 tpDSRC1 tpLTE1 b1
... ... ... ... ...
vn drn tpDSRCn tpLTEn bn



Y =


U1(vt)
U2(vt)

...
Un(vt)


As Fig. 5.2 shows, at the input layer, we need as many neurons as the number of predictor
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parameters, which we have in the dataset. Therefore, in this paper, we consider five neurons
in the first layer, which are v, dr, tpDSRC , tpLTE and b. Besides, the number of neurons in
the second layer is same as the number of samples in the training dataset. GRNN uses the
Gaussian kernel as the activation function in the pattern layer. In GRNN, data patterns
are recognized during the training phase. In the training step, Euclidean distance is used to
calculate the difference between input sample vector x and ith training sample xi using the
next formula:

D2
i = (x− xi)T (x− xi). (5.5)

The third layer has two neurons, which are denominator and numerator. For n data records,
former totals up the weights and the latter adds up multiplications of weights and the observed
values of y. Output value of the numerator is divided by the value of denominator. Finally,
GRNN estimates the value of utility function which is Û(vt) or ŷ using (5.6). Following
formula is generated by replacing (5.4) in (5.3) and using (5.5):

ŷ(X) =
∑n
i=1 yiexp(−

D2
i

2σ2 )∑n
i=1 exp(−

D2
i

2σ2 )
. (5.6)

5.3.4 Proposing ICAM

ICAM is a centralized mechanism and can be employed in the controller of SDN in the
HetVNET. Congestion prediction model predicts that applying the values of predictors for
t unit of time in the HetVNET concludes with a network congestion situation or a warning
case or a safe state. The predicted value of the utility function which is Û(vt) is the output of
GRNN prediction model. Therefore, the value of Û(vt) must be applied in (5.2) and in place
of U(vt). Then, the value of tpDSRC is adapted based on the prediction result. In this section,
we explain a dynamic DSRC transmission power adaptation approach. The value of tpDSRC
must be adjusted based on the predicted network congestion status. It is worth mentioning
that the value of DSRC transmission power can not be less than a minimum allowed value
(tpDSRCmin) and more than a maximum allowed value (tpDSRCmax). The network manager
is in charge of defining and modifying the value of tpDSRCmin, tpDSRCmax, T and γ. The
pseudo code of ICAN algorithm is presented in Algorithm 2. As shown in this algorithm,
in the third line, based on the prediction result generated by proposed GRNN congestion
prediction model and using (5.2), one of the following state is true:

• It is a "safe" state: the value of DSRC transmission power is doubled. If the new
value is more than the predefined value of tpDSRCmax, the maximum allowed value for
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DSRC transmission power is considered. The GRNN prediction model again is used
to confirm that applying the new value of tpDSRC by vehicles in the network would
not be a risk of congestion for HetVNET (line 18). Therefore, based on the prediction
result and using (5.2), if it is a "safe" state then the new value of tpDSRC is applied in
the HetVNET. However, if the prediction result is a "warning" state (line 20), the new
value of tpDSRC can not be used and the previous value of tpDSRC (the value before it
is doubled) should applied in the network (line 9). Finally, if it is a "congestion" state,
the new doubled value of tpDSRC must be ignored and the value of tpDSRCmin must be
considered in HetVNET.

• It is a "warning" state: the half of the value of DSRC transmission power is considered.
If the new value is less than the predefined value of tpDSRCmin, the minimum allowed
value for DSRC transmission power is considered. The GRNN prediction model again
is employed to assure us that applying the new value of tpDSRC in HetVNET would
not be a risk of congestion for network (line 17). Therefore, based on the prediction
result and using (5.2), if it is a "safe" state then the new value of tpDSRC is applied in
the HetVNET. However, if the prediction result is a "warning" state (line 20), the new
value of tpDSRC can not be used and this value should be reduced to half of it (line
9). Again, the prediction model must predict until a safe result is obtained. Finally,
if it is a "congestion" state, the new value of tpDSRC must be ignored and the value of
tpDSRCmin must be considered in HetVNET.

• It is a "congestion" state: the value of tpDSRCmin is applied to HetVNET.

For any change in the value of v or dr or tpLTE or b or γ or T , the GRNN prediction model
must be used to adjust the value of tpDSRC accordingly (based on the line 25). Changing the
value of dr or tpLTE or b or γ or T by the network manager, can be done based on the network
management decisions upon any reason that might not necessarily be related to congestion
controlling policies.

In the first prediction (line 3), when the result is safe, it means that applying the input value
of tpDSRC by vehicles would not make difficulties for data transmission. Using a high value
of transmission power, while it does not make a congested network, can help to broadcast
messages to a larger area and more number of vehicles can receive the messages. Regarding
this issue, when the result of prediction is a safe state (in the line 4), we try to increase the
value of tpDSRC (in the line 5 to 7) and see the prediction result using the new value (in the
line 17). If intensifying the DSRC transmission power does not change the prediction result
of safe to warning or to congestion, the new value of tpDSRC should be applied by vehicles in
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HetVNET.

As Algorithm 2 shows, ICAM is a recursive and dynamic algorithm that makes a flexible
and elastic network according to data traffic situation in the network and road conditions
(as explained in subsection 5.3.1 Proposing Utility Function). Moreover, ICAM is proposed
based on a centralized vision, and it is supposed to be employed at the control layer of SDN.
We applied the parameters that are compatible with the centralized strategy characteristics.
For example, we did not consider channel busy level in V2V communications, as a predictor
parameter. Since this parameter can be measured by vehicles, and consequently it is a main
parameter in distributed methods such as ETSI DCC based strategies.

Algorithm 2 Pseudo code of the ICAM algorithm.
1: Input 1: the value of v, dr, tpDSRC , tpLTE, b, γ and T
2: Input 2: tpDSRCmin and tpDSRCmax
3: Predict congestion state by GRNN prediction model and using (5.2)
4: if congestion state = "safe" then
5: tpDSRC = tpDSRC × 2
6: if tpDSRC > tpDSRCmax then
7: tpDSRC = tpDSRCmax
8: end if
9: else if congestion state = "warning" then

10: tpDSRC = tpDSRC

2
11: if tpDSRC < tpDSRCmin then
12: tpDSRC = tpDSRCmin
13: end if
14: else if congestion state = "congestion" then
15: apply tpDSRC = tpDSRCmin and go to the line 25
16: end if
17: Predict congestion state by GRNN prediction model and using (5.2)
18: if congestion state = "safe" then
19: apply tpDSRC
20: else if congestion state = "warning" then
21: go to the line 9
22: else if congestion state = "congestion" then
23: apply tpDSRCmin
24: end if
25: if the value of v or dr or tpLTE or b or γ or T changed then
26: go to the line 3
27: end if
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Figure 5.3 Work flow of generating and using congestion prediction for HetVNET.

5.4 Simulation Scenario and Numerical Results

5.4.1 Simulation Scenario

As part of data generation, as shown in Fig. 5.3, towards generating urban simulation sce-
nario, we use OpenStreetMap (OSM) [90] to create map of boroughs of Montreal. Then, we
use the “.osm” file as an input file for Simulation of Urban Mobility (SUMO) 0.26.0 [88] to
generate the road traffic. SUMO needs “.osm” file as an input to generate environment with
all roads, buildings, intersections, and others like it is in reality. Besides, we worked with
Veins LTE version 1.3 [89], which is standing on the OMNeT++ (4.6) Network simulator
to simulate heterogeneous vehicular network based on IEEE 802.11p and LTE. During the
simulation time, vehicles join to /departure from the simulation scenario in random time and
speed. SUMO and Veins LTE were running simultaneously to generate simulation scenario
in Linux (Ubuntu 16.04), where SUMO is used to generate vehicles traffic and movement and
Veins LTE as a network simulator. Vehicles are equipped with both LTE and IEEE 802.11p
interfaces. Moreover, we defined a vehicle accident in a specific time (t= 70 s) of running
simulation scenario to generate more load of data.

Table 5.1 contains attributes and parameters values, which are applied to generate simulated
environment of HetVNET. Simulation time in each run is 1000 s. In each run, we has changed
the values of v, dr, tpDSRC , tpLTE and b and we have calculated the value of U(vt). Besides,
the tpDSRC can have a value between −20 dBm and 32 dBm [52].

After generating data extracted from executing simulation scenario and putting it in a shape
of a dataset (data gathering part of Fig. 5.3), we use Python version 3.6, in order to cre-
ate regression congestion prediction models using Linear Regression (MLR), Support Vector
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Machine (SVM) for regression, Decision Tree Regression (DTR) and GRNN. Moreover, Clas-
sification and Regression Tree (CART) algorithm is applied by Scikit-Learn library of Python
to train regression decision trees [94]. The dataset used in this work is not a high dimen-
sional and huge dataset, hence we do not consider deep learning methods. Since, the data
related to each of five parameters are different in range and unit, we normalize all of the
data records. Then, we statistically analyze the performance of the prediction models to
finally finding a congestion prediction model most fitted to the problem (part of generating
regression prediction model in Fig. 5.3). Please note that, we used the simulators and the
configurations of Table 5.1 two times in this work. First, to generate dataset and second, to
evaluate performance of the ICAM.

Table 5.1 Configuration Used to Generate Simulated Environment

Parameter Value
Size of simulated area 1000 m ×1000 m
Number of lanes 4 (two in each direction)
Number of vehicles 50, 100, 150, 200
Number of base station (eNB) 1
Bandwidth (LTE) 5 MHz, 10MHz, 20MHz
Transmission power (LTE) 43 dBm, 46 dBm
Bandwidth (IEEE802.11p) 10MHz
Minimum transmission power (IEEE802.11p) -20 dBm
Maximum transmission power (IEEE802.11p) 32 dBm
Transmission rate (IEEE802.11p) 6-27 Mbps
Maximum transmission range (IEEE802.11p) 1000 m
Message size 400 Bytes
Vehicles speed 0-40 km/h
Propagation model Nakagami
Simulation time 1000 s

5.4.2 Assessing Congestion Prediction Models

We apply K-fold cross validation technique [95] (which K=10) to evaluate congestion predic-
tion models. The K-fold cross validation is used to prevent data over-fitting and under-fitting
trap [94]. Performance of the prediction models generated by MLR, SVM, DTR and GRNN
is evaluated using well-known regression metrics, such as Root Mean Square Error (RMSE)
and R square (R2) [94]. In each fold of dataset, the MLR, SVM, DTR, and GRNN algo-
rithms generate a model based on (same) data of a fold, simultaneously. Then, we evaluate
performance of the generated congestion prediction models using data of test dataset, which
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models have not seen before.

In this section accuracy, reliability and stability of the GRNN prediction model are evaluated
and compered to MLR, SVM and DTR.

Evaluating the accuracy

RMSE is used to assess the accuracy of the prediction models. RMSE values of congestion
prediction models generated by MLR, SVM in regression, DTR and GRNN are shown in
Fig. 5.4. Models with higher value of RMSE are those with higher error in prediction results.
Thus, a congestion prediction model with a lower value of RMSE is the most trustful model
among 40 prediction models. Based on the results presented in Fig. 5.4, GRNN shows better
performance than the other three methods. The lowest value of RMSE is 0.07 and belongs
to the model number six generated by GRNN. This value shows that the mentioned model
could estimate the amount of Û(vt) with a value of 0.07 vary from the amount of U(vt), while
SVM and DTR did it with 0.14 approximately differ from the value of U(vt) using the same
data.

Testing the reliability

Fig. 5.5 shows coefficient of determinations (R2) for each of MLR, SVM, DTR, and GRNN
models. R square parameter can show that how much changing in the value of dependent
variable like Û(vt) is determined by independent variables, such as v, dr, tpDSRC , tpLTE and
b [95]. All the ten GRNN congestion prediction models have higher value of R square than
the other thirty models generated by the other three methods and using the same training
dataset. Again, model number six, which has a minimum RMSE, shows the highest value
of the coefficient of determinations as 0.86, which is most close to one among other models.
Therefore, model number six is the most capable to express variability in amount of Û(vt)
among other models. Weak performance of MLR in both of Fig. 5.4 and Fig. 5.5 indicates
that the output (Û(vt)) and the five predictors tend to show a non-linearity relationship.
Note that, we applied polynomial kernel of SVM in regression.

Measuring the stability

For each of the four types of methods, we calculate variance of Mean Square Error (MSE) of
ten folds. A low value of variance indicates that the value of MSE of ten folds are not spread
out far from each other. In other words, a low value in variance of MSE shows stability of
the prediction method. As shown in Table 5.2, GRNN flaunts with the lowest amount of
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variance of MSE, which also confirms that GRNN is more converged than other three types
of congestion prediction models.

Moreover, the GRNN congestion prediction model is compared to MLR, SVM and DTR in
terms of CPU time in µs. As listed in Table 5.2, although the amounts of CPU time for
MLR, SVM and GRNN are very close to each other, GRNN required less execution time
among the four methods.

The results shown in Fig. 5.4 and Fig. 5.5 and Table 5.2, indicate that GRNN congestion
prediction model is more reliable, more stable and better converged which also could predict
more accurate than prediction models of MLR, SVM and DTR.

Figure 5.4 RMSE of GRNN, DTR, Linear Regression, and SVM congestion prediction models
in HetVNET.

Table 5.2 Variance of MSE and CPU Time of Congestion Prediction Models

Prediction Model Variance of MSE CPU Time (µs)
MLR 4.431770e-05 587.5
SVM 1.346291e-05 594
DTR 2.171744e-05 643.4
GRNN 4.711306e-06 582.6

5.4.3 Smoothing Parameter of GRNN

Changing in value of smoothing factor (σ) affects performance of the GRNN congestion
prediction models. Therefore, we need to know what is the best value for (σ) to use in
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Figure 5.5 R2 of GRNN, DTR, Linear Regression, and SVM congestion prediction models in
HetVNET.

(5.6). We consider multiple values for the smoothing factor in the range of (0 < σ ≤ 1) and
investigate the MSE results of applying each value of (σ) in the GRNN prediction model.
In Fig. 5.6, the MSE values of GRNN congestion prediction models, in which the values of
smoothing factor are 0.1, 0.2, and 0.3, are close to each other. As the figure shows, the MSE
values of GRNN prediction models are risen as we increased the value of (σ) over 0.3 to 1.
Fig. 5.6 shows that the best value for smoothing factor in terms of MSE is 0.2. In other
words, with this value of the smoothing factor, the GRNN algorithm could predict Û(vt)
with lower error in prediction results.

5.4.4 Evaluating Performance of ICAM

We consider packet delivery ratio, packet loss ratio and average delay to evaluate performance
of ICAM. To generate simulations used in this section, we assume T = 0.4 and γ = 0.2.
Since the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is the default
congestion controlling strategy in DSRC, we evaluate performance of the CSMA/CA in this
paper. In [23], a "Machine Learning Congestion Control (ML-CC)" method is proposed to
control congestion in VANET. In this section, performance of the ML-CC is measured against
performance of the ICAM. Regarding that D-FPAV [104] is a well-known power adapting
mechanism for controlling congestion in VANET, we compare performance of D-FPAV with
ICAM in this paper. In [77], authors proposed a "Requirement of Safety (RoS)" scheduling
technique for HetVNET based on a proposed game theory. The authors used Geographic
Information System (GIS), Global Position System (GPS), Sensor network and VANET to
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Figure 5.6 Variation of MSE with the folds for various values of Smoothing parameter of
GRNN congestion prediction models.

make a heterogeneous network. Moreover, the authors in [77] applied the "Earlier Deadline
First (EDF)" for IEEE 802.11p to make comparisons between their proposed method and
EDF. In this paper, we compare performance of the proposed ICAM to EDF, and RoS too.

Figure 5.7 Impact of proposed ICAM on Packet delivery ratio in compare to apply CSMA/CA
method.

Fig. 5.7 shows packet delivery ratios using CSMA/CA and ICAM in various vehicle densities.
Based on this figure, packet delivery ratio is improved by employing ICAM. This improvement
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Figure 5.8 Packet loss ratio using ML-CC and ICAM.

Figure 5.9 Packet loss ratio using CSMA/CA, D-FPAV and ICAM.

is notable by increasing number of vehicles, since packet delivery ratio in the simulation
scenario with 200 vehicles is about 0.8 using ICAM and about 0.55 using CSMA/CA. Fig. 5.8
compares packet loss ratio of ML-CC with the proposed ICAM. As shown in this figure, by
increasing the number of vehicles from 50 vehicles to 200 vehicles, the ICAM outperforms the
ML-CC technique in terms of packet loss ratio. The lower amount of packet loss ratio in ICAM
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in comparison to ML-CC is due to intelligently adjusting the value of DSRC transmission
power. The variation of packet loss ration with vehicle density in ICAM, D-FPAV and
CSMA/CA is shown in Fig. 5.9. D-FPAV in compare to CSMA/CA could improve packet
loss ratio, however, results of packet loss ratio for ICAM is considerably less than D-FPAV
and CSMA/CA. These results indicate that prediction and avoidance mechanism in ICAM
could control congestion before it occurs in the network and consequently save the network
form having high number of lost packets.

Fig. 5.10 shows variation of average delay with vehicle density, where CSMA/CA, D-FPAV,
ML-CC and the ICAM are used separately. As shown in Fig. 5.10, D-FPAV has better
performance compared to CSMA/CA in terms of average delay. However, performance of
the network in terms of average delay using ML-CC method is more better than D-FPAV, as
dashed black and blue lines show in the Fig. 5.10. Above all, the proposed ICAM performs
better than ML-CC, D-FPAV and CSMA/CA, especially when the number of vehicles is
rising from 100 to 200 vehicles. It is interesting that the behaviour of ICAM shows stability
by increasing the number of vehicles. The GRNN prediction approach is the key of this
stability. The differences between the performances of ML-CC and ICAM in the both Fig. 5.8
and Fig. 5.10 are related to the concept of prediction, which is in the nature of the proposed
method. In the ML-CC, there is no prediction and it is about clustering at the time which
vehicles arrived at the intersections. However, in the proposed ICAM, the prediction results
help adapt value of DSRC transmission power to the network situation in the future with
the aim of avoiding network congestion. Therefore, results in Fig. 5.8 and Fig. 5.10 indicate
that the prediction step is the strength point of ICAM in comparison to the ML-CC method.

Fig. 5.11 compares performance of ICAM to RoS and EDF methods. As in [77], two different
vehicle densities are selected for this comparison, 31 vehicles and 76 vehicles. Fig. 5.11 shows
stability in performance of HetVNET due to apply the proposed ICAM. In the first vehicle
density of 31 vehicles, the ICAM could show a low value in average delay like 13.9 ms. For the
same number of vehicles, this metric equals 152 and 270 using Ros and EDF, respectively.
The average delay’s results of RoS show a decrease by increasing the number of vehicles.
As shown in Fig. 5.11, by increasing the number of vehicles from 31 to 76 vehicles, which
considered in [77], amount of average delay in HetVNET using ICAM has been increased for
just 0.3 ms. However, by growing number of vehicle from 31 to 76 vehicles, the amount of
average delay remarkably increased from 270 ms to 420 ms using EDF. Indeed, the variation
of average delay in ICAM is not significant by rising the number of vehicles. Although for 76
number of vehicles, the RoS could improve average delay to a value of 60 ms, the minimum
value for this metric is achieved by applying ICAM. Therefore, as Fig. 5.11 shows, the ICAM
outperforms the other two techniques.
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Figure 5.10 Impact of proposed ICAM on average delay (ms) in compare to use CSMA/CA,
ML-CC and D-FPAV.

Figure 5.11 Variation of average delay with two different vehicle densities using ICAM, RoS,
and EDF in HetVNET.
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Based on the results shown in Fig. 5.7 to Fig. 5.11, the ICAM is a reliable method. The
stability in the results comes from the two key points of the proposed congestion avoidance
strategy. The first is related to the way of defining utility function and congestion states
based on the target HetVNET situation. The second is about the proper using of the notion
of prediction in the development of congestion avoidance mechanism.

5.5 Conclusion and Future Work

In this paper, we considered the congestion problem in HetVNET. We applied machine learn-
ing methods to predict congestion and create an intelligent congestion avoidance mechanism
in HetVNET. This approach helps build an intelligent and dynamic congestion management
system in vehicular networks. We proposed a congestion prediction model using GRNN,
which is a supervised neural network method. K-fold cross-validation approach is used in
this work. We used simulated data to train and test the congestion prediction models. We
evaluated performance of the proposed GRNN congestion prediction method and compared
it to the performance of MLR, SVM and DTR congestion prediction models. Based on the
obtained results, GRNN congestion prediction model shows more accuracy, reliability and
stability among the considered prediction methods. The result of the GRNN congestion
prediction model help dynamically and intelligently adjust the value of DSRC transmission
power with aim of preventing network congestion in HetVNET. Moreover, the performance
evaluation results indicate that the proposed ICAM outperforms CSMA/CA, D-FPAV, Ml-
CC, RoS and EDF. As future work, we will predict congestion occurrence in each of the
technologies used in a HetVNET.
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Abstract Heterogeneous Vehicular Network (HetVNET) is a highly dynamic type of network
that changes very quickly. Regarding this feature of HetVNETs and the emerging notion of
network slicing in 5G technology, we propose a hybrid intelligent Software-Defined Network
(SDN) and Network Functions Virtualization (NFV) based architecture. In this paper, we
apply Conditional Generative Adversarial Network (CGAN) to augment the information
of successful network scenarios that are related to network congestion and dynamicity. The
results show that the proposed CGAN can be trained in order to generate valuable data. The
generated data are similar to the real data and they can be used in blueprints of HetVNET
slices.

Keywords:vehicular network, CGAN, congestion in vehicular network, SDN, network slicing.

6.1 Introduction

The vision of having a central, robust, and intelligent network management can be achieved
by taking advantages of learning algorithms in the control layer of Software-Defined Network
(SDN). The network virtualization concept is about separating services and infrastructures in
order to achieve the provision and development of smooth service by using virtualized network
software functions [110]. In the Network Functions Virtualization (NFV) framework, a group
of functions and infrastructures (e.g., hardware resources) is formed with the aim of solving
network challenges and providing services to cope with critical network situations [111].

The integration of SDN and NFV into an exclusive architecture is an opportunity to take
advantage of SDN features, such as having a programmable, intelligent, and dynamic network
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controller and manager, along with providing efficient response to highly dynamic service
demands, such as ultra-low latency, reliability, and more. Gomes et al. [29] proposed an
architecture in this matter by combining SDN and network virtualization. In the proposed
architecture, Internet Service Providers (ISPs) could tune resource allocation among different
Virtual Software Defined Networks (VSDN) that are based on user’s demands.

Moreover, with the introduction of fifth Generation (5G) and beyond of mobile systems, it is
expected that 5G will support various service requirements [112]. Indeed, with the widespread
growth of mobile users and the emerging Internet of Things (IoT) in the near future, 5G is a
promising way to connect massive smart devices in various IoT applications with diverse user
expectations for quality of service. The 5G resources should be efficiently allocated in order
to meet these expectations. On this point, the sharing of physical network resources with
several virtual network slices that were isolated from each other was recently proposed as an
approach to boosting 5G against various quality of service demands [67,112–114].

Regarding the network traffic states, which are defined as safe, warning, and congested in [83];
in the literature, the proposed methods of network congestion recognition are mainly based
on the computation of the available and the needed resources. For example, the authors
in [32, 86, 101] considered the Channel Busy Ratio (CBR) to find congestion in vehicular
networks using the European Telecommunications Standards Institute (ETSI) standardiza-
tion. Finding an optimal value for CBR that prevents communication channel from under-
utilization is a serious challenge in these works. Whenever the amount of required network
resources is higher than the amount of available resources, the network management system
could find out that the smooth data flow may disappear and congestion could even occur.
In highly dynamic network systems, like Heterogeneous Vehicular Networks (HetVNETs),
the network’s topology, the number of users, the type of required services, and the amount
of required resources are changing quickly and dynamically. Therefore, following constant
and predefined policies for the current situation is not a promising way to provide reliable
services. Because network conditions could change rapidly, applying prior generated policies
and solutions is not applicable to network problems. In the light of this issue, it is worth
giving dynamicity to the proposed solutions. In other words, if we have a very dynamic
network, like HetVNET, then it may be a novel idea to propose a method that can provide
network resources and requirements quickly and dynamically based on network templates.
These templates can be used to dynamically create the HetVNET slices. Integrating Arti-
ficial Intelligence (AI) with SDN based architecture is a promising potential solution to the
challenges of the dynamicity of heterogeneous networks [115]. To the best of our knowledge,
in the current scientific works that are related to vehicular networks, there is a lack of an
intelligent SDN-NFV based architecture that could provide network templates in HetVNET
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environment using computing power of fog objects. Indeed, the use of fog devices to imple-
ment intelligent methods (in the heart of SDN and NFV technologies) to ensure smooth data
flow in vehicular networks is an open problem that needs to be addressed by both academic
and industrial researchers jiacheng2016software,davy2014challenges.

With regard to the above-mentioned open problems and considering the role of 5G in build-
ing IoT use cases and the advantages of using SDN and NFV technologies, the following
challenging research question that is related to the HetVNET environment may arise.

• When considering the advantages of SDN and NFV concepts and the notion of network
slicing, how can we design an architecture that provides reliable information to create
HetVNET slices?

On the basis of the research question and the direct relation between the congestion prob-
lem and the resource allocation problem, we propose a novel method that is based on Deep
Learning and network slicing technique with the aim of avoiding congestion in HetVNET.
Therefore, considering network congestion problem in a high dynamic network environment,
like HetVNET, taking advantage of global network view of the SDN, and using information
from past successful network experiences, can help us to create an intelligent SDN architec-
ture. In this paper, we apply the Conditional Generative Adversarial Network (CGAN) to
augment the data used in creating network slices in HetVNET; and additionally, propose a
centralized SDN based architecture with the aim of enhancing flexibility and adaptability of
the HetVNET.

CGAN is widely used for text, image, and video generation and prediction works. We will
show how the proposed CGAN helps us to intelligently and reliably generate valuable infor-
mation in order to create network slices with the aim of avoiding congestion in HetVNET. It
is the first time that CGAN has been applied in this context to the best of our knowledge.

6.2 Related Work

Network slicing has been recently considered in a number of research works, particularly for
vehicular networks. In [116]; the authors gave priority to the safety data. A queuing method
was used to categorize the traffic data based on the priority. Furthermore, they applied deep
neural network methods for resource allocation in VANET. However, the structure of data
set in terms of features, size, and output classes was not clearly explained. Based on the
results, Long Short-Term Memory (LSTM) performs better than both Convolutional Neural
Network (CNN) and Deep Neural Network (DNN). Unfortunately, the time-based results,
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such as resource allocation time and detection time, have not been provided. In addition,
no further information was provided on the amount of bandwidth dedicated to each of the
priority queues and how this amount of bandwidth can be assigned to the vehicles.

Network slicing requirements for Vehicle-to-everything (V2X) communications are investi-
gated in [117]. The authors believe that, apart from infrastructure and management layers,
a network slicing V2X architecture also needs to be designed while using business and service
layers. These two layers must be considered to determine which services can be provided and
which use cases can be supported for each network slice.

In [118], the k-means++ technique is proposed for clustering the services based on the
Service Level Agreement (SLA). After clustering the services in three categories of traffic
safety, traffic efficiency, and information services, then multiple services are assigned to each
slice. In addition, Shared Proportional Fairness Scheme (SPFS) is proposed to schedule
network slices based on fairness in resources utilization. Based on the results, wireless resource
utilization rate could be improved using the linear programming barrier method and slice
scheduling approach.

In [48], the Euclidean distance method is used to find similar vehicles in terms of weak
Quality of Experience (QoE). Subsequently, the similar vehicles are gathered in the same
cluster. A vehicle that has better QoE and stronger communication links is pronounced
as the leader in the slice. Moreover, the Lyapunov optimization technique was applied to
provide video frames by the leaders for the other vehicles in the slices. Based on the results,
in the slices with high vehicle density, the quality of the selected video is low and the QoE in
these slices is reduced. The Lyapunov optimization algorithm selects the low quality videos
to guarantee the stability of streaming video. Because the radio resources could not support
the high number of vehicles in the slice, the low quality videos are selected by the Lyapunov
algorithm. Although it is a wise technique for selecting video data, it could also improve the
communication link capacity by dynamically changing the size of the slices and making new
slices with a lower number of QoE vehicles.

In [119], the authors proposed an intelligent cloud based architecture for network slicing in
vehicular networks. In this architecture, a deep reinforcement learning method is proposed
to be applied in the control layer. Collecting, storing, and analyzing the huge data are to
be done at the control layer. However, these tasks require powerful computing and storage
resources; otherwise, the performance of the intelligent method will be negatively affected.
Moreover, using cloud for these tasks is not an optimal solution; instead, the fog devices
could be a better choice for these challenges.

In [120], the author proposed a stochastic method for network slicing scheduling and resource
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allocation. Markov and Lyapunov methods were used for the nonlinear stochastic optimiza-
tion problem of resource utilization in vehicular networks. The proposed method optimized
the value of transmission power and the value of transmission rate in network slices. Indeed,
the proposed method is mainly based on tuning the resource allocation and transmission
power in the network slices, without any future forecast in the network situation and ap-
plying AI methods. Based on their study, computational complexity is polynomial (cubic),
which takes time to converge. This indicates that the stochastic solutions may not be ap-
propriate for such a dynamic and fast-changing vehicular network, unless they are applied to
strong computational devices, such as fog devices in vehicular networks.

In [121], Signal to Interference plus Noise Ratio (SINR) has been measured for every vehicle
in the predefined infotainment and autonomous network slices. Subsequently, the vehicles
with higher amount of SINR provide streaming video services for vehicles with lower amount
of SINR. The obtained results show an improvement in the throughput of infotainment slices
and reduction in packet reception ratio for safety applications of autonomous slices.

In, [122], the authors proposed a network slicing framework for Internet of Vehicle (IoV)
based on multiple types of Radio Access Technologies (RATs) and traffics, using cloud com-
puting. The results obtained from real deployment showed the scalability of the proposed
framework. However, the application of AI methods to provide a flexible predicted resource
allocation mechanism could significantly improve the results. This issue has been considered
in [123, 124]; however, the vehicular network is not the targeted network in these studies.
In [123], the authors proposed the dynamic resource allocation technique using deep rein-
forcement learning. The proposed method showed better performance when compared to the
other techniques, such as heuristic and random approaches. However, based on the results,
slicing performance is negatively affected by an increase in the network load. In [124], deep
reinforcement learning was been applied to allocate resources in the network slices. In [125],
the authors showed that the network slicing could benefit from the proposed traffic prediction
method using AI.

In [126], the authors proposed a method for network resources allocation with respect to the
traffic load in vehicular networks. A Monte Carlo tree search utilizing cross entropy with new
metric was proposed by the authors. Although the proposed method is not based on prior
network information, it shows good performance in simulation scenarios with a large of fog
devices and network slices. However, in simulation scenarios with a low number of fog devices
and network slices, the performance of the proposed method was not as good as any other
comparable method while using Q-learning. Besides, the Mont Carlo tree search requires a
lot of memory and it is slow to perform, which is evident in the results of the operation time.
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Therefore, the proposed method is not a worthy choice to be applied in a dynamic vehicular
network that changes fast. Moreover, it might be better to use more intelligent methods that
could be based on analyzing previous network experiences and information than the Mont
Carlo tree search method.

In [127], the authors proposed a method for defining clusters of vehicles and vehicle slices of
network. The clusters are used to exchange safety related messages via Vehicle-to- Vehicle
(V2V) communications. The network slices are used to transmit video streaming data via
Vehicle-to-Road Side Unit. From the results, the proposed method performs better in the
scenario with a low number of vehicles. This indicates that, with the increasing number of
vehicles and crowded urban roads, there is still a problem with the transmission of high data
loads, even using the proposed method.

Based on the literature, there are two groups of proposed approaches for network slicing
in vehicular networks: non-intelligent methods and intelligent methods. In this section, we
explained some of the drawbacks of some studied non-intelligent works. The proposed in-
telligent methods are mainly based on the machine learning and deep learning methods.
Considering vehicular networks, the number of works that used AI methods in the proposed
network slicing approach is limited. As mentioned earlier, locally analyzing large data by
AI methods requires powerful computing resources that can be provided using fog comput-
ing. Proposing a new network slicing method that can intelligently and dynamically change
the network slices could therefore have a significant novelty in terms of dynamic resource
allocation and HetVNET configuration.

6.3 Methodology

6.3.1 Generating Dataset Using Simulation Scenarios

In this paper, the following five variables were considered: the number of vehicles (v), data
rate (dr), DSRC transmission power (tpDSRC), LTE transmission power (tpLTE), and LTE
bandwidth (b). Based on the studied literature related to ETSI and the Wireless Access in
Vehicular Environments (WAVE) standardization, these parameters have the most effect on
network congestion problem [32–38]. Because no data sets from real HetVNET are available
today, we have generated a data set that contains data records of these parameters [83]. We
used OpenStreetMap (OSM) [90] to have a map that is similar to the real environment in
terms of intersections, streets, buildings, etc. Figure 6.1 shows the boroughs of downtown
Montreal that we used to generate the simulation scenario. Besides, to generate the road
traffic and vehicle movements on the map, we used Simulation of Urban Mobility (SUMO)
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0.26.0. [88]. SUMO requires ".osm” file created by OSM to generate the vehicle traffic on
the map. Simultaneously, Veins LTE version 1.3 [89] simulator was used to generate het-
erogeneous vehicular network using IEEE 802.11p for V2V communications and LTE for
Vehicle-to-Infrastructure (V2I) communications. SUMO and Veins LTE worked on Ubuntu
16.04. The simulation time was 1000 s and, in order to generate a high load of data, we
defined a road accident with a 70 s time of running simulation scenario. Because we consid-
ered the downtown of Montreal city, the vehicles maintained the maximum speed limit of 40
km/h assigned to these boroughs. Table 6.1 shows the parameters and their corresponding
values used for simulating HetVNET scenarios. In each run, the values of the five attributes
were changed based on the information presented in Table 6.1.

Table 6.1 Simulation parameters and corresponding values.

Parameter IEEE 802.11 p LTE
Number of Base Station 1
Number of Resource Blocks 25, 50, 100
Bandwidth 10 MHz 5 MHz, 10 MHz, 20 MHz
Transmission power 30 dBm (Maximally) 43 dBm, 46 dBm
Transmission data rate 6-27 Mbps
Modulation techniques QPSK, 16-QAM, 64-QAM
Simulation time 1000 s
Simulation runs 500
Number of vehicles 50, 100, 150, 200
Simulation area 1000 m × 1000 m
Number of lanes 4 (two in each direction)
Maximum speed 40 km/h
Propagation model Nakagami
Size of message 400 Bytes

Information was extracted after running simulation scenarios of HetVNET. The amount of
network throughput over generated data rate can give us a vision of the network performance,
as explained in [83]. Indeed, based on this value, we can find out how many of the generated
data were successfully received at destination points per unit of time. Therefore, for each
run of simulation scenario, the amount of network throughput over load per a unit of time is
extracted. This value can be equal to one maximally in the desired case, and equal to zero
minimally in the worst case of network performance. Network throughput is the calculated
sum of the value of throughput in DSRC and the value of throughput in LTE. To meet the
paper objectives, we used information of successful experiences (simulation runs). Simulation
scenarios with a network throughput value over the generated data rate of more than 0.6
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Figure 6.1 Simulated area is shown by a red square.

Figure 6.2 Structure of data set used for the Conditional Generative Adversarial Network
(CGAN).

are selected as a successful scenario [92]. In fact, we need to extract the best scenarios in
HetVNET and augment these successful scenarios. Subsequently, we put the information of
these scenarios in the dataset. As shown in Figure 6.2, the data records in the dataset are
classified based on the number of vehicles. Based on the five vehicle densities considered,
there are five different classes of vehicles in this paper: 30, 50, 100, 150, and 200 vehicles.

6.3.2 Proposing CGAN Model for HetVNET

CGAN uses a generative model, like G, to create new data from noise [128]. The noise is
a random data which is similar in structure to real data. The task of the discriminator
is to recognize which data are real or not, and come from the generator. In the CGAN,
the generator and discriminator have access to class labels, like v, as shown in Figure 6.3.
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The discriminator tries to maximize the probability of having a correct label (real or random)
in the output. At the same time, the aim of the generator is to make the data very similar to
real data, thus misleading the discriminator. In other words, based on the feed backs received
from the discriminator, the generator will train time by time, until the discriminator is unable
to identify which data are real and which are not (random). Therefore, the generator, like
G, and the discriminator, like D, play a min-max game [128], as follows:

min
G

max
D
V (D,G) = Ex∼pdata(x) [logD(x|v)] + Ez∼pz(z) [log(1−D(G(z|v)))], (6.1)

where, pz(z) is prior input noise variable, andD(x|v) is the probability that x with a class label
of v is a real data. We assume that z is random data generated by the generator using noise;
therefore, D(G(z|v)) is the probability that the random data composed of noise and class
label comes from the real dataset. From the first moments of learning, the discriminator can
easily recognize the random data from the real data. Therefore, the value of D(G(z|v)) is low
and, as a result, the amount of log(1−D(G(z|v))) is large, which is a desired situation for the
discriminator. However, after a while, when the generator trains and algorithm converges,
this amount will be minimized.

Figure 6.3 CGAN model for HetVNET.

A uniform distribution U(0, 1) is used to generate random noise while using the generator.
Moreover, we used the Adam optimizer [94], which has high convergence speed and is faster
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than the gradient descent. Batch normalization is applied in the generator in order to avoid
the problem of vanishing gradient in back propagation. Indeed, a batch normalization layer
is added after each hidden layer’s activation function, with a momentum of 0.9 being recom-
mended in [94], as a suitable value. Furthermore, Leaky ReLU is preferred as the activation
function (the learning rate is 0.001), since it is effective in reducing the run-time latency [94].
Besides, He initialization is applied, which best fits the Leaky ReLU activation function [94].
Tanh and Sigmoid activation functions are used for the output layer in the generator and the
discriminator, respectively. Figure 6.4 shows the layers of the CGAN.

Figure 6.4 The architecture of the proposed CGAN that shows generator’s layers and dis-
criminator’s layers.

6.3.3 A Hybrid CGAN-SDN Architecture

HetVNET is a dynamic and stochastic network with a rapidly changing number of users,
network topology, and required services. The volume of generated data using safety and
infotainment application varies very fast and it is difficult to predict. Moreover, most of the
network communication features, such as signal strength, signal attenuation, and path link
stability, are vulnerable from other parameters, such as temporary and permanent barriers,
vehicles movements, speed and direction. As far as these features of HetVNET are concerned,
it is mandatory to have a central intelligent management mechanism in order to meet the
requirements of the network. This issue is comprehensively studied and proposed as an open
challenge in [115].
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Because the velocity of change in HetVNET and requirements is high and varies, using the
same slices for a long time is risky; therefore, the ability of the slices to meet all of the
network requirements is not guaranteed. Instead, we can generate network slices based on
previous successful network experiences. It is like making new generation of HetVNET slices
from a strong population. With this vision, on one hand, the risk of having slices with
low performance is reduced and, on the other hand, it affects the performance of the entire
HetVNET over time by creating a good generation of slices. When considering the litera-
ture related to network congestion in vehicular network, using WAVE and ETSI standards,
the proposed congestion controlling mechanisms are mostly based on tuning the value of
transmission power and data transmission rate [32–38]. Finding the optimal value for these
parameters is not a promising solution, due to the high dynamicity of the vehicular network.
In other words, there is no optimal fixed value for these parameters, instead, the appropriate
value should be applied temporarily for these parameters during a predefined time interval
and just based on the current network situation. These values are similar (not equal) to
the values that were previously used and made successful network experiences. In this work,
the synthetic data generated by the proposed CGAN are the data close (not equal) to the
original ones that came from the successful scenarios. Therefore, we create the most similar
data with little variance to the previous successful ones to apply in network slices. When
considering the wide applications of Generative Adversarial Network (GAN) in producing
new images, by our proposed approach, we can generate several images for each part (slice)
of vehicular network (let us assume that, in this problem, images are the network various con-
figurations in terms of the five variables). These generated configurations can be applied in
various slices with different number of vehicles. Therefore, providing network slices with the
appropriate value for the five parameters that are tailored to the current network situation
in terms of the number of vehicles is proposed in this work. The proposed CGAN method
can quickly generate a volume of information useful in creating and setting many HetVNET
slices with respect to the network service needs. When considering the five variables of v,
dr, tpDSRC , tpLTE, and b and their possible real values, in each time, the number of possible
templates for the slices can be calculated by multiplying the number of possible values that
each of these parameters could have. Subsequently, these templates can be categorized based
on the number of vehicles.

With the NFV, the necessary and common network functions and services can be deployed
and installed in the virtual servers. The Virtual Network Functions (VNFs) are the software
functions, which provide network services and functionality virtually. NFV is interesting for
network providers, as the installation and updating of the virtual functions using software is
less costly and easier than on hardware.
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Besides, the Next Generation Mobile Network Alliance (NGMN) [10] proposed network slicing
as a method for virtualizing the 5G network physical resources. In this method, each slice is
independent of the other slice, and it is formed based on a blueprint. Network functions and
resources are used to provide specific service(s), such as low-latency, ultra reliability, etc.,
by a slice.

In a dynamic environment, like HetVNET, in which topology, the number of users, and the
required services are inconsistent, network slices may have to be created and modified very
fast. Therefore, it may be necessary, within a period of time, to replace the slices with new
slices. The rapid provision of new slices based on the current network requirements needs a
plan that could be made up of the necessary metrics, such as transmission power, transmission
rate, and required bandwidth. Regarding the above mentioned issues, we propose a hybrid
CGAN-SDN architecture.

Figure 6.5 shows the three layers of SDN. In this architecture, fog devices are implanted at the
controller in order to execute the CGAN algorithm. The high computing and storage abilities
of fog devices are helpful for running the CGAN. The NFV is a fundamental component of
network virtualization and the creation of slices. Information extracted from the successful
scenarios is augmented at the controller, and this information is useful for making blueprints.
The NFV has the required functions to establish the slices. Therefore, the blueprints are
passed to the VNFs by NFV management and orchestration.

At the infrastructure layer, based on the orders coming from the virtual functions, the Virtual
Network Provider (VNP) must form the necessary slices. Each slice has specific value of data
rate and transmission power for DSRC and transmission power and bandwidth for LTE.
Because the DSRC is used for V2V communications, the vehicles must communicate with
each other using the new value of transmission power and data rate in each slice. Moreover,
we can implement several Radio Access Network (RAN) base stations (like road side units)
for LTE in the HetVNET. Therefore, these base stations can be configured in terms of
transmission power and bandwidth for each slice based on the values that are decided at the
control layer.

Because each vector X = (v, dr, tpDSRC , tpLTE, b) generated by CGAN is applying to create
one slice, even if there is more than one LTE RAN station in the slice, all should be configured
while using the value of tpLTE and b in the vector X. Accordingly, the value of dr and tpDSRC
should be applied for each V2V communication in the slice. For example, when considering
slice 1 in Figure 6.5, if X = (x1, x2, x3, x4, x5), then the both LTE RAN stations must provide
x4 dBm transmission power and x5 MHz bandwidth, and vehicles can use both LTE RAN
stations depending on the distance between vehicles and the LTE RAN station. In addition, in
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Figure 6.5 An intelligent hybrid CGAN-Software-Defined Network (CGAN-SDN) architecture
for HetVNET.

this slice could be x1 vehicles that should transmit data with x2 Mbps transmission rates and
x3 dBm transmission power for V2V communications. Therefore, based on this method, slices
are defined using the five parameters. Changing in the value of any of the five parameters
(based on the new vector X generated by CGAN) means that the previous slice is gone, and a
new slice is created.

In a HetVNET, each slice could vary in the size and number of vehicles. Moreover, a VNP
is virtually connected to the real network providers. The VNP is authorized to modify and
allocate network resources from ISP.

6.4 The Proposed CGAN Model Performance Evaluation

We used Python version 3.6 to simulate the proposed CGAN model. The performance of
the proposed CGAN model was evaluated based on the performance of the discriminator.
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Because CGAN uses min-max non-cooperative game, if the generator wins, then the discrim-
inator loses. Therefore, the discriminator’s performance not only evaluates the discriminator,
but it also illustrates how much the generator could improve itself during the training phase.
Note that the real data are not at all accessible to the generator, therefore the generator that
is only allowed to learn from the gradients comes back from the discriminator via back prop-
agation.

Figure 6.6 shows the accuracy of the discriminator over 500 epochs. In the first 50 epochs,
the discriminator could distinguish between random and real data. However, after that,
the discriminator made mistakes in finding the random data sent from the generator. This
illustrates the improvement of the generator in making data from noise which are similar
to real data. At the same time, the discriminator was still successful in finding real data.
However, in epoch 300, the CGAN model reached a converging point where the discriminator
could not very well recognize the real data. At this point in time, and as shown in Figure 6.6,
the accuracy of the discriminator is reduced to approximately 50%, which indicates that the
discriminator randomly generates output labels. Therefore, the generator trained itself very
well while using feedback from the discriminator, and finally the CGAN model converges at
this point in time.

Figure 6.6 The discriminator’s accuracy over time.

CGANs with two and three hidden layers were separately considered and, for each, the ac-
curacy and loss of the discriminator was evaluated using three batch sizes of 20, 40, and
60. Finally, Figures 6.7 and 6.8 present the results. Figure 6.7 shows the variation in the
accuracy of the discriminator at the converging point of the CGAN for real and random data,
whiel using two and three hidden layers and three different batch sizes. The best state for a
CGAN is when the discriminator randomly makes labels [94]; therefore, the accuracy of the
discriminator will be approximately 50% for both the real and random data. As far as this



126

is concerned, and as Figure 6.7 shows, this has happened with 40 batch size and two hidden
layers. At this state of the converged CGAN, the discriminator with 55% accuracy guesses
whether the data are real or random.

Figure 6.7 The discriminator’s accuracy per various batch sizes and hidden layers.

We use binary cross-entropy to calculate the loss of the discriminator. The best state is
when the loss of the discriminator is at the lowest value for both real and random data.
The loss of the discriminator for three hidden layers of 40 batch size is a good value like
0.65; however, the loss for random data is as high as 0.75, as shown in Figure 6.8. In other
words, the discriminator has more faults in finding random data and performs better in
recognizing real data. This is a green sign that indicates that the generator is well trained.
However, as compared to the same batch size, but with two hidden layers, this is a hasty
conclusion. Because, with the same batch size and two hidden layers, the loss values for
real and random data are very close 0.68 and 0.69, respectively. These values show that the
discriminator has almost the same performance in labeling the real and the random data.
Therefore, we can say that the discriminator has an error in finding both the real data and
the random data at a same level. This indicates that the generator is well trained in making
the discriminator’s mistakes.

Figure 6.9 compares the training time that is required by the proposed CGAN to reach a
converging point for two and three hidden layers using different batch sizes. The training
time for the CGAN using a batch size of 60 and two hidden layers is the lowest, with a value
of less than 10 s. The reason for this low training time could be related to the high amount
of data that the CGAN has during the training phase as compared to using the other batch
with small sizes.
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Figure 6.8 The discriminator’s loss per various batch sizes and hidden layers.

Figure 6.9 Proposed CGAN model’s training time.

Based on Figure 6.7 to Figure 6.9, we can infer that using a batch size of 40 with two hidden
layers is a good setting for the proposed CGAN. If there is a strict time restriction for the
network, it may be better to consider a 60 batch size for the proposed CGAN.

Because we could not find the same paper in the literature as the benchmark, we could not
compare the results with other HetVNET-related works.

6.5 Conclusions

When considering the dynamic nature of HetVNET, the HetVNET slices must be rapidly
generated and modified. Besides, the slices must be provided in accordance with the user
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requirements. In this paper, we proposed an intelligent hybrid CGAN-SDN architecture for
network slicing, while considering the network congestion problem in HetVNET. We proposed
a CGAN based method for augmenting the data used in dynamically creating HetVNET
slices. In this method, information on a number of network metrics, which have a significant
impact on the smooth flow of data, has been extracted from network scenarios with a good
performance and results, in terms of ratio of throughput to data generation rate. Subse-
quently, these data records are classified based on various vehicle densities, and the proposed
CGAN method is applied to generate similar information. The augmented information can
be used in the control layer of the proposed intelligent hybrid CGAN-SDN architecture to
dynamically generate HetVNET slices. We evaluated the performance of the CGAN method
and, based on the obtained results and discussions, the proposed CGAN method is a reliable
way to generate data that are similar to the real data.

In the future, we will apply a reinforcement learning method to propose an agent in a hybrid
SDN-based architecture, which can intelligently produce network slices.
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CHAPTER 7 GENERAL DISCUSSION

In this chapter, the proposed methods are discussed. In vehicular networks, network con-
gestion and road congestion are two concepts that should be distinguished from each other.
Road congestion can occur due to several factors such as accidents, road closure, special
events, rush time of day, special weather conditions and many more. These factors are not
networking factors. We can recognize road congestion when we see that the road is closed and
the vehicles movements are very slow or even they stop. However, we do not have the same
approach to find out that a network congestion occurred. Thus, we need to infer network
congestion from the performance of the network. Predicting road congestion using machine
learning and deep learning methods has been considered by authors and valuable works have
been done in this area by the researchers. However, progress in the field of applying machine
learning and deep learning methods to predict network congestion in vehicular networks are
still insufficient and this area of research has open challenges for researchers [1]. Congestion
in the network has a negative impact on network throughput. It also increases the packet
loss and decreases the data delivery ratio in the network [1]. Therefore, network throughput
and data delivery ratio are considered to infer congestion in the HetVNET.

Transmission power and data transmission rate have considerable impact on the congestion in
the network [1]. Range of transmission increases by increasing the amount of the transmission
power. Consequently, the number of vehicles that can receive the messages rises, and it
might lead to more collisions in the network, specially in a dense vehicular network [96].
High transmission rate means more packet transmission rate. Moreover, the high data rate
needs high transmission power in order to have a good result in network performance [50].
Therefore, tuning the amount of transmission power and the value of data transmission
rate has been considered in existing congestion control strategies [1]. Number of vehicles is
another parameter that is important in the network congestion problem. Growing in number
of vehicles leads to more data generation and more traffic load in the network and could be
the cause of congestion in the network. Hence, in this dissertation, the number of vehicles,
the transmission power and the data rate have been considered as parameters that affect the
congestion in the network.

The warring states in terms of congestion in the HetVNET are defined, using DDR and RSS.
These states are considered as classes in Chapter 3. Several supervised machine learning
classification methods such as SVM, KNN, Random Forest and Naive Bayes are investigated
in this dissertation. However, based on the performance evaluation results of the algorithms,
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Naive Bayes is considered for the proposed classification problem in this dissertation. Per-
formance of Naive Bayes classifier shows that it is faster and more accurate than the other
considered algorithms. A centralized management unit segments the roads. Estimating the
vehicle density for each segment in the next time t and making classification prediction for
congestion warning state of HetVNET, are the tasks of the fog congestion predictor unit in
a cloudy-fog architecture of HetVNET.

Network throughput and data generation rate are components of the proposed utility func-
tion in Chapters 4 and 5. The proposed formula of the utility function shows the current
situation of the network in terms of smooth data flow in the HetVNET. However, the aim
is to predict the value of the utility function (without using the proposed formula of the
utility function) with considering the five predictors. Therefore, this problem is defined as a
regression problem and the supervised regression prediction methods such as Multiple linear
regression, SVM, Decision Tree and GRNN are investigated in this dissertation. In 5, the
obtained results show that the proposed GRNN is more accurate and more reliable than the
other considered algorithms. Therefore, GRNN is selected to apply in the proposed intel-
ligent congestion avoidance mechanism. As results indicate, the neural network predicting
approach could prevent the network from a congestion situation and notably improve the
network performance.

Network slicing with the aim of dynamically providing network slices while considering de-
grading network congestion in the created slices are presented in Chapter 6. CGAN is a deep
learning method which is widely used in image, audio, video and text generation. Augment-
ing data of past successful experiences in terms of occurring congestion in the HetVNET are
considered in this chapter. CGAN is applied to augment the data used for configuration of
new network slices. Since in CGAN the generator and discriminator are playing against each
other, we can see instabilities in the results during the training phase, in fact, they push
against each other continuously. This issue is a natural behavior of GAN methods [94]. How-
ever, at the point that this unstable manner in generator and discriminator comes around
50% in terms of accuracy (converged point) we can trust that the model is trained well, since
at this point, the CGAN can recognize noise data (random data) and real data randomly.

Analyzing data is a key part of supervised algorithms. In this dissertation, data is created
using simulators. SUMO is used to generate vehicle movements and road traffic. In parallel,
Veins LTE used to generate network environments and create data traffic in the network. In
this part of the dissertation, other network simulators such as NS3 and NETSIM could be
used. However, it was important that all the vehicles had the opportunity of using DSRC and
LTE at the same time. Regarding this issue and after investigating the network simulators,
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the Veins LTE simulator is selected for doing this task. Veins LTE is an extension of OMNET
++ and is released to simulate the heterogeneous type of vehicular network.



132

CHAPTER 8 CONCLUSION

8.1 Summary of Contributions

Congestion controlling mechanisms are based on measuring the current state of the network.
For example, defining a threshold for the busy level of the communication channel or putting
a threshold for the number of lost packets in the network. The congestion controlling mech-
anisms run when the threshold is met. This strategy is the main structure of the current
congestion control mechanisms.

The use of AI-based methods in various fields of science has been increased due to their
ability of learning from data and solving the problems. Accordingly, the network congestion
problem in HetVNET is not an exception. Autonomous networks are able to self-diagnose,
self provisioning and self-healing thanks to AI methods. Toward creating a self adaptive and
autonomous HetVNET, proposing AI-based approaches to predict and control the network
congestion before it occurs in the HetVENT is the main body of the contributions in this
dissertation. The adaptive network is a stable network, since it could estimate the problem
before happening and adapt itself with the future challenging situation. Stability in the
performance of the network that applies the proposed methods is another contribution.

Analyzing huge data generated by vehicular users needs high storage, significant computing
power and functionality requirements. Recent cutting edge technologies such as SDN, fog
computing and NFV provide the possibility of applying AI-based methods in the network
more than before. Programmability, having a global view of the network and agility from the
SDN along with high power of fog computing devices in computation, storage and networking
will provide a perfect package of answers to the requirements toward having intelligent con-
gestion control management and using AI-based approaches. Designing hybrid architectures
using the named technologies with the aim of having intelligent congestion management in
HetVNET is another contribution in this dissertation.

The congestion prediction problem is proposed in both forms of classification and regression
problem. According to these two named types of problems and using supervised machine
learning algorithms, congestion prediction methods are investigated and proposed in this
dissertation. Here, Naive Bayes method is proposed to predict the warning class of network
congestion in HetVNET. The AUC in the ROC curve for the proposed classification Naive
Bayes method is 94% which is a good value and it also could show a significant accuracy of
91.87% in the results. In the regression congestion prediction problem, the GRNN prediction
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model shows the lowest RMSE value of 0.07 and the highest R square value of 0.86 among
other considered prediction methods. Obtained results show that the proposed intelligent
congestion avoidance mechanism using GRNN could improve packet loss ratio and average
delay in comparison to other mechanisms (such as CSMA/CA, D-FPAV, ML-CC, RoS, and
EDF), especially for the high number of vehicles.

Finally, applying a deep learning method for network slicing in HetVNET is considered
in this dissertation. Regarding network slicing in vehicular networks, proposing a CGAN
method to augment data of past positive experiences in terms of not having congestion in
the network; then, applying the CGAN in a SDN-NFV architecture are other contributions
in this dissertation. Generator and discriminator are the two components of the CGAN, and
they play a min-max game against each other. The CGAN is converged at the point that the
amount of discriminator’s accuracy is around 50%. The CGAN converged after 300 epochs.
Moreover, based on the results the performance of the CGAN with two hidden layers is better
than with the three hidden layers.

8.2 Limitations

The biggest limitation in this dissertation is the lack of analyzing real data generated in a
real HetVNET. Although SUMO and Veins LTE are popular simulators in modeling of the
vehicular network, simulation based data is not as convincing as the real data. However,
there was not any alternative way except generating data by simulators. Since the data
is extracted from running simulation scenarios, the amount of generated data is not in the
scale of big data. Therefore, the choice of prediction algorithms is limited among the machine
learning (not deep learning) prediction methods.

Moreover, to have a dataset containing real data, we need a HetVNET implemented in an
urban area. Then the data gathered during a time like several days or months. In this
condition, we could even consider more features such as the effect of rush hour, city events
and especial weather conditions on the network performance in HetVNET. To have such a
real test bed, we need to equip a large number of vehicles to be able to communicate with
DSRC technology. The cellular and DSRC network providers should cooperate in order to
create a real HetVNET on a big scale.

Regarding simulating the HetVNET, the number of vehicular network simulators that work
smoothly and are compatible with SUMO are very limited. The Veins LTE was not user
friendly and more specifically it is hard to find a good tutorial resource about using Veins
LTE. Nevertheless, it was the best choice at the time. Because other powerful simulators like
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Network Simulator (NS), did not support heterogeneity of the vehicular networks. Indeed,
in HetVNET it is required that all vehicles could communicate by both DSRC and cellular
network without any preconditions. In NS we should specify that vehicles communicate with
cellular networks during a specific time and after that they could use DSRC, or a group of
vehicles uses DSRC and other vehicles apply cellular networks. However, none of these are
not a HetVNET. In HetVNET, vehicles must be free to use the DSRC or cellular network.

In Chapter 3 location of the vehicle should be extracted by a GPS device installed in the
vehicles. Moreover, for implementing the proposed approach, the fog computing units should
have the security authority to access the location of the vehicles.

In Chapter 6, the network infrastructures and resources in the slices belong to the network
operators. However, the virtual network operators provide the network services of one or
more slices, using the infrastructures. Indeed, the virtual network operators should have
enough authority from real network operators in this issue. Therefore, network slicing is
considered by relying on cooperation between virtual network operators and real network
operators.

8.3 Future Work

Regarding this dissertation, several future works are listed as follows:

• The future work can be predicting the occurrence of congestion in DSRC or 6G of future
heterogeneous vehicular networks based on supervised machine learning methods.

• Since simulated data is used in this dissertation, applying the proposed methods using
data that come from a real world HetVNET can be considered as a future work. In
this regard, big data extracted from a real HetVNET can be used as input of a deep
learning algorithm.

• Proposing the network congestion prediction methods which could be implemented us-
ing cloud computing and storage services (e.g., Amazon Web Services (AWS), Microsoft
Azure and Google Cloud Platform (GCP)) to analyze the big data and predicting the
network behaviour in real-time.

• Considering other factors such as mobility model, modulation technique, complexity
of scenarios (urban, rural and straight highway), number of eNBs, number of resource
blocks and etc. as predictors and generating congestion prediction model for HetVNET.
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• The time series data can be the data generated in a network during various time slices.
Depending on the network situation, the amount of generated data could be various in
time slices. For example, the data generated during the time that an accident occurs
is less than data generated in the time that there is not any road hazard (normal
situations). Considering time series data and applying LSTM to generate the network
congestion prediction model.

• Regarding the approach proposed in Chapter 6 of this dissertation, proposing a network
slice scheduling mechanism to calculate the lifetime of the created slices using the
CGAN.

• Implementing the proposed mechanisms in the real world test bed, since the simulated
environment can not be exactly the same to the real world situations.

• Considering the data generated by infotainment applications and proposing the predic-
tion model that can analyze the huge data and predict network congestion quickly and
accurately.
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APPENDIX A CLASSIFICATION PERFORMANCE METRICS

Recall = TP

TP + FN
(A.1)

Precision = TP

TP + FP
(A.2)

Accuracy = TP + TN

TP + FN + FP + TN
(A.3)

F1 = 2× Precision×Recall
Precision+Recall

(A.4)
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APPENDIX B REGRESSION PERFORMANCE METRICS

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (B.1)

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (B.2)

RSS =
n∑
i=1

(yi − ŷi)2 (B.3)

RSE =
√√√√ 1

(n− p− 1)

n∑
i=1

(yi − ŷi)2 (B.4)

TSS =
n∑
i=1

(yi − yi)2 (B.5)

R2 = 1− RSS

TSS
(B.6)

F − statistic =
(TSS −RSS)× 1

p

RSS × 1
n−p−1

(B.7)

SE(β̂0)2 = σ2[ 1
n

+ x2∑n
i=1(xi − x)2 ] (B.8)

SE(β̂1)2 = σ2∑n
i=1(xi − x)2 (B.9)

t− statistic = β̂1

SE(β̂1)
(B.10)
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APPENDIX C CROSS-ENTROPY

Hi = −
n∑
k=1

Pi,k log(Pi,k) (C.1)

Pi,k 6= 0
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