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Résumé

Nous construisons l'équivalent des ondelettes biorthogonales de

Cohen-Daubechies-Feauveau dans le contexte &-adique. Utilisant les

schémas d'interpolation itérative de Lagrange 6-adiques, nous procédons

en appliquant de multiples dérivées sur les B-splines et en utilisant

l intégration par parties.

l. L'interpolation itérative de Lagrange

Nous rappelons brièvement les schémas d'interpolation 6-adiques discutés dans [3

(b > 0 est un entier). Nous appelons les nombres réels dans la forme k/V où k et

j sont entiers, des nombres b-adiques. Si j est le plus petit entier tel que x = k/bj

pour un entier k, alors nous disons que x est un nombre b-adique de profondeur

j. Etant donné une fonction y définie sur les entiers, nous voulons prolonger cette

fonction aux nombres 6-adiques. Pour des entiers r et n satisfaisant 0 <?'<&,

y (n + r/b) est définie comme p [n + r/6) où p est le polynôme de Lagrange de

degré maximal 2N - l tel que p (k) = y (fc) Vfc € [n- N+1, n + N] n Z. Ceci

peut être itéré à tous les nombres &-adiques.

Si nous fixons & et N, commençant avec y (k) = ôko, alors nous obtiendrons,



comme produit final, la fonction fondamentale Ff,,2N-i- Nous allons aussi écrire

FÎW-Ï = FÎN-I- Fti,2N-ï peut toujours être prolongée aux nombres réels parce

qu'elle sera uniformément continue sur les nombres &-adiques (un ensemble dense)

et, étant donné un entier positif k, il existe NQ suffisamment grand pour que

N > No ==> Fb,2N-ï € Ck. En d'autres mots, on peut accroître la régularité de

Fb,'iN-i en augmentant N. On peut voir que ce schéma d'interpolation permet la

reconstruction exacte des polynômes de degré 2N — l.

Remarque l. JVous utilisons l'interpolation itérative de Lagrange classique pour

plus de claité, cependant, tout ce dont nous avons besoin est un schéma différentiable

et permettant la reconstruction exacte des polynômes d un certain degré. Par ex-

emple, de nombreux schémas M — band peuvent être utilisés [6] mais aussi des

schémas beaucoup plus généraux.

On peut montrer que nous avons la relation

^,2fc+i (t) = E^,2fc+i (n/6) F^+i (bt -

Appliquant la transformée de Fourier, nous obtenons

Fbw (0 = Pbw (0 F^k+i {^/b)

n)



ou

Pwi(0=EJF?i(n/&)e-mç.
n

2. La fonction de corrélation

Notons par F-,-^ la fonction de corrélation du couple (<p,(f)),

-00

Fï.d, W= l ^ (-T) <f)(x-y) dx-
''T' J -00

Nous disons que (f) et (f) sont des fonctions duales si

•00 ^

(f) (.r) (f)(x-k) dx = 6o,k
—00

On peut vérifier facilement que lorsque (f) et 0 sont des fonctions duales, alors

-^J^ (^) == ^fc,o pour tout entier k. C'est pourquoi nous disons que la fonction

de corrélation de deux fonctions duales est aussi la fonction fondamentale d'un

schéma d'interpolation.

Notons la transformée de Fourier par

f^=-=r e-^f^dx
i7T -'-oo



Lemme 2.1. Si 4>, (f) € L2, alors F^ (^ = v/2^(00 (€)

Preuve. Parce que la transformée de Fourier est unitaire dans I/2,

F-r,(0 = -^= f e-^F-^
0,0vs/ \/2n J " *0'*^

= -^J'^x)Çj'e-i^^(x-y)dy)dx

-^= [^(x)( [ e-^-u+x^ (u) du} dx
)7T J \J )

= J^f^x)e-^dx

= V2^4> (0^(0 •

Dans ce qui suit, nous allons supposer que (j) et, (f) sont des fonctions duales

dans Lî (R) et qu'elles satisfont

0(0 = mo(^)^/&) • (2.1)

<^) = mo(^)^(^/6) (2.2)

Lemme 2.2. Si d) et (j) satisfont les équations 2.1 et 2.2, alors F~ , satisfait une

équation similaire,

FÎ.^=P(WF^{W



ou

P(0=^i(0^o(0 (2.3)

Preuve.

F^(0 = v^0 (C)^(O

= ^ (^/6) mo (^/6) V^4> {(/b) î ^/b}

- -m-^Wr^(WF^(WU

Exemple 2.3. Supposons que (f> = (f) =N<P es^ une fonction d'échelle de Daubechies.

(Il y a une version b—adique des ondelettes de Daubechies mais nous ne con-

sidérons que Foriginale où b = 2 [6].) On sait que la fonction de corrélation

correspondante F^^,^^, sera une fonction fondamentale de l'interpolation itérative

de Lagrange ([2, section 6.5], [9], [10]), en fait, F^^,^^, = I^w-i- Nous connaissons

le filtre de la fonction d'échelle if4>'- nous avons

/l+e-^\7v
^0(0= i1—} ^(0



ou \C (0|2 = L (^) satisfaié

L^)=P(sm^/2)

avec

P {y) = PN (-(/)

ou

N-l

PN(V)=E
fc==0

N-î+k

k

y"

Notre formule 2.3 donne

N-1

J^v-i (0 = œs27^/2 ^
fc=0

N-l+k

k
sin2fcC/2. (2.4)

Exemple 2.4. Supppons maintenant que <p et (f> sont des fonctions d'échelle de

Cohen-Daubechies-Feauveau [l, section 6] (i.e. (f) =^ ^(j) et </> =in4>)- Puisque

N + N est toujours pair, définissons n = {N + N) /2. Les filtres sont donnés par

^mo(0=e-ÎKÎ/2cosN^/2 (2.5)



n-1

,^mo(0=e-^/2œs^/2S

/ \
n-l+k

N,N
fc=0 k /

sin2^/2 (2.6)

avec K== l si N est impair et K, == 0 si N est pair. En multipliant ces équations,

nous obtenons

^o(0^^(0=(œs^/2f+7VS
fc=0

( _ \
n-l+k

k /

sin2^/2.

Nous voyons que

•PN+N-I (0 = 1^mo(^N,N m0 (0

(voir l'équation 2.4) ce qui implique que

FN+N-1 ^ = / N,N^ W N(f> (X - y) dx. (2.7)

3. L interpolation dyadique des moyennes de Donoho

David Donoho [5] a construit une famiUe de multirésolutions duales à la fonction

de Haar. Il est facile de vérifier que ses ondelettes sont les premières dérivées des

fonctions fondamentales de l'interpolation itérative de Lagrange (Fn). En effet, il

8



montre que

—Fn+1 (x) = (pn(.X+1) - ipn (x)

où (pn est la fonction d'échelle satisfaisant

"fe+l

(fin (re) dx = 6k,o

et telle qu'elle permet la reconstruction exacte des polynômes de degré n. Il ob-

serve aussi[5, section 3.2.2] que (p^, y?4 et ipg ont, numériquement, les mêmes filtres

que les fonctions d'échelle de Cohen-Daubechies-Feauveau[l, section 6] notées par

l,3<f), Ï,Q(t) et 1,7^- En fait, nous savons maintenant qu'il existe un résultat plus

général. Par exemple, après un changement d'échelle, nous avons que

dN
^ ^ -Ï—F.~

N,N^ dxN' N+N-1

où ^ ^ est une ondelette de Cohen-Daubechies-Feauveau. Nous allons montrer

ce résultat (voir théorème 5.1).



4. Les multirésolutions 6-adiques

Rappelons qu'une multirésolution 6-adique [2] est donnée d'abord par une famille

de sous-espaces fermés {Vj}^ y satisfaisant

...YÎ cVicVoc y_i e y-2 e...

et

D^=L2(R),

n,ez^- = {0}.

L'aspect "&-adique" surgit lorsque l'on exige que / ç Vj <=> f(bj') € ^o. Sup-

posons maintenant que nous avons deux multirésolirtions de la sorte : {Vj}^ y et

Vj} . De plus, il nous faut deux fonctions d'échelle duales 4> et (f) avec 2 (b — l)

ondelettes {^, ...,^-1} et {tpi, •••,ipb-i }• Nous appelons (f) et 0 des fonctions

d'échelle parce {(f) (• — n)}^ç^ et ^ (• — n) ^ doivent former des bases pour VQ

et VQ respectivement. Les ondelettes forment des ensembles duals (^, ^ ) = 6^ ,i et

elles doivent être perpendiculaires aux fonctions d'échelles (^/;,0) = (<^>, iph} = 0

10



Vfc = l, ...,6 — l. Toutes ces fonctions doivent avoir des filtres, c'est-à-dire que

^(O = m(W<p{W,

^(0 = m^/b)4>(W

et

^(0 = <7fc(^)W&),

^(0 = ^(^/&)^(^)

VA; = l, ...,&—!. {-0fc (• — n)}nez e1; ^A (' — n) L^^ sont ^es bases pour les espaces

W^ et W^ qui satisfont

V_i=Vo®Wo©-©Wofe-l,

v^=Vo@w^@...ew^1.

On peut vérifier que les B-splines de degré N peuvent être utilisées comme

fonctions d'échelle où les Vj correspondant sont les espaces de splines avec pour

noeuds les nombres fc-adiques de profondeur j. De plus, comme nous aUons le

11



montrer, une multiresolution duale à la multirésolution des splines est donnée par

Vo = span [Ff;N) (• - n) : n € Z}

où F^ est la Nwme dérivée de la fonction fondamentale 6-adique. On peut voir

à quel point c'est naturel simplement en utilisant l'intégration par parties et en

observant que la Nteme dérivée d'une B-spline de degré N est une combinaison

de fonctions de Dirac sur les entiers. Dans le cas dyadique, cela nous mène aux

ondelettes de Cohen-Daubechies-Feauveau.

5. Ondelettes de CDF 6-adiques

Remarque 2. Notons que dans le cas dyadique, une partie de ce qui suit peut

être fait en utilisant la formule de commutation de Lemarié [7, Proposition 2].

Si N(f> est la B-spline de degré N, nous avons

/ \
NdN

~d^N(i
;=0

(^)=E
N

(-l)l6{x-l+[N/2]) (5.1)

\ 6 /

Supposons que N est choisi suffisamment grand de telle manière à ce que F^ , ^ G

12



C . Appliquons N dérivées à l'équation 2.7, nous avons alors

dN _ t ~ , . dN

'^FN+N-I W = l N,N(/) Cr) j^ ^ (œ - ?/)da;
dy

N

- E
1=0

/ \
N

^{/

dN

dyN

(-l)N+\^Çy+l-[N/2]}.

(5.2)

Donc, on peut prendre

p(N)
^^ (z) = aF^_^ (bz - k) where k = l, ...,b - l

pour a çR/{0} , un coefficient de normalisation. En effet, utilisant l'intégration

par parties, on peut voir que

f^^)F^_^bx-k)dx=0

puisque Fj^^_^ (bn — k) = 0 pour n € Z et k = l,..., 6 — l. Finalement, il est

pratique de choisir

a=l Fw^ . (&•)
N+N-1 L2

Les filtres correspondants peuvent être facilement calculés (voir les tableaux

I, II et II où nous avons choisi a = l et fc = 3).

13



5.1. Cas dyadique

Nous prenons maintenant la transformée de Fourier de l'équation 5.2 pour obtenir

/

Fw^ , (0
N+N-1

N

s;
1=0

\

/ \
N

\ ' /

\
(_l)7v+'e^O-[A72])

N,Nî}4> (0 . (5.3)

Laissons q^ (^) être la fonction définie par

p(AQ
F^-l ^ = ^ (^) N^ (0 • (5.4)

L'équation 5.3 nous donne une formule pour gyy (^) ,

N

^(0 = E

/ \
N

;=0

\ ' /

(_l)JV+;e-^(-'+W2D

= ^[N/21
N

E
;=0

/ \
N

\ ' /

N+l„-;(-1)"+(2

avec z = e~ ï-. Nous pouvons alors calculer que

N
<fov(0 = (-lfzw2}(l-z-lY

= Ç-lfz-K^(z^-z-^

14
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= (-2i)N ei^lî smN ^/2

avec K = l si N est impair et n= 0 si 7V est pair.

Rappelons que Cohen, Daubechies et Feauveau ont choisi les filtres suivants

pour leurs ondelettes :

ivmi(0 = ^mo (^ + 7r)e-<,N,N""1^^ ~~ N,N

jvmi (^) = 7vmo($+7T)e-îê.

Nous sommes spécialement intéressé par le filtre de l'ondelette duale,

A(Q = iKei^2e-^cosN (^-^

= (-l)7ve-tWÎÎ/2sinNC/2

= (-1)W2] 2-^-^(0.

Donc, nous avons que

rf^) = (-1)W2] 2-^e-^ (^,2)^(^/2)

)W2] 2-^e-^/2 ^L
N+N-1

15



Nous pouvons maintenant prendre la transformée inverse pour obtenir une formule

explicite.

Théorème 5.1. Supposons que N est sufSsamrnent grand pour avoir F^ _,_jy_^ €

CN , si >, ^ est une ondelette de Cohen-Daubechies-Feauveau et si F ~ est la' " N,N~r ~~~ ""~ —-—--- — -—— _-.—-—-— --„„.-„„ _- — -N+N-1

^tême (jgj-jvee cîe Ja foncéioji fondamentale de l'interpolation itérative de Lagrange

de degré N + N — l alors

,^(z)=(-ir"2'-"^_,(2,-l).

Nous pouvons utiliser ce résultat pour comprendre comment la régularité et

la géométrie des ondelettes jvjy'0 varient selon N et N (voir les graphiques 5.1,

5.2, 5.3 et 5.4). Par exemple, nous pouvons maintenant voir clairement pourquoi

lorsque l'on accroît N pour N fixe, la forme de ^jy'0 demeure la même pour N

grand (voir [2] p.271).

16



Graphique 5.1: Fg (x)

6. Relèvement interpolatoire des B-splines

En général, on peut choisir

N,N^ ^ = E
fc=0

/ __ . \
N-l+k

N-l
F^N-^x-k-K-W^

17



Graphique 5.2: ^Fg (x) =1,9^ (^)Y 2 y

puisque l'intégration par parties nous permet de vérifier facilement que

N<P(X)N.N 4>{x-n} dx = <5o,r,.

(en utilisant l'équation 5.1). Si nous écrivons

D-lf(x)=l f (s)
—00

ds

18



Graphique 5.3: ^ (x) = -2 ^ (^)

et ^'0° (a;) = ^—^—D~N6 {x), alors on peut obtenir les ondelettes primaires par la

formule générale

^-tpk (x) =N^° (bx - k) - Y,N(t> (x-n) l Nip0 (by - k)^ (j) (y - n) dy
î-

où k =1, ...,b — l puisque Nîp° (bx — l) est dual avec ^ f^ïp .N,N'1'k~

19



Graphique 5.4: ^Fg (a;) = -4 3,7^ (271)

Remarque 3. Nous pouvons maintenant voir que ^ffip et par conséquent p/^k,

ont un support compact. Voir la preuve de la proposition 6.1.

6.1. Cas dyadique

Il nous reste à montrer comment on peut écrire ^(f) (la fonction d'échelle duale de

Cohen-Daubechies-Feauveau) comme la Nième dérivée de l'interpolation itérative

de Lagrange. Cependant, puisque nous prenons N dérivées, il est entendu qu'une

20



telle formule ne sera pas unique.

Proposition 6.1. Supposons que N est suffisamment grand pour avoir F^ ^_^

CN, nous avons alors

N,N(f> W = fN,N W

ou
/

f^ W = SL^t
fc=0

\
N-l+k

l N-1 )

^(N)F^-^x-k-K-[N/2})-

Preuve. Premièrement, il nous faut montrer que fj^fj (x) ç L (R). Puisqu'il

s'agit d'une fonction continue, il suffit de montrer qu'elle a un support compact.

Pour ce faire, observons que

9N W =

/ \
N-l+k

N-l /

est un polynôme de degré N — l sur N. L'interpolation itérative de Lagrange de

degré N + N — l préserve les polynômes du degré correspondant et les fonctions

fondamentales ont toujours un support compact, en conséquence /^yjy (x) doit

avoir un support compact.

21



On peut maintenant prendre la transformée de Fourier de /;
N.N

N,N ^/ ~ /-^
fe=0

/ \
N-l+k

N-l

^.+K+[N/2] p(AT)_
z"' "' '~' rN+N-\

où z = e~ s. Si nous substituons la formule 5.4, alors nous avons

Â^ (0 = a (^) ^ (0

ou

"(0=^(OEZ--/
fc=0

/ \
N-l+k

N-l

,k+iî+[N/2\

Rappelons que

^(0 = (-i)^/2'(l - .-1)

= z-[Ni2}-K(i-z}N

N

22



et notre somme est la série de Taylor de (l — z)~ et donc, nous avons pour z^l

que

(i-^xEl
fc=0

N-l+k
\N w V^ l ' l ~fc _

N-î

En conséquence o; (^) = l pour ^0 ce qui est suffisant pour écrire que dans L2,

fN.N (0 =N.N^ (0

Il ne nous reste plus qu'à prendre la transformée inverse pour montrer le résultat.

7. Conclusion

Alors que ce qui précède repose sur des idées bien comprises (voir par exem-

ple [7]), nous pensons que notre dérivation des ondelettes de Cohen-Daubechies-

Feauveau rend plus limpide certaines de leurs propriétés. En particulier, puisque

la régularité de l'interpolation itérative de Lagrange est connue [3] , la régularté des

ondelettes correspondantes est automatiquement établie. Nous obtenons aussi un

algorithme différent pour calculer ces fonctions. Nous savons [3] que les dérivées

des fonctions fondamentales peuvent être calculées exactement sur les nombres

23



&-adiques d'une certaine profondeur en un nombre fini d'opérations par la formule

F(r) (k/v) /brj = ^ F (n/V) F^ (k - n).
n

Notons que l'on peut facilement calculer F^ sur les entiers en utilisant les pro-

priétés de l'interpolation itérative de Lagrange.

Il serait intéressant d'étudier d'autres schémas d'interpolation itérative C et

de voir quels types d'ondelettes ils pourraient donner (les filtres "Af-band" mais

aussi d'autres cas où la transformée de Fourier échoue à cause du manque de

symétrie). Ces travaux sont liés au schéma de relèvement de Wim Swelden [il].

En effet, dans un autre document [4], nous avons montre que ces idées mènent

à la construction d'ondelettes sur l'intervalle sans l'utilisation d'un processus de

Gram-Schmidt en faisant usage de certains schémas d'interpolation itérative sur

l'intervalle (voir [8] et [5]). En utilisant la remarque l, il suffit de choisir un

schéma d'interpolation itérative qui "vit" sur la subdivision choisie. Par exemple,

ceci pourrait mener à des ondelettes sur des subdivisions irrégulières.

24



Tableau l : Quelques filtres tryadiques (b =3) {z = e-tç)

N

l

l

2

2

N

3

5

2

4

filtres primaires (jyîn-o)

1+4+^3 ' 3 ' 3

1-L£-L^
3 '3 ' 3

— + .2- +1 + ïz+lzi^~T'SI~r"3~r9À'~r"9'

J_ -L J--L l -L ly-Lly29^ + ^ + t + t2; + '9^

filtres duals (^^mo)

4 l i 5 i 26 i 29
'8Îîï ~ 8l22 -t- 8Îi ~r 8Î T iî

-^2 _i_ ^.^3 _ J_^4 _ J_^
81 ^ ' 81^ 81^ 81'

7 1 l 8 49 13
729z8 ' 729z7 729z6 729z6 72Qz4

62 i 77 i 89 , 77 i 62
729z3 ' 243z2 ' 243z ' 243 ' 729'

_J^.^2 _ 49 ^3 _ 8 »4 j_ J_^5 _|_ 7 ^6
729" 729^ 729" ' 729" ' 729

-1--L—4--1-1-IÎ-L^-"Ïf^5 'r9Î?'r9?-t-T>7"~ri'

4z2 - é;Z3
9^ 27'

7 2 1 34
^SI5' — Sîî^ — ?^T — 533?

.1^4--^--t-â-l-^4- lu y2
81z2 ' 81z ' 9 ' 8l'"1 81'

.JM-.y3 — J--y4 _ J.^5 j_ _Z_^6
243^ 27^ 81A ' 243/

Tableau II : Quelques filtres d'ondelettes duales tryadiques (6 = 3)

N

l

2

filtres

1-z,.

l-2z

Nml

->•- y2^ —

+Z2,Z- 2zî +z3

25



Tableau III : Quelques filtres d'ondelettes primaires tryadiques (b = 3)

N

2

2

N

2

4

filtres

.4-8Î^

J_'sî^

_8_
729zE

35 .
243-

_7_

729zE

112.
243

N,Nmï

8 A
81z 27

10 i S,
81z ' 27

16
729z4

2+M^3iî2"

14
729z4

2+j^3+1

^z81

^z81-

8
2A3Z''

77 ^.
729'

7
243?

100^4
729'

_ .40-^2

81

_ M^.2
81-

M-729?

t _l_ 28
729'

28

^z3
27'

-±^3
27'

JOO.
72ftz

^ -—243

77
729z2 ' 729z

^zs
729'

+

+

+

z6

+

5 8 »6
243-

J.0^4
81'

±Z4:
81

2
9

.-§-

81

.e.
81

112,
243'

_J£^7
729

14
81

16
729-

35 ,
243-

•zr-

z6

z6

J^8
729-

î

-^zs
729/
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