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RÉSUMÉ 

En imagerie vasculaire in-vivo, on tente d’élucider un réseau vasculaire très complexe mais a priori 

inconnu. Des cartographies impressionnantes de la vascularisation tissulaire sont obtenues à l'aide 

de la microscopie de localisation par ultrasons (ULM) en suivant des microbulles (MB) à travers 

des milliers, voire des centaines de milliers d'images. En revanche, les études de validation pour 

les systèmes d’imagerie n'ont été validés que sur des fantômes composés de tubes ou de 

microcanaux qui ne reflètent pas la complexité de la vascularisation tissulaire ont été réalisées dans 

des conditions in-vitro ou in-vivo où les positions de MBs sont inconnues. Des fantômes réalistes 

réalisés en simulation sont essentiels pour valider la précision de la cartographie vasculaire et 

optimiser les paramètres, car les positions de MBs de références sont disponibles pour quantifier 

l’erreur de localisation. Établir la concentration en MBs optimale est un représente un défi, car elle 

peut être augmentée pour réduire le temps nécessaire pour peupler le réseau vasculaire, mais elle 

doit rester suffisamment faible pour éviter les interactions indésirables entre les microbulles, ce qui 

causerait un flou dans l'image résultante. Sans image ou réseau vasculaire de référence, il est très 

difficile d'évaluer la précision d'un système d'imagerie dans des environnements in-vivo. Par 

conséquent, un cadre de simulation anatomiquement et hémodynamiquement réaliste a été 

développé utilisant des données de cerveau de souris in-vivo acquises par microscopie à deux 

photons. Ce cadre permet de tester en simulation divers paramètres d'acquisition tout en ayant accès 

à une vérité terrain hautement résolue pour l'évaluation de la performance de la cartographie 

vasculaire. A partir d'un modèle en graphe, un simulateur de trajectoires de particules a été conçu 

pour reproduire un flux de microbulles similaire à des données in-vivo. Le simulateur permet 

d'obtenir des positions de MBs de référence qui peuvent ensuite être utilisées pour simuler des 

signaux et des images ultrasonores et sur lesquelles des métriques peuvent être calculées pour 

évaluer la précision de la cartographie vasculaire. A titre d'exemple, le temps d'acquisition a été 

calculé en fonction de diverses fréquences de transmission de sondes et de diverses concentrations 

de MBs. Un lien entre la concentration maximale de microbulles et le volume de la réponse 

impulsionnelle a été établi, où la concentration optimale de microbulles peut être calculée pour 

obtenir la meilleure reconstruction vasculaire d'un système d'imagerie. Le cadre développé peut 

donc être utilisé pour des études paramétriques pour la validation d'algorithmes de formation 

d'images ULM. 
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ABSTRACT 

In in-vivo vascular imaging, we try to shed light on a very complex, yet unknown vascular network. 

Impressive mappings of tissue vasculature are achieved using Ultrasound Localization Microscopy 

(ULM) by following microbubbles (MB) through thousands to hundreds of thousands of images. 

However, all the validation studies for imaging systems were performed in in-vitro or in-vivo 

settings, where MB positions were unknown. Realistic simulation phantoms are essential to 

validate the accuracy of vascular mapping and parameters’ optimization since reference MB 

positions are available. MB concentration is an example of a challenging parameter, since it can be 

increased to reduce the time needed to populate the vascular network but must remain low enough 

to avoid unwanted interactions between microbubbles which would cause unwanted blurring of the 

resulting image. Without a reference vascular network, it is very challenging to assess the accuracy 

of an imaging system in in-vivo settings. Therefore, we developed an anatomically and 

hemodynamically realistic simulation framework using in-vivo mouse brain data acquired with 

two-photon microscopy that allows us to test in simulation various acquisition parameters while 

having access to a highly resolved ground truth for performance assessment. From a graph model, 

a particle flow simulator was designed to reproduce a microbubble flow that is similar to in-vivo 

settings. The designed simulator allows to obtain reference microbubble positions that can be then 

used to simulate ultrasound signals and reconstruct images on which metrics can be computed to 

assess the accuracy of the vascular mapping. As an example application, acquisition time was 

computed as a function of various probe transmit frequencies and various MB concentrations. A 

link between the maximal microbubble concentration and the volume of the impulse response 

system was established, from which optimal microbubble concentration can be computed to obtain 

the best vascular reconstruction of an imaging system. The developed framework can therefore be 

used for parametric studies for the validation of ULM image formation algorithms. 
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 INTRODUCTION 

In ultrasound localization microscopy (ULM), microbubbles (MB) are used as a contrast agent and 

are injected into the bloodstream prior to imaging. The MBs consist of a gas surrounded by a lipid, 

lipopolymer, or polymer shell. They are nontoxic, approved by the FDA [1], and routinely used in 

clinic. Their appeal is mainly due to a large impedance difference that is created between tissue 

and gas, and resonant properties, which makes them highly echogenic. Put simply, we can easily 

isolate them from the surrounding tissue and track them individually.  

In conventional ultrasound imaging, we are generally interested in imaging tissue or anatomical 

landmarks that are composed of densely packed scatterers and interfaces. The propagation of an 

ultrasonic pulse through interfaces and scatterers results in reflected and diffracted waves. These 

waves interfere with each other depending on their relative phase. The ability to distinguish 

between two anatomical structures in linked to the diffraction limit stated by the Rayleigh criterium 

[2]. This spatial resolution limit is in the order of the wavelength, which in the case of the ultrasonic 

pulse is in the order of 100-500 micrometers (μm) for commonly used transmit frequencies of 3-

15 MHz.  

As opposed to tissue, a MB can is a single scatterer, and its exact location can be computed (Section 

2.2.2.6). In ULM, we leverage that fact by acquiring images where only a few MBs are present to 

avoid interactions between microbubbles. For seconds or minutes, hundreds to thousands of images 

per second are acquired. After isolating and computing MB positions, we can add all MB positions 

together in that time period to map their trajectories. Since MBs only navigate in blood vessels, 

this allows us to map the vascular network at the micrometer scale (Figure 1) [3]–[6]. 
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Figure 1: Example of microvascular mapping of a rat brain using Ultrasound Localization 

Microscopy. Courtesy of Jonathan Porée. 

1.1 Motivation 

Preclinical microvascular imaging using ULM was performed in various animal models, such as 

the mouse [7]–[9], rat [3], [10]–[15], rabbit [16]–[18] and chicken embryo [19], [20], in multiple 

tissues including brain, tumor, kidney, ear, skeletal muscle and lymph node. As for human pilot 

studies, ULM was performed in breast tumors [8], [21], [22], prostate tumors [23], lower limb [24], 

liver, pancreas, kidney [22] and brain [25]. 

Current issues related to ULM imaging include a long acquisition time and limited knowledge on 

MB optimal concentration. Since we need to accumulate data in the time domain, the position of 

the probe must stay constant during the whole acquisition, which can last several seconds and even 

minutes. The acquisition time and MB concentration are closely linked, since the higher the count 

of isolated MBs is in the image, the less time is required to populate the vascular network [6]. Even 

though short acquisition time and motion correction can mitigate the challenges that arise from 

involuntary movement and possible breathing [22], in-vivo validation of the produced images 

remains a challenge.  

As for potential applications of ULM, we can look at the output data from the ULM framework. 

This output data consists of MB spatial positions in space and time. This information can be turned 

into biomarkers depending on the domain of validity and accuracy of the data and biomarker in 

question. Potential biomarkers can be derived from the accumulation of absolute MB positions, 



3 

 

 

from MB velocities and even from MB acceleration. For instance, the accumulation of absolute 

MB positions, also known as density maps, reflect the anatomical vasculature, while MB velocities 

combined with vessel diameter can reflect blood flow. Biomarker development can also include 

inspiration from other vascular imaging modalities such as diffusion MRI [26]–[30], two-photon 

imaging [31], [32], computed tomography [33], just to name a few. Table 1 reflects current and 

potential metrics that can be leveraged from ULM MB positions in time.  

 

Table 1: Current and potential metrics using ULM microbubble positions in time 

MB positions’ 

accumulation 
MB velocity MB acceleration 

Vascular density [31], 

[34]–[36] 
Blood flow [6]1 Pulsatility2 [37] 

Vascular size 

distribution [32], 

[34], [35] 

  

Vascular tortuosity 

[11], [38] 
  

 

Metrics can be leveraged to develop biomarkers if they are proven to be an indicator for a clinical 

condition. For example, vascular density and tortuosity was shown to differentiate between tumor 

and healthy tissue [39].  

The validation of ULM image formation algorithms is essential to establish the limitations of 

metrics and practices to optimize for biomarkers’ accuracy. 

In the literature, attempts to quantify ULM limitations were performed using rudimentary flow 

phantoms, simple microfluidic channels [40]–[43][41], or in-vivo using a chicken embryo [19], 

however, in none of these studies the MB positions were known. To our knowledge, there is no 

 

1 Requires vessel diameter from a density map 

2 Computed using velocity differential in a cardiac cycle 
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anatomically-realistic validation framework for ULM capable of replicating the interactions 

between MBs that occur in in-vivo settings while having access to reference MB positions. This 

means that current vascular maps from ULM setups may not precisely or fully reflect the vascular 

network since we cannot quantify the error committed when localizing MBs’ positions.  

Hence, this project was conducted to shed light on the current limitations of ULM and provide us 

with guidelines to achieve optimal vascular reconstruction. In practice, we developed a framework 

capable of simulating an anatomically-realistic flow of MBs, which can be used to populate a 

medium of scatterers in an ultrasound simulation. Then, ultrasound signals are reconstructed into 

either 2D images or 3D volumes, where MBs can be precisely detected and accumulated over time 

to generate vascular maps. Because we possess known MB positions and detected MB positions, 

we can quantify localization error and other metrics assessing the performance of our imaging 

system. Using this framework, parametric studies can be undertaken. For instance, we can change 

MB concentration – as would a clinician by changing the volume of injected MBs – and determine 

if there is an optimal concentration range for specific acquisition parameters. This is essential since 

MB concentration plays in important role in the acquisition time and fidelity of the vascular 

reconstruction. We can also quantify the percentage of vessels that we are able to map compared 

to the complete vascular network based on different ultrasound probe parameters, such as transmit 

frequency. To sum up, this work can be used as a guide for choosing optimal MB concentration 

for a specific imaging setup to achieve the best possible vascular reconstruction. Ultimately, this 

would allow for more precise biomarkers that would enable more precise diagnoses and monitoring 

in vascular imaging. 
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1.2 Objectives 

The objective of this project is therefore to develop an anatomically-realistic framework for the 

validation of Ultrasound Localization Microscopy that can be used to conduct parametric studies 

capable of quantifying ULM image formation algorithms’ limitations and optimal parameters. Our 

two specific aims are as follows: 

Objective 1: Develop an anatomically-realistic framework for the validation of Ultrasound 

Localization Microscopy in a mouse model. 

Objective 2: Establish a link between optimal MB concentration and acquisition parameters of an 

imaging setup. 

These objectives led to the following publications and presentations. 

1.2.1 Publications 

H. Belgharbi, J. Porée, R. Damseh, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. 

Provost, “An Anatomically and Hemodynamically Realistic Simulation Framework for 3D 

Ultrasound Localization Microscopy”. Submitted to bioRxiv on October 9th and IEEE Transactions 

on Medical Imaging on October 10th, 2021. BioRxiv link : 

https ://doi.org/10.1101/2021.10.08.463259 

J. Porée, L. Milecki, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost,  

“A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy “ 

https://ieeexplore.ieee.org/document/9345725. Published on IEEE Transactions on Medical 

Imaging, 2020. 

E. Hardy, J. Porée, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost,  

“Sparse Channel Sampling for Ultrasound Localization Microscopy (Sparse-ULM) “ 

https://iopscience.iop.org/article/10.1088/1361-6560/abf1b6. Published on Physics in Medicine 

and Biology, 2020. 

  

https://doi.org/10.1101/2021.10.08.463259
https://ieeexplore.ieee.org/document/9345725
https://iopscience.iop.org/article/10.1088/1361-6560/abf1b6
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1.2.2 Presentations 

e-Flash Talk – IEEE IUS 2021 – Virtual Symposium     2021 

H. Belgharbi, J. Porée, R. Damseh, V. Perrot, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. 

Provost,  

“PSF Volume Dictates Optimal Microbubble Concentration and Acquisition Time in Ultrasound 

Localization Microscopy” 

e-Lecture – IEEE IUS 2021 – Virtual Symposium     2021 

Chloé Bourquin, Vincent Perrot, Jonathan Porée, Hatim Belgharbi, Nelson Cortés, Géraldine 

Miquel, Samuel Bélanger, Hugo Ladret, Lamyae Ikan, Christian Casanova, Eric Thorin, Frédéric 

Lesage, Jean Provost,   

“3D Dynamic Ultrasound Localization Microscopy In Vivo Validation in Normal and Pathological 

Animal Models” 

e-Lecture – IEEE IUS 2021 – Virtual Symposium     2021 

Brice Rauby, Jonathan Porée, Hatim Belgharbi, Chloé Bourquin, Maxime Gasse, Jean Provost, 

“3D Spatiotemporal Ultrasound Localization Microscopy Using Deep Learning” 

e-Flash Talk – IEEE IUS 2021 – Virtual Symposium     2021 

A. Wu, V. Perrot, J. Porée, H. Belgharbi, M. Chassé, J. Provost. Aberration Correction in 

“Ultrasound Localization Microscopy Using a Spatiotemporal Matrix Image Formation 

Framework. 

e-Flash Talk – My Thesis in 180 Seconds – IVADO     2021 

H. Belgharbi, J. Porée, R. Damseh, V. Perrot, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. 

Provost, 

“PSF Volume Dictates Ultrasound Localization Microscopy” 

e-Flash Talk – Virtual Scientific Days 2021 – Quebec Bio-Imaging Network  2021 

H. Belgharbi, J. Porée, R. Damseh, V. Perrot, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. 

Provost, 

“An Anatomically-Realistic Simulation Framework for Ultrasound Localization Microscopy” 

e-Presentation – Imagining Imaging Symposium, Sherbrooke, QC, Canada  2020 

H. Belgharbi, J. Porée, R. Damseh, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. Provost, 

“An Anatomically-Realistic Simulation Framework for Ultrasound Localization Microscopy” 

e-Poster – 2020 IEEE International Ultrasonics Symposium, Las Vegas, NV, US  2020 

H. Belgharbi, J. Porée, R. Damseh, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. Provost, 
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“An Anatomically-Realistic Simulation Framework for Ultrasound Localization Microscopy” 

e-Presentation – 2020 IEEE International Ultrasonics Symposium, Las Vegas, NV, US 2020 

J. Porée, L. Milecki, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost,  

“A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy “ 

e-Poster – 2020 IEEE International Ultrasonics Symposium, Las Vegas, NV, US  2020 

E. Hardy, J. Porée, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost,  

“Sparse Channel Sampling for Ultrasound Localization Microscopy (Sparse-ULM) “ 

Poster – RBIQ Annual Scientific Day, Montreal, QC, Canada    2020 

H. Belgharbi, J. Porée, R. Damseh, L. Milecki, P. Delafontaine-Martel, F. Lesage, J. Provost, 

“An Anatomically-Realistic Simulation Framework for Ultrasound Localization Microscopy” 
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 LITTERATURE REVIEW 

2.1  Fundamentals of ultrasound imaging 

The first published article on medical ultrasound dates to 1942 and was written by the Austrian 

doctor Karl Theodore Dussik [44]. Today, ultrasound imaging and therapeutics can be seen in 

almost every field of medicine, from prevention, diagnosis, prognosis, monitoring, palliative care, 

and treatment. As for diagnostic ultrasound, it includes abdominal and pelvis sonography, small 

parts, carotid artery, and peripheral vessel sonography, obstetric and fetal sonography, pediatric 

sonography [45], eye scanning, extracranial & transcranial ultrasonography, skin & subcutaneous 

tissue scanning, echocardiography [46] and functional imaging [47], [48]. As for ultrasound 

therapeutics, it can induce effects through heating, ultrasonic cavitation, gas body activation, 

mechanical stresses or other undetermined processes [49]. Example applications include cancer 

therapy [50], cardiac ablation [51], blood brain barrier opening [52], neuromodulation [53] , stone 

removal [54], blood clot breakdown [55], just to name a few. Each field is bound by specific 

limitations including 1) required penetration depth, 2) required spatial resolution, 3) contrast agent 

concentration, 4) motion, 5) target tissue accessibility. We will see from the ground up how do we 

generate an ultrasonic pulse, receive the backscattered signal, and reconstruct it to obtain spatial 

information about structures insonified by the original pulse. 

2.1.1 Physical principles 

Ultrasound waves are mechanical waves. These waves transport energy in the form of a pressure 

propagation. The pressure variation in time is sinusoidal and is described with a frequency of 

oscillation 𝑓 or a wavelength 𝜆 linked with the propagation velocity 𝑐. 

 𝜆 =
𝑐

𝑓
 (1) 

The ultrasound name arises from the fact that the frequency of oscillation is higher than the ear’s 

maximum perceptible frequency of about 20 kHz. Medical ultrasound frequencies range from 1 

MHz to 30 MHz, where 3-15 MHz is most common.  
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In practice, when the ultrasound wave meets an interface with a different acoustic impedance 

(measure of the opposition that a system presents to the propagation of a pressure wave), a few 

things can occur [56]:  

1) Most of the energy is transmitted to the second medium.  

2) A part of the energy is reflected as specular reflection or diffusion (more details in section 

0). 

3) Refraction. 

4) Cavitation can occur if the negative pressure exceeds ambient hydrostatic pressure, which 

will result in a temporary void being created. Collapse of this void is what can cause other 

complications or can be harnessed for surgical and medical purposes [57].  

5) Lastly, the energy can be transferred to the molecules in the form of heat. 

An ultrasound probe is composed of piezoelectric elements disposed either linearly, in a curved 

manner, as a stack of rows and columns, or in a matrix disposition as in Figure 2. Piezoelectric 

elements are used since they deform when excited with an electrical current, which induces 

pressure on the medium.  

 

Figure 2: Coordinate system of a matrix array probe for 3D ultrasound imaging. 

A mechanical wave is generated from the applied pressure, and it will propagate in the medium 

and will interact with scattering elements in the medium. The conventional ultrasound probe only 
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contains a linear array in the x axis, which permits 2D imaging in the z-x plane. In Figure 2, the 

coordinate system of an imaging system is depicted on a matrix array probe capable of imaging 3D 

data and a simplified schematic on piezoelectric activation using a delayed pulse. The x, y and z 

dimensions are referred to as follows: 

• z: axial dimension (direction of plane wave propagation without steering) 

• x: lateral dimension (dimension where lie transducer elements in a conventional array) 

• y: elevation dimension 

Other probe arrangements are possible for 3D imaging, namely the row-column disposition [48] 

and sparse array [58].  

A pulse is a short sinusoidal function used to excite the piezoelectric element. It is characterized 

by its frequency content and length. Since the pulse is a finite function in the time domain and we 

want it to exhibit certain properties in the frequency domain, it is multiplied by a windowing 

function referred to as an apodization function such as the popular Hann and Blackman windows 

[59]. Electronic delays are applied to act on the timing of the pulse, which applied to a series of 

elements controls the shape of the wave front. 

2.1.1.1 Emission and reception of an ultrasonic wave 

The ultrasound scanner contains a transmit waveform generator capable of controlling the 

waveform, delays (𝜏𝑖) applied to each element independently and which elements are going to be 

active (apodization). All this information is programmed in advance in the scanner. Depending on 

the sequence of delays, we can generate different types of wavefronts. For example, we can focus 

the wave front at a specific point in space (Figure 3 a), or generate a wavefront that propagates as 

a line (2D) or as a plane (3D) for planewave imaging, where the focus point is infinitely far. We 

can also steer this wavefront at an angle 𝛼 from the transducer (Figure 3 b). 

After the emission of the ultrasound wave, the ultrasound scanner is programmed to activate the 

sampling of received signals. A portion of the wave energy it is propagated back by scatterers in 

the medium and generate electrical signals when applying pressure on the piezoelectric elements. 

The scanner contains a time-dependent amplifier to compensate signal attenuation farther from the 

transducer, an analog-to-digital converter (ADC) to sample the signal, digital filters to reshape the 
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frequency spectrum and then written on local memory. The signal corresponds to raw 

radiofrequency (RF) data that is sent to the computer for image reconstruction (beamforming) 

where contributions of different echoes are summed in pixels or voxels from which they came from 

(Figure 3 c).  

 

Figure 3: Example of two emission modes. (Left) Plane wave emission. (Right) Focused 

emission. 
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Emissions and receptions are cycled in time and this process is usually quantified with the pulse 

repetition frequency (𝑃𝑅𝐹), which is limited to the time of flight of the longest round trip between 

the elements and the farthest point in the medium (𝑑𝑚𝑎𝑥). We usually take 𝑑𝑚𝑎𝑥 as the diagonal 

from the first element and opposite furthest corner of the defined medium. 

 𝑃𝑅𝐹 =
𝑐

2𝑑𝑚𝑎𝑥
 (2) 

2.1.1.2 Propagation 

In general, a wave can be defined as a field that is characterized by the wave propagation equation 

below. We will use the pressure field 𝑝 in a point of space 𝑟 and time 𝑡, where the wave propagates 

at a velocity 𝑐. We will simplify the medium as a perfectly homogeneous, where density and speed 

of sound are constant [60]. 

 

 
∇2𝑝(𝑟, 𝑡) −

1

𝑐2

𝜕2𝑝(𝑟, 𝑡)

𝜕2𝑡
= 0 

 (3) 

In practice, waves propagate through layers of different tissues which then propagate at different 

speeds of sound, but this effect can be minimized by selecting an average speed of sound [61]. 

2.1.1.3 Tissue interaction 

Tissue interaction includes specular reflection and diffusion. Specular reflection only occurs if the 

wave interacts with a surface larger than the wavelength 𝜆 = 𝑐/𝑓, where 𝑓 is the wave oscillation 

frequency. Reflection of an ultrasound wave occurs at interfaces with different acoustic impedance 

𝑍 = 𝜌𝑐. Acoustic impedance is the analog to the electrical impedance or electrical resistance. The 

proportion of the wave energy transmitted and reflected are governed by the following equation: 

 
𝑅 = (

𝑍2 − 𝑍1

𝑍2 + 𝑍1
)

2

𝑎𝑛𝑑 𝑇 = 1 − 𝑅 
 (4) 
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Where 𝑅 and 𝑇 are the reflection and transmission coefficients of a wave propagating in a medium 

with impedance 𝑍1 and meets another medium with impedance 𝑍2. 

Most biological tissues interact with waves through diffusion, since the tissues are mostly 

composed of water, where impedance contrast is low and most of the wave’s energy is transmitted. 

Diffusion occurs when the ultrasound wave interacts with structures that are smaller than the 

wavelength. In fact, small inhomogeneities in acoustic impedance are preponderant in biological 

tissue. These inhomogeneities act as punctual sources that reemit the incoming wave in the form 

of spherical acoustic waves. 

When the sources are punctual (small in space) and the signal is very short in time, we can solve 

the wave propagation equation using the spatiotemporal Green’s function 𝑔(𝑟, 𝑡), where 𝛿 is the 

Dirac delta function and 𝑟0 the position of the source. 

 

 

𝑔(𝑟, 𝑡) =
𝛿 (𝑡 −

|𝑟 − 𝑟0|
𝑐

)

4𝜋|𝑟 − 𝑟0|
 

 (5) 

The Green’s function describes the propagation of the spherical wave that is reemitted by a 

punctual source in the medium. To solve for the pressure field, the Green’s function is useful since 

it is the inverse of the operator (∇2 −
1

𝑐2

𝜕2

𝜕2𝑡
) acting on the variable we are trying to solve, in our 

case the pressure field  𝑝(𝑟, 𝑡) in equation (6).  

The requirement of punctual sources is met in the case in ultrasound imaging, since a transducer 

sends a short pulse in a complex medium of scatterers described as a source field 𝑠(𝑟1, 𝑡), where 𝑟1 

is the position of the field in the medium. The transducer records then a signal corresponding to 

the pressure field 𝑝(𝑟2⃑⃑⃑⃑ , 𝑡) where 𝑟2⃑⃑⃑⃑  is the position along the transducer. The pressure field 𝑝(𝑟2⃑⃑⃑⃑ , 𝑡) 

is obtained using spatial and temporal convolution products and is given by the equation below 

[62]–[66]. 

 𝑝(𝑟2⃑⃑⃑⃑ , 𝑡) = 𝑒𝑚(𝑡) ⊗t 𝑠(𝑟1⃑⃑⃑ ⃑) ⊗𝑟 ℎ𝑒(𝑟1, 𝑟2, 𝑡) ⊗𝑟 ℎ𝑟(𝑟1, 𝑟2, 𝑡) =  𝑠(𝑟1⃑⃑⃑ ⃑, 𝑡) ⊗ ℎ(𝑟1⃑⃑⃑ ⃑, 𝑡)  (7) 
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𝑒𝑚(𝑡) describes the emitted vibration of the transducer and the electromechanical coupling of the 

elements, 𝑠(𝑟1⃑⃑⃑ ⃑) the source field, which is considered constant in time, and ℎ𝑒(𝑟1, 𝑟2, 𝑡) and 

ℎ𝑟(𝑟1, 𝑟2, 𝑡) are the spatial impulse responses of the apertures in emission and reception 

respectively. 

2.1.1.4 Ultrasound signal representation 

We saw earlier that RF signals are “beamformed” (reconstructed) to display an ultrasound image. 

The following section shows an intermediate framework that allows for a subsampling of at least 

a factor of 2 of RF data, without any loss of information. It can even be used for estimating blood 

velocity in Doppler imaging [67]. 

 

Figure 4: Ultrasound raw signal processing in temporal and frequency domains. Extracted from 

[67] 

The RF signal is the raw output from the ultrasound scanner. Since the RF signal is symmetrical in 

the frequency domain, the analytical signal 𝑅𝐹𝑎𝑛 is obtained using the Hilbert transform, which 

consists of removing negative values. The analytical signal demodulation yields the complex 

envelope, commonly referred to as IQ signals for “in-phase quadrature”. The demodulation in 

question is conducted as follows, based on the signal central frequency 𝑓𝑐. 
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 𝐼𝑄(𝑡) = 𝑅𝐹𝑎𝑛(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝑡  (8) 

The signal envelope is used for display by taking the absolute value of the analytical signal or the 

complex envelope. To mitigate the large dynamic range of RF signals, a log compression is usually 

performed as the last step before display. 

2.1.1.5 Focused ultrasound imaging 

Focused ultrasound is commonly used in hospital settings. To form an image, a focused wavefront 

is emitted along a line along the z axis using a sub-aperture (see Figure 5), then signal is acquired, 

reconstructed, and sequentially added together to form a 2D image. The sub-aperture moves from 

left to right as the medium is scanned.  

 

Figure 5: Dimensions and distances in a linear array. 

Lateral resolution is limited by the size of the spatial impulse responses in emission and reception. 

We will consider a linear array for this development. The aperture of a linear array is composed of 

N rectangular functions the size of each element.  

In focused ultrasound, if we consider a full aperture without any apodization (weighted excitation 

amplitude for the different elements), this function can be written as  

A            

S           

W         

     

K     
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 𝑝0(𝑟2⃑⃑⃑⃑ , 𝜔) = Π2𝑎(𝑥0)[Π2𝑏(𝑥0) ∗ 𝐼𝐼𝐼𝑝(𝑥0)]  (9) 

 

Where the rectangle function Π2𝑎(𝑥0) represents the aperture of the array, Π2𝑏(𝑥0) represents a 

rectangular element of width 2b, and 𝐼𝐼𝐼𝑝(𝑥0) is the Dirac comb representing the spatial position 

of the elements. The inter-element distance is known as the pitch. We can obtain the amplitude of 

the pressure field at the focal plane by taking the Fourier transform of (10). 

𝑝(𝑟2⃑⃑⃑⃑ , 𝜔) ≈ 𝑠𝑖𝑛𝑐 (
2𝑏

𝜆
𝑠𝑖𝑛𝜃) [𝑠𝑖𝑛𝑐 (

2𝑎

𝜆
(𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜃𝑠𝑡𝑒𝑒𝑟))

∗ 𝐼𝐼𝐼1/𝑝 (
1

𝜆
((𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜃𝑠𝑡𝑒𝑒𝑟))) ] 

 

(11) 

 

 

𝜃 is the angle from the propagation axis and the vector position 𝑟, and 𝜃𝑠𝑡𝑒𝑒𝑟 is the angle of the 

focused beam. Lateral resolution is deduced from the second term of the equation, which accounts 

for the principal lobe width 𝜃𝑤𝑖𝑑𝑡ℎ. 

 
𝑠𝑖𝑛𝑐 (

2𝑎

𝜆
(𝑠𝑖𝑛𝜃𝑤𝑖𝑑𝑡ℎ)) = 0 

 (12) 

 

 
𝜃𝑤𝑖𝑑𝑡ℎ = sin−1 (

𝜆

2𝑎
) =  sin−1 (

𝑐

2𝑎𝑓
) 

 (13) 

 

Therefore, the larger the aperture (2𝑎) and transmit frequency 𝑓, the better lateral resolution is. 
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2.1.1.5.1 Axial resolution (z) 

Axial resolution is mostly governed by the temporal characteristics of the emitted ultrasound pulse. 

Minimum resolvable detail stated by Rayleigh consists of the ability to separate two sources if they 

are further than the full width at half maximum (FWHM) of the intensity repartition function. As 

far as the pulse is concerned, this consists of half the length of the pulse, where 𝑛 is the number of 

half cycles. 

 
𝑅𝑒𝑠𝑧~𝑐

𝑇

2
= 𝑛𝜆 = 𝑛

𝑐

𝑓
 

 (14) 

 

Increasing frequency or reducing the number of cycles improves the axial resolution, to the 

detriment of transmitted energy, which reduces contrast.  

2.1.1.5.2 Elevation resolution (y) 

The resolution in the elevation direction corresponds to the thickness of the beam in the y axis. 

Linear arrays are usually equipped with an acoustic lens that physically focuses the beam in y. It is 

usually the largest resolution in 2D imaging and can be found in the manufacturer’s transducer 

specifications.  

2.1.1.5.3 Framerate 

Framerate is the number of images that can be acquired per second. In focused ultrasound, the 

maximal framerate 𝐹𝑟 depends on the number of transmits N that must be made to form a single 

image and the axial distance of the maximal imaging depth 𝑧𝑚𝑎𝑥 since the imaged medium in each 

acquisition is a thin strip along z. 

 𝐹𝑟 =
𝑐

2𝑁𝑧𝑚𝑎𝑥
  (15) 

 

Typically, 64 to 128 transmits are required to form an image. This limits the framerate to the order 

of about 100 frames per second (FPS).  



18 

 

 

2.1.1.1 Planewave imaging 

Planewave was introduced since the 80s in [68], [69] but reached the “ultrafast” 10000 frames per 

second in the late 90s in [70]. Thanks to the development of parallel processing hardware with 

transfer rates in the order of the gigabyte per second, ultrafast imaging bloomed and opened the 

way to the study of rapid phenomena [71], [72], 3D ultrafast imaging [73] and 4D functional 

imaging [48], [74]. 

A planewave is generated when all elements of the probe activate simultaneously, or with a linear 

delay law (Figure 3) to produce an angled planewave with angle α (or αx and αy in matrix array 

probes). This allows to insonify the whole medium with one acquisition and an increased framerate. 

To form an image as we know it, we must solve for the source field 𝑠(𝑟1⃑⃑⃑ ⃑, 𝑡) from the pressure field 

𝑝(𝑟2⃑⃑⃑⃑ , 𝑡) that we measure. Using a conventional linear array, the coordinate system simplifies to 

𝑟1 = (𝑧, 𝑥) and 𝑟2 = 𝑥0 and using a matrix array, the coordinate system is depicted as 𝑟1 = (𝑧, 𝑥, 𝑦) 

and 𝑟2 = (𝑥0 , 𝑦0).  

Most approaches today synthetically focus the signal back in space by considering the 

backscattered pressure field as a decomposition in spherical waves emitted by punctual sources. 

We will see how we use the Delay and Sum (DAS) algorithm to accomplish that.  
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Figure 6: 3D Planewave imaging. 

The DAS algorithm is based on the fact that the propagation time of a spherical wave from the 

source (Figure 6) to the transducer forms a parabolic delay law. The delay 𝜏(𝑥0, 𝑧, 𝑥, 𝑦) is the sum 

of 𝜏𝑒 and 𝜏𝑟, which respectively correspond to the delay from the virtual planewave to the point, 

and back from the point to the transducer [75], [76]. 

 
𝜏(𝑥0, 𝑧, 𝑥, 𝑦) = 𝜏𝑒 + 𝜏𝑟 =

𝑑(𝑥, 𝑦, 𝑧, 𝛼𝑥, 𝛼𝑦)

𝑐
+

√𝑧2 + (𝑥0 − 𝑥)2 + (𝑦0 − 𝑦)2

𝑐
 

 (16) 

The image formation 𝐼𝑚(𝑧, 𝑥, 𝑦) consists of a coherent sum (Error! Reference source not found.) o

f all contributions in the time domain from the source in the medium along the corresponding 

parabolic delay for the elements 𝐷 in 𝑟2, for each of the transmits. 
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𝐼𝑚(𝑥, 𝑦, 𝑧) =  ∫ ∫ 𝑝(𝜏(𝑥0, 𝑦0, 𝑥, 𝑦, 𝑧), 𝑥0, 𝑦0)𝑑𝑥0𝑑𝑦0

𝐷𝑥𝐷𝑦

 

 (17) 

Image formation can also be seen as a focalization in reception, i.e., a retro focusing of the pressure 

field 𝑠(𝑥, 𝑦, 𝑧) back in (𝑥, 𝑦, 𝑧) thanks to the point spread function (PSF).  

 𝐼𝑚(𝑥, 𝑦, 𝑧) = 𝑠(𝑥, 𝑦, 𝑧) ⊗𝑟 𝑃𝑆𝐹  (18) 

The PSF gathers all the effects of spatial and temporal impulse responses of the imaging system. 

In theory, the PSF could be obtained by imaging a single punctual source with the imaging system. 

The PSF quantifies the blurring or smoothing effect on any acquired image. Hence, it is an intrinsic 

metric to assess the ability of an imaging system to distinguish between two close sources. In other 

words, PSF size (in x, y, z, and its volume) offers a downstream measure of spatial resolution of 

the system.  

2.1.1.1.1 Lateral resolution 

Lateral resolution is the dimension of the PSF in the x dimension. In a matrix array, if the 

disposition and shape of the elements are symmetrical and if transmit angles are also symmetrical, 

this resolution should also be the same in the y dimension. The limiting factor for lateral resolution 

is the beam width. The pressure field 𝑝𝑧(𝑥) of a focused beam at depth 𝑧 is a function of the 

aperture’s width 2𝑎: 

 
𝑝𝑧(𝑥)~𝑠𝑖𝑛𝑐 (

2𝜋𝑥𝑎

𝜆𝑧
) 

 (19) 

Therefore, the beam width is 

 
𝑅𝑒𝑠𝑥 =

𝜆𝑧

2𝑎
= 𝜆𝐹𝑛𝑢𝑚𝑏𝑒𝑟 

 (20) 

The 𝐹𝑛𝑢𝑚𝑏𝑒𝑟 (
𝑧

2𝑎
) quantifies the number of active elements in receive, since only the elements that 

contribute to the signal must be taken. Usually, the 𝐹𝑛𝑢𝑚𝑏𝑒𝑟 values range from 1 to 2, depending 
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on the directivity of the array and should ideally be kept constant. Therefore, lateral resolution is 

in the order of the wavelength 𝜆. 

2.1.1.1.2 Image quality and number of angles 

The increased framerate in ultrafast imaging comes at a price of reduced SNR and contrast. 

However, it is theoretically possible to achieve the same image quality using a number 𝑛 of angled 

transmits calculated using the following equation, where 𝐿 is the total length of the array. 

 
𝑛 =

𝐿

𝜆𝐹
 

 (21) 

For example, with an F number of 1, length of array of 10 mm, and wavelength of 100 μm, number 

of angles is equal to 100. However, in practice, around 10 angles is usually enough depending on 

the application [75].  

2.1.1.1.3 2D vs 3D ultrafast resolution 

Differences between 2D and 3D ultrafast imaging come mostly from manufacturing/wiring 

limitations and acquisition parameters, which affect contrast, SNR, resolution, maximal framerate 

and maximal penetration depth. For deep tissue imaging, penetration depth with low frequency 

transducers is prioritized, but in this section, we will focus on resolution with relatively high-

frequency transducers for relatively shallow imaging (in the order of 1 cm). We’ll compare a typical 

128-element linear array with a center frequency of 15 MHz [77], [78] with a custom-made 32x32 

matrix array (1024 elements) with a center frequency of 15 MHz [79]. Parameters are listed in 

Table 2. 
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Table 2: Comparison of a typical 128-element linear array and a custom 32x32 matrix array 

Parameters Linear array Matrix array 

Elements dispositions 128x1 32x32 

Frequency (MHz) 15 15 

Wavelength‡ 103 103 

Pitch (µm) 110 300 

Element size (µm) 80x1500 275x275 

Element surface (mm2) 0.12 0.0756 

Number of angles 15 3 

Axial resolution (µm) 110 175 

Lateral resolution (µm) 110 220 

Elevation resolution (µm) 400 280 

PSF volume§ (mm3) 0.00253 0.00564 

Inverse PSF volume (mm-3) 395 177 

 

Because of the elements disposition, the linear array is limited to 2D imaging. This means that no 

information in the elevation direction is retrieved. This means that it can be more difficult to 

separate the distinct vessels if their projection in the imaging plane appears as if they are merged. 

However, since the element size is not limited in elevation, the linear array’s elements are typically 

almost an order of magnitude larger than in the matrix array in the elevation plane. This results in 

more surface area or more piezoelectric material that can transfer energy to the medium. The more 

energy is transmitted, the greater the image quality. Moreover, in a linear array, there is focusing 

in elevation that concentrates the energy at the focal point using an acoustic lens.  As for transmit 

angles, even though the number of transmit angles can be high in a matrix array, it is usually kept 

low because it would generate a substantial amount of data. Moreover, to achieve the same image 

quality as in 2D imaging using a matrix array, the transmit angles (in x and y) must span the same 

proportion in terms of surface as the unidimensional equivalent of a linear array: for example, 7 

angles using a linear array would translate to 49 angles using a matrix array. In terms of spatial 

 

‡ Calculated using wave propagation velocity c = 1540 m/s 

§ Considering the PSF volume (𝑉) as an ellipsoid with semi-axes (𝑎, 𝑏, 𝑐) equal to half of the resolutions. 
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resolution, we can calculate the PSF volume (𝑉) by modeling an ellipsoid with semi-axes as half 

of the resolution in each dimension, 

 
𝑉 =

4

3
𝜋𝑎𝑏𝑐 

 (22) 

where 𝑎, 𝑏, 𝑐 are the semi-axes of the ellipsoid. The PSF volume is a metric that quantifies the 

resolution of the system. If we take the inverse of the PSF volume, we obtain a metric that operates 

in conjunction with frequency, since the higher the frequency, smaller the PSF and higher the 

inverse PSF volume. However, PSF volume also accounts for acquisition parameters such as probe 

elements size and disposition and pulse characteristics. We can see that with these specific sets of 

parameters, the 2D array offers a better power of separation shown by the lower PSF volume. 

Nonetheless, the matrix array is not far behind and offers the possibility to separate vasculature in 

all spatial dimensions. This will be crucial for the mapping of vasculature with a degree of 

confidence that is not hindered by the unknown information in the elevation dimension. 

2.1.1.1.4 Resolution in ULM 

Resolution in ULM can be derived from the uncertainty of the MB position extracted from the 

localization process. Even though MB localization in this work is performed on the beamformed 

image, we can use the derivation of Desailly et al. [80] since the approach performed on 1) the 

beamformed image and 2) on the radio-frequency (RF) signal are equivalent in a homogeneous 

medium. The later approach exploits RF signal by fitting a hyperboloid with the time-of-flight 

equation (23). The error of the MB position can be derived by first determining the error in the 

arrival time 𝜎𝜏, then computing the spatial errors (𝜎𝑥0̂
, 𝜎𝑦0̂

, 𝜎𝑧0̂
) through the hyperboloid fitting. 

Using reference and delayed signals, we can compute the arrival time error (also known as “jitter 

magnitude”) following Walker and Trahey’s [81] application of the Cramer-Rao formula. Jitter is 

the difference in time estimate caused mostly by electronic noise and signal decorrelation due to 

physical processes. The estimate itself is obtained using a cross correlation of reference signal 

(pulse) and delayed signal (from the MB). 

The Cramer-Rao lower bound formula estimates the standard deviation of jitter errors: 
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𝜎𝜏 = 𝜎(𝜏0 − 𝜏0̂) ≥ √
3

2𝑓0
3𝜋2𝑇(𝐵3 + 12𝐵)

(
1

𝜌2
(1 +

1

𝑆𝑁𝑅2
)

2

− 1) 

 (24) 

where 𝜏0̂ is the measured arrival time and 𝜏0 the true arrival time, 𝑓0 is the pulse center frequency, 

𝑇 is the time of the window used for the time delay estimation, 𝐵 is the fractional bandwidth of the 

pulse, 𝜌 is the normalized correlation between reference and delayed signal, and 𝑆𝑁𝑅 is the signal-

to-noise ratio of the received signal. 

Now for the second step, we will obtain the propagated jitter error using the hyperboloid fitting 

through equation 25. The fitting involves a non-linear regression model where sum of the squared 

residuals (of jitter error through all probe array elements) must be minimized. This model is 

converted to the spatial equivalent using the time-of-flight equation (equation 26). Then a 

covariance matrix of the 3 variables in the regression model (𝑥, 𝑦, 𝑧) is computed. The model was 

simplified to obtain a simple expression by assuming that the MBs were far from the probe 

elements. Finally, the standard deviations of the MB localization errors can easily be obtained from 

the covariance matrix’s diagonal: 

 𝜎𝑥0̂
≈ 2√3

𝑐 𝜎𝜏 𝑧0

𝐿𝑥√𝑛 
  (27) 

 𝜎𝑦0̂
≈ 2√3

𝑐 𝜎𝜏  𝑧0

𝐿𝑦√𝑛 
  (28) 

 𝜎𝑧0̂
≈

𝑐 𝜎𝜏 

2√𝑛  
  (29) 

where  𝐿𝑥 and 𝐿𝑦 are the array’ aperture in each dimension, 𝑐 is the speed of sound, 𝑛 is the number 

of probe elements, and 𝑧0 is the shortest distance between the MB and the array.  

We will compute the lower bound on localization error for the two arrays described earlier and a 

commonly used matrix array that runs at a lower transmit frequency (7.5 MHz) [82]. We will use 

the following parameters: 
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Table 3: Acquisition parameters of a typical 128-element linear array, a custom 32x32 matrix 

array and a typical 32x32 matrix array 

Parameters Linear array Matrix array Matrix array 

Number of elements 𝑛 128x1 32x32 32x32 

Transmit frequency 𝑓0 (MHz) 15 15 7.5 

Aperture in x 𝐿𝑥 (mm) 9 12 12 

Aperture in y 𝐿𝑦 (mm) 1.6 14 14 

Bandwidth 𝐵 50% 50% 50% 

Sampling rate 𝑓𝑠  (MHz) 240 240 240 

Time window size 𝑇  1/ fs 1/ fs 1/ fs 

SNR (dB) 15 10 10 

Correlation coefficient 𝜌 0.98 0.98 0.98 

𝝈𝒛 (𝝁m) 1.2 1.4 4.0 

𝝈𝒙 (𝝁m) 0.9 0.8 4.8 

𝝈𝒚 (𝝁m) NA** 0.7 4.1 

As we can see from the lower bounds of the standard deviation on MB position 𝝈𝒛, 𝝈𝒛, 𝝈𝒛, the 

localization error is relatively low compared to the wavelength for single MB localization and for 

these sets of parameters. However, the lower bound is more sensitive to some parameters. If we 

vary the SNR for instance, we obtain a sudden rise in localization error at low enough SNR (Figure 

7). 

 

** Not applicable. Echoes are not reconstructed in this dimension. 
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Figure 7: Norm of the lower bound on localization error at different values of SNR for a 32x32 6 

MHz matrix array probe. 

If we vary the transmit frequency, we obtain a predictable increase in localization error with  lower 

transmit frequencies (Figure 8).  

 

Figure 8: Norm of the lower bound on localization error at different transmit frequencies for a 

32x32 matrix array probe. SNR = 10 dB. 

One must note that this model is a very simplistic one. As transmit frequency changes, the SNR 

also should vary, as well as other parameters, such as the correlation coefficient between reference 

and delayed signals. However, with these results, one should prioritize an SNR that is as high as 

possible with the specific constraints of an imaging application to avoid a surge in localization 

error. 
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2.2 Ultrasound localization microscopy 

2.2.1 Major events in ULM 

This section describes selected events from the first use of miniature bubbles as a contrast agent to 

the current ULM practice. 

 

Figure 9: Timeline of major events in ULM 

In 1969, Gramiak et al. [83] observed that in the routinely used dye of indocyanine green in cardiac 

imaging, there was a presence of foam described as miniature bubbles. The echoes from such 

bubbles were more intense than any other contrast agent used in that study. This discovery will 

lead to a variety of microbubble designs and functionalization described in section 2.2.2.2. In 1999, 

Sandrin et al. [70] achieved an acquisition rate of approximately 10000 frames per second that open 

the way to the study of rapid phenomena. They used a programmable echograph to insonify the 

whole medium with a single planewave and acquire and save data in 64 channels in parallel. At 

that time, channel memory was limited to 128 Kbytes which limited a maximum of stored frames 

of 43.  

Thanks to the exponentially increasing development of integrated electronics [84], the 

development of highly capable graphical processing units (GPU) and large storage solutions was 

possible. This development was essential for the expansion of ultrafast imaging since acquisition 

and beamforming needed to be performed in parallel and with a large amount of data, in the order 

of a “Netflix” movie per second (Gbyte per second). In 2014, Provost et al. [73] demonstrated the 
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potential of in-vivo 3D ultrafast imaging for clinical applications in the heart using a 32x32 matrix 

array probe with 1024 independent channels.  

As for ULM per say, microvasculature mapping below the diffraction limit was demonstrated in 

2D by Errico et al. in 2015 [3] using perfluorocarbon-based microbubbles localization and tracking. 

This technique was inspired by an optical equivalent – photoacoustic localization microscopy 

(PALM) published in 2006 by Betzig et al. in which target proteins could be separated with a 

resolution lower than a tenth of the wavelength [85]. In 2016, the use of contrast-enhanced 

ultrasound for clinical use was approved by the FDA in the United States. It was approved for 

imaging liver tumors in adults and children, but it opened the way for subsequent studies in other 

organs. The first review of ULM was published in 2018 by Couture et al. [5], and the second in 

2020 by Christensen-Jeffries et al. [86] (Not depicted on timeline). A study published in 2019 by 

Heiles et al. [87] featured ULM applied in 3D in-vitro on a simple phantom comprised of a channel 

(400 μm) separating into 2 smaller channels (200 μm). A study on a more complex phantom or in 

an in-vivo model is yet to come.  

More recently in 2021, an in-human ULM feasibility study using a linear array was performed on 

tissues including liver, kidney, pancreas, and breast tumor by Huang et al. [22]. Patients were asked 

to hold breath for the duration of the acquisition of only 10 seconds, and vessels that were 

inseparable using Doppler could be distinguished using the ULM framework thanks to an enhanced 

spatial resolution. This work is an exciting proof of concept for future clinical application of ULM. 

The following figure shows major groups currently working on ULM and will continue to grow in 

the upcoming years (Figure 10). 
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Figure 10: Selected research groups in ULM on a world map ††.  

2.2.2 Ultrasound localization microscopy characteristics 

2.2.2.1 Requirements 

Localization imaging can achieve a resolution far below the wavelength. To carry off this imaging 

prowess, a few conditions must be met [5], [85]. 

1. Labelling: Labels that are much smaller than the wavelength, which can act as isolated 

sources from surroundings, and are specific to the imaging region of interest. 

2. Localization: The spatial position of these labels must be obtained with an accuracy better 

than the diffraction limit. 

3. High framerate acquisition: Even the most minute displacements have a large impact in the 

scale that we are operating. Therefore, a high framerate is required to correct for tissue 

motion. 

 

†† Only one name per group is depicted for simplicity purposes. 

Montréal, Canada

Jean Provost

Chapel  ill, USA

Paul Dayton

Paris, France

Michael Tanter
London, U 

Meng  ing Tang

Urbana,  llinois, USA

Pengfei Song

Beijing, China

Jianwen Luo
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4. Isolated sources in a spatiotemporal referential: Localization requires labels to be far apart. 

Any interaction between sources will cause an error in the sources position. Again, at a 

scale well beyond the diffraction limit, the smallest error can become significant compared 

to the targeted resolution. 

2.2.2.2 Microbubbles  

Blood is a relatively poor scatterer. Therefore, ultrasound contrast agents are usually used to 

increase the acoustic scattering of the blood, relative to the surrounding tissue, which creates 

improves contrast between vessels and interstitial tissue [88], [89]. In ULM, even though vascular 

contrast can be ultimately achieved, we are interested in using MBs as isolated sources. The 

currently FDA-approved MBs exhibit characteristics that make them perfect for their applications 

in ULM, namely being: 

1. Safe for intravenous injection 

2. Stable 

3. Echogenic 

The safety related to an intravenous injection requires the MBs to be small enough to prevent any 

flow occlusion in capillaries, which means that they must remain below 10 μm. Moreover, they 

need to be biocompatible and easily metabolized and excreted from the body. Current MBs are 

made of a lipidic, polymeric or a combination of both. Typical polymers consist of biological 

proteins such as the human serum albumin or synthetic compounds such as methyl-polyethylene 

glycol (mPEG) [90]. Their role is to help stabilize the gas core from the immune system, 

coalescence (merging) and rapid dissolution. These shells counteract the van der Waals attraction 

by adding repulsive forces, such as electrostatic, hydration, protrusion and polymeric-static. 

 

Table 4 shows the characteristics of the three most used FDA-approved MBs in the market. 

Table 4: FDA-approved and commercially available MBs. Adapted from [90]. 

MB Gas core Shell type Diameter Concentration 

Optison™ C3F8 Protein 
3.0-4.5 μm 

(max. 32 μm) 
5.0-8.0 x 108/mL 



31 

 

 

95% < 10 μm 

Definity® C3F8 Phospholipid 

1.1-3.3 μm 

(max. 20 μm) 

98% < 10 μm 

1.2 x 1010/mL 

Sonovue® SF6 Phospholipid 

1.5-2.5 μm 

(max. 20 μm) 

99% < 10 μm 

1.5-5.6 x 108/mL 

Their echogenicity comes mainly from an impedance mismatch (causing high scattering) and 

resonance. We can quantify scattering using the following equation derived from [91].: 

𝜎𝑠 = 4 𝜋𝑅2(𝑘𝑅)4 [(
𝐾 − 𝐾0

𝐾
) +

1

3
(

𝜌 − 𝜌0

2𝜌 + 𝜌0
)] 

 (30) 

where 𝑅 is the radius, 𝑘 is the acoustic wavenumber (𝑘 =
2𝜋𝑓

𝑐
), 𝑓 is the frequency, 𝑐 the speed of 

sound, 𝜌 and 𝜌0 are the mass densities of the MB and the medium respectively, and 𝐾 and 𝐾0 are 

the compression bulk moduli of the MB and the medium. We can see that the scattering scales with 

the radius as R6 and is larger with a low 𝐾 (high compressibility), hence the choices of a larger MB 

that fits into capillaries and a core made of gas (~109 more scattering in a gas than in a liquid as 

glycerin). As for resonance, the linearized resonance frequency for a microbubble for small-scale 

oscillations is given by: 

𝑓0 =
1

2𝜋
√

1

𝜌0𝑅2
[3𝜅𝑃0 +

2𝛾(3𝜅 − 1)

𝑅
] 

 (31) 

where 𝛾 is the gas/water interfacial tension, 𝜅 is the polytropic gas constant and 𝑃0 is the hydrostatic 

pressure (𝜌0𝑔𝑧). 𝜌0 is the medium density, 𝑔 is the gravitation acceleration constant, and z the 

depth of the MB in the medium. For an unshelled MB, transmit frequencies of 1 MHz and 10 MHz 

result in a resonant MB diameter of approximately 8 μm and 1.2 μm respectively, with 𝛾 = 0.072 

N/m, which makes them ideal for ultrasound imaging. At frequencies approaching 15 MHz, we are 

outside of current MBs resonant frequencies (also little harmonics). However, this is not an issue 

since MBs are still highly echogenic and can be separated using techniques that we will see in 

section 2.2.2.4. 
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One should note that MB circulation in the body can be made using a single injection (bolus) or 

using a continuous injection (infusion) through time using an electronic pump that regulates flow. 

Both practices are FDA approved and dosage is described in [92] for Definity® MBs. As for the 

mechanical index, it should be kept below 0.4 according to literature to prevent MB cavitation and 

capillary leakage and extravasations [93], even though are approved for higher mechanical indexes. 

2.2.2.3 Acquisition 

After injection of a bolus or infusion of MBs, ultrasound acquisition can be undertaken. This 

involves the insonification of the medium and reception of backscattered echoes. This can be 

achieved using conventional or ultrafast ultrasound. Conventional ultrasound imaging can already 

achieve framerates of about 50 frames per second but ultrafast allows to increase this value. Even 

though a theoretical 20 000 frames/s is possible for shallow tissue [5], current ultrafast sequences 

are designed for lower framerates to allow for deeper imaging, for 3D imaging, for image 

compounding to increase image quality, and to allow for channel multiplexing [73], [75]. After 

reception of the radiofrequency signals, an image is reconstructed using an image-formation 

algorithm, such as the commonly used delay-and-sum algorithm [94]. A portion of the 

reconstructed image is shown in Figure 11 as well as the subsequent steps in the ULM framework. 

 

Figure 11: Ultrasound localization microscopy framework. Adapted from [86] 
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2.2.2.4 Detection 

After the acquisition and reconstruction of ultrasound signals, we obtain 2D or 3D images through 

time that contain information about tissue signature, blood, microbubbles, possibly artifacts, and 

inevitably noise. All this information is mixed in pixels and voxels present in the data. A popular 

approach intended for the separation of signal is the Singular Value Decomposition (SVD). We 

will see how this approach takes a large Matrix S with a high dimensionality, that is sparse (most 

elements are 0), and transforms it into a low-rank subspace (smaller dimensionality) where 

components of the signal are sorted according to their coherence throughout a certain dimension 

(in our case: time).  

We model the general problem as follows: We have a matrix of data M, which is composed of the 

added contributions of: 1) A highly coherent agent (𝐴0), 2) A somewhat variable agent (𝐵0), and 

lastly 3) a random agent (𝐶0) [95]. 

 𝑀 = 𝐴0 + 𝐵0 + 𝐶0  (32) 

Specifically, we have a complex signal M from radio-frequency data that is function of space and 

time, which contains the contributions of 1) Tissue (𝒂), 2) Moving blood and microbubbles (𝒃), 

and 3) Noise (𝒄) [3], [5], [96]. This signal is either 3D (2D + t) or 4D (3D + t), where the dimension 

of data M is 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 , 𝑛𝑡, which are respectively the number of pixels in x, y, and z, and the 

number of frames through time. 

 𝑀 = 𝑚(𝑥, 𝑦, 𝑧, 𝑡) =  𝒂(𝑥, 𝑦, 𝑧, 𝑡)  + 𝒃(𝑥, 𝑦, 𝑧, 𝑡) + 𝒄(𝑥, 𝑦, 𝑧, 𝑡)  (33) 

We will transform the data from matrix M into a Casorati matrix S (size 𝑛 × 𝑚), where data is 

arranged in columns. In our case, columns 𝑓𝑖 in S are frames, which are either 2D images or 3D 

volumes at specific time points, reshaped into 1 × 𝑛 vectors. In general,  𝑛 = 𝑛𝑥 ∗ 𝑛𝑦 ∗  𝑛𝑧, which 

is the number of elements in each frame and 𝑚 = 𝑛𝑡 is the number of frames in the data. 

 
𝑺 = [

⋮
𝑓1

⋮

⋮
 𝑓2

⋮

⋮
𝑓3

⋮
…

⋮
𝑓𝑚

⋮
   ]

𝑛×𝑚

 
 (34) 

Using this Casorati matrix S, we will compute its decomposition by SVD: 
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 𝑺 = 𝑼𝚫𝑽∗  (35) 

Where, 𝚫 is a non-square (n×m) diagonal matrix with coefficients corresponding to singular values 

𝝀𝒌 sorted in decreasing value, where the number of singular values is equal to the number of 

columns of S. U and V are orthonormal matrices that have a rank m, with respective dimensions 

(n×n) and (m×m), and ∗ represents the conjugate transpose since we are working with complex 

signals. Columns of U and V represent respectively the spatial and temporal singular vectors of S. 

Since we sorted data to obtain decreasing singular values, the first singular vectors correspond to 

higher spatial coherence, in our case: tissue. For example, to obtain a signal without the 

contribution tissue (𝑺𝒇), we can use a simple mask 𝑰𝒕 to remove the contribution of tissue, where 

𝑰𝒕is a diagonal matrix with first few elements being zero and others being ones. 

 𝑺𝒇 = 𝑼𝚫𝑰𝒕𝑽∗  (36) 

We can use the same formalism for noise removal and only keep contribution of flowing MBs 

(𝑺𝑴𝑩) by using another mask 𝑰𝒏, where 𝑰𝒏 is a diagonal matrix with last few elements being zero 

and others being ones.  

 𝑺𝑴𝑩 = 𝑼𝚫𝑰𝒕𝑰𝒏𝑽∗  (37) 

The number of zeros in 𝑰𝒕 and 𝑰𝒏 depends on the data itself and usually requires manual tuning, 

however adaptive thresholding was proposed in [96]. 

In this work, no tissue filtering was needed since no tissue was modelled but would be interesting 

to add in future work. As we saw earlier, lower bounds on localization error are highly dependent 

on SNR. Therefore, white gaussian noise was added to RF data to achieve realistic SNR and 

improve realism. 

2.2.2.5 Isolation 

Once images only contain MB signals, there is a critical step before trying to compute the exact 

positions of MBs. In ULM, we hypothesize that MBs are isolated sources in a spatiotemporal 

referential. In the isolation step, we must discard echoes that are closer than a few wavelengths 

[86]. In Christensen-Jeffries et al. 2015 [7], filtered MB signals were binarized and size of 
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connected regions was computed. By doing so, regions larger than the expected PSF size were 

discarded. In this work, IQ volumes were convolved with the PSF of the system to create 

correlation maps. This hypothesis is generally true since MBs (1-3 um) are orders of magnitudes 

smaller than the wavelength (100-500 um). These correlation maps are most intense when there is 

an overlap between an isolated MB and the PSF and a correlation threshold can be established to 

reject MBs that are not behaving like single sources. 

2.2.2.6 Localization 

Any imaging system is characterized and limited by its PSF. This limit is due to wave interference, 

investigated by Airy and Rayleigh [2], which is defined as diffraction when this wave interference 

occurs on an obstacle or opening that is always present in an imaging system. We saw earlier that 

this effect can be seen as blurring of the observed target and establishes a limit on our ability to 

separate neighbouring sources in the order of the wavelength of the wave in question.  In this step 

of the framework, we leverage the fact that sources are isolated in a spatiotemporal referential and 

the known PSF to compute the position of the MBs either in the temporal domain in radiofrequency 

(RF) data, or in the spatial domain, in reconstructed ultrasound images (IQ). This is achieved 

through a fitting of either hyperboloid on echoes found of RF data [5], [42], [43], [86] or a gaussian 

fitting on spatial data [3], [7], [40], [41], [97]. The exact position of the MB is then simply the local 

maximum on that fitting. The error on the position of the MB is no longer bound to the diffraction 

limit but rather bound to our precision in estimating the echo delay [4]. 

2.2.2.7 Display 

Most simple way of displaying MB positions consists of plotting dots on an image or a volume. 

However, to display a vascular network, we are interested in segmenting, or linking those MB 

positions to map vessels and their connections to one another. We will see in the next section how 

we can link MBs to ultimately help us differentiate vessels in which they are flowing in. The most 

straightforward approach of displaying a vascular network from MB positions consists of 

generating density maps. To generate a density map, a volume is created with dimensions of the 

range of the MB positions.  ach voxel’s intensity represents the number of present MBs in that 

specific voxel. With this method, there is a compromise between sensitivity, and resolution when 

choosing a certain voxel size [6]. We saw in section 1.1 the different metrics that can be extracted 
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from microbubble positions which in term can be leveraged to develop biomarkers. The 

biomarker’s accuracy, specificity, sensitivity, repeatability [98] and even the ease of use of the 

display related to that biomarker [99] will determine possible challenges in clinical trials [100], 

hence the importance of MB detection, tracking, and display. 

2.2.2.8 Tracking 

In Kirsten 2015 [7], cross correlation was computed between a small region of interest (on IQ data) 

containing a MB signal in frame n and the same ROI in frame n-1 within 400 micrometers. A track 

of two neighboring MBs was set if cross correlation exceeded the empirical threshold of 0.8. In 

Ackermann and Schmitz 2016 [97], MB tracks were formed using a Markov Chain Monte Carlo 

algorithm on detected MB position based on prior probability. That probability was computed using 

the number of detected targets, number of terminated tracks, a false alarm rate, and a birth rate. 

The principal advantage is that associations between MBs that are associated with a higher 

probability under the given data are also drawn and tested with a higher probability. This means 

that a brute force approach testing all possibilities is avoided. This is especially important for large 

datasets, as in in-vivo applications. Also, the algorithm is applied using a sliding window to limit 

computational cost. In Solomon et al. 2018 [101],  they were constrained to data from intensity 

images from clinical scanners where only MB responses are displayed. The proposed framework 

contains various building blocks that are updated after each frame computation. The tracking 

algorithm is based on an accumulated MB probability from the previous frame. This probability 

was computed using velocity estimates of the flowing MBs. Super-resolution mapping was 

performed by minimizing a problem based on the PSF of the system weighted by flow dynamics 

of MBs mentioned earlier. However, this approach seems to generate additional vessels compared 

to the reference image, which could be problematic. In the aforementioned tracking algorithms, 

some useful information is discarded when particles are prematurely rejected based on close 

proximity or based on a velocity measurement from a narrow time window. Furthermore, a high 

computational cost is usually associated with most of the algorithms. In Alberti et al. 2018 [102], 

the localization framework as we know it is bypassed by a model where data is lifted to the phase 

domain, where signals are separated according to both position and velocity. However, this 

approach was only tested in simulation, therefore we cannot yet conclude on practical performance. 
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2.2.2.9 Motion correction 

Brain imaging usually involves less motion than cardiac imaging or internal organs imaging and is 

less prone to breathing motion. However, motion correction becomes essential if brain movement 

caused by the heart pulsatility within the cerebrospinal fluid or flexion of transducer setup are 

orders of magnitude higher than the desired resolution. Accumulated motion over an acquisition 

time in the order of seconds and even minutes depending on the desired network filling [6] can 

cause unacceptable blurring of the image [103]. 

Work on speckle tracking and transient elastography [70] demonstrated micrometric motion 

correction from IQ data. This is possible since IQ data is highly sensitive to phase. Phase 

aberrations do not vary greatly among array elements that are in close proximity and for phase 

discontinuities, they can easily be detected and removed  [81]. This creates a tissue signature that 

can be leveraged to track tissue motion. 

Motion correction in an ULM context was applied in Foiret et al. 2017 [10], where normalized 

cross correlation was applied to a region of interest where few of MBs were present to limit 

decorrelation. Frame-to-frame correlation allowed to monitor timing of the cardiac cycle and 

respiratory cycle. Frames in a respiratory cycle were characterized by a decorrelation of more than 

10% and were then discarded. Remaining frames were grouped according of their timing along the 

cardiac cycle. Rigid motion was correction (translation (x, z) and rotation) was applied to account 

for motion due to cardiac pulsatility. Using this framework, mapped vessels were more defined 

than the uncorrected ones. More advanced non-rigid motion correction was implemented in [24], 

but it was in Hingot et al. [103] where motion correction could be applied on isolated tissue. Using 

SVD on B-mode images, tissue was isolated by taking only the first 2 singular values as we saw 

earlier, and cross-correlation was computed between images 𝐼1(𝑥, 𝑦, 𝑧) and 𝐼1(𝑥 + Δx, 𝑦 + Δy, 𝑧 +

Δz) contain movement (Δx, Δy, Δz).  

 𝑓(𝐼1)𝑓 ∘ (𝐼2)∗

|𝑓(𝐼1) ∘ 𝑓(𝐼2)|
= 𝑒𝑗𝜙(Δx,Δy,Δz) 

 (38) 

The inverse Fourier transform of the cross-correlation was computed and yielded a Dirac peak in 

the spatial dimensions, corresponding to the displacement between images. This is the case since 
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cross-correlation is maximal when images are perfectly superimposed. MB positions could then be 

corrected using this displacement.  

More recently, ULM was performed on a rat’s beating heart by correcting for large myocardial 

motion and deformation [104]. The imaging setup consisted of a 15.625 MHz linear array firing 

planewaves at a pulse repetition frequency of 9000 Hz and 3 angles compounding (-3°, 0°, 3°), 

yielding 3000 frames per second. Imaging was triggered using signal from an electrocardiogram 

(ECG) to form groups of images of 400 ms referred to as cine-loops. In total, 800 groups of 1200 

images were acquired for a duration of 12 minutes. Instead of using pixels coordinates (Eulerian 

coordinates), images were reconstructed in coordinates of the tissue (Lagrangian coordinates). As 

for displacement, it is estimated iteratively by leveraging velocity from Doppler measurements 

[105]. Lagrangian coordinates are first initialized as follows: 

 �⃗�𝐿𝑎𝑔
0 = �⃗�𝐸𝑢𝑙𝑒𝑟  (39) 

Then, iteratively updated as: 

 

�⃗�𝐿𝑎𝑔
𝑖 = argmin

�⃗�
{‖�⃗� − �⃗�𝐸𝑢𝑙𝑒𝑟 + ∫ �⃗�𝑇(�⃗�𝐿𝑎𝑔

𝑖−1 , 𝑡)𝑑𝑡 

𝑡𝑓

𝑡𝑟𝑒𝑓

‖

2

} 

 (40) 

Where �⃗�𝐸𝑢𝑙𝑒𝑟 represents the Eulerian coordinates, �⃗�𝐿𝑎𝑔 the Lagrangian coordinates, �⃗� an 

intermediate set of Lagrangian coordinates, �⃗�𝑇 the evaluation of tissue velocity, 𝑡𝑟𝑒𝑓 the time at 

peak systole, 𝑡𝑓 the duration of a cine-loop, 𝑖 the iteration and 𝑡 the time. 

In practice, the algorithm was implemented in 6 steps and 3 iterations were sufficient to obtain a 

stable set of coordinates. 

2.2.2.10 Machine learning 

Machine learning is leveraged when the rationale behind a process is difficult to compute 

analytically. This could be applied to any of the previous steps in the ULM framework. Studies 

have shown that deep learning-based localization for ULM could improve vascular reconstruction 
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under challenging conditions such as a high MB concentration and short acquisition time [13], 

[106], [107]. 

2.2.2.11 The compromise between precision and acquisition time 

In in-vivo imaging, we are trying to shed light on a very complex yet unknown vascular network.  

Practical limitations include desirable features such as free-hand imaging and real-time processing 

and display. In ULM, we leverage the time domain (long acquisition time) to improve our spatial 

separation power, but we are bound to a short acquisition time for practical use. Therefore, we aim 

to maximize the amount of information that we can retrieve in the shortest amount of time. The 

simplest approach consists of increasing the MB concentration, since in theory, the more MB 

events are detected, the less time is required to map a certain amount of the vascular network [6]. 

However, we are limited by one of the ULM requirements, which needs sources to be separate in 

a spatiotemporal domain [5]. If the MB concentration is too high, MB’s PSFs merge and an added 

localization error is generated. This reduces localization precision, which is depicted by blurring 

of the mapped vessels on a density map. Therefore, there must be an optimal MB concentration 

where a maximal portion of the vascular network is mapped, while being true to some extent to the 

real vascular mapping of the patient. 

2.3 Flow simulation 

Flow simulations include mesh-based methods, particle-based methods, and hybrid mesh-particle 

methods [108]. Mesh-based methods (Figure 12 (Left)) consider the macroscopic nature of fluidics, 

where the fluid and particle phases are merged, as opposed to particle-based methods (Figure 12 

(Right)), where the fluid phase is discretized [109]. There is a compromise between spatiotemporal 

discretization of the simulation, scale of the flow network, and computation requirements.  
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Figure 12: Examples of mesh-based and particle-based flow simulations. (Left) Blood velocity 

distribution from the aorta to the second branch arteries using a mesh-based simulation. Adapted 

from [110] . (Right) Adapted from [111] 

Since we aim at modelling flow of MBs, particle-based methods are most appropriate, however it 

would be computationally extensive when scaling to a full organ microvascular network [108]. 

Therefore, a light-weight graph-based method would allow to simulate a large number of particles 

(millions) in a large (centimeters) and complex vascular network (high vascular density). Details 

of the particle flow simulation are provided in sections 0, 4.3.3, and 4.3.4.   
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 METHODOLOGY 

The project can be subdivided into three sets of tasks: 

1. Develop a simulation pipeline where two-photon microscopy (2PM) data is used to 

generate a virtual flow phantom of reference MB positions that can be used as punctual 

scatterers in the ultrasound simulation. Then generate ultrasound signals, reconstruct them 

into time-dependent volumes, and on which we can apply our localization algorithm to 

generate localized MB positions. 

2. Quantify the performance of our imaging framework by measuring localization error, MB 

count, network filling and by comparing MB mappings to the reference mapping.  

3.1 Simulation pipeline 

The simulation pipeline consists of using two-photon microscopy (2PM) data to generate a virtual 

flow phantom of reference MB positions that can be used as punctual scatterers in the ultrasound 

simulation. In the latter, ultrasound signals are generated, reconstructed, and on which our 

localization algorithm is applied to generate localized MB positions. 

3.1.1 Serial 2-photon data processing 

The datasets acquired using 2PM were previously used in [112], [113] to study blood oxygenation 

in mice brain cortex. Data acquisition is described in section 4.3.1. They were chosen since they 

were also used in a study where the 2PM data was segmented and transformed to a graph model 

by Rafat Damseh, a former PhD student directed by Professor Frederic Lesage. The graph model 

is a vectorized version of the vessels in space described by nodes, their radius, 3D position and 

their connections to one another [32]. The automatic graph modelling process is described in 

section 4.3.2. This platform allows for the generation of a path for a flowing particle. This path is 

represented by nodes that are arbitrarily spaced, therefore it requires subsequent steps to achieve a 

MB path with a discretization dependent on MB velocity and framerate.  
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3.1.2 Microbubble flow simulation 

From this graph model of vasculature, we want to generate flowing MBs with known positions in 

time. From these reference MB positions, a steady-state simulation of MBs can be computed, to be 

used as scattered positions in the ultrasound simulation. Ultrasound signals are generated, 

reconstructed, and then MBs from the simulated images are localized with a certain accuracy. This 

accuracy can be then computed since we have the reference MBs. Nonetheless, the MBs’ 

concentration and their distribution in the vessels have a profound impact on the metrics and 

performance analysis down the road. Therefore, the MB simulation must be as true as possible to 

real-life MB behavior. We could leverage results from Hingot et al. 2019 [6], where a study was 

conducted on a sample of 150 vessels in a rat brain model and where MBs metrics were computed. 

In that work, a link between vessel diameter and MB velocity was found, as well as a link between 

vessel diameter and the MB count (the number of MB flowing in a vessel in time). These metrics 

were essential since we prioritized a MB behavior that would allow to mimic real-life interactions 

where we could test the limits of the hypothesis requiring separate MBs in a spatiotemporal 

referential. In simple terms, we needed the MBs to be close to each other in a realistic manner, for 

example having more and faster flowing MBs in large vessels and very few and slower MBs 

flowing in smaller vessels.  

Before generating a steady state simulation flow, particle trajectories were computed using the 

graph model source nodes, target nodes and vessel radii. For each trajectory, the shortest path 

between the source node and a random extremity node was calculated. In Figure 13, general nodes 

are shown in blue, bifurcation nodes are depicted in green circles, and end nodes are depicted as 

black circles black. The shortest path from the start node and a random node is depicted in red. 
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Figure 13: Graph model. General nodes are in blue, bifurcation nodes are depicted in green circles, 

and end nodes are depicted as black circles black. In red is a random trajectory from the start node 

to a random node. Red, green, and blue scale bars are 100 um long in each dimension (x, y, z). 

A cubic spline fitting is then applied (Figure 14). All node-node distances (𝑑𝑖) are computed, where 

𝑣𝐻𝑖𝑛𝑔𝑜𝑡 is the velocity from velocity-diameter relationship of in-vivo data, d𝑡 is the timestamp and 

𝑃 a given normalized Poiseuille factor.  

 𝑑𝑖 =  𝑣𝐻𝑖𝑛𝑔𝑜𝑡𝑖
∗ d𝑡 ∗ 𝑃  (41) 

New centerline node spatial positions (𝑋i, 𝑌i, 𝑍i) are then computed using the spline fitting, where 

𝑎j, 𝑏j, 𝑐j and 𝑑j are the cubic spline coefficients. 

 𝑋i =  𝑎j∆
3 + 𝑏j∆

2 + 𝑐j∆ + 𝑑j 

𝑌i =  𝑎j+1∆3 + 𝑏j+1∆2 + 𝑐j+1∆ + 𝑑j+1 

𝑍i =  𝑎j+2∆3 + 𝑏j+2∆2 + 𝑐j+2∆ + 𝑑j+2 

(42) 

 

  

y
x

z



44 

 

 

∆ is defined as 

 ∆=
𝑟

𝑅
∗ √𝑅 =  

𝑟

√𝑅
  (43) 

where 𝑟 is the new node distance from closest original node and 𝑅 is the original inter-node 

distance. Using parallel vectors of the centerline trajectories, two orthogonal perpendicular vectors 

were calculated. Using a normalized linear combination of the latter, perpendicular vectors with 

random orientation were created. The laminar trajectory (Figure 14) was generated using the 

centerline trajectory and the perpendicular vectors normalized with the radius of the neighboring 

vessels. 

 

Figure 14: Trajectory calculation. In blue is the cubic spline curve, in black are the centerline MB 

positions and in red are the laminar MB positions calculated from the centerline positions and 

perpendicular vectors. 

An example of a MB simulation at three consecutive timeframes showcasing a very high MB 

concentration is shown in Figure 15, where color represents MB velocity. 
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Figure 15: MB steady-state flow simulation at three consecutive timeframes. 

MBs close to the vessel wall also needed to travel slower than those travelling along the centerline 

of the vessel. This behavior follows the parabolic law (shown more clearly on Figure 16) of a 

Poiseuille velocity distribution and was implemented in the simulator.  

 

Figure 16: Raw MB positions of multiple timeframes accumulated in space to better visualize the 

Poiseuille parabolic velocity distribution. 

We know that because of the pulsatile nature of the heart, the blood flow in efferent arteries isn’t 

constant in time. The change in MB velocity in time can affect MB isolation in comparison with 

tissue. We implemented a simple pulsatility model for future studies. To emulate the effect of the 

pulsatility of the heart, MB velocity was modulated using a function that mimics flow variation 

(Figure 17). Pulsatility amplitude modulation was modelled as a heartrate of 300 beats per minute 

(5 Hz) to match a beating mouse heart with an amplitude of [0.5-1.5] to achieve an average 

normalized velocity of 1.  
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To be more realistic, this amplitude modulation had to be propagated from large vessels to smaller 

ones as a wave. This required a synchronization of MB positions in the steady state flow simulation 

that guaranteed a continuous pulsatile wave propagation. In practice, this was achieved by delaying 

newly added MBs according to the propagation of the pulsatile wave. Visually, amplitude 

modulation translates to an increase and decrease in MB velocity (Figure 14), while wave 

propagation translates to a propagation of a local velocity pattern from the larger vessels to the 

smaller capillaries (Figure 18 and 16).  

 

Figure 17: Pulsatile flow modulation for a mouse heart beating at 300 BPM. 

In this work, pulsatility wave propagation (Figure 15 and 16) was modelled with a constant velocity 

of 25 mm/s extracted from [114]. 

 

Figure 18: MB steady-state flow simulation. White dots represent individual MBs’ velocities. 

They are only visible at a certain velocity threshold to visualize the propagation of the pulsatile 

flow. Snapshots from 1 to 3 correspond to three timestamps in a cardiac cycle (Figure 17). 
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In figure 16, we calculated the mean MB velocity in two regions of interest (ROI) of the same 

blood vessel to illustrate pulsatility wave propagation as a shift in MB velocity in space and time 

through a blood vessel. A black and a red box represent the aforementioned ROIs. 

 

 

 

Figure 19: Wave propagation illustration. (Top) Two views of a MB steady-state flow simulation 

with two regions of interest (ROI) used to calculate MB mean velocity at two locations along a 

vessel. (Middle) Zoomed views on the ROIs. (Bottom) Mean MB velocity in each ROI. 
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These results are in good agreement with the wave propagation velocity and the applied velocity 

modulation. This pulsatility feature of the simulator could be used in subsequent studies to validate 

a biomarker based on pulsatile flow assessing dysfunctional brain regions where a pulsatility 

measurement could differentiate between a healthy and a non-healthy individual [37]. An 

improvement can be made by modelling pulsatility propagation as a function of vessel rigidity 

based on a dependency of vessel diameter.  

3.1.3 Ultrasound localization microscopy 

Before simulating ultrasound signals, since the vascular network (~ 00 μm) is very small compared 

to the field of view of the transducer (~10 mm), MBs from unique trajectories that are redistributed 

in a 10x10x10 pattern to cover a larger field of view (Figure 20). This was essential since the PSF 

of the system is not uniform, therefore MB signals should come from the whole field of view to 

correctly assess the performance of the imaging system. Most of the simulation of ultrasound 

generation, reconstruction and MB localization was performed using algorithms developed by 

members of the Provost Ultrasound Lab, which were programmed using MATLAB and CUDA 

kernels to allow for parallelization and be run on dedicated GPU. Details on the localization 

framework are found in sections 0 and 4.3.7. By developing simulations at various transmit 

frequencies, adding the contribution to noise and quantifying localization performance, I could help 

optimizing parameters and develop an ULM simulation framework to test for new hypotheses. 

 

Figure 20: MB redistribution. Here are shown 1 million unique MBs from unique trajectories that 

are redistributed in a 10x10x10 pattern to cover a larger field of view. Since the PSF of the system 

is not uniform, simulation must be performed throughout most of the field of view to correctly 

assess the imaging system. 
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After ultrasound generation, reconstruction and MB localization, metrics are computed. Only then 

that localized MB positions are brought back together for visualization purposes where all MBs lie 

in the original subspace as seen in the last step of Figure 20. 

3.2 Parametric studies 

3.2.1 Metrics 

Various parameters can be studied, and various metrics can be computed to assess a system’s 

performance. We studied the effect of MB concentration and transmit frequency, since they directly 

change our ability to fulfill the requirement of isolated sources in a spatiotemporal referential [5], 

[80], [103]. As for metrics, we focused on quantifying acquisition time and MB localization 

accuracy. To quantify the accuracy of MB localization, we used the localization error metric as 

described in section 4.3.9. After quantifying localization error for different MB positions, we 

noticed differences in localization error depending on the location of the MB relative to the 

transducer. Figure 21 shows results of localization error as a function of MB position.  

Figure 21: Localization error vs 3D position for a single MB using a 32x32 matrix array 

with a transmit frequency of 6 MHz. Scale was normalized as a function of the transmit 

wavelength (𝜆~257 𝜇m). Small black circle at the bottom represent the position of the 

elements of the transducer facing up towards the medium. Only one quadrant was 

computed because of x and y symmetry. 
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Each data point corresponds to a simulation where a single MB was placed in the medium at a 

different position and was imaged and localized using the ULM framework. These results indicate 

that MBs should be imaged at beyond 15 wavelengths to achieve a minimum localization error 

under 
1

10
 of the wavelength.  

We also tested the effect of SNR on localization error. SNR was varied by adding white gaussian 

noise on RF data. Only one MB bubble in the medium was imaged, localized, and localization error 

was computed. 

 

Figure 22: Norm of the lower bound on localization error at different values of SNR for a 32x32 

6 MHz matrix array probe. The blue dashed line represents results from the ULM framework and 

the solid black represents the theoretical values extracted from equations (44)-(45). 

We can see on Figure 22 that at a low SNR, localization error drastically increases. However, we 

can see that this effect occurs at lower SNR than theory predicts. This means that our ULM 

framework is less sensitive to a low SNR as currently modeled. Future work could include a similar 

analysis for more advanced phantom modelling as in [115]. 
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 ARTICLE 1: AN ANATOMICALLY AND 

HEMODYNAMICALLY REALISTIC SIMULATION FRAMEWORK FOR 

3D ULTRASOUND LOCALIZATION MICROSCO Y 
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4.1 Abstract 

The resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition 

parameters such as frequency and transducer geometry but also by microbubble (MB) 

concentration, which is also linked to the total acquisition time needed to sample the vascular tree 

at different scales. In this study, we introduce a novel 3D anatomically- and physiologically-

realistic ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB 

perfusion dynamics. As a proof of concept, using metrics such as MB localization error, MB count 

and network filling, we could quantify the effect of MB concentration and PSF volume by varying 

probe transmit frequency (3-15 MHz). We find that while low frequencies can achieve sub-

wavelength resolution as predicted by theory, they are also associated with prolonged acquisition 
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times to map smaller vessels, thus limiting effective resolution. A linear relationship was found 

between maximal MB concentration and inverse point spread function (PSF) volume. Since inverse 

PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 

minutes at 15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged 

to achieve effective reconstruction and serve as a guide for choosing optimal MB concentrations 

in ULM.    

4.2 Introduction 

For long, we were bound by the limit of diffraction stated by Rayleigh’s criterion [1] in 

conventional ultrasound imaging. Diffraction causes the point-spread function (PSF) to have a 

specific size in the order of the wavelength, which increases with the penetration depth: larger 

depths can be achieved at the cost of larger wavelength and thus degraded resolution.  Wavelength 

thus dictates the compromise between limiting factors of resolution and penetration depth in 

conventional ultrasound [2]. The concept of isolated source localization from optical imaging [3], 

used in ultrasound localization microscopy (ULM) [2], [4], [5] challenges this compromise.  

Microbubbles (MB) injected into the bloodstream are used as small, highly echogenic unique 

scatterers that can be tracked through vascular networks in large vessels down to, in principle, the 

smallest capillaries. It is by finding the exact centroid of each MB in reconstructed images or by 

fitting a paraboloid in RF data that we can obtain micrometer-scale resolution. This resolution is 

no longer dependent on wavelength, but rather on arrival time variance, number of elements, array 

apertures, distance between the array and MB, and sound speed [6].  

The gain in spatial resolution comes at the cost of temporal resolution (in the order of a few minutes 

depending on the vascular network density) since sampling the vascular network requires 

localization and tracking of millions of MBs in tens of thousands of images [7]. 

In [2], Couture et al. defined four conditions that are required to perform ULM, namely 1) being 

sensitive to the contrast agent, 2) being able to localize that contrast agent, 3) record at a high 

framerate and 4) maintain isolated sources in a spatiotemporal referential. Our ability to respect the 

latter condition depends mainly on two factors: 1) acquisition parameters such as frequency and 

transducer geometry [6], and 2) microbubble concentration [7].  
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To quantify ULM limitations, studies have been performed in in-vitro phantoms with various 

materials, configurations, and scale. Viessmann et al.  [8] conducted four experiments at 2-2.5 MHz 

with the last one using two touching cellulose tubes with inner diameters ( D) of 200 μm. Two sets 

of MB could be distinguished with a sub-diffraction limit with a measured center-to-center distance 

of 197 μm (wavelength of  1 -770 μm), but this setup was limited to relatively large mono-

diameter tubes. Similarly, in [9], O’Reilly and  ynynen conducted an experiment at 612 kHz using 

a PTF  tube with 255 μm of  D spiraled around a 2.5 mm rod. The estimated localization 

uncertainty was again sub-diffraction limit with approximately 1/120 and 1/60 of the wavelength, 

but the limiting factor was the size of the phantom. In [10], Couture et al. succeeded in localizing 

MB in 100 μm sized microfluidic systems at 5 M z. Similarly, in [11], Desailly et al. succeeded 

in localizing MB in rectangular 40-100 μm by 80 μm PDMS channels out of printed SLA  molds 

separated by 50 to 200 μm at 1.75 M z.  owever, none of the above setups’ scale, complexity and 

realism reflects in-vivo challenges. In mice, brain vascular networks typically exhibit large vessels 

with diameters in the 50-200 μm range [12] down to very small vessels in the <10-micrometer 

range [13]. As for how close vessels are to each other, vascular density varies from 161-391 

sections per mm2, or 51-79 micrometers between them [14]. Furthermore, the size of the vessel 

intrinsically dictates the number of flowing MB and their velocities, which affects effective 

resolution [7]. To our knowledge, there is no validation framework for ULM image formation 

algorithms based on anatomically-realistic MB flow to assess ULM limitations. 

 

To overcome this problem, a highly resolved ground truth of brain vasculature is needed. Pulsed 

laser systems [15], [16], e.g., two-photon microscopy (2PM), can image in-vivo and ex-vivo brain 

tissue at micrometer scale. This approach can also be scaled by stacking ex-vivo slices to 

reconstruct whole brain anatomy with micrometer scale resolution [17], [18]. Cerebral vascular 

networks that can therefore be leveraged as virtual phantoms [19]. We developed a three-

dimensional particle flow simulator based on highly resolved 2PM data from mice brain 

vasculature to conduct anatomically-realistic simulations. It was first implemented in 2D as part of 

a deep learning framework [20] and as part of a sparse channel sampling study for ULM [21]. 

In this work, we introduce a novel 3D simulation framework for the validation of ULM image 

formation algorithms. From a vascular model obtained using 2PM, we generate a MB flow with 
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known MB positions in time and where dynamics mimic MB behavior from in-vivo data [7]. These 

MB positions at controlled concentrations are then used to position scatterers in a medium that are 

used to simulate ultrasound raw data, which can then be input in a ULM image formation algorithm.  

This setup allows to evaluate the performance of MB localization frameworks with various imaging 

parameters, by comparing the output MB positions with the provided reference MBs. As an 

example application, we studied the effect of MB concentration and transmit frequency by 

computing metrics such as localization error and network filling. We provide new investigations 

that link maximal MB concentration with the inverse of the PSF volume. Such investigations are 

essential in optimizing MB concentration to obtain a more complete and precise vascular 

reconstruction.

 

Figure 1: Simulation framework. All sub-figures are scaled to match the same scalebar. A) Two-

photon microscopy (2PM) of in-vivo mouse brain is acquired. Colormap represents fluorescence 

intensity. B) From the 2PM data, a graph model is generated in 3 stages described in [22]. 

Colormap represents nodes’ corresponding vessel size. C) Particle trajectories are generated 

using the graph model and in-vivo diameter-velocity dependency. Colormap represents MB 

velocity. D) Using a GPU-based US simulator, RF signals are generated and reconstructed to 

obtain 3D+t US data, on which a correlation-based localization algorithm is applied. Colormap 

represents the correlation obtained using a spatial convolution of the beamformed PSF and 

reconstructed IQ data. 

A B C D
Localization
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4.3 Methods 

4.3.1 In-vitro two-photon microscopy 

The framework starts with a highly resolved mouse brain vasculature acquired using 2PM from 

[23] (Figure 1 A.). Prior imaging, C57BL/6 mice (25–30 g males, n = 6) were anesthetized by 

isoflurane (1–2% in a mixture of O2 and air) at a temperature of 37°C. The imaging apparatus 

consisted of a custom-built two-photon microscope with components listed in [24]. Imaging was 

performed through a cranial window with removed dura and a 150 μm-thick microscope coverslip 

for sealing purposes. Anesthesia was reduced to 0.7-1.2% isoflurane during the acquisition. 

Structural images of cortical vasculature were obtained by labelling blood plasma with dextran-

conjugated fluorescein at 500 nM. Using angiograms acquired with a 20X Olympus objective 

(Numerical Aperture = 0.95), 6 stacks of vasculature (Figure 5) were prepared with voxel sizes of 

1.2×1.2×2.0 μm and total volume of  00× 00×  2 μm. 

4.3.2 Graph model 

Using a modeling framework from [22], [25], a graph model of 2PM data was generated (Figure 

1B). In this framework, vascular segmentation was performed using fully-convolutional neural 

network based on densely connected layers [22]. The graphing/skeletonization step was achieved 

by generating a 3D grid-graph model followed by a geometric graph contraction and refinement 

algorithms. Training the segmentation model was done using the Theano framework [26]. As for 

3D modeling and geometric contraction processes [25], they are based on the VascGraph Python 

package [25]. Using this framework, a file containing vessel network geometry and topology 

(nodes and edges), with their corresponding inlet and outlet vessels is generated. The corresponding 

vessel radii are assigned as features to the nodes of the vascular network. Vessels ranged from 2 to 

57.2 micrometers in diameter, their spatial position span was 500×500× 50 μm and vessel 

volumetric density (VD) was calculated at 4%, using the ratio of vessels-containing voxels and 

total voxels in segmented volumes. 

4.3.3 Particle trajectory generation 

Before generating a steady state flow simulation where MB concentration is always kept constant, 

MB trajectories were computed using the graph model source nodes, target nodes and vessels radii. 
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For each trajectory, the shortest path between a source node and a random extremity node was 

calculated using vessels radii squared as weights. Since original nodes are arbitrarily spaced, a 

cubic spline fitting was then applied to allow for the generation MB positions with a controlled 

time-dependent spacing. In Hingot et al. [7], MBs were followed for 5 minutes in a rat model with 

a continuous injection of the equivalent of 0.8 mL/kg of Sonovue MBs. MB velocities were 

calculated, and a log-log fit of velocity (y) as a function of vessel diameter (x) was performed on a 

150 vessels sample with ln (𝑦)  =  𝑝1ln (𝑥)  +  𝑝2 with parameters p1 = 1.9 mm μm
-1s-1, p2 = -6 

mm.s-1. Another log-log fit was computed on MB count (y) as a function of diameter (x) with 

parameters p1 = 3.7 MB μm-1, p2 = -8.2 MB, which is used in the following section (steady-state 

flow) for trajectory selection. All node-node distances (𝑑𝑖) were computed according to (1), where 

𝑣𝑖 is the velocity from the velocity-diameter relationship of in-vivo data, d𝑡 is the timestamp and 

𝑃 a random normalized Poiseuille coefficient. The Poiseuille coefficient dictates the distance from 

the center of the vessel. The higher the coefficient, the faster is the MB and closer it is to the center 

of the vessel. 

 

𝑑𝑖  =  𝑣i ∙ d𝑡 ∙ 𝑃   (1) 

 

𝑣𝑖 was calculated using the relationship with the diameter from [7]. Vessels in our network ranged 

from 2 to 57.2 micrometers in diameter, therefore velocities ranged from 0.01 mm/s to 5.4 mm/s. 

A MB trajectory is terminated if the trajectory reaches an end node or if the MB can no longer flow 

in the vessel due to a size constraint. In our simulations, we modelled the MBs to be of 2 

micrometers in diameter, therefore all trajectories reached their maximum length. After the 

computation of all node-node distances (𝑑𝑖), the trajectory at the center of vessels (i.e., a centerline 

trajectory) was then used to generate other parallel trajectories to span the entire vessel. To do so, 

two orthogonal perpendicular vectors were calculated for each trajectory. Using a linear 

combination of those vectors, all orientations were created to span all possible trajectories. This 

step allowed for the generation of multiple trajectories at different radial positions in a specific 
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vessel, according to their Poiseuille coefficient. Trajectories were modelled parallel to the vessel 

wall, i.e., being laminar as an approximation of the normal physiological state [27].  

 

Figure 223: Unique microbubbles positions were randomly distributed in a 10×10×10 pattern to 

span over 5×5×6.5 mm. This example shows 1 million MB distributed in 1000 sub-regions, 

which results in 1000 MB in each sub-region. Even though fewer small vessels are present in 

each sub-region, this step is essential since the PSF is not uniform in the field of view and it also 

allows to span a usable MB concentration range. After the ULM framework and metrics 

computation, MB positions in sub-regions can be added back together in the original size volume 

to emulate a longer acquisition time for visualization purposes. 

4.3.4 Steady-state flow  

Using computed microbubbles trajectories, a steady-state flow was generated using a constant 

concentration of MBs (Figure 1 C). The selection of MB trajectories was made according to their 

mean diameter to match in-vivo data from [7]. To match this model, MB trajectories were sorted 

according to their mean diameter and a probability density function generated according to the 

model was applied for trajectories selection. To populate the steady-state flow volume, a first 

population of particles was generated at random positions in their respective trajectory to match a 

desired concentration, then, a new microbubble was added each time a microbubble reached the 

end of its trajectory. After this process, we were left with sets of constant number of microbubbles 

positions (𝑋i, 𝑌i, 𝑍i)  at each time frame. 

500  m 5 mm
500  m

Distribution     
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4.3.5 S         ’      g       

Unique microbubbles positions from a vascular network were randomly distributed in a 10×10×10 

pattern to span over 5×5×6.5 mm (Figure 2). Since the volume of the original vascular network 

was minute, this setup allowed to increase the usage of the field of view and to better assess the 

performance of the imaging system, since the PSF is not uniform throughout the field of view. 

Moreover, this arrangement allowed to span a usable range of MB concentrations. For example, in 

the original configuration, only one MB flowing in the network corresponded to more than 5 

MB/mm3, which is considerably high. Therefore, in this configuration, we have a 1000-fold 

discretization on the original MB concentration range. After ultrasound simulation, reconstruction, 

localization, and metrics computation, MB positions from the 1000 sub-regions were added into 

one original small volume to emulate a longer acquisition time only for visualization purposes 

(Figure 2).  This step facilitated the qualitative comparison between density maps shown in Figure 

7. 

Table 5: Acquisition parameters 

PROBE ARRAY TRANSMIT 

FREQUENCY 

(MHZ) 

CENTER 

FREQUENCY (𝐶𝑓) 

(MHZ) 

BANDWIDTH 

(MHZ) 

128x1 15.625 15.625 14-22 

32x32 3 3.47 Cf ∙ [0.7, 1.3] 

32x32 3.5 3.47 Cf ∙ [0.7, 1.3] 

32x32 6 7.81 Cf ∙ [0.7, 1.3] 

32x32 7 7.81 Cf ∙ [0.7, 1.3] 

32x32 9 7.81 Cf ∙ [0.7, 1.3] 

32x32 12 12 Cf ∙ [0.7, 1.3] 

32x32 15 15 8-22 
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4.3.6 Ultrasound Simulation 

For 2D imaging, probe parameters matched a L22-14 linear array of 128 elements, central 

frequency of 15.6 MHz, pitch of 0.1 mm and element width of 0.08 mm (Vermon, France). For 3D 

imaging, probe parameters were set to match 32x32 matrix arrays 1024 EL 3 MHz [28], 1024 EL 

8 MHz [29], [30] and the custom 1024-element 15 MHz as used by Brunner et al. [31]. The 

theoretical 12 MHz probe parameters were set to match the 3- and 8-M z probes’ specifications. 

Bandwidths and transmit frequencies are depicted in TABLE I. Pitch and element width were set 

to 0.3 and 0.275 mm, respectively, the transmit pulse was a 0-degree plane wave of 4 cycles, and 

the effective framerate was equal to the PRF of 1 kHz. 

To simulate the acoustic response of the microbubbles, an in-house GPU implementation of the 

SIMUS simulation software was performed as described in [32], [33]. Gaussian white noise was 

added to the acoustic response to obtain a signal to noise ratio (SNR) of 15 dB in 2D and 10 dB in 

3D. 

4.3.7 ULM image formation algorithm 

IQ volumes were generated from the RF data using a fast GPU-based delay-and-sum beamformer 

[34]. Individual MB were then identified as local maxima on correlation maps, resulting from the 

correlation of the reconstructed IQ volumes with the IQ PSF of the imaging system. MB were 

precisely located using a 3D subpixel gaussian fitting on IQ local maxima. Localized MB were 

sorted as a function of their correlation from the correlation map. Only MB exceeding a certain 

correlation threshold were kept. Thresholding using correlation allows to screen interacting MBs. 

This is essential to meet the condition stated by [2], which requires isolated sources. To establish 

the optimal threshold, tests were conducted on various concentrations at specific transmit 

frequencies. After finding concentration that yielded most localized MBs, localization error was 

plotted against correlation threshold (Figure 3). Threshold was selected to maximize MB count 

while preventing excessive localization error. 
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Figure 3: Example of a simulation conducted with the linear array at 15.625 MHz at different MB 

concentrations. Localization error was calculated as a function of correlation threshold. Only MB 

with correlation higher than the threshold were selected. In this specific case, final threshold for 

further simulations would be 0.6 to prevent a surge in localization error from interacting MBs. 

 

For visualization purposes and for reconstruction times calculations, density maps were generated. 

MB subpixel positions were accumulated over time on a 3D sampled volume, where each voxel is 

approximately 
𝜆

50
, to generate a micro vasculature density map, where 𝜆 represents the wavelength. 

On a density map, each voxel intensity represents the number of microbubbles in that specific 

voxel.  

4.3.8 MB simulator metrics 

To validate MB behavior, 5000 MB trajectories were simulated to replicate similar MB count as 

in [7]. The two dependencies from in-vivo data are 1) the MB count as a function of vessel diameter 

and 2) MB velocity as a function of vessel diameter. To assess the first dependency, a histogram 

was computed based on the occurrences of the different diameters of all MBs at all positions. The 

number of histogram bins was selected as the number of integer values of the MBs radii. Natural 
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logarithm (ln) was applied on both dependencies to generate a linear fit as in [7]. As for the second 

dependency, MB velocity was simply plotted against its corresponding vessel diameter. 

4.3.9 ULM metrics 

To quantify the effect of concentration on the localization itself, localization error was computed 

using highly correlated MB positions. First, each localized MB was paired with the closest 

reference MB using Euclidian distance. In 2D, only in-plane distances were considered. For a 

specific concentration, localization error was calculated as the average distance between localized 

MBs and their corresponding closest reference MB. Concentration was calculated as the number 

of MBs in a cartesian volume. This process was performed in 2D at 15.625 MHz and in 3D for 

different transmit frequencies spanning current usable range: 3, 3.5, 6, 7, 9 12 and 15 MHz. 

 

Since the MB count is directly linked to reconstruction time [7], it was used as a metric to 

quantify the latter. After correlation thresholding, the MB count was measured at the mentioned 

transmit frequencies and at various concentrations. Concentrations were chosen iteratively to span 

a range where the MB count naturally increases with an increase in concentration and decreases 

when concentration is high enough that MB interactions become more important, and less MBs are 

selected due to a lower correlation with the PSF. This allowed to find a maximum in the MB count, 

which was later linked to the PSF volume. 

 

To assess effective reconstruction, density maps were generated using accumulated MB positions 

over different acquisition times. Selected MB concentrations corresponded to 10% of the 

concentrations where MB count was maximal for each transmit frequency. A reference density 

map with a fully populated network was generated by simulating all possible MB trajectories 

without a constraint on MB count (N) vs diameter. A quantitative comparison with the reference 

density map was made at different acquisition times using the Sørensen–Dice coefficient [35], [36]: 

a similarity index quantifying the network filling. 
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To establish the link between PSF size and MB concentration, the PSF volume was calculated 

for each of the different transmit frequencies and concentration at which MB count is maximal was 

considered as optimal. PSF was modelled as an ellipsoid with semi-axes calculated using half of 

the full width at half maximum (FWHM) in each dimension. For 2D imaging, ellipsoid semi-axis 

in the elevation plane was calculated as half of the elevation focus.  

4.4 Results 

4.4.1 Simulated MB trajectories statistics match in-vivo data 

Figure 4 displays the two dependencies that were originally extracted from in-vivo data [7]. The 

black lines represent the reference dependencies, colored dots represent the statistics of simulated 

MBs, and the blue dashed lines represent the linear fits on the simulated data. Each dot color 

corresponds to one of six vascular networks. Results show that the MB count increases with vessel 

diameter with a slope of 4.15 compared to 3.7 in reference. MB velocity also increases with vessel 

diameter with a slope of 1.77 compared to 1.9 in reference. Figure 5 shows the different MB flow 

simulations from 6 vascular networks. Each of the simulations contains an accumulated 1 million 

MB positions. In Figure 5, the top section depicts simulations where MB flow was constrained to 

follow the dependencies mentioned above. The bottom section in Figure 5 shows MB flow 

simulations without the constraint on MB count vs the vessel diameter. The latter simulates a 

random MB distribution. 
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Figure 4: The MB flow simulator is based on two dependencies from [7], namely MB count vs 

vessel diameter and MB velocity vs vessel diameter. Both dependencies are in a logarithmic scale 

as in [7]. A number of 5000 MB trajectories were generated to match the sample statistics from 

[7]. (Left) A histogram of the occurrences of MB mean diameters was computed. Dots 

corresponds to the MB count in each histogram bin vs corresponding vessel diameter. Each dot 

color corresponds to one of six vascular networks. The dashed blue line represents a log-log fit as 

ln (𝑦) = p1ln(𝑥) + p2 with p1 = 3.56 and p2 = -7.4, R2 = 0.59. Diameter 𝑥 is in mm and MB count 

𝑦 is unitless. Black line represents reference relationship with p1 = 3.7 and p2 =-8.2. (Right) Dots 

corresponds to MB velocities vs their corresponding vessel diameter. Each dot color corresponds 

to one of six vascular networks. The dashed blue line represents a log-log fit as ln(𝑦) = p1ln(𝑥)  

with p1 = 1.75 and p2 = -5.4, R2 = 0.98. Diameter 𝑥 is in mm and velocity 𝑦 is in mm/s. Black 

line represents reference relationship with p1 = 1.9 and p2 =-6. 
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Figure 5: MB positions in 6 vascular networks of mice brains. (Top) MB flow was simulated 

with constraints to follow in-vivo dependencies: MB count and velocity with respect to the vessel 

diameter. (Bottom) MB flow was simulated without the MB count (N) vs vessel diameter (d) 

constraint. 

4.4.2 Localization error is more sensitive to concentration at lower transmit frequency 

In Figure 6, localization error is depicted as a function of microbubble concentration for the 

different transmit frequencies. For a given transmit frequency, the bold line represents the average 

(μ) localization error of all localized microbubbles, and the shaded area covers the average ± the 

standard deviation (σ) of those localization errors. Only the in-plane distances were considered 

when computing 2D localization error of the linear array, i.e., the error in the elevation direction 

was ignored. 

With constraints

Without N vs d constraint
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Figure 6: (Top left) 2D localization error is depicted as a function of microbubble concentration 

for the 15.625 MHz linear array. (Bottom left) 3D localization error is depicted as a function of 

microbubble concentration for matrix arrays at various transmit frequencies. The bold curve 

represents the average localization error between a localized MB and the closest reference MB. 

The shaded area covers the average ± standard deviation. (Top right). MB count resulting from 

localization as a function of concentration is depicted for the 15.625 MHz linear array. The 
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shaded area covers the average ± standard deviation of the 6 vascular networks.  (Bottom right) 

MB count resulting from localization as a function of concentration is depicted for different 

transmit frequencies using matrix arrays. Again, the shaded area covers the average ± standard 

deviation of the 6 vascular networks.   

4.4.3 Acquisition time is drastically reduced at higher transmit frequency 

Figure  also shows the count of localized MB as a function of concentration. At lower frequencies, 

MB count increases until reaching a maximum and decreases at higher concentrations. However, 

from 9 MHz, MB count reaches a plateau at higher concentrations. We see that at 3-3.5 MHz, the 

number of detected MB is approximately 10 000 MB/s or 10 MB per frame. If we double the 

transmit frequency (6-7 MHz), the MB count increases with an order magnitude with 

approximately 100 000 to 200 000 MB/s. The rate at which the number of MB events increases 

seems to decrease with higher frequencies.  

4.4.4 Higher concentrations reduce reconstruction fidelity 

Figure 7 shows the effect of concentration on vascular reconstruction. We applied the simulation 

framework in 3D using a transmit frequency of 6 MHz at four different concentrations: 0.16, 0.4, 

0.8 and 1.6 MB/mm3. They correspond to 20, 50, 100 and 200 MB in the field of view and to 10%, 

25%, 50% and 100% of the maximal MB concentration derived from Figure 6. The four 

concentrations were chosen iteratively, using localization error and number of localized MBs as 

guidelines to span a usable concentration range and to depict differences in resulting vasculature 

reconstruction. Top of Figure 7 shows the density maps of sub-regions of reference and localized 

microbubbles at increasing concentrations from left to right. Bottom of Figure 7 shows density 

maps acquired at different transmit frequencies, increasing from left to right. MB concentration 

was selected as 50% of maximal concentration (0.12 MB/mm3) for a 3 MHz transmit frequency. 
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Figure 7: Sub-volumes of density maps of vascular network #5 corresponding to localized MB at 

different concentrations compared to known MB positions (ref) using a 32x32 matrix array at 6 

MHz. (Top) Concentrations from low to high: 0.16, 0.4, 0.8 and 1.6 MB/mm3, which correspond 

to 20, 50, 100 and 200 MB in the field of view and to 10%, 25%, 50% and 100% of the maximal 

MB concentration derived from Figure 7 for a 6 MHz transmit frequency. (Bottom) For a 

concentration of the equivalent of 50% of the MB concentration associated with the largest 

number of detected MB above threshold for a 3-MHz probe (0.12 MB/mm3), density maps of 

sub-regions of simulations with transmit frequencies of 3, 6 ,12 and 15 MHz respectively are 

shown. 
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4.4.5 Maximal MB concentration is PSF size dependent 

Figure 8 shows the link between maximal MB concentration and PSF volume, where maximal MB 

concentration is proportional to the inverse of PSF volume. The uncertainty bars span the mean ± 

the standard deviation of the maximal MB concentration from the 6 available vascular networks. 

 

Figure 8:  Concentration at which MB count is maximal (100%) is depicted as a function of the 

inverse of the beamformed PSF volume. From left to right in blue, inverse PSF volumes 

correspond to transmit frequencies of 3, 3.5, 6, 7, 9, 12 and 15 MHz of the matrix arrays. The 

dashed orange line represents a linear fit as 𝑦 = 0.043𝑥 + 0.51, R2 = 0.94. The inverse PSF 

volume 𝑥 is in mm-3 and maximal MB concentration 𝑦 is in MB/mm3. The uncertainty bars span 

the mean ± the standard deviation of the maximal MB concentration from the 6 vascular 

networks. 

4.4.6 PSF volume dictates effective reconstruction time 

  Figure 9 shows the network filling using the Sørensen-Dice similarity index over time for the 

optimal concentrations corresponding to each transmit frequency.  
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Figure 9: Network filling is shown using the similarity index between density maps at different 

acquisition times compared to a reference density map of a fully populated vascular network. MB 

concentrations correspond to 10% of the maximal MB concentration at each transmit frequency. 

Time is computed considering a framerate of 1000 frames per second, where each frame 

corresponds to an imaging volume.  

4.5 Discussion 

In this study, we took advantage of a novel 3D anatomically-realistic framework, where mice brain 

vasculature obtained from 2PM was used to propagate virtual MBs with velocities and MB 

distribution replicating behavior from in-vivo data. Having access to known MB positions at all 

times allowed for quantitative measurements to determine ULM capabilities as well as reference 

qualitative imaging. 2D and 3D localization error could be computed as well as MB count for 

different MB concentrations and transmit frequencies.  A link between maximal MB concentration 

and PSF volume was found and network filling as a function of time was calculated. Results allow 

to answer fundamental questions related to in-vivo imaging such as whether the vasculature is 
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precisely or fully depicted as imaging parameters such as the probe or concentrations used are 

varied.  

Simulations were conducted on the 6 vascular networks separately. The variety of vascular 

morphologies allowed to generalize the link between MB concentration and acquisition parameters 

while reducing potential overfitting. 

4.5.1 MB simulation 

Figure 4 shows that our MB simulation framework was successful at replicating observed MB 

behavior from in-vivo dependencies, namely the MB count and velocity vs vessel diameter. Due 

to these dependencies, realistic MB flow and MB distribution are possible in subsequent ultrasound 

simulations. 

Figure 5 shows that constraints on MB flow favor MB distribution towards larger vessels. 

Visually, fewer small vessels are mapped for a set amount of MBs, but large vessels appear fuller. 

This means that for a set acquisition time and a set MB concentration, some small vessels will not 

or will not be fully mapped in the final density map regardless of imaging resolution.  

4.5.2 MB localization 

In Figure 7, we see that as concentration increases, even though most vessels are preserved, they 

appear blurred, are missing, or are inaccurately depicted from the reference density map. This is in 

accordance with theory since ULM requires isolated MB signals. The higher the concentration, the 

more likely MBs will interact with each other. However, relative concentration around 10% of the 

concentration at maximal MB count allows to depict most of the original vasculature. Furthermore, 

reference density map shows that because of realistic MB count vs diameter, some small vessels 

are not present. Probability of a MB flowing in vessels of only a few micrometers is so low that it 

would require a longer acquisition time than the equivalent of 10 minutes at 15 MHz, according to 

results in Figure 9. This means that in current in-vivo imaging, some vessels of only a few 

micrometers are most likely not mapped if the transmit frequency is not high enough or the 

acquisition time not long enough.  
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In Figure 6, the decrease in MB count at high MB concentrations shows that thresholding MBs 

using their correlation with beamformed PSF allows to screen for intensely interacting MBs. 

Localization error increases with concentration as predicted by theory and is in conjunction with 

vessels blurring or missing. Localization error can reach a plateau at higher frequencies when 

selected MBs becomes constant due to correlation thresholding. Higher transmit frequencies are 

associated with lower localization errors as predicted by theory [37]. Higher frequencies are 

associated with smaller PSFs; hence a higher concentration is possible while maintaining isolated 

sources.  

In Figure 6, the rate at which MB count increases eventually slows down with higher frequencies. 

This is mainly due to the size of the PSF only decreasing in the axial direction because of a constant 

element pitch and width. This is due to current manufacturing capabilities that limit piezoelectric 

element size.  

The dependency in Figure 8 shows that PSF volume can be used to predict maximal MB 

concentration. In theory, to reduce MB interactions, MB concentration must be decreased. We see 

here that reducing PSF size also reduces MB interactions. Since MB concentration should be as 

high as possible to reduce acquisition time, this dependency can be used for choosing optimal 

concentration for a specific probe’s acquisition parameters.  

In Figure 9, the network filling represents the intersection between reference density maps and 

density maps resulting from MB localization at different transmit frequencies. The higher the 

network filling index, the more of reference vessels are present in the mapped vasculature from the 

imaging setup. Results in Figure 9 show that acquisition time is drastically reduced using smaller 

PSF volumes (or higher inverse PSF volumes). This means that a higher transmit frequency should 

be prioritized over a lower transmit frequency if the required penetration depth allows for it. Also, 

for a set acquisition time, depending on MB concentration and PSF volume, only a portion of total 

vasculature is mapped. 
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4.6 Limitations 

This study set forth some limitations of the proposed simulation framework. 

• A graph model was generated from 2PM, through automated segmentation, surface 

modeling and contraction. From that, MB trajectories were generated using MB velocities 

and number of MB as a function of diameter from two models derived from in-vivo data. 

This approach guarantees anatomically-realistic modelling since vasculature is derived 

from an ex-vivo model. Another avenue would consist of generating a fully synthetic 

fluid flow-driven graph model as in [38], where vasculature is generated using 

constraining parameters, namely vascular resistance, diameter, pressure, and bifurcation 

position. Whole cortical circulation can be generated while distinguishing between 

arterial and venal flow. This framework combines anatomical data with artificial 

construction laws to overcome limitations in coverage and resolution in reference 

anatomical data. 

• In ultrasound localization microscopy, there are many parameters that can influence SNR, 

contrast, resolution, network filling and so forth, hence influencing the accuracy of the 

vascular reconstruction. In this study, we chose parameters that are most closely linked 

to our ability to maintain isolated sources in a spatiotemporal referential as stated in [2]. 

For that reason, we focused primarily on MB concentration [7] and transmit frequency 

[6].  

• In Figure 4, variability in the MB count vs vessel diameter is due to the specificity of the 

vascular network. The smaller the vascular network, the more significant this variability 

is. Variability in MB velocities vs vessel diameter can be due to abrupt vessel diameter 

change due to rough vascular segmentation, which can affect the accuracy of a MB’s 

corresponding vessel diameter prediction. 

• As for ultrasound signals, they were generated using either readily available or realistic 

ultrasound probes acquisition parameters. The rationale behind this was to assess current 

limitations and seek for optimal ULM parameters. White Gaussian noise was added in 
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radio frequency data to improve realism, but no tissue was modeled. Since PSF size and 

shape greatly influences our ability to precisely detect single MB events, any alteration 

to the PSF from higher noise or lower contrast from neighboring tissue could have an 

impact on MB localization and ultimately maximal MB concentration. Other studies with 

tissue modelling are therefore to be conducted with tissue modelling as in [39], [40]. 

• In Figure 6, we can see that thresholding does not completely prevent MB interactions, 

as depicted in the increasing localization error as a function of concentration. Therefore, 

correlation threshold must be selected wisely to maximize MB detection events for a 

fuller network while minimizing strongly interreacting MBs which is depicted as blurred 

vasculature in density maps. 

• All simulations were conducted on networks of brain mice vasculature where MB flow 

reflected behavior from in-vivo data. However, the vascular networks were relatively 

small in terms of field of view. This means that MB trajectories are limited to a small 

range of vessel sizes (mainly small vessels). This reduced vessel size range increases 

inter-network variability which can be seen through results from Figure , where MB count 

variability is not proportional to the inverse of PSF volume. In the medium, MBs were 

spread uniformly to artificially cover a large portion of space, but realism could be 

improved by having access to a larger network and ultimately a whole brain or whole 

organ vasculature, where the vascular network is closer to real-life vascular size 

distribution, which will increase metrics repeatability. 

• In subsequent studies, acquisition parameters such as number of compound angles [34], 

number of pulse cycles, pulse frequency modulation (chirp) [41], SNR, probe elements 

geometry, MB size distribution just to name a few could be interesting to better 

understand the underlying limitations of ULM and progress towards finding optimal 

imaging parameters.  
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4.7 Conclusion 

In conclusion, we have developed a framework capable of characterizing ULM image formation 

algorithms. We described how to obtain virtual anatomically-realistic MB positions from 2PM 

data. We have shown and quantified the impact of concentration on MB localization and 

acquisition time. We quantified the link between maximal MB concentration and PSF volume. 

Standardized anatomically-realistic MB simulations could become a useful tool in the validation 

of an ULM imaging setup and the PSF volume a straightforward metric for a specific probe’s 

acquisition parameters since it would define the appropriate MB concentration. In practice, we 

hope that these results can be used to achieve optimal vasculature reconstruction at lowest 

acquisition time for a specific imaging setup. 
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 GENERAL DISCUSSION 

This chapter presents a discussion on the specific objectives of this project by reflecting on 

potential betterments to the work conducted. 

5.1 Develop an anatomically-realistic framework for the validation of 

Ultrasound Localization Microscopy in a mouse model. 

Having access to a simulation framework for the validation of ULM opens a few possibilities in 

the betterment of current practices.  

For example, it could be used to assess the performance of MB tracking algorithms. This could be 

done by introducing incomplete or random microbubble trajectories and assessing the ability of the 

tracking algorithm to recover the original trajectories. 

As for machine learning, availability of reference data is an issue. MB flow from this work can 

hence be used to create reference maps for the training and validation of ULM frameworks based 

on neural networks [107]. 

This simulation framework could also be used to develop and improve in vitro-phantoms. A 3D 

model of the vasculature could be extracted and printed in a soluble material, which could be 

dissolved to create a wall-less phantom. Input and output ports however must be mitigated to allow 

for fluid flow in every vessel. Results from the in-vitro phantom can be compared with reference 

metrics obtained from simulation results.  

In terms of biomarker development, this framework could be used to generate groups of healthy 

and abnormal flow datasets. These could be differentiated according to metrics such as vascular 

density, hemodynamic response, vessel stiffness, vessel tortuosity and pulsatility just to name a 

few. Moreover, these metrics should ideally be presented with spatial information, such that a local 

abnormality could be differentiated from surrounding tissue. 

As for limitations of the current framework, they are discussed below with avenues for betterment. 

As for microbubbles’ velocities and distribution, they follow realistic behavior from in-vivo data. 

However, since it was based on a rodent model, the results, as they are, accurately depict rodent 

behavior. However, for other animal models, a similar study on blood velocity and microbubble 

distribution would be needed to confirm microbubble behavior for that specific model. The 
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experiment would consist of in-vivo imaging of individual microbubbles and measuring their 

velocity and corresponding vessel diameter as was done in [6].  

Concerning the graph models, since the vascular networks were relatively small, there was only 

one inlet blood vessel supplying flow to the smaller ones and the graph model was a tree graph, 

which means that there were no recirculation and loops in the graph. Future larger datasets will 

most probably contain multiple input blood vessels and loops which will have to be accounted for. 

As for flow, it was modelled as being laminar and exhibiting a Poiseuille velocity distribution, 

which results in faster flow in the center of the vessel and a slower flow close to the vessel wall. 

For the smaller capillaries, where sometimes only one microbubble can fit in the vessel, modelling 

should be modified to be limited to a single velocity for a certain diameter range, or a more realistic 

behavior accounting for more realistic interactions between the microbubble and the surrounding 

vessel when the microbubble is in the order of the vessel size. 

Lastly, the modelled pulsatility wave propagation is currently a constant velocity extracted from 

the literature. Future work could include a pulsatility wave propagation that is function of vessel 

diameter and ideally function of age, vessel stiffness, patient medical condition, just to name a few. 

The simplest implementation would consist of combining all mentioned parameters into a function 

of vessel diameter for the velocity distribution. 

5.2 Establish a link between optimal MB concentration and acquisition 

parameters of an imaging setup. 

In our example application, we established a link between microbubble concentration and PSF 

volume for transmit frequencies in the 3-15 MHz range for a matrix array. This can be leveraged 

to predict the performance of an imaging setup. With fewer unknown variables, less testing must 

be conducted for a specific experiment. Hence, this could reduce the number of required animals 

for a study. Moreover, as we saw in section 4.4.2, optimal MB concentration range is narrower for 

lower transmit frequencies. Therefore, it would be difficult to find an optimal MB concentration 

only using a trial-and-error method for deep vascular imaging. Therefore, this could possibly allow 
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for smaller vessels reconstruction. Since small vascular lesions have been linked with tissue 

disfunction [26], this could lead to more sensitive biomarkers. 

A discussion on limitations is presented below. 

The relationship between optimal MB concentration and PSF volume could benefit from further 

work where other acquisition parameters are studied, such as the effect of transducer shape, such 

as the sparse spiral array as in [117] or row-column as in [48] to ultimately generalize to any 3D-

capable ultrasound imaging probe. SNR and contrast of such probes in simulation must match SNR 

and contrast in in-vivo experiments. 

As for the simulation medium, white gaussian noise was added to RF data to a level similar to in-

vivo data. However, it would be beneficial to add tissue modelling as in [115], where SNR and 

contrast would be affected by more realistic wave interference. Clutter would also be present and 

caused by blood vessels or other anechoic or hypoechoic regions modelled in the tissue [118].  This 

would most probably reduce the predicted microbubble concentration since they would be more 

difficult to localize for a certain PSF of the imaging system.  

Moreover, since the impulse response of the system is non uniform throughout the field of view, 

unique microbubble positions were distributed across a larger region, but the microbubbles were 

simulated using the same vascular network. By doing so, we can better assess the variability in the 

field of view, but we expect that with a larger vascular dataset (as a whole brain) with a larger 

vessel size distribution, the study would account for more varied and realistic microbubble 

interactions, which would result in a more robust relationship with lower microbubble 

concentration variability. 

Lastly, since ultrasound localization microscopy would ultimately be used to develop novel 

biomarkers, this framework could be used to compare healthy and unhealthy vasculature. 

Implementation would consist of either two vascular datasets or prior knowledge on vascular 

morphology to transform a healthy dataset into an unhealthy one. The biomarker would have to be 

extracted from the output microbubble positions at the end of the ULM pipeline and be significantly 

different for the unhealthy group compared to the healthy one. 
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 CONCLUSION AND RECOMMANDATIONS 

This project has led to the development of the first anatomically and hemodynamically realistic 

simulation framework for ultrasound localization microscopy for the validation of image-formation 

algorithms. After conducting an example parametric study on microbubble concentration and probe 

transmit frequency, we established a relationship between the maximal microbubble concentration 

and the inverse point spread function volume. In the process, we proposed significant innovations 

in terms of flow modelling and validation pipeline. The proposed framework can be leveraged for 

a variety of vascular networks to conduct parametric studies while quantifying the performance of 

the imaging system. The validation of an imaging system is as reliable as the validating framework. 

In this case, robustness of the validation can be related to the fidelity of reference vasculature and 

ultrasound simulation. For that reason, we suggest that future work is globally oriented towards 

using a large reference dataset, adding tissue-like interaction in the simulation medium to reduce 

variability and enhance real-world fidelity, and generating normal and abnormal flows where 

pulsatility could be modulated to simulate different stages of atherosclerosis. 

The potential application of this simulation framework on human datasets would represent a natural 

culmination of this work. Ultrasound localization microscopy was recently performed on human 

subjects in 2D and will soon be possible in 3D, where validation of such imaging systems will be 

essential for their acceptance and success in the clinic. 

This project is therefore a natural fit in biomedical engineering, where technical developments are 

matched with validation counterparts for the betterment of medical practices. 
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