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RÉSUMÉ

Les manipulateurs robotiques sont utilisés pour différents types d’applications telles que la
fabrication, l’assistance médicale, l’entretien dans l’espace et bien d’autres. La nécessité de
prendre en compte les limites articulaires dans la planification de trajectoire est complexe car
la trajectoire cartésienne requise doit être projetée dans l’espace articulaire du manipulateur.
Lorsqu’il y a plus d’articulations que le degré de liberté requis par la tâche, le manipulateur est
redondant par rapport à cette tâche. Dans cette situation, le degré de liberté supplémentaire
du manipulateur peut être utilisé pour éviter les limites articulaires. Ce mémoire étudie la
possibilité de résoudre la cinématique inverse d’un manipulateur redondant à l’aide d’un
système intelligent artificiel (ANFIS), tout en considérant les limitations articulaires.

Un algorithme est proposé pour trouver la région réalisable de l’espace articulaire, tout en te-
nant compte des limitations de chaque articulation, et enregistrer cette région pour toutes les
positions d’un point de l’outil du manipulateur dans l’espace de travail. L’algorithme construit
un projeteur sur l’espace nul de la matrice Jacobienne afin d’effectuer un auto-mouvement
du manipulateur, le long des deux directions de l’auto-mouvement, afin d’atteindre les deux
limites de la région réalisable. En utilisant cette technique, la région réalisable fournie par la
redondance est cartographiée sur chaque joint individuel pour avoir une meilleure compré-
hension des limitations provenant des autres joints. Le point médian de la région réalisable
de l’articulation la moins stricte est sélectionné comme solution articulaire redondante et
utilisé dans les formules cinématique inverse pour calculer la solution des autres articula-
tions. Cet algorithme est utilisé pour trouver les limites de la région réalisable ainsi que la
solution de norme minimale pour une grille de positions de l’outil couvrant l’ensemble de
l’espace de travail du manipulateur. Ce jeu de données est utilisé comme données d’appren-
tissage par ANFIS afin de prédire ces valeurs sans avoir à utiliser cet algorithme laborieux,
et proposer directement une solution articulaire redondante. Pour une trajectoire cartésienne
donnée, la résolution de redondance du manipulateur s’effectue en temps réel en deux étapes.
Tout d’abord, les positions finales du manipulateur sont introduites dans ANFIS afin d’obte-
nir la solution articulaire redondante. Deuxièmement, les formules cinématique inverse sont
utilisées pour calculer les autres positions articulaires.

La validation a été menée sur un manipulateur série planaire à trois degrés de liberté pour
effectuer une tâche à deux degrés de liberté, le positionnement de son outil. Le manipulateur
a un degré de redondance et l’auto-mouvement a été utilisé pour éviter les limites articu-
laires. La simulation montre l’efficacité de l’algorithme proposé dans le calcul de la région
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réalisable et de la solution à la norme minimale. De plus, ANFIS a pu prédire directement la
solution articulaire redondant, tandis que les formules cinématique inverse ont été utilisées
pour calculer avec précision la solution des deux autres articulations.

Outre les techniques proposées, le résultat de cette thèse offre également une meilleure com-
préhension de l’espace de travail du manipulateur, de la zone réalisable de celui-ci et des
limitations articulaires, la redondance et la cinématique inverse.
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ABSTRACT

Robotic manipulators are used for different types of applications such as manufacturing,
medical assistance, space servicing and many others. The need for considering joint limits in
the path planning is complex because the required Cartesian trajectory needs to be mapped
into the joint space of the manipulator. When there is more joints than the degree of freedom
required by the task, the manipulator is redundant relative to this task. In this situation,
the extra degree of freedom of the manipulator can be used to avoid joint limits. This thesis
investigates the possibility of solving the inverse kinematic of a redundant manipulator with
the help of an artificial intelligent system (ANFIS), while considering the joint limitations.

An algorithm is proposed to find the feasible region of the joint space, while considering
the limitations of every joints, and record this region for any end-point positions of the
manipulator of the workspace. The algorithm builds a projector on the null-space of the
Jacobian matrix in order to perform a self-motion of the manipulator, along both directions
of the self-motion, in order to reach the two limits of the feasible region on any joint. Using
this technique, the feasible region provided by the redundancy is mapped on each individual
joint to have a better understanding of the limitations coming from the other joints. The
middle-point of the feasible region of the least relaxed joint is selected as the redundant joint
solution and used in the inverse kinematic formula to calculate the solution of the other joints.
This algorithm is used to find the limits of feasible region together with the minimum-norm
solution for a grid of end-point positions covering the whole workspace of the manipulator.
This data-set is used as training data by an ANFIS in order to predict these values without
having to use this time consuming algorithm, and propose directly a redundant joint solution.
For a given Cartesian trajectory, the redundancy resolution of the manipulator is performed
in real-time is two steps. First, the end-point positions of the manipulator is feed into the
ANFIS in order to obtain the redundant joint solution. Second, the inverse kinematic formula
are used to compute the other joint positions.

Validation was conducted on a planar three degrees of freedom serial manipulator while per-
forming a two degrees of freedom task, the positioning of its end-point. The manipulator has
one degree of redundancy and the self-motion was used to avoid joint limits. The simulation
show the effectiveness of the proposed algorithm in computing the feasible region and the
minimum-norm solution. Moreover, ANFIS was able to directly predict the redundant joint
solution, while the inverse kinematic formula was used to compute accurately the solution of
the other two joints.
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Aside from the proposed techniques, the result of this thesis also offers a better understanding
of the workspace of the robotic manipulator, feasible region of the manipulator and joint
limitations, redundancy and inverse kinematic.
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CHAPITRE 1 INTRODUCTION

1.1 Elements of the Problem and Problem Definition

According to ISO 8373, Manipulating industrial robots-Vocabulary (1994):

Manipulator: "A machine, the mechanism of which usually consists of a series of segments,
jointed or sliding relative to one another, for the purpose of grasping and/or moving objects
(pieces or tools) usually in several degrees of freedom. It may be controlled by an operator,
a programmable electronic controller, or any logic system (for example cam device, wired,
etc.)" [1]". The manipulators are designed to help humans with repetitive tasks or the tasks
which are dangerous or difficult to handle for humans. Figure 1.1 shows an example of an
industrial manipulator.

Base

Links

End-effector to be attached

Figure 1.1 Serial 6-DOF industrial manipulator [2]

In order that a manipulator performs a particular task, the end-effector should take the
specified positions and the joint parameters must satisfy the kinematic rules. However, there
might exist more than one possibility for the manipulator if it is redundant. Thus, taking
advantage of the redundancy we can select the joint path while the manipulator is performing
a task. However, despite of the plenty of choices we can make if the robot is redundant, there
are some limitations such as singularities and joint limitations.

This research aims to answer the following main research question:
— When planning a joint motion trajectory of a serial redundant manipulator, is it
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possible to use an artificial intelligence (AI) model to help us in finding an exact
inverse kinematic solution by taking advantage of the redundancy resolution while
considering the robot joint limitation?

1.1.1 Research Scope

This research focuses on serial manipulators and will propose algorithms to solve the kine-
matic redundancy of manipulators with one degree of redundancy and find the space of
possible joint positions in which we can select a joint path without exceeding the joint limits.
For validation purposes a planar manipulator has been chosen for modeling and simulation.
However, we believe that an algorithm could be extended for a one degree of redundancy
task for a serial manipulator in 3-dimensional space as well as in 2-dimensional space.

1.1.2 Research objectives

— Resolving the kinematic redundancy in order to avoid joint limits.
— Using an ANFIS system to learn the pre-computed redundancy resolution for the entire

workspace and use it for any Cartesian trajectory in order to avoid computational
complexity each time performing a new task.

1.1.3 Assumptions

The following assumptions were made in this research work:

A) The robotic manipulator is a dynamic system with a predictable behaviour and hence
we use the principle of causality.

B) Rigid body behaviors:
Links do not deflect or deform;
There is no slack between joints and links;
Joints shafts are considered to be perfectly stiff.

C) There is no link interference, possible for planar robot;

1.2 Thesis Outline

Chapter 2 presents a literature review of basic concepts and the existing research and software
is presented in Chapter 2. Chapter 3, discusses the kinematic modeling of a redundant serial
planar manipulator, while Chapter 4 is dedicated to the path planning and Fuzzy logic side
of the research.Chapter 5 presents the conclusion, future research.
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CHAPITRE 2 THEORY AND LITERATURE REVIEW

2.1 Basic definitions and Terminology

"According to the Terminology for the Theory of Machines and Mechanisms defined by
IFToMM (1991): A Kinematic chain is an assemblage of links and joints " [1]. "There
are six lower kinematic pairs (joints), namely, prismatic (P), cylindrical (C), revolute (R),
helical(H), spherical (S), and planar (E). Simple chains are defined as kinematic chains con-
taining links with a degree of connectivity smaller than or equal to two" [3]. In figure, 2.1
the different kinematic pairs are illustrated.

Figure 2.1 Lower kinematic pairs [4]

2.1.1 Degrees of Freedom and Kinematic Redundancy

Degree of freedom (DOF) of a mechanical system is defined as the minimum number of
independent parameters that we need to completely define the configuration of the mechanical
systems. In a serial manipulator the configuration of the manipulator can be specified by
knowing the configuration of all the joints, hence the DOF of a manipulator is defined as the
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sum of DOF of each joint. On the other hand, the DOF of the end-effector is defined as the
number of independent translational and orientational coordinates that we need to specify
the exact end-effector configuration.

Kinematic redundancy occurs when a robotic manipulator has more degrees of freedom than
the number of independent variables that is required to specify a task by its end-effector.

The end-effector of a planar manipulator, needs three independent variables to be defined:
two positional and one orientational. However, we may need less variables to perform a
desired task if the orientation of the last link doesn’t play a role in performing the task.
Some examples of these tasks are laser cutting and welding.

2.1.2 Inverse Kinematic

Inverse Kinematics (IK) is a procedure to find a set of appropriate joint parameters for
performing a given kinematic task. Over the past decades different techniques have been
proposed to solve IK problems [5]. In order to obtain an IK solution, we need to solve
non-linear equations with transcendental functions, and it might not be possible to acquire
a closed-form solution [6, 7]. Algebraic, geometric, and iterative techniques have been used
to solve IK for complex manipulators; however, these techniques suffers from complicated
mathematical formulation with a time consuming solving procedure [6]. In 1969 a technique
has been introduced by Whitney [8] to write a linear equation between the end-effector
velocity and the joint velocity. It is possible to solve IK problems as long as we have small
displacements. As showing in 2.1, the Jacobian matrix is the coefficient of the linear equation,
as follow:

ṗ = Jθ̇ (2.1)

Where J is the Jacobian matrix, ṗ is the velocity of a point of the end-effector, and θ̇ are
the joint velocities of the manipulator [7].

2.1.3 Singularities of the Serial Manipulator

Singular configuration of a manipulator is defined as the configurations in which the ability
of movement of the end-effector becomes limited [9]. In these configurations, the Jacobian
matrix is not full rank. An example of a singular configuration for a serial manipulator is
when three of the joints axes are parallel in the same plane, so the rotation is limited to
around one axis and the translation is only possible perpendicular to the common plane [10].
Figure 2.2 shows a manipulator at this singular configuration.
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Figure 2.2 Manipulator at a singularity configuration [11]

2.2 Redundancy Resolution

As mentioned earlier redundant manipulators have more DOF than required to perform a
task. This excess DOF result in unlimited number of possible joint position, while solving
inverse kinematic. Redundancy resolution is defined as finding the feasible joint path for a
given end-effector task [12]. Different techniques have been employed to use the extra DOF
to satisfy other secondary tasks such as joint-limits, singularity avoidance, torque optimiza-
tion, energy minimization, etc [13]. These techniques fall into the following main categories
: pseudoinverse technique, geometrical methods, optimisation techniques, redundancy reso-
lution by artificial intelligence (AI) [14, 15] . In the following sections we will discuss these
techniques in more details.

2.2.1 Pseudoinverse Technique

One of the most used redundancy resolution method is the Pseudo inverse technique. As
mentioned in inverse Kinematic section, one of the method to resolve the inverse kinematic
of serial manipulators to perform a particular Cartesian trajectory, is to solve it at the velocity
level. From 2.1 we can replace the velocities by small displacement as follow:

∆p = J∆θ (2.2)

Where J is the Jacobian matrix, ∆p is the small displacement in the Cartesian space and
∆θ is a small joint displacement. If J is square, we can solve the inverse kinematic [16] as:

∆θ = J−1∆p (2.3)
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When J is redundant, it possess more columns than rows, and there is more than one answer
for ∆θ. Thus, equation 2.2 is solved with pseudoinverse [16,17] in order to find the minimum
norm solution plus a possible projection over the null space of J.

∆θ = J+∆p︸ ︷︷ ︸
minimum−norm solution

+ (I− J+J)u︸ ︷︷ ︸
homogeneous solution

(2.4)

In that I is the identity matrix of the dimension n× n , J+ is the pseudoinverse (generalized
inverse) of J with the dimension n×m and vector u is an arbitrary vector in Rn and we can
select this vector in such a way that it satisfies secondary constraints. As shown in equation
2.4, the first part of the right hand side of the equation is the minimum-norm solution which
minimize ||∆θ|| subject to J∆θ = ∆p.

2.2.2 Optimization Techniques

Most optimization techniques are based on optimizing an objective function which is derived
to satisfy a secondary task with the help of the pseudoinverse formulation. These methods
are classified into two main categories: local optimization and global optimization. Local
optimization is a linear optimization problem and can be implemented in real-time applica-
tions due to its simplicity [18]. Global optimization on the other hand, is useful for off-line
trajectory planning in which computation time is less important and the strict optimality is
needed. For example, in space application where the use of energy must be efficient, global
optimization is used to acquire the minimum energy motion [19]. One of the commonly used
optimization technique with which pseudoinverse formulation is used, is the Gradient Pro-
jection Method (GPM) that was used in [20] to avoid joint limits by projecting the gradient
of a function of the joint angles and their limits into the null space of Jacobian matrix [13].
There also exist optimization techniques such as [21] which do not require calculation of
pseudoinverse [14]. In this technique a formulation was proposed to obtain joint velocities
instead of pseudoinverse calculation, while optimizing a given secondary task with gradient
projection method. Genetic algorithm was also used as an optimization technique to solve
redundancy resolution of hyper redundant manipulators by searching for all global optimum
solutions. In [22], for example, genetic algorithm was employed to find "the best compliance"
joint trajectory to satisfy bionics principle.
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2.2.3 Geometrical Method

Some geometrical methods are proposed to resolve redundancy which are not based on pseu-
doinverse of Jacobian. As an example [23] proposed to consider the angles between each
adjacent links equal. This approach prevents the manipulator from singular configurations
since lining up of the joint axis will not be possible. However, the method is proposed for
planar manipulators and the formulation was not extended to 3D.

2.2.4 Redundancy Resolution by AI

Artificial intelligence (AI) has also been used by researchers to solve redundancy resolution
problems. Although there exist more major branches of AI , most of the focus in this area
has been on using neural network and fuzzy logic based solutions or a combination of these
two. In figure 2.3, neural network, fuzzy logic and Adaptive Network-based Fuzzy Inference
System (ANFIS) are shown in the context of AI. In the following, some of the research work
in these areas are presented.

Machine 	
Learning

Fuzzy
Logic

AI ANFIS

Neural
Network

Figure 2.3 Neural Network, Fuzzy Logic and ANFIS in the context of AI

Neural Networks

Neural networks were recently used in this area as it provides us with a prediction based on
learning the relationship between a given input and output of a data-set. Collision avoidance,
physical constraints, obstacle avoidance, joint velocity and acceleration control has been
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considered as a secondary to be solved with redundancy resolution by neural networks [14].
In [24] for example, a one-layer dual neural network was proposed to solve redundancy
resolution, considering joint limit of the manipulators and joint velocity limits. In another
research [25] collision free motion control of redundant manipulator was solved by a recurrent
neural network through tuning the problem to an optimization problem. Although there are
more research work using neural network to solve a redundancy resolution problem, most of
the research are concentrated on the ability of the neural network to solve an optimization
problem and not on its learning ability for prediction or automation purposes.

Fuzzy logic and ANFIS

Another technique that has been used in redundancy resolution is fuzzy logic. This technique
has been mostly used to make decisions based on linguistic fuzzy rules which are defined
by expert knowledge. In [26] a fuzzy system was proposed to determine joint angles of the
manipulator while respecting the joint limitation and avoiding obstacle. In this research fuzzy
rules were defined to correct the joint angles based on two criteria: the distance between the
robot links and obstacles and, the distance between a joint angle and the middle position
in the joint coordinates. Similarly in [27] fuzzy rules are employed to avoid calculating
pseudoinverse of Jacobian matrix and mapping the Cartesian space trajectory to the Joint
space trajectory directly by making decisions on the joint angles displacement. In [28] on the
other hand, a fuzzy system was designed to select between the joint trajectories which were
already calculated through pseudoinverse and gradient vectors techniques. The selection was
made based on the satisfaction degrees of a trajectory which was modeled by a function that
reflects the distance to the singular configuration and joint angle limits. Another form of
using fuzzy logic technique is when we train and tune the fuzzy sets and rules with numerical
data. instead of just relying on the expert knowledge. This technique is called adaptive Fuzzy
Logic. In [29] for example, adaptive Fuzzy Logic technique was used to solve redundancy
resolution problem while avoiding obstacles and joint limits. In this research, a cost function
was defined to reflect the error vector of the end-effector in Cartesian space and the rules are
updated via an adaptive law and based on the values that minimize the cost function. For
the purpose of training fuzzy sets and rules, different techniques are employed. One of these
technique is utilizing neural network; thus, in some studies Adaptive Network-based Fuzzy
Inference System (ANFIS) was used for redundancy resolution. In [30] for instance, ANFIS
was used to solve forward and inverse kinematic of redundant 2-DOF, 3-DOF and 5-DOF
manipulators. In the mentioned research, a certain number of data points are acquired by
solving the forward kinematic and inverse kinematic of the manipulators analytically and
then, this information was feed into ANFIS system to obtain the solution. However this
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research was concentrated on obtaining a possible solution for forward and inverse kinematic
without considering any secondary task.

2.3 Inverse Kinematic, path planning and ANFIS

Although the concentration of this research is on the redundancy resolution by AI, solving
the inverse kinematic is part of this work and it is noteworthy to mention that inverse
kinematic can be also solved by ANFIS. Due to the non-linear and complicated equations
associated with solving inverse kinematic specially as the motion of the system become more
complicated [31], there are some research mentioning these techniques. In [32] for example,
the inverse kinematic of a three DOF manipulator was calculated by ANFIS. Also in [31]
the ANFIS is trained by the data generated by mathematical modeling so the complexity
of system has been reduced. Also in [33] ANFIS was used with the same approach and
forward kinematic data was used for training. Another research work using this approach is
presented in [34]. Other similar approaches are different in input data selection and modeling
the problem to minimize the error [34]. However, the solutions generated by ANFIS through
this approach are approximate while there is already an analytical solution for these problems.
ANFIS is also used in path planning problem such as in [35]. In these research work, ANFIS
was utilized as a curve fitting tool to smooth the via-points which satisfy the requirements
of the path planning such as obstacle avoidance.

2.4 Inverse Kinematic and Redundancy Resolution Applications

The redundancy resolution is still an open area to investigate and conduct studies to gain
more efficient results. These studies are specially useful in off-line and online trajectory
planning of robotic manipulators, robot programming software and simulation softwares in-
cluding the software like Robotmaster, ROBCAD and OCTOPUZ. The application of these
softwares address the need of many manufacturing applications including robotic welding,
trimming, machining, polishing, cutting, etc [36]. Figures 2.4 , 2.5, 2.6 and 2.7 shows a pic-
ture of robotic manipulator simulation in Robotmaster software showing the manipulators
while machining, cutting, welding and trimming.
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Figure 2.4 Machining-Milling of a mold using a Staubli robot- Pictures of robotic
manipulators captured from simulation in Robotmaster software while machining, cutting,

welding and trimming [36]

2.5 Scope of this research compared to the work of others

This research aims to address a redundancy resolution problem by proposing a technique
using Pseudoinverse Technique formulation. The technique is not a conventional optimisation
technique but using this formulation to provide a better understanding of the redundant space
and develop an exact Inverse Kinematic solution based on this understanding. In this research
work the ANFIS system is employed as an AI system to use pre-calculated bound-limits of
the joints as the training data set to acquire the these limits for any desired path so that the
process of finding the bound limits become easier and our inverse kinematic solution always
fall into the joint limits of the manipulator.
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Figure 2.5 Cutting-Robotic programming for plasma cutting holes into a steel dome-
Pictures of robotic manipulators captured from simulation in Robotmaster software while

machining, cutting, welding and trimming [36]

Figure 2.6 Welding the joints of a truck bed using a Reis robot- Pictures of robotic
manipulators captured from simulation in Robotmaster software while machining, cutting,

welding and trimming [36]
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Figure 2.7 Welding the joints of a truck bed using a Reis robot- Pictures of robotic
manipulators captured from simulation in Robotmaster software while machining, cutting,

welding and trimming [36]
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CHAPITRE 3 KINEMATICS

3.1 Manipulator, kinematic redundancy

The modeling has been conducted for a 3-DOF planar serial manipulator which consists of
three revolute joints. The manipulator is intrinsically redundant in its operational space
(the plane) and functionally redundant for a given task in the plane if not considering the
orientation of the end-effector. Thus there are infinite joint trajectories to perform any given
task within its workspace. However, every revolute joint has its own limitation and avoiding
those limits gives us a smaller feasible region within the joint-space in which we can select a
trajectory for each joint. This chapter investigate this selection in more details.

3.2 Task description

The area in that we can select a trajectory for a certain joint in the joint space is not
only limited because of its own limitation but also bounded because of the nature of the
manipulator and because of the limitations of other joints. The problem to address in this
section is to find all the feasible region in the joint space for each joint in order to perform a
particular path in the Cartesian-space by taking advantage of redundancy. Figure 3.1 shows
the input and output of the process we propose to find the feasible regions in joint-space for
a given Cartesian trajectory.

3.2.1 Problem explanation

Considering eq. (2.4), we can see that the manipulator can still perform a self-motion with
no displacement for the end-effector (∆p = 0) and the equation yields to:

∆θ = (I− J+J)u (3.1)

Eq. (3.1) allows to compute the self-motion of eq. (2.4). i.e. the joint motion while
maintaining the end point at the same location. According to definition [37] null space
of the matrix J is defined as a set of all vectors x which satisfy the equation 3.2:

Jx = 0 (3.2)

. Thus, considering equation 2.2 (∆p = J∆θ), when there is no Cartesian displacement
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Input 1
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Input 3

Link lengths

Joint limitations

End-effector

Trajectory

Redundancy 
 resolution

Feasible regions 

in joint-space
for the given

trajectory 

self-motion

Pseudoinverse
    technique

Figure 3.1 Overall strategy to find the feasible region

(∆p = 0) in our case, the null space of the Jacobin matrix is a set of ∆θ vectors .

Using the eq. (2.4) and (3.1), we have found all the feasible regions for the manipulator,
considering its joint-limits by simulating the manipulator to perform certain paths in the
Cartesian space. As shown in algorithm 1 in the Appendix, the manipulator starts at the
point P0 then on its way toward the last point P1, at each point we try to minimize the error
between the real position of the manipulator and the desired position in the path then, the
manipulator performs a self-motion in one direction at each point of the discretized path, and
until we reach a joint-limit (Appendix A : s ̸= 0). Then, while keeping the End-Effector at the
same point, it performs the self motion in the opposite direction by multiplying the u vector
of the eq. (3.2.1) by -1 in order to reach the other bound-limit. After the self-motion is done
in the both direction, we move on to the next point of the task path. Figure 3.3 presents the
overall process while Figure 3.2 illustrates the self motion of the manipulator at a fixed point
of the end-effector. In other words, the joint displacement from the first joint limit that is
reached by the manipulator to the joint limit that is reached by the manipulator in the other
direction when there is no Cartesian displacement. Equation 2.4 shows a decomposition of
∆θ in which the second part of the right hand side of the equation is a projection of the u
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vector on a local plane tangent to the self motion line. The projected u vector on this plane is
the local ∆θ at a certain joint configuration θ. That means the Figure shows the projection
of the u vector on the null space of Jacobin when the end effector of the manipulator does
not move but there is a joint displacement (∆p = 0, ∆θ ̸= 0)). The u vector does not change
along the joint trajectory however the projection ∆θ changes along the trajectory.

θ1

θ2

θ3

u Maximum-Bound limit 

(Maximum from θ1 prespective) 

Minimum-Bound limit 

(Minimum from θ1 prespective) 

Δθ

Self
-m

otio
n

Figure 3.2 Joint displacement at a fixed point of the end-effector- Projection of vector u on
the null space of matrix J
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Figure 3.3 The algorithm to find the feasible joint-space region for a certain manipulator
performing a line from P0 to P1

3.3 Simulation Results

Figure 3.4 shows the planar 3-DOF manipulator used for simulation, while table 3.1 gives
its geometrical parameters. The simulation has been done for a square path and a rectangle
path. For each path, we find a figures for θ1, θ2 and θ3, which show the bound limits and the
feasible region for each of the joints.

θ2

θ3

θ1

l 1

l
2

l 3

x1

y1

y 2

x 2

y
3

x 3

Figure 3.4 planar 3-DOF serial manipulator
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Table 3.1 Manipulator Parameters.

θMin. θMax. li

i = 1 0 π/2 2
i = 2 0 π/2 1.5
i = 3 0 π 1

3.3.1 Trajectory A: Square

The coordinates of the square trajectory are specified In the table 3.2. The manipulator
moves from P0 to the other coordinates of the path at P1 then P2, P3 and finally returns to
P4 which is the same point as the starting point.

Table 3.2 Coordinates of trajectory A.

Pi P0 P1 P2 P3 P4

x -1 1 1 -1 -1
y 2 2 4 4 2

Figure 3.5 shows the manipulator at its initial position along trajectory A. The configuration
of the manipulator being the one obtain by the minimum -norm solution of eq. 2.4. The
green lines shows the orientation of the link at the mid-joint position, while the red small
lines shows the joint limits. Apparently from Fig. 3.5 the manipulation is away from its
joint limits as found by the minimum-norm solution. Our algorithm now performs a self
motion of the manipulator (meaning that the end-point will not move in Cartesian space) in
any of the upper side or lower side with an arbitrary vector u and -u up to any joint exceed
its limits. The joint position are recorded for the upper and lower limits together with the
minimum-norm solution.
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P0

P4

P3 P2

P1

Figure 3.5 Manipulator at its initial position, minimum-norm-solution

Figure 3.6 shows the feasible θ1 regions for trajectory A. From left to right we have the
percentage of completion of the trajectory as the 4 segments of the square trajectory. The
white region with red boarders is the feasible θ1 solutions allowed by the redundancy along
the trajectory. Any joint path of θ1 within that region can be chosen to preform the Cartesian
trajectory and avoiding the limits of every joints. The 2 dashed horizontal black lines are
the lower and upper limits of θ1. Obviously, the feasible region needs to site between those
2 horizontal lines. When a red boarder of the feasible region touch one of these 2 horizontal
lines, it means that the limit of θ1 is reached. When the red boarders are inside these 2
horizontal lines, it means that the manipulator cannot go further like the upper black region
between 5% to 28%, otherwise 1 or 2 of the other joint limit is reached. This figure is
very helpful for the planning of the joint path, since the vertical axis shows the redundant
capacity of the manipulator, while the horizontal axis is different end-point position along
the Cartesian trajectory. This 2D figure can be produce for any manipulator having 1 degree
of kinematic redundancy. Of course the kinematic relationships would be different based on
the task mobility of the end-effector.

Figure 3.7 shows 4 configurations of the manipulator along its self motion while keeping the
end-point at 79% of the trajectory A. Figure 3.7 a) shows the manipulator at its lower-bound
of the feasible region because of θ3; b,c) shows the manipulator at intermediate configurations
And d) shows the manipulator at its upper-bound of the feasible region. Configuration 3.7
a, 3.7b and 3.7 d can be seen on Figure 3.6 along a line at 79%.

Again, Figure 3.8 shows 4 configurations of the manipulator along its self motion while
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keeping the end-point at 10% of the trajectory A. Figure 3.8 a) shows the manipulator at
its lower-bound of the feasible region because of singularity b,c) shows the manipulator at
intermediate configurations And d) shows the manipulator at its upper-bound of the feasible
region caused by θ2 limitations. Points a′ , b′, c′ and d′ corresponds to a, b, c and d poses in
Figure 3.8.

Figure 3.9 shows the corresponding feasible θ2 regions for trajectory A. The 2 dashed hori-
zontal black lines are the lower and upper limits of θ2. Obviously, the feasible region needs
to site between those 2 horizontal lines. When a red boarder of the feasible region touch one
of these 2 horizontal lines, it means that the limit of θ2 is reached. When the red boarders
are inside these 2 horizontal lines, it means that the manipulator cannot go further like the
upper black region between 5% to 28%, otherwise 1 or 2 of the other joint limit is reached.
This figure is very helpful for the planning of the joint path, since the vertical axis shows
the redundant capacity of the manipulator, while the horizontal axis is different end-point
position along the Cartesian trajectory. This figure can be used as an alternative to Figure
3.6, since once you pick a value of any of θ1, θ2 or θ3, the other 2 joint values can be explicitly
computed. The same thing applies to Figure 3.10.

Consequently, Figures 3.6, 3.9 and 3.10 are useful tools for performing the path planning of
Cartesian trajectories in the context of kinematic redundancy.
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bounded to θ3 limitation b, c) intermediate configurations d)The upper-bound– bounded to

θ1 and θ2 limitations



21

y

x

y

x

y

x

y

x

(c) (d)

(b)(a)

P0 P1
P0 P1

P0

P1
P0

P1

Figure 3.8 Simulation of the manipulator at 10% of the trajectory A: a)The bound
limitation caused by singularity b, c) intermediate configurations d)The upper-bound

caused by θ2 limitations



22

Completed percentage of the trajectory A 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

θ
2
�(R

ad
ia

n
)

θ2Max

θ2Min

P0 P1 P2 P3 P4

θ2 θ3 θ2

θ2
θ1

θ2

θ2 θ2

θ2θ1 θ1 θ1

Figure 3.9 Feasible θ2 region for trajectory A

Completed percentage of the trajectory A 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
P0 P1 P2 P3 P4

θ
3
 (

R
ad

ia
n

)

θ1 θ1

θ1

θ2

θ1

θ2

θ3Max

θ3Min

θ2

θ2

θ3

Figure 3.10 Feasible θ3 region for trajectory A



23

3.3.2 Trajectory B: Rectangle

Figure 3.11 shows the trajectory B chosen to be more challenging with corners outside the
reachable workspace of the manipulator. As it is shown the starting point of this trajectory
is not in the workspace of the manipulator and at this point the limit of θ1 will be passed.
In table 3.3 the coordinates of the square trajectory are specified.

The manipulator moves from P0 to the other Coordinates of the trajectory B at P1 then P2,
P3 and it finally returns to P4 which is the same point as the starting point.

y

x

P0 P1

P2

P4

P3

Figure 3.11 The manipulator configuration at P0 in which θ1 limitation is already exceeded.
Black dash line is representing the trajectory and P0 to P4 are the trajectory corners

Table 3.3 Coordinates of trajectory B

Pi P0 P1 P2 P3 P4

x -2 2.5 2.5 -2 -2
y 1 1 2 2 1

Figures 3.13, 3.14, 3.15 also show the bound limits and the possible region for θ1, θ2 and θ3.
As we can see, in many areas it is not possible for the manipulator to perform the trajectory
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e.g. from simulation point 0 to 2.5%, 2.5% to 17%, 22% to 35%, 75% to 100s% in that θ1, θ2,
θ1 and θ1 in order, are the limits to perform the trajectory. In figure 3.12 the manipulator
pose at the simulation point around 19% to 22% of the path is shown. In this point the
upper-bound ( θ1, θ2, θ2) is because of the singularity (figure 3.12.a) and the lower-bound is
when θ1 = 0 is passed (figure 3.12.d).
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Figure 3.12 Simulation of the manipulator at 20% of the trajectory A: a)The bound
limitation caused by singularity b, c) intermediate configurations d) The lower-bound

caused by θ1 limitation
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Figure 3.15 Feasible θ3 region for trajectory B

3.3.3 Mid-point of the feasible region

In this section we investigate the correspondence between a point in the feasible region of
θ1 with these in θ2 and θ3 feasible region. Figures 3.16 show the corresponding points in
θ2 and θ3 when we are at the mid-point of theta1 at 61% of trajectory A. Apparently, the
mid-point of θ1 does not correspond to the mid-point of θ2 and θ3. Figures 3.17, 3.18, 3.19
also demonstrates middle point of θ2 and θ3 in comparison with the corresponding trajectory
when we are at the middle point of θ1 at all the points of trajectory A.
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Figure 3.16 θ1, θ2 and θ3 upper-bound, lower-bound, and their value at mid-point of θ1
when we are at 61% of trajectory A
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Figure 3.18 Trajectory A- Bound limits on θ2- middle point of θ2 bound limit versus middle
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3.4 Conclusion

In this chapter we have projected the joints limitations on each joint and that enabled us to
also identify the joint limitations along the end-effector trajectory. We have also analyzed
the middle-point of the joints bound-limits in more detail and its correspondence to the other
two joints and we have concluded that although the mid-point of the bound-limit of one joint
corresponds to the points within the bound limit of the other joints, it does not correspond to
the middle-point of the other two joints. In the next chapter we will investigate the possibility
of using this result in an AI system to predict and automate redundancy resolution.
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CHAPITRE 4 ANFIS BASED REDUNDANCY RESOLUTION

4.1 Problem description

Computing feasible region for each given trajectory is a time consuming task. In this section
we propose an Adaptive Network-based Fuzzy Inference System (ANFIS) as a predicting
system to ease the process of finding the feasible region for a particular manipulator at each
given trajectory. Figure 4.1 illustrates the process. It is also noteworthy to mention that in
this method we only need to predict the feasible region for one joint and the limits of the
other joints are computed in the feasible region.

Manipulator

 DH parameter

 Set A =
A representative

 set of points 
of the cartesian 

workspace

Finding feasible
 region  

for the set A
as discussed 
in chapter 3

ANFIS

LearningFeasible region

Prediction
for all 

the points 

in workspace

Cartesian 

Workspace

Figure 4.1 The entire process of acquiring the feasible region for the workspace
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4.2 ANFIS

Adaptive Network-based Fuzzy Inference System is an artificial neural network with hybrid
learning procedure which combines the principle of fuzzy set theory and fuzzy inference
systems with the learning ability of the neural networks [38].

ANFIS can be used for modeling nonlinear functions and predicting chaotic dynamical sys-
tems [39]. ANFIS structure consists of multiple layers. Figure 4.2 shows an example of the
ANFIS structure. In our work three different ANFIS systems were trained for the prediction
of θ1-upper-bound, θ1-lower-bound and θ1-minimum-norm-solution.

Rule1

Rule2

Rule3

Rule64

x

y

Input layer

Membership layer Fuzzification  layer Defuzzification  layer

Ouput layer
A1

B1

A8

B8

C1

C2

C3

C64

θ1{Upper-bound

Lower-bound

Min-norm Solution

Figure 4.2 Graphical depiction of ANFIS structure

4.2.1 Input Layer

Input layer is the first layer of an ANFIS structure. In this layer the input variables are
determined. In our work the input variables are the (x , y) Cartesian coordinates of the
end-point position of our end-effector.

Data preparation

In order to prepare a data set for our ANFIS system, we have once scanned all the workspace
of the learning manipulator with the same algorithm presented in chapter 3 to calculate
upper limit, lower limit and min-norm solution for all the working space. In order to have
more accurate result and avoiding from jumping over the workspace in the area that is not in
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the workspace, the scanning has been done in three separate areas which are shown in figure
4.3. For a better representation, the manipulator and joint limits are also shown in figure
4.3. After scanning the workspace, the ANFIS system was fed with the entire data set.
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Figure 4.3 Workspace of the manipulator divided into three different areas in which our
data set was prepared

4.2.2 Membership Layer

In the membership layer, each input is assigned a few number of membership functions. These
membership functions help us to convey fuzzy sets visually [40]. The shape and the number
of the membership functions plays an important role in ANFIS performance. However, there
is no rule for the selection of these parameters and the selection is dependent upon the input
data and the parameter choice requires expert knowledge. [41]. The membership function
can be Sigmoidal z-shape, s-shape, triangular, Gaussian, and trapezoidal [42]. In our work,
we have tried multiple membership functions and we find the best result using 8 Gaussian
membership functions for each input. However, our research is not on finding the best ANFIS
modeling but rather to show that pre-computed redundancy data set can be approximated
by such AI algorithm.
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Assigning degrees of membership

In the first step, each element of all inputs (x and y in our case) is assigned 8 degree of
membership between 0 and 1 (since we have 8 membership functions for each input). Imagine
we want to assign a degrees of membership to the input element (xi) which belongs to the
input x as follow:

x = x1, x2, ..., xi (4.1)

As explained in the last section, 8 fuzzy sets has been assigned to input x. These fuzzy
sets are shown in figure 4.8 and are named as MF1, MF2, MF3, ..., MF8. If we consider
the Gaussian membership functions in figure 4.4 to represent fuzzy set MF4 for example,
then we can calculate a degree of membership (µMF 4(xi)) for each element of input (xi) as
in equation 4.2 in which c is the center of the Gaussian function on the x-axis and γ > 0 is
the standard deviation of the Gaussian function [40].

µA(xi) = exp (− (xi−c)2

2(γ)2 )

A=MF 1,MF 2 , ...,MF 8

(4.2)
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Figure 4.4 Gaussian membership function for xi
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4.2.3 Fuzzification Layer

In this layer, fuzzy rules are defined and fuzzy operators (AND/OR) are applied to the output
of the previous step in order to produce the outputs. Two methods are commonly used for
AND operator: minimum and product, while maximum and probor ( probor(a,b) = a + b -
ab) are used for OR operator [43]. A fazzy rule as shown in eq. 4.3:

if x is A1 AND/OR y is B2︸ ︷︷ ︸
antecedent

Then θ1 is C︸ ︷︷ ︸
consequent

(4.3)

Where x and y are elements of the input sets, A1 and B2 and C are called linguistic values
defined by fuzzy sets, and 1 is an element in the output set. The left side of the statement is
called antecedent part and the right side is called consequent part.

4.2.4 Defuzzification Layer

Output membership function

There are two types of Fuzzy inference system based on the output membership functions:
Mamdani type FIS and Sugeno type FIS. In Mamdani-type FIS output membership functions
are defined to be fuzzy sets while in Sugeno-type FIS, membership functions are either defined
linear or constant [43].In this work Fuzzy inference systems are considered to be Sugeno-type
FIS since using ANFIS Toolbox in MATLAB, this toolbox only operates on this type of
FIS [43]. The statement 4.4 shows the form of a if-then Sugeno-type fuzzy rule for a linear
output [43]:

if x is A AND/OR y is B Then θ1 = αx + βy + γ (4.4)

Defuzzification process

In defuzzification layer, the consequent results of all the rules (C part in statement 4.3) either
they are fuzzy sets, linear or constant, are combined and then a single crisp number is found
for each output variable. This process is illustrated in figure 4.5.

Defuzzification methods

There are many methods for defuzzification: middle of maximum, bisector, centroid, weighted
sum, weighted average (wtaver), etc [43]. In our work wtaver was used as the defuzzification
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Consequent results of the rule 1: C1

Consequent results of the rule 2: C2

Consequent results of the rule 3: C3

Combination of the consequent results 

A crisp number is aquired using  one of the defuzzification method

Figure 4.5 Defuzzification process [43].

method. The equation 4.5 shows how in this technique [44] the final crisp number θ1 is
calculated .

θ1 = Σµ(θ̃1).θ̃1

Σµ(θ̃1)
(4.5)

Where Σ denotes the algebraic sum and it is applied for all the membership functions of an
output, θ̃1 is the middle (centroid) of the membership function and µ(θ1) is the degree of
membership of θ̃1.
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4.3 ANFIS Toolbox in MATLAB

The Fuzzy Logic Toolbox in MATLAB with the ability to learn from the modeling input/out-
put data is also called ANFIS. As mentioned in MATLAB booklet : "In general, this type of
modeling works well if the training data presented to anfis for training membership function
parameters is fully representative of the features of the data that the trained FIS is intended
to model" [43].

4.3.1 Implementation in MATLAB

In order to work with ANFIS toolbox in MATLAB, one should write the "anfisedit()" com-
mand, then a window will open. Figure 4.6 shows the window. It can be seen in this picture
that training and testing data can be loaded at the load-data part in the left bottom of the
picture.Then, in the generate FIS section, the type of FIS can be selected. In our case, grid
partition is selected. After selecting grid partition, by pressing generate FIS button another
window opens. In figure 4.7 the new window is shown. In this figure we can select the number
of membership function for each input, Membership type and weather the output is constant
or linear. Figure 4.6 also shows that we can select optimization method, error tolerance and
the number of epochs. After selecting all these parameter, by selecting the train- now button
the ANFIS starts to be trained. After the training the plotting area can show the training
error,training data, testing and checking data.

4.3.2 Training

In ANFIS toolbox the learning process consist of training the fuzzy system to determine and
tune the best membership function parameters in order to enable the system to track the
given input/output data [43]. In figure 4.8 the membership function of the three trained
ANFIS system is illustrated. In this research work, 3356 data points was used for training
and 200 data point was tested for each ANFIS systems.
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Figure 4.6 ANFIS toolbox in MATLAB

Figure 4.7 ANFIS toolbox - generate FIS
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Figure 4.8 Membership functions for three trained ANFIS systems
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Training optimization method

In the learning process gradient vector is used to measure how close is our modeling to in-
put/output data pattern [43]. In the ANFIS toolbox the optimization is done using either
back-propagation gradient descent method or a hybrid optimization method which is a com-
bination of using back-propagation for the input membership functions parameters and least
squares estimation for the output membership functions parameters [43].

Training epochs and error

Training epochs determines how many steps the learning process repeats to acquire more
accurate modeling result. In figures 4.9, 4.10 and 4.11 the training error by epochs was
shown for upper-bound limit, lower-bound limit and min-norm solution models.
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Figure 4.9 Training error upper-bound limit
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Figure 4.11 Training error min-norm solution

4.4 Validation tests

The trained ANFIS systems have been first tested for prediction of θ1-upper-bound, θ1-lower-
bound and θ1-minimum-norm-solution in trajectory A as presented in chapter 3.

Figure 4.12 shows the ANFIS toolbox prediction output and the testing data output upper
and lower Bound limit. Figure 4.13 shows the ANFIS output and the testing data output for
the minimum norm solution. Table 4.1 shows the ANFIS system rules and parameters used
for each of the trained ANFIS system.
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Figure 4.12 The ANFIS output for θ1 upper-bound and lower-bound comparison with the
testing data output upper-bound and lower-bound
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Figure 4.13 Minimum-norm solution, ANFIS output comparison with testing data
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Table 4.1 ANFIS Parameters

UPPER-bound LOWER-bound MIN-NORM solution
No. of MF for input x 8 8 8
MF type for input x Gaussian Gaussian Gaussian

No. of MF for input y 8 8 8
MF type for input y Gaussian Gaussian Gaussian

Output MF type Linear Linear Linear
FIS type Sugeno Sugeno Sugeno
FIS input ( x , y ) ( x , y ) ( x , y )

FIS output θ1-upper-bound θ1-lower-bound θ1-min-norm-solution
FIS AND Method prod prod prod
FIS OR Method probor probor probor

FIS defuzzification Method wtaver wtaver wtaver
No.of FIS rule 64 64 64

ANFIS optimization method hybrid hybrid hybrid
ANFIS Training epochs 150 150 150

4.5 Utilization of the ANFIS result for solving of the IK and redundancy reso-
lution

Having the upper-limit and lower-limit of all the joints, we can select the joint which is less
relaxed (θ1 in our case) to choose as our reference to solve the inverse kinematic since by
knowing one of the joints trajectory we would have enough equations to find other joints
trajectory as we only have one degree of redundancy. Although any joint trajectory for θ1

within the lower and upper limit is possible we decided to choose the middle point between
lower and upper limit to be our reference for solving the inverse kinematic problem. It was
also discussed in the section 3.3.3 that although middle point of θ1 does not correspond to
the middle point of other joints, certainly the answer would still be in the feasible joint area.
As it is shown in the previous section the upper-limit and lower-limit of θ1 was predicted
precisely by ANFIS. Having this result, we are able to solve the inverse kinematic equations.
Figure4.14 represents the entire process. The learning part of the process is off-line while
calculating the Inverse kinematic part is an online process. ANFIS can also be utilized to
learn minimum-norm solution at all points of the Cartesian workspace. As it is shown in
previous section, the minimum-norm solution was predicted by ANFIS precisely. Having this
result, we are able to automate solving the inverse kinematic problem without a need for
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calculating the pseudo-inverse of the each time preforming a new Cartesian trajectory. It is
note worthy to mention that using an artificial intelligent system like ANFIS helps us using a
limited memory to keep the result (ANFIS system) whereas using a look-up table and keeping
all the data -specially when we are dealing with a large workspace and/or in 3 dimensional
space- needs a higher memory space. Thus, although it does not make a big difference in our
planer robot, this research was intended to test the capacity of ANFIS system for further
utilization. In the next section we will go through all this steps for a new Cartesian trajectory
as a validation result for ANFIS selection.

Inverse kinematic

θ2,θ3

Middle-point θ1

0.5 (θ1min+θ1max)

θ1min             θ1max

Trained ANFIS1

Kinematic 
Redundancy resolution
for avoiding joint limits

Training data1: (x,y)--> θ1min

          (entire workspace)
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ANFIS

Learning 
ANFIS
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(x,y)
desired path

(x,y)
desired path

Sys1:Fuzzy rules and 

membership functions

Trained ANFIS2

Sys 2:Fuzzy rules and 

membership functions

Training data2: (x,y)--> θ1max

          (entire workspace)

Figure 4.14 The entire process of using ANFIS in Kinematic redundancy resolution
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4.5.1 Validation result

In order to validate the result we have chosen an end effector trajectory C within the
workspace. The trajectory goes from point P0 to P3, and P0 and P3 are located at the
same location as shown in Fig. 4.15.

P0 P1

P2

P3

Figure 4.15 Black dash line is representing the trajectory and P0 to P3 are the trajectory
corners

The same ANFIS system that was used in the previous section was employed for this Carte-
sian trajectory to select θ1 trajectory. The selected θ1 trajectory is the middle-point of
lower-bound and upper-bound of θ1 as it is depicted in Figure 4.16.
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Figure 4.16 Upper-bound, lower-bound and middle-point of θ1 at the Cartesian trajectory C

Having θ1, the other two joints θ2 and θ3 are calculated as shown in Figure 4.17 and 4.18.
As you can see in these figures the limitations of all the joints are respected as expected.
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Figure 4.17 Calculated θ2 based on the selected θ1 joint trajectory



46

Completed percentage of trajectory C

θ
3 

(R
ad

ia
n)

θ3Min

0 100
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

25 50 75

θ3Min

θ3Max

Figure 4.18 Calculated θ3 based on the selected θ1 joint trajectory

4.6 Validation result conclusion

The validation test has successfully shown the effectiveness of the technique and ANFIS
system can be utilized to learn the workspace data and provide us with an acceptable result
for each given path inside the workspace.
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CHAPITRE 5 CONCLUSION

Based on the result of our simulation, we can conclude that when we are planning a joint
motion trajectory, is it possible to use ANFIS modeling to help us in finding an exact inverse
kinematic solution by taking advantage of the redundancy resolution. The consideration
of the joint limitation, is also feasible and the joint trajectory can be selected within the
bound limits of one of the desired joint e.g. middle point of θ1. This middle point is not
located at the middle point of other joints however it satisfies the limitations of other joints,
since we have projected the joint limits on each individual joins and acquired the whole joint
space in chapter 3. We could also used this result in our AI system to predict and automate
redundancy resolution. In addition, the joint that limits the motion at each point of the
end-effector trajectory was identified. In short, the proposed technique can help us find an
exact inverse kinematic solution for a redundant manipulator while satisfying the limitation
of the joints. In other words, this research makes a technical contribution by:

1- Presenting the projection of redundant feasible space of the manipulator on the each
individual joint and

2-Examining the possibility of using an AI algorithm to learn the pre-calculated limits and
predict it for any given task.

5.1 Summary of Works

Redundancy of the manipulator gave us the possibility to take advantage of the additional
degree of freedom to identify all the possible region in joint space by proposing an algorithm
based on pseudoinverse technique to perform a self-motion. The manipulator performed a
self-motion while keeping the end-effector at each point of the path and recorded the angle in
which the limitation of each joint was passed the algorithm has also record minimum norm
solution at each point of the workspace. Then the result is fed to an ANFIS system to be
learned. Once the maximum and minimum of the possible region is learned, we were able
to use the middle point to solve the inverse kinematic equation. We are also able to use the
minimum norm solution to automate kinematic inversion by training three different ANFIS
system for each joint.
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5.2 Future Research

Clearly further studies are needed to expand our understanding and, other techniques can
be examined. Here are some of the future possible research proposition:

— The proposed technique can be simulated for a higher DOF manipulator.
— A systematic selection technique will be needed to investigated and select the best

ANFIS structure. (e.g. number of membership function, type of membership function,
output type, optimization method, etc)

— Other artificial intelligent algorithm can also be examined.
— An experimental study can be conducted to examine the technique in actual practice.
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APPENDIX A ALGORITHM 1

Algorithm 1: How to find the feasible region in joint-space while performing a line
1 P0 ←First point of the desired path e.g. first coordinates of the square or rectangle ;
2 PL ←Last point of the path in a line e.g. second coordinates of the square or rectangle ;
3 n← Number of segments
4 e← (PL − P0) ; /* Distance between the first point and the last point */
5 e← e/n ; /* Split the displacement in n segments */
6 for i← 1 to n do
7 Pi ← P0 + i ∗ e ; /* Going step by step toward Pl */
8 m← 25 ; /* First loop counting number */
9 while m>0 AND error>0.00001 do

10 dP ← (Pi − Pi−1) ; /* Required Cartesian displacement */
11 dθ ← J+ ∗ dP ; /* Joint displacement */
12 θ ← θ + dθ;
13 P ←Forward kinematics (θ) ;
14 error ← norm(Pi − P ) ;
15 m← m− 1 ;
16 tmin← Minimum joint limits ;
17 tmax← Maximum joint limits ;
18 s← 0;
19 if θ(1) < tmin(1) OR tmax(1) < θ(1) then
20 s← s + 1; /* If we pass θ1 limitation */

21 if θ(2) < tmin(2) OR tmax(2) < θ(2) then
22 s← s + 2; /* If we pass θ2 limitation */

23 if θ(3) < tmin(3) OR tmax(3) < θ(3) then
24 s← s + 4; /* If we pass θ3 limitation */

25 u← An arbitrary vector;
26 k ← 50 ; /* Second loop counting number */
27 while k > 0 AND s == 0 do
28 dθ ← (I − J(θ) ∗ J(θ)+) ∗ u ;
29 θ ← θ + ∗dθ;
30 k ← k − 1;
31 k

′ ← 50 ; /* Third loop counting number */
32 while k′ > 0 AND s == 0 do
33 dθ ← (I − J(θ) ∗ J(θ)+) ∗ (−1) ∗ u ;
34 θ ← θ + ∗dθ;
35 k

′ ← k
′ − 1;
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