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RESUME

Cette ¢tude vise a généraliser aux matériaux transversalement isotropes I’interprétation de
mesures réalisées avec une cellule doorstopper modifiée pour la détermination du tenseur des

contraintes in situ. Les principales sources d’erreurs a différentes étapes de calculs sont discutées.

Dans un premier temps, la justesse des contraintes en fond de trou est évaluée. Celles-ci sont
calculées a partir des déformations relevées par la cellule doorstopper et des paramétres de
déformabilité déterminés selon la procédure proposée par Corthésy et al. (1993). Des mesures de
contraintes par surcarottage ainsi que des essais en laboratoire pour différents matériaux
anisotropes sont simulés par ¢léments finis. L erreur observée sur les contraintes en fond de trou
calculées est jugée acceptable; elle s’avere étre principalement due a ’interprétation de 1’essai de

compression diamétrale.

Dans un deuxiéme temps, des simulations numériques sont réalisées pour déterminer le tenseur
des contraintes avec trois forages dans un matériau transversalement isotrope. Suivant une
hypothése fréquemment posée en pratique, les plans d’isotropie des matériaux testés sont
supposés paralleles au forage. Cette hypothése simplificatrice entraine un biais sur le tenseur des
contraintes obtenu; le biais observé demeure toutefois acceptable. Les simulations numériques
confirment que 1’adaptation de la méthode conventionnelle d’obtention du tenseur des contraintes
in situ aux matériaux transversalement isotropes permet une amélioration notable de la justesse

du tenseur des contraintes déterminé dans de tels matériaux.

Dans un troisieme temps, les simulations numériques sont réinterprétées a 1’aide de la méthode
RPR. La généralisation de cette méthode aux matériaux transversalement isotropes est validée
dans son ensemble; des cas déviants sont toutefois observés, puis expliqués. L’avantage de la
méthode RPR quant a I’indépendance des points de mesure est conservé uniquement sous
I’hypothése selon laquelle les plans d’isotropie du matériau sont paralléles au forage; cette

conclusion devrait étre vérifiée a I’aide d’un modele présentant des hétérogénéités d’anisotropie.

Des recommandations visant a améliorer la justesse du tenseur des contraintes déterminé dans un
matériau transversalement isotrope concluent le présent travail. Parmi les travaux suggérés,
I’adaptation de [’équation empirique utilisée pour interpréter les résultats de [’essai de

compression diamétrale doit étre considérée en premier lieu.



ABSTRACT

The goal of this study is to generalize to transversely isotropic materials the interpretation of
modified doorstopper measurements for the determination of the ground stress tensor. Main

sources of errors at different computation stages are discussed.

Firstly, the accuracy of the stresses at the borehole bottom is assessed. These are calculated from
the strains measured by the modified doorstopper cell and from the deformability parameters
obtained according to the procedure proposed by Corthésy et al. (1993). Overcoring stress
measurements and laboratory tests on different anisotropic materials are simulated using the
finite element method. The error observed on the computed stresses at the borehole bottom is

satisfactory; it proves to be mainly due to the interpretation of the diametrical compression test.

Secondly, numerical simulations are conducted to obtain the ground stress tensor with three
boreholes in a transversely isotropic material. Following an assumption frequently done in
practice, the isotropy planes of the tested materials are taken parallel to the borehole. The
computed stress tensor is biased because of this simplifying assumption; the observed bias
remains however satisfactory. Numerical simulations confirm that adapting to transversely
isotropic materials the conventional method for obtaining the ground stress tensor allows a

significant improvement in the accuracy of the stress tensor determined in such materials.

Thirdly, numerical simulations are reinterpreted using the RPR method. The generalization of
this method to transversely isotropic materials is validated as a whole; outliers are however
observed, and then explained. The advantage of the RPR method regarding the independence of
measuring points is maintained only under the assumption the isotropy planes of the material are
parallel to the borehole; this conclusion should be verified using a model with heterogeneous

anisotropic materials.

Recommendations to improve the accuracy of the ground stress tensor determined in a
transversely isotropic material are proposed at the end of this work. Among the suggested studies,
adapting the empirical equation used to interpret the results of the diametrical compression test

should be considered first.
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CHAPITRE1 INTRODUCTION

1.1 Contexte de I’étude

La détermination du tenseur des contraintes in situ est un préalable a toute é¢tude de conception
d’infrastructures souterraines relevant du génie minier ou du génie civil. La connaissance des
contraintes en place permet le design d’ouvrages sécuritaires; elle assure en outre une
exploitation économique des ressources ainsi qu’une conception optimale assurant la stabilité des

terrains.

Plusieurs méthodes de détermination des contraintes in situ consistent a perturber le champ de
contraintes, puis a mesurer les déformations engendrées. Le champ de contraintes initial est
ensuite déduit a partir de la loi de comportement du massif rocheux. La perturbation induite
consiste le plus souvent en une saignée visant a provoquer le relachement complet des
contraintes; ces méthodes sont dites de surcarottage. Les méthodes de surcarottage différent entre
elles selon la localisation, 1’orientation et le nombre de points pour lesquels des déformations

sont mesureées.

La technique du doorstopper est basée sur la mesure des déformations récupérées au fond d’un
trou de forage résultant du relachement des contraintes agissant sur ce plan par prolongation du
forage. Cette technique présente 1’avantage de nécessiter une longueur de saignée plus courte que
celle requise par d’autres méthodes de surcarottage; elle est ainsi mieux adaptée aux massifs

fracturés.

L’interprétation des mesures réalisées avec une cellule doorstopper repose communément sur les
hypothéses d’¢lasticité linéaire isotrope et d’homogénéité. Or, les massifs rocheux présentent
généralement un comportement plutdt anisotrope, cette anisotropie étant le plus souvent
modélisée par la loi d’isotropie transversale. Des travaux antérieurs permettent de tenir compte
du comportement anisotrope du massif rocheux a certaines étapes d’interprétation des mesures,
mais 1’approche générale n’a pas encore ¢t¢ formellement généralisée aux matériaux

transversalement isotropes.



1.2 Objectif général de I’étude

La lacune identifiée a propos du comportement anisotrope du massif rocheux est a 1’origine de ce
travail. L’objectif général qui en découle est de généraliser aux matériaux transversalement
isotropes I’interprétation de mesures réalisées avec une cellule doorstopper pour la détermination
du tenseur des contraintes in situ. Trois objectifs plus spécifiques sont précisés suite a la

présentation du cadre théorique; ils sont définis a la section 2.3.

1.3 Structure du document

Le cadre de I’étude est exposé au Chapitre 2. La technique du doorstopper est d’abord mise en
contexte par rapport aux autres méthodes de mesures de contraintes. Une revue de littérature
concernant la détermination des contraintes in situ dans des matériaux anisotropes est notamment
présentée. Le cadre théorique relatif a I’interprétation des mesures réalisées avec une cellule
doorstopper est ensuite détaillé; ces connaissances sont préalables a la compréhension des

chapitres suivants.

La méthodologie suivie est présentée au Chapitre 3. Le support de travail choisi est la simulation
numérique; des mesures de contraintes dans des matériaux anisotropes sont ainsi modélisées en
grand nombre, tout en éliminant les sources d’erreurs expérimentales. Le développement du
modele numérique est détaillé, puis ’interprétation des résultats pour I’obtention du tenseur des

contraintes in situ est expliquée.

Les résultats de 1’é¢tude sont présentés au Chapitre 4. Ce chapitre comprend trois sections,

chacune répondant a un des objectifs spécifiques fixés a la section 2.3.

La généralisation aux matériaux transversalement isotropes de I’interprétation de mesures
réalisées avec une cellule doorstopper est confirmée au Chapitre 5. Ce chapitre comprend
¢galement une discussion sur les résultats obtenus. Des recommandations pour la poursuite des

travaux y sont enfin présentées.



CHAPITRE 2 CADRE DE L’ETUDE

Les connaissances nécessaires a la poursuite de I’objectif général fixé au Chapitre 1 sont
exposées dans ce chapitre. La technique du doorstopper est d’abord mise en contexte, notamment
quant a la détermination des contraintes in situ dans des matériaux anisotropes. Le cadre
théorique relatif a la technique du doorstopper est ensuite présenté. Enfin, les objectifs

spécifiques de 1I’étude sont précisés.

2.1 Mise en contexte de la technique du doorstopper

Des remarques préliminaires concernant la détermination du tenseur des contraintes in situ sont
d’abord exposées dans cette section. Afin de situer la technique du doorstopper, une vue
d’ensemble des méthodes de mesure de contraintes est ensuite présentée. Puis, la technique du
doorstopper est détaillée; ses avantages sont notamment soulignés. Enfin, 1’état de 1’art quant a la

mesure de contraintes dans des matériaux anisotropes est présenté.

2.1.1 Généralités sur la détermination des contraintes in situ

L’¢état de contraintes en un point est défini par un tenseur de second ordre a neuf composantes.
L’¢équilibre des moments au sein du matériau implique que six composantes sont indépendantes.
La notation de Voigt, selon laquelle le tenseur des contraintes est représenté sous forme
vectorielle, est utilisée dans ce texte : {Sxx, Syy, Szz, Sxv, Sxz, Syz}, avec S;j la composante du
tenseur agissant sur la face normale a 1’axe i1 dans la direction paralléle a I’axe j (Jaeger et

al., 2007). L’expression du tenseur des contraintes varie selon le référentiel.

Les contraintes sont des grandeurs fictives non mesurables; seuls leurs effets le sont.
L’expression mesure de contraintes est toutefois employée couramment pour désigner toute
technique permettant de déterminer indirectement le tenseur des contraintes in situ. Dans le texte,
le terme mesure englobe toutes les informations obtenues en un point. Le nombre de
composantes de contraintes obtenues avec une mesure dépend de la technique et du modé¢le
d’interprétation utilisés; différentes mesures peuvent étre combinées (Leeman, 1964). Le tenseur
des contraintes peut étre déterminé de maniére absolue, ou seule la différence entre deux états de
contraintes peut étre évaluée (mesure relative). Dans les deux cas, les mémes techniques sont

applicables, mais les instruments peuvent différer selon la précision et la stabilité requises.



2.1.2 Vue d’ensemble des méthodes de mesure de contraintes

Plusieurs méthodes de détermination des contraintes in situ consistent a perturber le champ de
contraintes, puis a mesurer les déplacements ou les déformations engendrés par cette
perturbation. Le champ de contraintes initial est ensuite déduit a partir de la loi de comportement
du massif rocheux; ces méthodes impliquent la connaissance des parametres de déformabilité. La
perturbation induite consiste le plus souvent en une saignée visant a provoquer le relachement
complet des contraintes; ces méthodes, dites de surcarottage, permettent ainsi d’effectuer une
mesure absolue du tenseur des contraintes. Les déplacements ou les déformations engendrés par
la saignée peuvent étre mesurés selon le diameétre du forage (cellule USBM), a la paroi du forage
(cellule CSIR) ou au fond du trou (cellule doorstopper). En plus des méthodes de surcarottage,
une autre technique également basée sur la mesure de déformations permet d’effectuer des
mesures relatives a 1’aide d’inclusions solides implantées dans le massif rocheux. Le tenseur des
contraintes in situ peut également étre déterminé a 1’aide de méthodes qui n’impliquent pas la
mesure de déformations : fracturation hydraulique, principe de rétablissement (vérin plat),
analyse de la rupture en périphérie du forage (borehole breakouts). Le présent travail portant
uniquement sur la technique du doorstopper, la présentation des autres méthodes est sommaire et
non exhaustive. Des revues détaillées de I’ensemble des techniques de mesure existantes sont

disponibles dans la littérature (Amadei et Stephansson, 1997).

2.1.3 Généralités sur la technique du doorstopper

La technique du doorstopper fut développée par le Council of Scientific and Industrial Research
(CSIR) d’Afrique du Sud. La ressemblance physique entre I’instrument de mesure et un butoir de

porte a valu le nom de doorstopper a la cellule (Leeman, 1964; Leeman, 1971).

Un trou de forage est d’abord réalisé jusqu’a la zone étudiée; la cellule doorstopper originale est
congue pour des forages de calibre BX. Le diamétre extérieur d’un tel forage est de 59,9 mm et le
diametre de la carotte est de 42,0 mm (Hunt, 2005). La cellule doorstopper est collée au fond du
trou de forage. Une saignée est ensuite réalisée par prolongation de forage et les déformations
engendrées sont mesurées; la cellule originale comprend une rosette a trois jauges de
déformations dont deux sont orthogonales entre elles et 1’autre forme un angle de 45°.

L’obtention des contraintes in situ a partir de ces mesures nécessite la connaissance de la loi de



comportement du massif rocheux ainsi que de la relation entre les contraintes en fond de trou et

in situ (Leeman, 1964; Leeman, 1969).

La technique du doorstopper a évolué par la suite; la version développée a I’Ecole Polytechnique
de Montréal est appelée doorstopper modifiée. La cellule doorstopper modifiée est utilisée dans
des forages de calibre NX. Le diamétre extérieur d’un tel forage est de 75,7 mm et le diamétre de
la carotte est de 54,7 mm (Hunt, 2005). La cellule comprend une rosette a quatre jauges espacées
de 45°; les jauges mesurent généralement 10 mm. La technique du doorstopper modifiée présente
trois améliorations notables: 1’utilisation d’une colle permettant de fixer la cellule dans des
conditions humides; I’ajout d’un thermistor permettant d’effectuer des corrections thermiques; la

lecture continue des jauges de déformations pendant la saignée (Gill et al., 1987).

2.1.4 Evaluation comparative de la technique du doorstopper

La saignée requise pour permettre le relachement complet des contraintes avec une cellule
doorstopper est plus courte que celle requise par d’autres méthodes de surcarottage; il s’agit de
I’avantage le plus significatif de la technique (Leeman, 1969). En effet, la saignée doit étre d’au
moins 1,5 fois le diametre du forage, soit environ 11 cm pour un forage de calibre NX, tandis
qu’elle doit atteindre au moins 30 cm avec les autres méthodes (Leite et Corthésy, 2001). Ainsi,
la technique du doorstopper est particuliérement adaptée aux massifs fracturés. La présence
d’eau, fréquente dans les massifs fracturés, est d’ailleurs compatible avec la cellule doorstopper
modifiée (Gill et al., 1987). Un autre avantage de cette technique concerne la lecture continue des
jauges de déformations qui permet notamment de contrdler la qualité des données enregistrées
(Blackwood, 1978). Les données supplémentaires issues de la lecture continue des jauges rendent
aussi possible 1’application d’une méthode améliorée d’interprétation des données; ce point est

repris ultérieurement (Corthésy et al., 1994).

En revanche, des difficultés pratiques peuvent survenir quant au collage de la cellule au fond du
trou de forage; des difficultés similaires sont toutefois rencontrées avec d’autres techniques. De
plus, la détermination du tenseur des contraintes nécessite au moins trois mesures distinctes, tel
qu’expliqué a la section 2.2.4. L’importance de cette limitation est toutefois réduite par le fait que
la combinaison de plusieurs mesures est de toute manicre souhaitable lors de la détermination du

tenseur moyen d’une zone (Amadei et Stephansson, 1997).



2.1.5 Mesures de contraintes dans des matériaux anisotropes

Un matériau est dit anisotrope si ses propriétés mécaniques varient selon les directions.
L’anisotropie est généralement causée par des structures sédimentaires, métamorphiques,
tectoniques, cristallographiques ou des réseaux de fractures (Amadei et Stephansson, 1997).
L’influence de I’anisotropie sur les contraintes in situ a ¢ét¢ démontrée par plusieurs auteurs :
Amadei et Goodman (1982), Borsetto et al. (1984), pour n’en nommer que quelques-uns. La
notion d’échelle est inhérente a 1’é¢tude de I'influence de 1’anisotropie sur la mesure des
contraintes in situ : I’anisotropie dont la dimension caractéristique est comparable a celle des
jauges influence directement la mesure; 1’anisotropie a plus grande échelle cause une variabilité
entre les points de mesure; I’anisotropie a plus petite échelle n’influence pas la mesure si son

orientation est aléatoire (Cuisiat et Haimson, 1992).

L’influence de I’anisotropie sur I’estimation des contraintes in situ a été étudiée par Amadei et
Pan (1992). Ces travaux portent uniquement sur 1’estimation de champs de contraintes
gravitationnels dans des massifs rocheux anisotropes; seule I’anisotropie a 1’échelle du massif
rocheux est considérée. Les mesures de contraintes réalisées avec des méthodes de surcarottage
sont plutot influencées par 1’anisotropie a 1’échelle de la carotte. Jusqu’a maintenant, seul le
modele d’interprétation de mesures réalisées avec la cellule CSIR triaxiale a été généralisé aux
matériaux anisotropes (Amadei, 1996; Ribacchi, 1997). Le mode¢le d’interprétation de mesures
réalisées avec la cellule doorstopper n’a, quant a lui, pas encore été¢ généralisé aux matériaux
anisotropes. Or, la cellule doorstopper peut étre préférée a la cellule CSIR notamment en raison
de la longueur de saignée nécessaire, tel qu’expliqué a la section 2.1.4, d’ou la pertinence de

I’objectif général de ce travail.

2.2 Cadre théorique

Les étapes d’interprétation de mesures réalisées avec une cellule doorstopper sont détaillées dans
cette section; la version modifiée de la cellule est traitée. Les connaissances se rattachant aux

matériaux isotropes et anisotropes sont présentées conjointement.



2.2.1 Etat de déformations en fond de trou

La premicere étape de I’interprétation de mesures réalisées avec une cellule doorstopper consiste a
calculer le tenseur bidimensionnel des déformations en fond de trou {exx, €yy, €xy} a partir des
déformations mesurées a la fin de la saignée €., €90, €45, €135 (Leeman, 1964). Cette étape est
indépendante de la loi de comportement du massif rocheux. Afin de tirer profit du caractere
surdéterminé du systeme, la méthode des moindres carrés est utilisée. L’adaptation de cette
méthode au calcul du tenseur des contraintes proposée par Panek (1966) est présentée dans cette
section et adaptée au probleéme traité. Dans la suite, le plan XY est celui du fond du trou de
forage, le forage étant orienté selon I’axe Z. De plus, la jauge mesurant la déformation gy est
parallele a I’axe X, tel qu’illustré a la Figure 3-4, et les angles sont mesurés dans le sens

trigonométrique.

Les déformations exx’, eyy’, eéxy’ dans un référentiel cartésien dont I’axe X’ forme un angle ¢
avec I’axe X s’expriment en fonction des déformations exx, €yy, €xy suivant les régles de rotation
tensorielle; celles-ci sont énoncées a 1’équation matricielle (2.1) (Jaeger et al., 2007). Avec
¢ = {0; 90; 45; 135}°, les déformations mesurées €., €90, €45, €135 S’expriment en fonction des
déformations exx, €yy, €xy selon 1’équation matricielle (2.2). Afin de simplifier les
développements, la notation présentée a 1’équation (2.3) est utilisée; les indices correspondent

aux dimensions de la matrice A et des vecteurs colonnes E et ¢.

€y cos” ¢ sin® ¢ 2sin¢gcos¢

SXX
Ey = sin® ¢ cos’¢  -2singcos¢ Eyy (2.1)
Eyy —singcos¢ singcosg cos’p-sin®¢ || €y
(10 0
£y
80 (1) 1 0 £y
o (| L1 £, (2.2)
€5 2 2
8XY
€350 l l -1
2 2
{ }4x1 = [A]4x3 {8}3X1 (2.3)



L’erreur e; est définie comme étant 1’écart entre une déformation mesurée (connue) et sa valeur
théorique calculée a partir des déformations exx, €yy, €xy (inconnues). L’expression de I’erreur e;
est donnée a I’équation (2.4); puisque quatre déformations sont relevées avec une cellule

doorstopper modifiée, 1 est compris entre 1 et 4.
f— 3 —
e,=E - EAijsj (2.4)
j=l

La méthode des moindres carrés consiste a déterminer les déformations exx, €yy, exy qui
minimisent la somme des carrés des erreurs e;. La quantité¢ a minimiser est explicitée a 1’équation
(2.5) et le résultat de 1I’optimisation est donné a 1’équation (2.6); puisque trois déformations sont
cherchées (exx, €yy, €xy), k est compris entre 1 et 3. La notation du résultat est simplifiée aux

équations (2.7) a (2.9) et présentée sous forme matricielle aux équations (2.10) a (2.12).

i(e,)z = i E>- 25,221,8, . i Ae 2.5)
B) arr ssrs |

%8k - —225 ) +222 £ =0 (2.6)
i’?fcf% =G 2.7)

Ry DA (28)

C, = i—EiZik (2.9)

K], {81};1 =[c],, (2.10)
[%],..=[41..[4L.. @.11)
[e],, =[4],..{E}.. (2.12)

Les déformations en fond de trou exx, €yy, €xy sont obtenues en inversant 1’équation (2.10); le

résultat est présenté a I’équation (2.13).
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2.2.2 Etat de contraintes en fond de trou

La deuxieme ¢étape de I’interprétation de mesures réalisées avec une cellule doorstopper consiste
a déterminer le tenseur bidimensionnel des contraintes au fond du trou de forage {oxx, Oyy, Oxy}
a partir de celui des déformations {exx, €yy, €xy} obtenu selon 1’équation (2.13). Des simulateurs
mécaniques ont d’abord ¢été utilisés a cette fin : ’échantillon est rechargé en laboratoire jusqu’a
ce que les déformations enregistrées a la fin de la saignée soient atteintes; les contraintes
appliquées sont alors supposées ¢€gales aux contraintes in situ (Leeman, 1969). Cette
méthodologie présente I’avantage de ne pas reposer sur la loi de comportement du matériau, mais

une erreur intrinséque a I’hypothese de réversibilité du comportement de I’échantillon prévaut.

Pour remédier a cette erreur, 1’état de contraintes en fond de trou est plutot déterminé a 1’aide de
la loi de comportement du matériau. La justesse du tenseur des contraintes mesuré dépend alors
de la validité de la loi pour modéliser le comportement du massif rocheux et de la justesse des

parametres de déformabilité (Corthésy, 1982).

Les massifs rocheux sont souvent assimilés a des matériaux ¢€lastiques linéaires isotropes vue la
simplicit¢ de cette loi de comportement : seuls deux parametres de déformabilité sont requis
(Leeman, 1969). La considération du caractére anisotrope du massif rocheux implique la
détermination d’un nombre plus ¢€levé de parametres de déformabilité. Par exemple, la loi
d’isotropie transversale comporte cinq parametres indépendants; cette loi correspond au cas le
plus simple d’anisotropie (Jaeger et al., 2007). Le modele anisotrope équivalent suggéré par
Corthésy (1982) ne comprend toutefois que trois paramétres indépendants; il s’agit d’un cas
particulier d’isotropie transversale. Ce modele est donc privilégié puisqu’il permet de tenir
compte de D’anisotropie du massif rocheux, tout en limitant le nombre de paramétres de
déformabilité a déterminer; la réalisation des essais en laboratoire requis demeure ainsi

relativement simple.
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Les lois d’¢lasticité linéaire isotrope et transversalement isotrope sont introduites dans cette
section; les particularités du modele anisotrope €quivalent sont ensuite soulignées. Puis, les essais
en laboratoire suggérés pour déterminer les parametres de déformabilit¢ du modele anisotrope

équivalent sont présentés.

2.2.2.1 Elasticité linéaire isotrope et transversalement isotrope

La loi d’¢lasticité lin€aire isotrope est donnée a 1’équation matricielle (2.14) (Jaeger et al., 2007).
Puisque I’état de contraintes en fond de trou est un état de contraintes planes, la loi est présentée
en deux dimensions, dans le plan XY du fond du trou. Le matériau ainsi mod¢lisé comprend deux

parametres de déformabilité indépendants : le module de Young E et le coefficient de Poisson v.

Oxx E 1 v 0 Exx

Oy (= (1 2) v 1 0 X3 Ey (2.14)
-V

()'XY 00 (1 - V) Eyvy

Les massifs rocheux sont souvent assimilés a un matériau transversalement isotrope (Amadei et
Stephansson, 1997). Un tel matériau possede un axe de symétrie rotationnelle définissant un plan
d’isotropie; il s’agit d’un cas particulier d’orthotropie, généralement définie avec trois axes. La
loi d’¢élasticité linéaire transversalement isotrope est donnée a 1’équation matricielle (2.15) pour
un état de contraintes planes avec E; le module de Young paralléle a 1’axe 1, v;j le coefficient de
Poisson associé a une contrainte selon I’axe 1 et une déformation selon I’axe j, Gjj le module de

cisaillement dans le plan ij (Jaeger et al., 2007).

Oxx 1 EJZ( EvE,Vyy 0 Exx

Oy (=—| ExE,vy  E\E, 0 X1 &y (2.15)
Ex - EYVXY 2

Oxy 0 0 2G,, (Ex - EYVXY) Exy

Un matériau transversalement isotrope est défini par 1’orientation de son plan d’isotropie et cinq

parameétres de déformabilité indépendants (Jaeger et al., 2007) :
- ladirection p et la plongée 8 de la normale au plan d’isotropie;
- le module de Young E, associé au plan d’isotropie;

- le module de Young E; associé a la direction perpendiculaire au plan d’isotropie;
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- le module de cisaillement G, associé aux plans qui incluent la direction perpendiculaire au

plan d’isotropie;
- le coefficient de Poisson v; associ¢ au plan d’isotropie;

- le coefficient de Poisson v, associ¢ a un chargement dans le plan d’isotropie et une

déformation normale a ce plan.

Les paramétres de déformabilité associés a toute autre direction formant un angle ® avec le plan
d’isotropie sont donnés aux équations (2.16) et (2.17); les parametres Ex, Ey, vxy de 1’équation

(2.15) sont obtenus avec ces équations (Batugin et Nirenburg, 1972).

E, - EE, (2.16)
E,sin’ @+ E, cos’ ®
?Vu
Vo droos = : (2.17)

) E
sin“®+ 2 cos* @
1

En plus des cinq paramétres indépendants, le module de cisaillement Gj, associ¢é au plan
d’isotropie, est donné a 1’équation (2.18), et le coefficient de Poisson v;; est donné a 1’équation

(2.19) (Jaeger et al., 2007).

G -—b (2.18)
2(1+v,)
E
v, =ETV” (2.19)

2.2.2.2 Modé¢le anisotrope équivalent

Le recours a la loi d’isotropie transversale pour déterminer 1’état de contraintes en fond de trou
nécessite en principe la connaissance de I’orientation des plans d’isotropie. Puisque 1’obtention
de cette donnée complexifie les essais en laboratoire a réaliser, une hypothése simplificatrice sur
les parametres de déformabilité est posée; le modele anisotrope équivalent est utilisé a cet effet.
Ce mode¢le fut initialement développé afin de tenir compte des hétérogénéités locales a 1’échelle
de la carotte : les hétérogénéités sont modelisées par la loi d’isotropie transversale dans le plan du
fond du trou (Corthésy, 1982). Dans le contexte de cette étude traitant de matériaux anisotropes,

le modele anisotrope équivalent conduit a I’hypotheése selon laquelle les parameétres de
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déformabilité dans le plan du fond du trou Ex, Ey, vxy correspondent aux parameétres principaux
Ei, E2, vi2. Sous cette hypothése, seule I’orientation de la trace des plans d’isotropie sur le plan
du fond du trou est connue. Les plans d’isotropie sont alors supposés soit paralléles a 1’axe du

forage, soit perpendiculaires lorsque Ex = Ey; le matériau est dans ce cas considéré isotrope.

En pratique, une hypothese simplificatrice supplémentaire est posée concernant les coefficients
de Poisson : vi =vj; =v. De plus, le module de cisaillement G, est exprimé par une relation
empirique donnée a 1’équation (2.20); cette relation fut proposée par Batugin et Nirenburg (1972)
bien que le module G; soit théoriquement indépendant des autres parametres de déformabilité.
Ainsi, le recours au modele anisotrope équivalent, avec ces deux hypotheses simplificatrices,

réduit a trois le nombre de parametres requis: E;, E,, v (Corthésy et al., 1993).

G, - EE, (2.20)
(El +E, + 2v12E2)

2.2.2.3 Détermination expérimentale des paramétres de déformabilité

La méthodologie actuelle la plus répandue pour déterminer les parametres de déformabilité
consiste a réaliser des essais en laboratoire sur les échantillons récupérés lors du relachement des
contraintes; la cellule doorstopper utilisée pour les mesures de contraintes in situ est réutilisée
lors des essais. Les parameétres sont ainsi déterminés en tenant compte des hétérogénéités locales
et des éventuels défauts de collage. Les essais suggérés par Corthésy (1982) sont revus dans cette

section.

Un essai de compression biaxiale isotrope non destructif est d’abord réalisé : une pression P est
appliquée uniformément sur la face courbe de I’échantillon récupéré. Les déformations
€0, €90-, €45., €135 Sont mesurées a 1’aide de la cellule doorstopper demeurée fixée a I’échantillon.
L’¢tat de déformations {exx, €yy, €xy} a D'extrémité de 1’échantillon est calculé par moindres
carrés selon la méthode de Panek (1966) présentée a la section 2.2.1. Les déformations
principales ¢, € et leur orientation f§ sont ensuite déterminées selon les équations (2.21) et
(2.22); la déformation €; correspond a la plus grande déformation en compression et 1’angle 3 est
mesur¢ entre les déformations €y et €. Suivant I’hypothése du mod¢le anisotrope équivalent,

I’orientation des déformations principales ¢y, ey correspond a celle des axes principaux
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d’anisotropie. A partir de la loi de comportement énoncée a 1’équation matricielle (2.15), les

équations (2.23) et (2.24) sont obtenues.

2

= (£ ;rsw) . \/( Exx ;ew) el (2.21)
tan(28) = 280 (2.22)

(5xx - gYY)

1
- P(E‘ VE_) 223)
1 2
P

g =—(1-v,) (2.24)

Un essai de compression diamétrale est ensuite réalisé : une pression P’ est appliquée sur deux
zones diamétralement opposées perpendiculairement aux plans d’isotropie; I’orientation de ceux-
ci est connue suite a 1’essai de compression biaxiale isotrope. Les déformations €., €90, €45., €135
sont également mesurées a 1’aide de la cellule doorstopper demeurée fixée a 1’échantillon. Les
déformations principales €;’, €y’ sont obtenues selon 1’équation (2.21); la déformation ey’ est en
tension. Cet essai permet d’obtenir une équation supplémentaire a partir de laquelle le coefficient
de Poisson v, est déterminé : 1’équation (2.25), avec le paramétre A défini a 1’équation (2.26), est
issue de simulations numériques réalisées en deux dimensions sous 1’hypothése de contraintes

planes; elle présente comme particularité¢ de ne pas dépendre directement de la pression P’.

. E,
Ae,, + E g (2.25)
Vy=—717""7—"7
—Em — A“L"l
-0,5146
223 B (2.26)
E,

Les paramétres E;, E;,v du modele anisotrope équivalent sont obtenus en résolvant

simultanément les équations (2.23), (2.24) et (2.25).

2.2.3 Facteurs de concentration de contraintes

L’obtention du tenseur des contraintes in situ a I’aide de mesures réalisées avec une cellule
doorstopper nécessite d’établir la relation entre les contraintes en fond de trou et les contraintes

in situ; le lien est effectué a I’aide de facteurs de concentration de contraintes (Leeman, 1964).
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Pour un matériau isotrope, les contraintes en fond de trou avant la saignée oxx, Oyy, Oxy sont
liées aux contraintes in situ Sxx, Svyy, Szz, Sxv, Sxz, Syz du méme référentiel a I’aide de trois
facteurs de concentration de contraintes indépendants A, B, C, selon I’équation matricielle (2.27)
(Rahn, 1984). Le facteur A relie deux contraintes de méme orientation; le facteur B relie une
contrainte en fond de trou a une contrainte in situ orthogonale; le facteur C relie une contrainte en
fond de trou a la contrainte in situ parall¢le a 1’axe du forage; le facteur impliquant la contrainte
oxy est une fonction des facteurs A et B. Les contraintes en fond de trou oxx, Oyy, Oxy sont
indépendantes des cisaillements impliquant la direction Z parall¢le au forage. Les facteurs de

concentration de contraintes sont des fonctions du coefficient de Poisson v.

SXX
Syy
Oxx A B C 0 0 O s
o, t=| B A C 0 0 0H #1 (2.27)
o 00 0 A-B 0 0 || Sv
XY S
XZ
Sy

Pour un matériau anisotrope ne présentant aucune symétrie, dix-huit facteurs de concentration de
contraintes indépendants relient les contraintes en fond de trou oxx, Oyy, Oxy aux contraintes in
situ Sxx, Svy, Szz, Sxv, Sxz, Syz du méme référentiel. Si le matériau est transversalement
isotrope, alors le nombre de facteurs indépendants est réduit a dix; ceux-ci sont donnés a
I’équation matricielle (2.28) (Borsetto et al., 1984; Rahn, 1984). Les indices des facteurs A, B, C
indiquent 1’orientation de la contrainte en fond de trou concernée. Les facteurs D, E, F, G
impliquent des contraintes en cisaillement. L’équation matricielle (2.27) est obtenue a partir de
I’équation (2.28) en posant Ax =Ay=A; Bx=By=B; Cx=Cy=C; D=A-B; E=F=G=0.
Pour les matériaux anisotropes, les facteurs de concentration de contraintes sont des fonctions du
degré d’anisotropie E;/E,, de I’orientation des axes d’anisotropie par rapport au forage et des
coefficients de Poisson vj, vi,. Si le forage est parallele au plan d’isotropie, les parametres
E, F, G sont nuls; le nombre de facteurs de concentration de contraintes indépendants est ainsi
réduit a sept. Si le forage est perpendiculaire au plan d’isotropie, le nombre de facteurs
indépendants est réduit a trois et I’équation matricielle (2.27) redevient valable. L’anisotropie est

considérée a I’échelle de la zone d’influence du relachement des contraintes.
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SXX

Syy
Oy AXBXCXOOFS
o, t=| B, A, C, 0 0 G | SZZ (2.28)
Oy 0 0 0 D E O X

S

XZ

SYZ

La détermination des facteurs de concentration de contraintes a d’abord été traitée a ’aide de
modeles physiques par certains auteurs : Bonnechere et Fairhurst (1968), Van Heerden (1969).
Ces travaux portent uniquement sur les matériaux isotropes. Des modéles numériques ont ensuite
été utilisés pour établir les facteurs; cette méthodologie est maintenant couramment employée.
Des relations empiriques ont ainsi pu étre établies pour décrire les facteurs de concentration de
contraintes pour les matériaux isotropes; les plus courantes sont celles de Rahn (1984). Ces
travaux ont également permis de déterminer les facteurs de concentration de contraintes pour
quelques configurations de matériaux anisotropes : seuls les cas ou le forage est strictement
paralléle ou perpendiculaire aux plans d’isotropie ont été étudiés. Pour ces cas, les facteurs sont

présentés sous forme de tableaux de valeurs, disponibles dans 1’article publié¢ par Rahn (1984).

2.2.4 Obtention du tenseur des contraintes in situ

La derniére étape de I’interprétation de mesures réalisées avec une cellule doorstopper consiste a
combiner les résultats obtenus avec 1 mesures pour déterminer les six composantes indépendantes
du tenseur des contraintes in situ Sxx, Syy, Szz, Sxy, Sxz, Syz. Les méthodes qui sont abordées
dans ce texte proposent de combiner les composantes de contraintes; les parameétres de
déformabilité utilisés pour calculer les contraintes en fond de trou oxxi, Oyyi, Oxyi peuvent varier
d’une mesure a I’autre. Ces méthodes se distinguent de la méthode proposée par Gray et Toews
(1967) qui consiste plutdét a combiner les déformations mesurées; le tenseur des contraintes est
ensuite obtenu en considérant des paramétres de déformabilité moyens. De meilleurs résultats ont
été observés avec les méthodes combinant les composantes de contraintes plutdét que les
déformations et ce, particuliecrement pour les matériaux hétérogenes (Cloix, 2010). La méthode

de Gray et Toews (1967) n’est donc pas abordée dans ce travail.
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2.2.4.1 Séquence de calculs

Pour chaque mesure, trois composantes de contraintes en fond de trou Oxxi, Oyyi, Oxyi sont
obtenues a partir de la loi de comportement du matériau et des déformations mesurées
€xxi» €YYi, €xvi, tel qu’expliqué a la section 2.2.2. L’équation (2.27) ou (2.28), selon la loi de
comportement du matériau, est ensuite inversée afin d’exprimer les contraintes in situ
Sxxi> Syvi, Sxyi (inconnues) en fonction des facteurs de concentration de contraintes (connus), des
contraintes en fond de trou Oxxi, Oyyi, Oxyi (connues) et des contraintes Szzi, Sxzi, Syzi
(inconnues) (Leeman, 1969). Un systéme a trois équations est ainsi obtenu pour chaque mesure;
il est présenté a 1’équation (2.29) pour les matériaux isotropes. Il s’agit d’un systeme indéterminé

puisqu’il comprend quatre inconnues (Sxxi, Syvi, Szzi» SXYi)-

Aoy, - Bo,, +C(B—A)SZZ[
SXXi = A2 —B2
g -Bo, +Ao,, +C(B-A)S, (2.29)
J Yy, = 5 3 .
A°-B
o
Syy = —2—
M A-B

La méthode d’obtention du tenseur des contraintes dite conventionnelle consiste & combiner au
minimum trois mesures et a résoudre le systéme de neuf équations ainsi pos¢; le nombre minimal
de mesures est expliqué ultérieurement (Leeman, 1969). Cette méthode présente un désavantage
particuliérement important pour les matériaux hétérogeénes : I’indétermination du systéme
d’équations propre a chaque mesure crée une dépendance entre les résultats (Cloix, 2010). Pour
pallier ce désavantage, la méthode dite RPR fait usage d’une information supplémentaire
disponible avec la lecture continue des jauges de déformations afin d’obtenir une quatriéme
équation par mesure; le systéme d’équations propre a chaque mesure devient alors déterminé et
les résultats sont indépendants (Corthésy et al., 1994). La méthode conventionnelle et la méthode
RPR sont détaillées dans cette section pour les matériaux isotropes; la généralisation aux

matériaux transversalement isotropes est présentée ultérieurement a la section 3.4.3.
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2.2.4.2 Généralités communes a la méthode conventionnelle et a 1a méthode RPR

Dans la suite, les référentiels locaux des forages F; sont appelés {Xi, Yi, Zi}, avec Z; les axes des
forages. Ils s’expriment en fonction du référentiel de base {X, Y, Z} selon 1’équation (2.30), avec

l;; les cosinus directeurs des axes X, Yi, Z; par rapport aux axes X, Y, Z.

X Ly L, I X
Yi = lzl lzz lz3 Y (2'30)
Z ln 132 132 4

Les contraintes Sxxi, Svvi, Szzi» Sxvi, Sxzi» Syzi dans le référentiel {Xj, Yi, Zi} s’expriment en
fonction des contraintes Sxx, Syy, Szz, Sxy, Sxz, Syz dans le référentiel {X, Y, Z} selon les regles
de rotation tensorielle; celles-ci sont énoncées a 1’équation matricielle (2.31) (Jaeger et al., 2007).
Ces relations sont notamment utilisées pour combiner différentes mesures en les exprimant dans

un méme référentiel.

S, llzli 1122,. 1123i 21,1, 21,1, 20,1 ( S )

XX

2 2 2
Sy, Ly, L, Ly, 2L, 1, 20,1y 21, 1y, Sy
SZZ: | _ 1321,. lszzi 1323,. 2131,132, 2131,133,. 2132,133,. ) Sz L (2.31)
Sx, by loly  lyls by +h,0, byl +hsl, Lyl +15 1, Sxr
Sxz, Lily, boly laly by +hy Ly by Ly + 1 by by Ly +155 1 Sz
S

Sy, ) bl loly Lyls Lyl +h,0y 0 by by +hsly Dyl 150, L7

La notation présentée a I’équation (2.32) est commune aux développements des deux méthodes
d’interprétation. Le vecteur colonne D regroupe les composantes de contraintes obtenues pour
chaque mesure 1; les cosinus directeurs correspondants, issus de 1’équation matricielle (2.31),
sont contenus dans la matrice J . Les dimensions du vecteur colonne D et de la matrice J sont
adaptées selon la méthode d’interprétation : 3i composantes sont a considérer pour la méthode
conventionnelle tandis que 4i composantes le sont pour la méthode RPR. Le tenseur des

contraintes S est représenté selon la notation de Voigt.

{l_)}(3i,4i)xl - [‘7](3i,4i)x6 {S}éxl (2.32)

Quelle que soit la méthode d’interprétation utilisée, la combinaison de plusieurs mesures entraine

la surdétermination du systéme (2.32). La méthode des moindres carrés, telle qu’énoncée a la
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section 2.2.1, est alors utilisée. L’erreur e; est définie comme étant 1’écart entre une composante
du vecteur colonne D (connue) et sa valeur théorique calculée & partir des contraintes
Sxx, Syy, Szz, Sxy, Sxz, Syz (inconnues). L’expression de I’erreur e; est donnée a I’équation

(2.33).
[r— 6 —
e.=D. - EJUSJ, (2.33)
j=1

Les contraintes Sxx, Syy, Szz, Sxy, Sxz, Syz qui minimisent la somme des carrés des erreurs e;
sont cherchées; les équations (2.5) a (2.9) s’appliquent par analogie. Le résultat est présenté sous
forme matricielle aux équations (2.34) a (2.36); le tenseur des contraintes S est obtenu en

inversant I’équation (2.34).

[K o6 {ST6a = (2.34)
[K]6x6 = [j]éx(3i,4i) [‘7](3i,4i)x6 (2-35)
{C}le = [7]:x(3i,4i) {D}(3i,4i)x1 (2'36)

2.2.4.3 Meéthode conventionnelle

L’obtention du tenseur des contraintes in situ a 1’aide de la méthode conventionnelle repose sur la

combinaison de systémes d’équations indéterminés. Une manipulation algébrique, proposée a

1’Ecole Polytechnique de Montréal, s’avére nécessaire : les contraintes partielles Sy , S,y » Sy

(connues) sont définies aux équations (2.37) a (2.39) ainsi que le paramétre P a 1’équation (2.40).

Le systeme (2.29) ainsi simplifié est présenté a I’équation (2.41).

— Aoy, -Boy,
SXX,- = W (237)
—  =Boy, +Aoy,
Syy, = —Azl— e ' (2.38)
_ o
P . (2.39)
WU A-B
5_C(B-4) (2.40)
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Sxxi = SXX,- + Szzi (2.41)
Sy, =Sy, +PS,,
Sy =S,

XY, XY,
Le systéme matriciel (2.32) est résolu par moindres carrés en inversant 1’équation (2.34), avec le
vecteur colonne D et la matrice J définis aux équations (2.42) et (2.43). Pour simplifier
I’écriture, seules les trois rangées associées a une mesure i sont présentées. De plus, seule la
premiére colonne de la matrice J est détaillée; les termes des autres colonnes sont développés

suivant la méme logique a partir des cosinus directeurs l;; de I’équation (2.31). Le vecteur colonne

D est constitué des contraintes partielles connues pour chaque mesure i.

gxx[ Sxx,. _PSZZ,.
(B} =1 Smo L) S Pom | (2.42)
3ix1 —
SXY, SXYi
1121,. - Pl321i
2 2
[7] — lZli _PZSI,- (243)
3ix6

lll,ZZIi

Lorsque deux mesures sont combinées, le rang de la matrice J vaut 5 (systéme indéterminé); il
vaut six lorsque trois mesures sont combinées (systeme déterminé) (Gray et Toews, 1967,
Bonnechere et Fairhurst, 1968). Ainsi, trois tenseurs bidimensionnels {Sxxi, Syyi, Sxyi} doivent
au  minimum étre combinés afin de déterminer le tenseur des contraintes

{Sxx, Syv, Szz, Sxv, Sxz, Syz}; 1 est donc au minimum compris entre 1 et 3.

2.2.4.4 Méthode RPR

Le rapport RPR (Recovered to Peak strain invariant Ratio) est défini a 1’équation (2.44); il
correspond au rapport entre I’invariant moyen de déformation récupéré et celui au pic. Le calcul
du rapport RPR est possible grace a la lecture continue des jauges de déformations avec la cellule
doorstopper modifiée. L hypothése selon laquelle il existe une relation entre le rapport RPR et le

Stress Ratio (SR), défini a I’équation (2.45), permet d’obtenir une information supplémentaire sur
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la contrainte Szz; paralléle a 1’axe du forage (Corthésy et al., 1994). Les relations dites SR-RPR

sont généralement déterminées par simulation numérique; elles sont contenues dans des abaques.

(Tl )récu péré
RPR = ~Zwerd (2.44)
(Il )pic
SRo_ 25z (2.45)
Sex + Sy

Un systéme a quatre équations est ainsi obtenu pour chaque mesure; il est présenté a 1’équation

(2.46) pour les matériaux isotropes; il s’agit d’un systéme déterminé.

( Aoy, -Bo,, +C(B-A)S,,
SXX, = l AZ’ _B? l
-Boy,, + Ao, +C(B-A)S,,
SYYi = ‘ Azl Bz ’
J - (2.46)
SR(S S
Szzi=f(RPR)= ( w? YY)
o
Se = 4

Le systéme matriciel (2.32) est résolu par moindres carrés en inversant 1’équation (2.34), avec le
vecteur colonne D et la matrice J définis aux équations (2.47) et (2.48); les simplifications
d’écriture pour les équations (2.42) et (2.43) s’appliquent. La manipulation algébrique impliquant
les contraintes partielles n’est pas nécessaire avec la méthode RPR pour les matériaux isotropes

puisque le systéme d’équations (2.46) propre a chaque mesure est déterminé.

L
= E

> (2.47)

1D} =)

IR
N

>
=
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7] -] & - (2.48)

4ix6

Avec la méthode RPR, deux mesures dans des forages orientés différemment suffisent a
déterminer le tenseur des contraintes S puisque le rang de la matrice J vaut six avec seulement
deux mesures; 1 est donc compris au minimum entre 1 et 2 (Corthésy et al., 1994). Le fait que
seules deux mesures dans des forages non paralléles soient nécessaires a 1’obtention du tenseur
des contraintes peut constituer un avantage de la méthode RPR dans certains cas. Il demeure
toutefois préférable de combiner plusieurs mesures lors de la détermination du tenseur moyen

d’une zone (Gray et Toews, 1967; Amadei et Stephansson, 1997).

2.3 Généralisation aux matériaux transversalement isotropes

A la lumiere du cadre théorique présenté, les développements nécessaires a la généralisation de
I’interprétation de mesures réalisées avec une cellule doorstopper sont soulignés dans cette

section; les objectifs spécifiques de I’étude en découlent.

Le comportement anisotrope du massif rocheux peut étre modélisé lors de la détermination de
I’état de contraintes en fond de trou: le modéle anisotrope équivalent proposé par Corthésy
(1982) peut étre utilisé a cet effet. Ce modele implique une hypothése simplificatrice concernant
les parametres de déformabilité. Il permet toutefois de tenir compte du comportement anisotrope
du massif rocheux, tout en limitant la complexité des essais en laboratoire requis. Le premier
objectif spécifique de ce travail vise a évaluer la justesse des contraintes en fond de trou calculées
a partir du mod¢le anisotrope équivalent et des essais en laboratoire qui lui sont associés; des
analyses seront notamment effectuées avec des matériaux transversalement isotropes présentant

des plans d’isotropie d’orientation quelconque.

Afin de généraliser aux matériaux transversalement isotropes 1’interprétation de mesures réalisées
avec une cellule doorstopper, les facteurs de concentration de contraintes adéquats doivent étre

déterminés. Certains ont ¢té proposés par Rahn (1984), mais ils sont limités aux degrés
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d’anisotropie E;/E; = {1,0; 1,5; 2,0; 3,0; 5,0}, aux coefficients de Poisson v = {0,00; 0,10; 0,20;
0,25; 0,30; 0,40} ainsi qu’aux configurations pour lesquelles le forage est strictement paralléle ou
perpendiculaire aux plans d’isotropie. Bien que cette derniére restriction soit compatible avec
I’hypothése découlant du modé¢le anisotrope équivalent, la constitution d’un ensemble de facteurs
de concentration de contraintes plus complet est souhaitable, notamment pour des degrés
d’anisotropie plus faibles. De plus, les équations (2.37) a (2.43), obtenues a partir de 1’équation
matricielle (2.27) pour des matériaux isotropes, doivent étre réécrites a partir de 1’équation
matricielle (2.28) pour des matériaux transversalement isotropes. L’hypothése selon laquelle le
forage est parall¢le aux plans d’isotropie permet de simplifier les équations obtenues puisque les
facteurs E, F, G sont nuls. Le deuxieme objectif spécifique de ce travail vise a évaluer I’impact de
la généralisation de la méthode conventionnelle aux matériaux transversalement isotropes sur la
justesse du tenseur des contraintes in situ détermingé; les résultats obtenus sous 1’hypothése

d’isotropie sont comparés a ceux obtenus avec la méthode généralisée.

Le troisiéme objectif spécifique de ce travail vise a généraliser la méthode RPR aux matériaux
transversalement isotropes. Pour atteindre cet objectif, les équations (2.46) a (2.48) doivent étre

adaptées, et les relations SR-RPR pour ce type de matériaux doivent étre développées.
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CHAPITRE3 METHODOLOGIE

La méthodologie répondant aux objectifs spécifiques fixés a la section 2.3 est présentée dans ce
chapitre. Le choix du support de travail est d’abord discuté. Le développement du modéele
numérique est ensuite détaillé. Enfin, la démarche suivie pour simuler une mesure de contraintes

et I’obtention du tenseur est expliquée.

3.1 Choix du support

Le recours a la simulation numérique est d’abord justifi¢ dans cette section, puis le choix du

logiciel de travail est expliqué.

3.1.1 Simulation numérique

La simulation numérique présente des avantages déterminants par rapport au modele physique
lorsqu’il s’agit de répondre a 1’objectif général fixé au Chapitre 1, soit celui de généraliser aux
matériaux transversalement isotropes I’interprétation de mesures réalisées avec une cellule
doorstopper pour la détermination du tenseur des contraintes in situ. Tout d’abord, de
nombreuses mesures de contraintes peuvent étre simulées dans un intervalle de temps limité. De
plus, les simulations réalisées sont exemptes d’erreurs expérimentales. Enfin, I’erreur intrinséque
a la méthode d’interprétation peut €tre évaluée directement puisque les contraintes mesurées
peuvent étre comparées aux contraintes qui prévalent dans le milieu; celles-ci sont connues dans

le cas des modéles numériques.

Un important jeu de données est ainsi produit et constitue la base des développements
subséquents. Les simulations numériques réalisées dans le cadre de ce travail sont faites a 1’aide
d’un processeur de type Intel Core 2 Duo cadencé a 2,4 GHz. La mémoire vive de 1I’ordinateur

utilis¢ est de type DDR3 avec 8 GB et 1067 MHz.

3.1.2 Choix du logiciel

Etant donné I’utilisation répandue en mécanique des roches du logiciel FLAC3D™ (Fast
Lagrangian Analysis of Continua in Three Dimensions) d’Itasca, un modéle FLAC3D™ est
construit pour simuler une mesure de contraintes avec une cellule doorstopper (Itasca, 2007). Des

vérifications ont toutefois révélé que le modéle FLAC3D™ n’est pas approprié au probléme
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étudi¢ puisque la linéarité des équations n’est pas préservée. Un modele COMSOL
Multiphysics® est donc construit; des vérifications similaires ont confirmé que ce logiciel est
mieux adapté (COMSOL, 2011). Les logiciels FLAC3D™ et COMSOL Multiphysics® sont
d’abord comparés succinctement dans cette section. Le modéle FLAC3D™ est ensuite
brievement décrit; le modéle COMSOL Multiphysics® est détaillé a la section 3.2. Enfin, les

principaux résultats menant au rejet du modele FLAC3D™ sont exposés.

3.1.2.1 Comparaison entre FLAC3D™ et COMSOL Multiphysics®

Les logiciels FLAC3D™ et COMSOL Multiphysics® ont en commun la discrétisation spatiale du
domaine étudié. Les sommets des éléments polyédriques divisant le domaine sont appelés neeuds,
et I’ensemble des ¢léments est appelé maillage. Les deux logiciels ont également en commun la
traduction du systéme d’équations aux dérivées partielles définissant le probléme en équations
plus simples reliant les déplacements nodaux (inconnus) aux forces nodales (connues); la
formulation des équations simplifiées distingue les deux logiciels. Le logiciel FLAC3D™ est basé
sur la formulation explicite des différences finies : les opérateurs différentiels du systéme initial
sont discrétisés par des différences finies a chaque nceud du maillage. Sans entrer dans les détails,
le logiciel FLAC3D™ est optimisé pour la résolution de problémes non-linéaires. Le logiciel
COMSOL Multiphysics®, quant a lui, est bas¢ sur la méthode des éléments finis: une
formulation matricielle est posée pour remplacer le systéme initial. La résolution des équations
simplifiées implique une démarche itérative dans les deux cas; la méthode employée pour faire

converger la solution différe cependant d’un logiciel a I’autre.

3.1.2.2 Présentation du modéle FLAC3D™

La géométrie du modele FLAC3D™ est similaire a celle du modéle COMSOL Multiphysics®
présentée a la section 3.2.1. Les dimensions extérieures sont toutefois réduites a 600 mm afin de
limiter le nombre d’éléments et d’ainsi diminuer les temps de calcul. Le modéle FLAC3D™ est
compos¢ d’un matériau transversalement isotrope tel qu’expliqué a la section 3.2.2. La base du
modele FLAC3D™ est fixée verticalement. Les contraintes in situ sont initialisées dans tous les
¢léments du modele; elles sont par la suite appliquées sur les frontiéres, a I’exception de la base
qui est fixée. Le maillage est généré par le mailleur de FLAC3D™. Contrairement a celui du

modele COMSOL Multiphysics®, il s’agit d’un maillage structuré composé d’éléments
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tétraédriques au sein desquels les déplacements varient linéairement tandis que les déformations
et les contraintes sont constantes. Le maillage comprend 420 000 ¢léments; sa nature structurée
explique la différence considérable entre le nombre d’¢léments des modeles FLAC3D™ et
COMSOL Multiphysics®. La Figure 3-1 illustre une section du maillage au fond du trou pilote.
Les dimensions sont données en millimetres et correspondent aux coordonnées du modele

FLAC3D™.

-300 0 38 300
‘ - - 300

Anneau excavé

pendant la saignée
- 38
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Y

A

L > X ~ =300

Figure 3-1 : Section du maillage structuré du modele FLAC3D™ au fond du trou pilote.

3.1.2.3 Rejet du modele FLAC3D™

Puisque le matériau modélisé est homogene et que la loi de comportement utilisée est €lastique
linéaire, le principe de superposition linéaire s’applique au probléme étudié : la déformation € en
un point, selon une certaine direction et associée a un chargement S est équivalente a la somme
des déformations & au méme point, selon la méme direction et associées a des chargements S;,

avec 2S; = S.
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Le principe de superposition linéaire est vérifi¢ en comparant la courbe de récupération du
chargement S = {-10; -20; -30; 0; 0; 0} MPa a la combinaison linéaire des courbes de
récupération des chargements unitaires correspondants; 1’équation (3.10), introduite a la section
3.3.1, est appliquée. L’ obtention des courbes de récupération est expliquée a la section 3.3.1. Le
chargement S est appliqué sur un matériau transversalement isotrope avec E; =40 GPa;
E, =20 GPa; v=0,20 et d=0° la définition d’un matériau transversalement isotrope est
expliquée a la section 3.2.2. La comparaison, présentée a la Figure 3-2, montre que le principe de

superposition linéaire n’est pas respecté dans le modele FLAC3D™.

La linéarité des équations est également vérifiée en comparant 1’invariant de déformations au pic
obtenu avec une ou plusieurs étapes d’excavation. La comparaison, également présentée a la
Figure 3-2, montre que le nombre d’étapes d’excavation a une influence sur 'invariant de

déformations, contrairement au résultat attendu.
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- ..1 L |
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——{-1,0,0,0,0,0} MPa —*={0,-1,0,0,0,0} MPa
—&—0,0,-1,0,0,0} MPa —{-10,-20,-30,0,0,0} MPa
—e—Combinaison linéaire X {-10,-20,-30,0,0,0} MPa 1 étape

Figure 3-2 : Combinaison linéaire de courbes de récupération — modele FLAC3D™.
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Etant donné les résultats présentés a la Figure 3-2, le modéle FLAC3D™ est rejeté. Le logiciel
COMSOL Multiphysics® est préféré a FLAC3D™ puisque le principe de superposition linéaire
est vérifi¢ avec le modele construit; ce point est justifié a la section 3.2.5.2. Ce choix
méthodologique est spécifique au cas étudié : il ne doit étre généralisé sous aucun prétexte sans
qu'une ¢étude comparative exhaustive ne soit réalisée. Une telle étude impliquerait notamment
’utilisation d’un maillage commun. Elle tenterait également d’expliquer 1’écart observé entre les
courbes de récupération présentées aux Figures 3-2 et 3-9, toutes deux obtenues avec le méme
matériau et le méme chargement S. Le recours a des fonctions avancées des deux logiciels ainsi
qu’une comparaison avec un modele physique pourraient s’avérer nécessaires, ce qui dépasse le

cadre de ce travail.

3.2 Présentation du modele

Les caractéristiques du modele COMSOL Multiphysics® permettant de simuler une mesure de

contraintes avec une cellule doorstopper sont présentées ci-apres.

3.2.1 Géométrie

Le mode¢le consiste en un cube de 1000 mm de c6té. Il est congu pour simuler la mesure de
contraintes dans un forage de type NX. Le diametre extérieur d’un tel forage est de 75,7 mm et le
diametre de la carotte est de 54,7 mm (Hunt, 2005). Ainsi, dans le plan perpendiculaire a I’axe du
forage, les frontieres du modele sont situées a plus de six fois le diamétre du forage de part et
d’autre de celui-ci et I’aire occupée par le forage représente 0,5 % de ’aire totale du modele dans
ce plan. Le modé¢le permet de simuler une saignée de 160 mm, soit plus de deux fois le diametre
du forage, afin d’assurer le relachement complet des contraintes. La longueur du trou pilote est
¢gale a six fois le diametre du forage afin d’assurer la stabilité des facteurs de concentration de
contraintes (Leite et Corthésy, 2001). Lors de la simulation d’une mesure de contraintes, les
déplacements sont relevés aux points appelés jauges virtuelles. Ces points sont situés au fond du
trou pilote; ils sont espacés de 45° sur la circonférence d’un cercle de rayon de 10 mm centré au
milieu de la carotte, ce qui correspond a la longueur des jauges actives des cellules doorstopper
disponibles commercialement. Une coupe bidimensionnelle du mode¢le est présentée a la Figure
3-3; la géométrie et la numérotation des jauges virtuelles sont illustrées a la Figure 3-4. Les

dimensions des deux figures sont données en millimétres. Dans la suite, le référentiel du modele
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sera noté¢ {X,Y, Z}, le forage étant orienté¢ selon 1’axe Z. La déformation en fond de trou ¢,

correspond a celle selon ’axe X.
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Figure 3-3 : Coupe bidimensionnelle du modele COMSOL Multiphysics®.
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Figure 3-4 : Géométrie et numérotation des jauges virtuelles.

3.2.2 Matériau

3.2.2.1 Axes d’orthotropie

Le mod¢le est composé d’un matériau homogene ayant un comportement ¢€lastique, linéaire et
orthotrope. L’ orthotropie du matériau est réduite a une isotropie transversale en imposant un plan
d’isotropie. Les axes d’orthotropie sont définis dans le référentiel {x;, x», X3}, XX, étant le plan
d’isotropie. L axe x3 (la normale au plan d’isotropie) est défini par sa direction p et sa plongée 0,

tel qu’illustré a la Figure 3-5.



30

Plan XY :

3projection

. L. 2projection
Vue isométrique :

Figure 3-5 : Définition du référentiel {x;, Xz, X3}.

Les cosinus directeurs liant le référentiel {x, x», x3} au référentiel {X, Y, Z} sont établis en

imposant arbitrairement que x; soit contenu dans le plan XY ; ils sont donnés a 1’équation (3.1).

X, cos —sinp 0 X
X, |=| sindsinp sindcosp —cosd Y (3.1
X, cosdsinp cosdcosp  sind /

Afin de simplifier la suite, 1’angle p est fixé a 0 degrés; tous les cas peuvent de toute maniere étre
reproduits en effectuant une rotation appropriée du tenseur des contraintes. En effet, si S est le
tenseur des contraintes dans le référentiel {X, Y, Z} et que S; est le tenseur des contraintes dans
le référentiel {Xi, Yi, Z;} ayant subi une rotation de p dans le plan XY, S et S; sont liés par

I’équation (3.2).



!

XX,
XY;

XZ;

3.2.2.2

31

T

Sxy, Sxz, cosp -sinp 0 || Sy Sy Sy || cosp —sinp 0
v Sy, ¢=| sinp cosp 0 Sev Sy Sy, sinp cosp O (3.2)
72 7z, 0 0 1 Sv: Sy, Sy 0 0 1

Parameétres de déformabilité

Les parametres de déformabilité du matériau transversalement isotrope sont définis dans le

référentiel {x, X2, X3} de la maniére suivante :

3.2.3

Le module de Young E; est associ¢ au plan d’isotropie Xx;x, tandis que le module de

Young E; est associ¢ a I’axe xs.

Le module de cisaillement G;, donné a 1’équation (2.18), est associé¢ au plan d’isotropie
x1X; tandis que le module de cisaillement G, est associé aux plans x;x3 et x,x3. Bien que
ce module soit indépendant des autres parametres de déformabilité, il est fixé en faisant
appel a la relation empirique proposée par Batugin et Nirenburg (1972) présentée a

I’équation (2.20).

Le coefficient de Poisson dans le plan d’isotropie (V= Vxix2=Vx2x1) de méme que le
coefficient de Poisson associ¢ a un chargement dans le plan d’isotropie et une

déformation normale a ce plan (V12 = Vxix3 = Vx2x3) sont assignés a une méme valeur v.

Conditions aux frontiéres et conditions initiales

Pour contraindre un probléme en trois dimensions, des translations selon au moins trois directions

doivent étre fixées ainsi que des rotations autour d’au moins deux axes. Trois scénarios sont

envisages :

Contraindre par un ressort la translation des six faces du modé¢le selon la direction de leur

normale et appliquer des forces sur chacune des six faces;

Bloquer la translation de trois faces du mode¢le selon la direction de leur normale et

appliquer des forces sur les trois autres faces du mod¢le;

Bloquer les six faces du mod¢le en translation et en rotation et initialiser le tenseur des

contraintes dans tous les éléments du modele.
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Le massif rocheux étant considéré immobile par rapport a 1’échelle de la mesure simulée, le
troisieéme scénario est retenu. Le premier scénario n’est pas adapté au probléme étudié puisque les
frontiéres extérieures se déforment lors de D’application de chargements en cisaillement. Le
deuxiéme scénario entraine une distorsion dans la distribution des contraintes lorsque les

contraintes principales ne sont pas alignées avec les axes d’orthotropie.

Suite a I’initialisation du tenseur des contraintes au sein du mode¢le, la distribution des contraintes
a I’équilibre est calculée apres chaque étape d’excavation. Le tenseur des déformations ainsi que
les déplacements sont initialisés a zéro avant le forage du trou pilote. Selon la convention de
signes utilisée par COMSOL Multiphysics®, la compression est négative, la tension est positive,
et un cisaillement est positif s’il est orient¢ dans le sens positif de 1’axe sur une face positive

(dont la normale est orientée dans le sens positif de 1’axe).
3.2.4 Maillage

3.2.4.1 Description du maillage

Le maillage est généré par le mailleur de COMSOL Multiphysics®. Il s’agit d’un maillage
non structuré composé¢ d’éléments tétraédriques T10 (a dix nceuds). Au sein de ce type
d’¢léments, les déplacements varient de maniere quadratique ce qui implique que les
déformations et les contraintes varient linéairement. Les déplacements sont calculés aux nceuds
des ¢léments tandis que les déformations et les contraintes sont calculées aux points d’intégration

de Gauss.

Le maillage non structuré est régénéré a chaque étape d’excavation. Il comprend entre 34 000 et

45 000 ¢éléments, selon la géométrie. I1 est contraint par les paramétres suivants :
- Taille maximale d’un élément : 100 mm, soit un dixiéme d’une aréte du mod¢le;
- Taux de croissance maximal entre les éléments : 1,4;

- Rapport entre la taille maximale d’¢léments sur des frontiéres courbes et le rayon de

courbure de ces frontiéres: 0,3;
Deux parametres supplémentaires contraignent le maillage dans la zone d’intérét :

- Le nombre d’¢léments sur la frontieére de la carotte au fond du trou pilote est fixé a 32.
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Un cylindre de rayon égal a la dimension des jauges virtuelles (10 mm) est créé afin
d’uniformiser et de densifier le maillage dans cette zone. Le nombre d’¢léments sur la

frontiére de ce cylindre au fond du trou pilote est également fixé a 32.

La Figure 3-6 illustre le maillage au fond du trou pilote. Les dimensions sont données en metres

et correspondent aux coordonnées du modele COMSOL Multiphysics®.

0.48 0.5 0.52

Anneau excavé
pendant la saignée

Carotte

Cylindre de rayon
¢gal aux longueurs

des jauges virtuelles 0.48

Figure 3-6 : Maillage au fond du trou pilote.

3.2.4.2 Evaluation de la précision du maillage

La précision du maillage est d’abord évaluée dans la zone des jauges virtuelles. Un chargement
uniforme est appliqué a un matériau isotrope, puis I’écart relatif entre exx et eyy est évalué. Un
écart relatif de moins de 1% est jugé acceptable. L’ajout des parametres contraignant et

densifiant le maillage dans la zone d’intérét permet d’atteindre la précision souhaitée.

La précision du maillage est ensuite évaluée en comparant la distribution des contraintes autour

du trou pilote a celle prévue par les équations analytiques proposées par Kirsch (1898). Ces
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équations décrivent la distribution des contraintes autour d’une excavation cylindrique dans un
matériau homogene, isotrope et ¢élastique lin€aire sous 1’hypothése de déformations planes. Elles
sont énoncées ci-dessous en coordonnées cylindriques avec a le rayon du forage, r la distance

radiale a partir du centre du forage et 6 I’angle entre le rayon r et I’axe X.

( 2 2 4
Orr=(SXX+S ) 1_a_2 +(M) 1—461—2+3a—4 cos26
2 2 r r

4
O, = (SXX+S ( a_z) (1+3 )COSZH (3.3)
r
a
l"

4
o, = (M)(l +2—-3— )sm 26
2 rt

La comparaison avec les équations de Kirsch est réalisée le long de deux droites alignées

A

respectivement selon les axes X et Y. Afin que I’hypothése de déformations planes soit valable,
ces droites sont situées a mi-hauteur du trou pilote. Le chargement suivant est appliqué sur un
matériau isotrope : {-10; -20; 0; 0; 0; 0} MPa. La comparaison, présentée aux Figures 3-7 et 3-8,
est jugée satisfaisante et justifie notamment la résolution du rayon de courbure du maillage.

L’abscisse de ces graphiques correspond a la distance au centre du mod¢le.

Le maillage est aussi évalué selon la précision du RPR. Pour un chargement donné, une valeur de
référence est calculée en portant a environ 90000 le nombre d’¢léments du modele.
L’augmentation du nombre d’éléments est obtenue en diminuant le taux de croissance maximal
entre les éléments a 1,2. L’ écart relatif entre cette valeur de référence et le RPR calculé avec le
maillage décrit a la section 3.2.4.1 (avec un taux de croissance maximal de 1,4) est inférieur a

0,5 %, ce qui est jugé acceptable.
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Figure 3-7 : Comparaison avec les équations de Kirsch selon I’axe X.
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Figure 3-8 : Comparaison avec les équations de Kirsch selon I’axe Y.

3.2.5 Validation du modéle

3.2.5.1 Validation des déformations récupérées

Les déformations récupérées données par le modele sont validées en vérifiant qu’il y a
effectivement une correspondance avec les contraintes en fond de trou avant la saignée. Ces

derniéres sont inconnues en pratique, mais sont ici connues grace au recours a la simulation
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numérique. Le chargement {-10;-20;-30;0;0;0} MPa est appliqué sur un matériau

transversalement isotrope avec E; =40 GPa; E; =20 GPa; v =0,20 et d = 0°. Les contraintes et

les déformations données par le modele aux jauges virtuelles avant et apres la saignée sont

présentées au Tableau 3-1.

Tableau 3-1 : Contraintes et déformations aux jauges virtuelles pour le cas de validation.

Etapes oxx(MPa) | ovy(MPa) | 072(MPa) | exx(ndef) | evy (ndef)
Conditions initiales -10,0 -20,0 -30,0 0 0

Saignée de 0 mm 6,1 -14,6 0,0 225 38
Saignée de 160 mm 0,0 0,0 0,0 0 800

Tel qu’attendu, la saignée provoque un relachement complet des contraintes. Les déformations
récupérées, telles que mesurées en pratique, sont obtenues en soustrayant les déformations
engendrées par le forage du trou pilote (saignée de 0 mm) a celles données suite a la saignée de
160 mm. Pour le cas étudié, les déformations récupérées sont les suivantes : exx =-225 udef et
eyy =762 udef. A I’aide des équations d’isotropie transversale, les contraintes suivantes sont
calculées a partir de ces déformations : oxx =-6,1 MPa; oyy = 14,6 MPa. Celles-ci correspondent

effectivement a I’inverse des contraintes en fond de trou avant la saignée données par le mode¢le.

3.2.5.2 Validation du principe de superposition linéaire

Le principe de superposition lin€aire est vérifié en comparant les courbes de récupération du
chargement {-10; -20; -30; 0; 0; 0} MPa a la combinaison linéaire de courbes de récupération des
chargements unitaires correspondants. L’obtention des courbes de récupération est détaillée a la
section 3.3.1. Le méme matériau que celui de la section ci-dessus est utilisé. La comparaison,
présentée a la Figure 3-9, montre que la linéarité des équations est respectée dans le modele
COMSOL Multiphysics®. Le principe de superposition linéaire peut donc étre utilis€ pour

générer des courbes de récupération pour différents chargements.

La linéarité des équations est également vérifiée en comparant 1’invariant de déformations au pic
obtenu avec une ou plusieurs étapes d’excavation. La comparaison, présentée a la Figure 3-9,

montre que I’invariant de déformations est indépendant du nombre d’étapes d’excavation.
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Figure 3-9 : Combinaison linéaire de courbes de récupération.

3.2.5.3 Validation de la taille du modéele

La taille du mod¢le est validée en vérifiant que la zone d’influence du forage soit contenue a
I’intérieur des frontieres du modele. L’écart relatif entre les contraintes initiales et celles aux
frontieres suite a la saignée est inférieur a 2 % en tous points et le plus souvent inférieur a 1 %, ce

qui est jugé acceptable.

3.3 Simulation de mesures de contraintes

A T’aide du modéle COMSOL Multiphysics®, des saignées avec une cellule doorstopper sont
simulées. Les essais en laboratoire permettant la détermination des parameétres de déformabilité
nécessaires au calcul des contraintes sont également simulés. Ces simulations sont détaillées dans

cette section, de méme que ’interprétation des résultats.
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3.3.1 Simulation de saignées

Les déplacements sont relevés aux jauges virtuelles pendant la saignée; les déformations sont
ensuite calculées a partir des déplacements enregistrés. Les calculs nécessaires a I’obtention des

déformations sont présentés dans cette section, puis I’ensemble des saignées simulées est précisé.

3.3.1.1 Calcul des déformations engendrées par une saignée

La saignée est simulée en 28 étapes, appelées étapes d’excavation : de 0 a 30 mm par pas de
2 mm, puis de 30 a 160 mm par pas de 10 mm. Les déplacements sont relevés aux jauges
virtuelles apres le forage du trou pilote, puis apreés chaque étape d’excavation. En pratique, seuls
les déplacements dus a la saignée sont enregistrés par une cellule doorstopper. Par conséquent,
les déplacements donnés par le modele apres le forage du trou pilote sont soustraits de ceux
relevés apreés chaque étape d’excavation. Les déplacements selon X et Y ainsi réinitialisés sont

notés respectivement u; et vi; 1’indice 1 correspond a la numérotation de la Figure 3-4 (i=1 a 8).

N

Tel qu’illustré a la Figure 3-4, les jauges virtuelles reproduisent une rosette a quatre jauges. A
partir des déplacements u; et vj, les déformations axiales des jauges virtuelles sont calculées selon
les équations (3.4) a (3.7), ou L est la longueur initiale des jauges (10 mm). Aux équations (3.6)

et (3.7), la longueur totale des jauges virtuelles suite aux déplacements est explicitement calculée.

g ="l (3.4)
L
o =2 (3.5)
L L F (L L ’
\/((2cos45°+u8)—(2cos225°+u4)) +((zsin45°+vg)—(2sin225°+v4)) -L (3.6
450 = 7
L L F (L L ’
(cosl35°+u6)—(cos315°+u2) + (sin135°+v6)—(sin315°+vz) -L
2 2 2 2 3.7
€130 = i3

Le premier invariant du tenseur des déformations I, est défini comme étant la somme des
déformations selon trois directions orthogonales. L’invariant I; dans le plan XY en fonction des
déformations mesurées aux jauges est donné a 1’équation (3.8); sa moyenne est calculée a

I’équation (3.9).
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I, =€ + &gy = €450 + €350 (3.8)

= €yt Egp T E40 T E 100
7 =20 90 245 135 (3.9)

1

Une courbe de récupération est produite en tragant la moyenne des invariants I, ou les

déformations €., €90, €45. €t €135 en fonction de la saignée. Des courbes de récupération ainsi

obtenues sont présentées a la Figure 3-9. Les étapes d’excavation y sont notamment illustrées.

3.3.1.2 Simulation de saignées pour des chargements unitaires

Des saignées sont simulées pour les combinaisons suivantes : E;/E, = {1,00; 1,25; 1,50; 2,00},
v =1{0,00; 0,10; 0,20; 0,30; 0,40} et 0&=1{0;21;30;38;45;60;90}°. L’ensemble de ces
combinaisons est considéré comme étant un échantillon représentatif et suffisamment varié. Le
choix des angles & est expliqué a la section 3.4.2.4. La variation d’angle 0 ne s’applique pas aux
matériaux isotropes (Ei/E; = 1,00). Chaque combinaison de parametres est appelée dans la suite
configuration. Au total, 110 configurations sont considérées. Pour chaque configuration, des
saignées sont simulées pour les quatre chargements unitaires suivants : {-1; 0; 0; 0; 0; 0} MPa,
{0;-1; 0;0; 0; 0} MPa, {0;0;-1;0;0; 0} MPa et {0;0;0;-1;0;0} MPa. De plus, pour les
configurations ou 0 est différent de 0° ou de 90°, les saignées pour les chargements unitaires
{0;0; 0; 0; -1; 0} MPa et {0; 0; 0; 0; 0; -1} MPa sont également simulées. Au total, 500 saignées
sont simulées. Pour chacune de ces saignées, les déformations €., €90, €45, €135 sont calculées
pour chaque étape d’excavation; 2000 courbes de récupération sont ainsi produites. A titre
d’exemple, les Figures 3-10 et 3-11 présentent les déformations &g, €90, €45, €135. enregistrées
pendant les saignées avec les six chargements unitaires pour le matériau suivant : E; = 35 GPa;

E, =28 GPa; v=0,00 et d = 30°. La Figure 3-11 reprend la partie centrale de la Figure 3-10.

Etant donné la linéarité du probléme illustrée a la section 3.2.5.2, les courbes de récupération
pour un chargement S (Cs) sont produites par combinaison linéaire des courbes de récupération

pour les chargements unitaires, tel qu’indiqué a 1’équation (3.10) ou le tenseur S est en MPa.

C,=5,,C
+5,,C

{0;0:0;-1,0,0}MPa

+3,,C

{0:-1;0:0:0;0} MPa

+35,,C

{0;0;0;0;0;-1}MPa

+ SZZC{O;O;—1§01090}MP“ (3 10)

{-1;0:0:0;0:0}MPa

+5,,C

{0;0:0,0;-1;0}MPa
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Figure 3-10 : Courbes de récupération enregistrées pendant une saignée.
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Figure 3-11 : Courbes de récupération enregistrées pendant une saignée (zoom).
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3.3.2 Détermination des paramétres de déformabilité

Les essais nécessaires a la détermination des parameétres de déformabilité du modele anisotrope
équivalent sont reproduits par simulation numérique. Les modéles COMSOL Multiphysics®
utilisés sont dérivés du modele présenté a la section 3.2, appelé dans la suite modele principal. 1ls

sont décrits dans cette section, puis les parametres de déformabilité obtenus sont donnés.
3.3.2.1 Simulation de ’essai de compression biaxiale isotrope

3.3.2.1.1 Presentation du modele

La géométrie de la carotte du modele principal est utilisée, incluant les jauges virtuelles. Les
parametres du maillage sont également conservés, notamment la densification autour des jauges
virtuelles. Ce modele comprend environ 5000 éléments. L’implémentation du matériau
transversalement isotrope demeure la méme. Les conditions aux frontiéres et les conditions
initiales sont modifiées afin de simuler la compression biaxiale isotrope de la carotte. Pour
contraindre les translations selon X et Y ainsi que les rotations autour de ces axes, les droites
formées par I’intersection de la face courbe de la carotte et des plans XZ et YZ sont bloqués
respectivement selon Y et X. Ainsi, la carotte est forcée de se déformer selon une ellipse dont les
axes principaux demeurent alignés selon X et Y. Cette restriction refléte la réalité lorsque
I’intersection entre les plans d’isotropie et le fond du trou est orientée selon X ou Y (p =0° ou
90°). Pour contraindre la translation selon Z, les déplacements de la face opposée a celle des
jauges virtuelles sont bloqués selon Z. Une pression P de 10 MPa est appliquée uniformément sur

la face courbe de la carotte. Les déplacements sont relevés aux jauges virtuelles.

3.3.2.1.2 Validation du modeéle

L’interprétation de 1’essai de compression biaxiale isotrope suppose une distribution uniforme
des contraintes au sein de la carotte. La validité de cette hypothése dans le modéle est vérifiée en
simulant un essai sur un matériau transversalement isotrope avec E; =36 GPa; E, =24 GPa;
v=0,30 et d=30°. L’écart relatif entre la pression appliquée sur la carotte et les contraintes

relevées aux jauges virtuelles est effectivement de 0,01 %.

Les relations contraintes-déformations de 1’essai de compression biaxiale isotrope, énoncées aux

équations (2.23) et (2.24), sont également vérifiées. Pour ce faire, les parametres de déformabilité
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dans le plan XY sont exprimés en fonction de ceux liés aux axes principaux d’orthotropie selon
les équations (2.16) et (2.17). Ces relations sont présentées aux équations (3.11) a (3.14) pour le

cas particulier ou I’axe X est contenu dans le plan d’isotropie (p = 0°).

E,-E (3.11)
E,=—— Bk : (3.12)
E,sin” (90 - 6)+ E, cos® (90 - 6)
Ve =V (3.13)

EZ

—V

E, (3.14)
Viy = .

sin®(90-6)+ &cosz (90-9)

1

Avec le matériau utilis€ précédemment, les parametres suivants sont obtenus : Ex =36 GPa;
Ey =26 GPa; vxy = 0,30 et vyx = 0,22. A partir des équations (2.23) et (2.24), les déformations
suivantes sont calculées : ey =-194 udef, & =-299 udef. Celles-ci correspondent effectivement

aux déformations €. et €q9¢. calculées a partir des déplacements relevés aux jauges virtuelles.
3.3.2.2 Simulation de I’essai de compression diamétrale

3.3.2.2.1 Presentation du modele

La géométrie de la carotte est dérivée du modele principal, mais sa hauteur est diminuée afin
d’étre égale au diametre (H/D = 1). Cette modification sera justifiée a la section 3.3.2.2.2. Une
zone sous-tendue par un angle o de 2,5° de part et d’autre du diamétre aligné selon Y est créée.
Les parameétres du maillage non structuré sont conservés. Le modéle comprend environ 24 500
¢léments. L’implémentation du matériau transversalement isotrope demeure la méme. Les
conditions aux frontiéres et les conditions initiales sont modifi¢es afin de simuler la compression
diamétrale de la carotte. Tel que pour le modele simulant la compression biaxiale isotrope, les
droites formées par I’intersection de la face courbe de la carotte et des plans XZ et YZ sont
bloquées respectivement selon Y et X. Pour contraindre la translation selon Z, des conditions aux
frontiéres de type ressort sont appliquées aux extrémités de la carotte. La constante de rigidité¢ de
ces ressorts est fixée a 1 kN/m'm?, ce qui est jugé suffisamment petit par rapport a la contrainte

appliquée diamétralement, et donc représentatif des conditions de I’essai. Une pression P’ de
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1 GPa est appliquée uniformément sur les zones diamétralement opposées sous-tendues par un
angle 2o de 5°. Les déplacements sont relevés aux jauges virtuelles. La Figure 3-12 illustre le
maillage du mode¢le. Les dimensions sont données en metres et correspondent aux coordonnées

du modele COMSOL Multiphysics®.
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Figure 3-12 : Maillage du mode¢le simulant I'essai de compression diamétrale.

3.3.2.2.2 Validation du modele

Contrairement a 1’essai de compression biaxiale isotrope, la distribution des contraintes est
variable dans le plan perpendiculaire a 1’axe de la carotte lors de 1’essai de compression
diamétrale. Cette caractéristique est illustrée a I’aide d’un exemple : un essai de compression
diamétrale est simulé sur un matériau isotrope avec E; =30 GPa; E; =30 GPa et v=0,30. Les
coefficients de variation des contraintes Oxx et Oyy aux jauges virtuelles sont respectivement de

6 % et 5 %; ces derniers correspondent au rapport de 1’écart-type sur la moyenne des contraintes
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Oxx et Oyy relevées aux jauges virtuelles et au centre de la carotte (points 0 a 8 de la Figure 3-4).
La distribution des contraintes oxx et Oyy le long du diamétre de la carotte parallele a I’axe X est
présentée a la Figure 3-13. Bien que la variabilité des contraintes au centre de I’éprouvette soit
ainsi mise en évidence, les données relevées aux jauges virtuelles dans la suite sont considérées

représentatives de 1’état de contraintes au centre de la carotte.

x 108
. | |
02 1 N
I I
0:1 | |
I I
0 = I I
I I . . .
' N N | Dimension des / .
o N | | | jauges virtuelles | .7
= -0.2 + e .
<v ‘. o0
Pl % BN FA
[ \ | > <y
C _0.4 - \ L R -
S O | | %
0.5 | \ ' ' oy .
.5 | | -/
0.6 F \ : : / .
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Figure 3-13 : Distribution diamétrale des contraintes - essai de compression diamétrale.

La distribution des contraintes obtenue lors de la simulation de 1’essai de compression diamétrale
est comparée a celle prévue par les équations analytiques du modele d’interprétation usuel
(Hondros, 1959). Ces équations décrivent les contraintes dans le plan perpendiculaire a 1’axe de
la carotte pour un matériau homogene, isotrope et ¢lastique linéaire; elles sont indépendantes du
coefficient de Poisson ainsi que du rapport H/D, en autant que celui-ci engendre des conditions
de contraintes planes (H/D petit) ou de déformations planes (H/D grand). Sous ces hypotheses, la

distribution des contraintes est constante le long de 1’axe de la carotte. La solution particuliere le
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long de I’axe X (perpendiculaire a la compression diamétrale) est présentée aux équations (3.15)
et (3.16) et illustrée a la Figure 3-13. La solution particuliére le long de I’axe Y (parall¢le a la
compression diamétrale) est présentée aux équations (3.17) et (3.18). Les équations sont énoncées
en coordonnées cylindriques avec R le rayon de la carotte, r la distance radiale a partir du centre

de la carotte et 2a. I’angle sous-tendant la zone d’application de la compression diamétrale P’.

rr=2aP' . 4r*/R? 2 (3.15)
4 (1+r2/R2)
GOm0l 4 (3.16)
4 (1+r2/R2)
2aP' 4
_ - (3.17)
R ( (1+r2/R2)]
%=¥ (3.18)

La solution particuliére au centre de la carotte (r = 0) est donnée aux équations (3.19) et (3.20). A

cet endroit, la contrainte en tension est maximale.

2aP'
o= (3.19)
T
6aP'
= (3.20)
T

Avec P’ =1GPa et o =2,5° la contrainte en tension (Oxx) au centre de 1’éprouvette est de
27,8 MPa et celle en compression (Oyy) est de -83,3 MPa (pour le matériau isotrope avec
E; =30 GPa; E; =30 GPa et v = 0,30); le rapport oxx/oyy vaut donc 0,33. La solution analytique
au centre de la carotte est comparée avec les contraintes Oxx et Oyy ainsi qu’avec le rapport
oxx/0Oyy le long de I’axe de la carotte. L’influence du coefficient de Poisson et du rapport H/D est
également vérifiée. La comparaison est présentée aux Figures 3-14 a 3-16. Sur ces graphiques, la

coordonnée axiale 0 mm correspond a la face opposée aux jauges virtuelles.
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Figure 3-14 : Distribution axiale de la contrainte oxx - essai de compression diamétrale.
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Figure 3-15 : Distribution axiale de la contrainte oyy - essai de compression diamétrale.
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Figure 3-16 : Distribution axiale du rapport oxx/Oyy - essai de compression diamétrale.

Les variations axiales des contraintes et du rapport oxx/Oyy sont mises en évidence aux
Figures 3-14 a 3-16, bien qu’elles ne soient pas prévues par les équations analytiques. Les
contraintes en tension et en compression observées sont maximales aux extrémités de la carotte,
la ou sont situées les jauges virtuelles. L’écart avec la solution analytique sur le plan des jauges
virtuelles est d’ailleurs mis en évidence a la Figure 3-13, bien que ce plan soit en état de
contraintes planes. De plus, la distribution des contraintes est visiblement dépendante du
coefficient de Poisson ainsi que du rapport H/D. Les résultats de la simulation numérique

s’approchent de la solution analytique au centre de 1’éprouvette lorsque H/D = 3; I’hypothese de
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déformations planes, vérifiée a cet endroit étant donné le rapport H/D, peut expliquer cette
concordance. L’écart a la solution analytique aux extrémités de I’éprouvette semble diminuer

avec le rapport H/D, d’ou le choix d’un rapport H/D = 1 (H/D = 3 avec le modg¢le principal).

Les divergences observées entre les résultats de la simulation numérique de [’essai de
compression diamétrale (3D) et ceux issus des équations analytiques (2D) ont déja été
documentées par Chau et Wei (2001). Le recours a un modele d’interprétation considérant la
variation axiale des contraintes ainsi que leur dépendance au coefficient de Poisson et au rapport
H/D requiert des analyses plus approfondies. En pratique, I’équation (2.25) devrait étre adaptée
au probléme en trois dimensions, mais cette modification dépasse le cadre de cette étude; elle
pourrait faire 1’objet de travaux futurs, tel que mentionné au Chapitre 5. L’erreur associée a

’utilisation de 1’équation (2.25) est évaluée au Chapitre 4.

3.3.2.3 Détermination des pseudo-paramétres de déformabilité

Pour les deux essais présentés, les déformations &g, €90, €45., €135. sont calculées a partir des
déplacements relevés aux jauges virtuelles selon la méthode présentée a la section 3.3.1.1. Les
déformations exx et eyy sont ensuite calculées par moindres carrés selon 1’équation (2.13).
Puisque p=0° pour toutes les configurations considérées, exx et eyy correspondent aux
déformations principales dans le plan du fond du trou. A I’aide du complément Solver de
Microsoft Excel, les équations (2.23), (2.24) et (2.25) sont résolues avec E; =Ex, E;=Ey,
Va1 =Vyx, P =10 MPa et ¢, ey, €’1, €1y résultant des simulations numériques. Les parametres de
déformabilité ainsi obtenus sont appelés pseudo-parametres, par opposition aux vrais parameétres
obtenus avec les équations (3.11) a (3.14). Les pseudo-parameétres déterminés pour les 110

configurations considérées a la section 3.3.1.2 sont présentés a I’annexe A.

3.4 Détermination du tenseur des contraintes

Les facteurs de concentration de contraintes sont déterminés a I’aide du modele COMSOL
Multiphysics® et présentés dans cette section. Des mesures de contraintes réalisées dans des
forages d’orientations différentes sont ensuite combinées afin de déterminer le tenseur des
contraintes; la conduite de telles simulations est expliquée. Enfin, ’application de la méthode
d’interprétation conventionnelle et de la méthode RPR pour déterminer le tenseur des contraintes

est décrite; ces méthodes sont notamment généralisées aux matériaux transversalement isotropes.
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3.4.1 Détermination des facteurs de concentration de contraintes

Le concept de pseudo-facteurs de concentration de contraintes est d’abord abordé dans cette
section. Les facteurs de concentration de contraintes déterminés a 1’aide du mod¢le principal sont
ensuite présentés, puis des équations générales les reliant au degré d’anisotropie Ei/E, et au

coefficient de Poisson v sont proposées.

3.4.1.1 Définition des pseudo-facteurs de concentration de contraintes

Les essais en laboratoire usuels décrits a la section 2.2.2.3 ne permettent pas de déterminer
completement ’orientation des plans d’isotropie; seule la direction de leur trace sur le plan du
fond du trou est mesurée. Le forage est alors considéré soit parallele aux plans d’isotropie
(8 =0°), soit perpendiculaire (& = 90°) lorsque les déformations €;, €1 sont égales entre elles lors
de I’essai de compression biaxiale. Dans ce dernier cas, les plans d’isotropie sont confondus avec
le plan du fond du trou; le matériau est alors considéré comme étant isotrope. Ainsi, seuls les
facteurs de concentration de contraintes déterminés avec & = 0° ou pour E/E; = 1,00 sont utilisés
en pratique. Ces derniers sont appelés pseudo-facteurs puisqu’ils sont utilisés avec toutes les
configurations, incluant celles dont le forage n’est pas nécessairement parallele aux plans
d’isotropie. L’erreur liée a ’utilisation des pseudo-facteurs de concentration de contraintes est
évaluée au Chapitre 4. Les vrais facteurs, adaptés a I’orientation des plans d’isotropie par rapport

au forage, sont tout de méme déterminés et utilisés a des fins de vérification.

3.4.1.2 Détermination des facteurs de concentration de contraintes

Dans un premier temps, les facteurs de concentration de contraintes sont déterminés pour les
combinaisons suivantes : E/E, = {1,00; 1,25; 1,50; 2,00}, v = {0,00; 0,05; 0,10; 0,15; 0,20, 0,25;
0,30; 0,35; 0,40; 0,45} et d=0°. Pour chacune de ces configurations, quatre chargements
unitaires sont simulés a I’aide du modéle COMSOL Multiphysics® pour une saignée de 0 mm.
Les contraintes en fond de trou sont relevées aux points correspondant a I’extrémité des jauges
virtuelles. Les sept facteurs de concentration de contraintes sont déterminés suivant les calculs

présentés au Tableau 3-2.
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Chargements unitaires

Facteurs de concentration de contraintes calculés

{-1; 0; 0; 0; 0; 0} MPa

Ax = Oxx/Sxx
By = ovy/Sxx

{0; -1; 0; 0; 0; 0} MPa

Bx = oxx/Syy
Ay = Ovy/Syy

{0; 0; -1; 0; 0; 0} MPa

Cx = 0oxx/Szz
Cy = ovy/Szz

{0; 0; 0; -1; 0; 0} MPa

D = oxy/Sxy

Si le matériau est isotrope ou si 0 =90°, le nombre de facteurs de concentration de contraintes

indépendants est réduit a trois : Ax = Ay =A; Bx=By=B; Cx=Cy =C; D= A-B. Alors, seuls

les chargements unitaires {-1; 0; 0; 0; 0; 0} MPa, et {0; 0; -1; 0; 0; 0} MPa doivent en principe

étre simulés. Les quatre chargements unitaires présentés au Tableau 3-2 sont tout de méme

réalisés, et une moyenne est effectuée sur les données équivalentes. Les sept facteurs de

concentration de contraintes pour les 40 configurations considérées avec 6 = 0° sont présentés au

Tableau 3-3.

Tableau 3-3 : Facteurs de concentration de contraintes (8 = 0°).

El/Ez \% Ax AY Bx BY Cx CY D
0,00 1,311 1,311 -0,125 -0,125 -0,373 -0,373 1,436
0,05 1,315 1,315 -0,114 -0,114 -0,423 -0,423 1,429
0,10 1,320 1,320 -0,101 -0,101 -0,474 -0,474 1,421
0,15 1,325 1,325  -0,087 -0,087 -0,526  -0,526 1412
1,00 0,20 1,330 1,330  -0,071  -0,071  -0,579  -0,579 1,401
0,25 1,335 1,335  -0,054  -0,054 -0,634 -0,634 1,389
0,30 1,341 1341  -0,034 -0,034 -0691 -0,691 1,374
0,35 1,346 1346  -0,012  -0,012  -0,749  -0,749 1,358
0,40 1,352 1352 0014 0014 -0,810 -0810 1,338
0,45 1356 1356 0,042 0042 -0873 -0873 1314




Tableau 3-3 (suite) : Facteurs de concentration de contraintes (8 = 0°).

53

El/Ez \% Ax AY BX BY Cx CY D

0,00 1,325 1,297 -0,140 -0,112 -0,388 -0,321 1,437

0,05 1,331 1,301 -0,129 -0,103 -0,433 -0,363 1,431

0,10 1,336 1,305 -0,117 -0,092 -0,479 -0,405 1,425

0,15 1,341 1,309 -0,104 -0,081 -0,526 -0,448 1,417

105 0,20 1,345 1,313 -0,090 -0,068 -0,574 -0,492 1,408
’ 0,25 1,350 1,317 -0,073 -0,054 -0,624 -0,537 1,397
0,30 1,354 1,321 -0,055 -0,038 -0,674 -0,582 1,385

0,35 1,358 1,325 -0,035 -0,021 -0,725 -0,629 1,370

0,40 1,362 1,330 -0,011 -0,001 -0,778 -0,677 1,352

0,45 1,365 1,334 0,015 0,021 -0,833 -0,726 1,331

0,00 1,338 1,287 -0,152 -0,102 -0,401 -0,284 1,433

0,05 1,344 1,290 -0,143 -0,094 -0,443 -0,319 1,429

0,10 1,349 1,294 -0,132 -0,085 -0,486 -0,356 1,424

0,15 1,355 1,297 -0,119 -0,076 -0,529 -0,393 1,418

1,50 0,20 1,359 1,300 -0,106 -0,065 -0,573 -0,430 1,410
0,25 1,363 1,304 -0,090 -0,053 -0,618 -0,468 1,401

0,30 1,367 1,307 -0,073 -0,040 -0,664 -0,507 1,389

0,35 1,370 1,311 -0,054 -0,026 -0,710 -0,546 1,376

0,40 1,373 1,314 -0,032 -0,010 -0,758 -0,586 1,361

0,45 1,374 1,317 -0,007 0,008 -0,807 -0,626 1,342

0,00 1,361 1,273 -0,175 -0,088 -0,423 -0,232 1,426

0,05 1,368 1,276 -0,166 -0,082 -0,460 -0,261 1,424

0,10 1,374 1,278 -0,156 -0,075 -0,498 -0,289 1,420

0,15 1,379 1,281 -0,145 -0,068 -0,536 -0,318 1,416

200 0,20 1,384 1,283 -0,133 -0,060 -0,574 -0,347 1,410
’ 0,25 1,387 1,286 -0,119 -0,051 -0,613 -0,377 1,403
0,30 1,390 1,288 -0,103 -0,041 -0,653 -0,407 1,394

0,35 1,393 1,291 -0,085 -0,031 -0,693 -0,436 1,383

0,40 1,394 1,294 -0,065 -0,019 -0,734 -0,467 1,370

0,45 1,393 1,296 -0,042 -0,006 -0,776 -0,497 1,354

Dans un deuxiéme temps, les facteurs de concentration de contraintes sont déterminés pour les

combinaisons

suivantes :

E\/E; = {1,25; 1,50; 2,00},

v ={0,00; 0,10; 0,20; 0,30; 0,40}

et

0= {21; 30; 38; 45; 60; 90}°. Pour les configurations ou 6 = 90°, les facteurs de concentration de

contraintes sont déterminés de la méme maniére que pour celles ou 6 =0°. Pour les autres

configurations, deux chargements unitaires supplémentaires sont nécessaires. Les facteurs de

concentration de contraintes E, F et G sont déterminés par les calculs présentés au Tableau 3-4.
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Tableau 3-4 : Détermination des facteurs de concentration de contraintes E, F et G.

Chargements unitaires Facteurs de concentration de contraintes calculés
{0;0; 0; 0; -1; 0} MPa E = oxy/Sxz
F = oxx/Syz
0;0;0;0;0; -1} MP
{ b > b b > } a G — OYY/SYZ

Les dix facteurs de concentration de contraintes pour les 90 configurations supplémentaires sont

présentés a I’annexe B.

3.4.1.3 Validation des facteurs de concentration de contraintes

Le principe de superposition linéaire est sous-jacent a la méthodologie suivie pour déterminer les
facteurs de concentration de contraintes. Afin de vérifier la linéarité du probléme, le chargement
{-10; -20; -30; 2; 6; 4} MPa est appliqué sur un matériau transversalement isotrope avec
E; =36 GPa; E, =24 GPa; v=0,30 et d = 30°. Les contraintes en fond de trou oxx, Oyy €t Oxy
issues de la simulation sont comparées a celles calculées a partir de 1’équation matricielle (2.28)
et des vrais facteurs de concentration de contraintes présentés a I’annexe B. L’écart relatif entre

les contraintes Ooxx, Oyy et Oxy simulées et calculées est inférieur a 0,1 %.

Les facteurs de concentration de contraintes présentés au Tableau 3-3 sont ¢galement comparés
avec ceux proposés par Rahn (1984). La comparaison pour E;/E; = 1,50 et 6 = 0° est présentée a

la Figure 3-17; elle est jugée satisfaisante.
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Figure 3-17 : Comparaison avec les facteurs de concentration de contraintes de Rahn (1984).

3.4.1.4 Equations générales des facteurs de concentration de contraintes

La variation des facteurs de concentration de contraintes en fonction du degré d’anisotropie E;/E;
et du coefficient de Poisson v est évaluée graphiquement. A titre d’exemple, I’évaluation pour le
facteur Ay est présentée a la Figure 3-18. Des graphiques semblables sont tracés pour les autres

facteurs et présentent le méme type de variation.
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Figure 3-18 : Dépendance du facteur de concentration de contraintes Ay a E1/E; et v.

L’hypothése suivante est posée : la variation des facteurs de concentration de contraintes en
fonction de E/E; et de v peut étre représentée a 1’aide d’une régression bi-variable suivant la
forme compléte d’un polynome de second degré. La forme générale d’une telle régression est
présentée a 1’équation (3.21) avec H un facteur de concentration de contraintes et pri un

parametre de régression.

2
H = pr, + pr, x%+pr3xv+pr4x%xv+pr5x(%) +pr, x Vv’ (3.21)

2 2 2
Les paramétres de régression pr; pour les configurations ou 8 = 0° sont présentés au Tableau 3-5;
ceux pour I’ensemble des configurations considérées sont présentés a I’annexe B. Les régressions
sont réalisées a I’aide du complément XLSTAT® de Addinsoft. Elles sont jugées de bonne

qualité étant donné les valeurs des coefficients de détermination R”.
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Tableau 3-5 : Paramétres de régression des facteurs de concentration de contraintes (8 = 0°).

Facteurs | pr; pr: prs Pr4 prs Pre R’

Ax 1,240 0,076 0,159 0,028 0,007 0,073 0,997
Ay 1,405 0,121 0,143 0,050 0,028 0,010 0,999
Bx 0,041 0,101 0,264 0,074 0,018 0,381 1,000
By 0,154 0,024 0,399 0,179 0,006 0,286 0,995
Cx 0,371 0,020 1,303 0,315 0,025 0,211 0,999
Cy 0,824 0,599 1,485 0,502 0,155 0,169 0,998
D 1,405 0,050 0,205 0,109 0,021 0,362 0,998

Afin de valider les paramétres de régression, le chargement {-10;-20;-30; 2; 6; 4} MPa est
appliqué sur un matériau transversalement isotrope avec E/E, = 1,80; vi; =v;,=0,22 et 6 =0°.
Les contraintes en fond de trou oxx, Oyy, Oxy issues de la simulation sont comparées a celles
calculées a partir de 1’équation matricielle (2.28) et des facteurs de concentration de contraintes
obtenus avec les parametres de régression du Tableau 3-5. L’écart relatif entre les contraintes

Oxx, Oyy, Oxy simulées et calculées est inférieur a 1,2 %, ce qui est jugé acceptable.

3.4.2 Simulation de mesures dans des forages d’orientation différente

Tel que vu a la section 3.2.1, le mode¢le principal est construit de telle sorte que le forage soit
toujours orienté¢ selon 1’axe Z. Par conséquent, la simulation de mesures dans des forages
d’orientation différente nécessite certaines transformations géométriques relatives au chargement
appliqué et a I’expression des axes d’orthotropie du matériau. Les référentiels locaux liés aux
forages sont définis dans cette section, puis les transformations géométriques sont présentées.

Enfin, les angles 8 des configurations considérées dans cette étude sont justifiés.

3.4.2.1 Définitions des référentiels locaux {Xi, Yi, Z;}

La notation présentée a la section 2.2.4.2 est reprise : les référentiels locaux des forages F; sont
appelés {Xi, Yi, Zi}, avec Z; les axes des forages. Ils s’expriment en fonction du référentiel

{X,Y, Z} selon I’équation (2.30). Les cosinus directeurs l;; sont développés dans cette section.

Pour des raisons d’ordre pratique, le tenseur des contraintes est souvent déterminé a 1’aide de
forages coplanaires. Pour refléter cette fagcon de faire, les axes Z; sont arbitrairement contenus
dans le plan XZ et forment un angle d avec I’axe X, tel qu’illustré a la Figure 3-19. La définition

de la normale au plan d’isotropie (axe x3) est €également reprise sur cette figure.
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{O, 45, 9.0}0 = d 60, 90}0

X Y

Figure 3-19 : Définition de 1'orientation d'un forage Z; dans le référentiel {X, Y, Z}.

Les axes Z; sont définis dans le référentiel {X, Y, Z} par le vecteur unitaire Zl., avec X, Y ,Z

les vecteurs directeurs des axes X, Y, Z.

l,, =cosd (3.22)
L, =0
Ly, =sind

Le vecteur directeur des axes X; correspond arbitrairement a I’intersection entre les plans
d’isotropie x;x; et le plan du fond du trou X;Y;. A partir des équations (3.1) et (3.22) décrivant les
normales respectives de ces deux plans, ceux-ci sont exprimés analytiquement par les équations

(3.23) et (3.24), avec p = 0° et en considérant que les axes X; passent par le point {0; 0; 0}.

ycosd+zsind=0 (3.23)

xcosd +zsind =0 (3.24)
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—

En combinant les équations (3.23) et (3.24), les axes X sont décrits par le vecteur unitaire X,

donné ci-dessous.

—

X =1, X+1.Y+1,Z;

= sind x coso
Jsin® d x cos® d+cos> d

I - cosd xsind (3.25)
Jsin? d x cos? 8+ cos d

/ —cosd xcoso

1357
Jsin?d x cos? 8+ cos? d

— —

Le vecteur directeur des axes Y; correspond au produit vectoriel des vecteurs Z, et X,. Le

1

vecteur unitaire Y, obtenu est donné ci-dessous.

Y, = Zl. AX =1, X+1,Y +1,,Z;

—sind x cosd x sind

= \/sin2 d xcos’d+cos’d
L - coso (3.26)
Jsin d x cos® 8 +cos> d
cos’d xsind
123

Jsin® d x cos 8 +cos> d
3.4.2.2 Adaptation du chargement appliqué

Si S est le tenseur des contraintes dans le référentiel {X, Y, Z} et que S; est le chargement a
appliquer dans le référentiel {X,Y,Z} pour simuler une mesure dans le méme champ de
contraintes mais dans un forage orienté différemment, S; est déterminé par la rotation tensorielle

énoncée a I’équation matricielle (2.31) impliquant les cosinus directeurs présentés aux équations

(3.22), (3.25) et (3.26).

3.4.2.3 Définition locale des axes d’orthotropie

La définition des angles p et & décrivant la normale au plan d’isotropie dans le référentiel
{X,Y,Z} est généralisée au référentiel local {Xi, Yi, Zi}. Les simulations de saignées, les
parametres de déformabilité et les facteurs de concentration de contraintes, appelés dans la suite

éléements locaux d’une mesure, sont rattachés a la définition locale des axes d’orthotropie.
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L’angle p; est mesuré entre 1’axe Y; et la projection de 1’axe x3 sur le plan X;Y;. Puisque I’axe X;
correspond arbitrairement a I’intersection entre le plan d’isotropie x;x; et le plan X;Y;, cela
implique nécessairement p; = 0°. Les éléments locaux d’une mesure déterminés avec p = 0° sont

donc valables pour tout forage F; défini selon le référentiel {Xi, Yi, Zi}.

L’angle d; est mesuré entre le plan X;Y; et I’axe xs. Il est obtenu par le calcul du produit scalaire
entre les vecteurs directeurs des axes X3 et Z;; le produit scalaire est énoncé a 1’équation (3.27) et

I’expression de I’angle 0; est donnée a I’équation (3.28).
(cos Y +sin 62) . (cos dX +sin dZ) = Hcos Y +sin 62” : Hcosd)? +sin dZ” c0s(90°-9,) (3.27)

8, =90°—acos(sindsind) (3.28)

3.4.2.4 Justification des angles 8 des configurations considérées

La détermination du tenseur des contraintes est simulée dans trois forages coplanaires Fi, F,, F3
formant des angles d respectivement de 90°, 0° et 45°. Les simulations sont réalisées pour des
matériaux transversalement isotropes avec 0= {0;30; 60;90}°. Cet échantillon est jugé
suffisamment varié¢ pour les besoins de cette ¢tude. Les angles 0; associés aux trois forages pour
les quatre matériaux considérés sont calculés selon 1’équation (3.28); ils sont présentés au
Tableau 3-6. Les ¢léments locaux d’une mesure sont déterminés a I’aide du modele principal en

considérant un matériau avec § = 9;, d’ou I’ensemble & = {0; 21; 30; 38; 45; 60; 90}°.

Tableau 3-6 : Angles 0; des configurations considérées dans 1'étude.

) d;ipour F; (d=90°) dipour F, (d=0°) d;ipour F; (d =45°)
0° 0° 0° 0°

30° 30° 0° E

60° 60° 0° 38°

90° 90° 0° 45°

3.4.3 Application des méthodes d’interprétation

La méthode d’interprétation conventionnelle et la méthode RPR sont généralisées aux matériaux
transversalement isotropes; les relations SR-RPR pour ces matériaux sont notamment
développées. Les séquences de calculs pour simuler la détermination du tenseur des contraintes a

I’aide de ces deux méthodes sont détaillées dans cette section.
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3.4.3.1 Application de la méthode d’interprétation conventionnelle

3.4.3.1.1 Généralisation aux matériaux transversalement isotropes

L’¢équation matricielle (2.28) est inversée pour exprimer les contraintes Sxx, Syy, Sxy
(inconnues) en fonction des facteurs de concentration de contraintes (connus), des contraintes en
fond de trou oxx, Oyy, Oxy (connues) et des contraintes Szz, Sxz, Syz (inconnues). Un systéme a
trois équations est ainsi obtenu pour chaque mesure; il est présenté a 1’équation (3.29). Il s’agit
d’un systéme indéterminé puisqu’il comprend six inconnues (Sxx, Syy, Szz, Sxy, Sxz, Syz). Le
systeme d’équations (2.29) est obtenu a partir du systéme (3.29) en posant Ax=Ay=A;
Bx=By=B;Cx=Cy=C;D=A-B;E=F=G=0.

S .= AyOyy — B0y +S,, (BXCY _AYCX) *+ Sz (BXG _ AYF)
X (AXAY _BXBY)
1S, = —B,0yy + AyOyy + S5, (BYCX ~ AXCY) +Sy, (BYF _ AXG) (3.29)
v (AXAY _BXBY)
S, = w

Pour la suite des développements, les contraintes partielles S, , S,y , Sy, sont définies ainsi que

les paramétres Pj, P2, Q; et Q,. Le systeme simplifi¢ est présenté a I’équation (3.37). Le systéme
d’équations (2.41) est obtenu a partir du systéme (3.37) en posant Ax = Ay =A; Bx =By =B;
Cx=Cy=C;D=A-B;E=F=G=0.

— AyOyy — ByOyy

X (AXAY - BXBY) (3.30)
_YY — —B,Oyy + AyOyy (3.31)
(AXAY - BXBY)
q Oxy
Sy = (3.32)
P = BCy -ACy (3.33)
(AXAY - BXBY)
P, = B, G -ACy (3.34)
(AXAY - BXBY)
0 = _BGAF (3.35)

(AXAY - BXBY)



BYF - AXG
0, = L
(AXAY - BXBY)
SXX = gxx + PISZZ + QISYZ
SYY = SYY + P2Szz + styz
E

xy = Sxy - BSXZ

%}
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(3.36)

(3.37)

Le systéme matriciel (2.32) est résolu par moindres carrés en inversant 1’équation (2.34), avec le

vecteur colonne D et la matrice J définis aux équations (3.38) et (3.39). Ces derniers

comprennent 31 rangées, ou i représente le nombre de mesures de contraintes considérées dans le

calcul; la matrice J comprend 6 colonnes. Pour simplifier 1’écriture, seules les trois rangées

associées a une mesure i sont présentées. De plus, seule la premiére colonne de la matrice J est

détaillée; les termes des autres colonnes sont développés suivant la méme logique a partir des

cosinus directeurs l;; de I’équation (2.31).

{Dy

3ixl

7],

Sxx,.

§ SYY, - Pz,Szz, - Qz,.SYZ,.
Yy, —

_ R E

SXY[ Sxx. + El

2 2

lll,» - Pl,lsg. - Ql,-l21,-l31,»
2 2

lmi - P21131i - inlzl,l31i

E.
luilzh +31111,l31i

i

Sxx, - Pl,Szz, - Ql,SYZ,

! (3.38)

(3.39)

3.4.3.1.2 Séquence de calculs pour [’application de la méthode d’interprétation conventionnelle

La séquence de calculs pour simuler la détermination du tenseur des contraintes S avec la

méthode d’interprétation conventionnelle est détaillée :

- Une saignée est simulée pour les six chargements unitaires de la configuration donnée

selon la méthodologie présentée a la section 3.3.1.

- Les déformations récupérées &g, €90, €45, €135. pour ces chargements sont calculées a partir

des déplacements relevés aux jauges virtuelles selon les équations (3.4) a (3.7).



63

- Le chargement S; a appliquer pour simuler une mesure du champ de contraintes S dans le

forage F; est déterminé selon I’équation (2.31).

- Les déformations récupérées €., €90, €45, €135- pour le chargement S; sont obtenues par

combinaison lin€aire de celles associées aux chargements unitaires selon I'équation (3.10).

- Les déformations en fond de trou exx, €yy, exy sont déterminées par moindres carrés

selon I’équation (2.13).

- Les pseudo-parametres de déformabilité sont déterminés par la simulation des essais de
compression biaxiale isotrope et de compression diamétrale selon la méthodologie

présentée a la section 3.3.2.

- Les contraintes en fond de trou oxx, Oyy, Oxy sont calculées a partir de la loi de
comportement des matériaux transversalement isotropes introduite a 1’équation (2.15) et
des pseudo-parametres de déformabilité. Les contraintes ainsi calculées sont appelées
pseudo-contraintes, par opposition aux vraies contraintes calculées avec les vrais

parameétres de déformabilité.

- Les contraintes partielles S,,, S,,, Sy, sont calculées & partir des équations (3.30) a
(3.32). Les pseudo-facteurs de concentration de contraintes sont utilisés dans ces

équations; ils sont obtenus avec les équations générales présentées a la section 3.4.1.4 et

les pseudo-parametres de déformabilité.

- Les mesures de contraintes ainsi simulées dans les forages Fi, F,, F3 décrits a la section
3.4.2 sont combinées. Le systeme matriciel (2.32) est résolu par moindres carrés selon les
équations (2.34) a (2.36), avec le vecteur D et la matrice J définis aux équations (3.38)

et (3.39).

3.4.3.1.3 Validation de la méthode d’interprétation conventionnelle

La détermination du tenseur des contraintes est simulée pour 117 chargements S caractérisés par
les rapports Sxx/Syy = {1,00; 1,25; 1,50, 1,75; 2,00; 2,25; 2,50; 2,75; 3,00} et SR = {0,00; 0,25;
0,50; 0,75; 1,00; 1,25; 1,50; 1,75; 2,00, 2,25; 2,50; 2,75; 3,00}, avec Syy=-10MPa. Les

contraintes Sxy, Sxz, Syz sont assignées a la valeur extréme de cisaillement tvax; celle-ci est
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définie a I’équation (3.40), avec S; et S; les contraintes maximale et minimale du tenseur des

contraintes.

_5 -5 (3.40)

Ces  chargements sont  appliqués sur les 65 configurations suivantes :
E\/E, = {1,00; 1,25; 1,50; 2,00}, v = {0,00; 0,10; 0,20; 0,30; 0,40} et &= {0; 30; 60; 90}°. Au
total, 7 605 tenseurs des contraintes sont déterminés. Pour chacune de ces simulations, le biais
A entre le tenseur calculé S’ et le tenseur appliqué S est calculé selon 1’équation (3.41); cette

équation a été proposée par Dyke et al. (1987).

AL (Sx - S, )2+(SYY—S;Y)2+(SZ -S, )2+2(SXY_S'xy)2+2(sz_S;( )2+2(SYZ_S;/Z)2 (3.41)
- Six + Syy +S7,+28%, +285, +28;,

Afin de valider la séquence de calculs proposée, les tenseurs des contraintes S’ sont calculés avec
les vraies contraintes en fond de trou et les vrais facteurs de concentration de contraintes. Pour les
7 605 cas, les biais obtenus sont inférieurs a 0,3 %, ce qui est jugé acceptable et justifie
I’ensemble de la méthodologie suivie. Le biais A li¢ aux pseudo-contraintes en fond de trou et

aux pseudo-facteurs de concentration de contraintes est évalué¢ au Chapitre 4.
3.4.3.2 Application de la méthode RPR

3.4.3.2.1 Genéralisation de la définition du RPR aux matériaux transversalement isotropes

En combinant la définition du RPR introduite a 1’équation (2.44) et la loi de comportement des
matériaux transversalement isotropes présentée a 1’équation matricielle (2.15), I’expression

théorique du RPR pour ces matériaux est donnée a 1’équation (3.42).

ool 5l )
+
RPR = (gXX Eyy )re’cupe’re’ — X Y X /] récupeéré (3 42)

(EXX+€YY)piL- o 1-vyy P L_Vﬂ
XX EX Yy EY EX

Pour simplifier 1’écriture du développement qui suit, les paramétres p et g sont posés aux

pic

équations (3.43) et (3.44). Le Shear Ratio, noté¢ ShR, est é¢galement défini a 1’équation (3.45); sa

définition s’apparente a celle du Stress Ratio (SR), donnée a 1’équation (2.45).
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plVw (3.43)
EX
g=d Yo (3.44)
EY EX
ShR= 257 _ (3.45)
Sex + Sy

En combinant I’équation matricielle (2.28) reliant les contraintes en fond de trou oxx, Oyy aux
contraintes Sxx, Syy, Szz, Syz et en effectuant quelques manipulations algébriques, I’expression
du RPR pour les matériaux transversalement isotropes est donnée sous une autre forme a
I’équation (3.46). Les facteurs de concentration de contraintes du numérateur sont ceux

déterminés a la section 3.4.1; ceux associés au dénominateur ne sont cités qu’a titre théorique.

Sxx

S 1 SR ShR
SiYY(AXp+Byq)+Si(BXp+qu)+7(CXp+CYq)+T(Fp+Gq)

XX 41 XX 41

RPR = SYSY S e, (3.46)

Oxx

S SR ShR

S YY (AXp+BYq)+ g (BXp+qu)+7(CXp+CYq)+T(Fp+Gq)

XX 41 XX 4]

YY SYY

pic
L’examen de [I’équation (3.46) permet de constater que le RPR pour les matériaux

transversalement isotropes dépend des parameétres suivants :

RPR=f SR,Sﬂ,ShR,ﬂ,v,é (3.47)
SYY 2

Lorsque 8 =0° et §=90° les facteurs de concentration de contraintes F et G sont nuls.

L’expression du RPR est alors simplifiée et ne dépend plus du ShR.

Lorsque 0 =90°, les paramétres p et g sont égaux et le nombre de facteurs de concentration de

contraintes indépendants est réduit a trois. L’expression du RPR ne dépend plus du rapport

Sxx/Syy :

E (A+B+SRxC)
RPR, .. = f| SR, =L,v|= 3.48
0=90 f( , V) (A+B+SRxC) (3.48)

pic
L’expression du RPR pour un matériau isotrope est obtenue de 1’équation (3.48) en éliminant la

dépendance a E,/E,.
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3.4.3.2.2 Genéralisation de la méthode RPR aux matériaux transversalement isotropes

Une équation est ajoutée au systeme (3.29) et est donnée a 1’équation (3.49). La définition du SR
introduite a 1’équation (2.45) est combinée a 1’équation matricielle (2.28) pour exprimer la
contrainte Szz (inconnue) en fonction du SR (connu), des facteurs de concentration de contraintes

(connus), des contraintes en fond de trou oxx, Oyy (connues) et de la contrainte Syz (inconnue).

SR(Oyy (Ay =By )+ 0y, (A = By)+S,,(ByG + B,F - A,G - A,F))

(3.49)
2(AyA, - BB, )+ SR(AC, +A,Cy - B,C, - B,Cy)

SZZ =

Pour la suite des développements, la contrainte partielle S,, et le paramétre T sont définis; les

parameétres Py, Pa, Qp, Q2 sont repris des équations (3.33) a (3.36). Le systeme simplifié est
présenté a I’équation (3.52). Contrairement au systéme obtenu pour les matériaux isotropes, ce
dernier demeure indéterminé puisqu’il comprend six inconnues (Sxx, Syv, Szz, Sxy, Sxz, Syz); la
manipulation algébrique impliquant les contraintes partielles est donc nécessaire. Le systéme
d’équations (2.46) est obtenu a partir du systéme (3.52) en posant Ax = Ay =A; Bx =By =B;
Cx=Cy=C;D=A-B;E=F=G=0.

c SR(Uxx(Ay‘BY)"'OYY(AX_BX))
7z Z(AxAy _BXBy)+SR(AXCY +4A,C, -B,C, —BYCX)
- SR(B,G +B,F - A,G - A,F) (3.51)
Z(AXAY - BXBY) + SR(AXCY +4,Cy - By Gy _BYCX)
VSXX = gxx +BS;, + 0y,
SYY = Syy +stZZ +Q2SYZ
) SZZ = EZZ +T§

- E
SXY = SXY - BSXZ

(3.50)

(3.52)

Yz»

Le systéme matriciel (2.32) est résolu par moindres carrés en inversant 1’équation (2.34), avec le
vecteur D et la matrice J définis aux équations (3.53) et (3.54). Ces derniers comprennent 4i
rangées et la matrice J comprend 6 colonnes. Pour plus de clarté, les simplifications d’écriture

effectuées aux équations (3.38) et (3.39) sont reprises.
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SXXf SXXl- - Pliszzi - Qll-SYZi
SYYi SYY,- - Pz,-Szz,- - Qz,.SYZi

{D}4ix1 =1 ’§ZZ, F =< SZZ, _ TSYZ, > (353)
S S-S,

2 2

ll 1, P1il31,. - Qlilzlilsl,
2 2

l2l,- - Pz,.l31,. - Qz,.lzl,l31,.

['7]1..4,',1 - 1321[ -Ti, L, (3.54)
E.
Ly L, + Ell] WD

i

3.4.3.2.3 Détermination des relations SR-RPR pour les matériaux transversalement isotropes

Les relations SR-RPR sont déterminées pour les configurations suivantes : Ei/E; = {1,00; 1,25;
1,50; 2,00}, v = {0,00; 0,10; 0,20; 0,30; 0,40} et & = {0; 30; 60; 90}°. Pour les configurations ou
0=30° et 8=60° les relations SR-RPR sont produites pour Sxx/Syy = {0,5;1,0;2,0} et
ShR = {-0,5; 0,0; 0,5}. Pour les configurations ou & =0°, les relations SR-RPR sont produites
pour Sxx/Syy = {-0,5;0,05; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,8; 1,0; 1,25; 1,5; 2,0; 2,5; 3,0; 5,0; 10,0;
20,0}; elles ne dépendent pas du ShR. Pour les configurations ou & = 90° et pour le cas isotrope,

les relations SR-RPR ne dépendent pas des rapports Sxx/Syy et ShR.

Pour une configuration et un chargement donnés, le RPR est calculé a partir de la courbe de
récupération de la moyenne de I’invariant de déformations I, produite par combinaison linéaire
de celles associées aux chargements unitaires selon 1'équation (3.10). Le RPR est déterminé pour
des rapports SR allant de 0,0 a 6,0 par pas de 0,2 avec les paramétres E/E,, v, 8, Sxx/Syy, ShR
fixés. L’ensemble des chargements considérés est jugé représentatif des conditions rencontrées

dans le Bouclier Canadien.

Puisque I’angle 0 n’est pas déterminé par les essais en laboratoire usuels, seules les relations SR-
RPR pour les configurations ou & =0° sont utilisées en pratique, ce qui justifie le plus grand

nombre de valeurs Sxx/Syy tabulées. Elles sont illustrées sous forme d’abaques aux Figures 3-20
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a 3-23. Pour simplifier la présentation, seuls les rapports Sxx/Syy = {0,5; 1,0; 2,0} sont montrés.
Les relations SR-RPR pour les autres configurations sont développées a des fins de vérifications;

elles sont présentées a I’annexe C.

6,0 L o w i
v=0.0 2,0
5.0 1,5
1,0
0,5
4,0
v=0.1 0,0
0,50 0,60 0,70 0,80 0,90
%30 v=02
v=0.3
v=04
2,0
1,0
0,0
-1,00 -0,80 -0,60 -0,40 -0,20 0,00 020 040 0,60 0,80 1,00

RPR

Figure 3-20 : Relations SR-RPR - E;/E; = 1,00.
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Figure 3-21 : Relations SR-RPR - E/E; =1,25; 6 =0°.
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Figure 3-23 : Relations SR-RPR - E/E; =2,00; 6 = 0°.

3.4.3.2.4 Séquence de calculs pour [’application de la méthode RPR

La méthodologie pour simuler la détermination du tenseur des contraintes avec la méthode RPR

demeure inchangée par rapport a celle associée a la méthode conventionnelle jusqu’a 1’obtention
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des pseudo-contraintes en fond de trou. La suite de la séquence de calculs est un processus itératif

détaillé ci-dessous :

- La courbe de récupération de la moyenne de I’invariant de déformations I, pour le

chargement S; et le forage F; est produite par combinaison linéaire de celles associées aux

chargements unitaires selon 1'équation (3.10).

- La moyenne de I’invariant de déformations 1, résiduel et celui au pic sont relevés sur la

courbe de récupération.
- Le RPR est calculé¢ selon I’équation (2.44).

- Le SR est obtenu a partir des relations SR-RPR. Les relations pour & = 0° sont utilisées
pour tous les cas puisque, tel qu’expliqué a la section 3.4.1.1, I’angle 0 n’est pas
déterminé par les essais en laboratoire usuels. L hypothése Sxx/Syy = 1,00 est posée dans
un premier temps; elle est a 1’origine du processus itératif suivi. Le SR est déterminé pour

les pseudo-parametres de déformabilité par interpolation linéaire des abaques.

- Les contraintes partielles Sy, S,,, S,,, S,, sont calculées a partir des équations (3.30) a
(3.32) et (3.50). Les pseudo-facteurs de concentration de contraintes sont utilisés dans ces

équations; ils sont obtenus a partir des équations générales données a la section 3.4.1.4 et

des pseudo-paramétres de déformabilité.

- Cette séquence de calculs est effectuée dans les trois forages F;, F,, F3 décrits a la section
3.4.2. Les trois mesures de contraintes sont combinées et le systéme matriciel (2.32) est
résolu par moindres carrés selon les équations (2.34) a (2.36), avec le vecteur D et la

matrice J définis aux équations (3.53) et (3.54).

- A partir du tenseur des contraintes calculé, les rapports Sxxq/Syv( sont relevés pour

chacun des forages, puis les abaques SR-RPR sont relus avec ces valeurs. Les contraintes
partielles S,, sont recalculées, et le systéme matriciel (2.32) est résolu a nouveau. Des

itérations sont ainsi réalisées jusqu’a ce que la différence entre les rapports Sxx/Syy issus

des deux derniéres itérations pour chaque forage soit inférieure a 0,2.
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3.4.3.2.5 Validation de la méthode RPR

La détermination du tenseur des contraintes a 1’aide de la méthode RPR est simulée pour un
matériau transversalement isotrope avec E; = 40 GPa; E, =20 GPa; v =0,40; & = 30° et pour le
chargement S = {-15; -10; -20; -1; -2; -5} MPa. Dans le référentiel {X, Y, Z}, ce chargement est
caractéris¢é par les rapports Sxx/Syy = 1,50; SR = 1,60 et ShR = 0,40. Afin de valider la séquence
de calculs proposée, le tenseur S’ est calculé en utilisant les vraies contraintes en fond de trou et
les vrais facteurs de concentration de contraintes. De plus, la vraie valeur du SR est utilisée aux

équations (3.50) et (3.51) pour calculer la contrainte partielle S,, et le paramétre T. Le

biais A observé entre le tenseur calculé S’ et le tenseur appliqué S est calculé selon 1’équation
(3.41). Il est de 0,6 %, ce qui est jugé acceptable et justifie ’ensemble de la méthodologie suivie.
Le biais 1i¢ a la lecture par interpolation linéaire des abaques SR-RPR et a I’utilisation des

relations développées pour des matériaux avec 0 = 0° est évalué au Chapitre 4.
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CHAPITRE 4 RESULTATS

Les résultats répondant aux objectifs spécifiques fixés a la section 2.3 sont présentés dans cette
section. La précision avec laquelle le modele anisotrope équivalent et les essais en laboratoire qui
lui sont associés permettent de déterminer les contraintes en fond de trou est d’abord évaluée. Il
est ensuite vérifié si la méthode conventionnelle adaptée aux matériaux transversalement
isotropes permet d’améliorer la précision sur le tenseur des contraintes in situ déterminé. Enfin, la

généralisation de la méthode RPR présentée a la section 3.4.3.2 est validée.

4.1 Justesse des contraintes en fond de trou

La justesse des contraintes en fond de trou oxx, Oyy, Oxy calculées a partir des déformations
récupérées est affectée par I’exactitude des parameétres de déformabilité Ex, Ey, v. En pratique,
elle I’est également par la justesse des déformations exx, €yy, €xy mesurées, mais en raison du
recours a la simulation numérique, celles-ci sont exemptes d’erreurs expérimentales dans cette
¢tude. Les pseudo-contraintes en fond de trou sont données par 1’équation (4.1), avec
AEx, AEy, Avyx les écarts absolus entre les vrais et les pseudo-parametres et Aoxx, AOyy, AOxy

les écarts absolus entre les vraies et les pseudo-contraintes.

O +AG =(EX+AE )((E +AE ) (EY+AEY)(VXY+AVXY)8YY)
" = (Ey +AE)-(E, +AE )(VXY+AVXY)2
‘UW+AUYY=(EX+AE o) (Ey +AEy ) ((viy +Avyy )y + 61y ) @1

(Ex +AE,)=(E, +AE, )(vyy +Avy, )2
Oy +Ao,, = 2(GXY + AGXY)EXY

L’exactitude des parameétres de déformabilité est affectée par les modéles d’interprétation des
essais en laboratoire. En pratique, elle 1’est également par les erreurs de mesures pendant les
essais, mais celles-ci sont éliminées en raison du recours a la simulation numérique. Tel que
soulevé a la section 3.3.2.2.2, I’équation empirique (2.25) associée a l’essai de compression
diamétrale n’est pas adaptée a I’interprétation d’un essai en trois dimensions; une erreur sur le
coefficient de Poisson vyx déterminé par cette équation s’ensuit. Ainsi, la résolution simultanée
des équations associées aux deux essais entraine une erreur sur les pseudo-parametres de

déformabilité déterminés.
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L’influence des pseudo-parametres Ex, Ey, vyx sur la justesse des contraintes en fond de trou
Oxx, Oyy, Oxy est évaluée. Pour une configuration et un chargement donnés, les écarts absolus
Aoxx, Aoyy, Aoxy sont déterminés. Le rapport entre chacun de ces écarts absolus et la contrainte
moyenne appliquée S;,, définie a 1’équation (4.2), est calculé. La moyenne de ces rapports est
appelée erreur normalisée (ex); son expression est donnée a 1’équation (4.3). L’erreur normalisée

permet d’évaluer si les écarts absolus Aoxx, Aoyy, Aoxy sont significatifs.

g SutSw+Sy (4.2)
m 3
. |80f+1803, [0 43
3/S,,]

L’erreur normalisée ey est déterminée pour 110 configurations : E;/E, = {1,00; 1,25; 1,50; 2,00},
v ={0,00; 0,10; 0,20; 0,30; 0,40} et &= {0; 21; 30; 38; 45; 60; 90}°. Pour chaque configuration,
les chargements suivants sont considérés : Sxx/Syy = {1,00; 1,25; 1,50; 1,75; 2,00; 2,25; 2,50;
2,75; 3,004, SR = {0,00; 0,25; 0,50, 0,75; 1,00; 1,25; 1,50; 1,75; 2,00; 2,25; 2,50, 2,75; 3,00}
avec Syy =-15 MPa. Ces chargements sont jugés représentatifs de 1’ensemble des conditions
rencontrées dans le Bouclier Canadien. Aucun cisaillement n’est appliqué aux frontieres du
modele dans un premier temps; I’influence des contraintes en cisaillement fait I’objet d’une

vérification ultérieure.

L’erreur normalisée ey est donc déterminée pour 12 870 cas. L’échantillon produit est trié¢ par
ordre croissant et divisé en quatre parts égales délimitées par des quartiles : 25 % des données
sont inférieures au quartile q;; le quartile q» constitue la médiane de la distribution; 75 % des
données sont inférieures au quartile qs. Les quartiles ainsi obtenus sont présentés a la premicre
rangée du Tableau 4-1. Cette approche statistique est sous-tendue par I’hypothése d’absence de

corrélation entre E{/E,, v, 8, Sxx/Syy et SR.

Tableau 4-1 : Caractéristiques de la distribution de I'erreur normalisée.

Sxy = Sxz = Syz Minimum q1 qz qs3 Maximum
0,0 MPa 0 % 1% 3% 6 % 18 %
+ TMAX 0% 5% 8 % 11 % 34 %
— TMAX 0% 5% 8 % 10 % 30 %

L’influence des paramétres E;/E,, v, 8, Sxx/Syy, SR sur I’erreur normalisée ey

est évaluée et

présentée aux Figures 4-1 a 4-5. Une corrélation évidente est observée avec les parameétres
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Ei/Ea, Sxx/Syy, SR; D’erreur normalisée tend a augmenter avec [’augmentation de E,/E,,
I’augmentation du rapport Sxx/Syy et la diminution du SR. Une corrélation moins marquée est
décelée avec les paramétres v et O; I’erreur normalisée tend a augmenter faiblement avec
I’augmentation de v et diminue 1égérement lorsque & = 90°. Des tests d’indépendance du % sont
conduits et permettent de rejeter [’hypothése stipulant que D’erreur normalisée en est

indépendante des cinq parameétres considérés; ces tests sont détaillés a I’annexe D.
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Figure 4-1 : Influence de E|/E; sur I'erreur normalisée ey avec Sxy = Sxz = Syz = 0,0 MPa.
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Figure 4-2 : Influence de Sxx/Syy sur I'erreur normalisée ey avec Sxy = Sxz = Syz = 0,0 MPa.
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L’examen de 1’équation (2.26) permet de constater que lorsque E;/E; = 1,00, le paramétre A est
égal a 3. L’équation (2.25) ainsi simplifiée pour ce cas particulier est présentée a I’équation (4.4).
Cette expression correspond a celle proposée par Hondros (1959) sous I’hypothése de contraintes
planes. Le fait que I’erreur normalisée en soit non nulle pour les matériaux isotropes, tel que
montré a la Figure 4-1, met en évidence la divergence entre la solution analytique (2D) et les
résultats de simulations numériques (3D); la variation axiale des contraintes au sein de
I’éprouvette et I’influence du rapport H/D constituent les causes principales de 1’écart observé.
L’augmentation de I’erreur normalisée e avec le rapport E\/E; peut s’expliquer par le fait que les
conditions dans lesquelles le paramétre empirique A a été déterminé ne correspondent pas aux
conditions de I’essai pour lequel il est utilisé.

Vv, =— ?8111 +é:1 (4_4)

glll + 381]1

Une analyse fonctionnelle permet d’expliquer la corrélation entre I’erreur normalisée ex et le
rapport Sxx/Syy. Etant donné 1’équation matricielle (2.28), les contraintes en fond de trou
Oxx, Oyy varient linéairement selon Sxx/Syy, avec Syy et Szz fixées. Or, les déformations
€xx, €yy varient linéairement avec les contraintes Oxx, Oyy, le matériau étant ¢lastique linéaire.
Puisque les écarts absolus Aoxx, AOyy sont linéaires par rapport aux déformations exx, €yy,

I’erreur normalisée ey est donc linéaire par rapport a Sxx/Syy.

La similitude des états de contraintes lors d’une mesure in situ et de ’essai de compression
biaxiale permet d’expliquer la faible valeur de I’erreur normalisée ex lorsque Sxx/Syy = 1,00. Par
définition, cet essai est réalisé avec Sxx/Syy = 1,00. L’erreur normalisée ey est minimisée
lorsqu’une mesure est effectuée dans un environnement ou ces conditions sont reproduites. Elle
est tout de méme non-nulle pour deux raisons. Tout d’abord, la distribution de contraintes au sein
de la carotte est uniforme lors de I’essai de compression biaxiale ce qui n’est pas le cas lors de la
saignée. Cette différence est illustrée a la Figure 4-6, ou la distribution de la contrainte oxx le
long du diamétre de la carotte parallele a I’axe X est présentée pour un essai de compression
biaxiale avec P=10MPa et pour une mesure in situ avec un chargement S = {-10;-
10; 0; 0; 0; 0} MPa. Puisque les déplacements sont mesurés par des jauges ayant une longueur
finie et non ponctuelle, cette différence de distribution de contraintes peut expliquer en partie

I’erreur observée. De plus, I’erreur engendrée par 1’équation empirique (2.25) associée a 1’essai
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de compression diamétrale est implicite a tous les résultats présentés aux Figures 4-1 a 4-5, y

compris ceux obtenus avec Sxx/Syy = 1,00.
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-14E+07 1 \
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Diamétre de la carotte aligné selon X (en m)

= = ~Mesure in situ "= Essai de compression biaxiale

Figure 4-6 : Distribution diamétrale des contraintes — essai de compression biaxiale et saignée.

Une analyse qualitative permet d’expliquer la corrélation entre I’erreur normalisée ey et le SR.
L’augmentation du SR entraine une diminution des contraintes en fond de trou oxx, Oyy, voire
I’apparition de contraintes de tension, en raison du signe négatif des facteurs de concentration de
contraintes Cx, Cy. Par conséquent, les écarts absolus Aoxx, Aoyy sont plus faibles alors que la
contrainte moyenne appliquée S, est plus ¢élevée. Ainsi, I’erreur normalisée diminue avec

I’augmentation du SR.

L’erreur normalisée ey est réévaluée pour les 12 870 cas décrits précédemment, mais cette fois en
ajoutant des contraintes en cisaillement aux chargements appliqués. Les valeurs extrémes de
cisaillement +Tyax sont assignées aux contraintes Sxy, Sxz, Syz; Tmax est défini a 1’équation
(3.40). Les quartiles associés aux deux échantillons produits sont présentés aux dernieres rangées

du Tableau 4-1.
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L’erreur normalisée ex est plus élevée lorsque des cisaillements sont appliqués puisque le
troisieme terme de 1’équation (4.3) est non nul. Elle est 1égérement plus importante pour des
angles O différents de 0° ou 90°, tel qu’illustré a la Figure 4-7. Les autres tendances générales

présentées aux Figures 4-1 a 4-5 demeurent valables.
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Figure 4-7 : Influence de 0 sur l'erreur normalisée ex avec Sxy = Sxz = Syz = +tmax.

En résumé, le recours au modele anisotrope équivalent et les modeles d’interprétation utilisés
pour les essais en laboratoire qui lui sont associ€s entrainent une erreur normalisée ey de moins
de 11 % sur les contraintes en fond de trou dans plus de 75 % des cas. L’ erreur normalisée atteint
au maximum 34 %. Elle augmente notamment avec les rapports E|/E; et Sxx/Syy et la diminution
du SR. L’erreur intrinséque au mod¢ele d’interprétation de 1’essai de compression diamétrale est la

cause principale de I’erreur normalisée observée.

4.2 Justesse du tenseur des contraintes

Les méthodes d’obtention du tenseur des contraintes sont différenciées selon les facteurs de
concentration de contraintes utilisés et le nombre d’équations obtenues par mesure. Les résultats
présentés dans cette section sont produits a I’aide de la méthode conventionnelle : seules trois
équations sont obtenues par mesure. L’impact de 1’utilisation de facteurs de concentration de

contraintes développés pour les matériaux transversalement isotropes est évalué.

Le tenseur des contraintes est déterminé pour des matériaux transversalement isotropes avec
E\/E, = {1,00; 1,25; 1,50; 2,00}, v = {0,00; 0,10; 0,20; 0,30; 0,40} et 6= {0; 30; 60; 90}°. Tel

qu’expliqué a la section 3.4.2 et illustré a la Figure 3-19, des mesures dans trois forages orientés
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différemment sont combinées; les angles d des forages sont respectivement 0°, 90° et 45°. Les
chargements S suivants sont considérés: Sxx/Syy = {1,00; 1,25; 1,50; 1,75; 2,00; 2,25; 2,50;
2,75; 3,004, SR = {0,00; 0,25; 0,50, 0,75; 1,00; 1,25; 1,50; 1,75; 2,00; 2,25; 2,50, 2,75; 3,00}
avec Syy =-10 MPa. Les contraintes Sxy, Sxz, Syz sont nulles dans un premier temps; leur

influence fait I’objet d’une vérification ultérieure.

Le tenseur des contraintes est ainsi déterminé pour 7 605 cas; le biais A défini a I’équation (3.41)
est calculé pour chacun de ces cas. La méthodologie présentée a la section 3.4.3.1.2 est d’abord
appliquée : les contraintes en fond de trou oOxx, Oyy, Oxy sont calculées avec les pseudo-
paramétres de déformabilité; les contraintes partielles S,,, S,,, S,, sont déterminées avec les
pseudo-facteurs de concentration de contraintes obtenus avec les équations générales présentées a
la section 3.4.1.4 et les pseudo-paramétres de déformabilité. Les quartiles de 1’échantillon produit
sont présentés a la premiére rangée du Tableau 4-2. Le biais observé A est li¢ a I’erreur
normalisée ey sur les contraintes en fond de trou et a I’utilisation des pseudo-facteurs de

concentration de contraintes développés pour des matériaux avec o = 0°.

Les 7605 tenseurs des contraintes sont ensuite recalculés en utilisant les facteurs de
concentration de contraintes développés pour les matériaux isotropes. La méthodologie présentée
a la section 3.4.3.1.2 est suivie, mais les pseudo-facteurs de concentration de contraintes sont
obtenus avec les équations générales présentées a la section 3.4.1.4 et le rapport E,/E;
arbitrairement fixé a 1,00. Les quartiles de 1’échantillon produit sont présentés a la deuxieme
rangée du Tableau 4-2; I’augmentation du biais A liée a I’utilisation de facteurs de concentration

de contraintes développés pour les matériaux isotropes est ainsi mise en €vidence.

Tableau 4-2 : Caractéristiques de la distribution du biais A — méthode conventionnelle.

Ex, Ey,v | Facteurs de Sxvs Sxz, | Minimum | q q2 qs Maximum
concentration de | Syz
contraintes
Pseudo- Pseudo- 0,0MPa |0% 6% |8% 10% |31 %
Pseudo- Pseudo-, avec 0,0 MPa 0% 9% |14% |[20% |58%
E1/E2 = 1,00
Pseudo- Pseudo- + TMAX 0 % 8% | 11% [ 13% |28%
Pseudo- Pseudo- — TMAX 0 % 9% | 11% | 14% |28%
Vrais Vrais, E=F =G =0 | + tyax 0,1 % 0,2% | 2% 4% 12 %
Vrais Vrais, E=F =G =0 | — gy1ax 0,1 % 0,2% | 2% 4% 11 %
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L’influence des paramétres E;/E;, v, 0 sur le biais A est évaluée et présentée aux Figures 4-8 a
4-10. Une corrélation évidente est observée avec E|/E,; le biais tend a augmenter avec E/E,. Une
corrélation moins marquée est décelée avec v; I’erreur normalisée tend a augmenter faiblement
avec laugmentation de v. Des tests d’indépendance du %° sont conduits et permettent
effectivement de rejeter I’hypothése selon laquelle le biais A est indépendant des parametres
E\/E,, v. Bien que I’hypothése d’indépendance a & ne soit pas rejetée par un test du %> une
corrélation avec § est difficile a établir de maniére claire. Les tests d’indépendance du 5 conduits

sont détaillés a I’annexe D.
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Figure 4-8 : Influence de E|/E; sur le biais A avec Sxy = Sxz = Syz = 0,0 MPa.
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Figure 4-9 : Influence de v sur le biais A avec Sxy = Sxz = Syz = 0,0 MPa.
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Figure 4-10 : Influence de 9 sur le biais A avec Sxy = Sxz = Syz = 0,0 MPa.

Les biais sur les tenseurs des contraintes sont réévalués pour les 7 605 cas, mais cette fois en
ajoutant des contraintes en cisaillement aux chargements appliqués dans le référentiel {X, Y, Z}.
Les valeurs extrémes de cisaillement + Tyax sont assignées aux contraintes Sxy, Sxz, Syz; Tmax
est défini a I’équation (3.40). Les quartiles associés aux deux échantillons produits sont présentés
aux troisieme et quatriéme rangées du Tableau 4-2. Le biais A est plus élevé de quelques unités
de pourcentage lorsque des cisaillements sont appliqués dans le référentiel {X,Y,Z}. Il est
légérement plus important pour un angle 6 de 30°, tel qu’illustré a la Figure 4-11. Les tendances

générales présentées aux Figures 4-8 a 4-10 demeurent valables.
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Figure 4-11 : Influence de & sur le biais A avec Sxy = Sxz = Syz = -Tmax.

Puisque les pseudo-facteurs de concentration de contraintes sont ceux déterminés avec & = 0°, les

facteurs E, F, G sont toujours nuls en pratique. L’influence des contraintes Sxz; et Syzi est donc
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négligée lors de la détermination du tenseur des contraintes, sauf pour les mesures réalisées avec
des angles 0; de 0° ou 90°. Afin d’évaluer I’incidence de cette hypothése, les 7 605 tenseurs des
contraintes sont recalculés en posant arbitrairement E = F = G = 0. La méthodologie présentée a
la section 3.4.3.1.2 est modifiée : les contraintes en fond de trou oxx, Oyy, Oxy sont calculées
avec les vrais paramétres de déformabilité; les contraintes partielles Sy, S,y , Sy, sont
déterminées avec les vrais facteurs de concentration de contraintes sauf pour E, F, G qui sont
arbitrairement nuls. Des contraintes en cisaillement Sxy = Sxz = Syz = = Tmax sont appliquées.

Les quartiles de I’échantillon produit sont présentés aux dernieres rangées du Tableau 4-2;
I’importance des facteurs de concentration de contraintes E, F, G est ainsi mise en évidence. Les
résultats sont également illustrés a la Figure 4-12 en fonction de I’angle 8. Le fait de poser
arbitrairement E=F =G =0 n’a aucune incidence lorsque 0 =0° puisque les vrais facteurs
E,F,G sont nuls pour les trois mesures combinées pour la détermination du tenseur des
contraintes. En effet, § =0° pour les trois forages simulés lorsque 0 =0°, tel qu’indiqué au
Tableau 3-6. Suivant le méme raisonnement, le biais A est plus élevé lorsque & = 30° ou & = 60°
puisque les vrais facteurs E, F, G sont nuls pour seulement une des trois mesures combinées. Le
biais A présente des valeurs intermédiaires lorsque & = 90° puisque les vrais facteurs E, F, G sont

nuls pour deux des trois mesures combinées.
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Figure 4-12 : Influence de 9 sur le biais A avec Sxy = Sxz = Syz=+tmax et E=F =G =0.

En résumé, les résultats présentés au Tableau 4-2 montrent que le recours aux facteurs de
concentration de contraintes développés pour les matériaux transversalement isotropes permet

d’améliorer la justesse du tenseur des contraintes S’ calculé. Le biais observé A est de moins de
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13 % dans plus de 75 % des cas. Le biais atteint au maximum 31 %; il atteint 58 % lorsque les
facteurs de concentration de contraintes développés pour les matériaux isotropes sont utilisés. Le
biais augmente notamment avec le rapport E;/E,. L’erreur normalisée ey sur les contraintes en
fond de trou et I’utilisation des pseudo-facteurs de concentration développés pour des matériaux

avec 0 = 0° sont les causes principales du biais A observé.

4.3 Validation de la méthode RPR

La détermination du SR est une étape clé dans 1’obtention du tenseur des contraintes a I’aide de la
méthode RPR. La généralisation de la méthode RPR aux matériaux transversalement isotropes
est validée a la section 3.4.3.2.5 en utilisant la vraie valeur du SR, connue en raison du recours a
la simulation numérique. L’impact de la détermination du SR par interpolation linéaire des
abaques SR-RPR et de I'utilisation des relations développées pour des matériaux avec 6 = 0° est

évalué dans cette section.

Le tenseur des contraintes est déterminé pour des matériaux transversalement isotropes avec
E\/E, = {1,00; 1,25; 1,50; 2,00}, v = {0,00; 0,10; 0,20; 0,30; 0,40} et &= {0; 30; 60; 90}°. Les
angles d des trois forages simulés sont respectivement 0°, 90° et 45°. Les chargements S suivants
sont considérés : Sxx/Syy = {1,00; 1,25; 1,50; 1,75; 2,00, 2,25; 2,50; 2,75; 3,00}, SR = {0,00;
0,25; 0,50, 0,75; 1,00; 1,25; 1,50; 1,75; 2,00; 2,25; 2,50; 2,75; 3,00} avec Syy=-10MPa; les
contraintes Sxy, Sxz, Syz sont nulles. Le tenseur des contraintes est ainsi déterminé pour 7 605
cas; le biais A défini a 1’équation (3.41) est calculé pour chacun de ces cas. La méthodologie

présentée a la section 3.4.3.2.4 est appliquée : les contraintes en fond de trou oxx, Oyy, Oxy sont

calculées avec les pseudo-paramétres de déformabilité; les contraintes partielles S,y , S,y, S,

S,, sont déterminées avec les pseudo-facteurs de concentration de contraintes obtenus avec les
équations générales présentées a la section 3.4.1.4 et les pseudo-paramétres de déformabilité; le
SR est déterminé pour les pseudo-parametres par interpolation linéaire des abaques SR-RPR
développés pour les matériaux avec 0 = 0°. Les quartiles de 1’échantillon produit sont présentés
au Tableau 4-3. Le biais observé A est 1ié a 1’erreur normalisée ey sur les contraintes en fond de
trou, a 'utilisation des pseudo-facteurs de concentration de contraintes et des abaques SR-RPR
développés pour des matériaux avec 8 = 0°, a I’interpolation linéaire des abaques SR-RPR, et a la

démarche itérative liée aux rapports Sxxi/Syyi.
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Tableau 4-3 : Caractéristiques de la distribution du biais A — méthode RPR.

Ex, Ey, v Facteurs de Sxy, Sxz, | Minimum | qQ2 qQs Maximum
concentration Svz
de contraintes

Pseudo- Pseudo- 0,0 MPa 0% 6% | 8% 11% |13112%

Les trois premiers quartiles présentent des valeurs similaires & ceux donnés au Tableau 4-2
obtenus dans les mémes conditions avec la méthode conventionnelle. Ce résultat découle du fait
que des matériaux homogenes sont utilisés dans cette étude; une amélioration de la précision sur
le tenseur des contraintes S’ calculé n’est donc pas attendue. En effet, la méthode RPR présente
un avantage particulier pour les matériaux hétérogeénes puisque les composantes du tenseur des
contraintes déterminées pour chaque mesure sont indépendantes des autres mesures. Cet avantage
ayant fait I’objet d’études précédentes (Cloix, 2010), il n’est pas mis en évidence dans ce travail,
I’objectif étant plutdt de généraliser la méthode aux matériaux transversalement isotropes. La
similitude des résultats obtenus avec les deux méthodes montre toutefois la prépondérance de
I’erreur associée a I’erreur normalisée ey et a I’hypothése selon laquelle & = 0°; I’erreur associée
a Dinterpolation lin¢aire des abaques SR-RPR et a la démarche itérative liée aux rapports

Sxxi/Syvi est ainsi limitée.

La valeur maximale du biais A au Tableau 4-3 parait anormalement ¢élevée. Les cas concernés
sont ceux pour lesquels le SR d’un ou de plusieurs forages impliqués dans la détermination du
tenseur des contraintes S’ s’approche de la valeur critique. La valeur critique du SR, notée SR,
correspond a celle pour laquelle le dénominateur de I’équation (3.49) s’annule; I’intervalle autour
de cette valeur critique est appelé dans la suite zone critique. Dans la zone critique, une légere
imprécision sur le SR peut entralner une erreur significative sur la contrainte Szz; et par

conséquent, sur le tenseur S’ calculé.

Afin de corroborer cette explication, le cas pour lequel la valeur maximale du biais A est atteinte
(A=13 112 %) est analysé¢ plus en détails. Ce cas correspond a la configuration E/E, = 1,25;
v=0,00; 6 =0°, avec le chargement S = {-2,75; -1,00; -5,15; 0,00; 0,00; 0,00} MPa. La relation
entre le SR et la contrainte Szz;, donnée par 1’équation (3.49), est tracée a la Figure 4-13 pour les
trois forages Fi, F», F3; la Figure 4-14 reprend la relation pour le forage F; avec une échelle
appropri¢e. Sur ces deux figures, les droites verticales correspondent au SR déterminé par

interpolation linéaire des abaques SR-RPR. L’analyse de la Figure 4-13 permet de constater que
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le SR déterminé pour le forage F; est situ¢ dans la zone critique; le méme constat est effectué a
partir de la Figure 4-14 a propos du SR déterminé pour le forage F;; le SR déterminé pour le
forage F, n’est pas situé¢ dans une telle zone critique. Si la méthode RPR est utilisée uniquement
pour le forage F; et que la méthode conventionnelle est appliquée aux forages Fj, F3, le biais
observe est réduit a 7,3 %; il est de 7,4 % lorsque la méthode conventionnelle est utilisée pour les

trois forages.

Un deuxieme exemple est donné a la Figure 4-15. Ce cas correspond a la configuration
Ei/E;=1,25; v=10,30; 8 = 30°, avec le méme chargement S qu’a I’exemple précédent. L’analyse
de la Figure 4-15 permet de constater que les SR déterminés pour les trois forages Fy, F», F3 ne
sont pas situés dans la zone critique. Le biais A observé lorsque la méthode RPR est appliquée

aux trois forages est de 7,5 %; il est de 7,3 % lorsque la méthode conventionnelle est utilisée.

Les résultats obtenus démontrent que la méthode RPR s’avere inadéquate lorsque le SR est situé
dans la zone critique. Ce probléme a déja été soulevé dans la littérature et une méthodologie
alternative adaptée a cette situation particuliere a €té proposée par Corthésy et al. (1994). Cette
méthodologie consiste a utiliser une équation empirique mettant en relation les déformations au
pic plutot que le rapport SR pour déterminer la contrainte ozz. L’équation proposée implique un
facteur empirique qui dépend uniquement du coefficient de Poisson v pour les matériaux
isotropes; il dépend de plusieurs paramétres pour les matériaux transversalement isotropes,
probablement les mémes que ceux dont dépend le RPR (E/E,, v, 0, Sxx/Syy, SR, ShR), ce qui
complexifie significativement sa définition. Ainsi, pour les matériaux anisotropes, il est suggéré
de renoncer a la méthode RPR si le SR est jugé critique. Les résultats du Tableau 4-3 suggerent

qu’une telle situation est rencontrée dans moins de 25 % des cas.
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Figure 4-13 : Evaluation de la criticité du SR obtenu a 1’aide des abaques SR-RPR.
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Figure 4-14 : Evaluation de la criticité du SR obtenu a 1’aide des abaques SR-RPR (zoom).
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Figure 4-15 : Evaluation de la criticité du SR obtenu a 1’aide des abaques SR-RPR (ex. 2).
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Pour 209 des 7 605 cas ¢tudiés, la démarche itérative liée aux rapports Sxxi/Syyi s’avere
inadéquate puisque les valeurs de SR déterminés a partir des abaques SR-RPR oscillent entre
chaque itération sans jamais atteindre le critére de convergence fixé. Les cas concernés semblent
étre liés a la zone critique, tel qu’illustré a la Figure 4-16. Cette figure présente la relation entre le
SR et la contrainte Szzi pour un cas ou le critére de convergence n’est pas atteint. Ce cas
correspond a la configuration E;/E; = 1,50; v =0,40; 6 =30°, avec le chargement S = {-1,25; -
1,00; -0,28; 0,00; 0,00; 0,00} MPa. Sur cette figure, les barres d’erreur aux extrémités des droites
verticales représentent 1’intervalle sur lequel les valeurs de SR oscillent. L’analyse de cette figure
permet de constater que le SR déterminé pour le forage F; est situ¢ dans la zone critique; il peut
ainsi empécher d’atteindre le critére de convergence. Les biais A calculés pour ces cas ne sont pas

comptabilisés dans les résultats présentés au Tableau 4-3.

5E+08
AE+08
3E+08
2E+08
1E+08 T . L-\
0E+00 fommm == | etoITII L 3
0,5 b
.

Szz,(Pa)

-1E+08 %0
2E+08
SR

Figure 4-16 : Intervalles de convergence des valeurs de SR.

Les résultats obtenus et les exemples présentés confirment le fait que la précision sur le tenseur
des contraintes S’ obtenu a 1’aide de la méthode RPR ou de la méthode conventionnelle est
équivalente dans des matériaux homogenes. La généralisation de la méthode RPR aux matériaux
transversalement isotropes présentée a la section 3.4.3.2 est donc validée dans son ensemble.
Toutefois, lorsque le SR d’un des forages est situé¢ dans la zone critique, la méthode RPR telle
que proposée est inadéquate; il est préférable d’utiliser la méthode RPR uniquement avec des
forages dont le SR n’est pas jugé critique. L’erreur normalisée ey sur les contraintes en fond de
trou et I’utilisation des pseudo-facteurs de concentration et des abaques SR-RPR développés pour

des matériaux avec 0 = 0° sont les causes principales du biais A observé.
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CHAPITRE S  DISCUSSION ET CONCLUSION

Les résultats répondant aux objectifs spécifiques fixés a la section 2.3 sont résumés dans cette
section; ils sont accompagnés de suggestions d’amélioration. Une limitation de I’étude est

¢galement mentionnée. Un retour sur I’objectif général conclut la présentation de ces travaux.

5.1 Synthése des résultats et recommandations

Les résultats présentés a la section 4.1 montrent que le recours au modé¢le anisotrope équivalent et
les modeles d’interprétation des essais en laboratoire qui lui sont associés entrainent une erreur
normalisée ex de moins de 11 % sur les contraintes en fond de trou dans plus de 75 % des cas;
I’erreur normalisée atteint au maximum 34 %. Cette erreur doit étre comparée et ajoutée aux
erreurs de nature expérimentale; son ordre de grandeur est généralement acceptable. Le modé¢le
d’interprétation de I’essai de compression diamétrale s’est avéré la cause principale de 1’erreur
normalisée observée. Ce constat ouvre la voie a des études futures visant a développer un modele
d’interprétation adapté au montage de 1’essai. A cet effet, I’équation empirique (2.25) devrait étre
remplacée par une équation développée spécifiquement pour des problémes en trois dimensions
en considérant notamment la variation axiale des contraintes au sein de 1’éprouvette et le rapport
H/D. Le coefficient de Poisson vyx déterminé par cet essai ainsi que les modules de Young
Ex, Ey qui en dépendent seraient plus justes; ’erreur normalisée en serait ainsi réduite. La

justesse des contraintes en fond de trou ne dépendrait plus que des erreurs expérimentales.

Les résultats présentés a la section 4.2 montrent que le biais A observé sur le tenseur des
contraintes calculé avec la méthode conventionnelle adaptée aux matériaux transversalement
isotropes est de moins de 13 % dans plus de 75 % des cas; le biais atteint au maximum 31 %
alors qu’il atteint 58 % sous I’hypothese d’isotropie du matériau. Ces résultats confirment que la
généralisation de la méthode conventionnelle aux matériaux transversalement isotropes permet
d’améliorer la justesse du tenseur des contraintes déterminé. Le biais A observé est attribu¢ a
I’erreur normalisée ex sur les contraintes en fond de trou ainsi qu’a I’utilisation des pseudo-
facteurs de concentration développés pour des matériaux avec 0 = 0°. La diminution de I’erreur
normalisée ex a été discutée au paragraphe précédent. L’erreur liée aux pseudo-facteurs de
concentration de contraintes pourrait étre réduite en déterminant I’orientation des plans

d’isotropie plutot que de supposer que ceux-ci sont strictement paralléles ou perpendiculaires au
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forage. A cet effet, Gonzaga et al. (2008) ont proposé une méthodologie permettant de déterminer
I’angle 8 a partir d’un essai de compression isotrope et d’un essai de compression uniaxiale sur
une méme ¢éprouvette. Les facteurs de concentration de contraintes correspondant a 1’angle 0
ainsi déterminé pourraient alors étre utilisés dans les calculs; la base de données présentée a
I’annexe B devrait étre élargie a un plus grand nombre d’angles 6. Toutefois, les essais en
laboratoire proposés par Gonzaga et al. (2008) sont plus complexes que ceux associés au modele
anisotrope équivalent puisqu’ils requierent 1’ajout de trois rosettes a trois jauges de déformations;
ils sont par conséquent moins économiques. Un choix s’impose alors entre 1’amélioration de la
justesse du tenseur des contraintes obtenu ou le maintien de la simplicité et des cofits des essais

en laboratoire.

Les résultats présentés a la section 4.3 permettent de valider la généralisation de la méthode RPR
aux matériaux transversalement isotropes. Contrairement a la méthode RPR telle que développée
pour les matériaux isotropes, le systeme d’équations (3.52) propre a chaque point de mesure
demeure toutefois indéterminé; 1’avantage principal de la méthode RPR est ainsi compromis. Or,
I’hypothése découlant du modéle anisotrope équivalent selon laquelle les plans d’isotropie sont
strictement paralleles ou perpendiculaires au forage implique 1’annulation des facteurs de
concentration de contraintes E, F, G; le systéeme d’équations (3.52) devient alors déterminé et
I’avantage principal de la méthode RPR est a nouveau valable. Si 1’orientation des plans
d’isotropie était déterminée selon la méthodologie proposée par Gonzaga et al. (2008), la
méthode RPR pourrait étre appliquée avec les vrais facteurs de concentration de contraintes, mais
en posant arbitrairement E = F = G = 0. Le biais A sur le tenseur calculé S’ 1i¢ a cette hypothése a
déja été testé au Tableau 4-2 et demeure acceptable : il est de moins de 4 % dans plus de 75 %

des cas et atteint au maximum 12 %.

En guise d’ouverture, il est vérifi¢ si une interprétation plus exacte de 1’essai de compression
diamétrale permettrait effectivement 1’amélioration de la justesse du tenseur des contraintes S’
obtenu. A cet effet, le coefficient de Poisson vyx est supposé connu; cette hypothése sous-entend
que D’équation (2.25) soit remplacée par une nouvelle équation empirique permettant de
déterminer le coefficient de Poisson vyx avec une précision acceptable. Les parametres Ex, Ey
sont déterminés selon les équations (2.23) et (2.24) a partir de résultats de simulation d’essais de

compression biaxiale isotrope. Cet exercice est effectué pour Ila configuration
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Ei/E>;=1,50;v=0,30 et §=60° avec le chargement S= {-30;-10;-60; -25;-25;-25} MPa.
L’erreur normalisée ey sur les contraintes en fond de trou est de 0,4 %, comparativement a
10,3 % en utilisant 1’équation (2.25) originale. Le biais A sur le tenseur des contraintes calculé S’
est de 6,7 %, comparativement a 12,3 % avec I’équation (2.25) originale. Les efforts visant a
adapter 1’équation empirique (2.25) aux conditions spécifiques de 1’essai s’en trouvent ainsi
justifiés. La cause principale du biais A serait alors limitée a 1’hypothése relative a 1’orientation

des plans d’isotropie affectant la détermination des facteurs de concentration de contraintes.

5.2 Limitation de I’étude

L’¢tude réalisée comporte une limitation importante en ce qui a trait a la notion d’échelle
d’anisotropie. En effet, une mesure de contraintes avec une cellule doorstopper est affectée par
I’anisotropie du matériau a 1’échelle de la carotte, tel que mentionné a la section 2.1.5; les
facteurs de concentration de contraintes sont plutét affectés par 1’anisotropie du matériau a
I’échelle de la zone d’influence du relaichement des contraintes, tel que mentionné a la section
2.2.3. Les paramétres de déformabilité peuvent varier entre ces €chelles et entre les points de
mesure. Or, la méthodologie proposée dans ce travail suppose une isotropie transversale uniforme
a I’échelle de la zone englobant les points de mesure combinés pour déterminer le tenseur des
contraintes. De cette limitation découle deux propositions d’¢tudes futures. La premiére viserait a
simuler des mesures de contraintes dans un matériau présentant des hétérogénéités d’anisotropie.
En plus de valider la généralisation des méthodes d’interprétation aux matériaux transversalement
isotropes, cette étude permettrait de confirmer I’avantage de la méthode RPR par rapport a la
méthode conventionnelle. La seconde étude aurait pour but de caractériser I’influence de
I’utilisation des paramétres de déformabilité évalués a 1’échelle de la carotte pour la

détermination des facteurs de concentration de contraintes.

5.3 Conclusion

En conclusion, cette étude a permis la généralisation aux matériaux transversalement isotropes de
I’interprétation de mesures réalisées avec une cellule doorstopper pour la détermination du
tenseur des contraintes in situ. La justesse des résultats obtenus a différentes étapes de calculs
suivant la méthodologie proposée dans ce travail est jugée acceptable. Des améliorations sont

toutefois envisageables; elles ont ét¢ évoquées dans ce dernier chapitre.
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ANNEXE A — Pseudos-parameétres de déformabilité

La détermination des parametres de déformabilité du modele anisotrope équivalent est simulée
pour 110 matériaux transversalement isotropes. Les pseudo-parametres déterminés a 1’aide de
modéles COMSOL Multiphysics® sont présentés au tableau ci-dessous. A des fins comparatives,

les vrais parametres dans le plan du fond du trou sont également donnés.

Tableau A - 1 : Pseudo-paramétres de déformabilité pour 110 configurations.

Définition du matériau Vrais parametres Pseudo-parametres
EJ/E, E, E, VXY d Ex Ev  vvwx | Ex Ev vy

1,00 30,0 30,0 0,00 0,0 30,0 30,0 0,00 | 30,0 30,0 0,00
1,00 30,0 30,0 0,10 0,0 30,0 30,0 0,10 | 28,9 289 0,13
1,00 30,0 30,0 0,20 0,0 30,0 30,0 020 | 27,8 27,8 0,26
1,00 30,0 30,0 0,30 0,0 30,0 30.0 030 | 26,8 26,8 0,37
1,00 30,0 30,0 0,40 0,0 30,0 300 040 | 259 259 048

1,25 35,0 28,0 0,00 0,0 35,0 28,0 0,00 | 324 263 0,06
1,25 350 28,0 0,10 0,0 35,0 28,0 0,08 | 31,4 256 0,16
1,25 35,0 28,0 0,20 0,0 35,0 28,0 0,16 | 30,5 25,1 0,25
1,25 35,0 28,0 0,30 0,0 350 28,0 0,24 | 299 246 0,33
1,25 35,0 28,0 0,40 0,0 350 28,0 032 | 294 243 041

1,25 350 28,0 0,00 20,7 | 350 28,7 0,00 | 32,6 27,1 0,06
1,25 350 28,0 0,10 20,7 | 350 28,7 0,08 | 31,6 264 0,16
1,25 350 28,0 0,20 20,7 | 350 28,7 0,16 | 30,7 258 0,25
1,25 350 28,0 030 20,7 | 350 28,7 0,25 | 30,0 253 0,34
1,25 350 280 040 20,7 | 350 28,7 033 | 295 249 042

1,25 350 28,0 0,00 300 | 350 29,5 0,00 | 329 28,0 0,05
1,25 350 28,0 0,10 30,0 | 350 29,5 0,08 | 31,8 272 0,16
1,25 350 28,0 0,20 30,0 | 350 29,5 0,17 | 309 26,5 0,25
1,25 350 28,0 030 30,0 | 350 29,5 0,25 | 30,1 259 0,34

ke k| ek ek ke k| ek
© X0 A AN PA W —|o© 03U bWk —

20 1,25 350 28,0 040 30,0 | 350 295 034 | 295 255 043
21 1,25 350 28,0 0,00 378 | 350 30,3 0,00 | 33,2 289 0,05
22 1,25 350 28,0 0,10 378 | 350 30,3 0,09 | 320 28,0 0,15
23 1,25 350 28,0 020 378 | 350 30,3 0,17 | 31,1 273 0,25
24 1,25 350 28,0 030 378 | 350 30,3 026 | 30,3 26,7 0,35
25 1,25 350 280 040 378 | 350 30,3 035 | 296 262 043
26 1,25 350 28,0 0,00 450 | 350 31,1 0,00 | 33,5 299 0,04
27 1,25 350 28,0 0,10 450 | 350 31,1 0,09 | 323 29,0 0,15
28 1,25 350 28,0 020 450 | 350 31,1 0,18 | 31,3 282 0,26
29 1,25 350 28,0 030 450 | 350 31,1 027 | 30,5 27,5 0,35

(98]
e

1,25 350 28,0 040 450 | 350 31,1 036 | 29,7 269 044
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ANNEXE A — Pseudo-parametres de déformabilité (suite)

Tableau A — 1 (suite) : Pseudo-parameétres de déformabilité pour 110 configurations.

Définition du matériau

Vrais parametres

Pseudo-parametres

E/E;, E; E, VXY ) Ex Ey Vyx Ex Ey Vyx
31 1,25 35,0 28,0 0,00 60,0 35,0 32,9 0,00 34,1 32,2 0,02
32 1,25 35,0 28,0 0,10 60,0 35,0 32,9 0,09 33,0 31,1 0,14
33 1,25 35,0 28,0 0,20 60,0 35,0 32,9 0,19 31,9 30,2 0,26
34 1,25 35,0 28,0 0,30 60,0 35,0 32,9 0,28 30,9 29,3 0,36
35 1,25 350 28,0 0,40 60,0 35,0 32,9 0,38 30,0 28,5 0,46
36 1,25 35,0 28,0 0,00 90,0 35,0 35,0 0,00 35,0 35,0 0,00
37 1,25 35,0 28,0 0,10 90,0 35,0 35,0 0,10 33,8 33,8 0,13
38 1,25 35,0 28,0 0,20 90,0 35,0 35,0 0,20 32,7 32,7 0,25
39 1,25 35,0 28,0 0,30 90,0 35,0 35,0 0,30 31,5 31,5 0,37
40 1,25 35,0 28,0 0,40 90,0 35,0 35,0 0,40 30,5 30,5 0,48
41 1,50 36,0 24,0 0,00 0,0 36,0 24,0 0,00 31,7 22,0 0,08
42 1,50 36,0 24,0 0,10 0,0 36,0 24,0 0,07 30,9 21,6 0,16
43 1,50 36,0 24,0 0,20 0,0 36,0 24,0 0,13 30,3 21,3 0,23
44 1,50 36,0 24,0 0,30 0,0 36,0 24,0 0,20 29,8 21,1 0,30
45 1,50 36,0 24,0 0,40 0,0 36,0 24,0 0,27 29,6 21,0 0,36
46 1,50 36,0 24,0 0,00 20,7 36,0 25,0 0,00 31,9 23,0 0,08
47 1,50 36,0 24,0 0,10 20,7 36,0 25,0 0,07 31,1 22,6 0,16
48 1,50 36,0 24,0 0,20 20,7 36,0 25,0 0,14 304 222 0,24
49 1,50 36,0 24,0 0,30 20,7 36,0 25,0 0,21 29,9 22,0 0,31
50 1,50 36,0 24,0 0,40 20,7 36,0 25,0 0,28 29,7 21,8 0,37
51 1,50 36,0 24,0 0,00 30,0 36,0 26,2 0,00 32,2 24,1 0,08
52 1,50 36,0 24,0 0,10 30,0 36,0 26,2 0,07 31,3 23,6 0,16
53 1,50 36,0 24,0 0,20 30,0 36,0 26,2 0,15 30,6 23,2 0,24
54 1,50 36,0 24,0 0,30 30,0 36,0 26,2 0,22 30,1 22,9 0,32
55 1,50 36,0 24,0 0,40 30,0 36,0 26,2 0,29 29,7 22,7 0,39
56 1,50 36,0 24,0 0,00 37,8 36,0 274 0,00 326 254 0,07
57 1,50 36,0 24,0 0,10 37,8 36,0 274 0,08 31,7 24,8 0,16
58 1,50 36,0 24,0 0,20 37,8 36,0 274 0,15 30,9 243 0,25
59 1,50 36,0 24,0 0,30 37,8 36,0 274 0,23 30,3 24,0 0,33
60 1,50 36,0 24,0 0,40 37,8 36,0 274 0,30 29,8 23,7 0,40
61 1,50 36,0 24,0 0,00 45,0 36,0 28,8 0,00 33,1 26,9 0,07
62 1,50 36,0 24,0 0,10 45,0 36,0 28,8 0,08 32,1 26,2 0,16
63 1,50 36,0 24,0 0,20 45,0 36,0 28,8 0,16 31,2 25,6 0,25
64 1,50 36,0 24,0 0,30 45,0 36,0 28,8 0,24 30,5 25,2 0,34
65 1,50 36,0 24,0 0,40 45,0 36,0 28,8 0,32 30,0 24,8 0,41
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ANNEXE A — Pseudo-parametres de déformabilité (suite)

Tableau A — 1 (suite) : Pseudo-parameétres de déformabilité pour 110 configurations.

Ei/E,

Définition du matériau
Eq E, VXY

Vrais parametres
Ex Ey Vyx

Pseudo-parametres
Ex Ey Vyx

66
67
68
69
70

1,50
1,50
1,50
1,50
1,50

36,0 24,0 0,00
36,0 24,0 0,10
36,0 24,0 0,20
36,0 24,0 0,30
360 24,0 040

60,0
60,0
60,0
60,0
60,0

36,0 32,0 0,00
36,0 32,0 0,09
36,0 32,0 0,18
36,0 32,0 0,27
36,0 32,0 0,36

343 30,6 0,04
33,2 29,7 0,15
322 28,9 0,26
31,3 28,2 0,35
30,6 27,6 0,44

71
72
73
74
75

1,50
1,50
1,50
1,50
1,50

36,0 24,0 0,00
36,0 24,0 0,10
36,0 24,0 0,20
36,0 24,0 0,30
360 24,0 0,40

90,0
90,0
90,0
90,0
90,0

36,0 36,0 0,00
36,0 36,0 0,10
36,0 36,0 0,20
36,0 36,0 0,30
360 36,0 0,40

36,0 36,0 0,00
348 348 0,13
33,7 33,77 0,25
32,7 32,77 0,36
31,6 31,6 047

76
77
78
79
80

2,00
2,00
2,00
2,00
2,00

40,0 20,0 0,00
40,0 20,0 0,10
40,0 20,0 0,20
40,0 20,0 0,30
40,0 20,0 040

0,0
0,0
0,0
0,0
0,0

40,0 20,0 0,00
40,0 20,0 0,05
40,0 20,0 0,10
40,0 20,0 0,15
40,0 20,0 0,20

33,0 18,1 0,10
325 17,9 0,15
32,1 17,8 0,20
31,9 17,7 0,25
31,9 17,7 0,29

81
82
83
84
85

2,00
2,00
2,00
2,00
2,00

40,0 20,0 0,00
40,0 20,0 0,10
40,0 20,0 0,20
40,0 20,0 0,30
40,0 20,0 040

20,7
20,7
20,7
20,7
20,7

40,0 21,3 0,00
40,0 21,3 0,05
40,0 21,3 0,11
40,0 21,3 0,16
40,0 21,3 0,21

33,2 19,2 0,10
32,5 19,0 0,16
32,1 18,9 0,21
31,9 18,8 0,26
31,8 18,8 0,31

86
87
88
89
90

2,00
2,00
2,00
2,00
2,00

40,0 20,0 0,00
40,0 20,0 0,10
40,0 20,0 0,20
40,0 20,0 0,30
40,0 20,0 040

30,0
30,0
30,0
30,0
30,0

40,0 229 0,00
40,0 229 0,06
40,0 229 0,11
40,0 229 0,17
40,0 229 0,23

334 20,5 0,10
32,7 20,3 0,16
32,2 20,1 0,22
31,9 20,0 0,28
31,8 19,9 0,33

91
92
93
94
95

2,00
2,00
2,00
2,00
2,00

40,0 20,0 0,00
40,0 20,0 0,10
40,0 20,0 0,20
40,0 20,0 0,30
40,0 20,0 040

37,8
37,8
37,8
37,8
37,8

40,0 24,6 0,00
40,0 24,6 0,06
40,0 24,6 0,12
40,0 24,6 0,18
40,0 24,6 0,25

33,8 22,1 0,10
33,0 21,8 0,17
324 21,5 0,23
32,0 21,4 0,29
31,8 21,3 0,35

96
97
98
99
100

2,00
2,00
2,00
2,00
2,00

40,0 20,0 0,00
40,0 20,0 0,10
40,0 20,0 0,20
40,0 20,0 0,30
40,0 20,0 040

45,0
45,0
45,0
45,0
45,0

40,0 26,7 0,00
40,0 26,7 0,07
40,0 26,7 0,13
40,0 26,7 0,20
40,0 26,7 0,27

344 24,0 0,10
33,5 23,6 0,17
328 233 0,24
323 23,0 0,31
320 229 0,37
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ANNEXE A — Pseudo-parametres de déformabilité (fin)

Tableau A — 1 (suite) : Pseudo-parameétres de déformabilité pour 110 configurations.

Définition du matériau Vrais parametres Pseudo-parametres

EJ/E, E, E, VXY d Ex Evy  vyx Ex Evy  vyx

101 | 2,00 40,0 20,0 0,00 60,0 | 40,0 32,0 0,00 | 36,3 29,6 0,07
102 | 2,00 40,0 20,0 0,10 60,0 | 40,0 32,0 0,08 | 353 28,9 0,17
103 | 2,00 40,0 20,0 0220 60,0 | 40,0 32,0 0,16 | 344 283 0,26
104 | 2,00 40,0 20,0 030 60,0 | 40,0 32,0 024 | 33,6 27,8 034
105 | 2,00 40,0 200 040 600 | 40,0 320 032 | 33,0 273 042
106 | 2,00 40,0 20,0 0,00 90,0 | 40,0 40,0 0,00 | 40,0 40,0 0,00
107 | 2,00 40,0 20,0 0,10 90,0 | 40,0 40,0 0,10 | 38,9 38,9 0,13
108 | 2,00 40,0 20,0 0220 90,0 | 40,0 40,0 0,20 | 37,7 37,7 025
109 | 2,00 40,0 20,0 030 90,0 | 40,0 40,0 0,30 | 36,7 36,7 0,36
110 | 2,00 40,0 20,0 040 90,0 | 40,0 40,0 040 | 356 356 047
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ANNEXE B — Facteurs de concentration de contraintes

Les facteurs de concentration de contraintes pour les 110 matériaux transversalement isotropes
considérés sont d’abord présentés aux Tableaux B-1 a B-4. Les résultats sont regroupés par degré
d’anisotropie. Les résultats obtenus pour les configurations ou 0 = 0°, déja présentés au Tableau

3-3, sont repris dans cette annexe.

Les parametres de régression des équations générales décrivant les facteurs de concentration de
contraintes pour les sept angles & considérés sont ensuite présentés au Tableau B - 5. Les résultats

obtenus pour les configurations ou 8 = 0°, déja présentés au Tableau 3-5, sont repris.

Tableau B - 1 : Facteurs de concentration de contraintes - E;/E, = 1,00.

v AX AY Bx BY CX CY D E F G

0,00 | 1,311 1,311 -0,125 -0,125 -0,373 -0,373 1,436 0,000 0,000 0,000
0,10 | 1,320 1,320 -0,101 -0,101 -0,474 -0,474 1,421 0,000 0,000 0,000
0,20 | 1,330 1,330 -0,071 -0,071 -0,579 -0,579 1,401 0,000 0,000 0,000
0,30 | 1,341 1,341 -0,034 -0,034 -0,691 -0,691 1,374 0,000 0,000 0,000
0,40 | 1,352 1,352 0,014 0,014 -0,810 -0,810 1,338 0,000 0,000 0,000
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ANNEXE B — Facteurs de concentration de contraintes (suite)

Tableau B - 2 : Facteurs de concentration de contraintes - E/E, = 1,25.

) v Ax AY Bx BY Cx CY D E F G
0,00 | 1,325 1,297 -0,140 -0,112 -0,388 -0,321 1,437 0,000 0,000 0,000
0,10 | 1,336 1,305 -0,117 -0,092 -0,479 -0,405 1,425 0,000 0,000 0,000
0° 10,20 | 1,345 1,313 -0,090 -0,068 -0,574 -0,492 1,408 0,000 0,000 0,000
0,30 | 1,354 1,321 -0,055 -0,038 -0,674 -0,582 1,385 0,000 0,000 0,000
0,40 | 1,362 1,330 -0,011 -0,001 -0,778 -0,677 1,352 0,000 0,000 0,000
0,00 | 1,324 1,299 -0,138 -0,114 -0,391 -0,331 1,437 0,037 0,007 0,074
0,10 | 1,334 1,306 -0,115 -0,093 -0,484 -0,417 1,424 0,037 0,010 0,075
21°1 0,20 | 1,343 1,314 -0,087 -0,068 -0,581 -0,506 1,407 0,036 0,013 0,078
0,30 | 1,353 1,323 -0,053 -0,038 -0,683 -0,600 1,384 0,036 0,016 0,081
0,40 | 1,361 1,332 -0,009 0,000 -0,790 -0,698 1,351 0,036 0,021 0,086
0,00 | 1,322 1,300 -0,136 -0,115 -0,395 -0,341 1,437 0,050 0,010 0,100
0,10 | 1,332 1,308 -0,113 -0,094 -0,489 -0,430 1,424 0,049 0,013 0,102
30° 10,20 | 1,341 1,316 -0,085 -0,068 -0,588 -0,522 1,406 0,048 0,017 0,105
0,30 | 1,351 1,325 -0,050 -0,037 -0,692 -0,618 1,383 0,048 0,022 0,109
0,40 | 1,360 1,335 -0,006 0,001 -0,801 -0,720 1,351 0,048 0,028 0,116
0,00 | 1,320 1,302 -0,135 -0,117 -0,398 -0,352 1,438 0,057 0,011 0,115
0,10 | 1,330 1,310 -0,111 -0,095 -0,495 -0,443 1,423 0,055 0,015 0,117
38° 10,20 | 1,339 1,318 -0,082 -0,069 -0,595 -0,538 1,405 0,055 0,020 0,121
0,30 | 1,349 1,327 -0,048 -0,037 -0,701 -0,637 1,382 0,054 0,026 0,126
0,40 | 1,360 1,338 -0,004 0,002 -0,814 -0,743 1,350 0,055 0,033 0,134
0,00 | 1,319 1,304 -0,133 -0,118 -0,402 -0,364 1,438 0,059 0,011 0,122
0,10 | 1,328 1,311 -0,109 -0,096 -0,500 -0,457 1,423 0,058 0,016 0,124
45°10,20 | 1,337 1,320 -0,080 -0,069 -0,603 -0,555 1,405 0,057 0,021 0,128
0,30 | 1,348 1,330 -0,045 -0,036 -0,711 -0,658 1,381 0,057 0,027 0,134
0,40 | 1,359 1,341 -0,001 0,004 -0,826 -0,768 1,350 0,057 0,036 0,142
0,00 | 1,315 1,307 -0,129 -0,122 -0,409 -0,389 1,439 0,053 0,010 0,112
0,10 | 1,324 1,315 -0,105 -0,098 -0,511 -0,488 1,423 0,052 0,014 0,114
60° | 0,20 | 1,334 1,324 -0,075 -0,0609 -0,618 -0,592 1,403 0,051 0,019 0,118
0,30 | 1,345 1,335 -0,040 -0,035 -0,732 -0,703 1,380 0,051 0,026 0,123
0,40 | 1,357 1,348 0,004 0,007 -0,854 -0,822 1,349 0,051 0,034 0,131
0,00 | 1,312 1,312 -0,126 -0,126 -0,417 -0,417 1,438 0,000 0,000 0,000
0,10 | 1,320 1,320 -0,100 -0,100 -0,523 -0,523 1,420 0,000 0,000 0,000
90° | 0,20 | 1,330 1,330 -0,070 -0,070 -0,635 -0,635 1,400 0,000 0,000 0,000
0,30 | 1,342 1,342 -0,034 -0,034 -0,754 -0,754 1,376 0,000 0,000 0,000
0,40 | 1,356 1,356 0,010 0,010 -0,885 -0,885 1,346 0,000 0,000 0,000
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ANNEXE B — Facteurs de concentration de contraintes (suite)

Tableau B - 3 : Facteurs de concentration de contraintes - E;/E, = 1,50.

) v Ax AY BX BY Cx CY D E F G

0,00 | 1,338 1,287 -0,152 -0,102 -0,401 -0,284 1,433 0,000 0,000 0,000

0,10 | 1,349 1,294 -0,132 -0,085 -0,486 -0,356 1,424 0,000 0,000 0,000

0° 10,20 1,359 1,300 -0,106 -0,065 -0,573 -0,430 1,410 0,000 0,000 0,000
0,30 | 1,367 1,307 -0,073 -0,040 -0,664 -0,507 1,389 0,000 0,000 0,000

0,40 1,373 1,314 -0,032 -0,010 -0,758 -0,586 1,361 0,000 0,000 0,000

0,00 | 1,335 1,290 -0,149 -0,104 -0,407 -0,299 1,434 0,068 0,016 0,125

0,10 | 1,346 1,296 -0,128 -0,086 -0,494 -0,374 1,423 0,067 0,019 0,128
21°10,20 | 1,355 1,303 -0,101 -0,065 -0,584 -0,452 1,408 0,066 0,024 0,131
0,30 | 1,364 1,310 -0,068 -0,040 -0,678 -0,532 1,388 0,066 0,028 0,136

0,40 1,371 1,318 -0,027 -0,008 -0,776 -0,616 1,359 0,066 0,035 0,143

0,00 | 1,332 1,292 -0,146 -0,107 -0,414 -0,315 1,435 0,091 0,020 0,172

0,10 | 1,342 1,298 -0,124 -0,088 -0,503 -0,394 1,423 0,090 0,026 0,175
30°(0,20 | 1,351 1,305 -0,097 -0,065 -0,596 -0,476 1,407 0,089 0,032 0,180
0,30 | 1,360 1,313 -0,064 -0,039 -0,693 -0,561 1,386 0,089 0,039 0,187

0,40 1,369 1,321 -0,023 -0,006 -0,795 -0,649 1,358 0,089 0,049 0,197

0,00 | 1,329 1,295 -0,143 -0,109 -0,421 -0,333 1,436 0,105 0,023 0,202

0,10 1,338 1,301 -0,120 -0,089 -0,513 -0,416 1,422 0,103 0,030 0,206
38°10,20 | 1,348 1,308 -0,092 -0,066 -0,609 -0,502 1,406 0,102 0,038 0,212
0,30 | 1,357 1,316 -0,059 -0,038 -0,710 -0,592 1,384 0,101 0,047 0,220

0,40 | 1,367 1,326 -0,018 -0,004 -0,816 -0,686 1,357 0,102 0,059 0,232

0,00 | 1,326 1,298 -0,140 -0,112 -0,427 -0,353 1,437 0,112 0,023 0,220

0,10 | 1,335 1,304 -0,116 -0,091 -0,523 -0,440 1,422 0,110 0,032 0,224
45°10,20 | 1,344 1,311 -0,088 -0,066 -0,622 -0,531 1,405 0,108 0,041 0,230
0,30 | 1,354 1,320 -0,054 -0,037 -0,727 -0,626 1,383 0,107 0,051 0,240

0,40 1,365 1,331 -0,013 -0,002 -0,838 -0,727 1,356 0,107 0,065 0,253

0,00 | 1,319 1,304 -0,133 -0,118 -0,442 -0,399 1,439 0,103 0,020 0,213

0,10 1,327 1,311 -0,108 -0,095 -0,544 -0,496 1,422 0,100 0,029 0,217

60° | 0,20 | 1,337 1,319 -0,079 -0,067 -0,651 -0,599 1,403 0,099 0,039 0,223
0,30 | 1,348 1,330 -0,045 -0,036 -0,766 -0,708 1,381 0,097 0,050 0,232

0,40 1,361 1,343 -0,003 0,002 -0,889 -0,825 1,354 0,097 0,065 0,246

0,00 | 1,312 1,312 -0,126 -0,126 -0,456 -0,456 1,439 0,000 0,000 0,000

0,10 1,320 1,320 -0,100 -0,100 -0,567 -0,567 1,419 0,000 0,000 0,000

90° (0,20 | 1,329 1,329 -0,070 -0,070 -0,684 -0,684 1,399 0,000 0,000 0,000
0,30 | 1,342 1,342 -0,035 -0,035 -0,811 -0,811 1,377 0,000 0,000 0,000

0,40 1,358 1,358 0,008 0,008 -0,951 -0,951 1,350 0,000 0,000 0,000
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ANNEXE B — Facteurs de concentration de contraintes (suite)

Tableau B - 4 : Facteurs de concentration de contraintes - E;/E, = 2,00.

) v Ax AY BX BY Cx CY D E F G

0,00 | 1,361 1,273 -0,175 -0,088 -0,423 -0,232 1,426 0,000 0,000 0,000

0,10 1,374 1,278 -0,156 -0,075 -0,498 -0,289 1,420 0,000 0,000 0,000

0° 10,20 1,384 1,283 -0,133 -0,060 -0,574 -0,347 1,410 0,000 0,000 0,000
0,30 | 1,390 1,288 -0,103 -0,041 -0,653 -0,407 1,394 0,000 0,000 0,000

0,40 | 1,394 1,294 -0,065 -0,019 -0,734 -0,467 1,370 0,000 0,000 0,000

0,00 | 1,356 1,277 -0,169 -0,091 -0,434 -0,252 1,427 0,114 0,033 0,191

0,10 | 1,367 1,281 -0,149 -0,076 -0,512 -0,313 1,419 0,113 0,037 0,195
21°10,20 | 1,376 1,286 -0,125 -0,060 -0,592 -0,375 1,407 0,112 0,041 0,200
0,30 | 1,384 1,291 -0,094 -0,040 -0,675 -0,439 1,390 0,112 0,047 0,206

0,40 | 1,388 1,297 -0,057 -0,016 -0,760 -0,504 1,367 0,113 0,054 0,214

0,00 | 1,350 1,280 -0,163 -0,094 -0,446 -0,274 1,429 0,158 0,042 0,271

0,10 | 1,360 1,284 -0,142 -0,078 -0,528 -0,340 1,418 0,155 0,049 0,275
30°10,20 | 1,369 1,289 -0,116 -0,060 -0,612 -0,407 1,405 0,154 0,057 0,282
0,30 | 1,377 1,295 -0,086 -0,039 -0,698 -0,476 1,387 0,153 0,066 0,291

0,40 1,384 1,301 -0,049 -0,014 -0,789 -0,547 1,365 0,154 0,078 0,303

0,00 | 1,344 1,283 -0,157 -0,097 -0,458 -0,300 1,430 0,18 0,046 0,328

0,10 | 1,353 1,287 -0,135 -0,080 -0,544 -0,371 1,418 0,182 0,056 0,333
38°10,20 | 1,362 1,293 -0,108 -0,060 -0,632 -0,444 1,403 0,180 0,067 0,341
0,30 | 1,371 1,299 -0,078 -0,038 -0,724 -0,519 1,385 0,179 0,080 0,352

0,40 1,379 1,307 -0,040 -0,011 -0,820 -0,597 1,362 0,178 0,096 0,367

0,00 | 1,338 1,28 -0,151 -0,101 -0,471 -0,330 1,432 0,203 0,047 0,369

0,10 | 1,346 1,292 -0,128 -0,082 -0,561 -0,407 1,418 0,198 0,060 0,375
45°10,20 | 1,355 1,297 -0,101 -0,061 -0,655 -0,487 1,402 0,195 0,074 0,383
0,30 | 1,365 1,304 -0,069 -0,037 -0,753 -0,570 1,383 0,193 0,090 0,396

0,40 1,375 1,313 -0,032 -0,008 -0,856 -0,656 1,360 0,192 0,110 0,414

0,00 | 1,326 1,298 -0,139 -0,111 -0,498 -0,408 1,437 0,196 0,042 0,387

0,10 1,333 1,303 -0,113 -0,089 -0,599 -0,502 1,419 0,190 0,059 0,392

60° | 0,20 | 1,342 1,309 -0,085 -0,063 -0,707 -0,600 1,400 0,186 0,076 0,402
0,30 | 1,353 1,319 -0,053 -0,035 -0,820 -0,704 1,380 0,183 0,097 0,416

0,40 1,367 1,331 -0,014 -0,002 -0,943 -0,815 1,358 0,181 0,122 0,438

0,00 | 1,314 1,314 -0,127 -0,127 -0,526 -0,526 1,441 0,000 0,000 0,000

0,10 | 1,320 1,320 -0,099 -0,099 -0,645 -0,645 1,419 0,000 0,000 0,000

90° (0,20 | 1,330 1,330 -0,069 -0,069 -0,772 -0,772 1,398 0,000 0,000 0,000
0,30 | 1,343 1,343 -0,034 -0,034 -0,911 -0911 1,377 0,000 0,000 0,000

0,40 1,361 1,361 0,007 0,007 -1,066 -1,066 1,355 0,000 0,000 0,000
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ANNEXE B — Facteurs de concentration de contraintes (suite)

Tableau B - 5 : Paramétres de régression pour 6 = {0, 21, 30, 38, 45, 60, 90}°.

Facteurs ) pri pr2 prs prs prs Pre R’

0 1,240 0,076 0,159 -0,028 -0,007 | -0,073 0,997

21 1,248 0,069 0,133 -0,021 -0,007 | -0,024 0,998

30 1,255 0,061 0,132 -0,021 -0,007 | -0,022 0,999

Ax 38 1,264 0,053 0,113 -0,014 -0,006 0,008 1,000
45 1,272 0,045 0,101 -0,010 -0,006 0,024 1,000

60 1,290 0,027 0,068 0,005 -0,005 0,072 0,998

90 1,310 0,005 0,024 0,026 -0,002 0,125 0,993

0 1,405 -0,121 0,143 -0,050 0,028 0,010 0,999

21 1,391 -0,102 0,138 -0,050 0,023 0,026 1,000

30 1,379 -0,085 0,130 -0,045 0,018 0,035 1,000

Ay 38 1,365 -0,066 0,126 -0,042 0,012 0,041 1,000
45 1,352 -0,048 0,117 -0,036 0,008 0,048 0,999

60 1,327 -0,014 0,079 -0,013 0,000 0,087 0,997

90 1,310 0,005 0,024 0,026 -0,002 0,125 0,993

0 -0,041 -0,101 0,264 -0,074 0,018 0,381 1,000

21 -0,051 -0,090 0,268 -0,070 0,016 0,368 0,999

30 -0,062 | -0,077 0,270 -0,066 0,014 0,351 0,999

Bx 38 -0,072 | -0,066 0,265 -0,059 0,012 0,350 0,999
45 -0,083 -0,053 0,263 -0,054 0,010 0,343 0,999

60 -0,105 -0,027 0,262 -0,043 0,006 0,322 0,999

90 -0,124 | -0,005 0,238 -0,021 0,003 0,324 0,999

0 -0,154 0,024 0,399 -0,179 0,006 0,286 0,995

21 -0,156 0,027 0,380 -0,168 0,004 0,321 0,996

30 -0,150 0,019 0,381 -0,155 0,006 0,281 0,996

By 38 -0,149 0,018 0,355 -0,139 0,005 0,317 0,997
45 -0,145 0,014 0,339 -0,122 0,005 0,317 0,997

60 -0,136 0,005 0,310 -0,083 0,005 0,298 0,998

90 -0,124 | -0,005 0,238 -0,021 0,003 0,324 0,999

0 -0,371 0,020 -1,303 0,315 -0,025 -0,211 0,999

21 -0,328 -0,036 -1,262 0,283 -0,010 | -0,261 1,000

30 -0,296 | -0,077 -1,227 0,240 0,000 -0,243 1,000

Cx 38 -0,260 | -0,125 -1,170 0,191 0,012 -0,277 1,000
45 -0,229 | -0,166 -1,109 0,132 0,022 -0,290 1,000

60 -0,171 -0,240 -0,934 | -0,020 0,039 -0,363 1,000

90 -0,153 -0,263 -0,625 -0,271 0,040 -0,489 1,000
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ANNEXE B — Facteurs de concentration de contraintes (fin)

Tableau B — 5 (suite) : Paramétres de régression pour 8 = {0, 21, 30, 38, 45, 60, 90}°.

Facteurs 0 pri pr2 prs pr4 prs Prs R’
0 -0,824 0,599 -1,485 0,502 -0,155 -0,169 0,998
21 -0,716 0,452 -1,444 0,473 -0,113 -0,251 0,999
30 -0,630 0,334 -1,401 0,413 -0,080 -0,203 0,999
Cy 38 -0,526 0,193 -1,334 0,356 -0,042 -0,263 1,000
45 -0,431 0,066 -1,260 0,281 -0,009 -0,274 1,000
60 -0,253 -0,161 -1,042 0,078 0,042 -0,336 1,000
90 -0,153 -0,263 -0,625 -0,271 0,040 -0,489 1,000
0 1,405 0,050 -0,205 0,109 -0,021 -0,362 0,998
21 1,406 0,050 -0,207 0,100 -0,021 -0,342 0,998
30 1,408 0,048 -0,211 0,092 -0,020 -0,311 0,997
D 38 1,408 0,048 -0,202 0,081 -0,019 -0,310 0,996
45 1,410 0,046 -0,200 0,073 -0,018 -0,296 0,996
60 1,416 0,038 -0,213 0,061 -0,015 -0,236 0,995
90 1,434 0,010 -0,214 0,047 -0,005 -0,199 0,994
0 0,000 0,000 0,000 0,000 0,000 0,000 -
21 -0,196 0,239 -0,005 -0,002 -0,042 0,014 1,000
30 -0,254 0,305 -0,004 -0,008 -0,050 0,024 1,000
E 38 -0,283 0,334 0,007 -0,018 -0,050 0,023 1,000
45 -0,289 0,335 0,015 -0,026 -0,045 0,025 1,000
60 -0,242 0,267 0,023 -0,036 -0,024 0,033 1,000
90 0,000 0,000 0,000 0,000 0,000 0,000 -—-
0 0,000 0,000 0,000 0,000 0,000 0,000 -
21 -0,061 0,074 -0,054 0,055 -0,014 0,013 0,992
30 -0,085 0,104 -0,097 0,088 -0,021 0,056 0,993
F 38 -0,084 0,102 -0,132 0,128 -0,019 0,030 0,995
45 -0,080 0,096 -0,169 0,160 -0,017 0,038 0,996
60 -0,050 0,058 -0,240 0,206 -0,007 0,093 0,998
90 0,000 0,000 0,000 0,000 0,000 0,000 -—-
0 0,000 0,000 0,000 0,000 0,000 0,000 -
21 -0,462 0,598 -0,069 0,060 -0,137 0,031 0,999
30 -0,610 0,782 -0,104 0,081 -0,172 0,084 0,999
G 38 -0,680 0,858 -0,121 0,102 -0,178 0,060 1,000
45 -0,696 0,862 -0,140 0,117 -0,166 0,073 1,000
60 -0,568 0,665 -0,191 0,137 -0,095 0,145 1,000
90 0,000 0,000 0,000 0,000 0,000 0,000 -
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ANNEXE C — Relations SR-RPR

Les relations SR-RPR pour les configurations avec &= {30; 60; 90}° sont présentées aux
Figures C-1 a C-21. Les relations SR-RPR pour les configurations avec & = 0° sont présentées a

la section 3.4.3.2.3

6,0 L v o

v=0.0 2,0
5,0 1,5
1,0
40 v=0.1 0,5
0,0
0,50 0,70 0,90
Z30 v=102
v=0.3
2,0
v=04
1,0
0,0
-1,00 -0,80 -0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80 1,00
RPR

Figure C - 1 : Relations SR-RPR - E/E; = 1,25; 86 =90°.
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ANNEXE C — Relations SR-RPR (suite)

6,0 L L v
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4,0 v=0.1 0,5
0,0
0,50 0,70 0,90
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v=0.3
2,0
v=0.4
1,0
0,0
-1,00 -0,80 -0,60 -0,40 -0,20 0,00 020 040 0,60 080 1,00
RPR

Figure C - 2 : Relations SR-RPR - E/E; = 1,50; 6 = 90°.
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ANNEXE C — Relations SR-RPR (suite)
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0,50 0,70 0,90
&30 v=0.2
v=0.3
2,0
v=04
1,0
0,0
1,00 -0,80 -0,60 -040 -020 0,00 020 040 060 080 1,00
RPR

Figure C - 3 : Relations SR-RPR - E/E; =2,00; 6 = 90°.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 4 : Relations SR-RPR - E/E; = 1,25; 6 = 30°; ShR = 0,00.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 5 : Relations SR-RPR - E/E; = 1,25; 6 = 30°; ShR = 0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 6 : Relations SR-RPR - E/E; = 1,25; 8 = 30°; ShR =-0,50.



A//A// % A// A/
N .
6,0 TR\ A\
l'n\ ‘\\ ‘\ \
\ 1 \
|‘\ \\ Y
\

~oL
~
~Tass

1,0

0,0

-1,00 -0,80 -0,60 -0,40

Sxx/Syy =1,0
2,0
1,5
1,0

e~
E >~
1,5 PSS
S
1,0
0,5

0,0

0,0
0,50 0,70

0,90 0,50 0,70

Figure C - 7 : Relations SR-RPR - E/E; =1,50; 6 = 30°; ShR = 0,00.

ANNEXE C — Relations SR-RPR (suite)
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 8 : Relations SR-RPR - E/E; =1,50; 6 = 30°; ShR = 0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 9 : Relations SR-RPR - E/E; = 1,50; 8 = 30°; ShR =-0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 11 : Relations SR-RPR - E,/E, =2,00; 6 = 30°; ShR = 0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 12 : Relations SR-RPR - E,/E, = 2,00; 8 = 30°; ShR = -0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 13 : Relations SR-RPR - E,;/E; =1,25; 8 = 60°; ShR = 0,00.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 14 : Relations SR-RPR - E;/E; =1,25; 8 = 60°; ShR = 0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 15 : Relations SR-RPR - E/E,; =1,25; § = 60°; ShR = -0,50.
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ANNEXE C — Relations SR-RPR (suite)
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Figure C - 16 : Relations SR-RPR - E,/E; =1,50; 6 = 60°; ShR = 0,00.
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Relations SR-RPR (suite)
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Figure C - 17 : Relations SR-RPR - E,/E; =1,50; 6 = 60°; ShR = 0,50.
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Figure C - 18 : Relations SR-RPR - E,/E, =1,50; 8 = 60°; ShR = -0,50.
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ANNEXE C — Relations SR-RPR (suite)
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ANNEXE C — Relations SR-RPR (suite)
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ANNEXE C — Relations SR-RPR (fin)
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ANNEXE D — Tests d’indépendance du %’

Cingq tests d’indépendance du * sont d’abord conduits afin de vérifier si I’erreur normalisée ey
est indépendante de E;/E,, v, 0, Sxx/Syy, SR. Ces tests sont détaillés dans cette annexe. Trois
autres tests sont ensuite menés afin de vérifier I’indépendance du biais A a E;/E,, v, 0. Ceux-ci

sont décrits plus brievement a la fin de cette annexe.

L’hypothése a vérifier Hy stipule que I’erreur normalisée ex est indépendante des variables
Ei/Ea, v, 0, Sxx/Syy, SR.  Selon cette hypothése, la distribution des valeurs de en est
équiprobable. L hypothése alternative H; infirme 1’hypothése Hy, sans formellement prouver la
dépendance de en a Ei/Ej, v, d, Sxx/Syy, SR. Les résultats des tests d’indépendance du X2

augmentent toutefois la confiance vis-a-vis des relations présentées aux Figures 4-1 a 4-5.

La distribution des valeurs de ey pour les 12 870 cas considérés est divisée en cinq classes (i =5).

Les fréquences observées f, pour chacune de ces classes sont relevées pour les j valeurs
ij

tabulées de E/E, v, 0, Sxx/Syy, SR. Les Tableaux D-1 a D-5 présentent les fréquences

observées; les sommes N;, N; sont également données.

Tableau D - 1 : Fréquences observées de I’erreur normalisée ey en fonction de E,/E,.

E(/E, 0,0 21,0 % 1,0a25% [25a4,0% |4,02a6,0% > 6,0 % N;j
1,00 195 125 105 93 67 585
1,25 825 813 871 873 713 4095
1,50 724 770 778 863 960 4 095
2,00 666 804 728 751 1143 4095
Ni 2410 2512 2482 2 580 2 886 12 870
Tableau D - 2 : Fréquences observées de 1’erreur normalisée ey en fonction de Sxx/Syy.
Sxx/Syy | 0,0 a 1,0 % 1,0a25% [25a4,0% |4,02a6,0% > 6,0 % N;j
1,00 1 036 319 75 0 0 1430
1,25 759 541 113 17 0 1430
1,50 254 650 317 172 37 1430
1,75 93 464 418 280 175 1430
2,00 59 238 469 348 316 1430
2,25 53 120 420 398 439 1430
2,50 52 77 318 438 545 1430
2,75 52 57 211 468 642 1430
3,00 52 46 141 459 732 1430
N; 2410 2512 2482 2 580 2 886 12 870




Tableau D - 3 : Fréquences observées de 1’erreur normalisée ey en fonction de SR.
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SR 0,0a21,0% 1,0a25% [25a40% |4,0a6,0% > 6,0 % N;j
0,00 146 39 102 113 590 990
0,25 147 66 113 144 520 990
0,50 148 130 76 172 464 990
0,75 132 155 137 172 394 990
1,00 137 165 145 212 331 990
1,25 161 170 169 233 257 990
1,50 186 205 163 252 184 990
1,75 199 209 190 285 107 990
2,00 210 219 233 289 39 990
2,25 219 247 252 272 0 990
2,50 227 278 272 213 0 990
2,75 241 301 308 140 0 990
3,00 257 328 322 83 0 990

N; 2410 2512 2482 2 580 2 886 12 870
Tableau D - 4 : Fréquences observées de 1’erreur normalisée ey en fonction de v.

v 0,0 21,0 % 1,0a25% [25a4,0% |4,0a6,0% > 6,0 % N;
0,00 858 520 451 383 362 2574
0,10 460 650 516 457 491 2574
0,20 380 480 558 550 606 2574
0,30 357 436 493 591 697 2574
0,40 355 426 464 599 730 2574
N; 2410 2512 2482 2 580 2 886 12 870
Tableau D - 5 : Fréquences observées de I’erreur normalisée ex en fonction de 0.

b} 0,0 21,0 % 1,0a25% [25a4,0% |4,0a6,0% > 6,0 % N;

0° 249 319 336 359 492 1755
21° 251 312 340 373 479 1755
30° 256 314 332 380 473 1755
38° 260 318 335 380 462 1755
45° 269 329 339 380 438 1755
60° 310 372 359 368 346 1755
90° 815 548 441 340 196 2 340
N; 2410 2512 2482 2 580 2 886 12 870
Les fréquences théoriques f,j supposant une distribution équiprobable sont ensuite calculées

selon 1’équation (D-1), avec N la taille de ’échantillon (N =12 870). A titre d’exemple, le

Tableau D - 6 présente les fréquences théoriques en fonction de Ei/E;,; les valeurs sont arrondies

a lunité.
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N.
f =N, x— (D-1)

y N
Tableau D - 6 : Fréquences théoriques de I’erreur normalisée ex en fonction de E/E,.
E/E, 0,0a21,0% 1,0a42,5 % 2524,0% 4,0 26,0 % > 6,0 % N;j
1,00 110 114 113 117 131 585
1,25 767 799 790 821 918 4 095
1,50 767 799 790 821 918 4 095
2,00 767 799 790 821 918 4 095
Ni 2410 2512 2482 2 580 2 886 12 870

Les valeurs de X;, tel que défini a I’équation (D-2), sont calculées pour les i classes et les j

valeurs tabulées de E/E,, v, 0, Sxx/Syy, SR. A titre d’exemple, le Tableau D - 7 présente les

valeurs de X; en fonction de E/E;; les valeurs sont arrondies a 1’unité.

y

(D-2)

Tableau D - 7 : Valeurs de X; en fonction de E,/E; pour I’erreur normalisée ex.

E/E, 0,021,0% |1,0225% [25a40% [4,0a6,0% > 6,0 %
1,00 67 1 1 5 31

1,25 4 0 8 3 46

1,50 2 1 0 2 2

2,00 13 0 5 6 56

La somme des valeurs de X;, appelée x” observé x_, est calculée selon 1’équation (D-3). Les

valeurs de y* théoriques x’ sont obtenues a 1’aide de la fonction CHISQ.INV() de Microsoft

Excel, avec une certitude de 99,9 % et un degré de liberté de (i-1)(j-1). L hypotheése Hy est rejetée

si x> x/. Les résultats sont présentés au Tableau D-8.

X =22
i

(D-3)
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Tableau D - 8 : Résultats des tests d’indépendance du y° pour I’erreur normalisée ex.

Variable XDZ th Décision sur Hj
E/E, 255 33 Rejet
SXX/SYY 9128 62 Rejet
SR 3816 84 Rejet
v 689 39 Rejet
0 768 51 Rejet

En résumé, I’indépendance de 1’erreur normalisée ey par rapport a E/E,, v, 8, Sxx/Syy, SR est
rejetée avec une certitude de 99,9 %. L écart entre y_ et y’ est particuliérement marqué pour

les variables Sxx/Syvy et SR.

Les trois tests d’indépendance relatifs au biais A sont conduits avec des hypothéses Hy et H;

analogues. Les fréquences observées f, relevées pour les i classes (i =5) et les j valeurs tabulées
ij

de Ei/E,, v, 0 sont présentées aux Tableaux D-9 a D-11.

Tableau D - 9 : Fréquences observées du biais A en fonction de E,/E,.

E/E, 0,026,0% [(60a75% |75490% (90a12,0% |[>12,0% |N;
1,00 476 81 15 10 3 585
1,25 816 767 405 278 74 2 340
1,50 244 630 610 507 349 2 340
2,00 82 241 563 709 745 2 340
N; 1618 1719 1593 1504 1171 7 605
Tableau D - 10 : Fréquences observées du biais A en fonction de v.

v 0,026,0% |60a75% |752490% [9,0212,0% |>12,0% |N;
0,00 704 443 237 104 33 1521
0,10 588 447 235 203 48 1521
0,20 173 487 444 284 133 1521
0,30 86 177 410 468 380 1521
0,40 67 165 267 445 577 1521
N; 1618 1719 1593 1 504 1171 7 605




Tableau D - 11 : Fréquences observées du biais A en fonction de 0.
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) 0,026,0% |60a75% [75249,0% [9,0212,0% |>12,0% |N;

0° 108 362 633 425 227 1755
30° 211 674 463 275 132 1755
60° 553 363 278 418 143 1755
90° 746 320 219 386 669 2 340
N; 1618 1719 1593 1 504 1171 7 605

Les fréquences théoriques f,j , les valeurs de X; et le ¢* observé x_ sont ensuite calculés selon

les équations (D-1), (D-2), (D-3), avec N=7605. Les valeurs de * théoriques x’ sont

déterminées avec une certitude de 99,9 % et un degré de liberté de (i-1)(j-1). Les résultats sont

présentés au Tableau D - 12.

Tableau D - 12 : Résultats des tests d’indépendance du x> pour le biais A.

Variable XDZ th Décision sur Hy
E/E, 3154 33 Rejet
v 2 812 39 Rejet
0 1601 33 Rejet

En résumé, 1’indépendance du biais A par rapport a E/E,, v, § est rejetée avec une certitude de

99,9 %. L’écart entre y_ et y’ est davantage marqué pour E/E;.




