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Résumé

Nous construisons 1’équivalent des ondelettes biorthogonales de
Cohen-Daubechies-Feauveau dans le contexte b-adique. Utilisant les
schémas d’interpolation itérative de Lagrange b-adiques, nous procédons
en appliquant de multiples dérivées sur les B-splines et en utilisant

Iintégration par parties.

1. L’interpolation itérative de Lagrange

Nous rappelons briévement les schémas d’interpolation b-adiques discutés dans [3]
(b > 0 est un entier). Nous appelons les nombres réels dans la forme k /b o k et
J sont entiers, des nombres b-adiques. Si j est le plus petit entier tel que z = k/b’
pour un entier k, alors nous disons que x est un nombre b-adique de profondeur
j- Etant donné une fonction y définie sur les entiers, nous voulons prolonger cette
fonction aux nombres b-adiques. Pour des entiers r et n satisfaisant 0 < r < b,
y(n+7/b) est définie comme p(n + r/b) ot p est le polynéme de Lagrange de
degré maximal 2N — 1 tel que p(k) =y (k) Vk € [n— N +1,n+ N]NZ. Ceci
peut étre itéré a tous les nombres b-adiques.

Si nous fixons b et N, commengant avec y (k) = 60, alors nous obtiendrons,



comme produit final, la fonction fondamentale Fjon_;. Nous allons aussi écrire
Fyon-1 = Fon-1. Fyan-1 peut toujours étre prolongée aux nombres réels parce
qu’elle sera uniformément continue sur les nombres b-adiques (un ensemble dense)
et, étant donné un entier positif k, il existe Ny suffisamment grand pour que
N > Ny = Fyan-1 € C*. En d’autres mots, on peut accroitre la régularité de
Fy on—1 en augmentant V. On peut voir que ce schéma d’interpolation permet la

reconstruction exacte des polyndémes de degré 2N — 1.

Remarque 1. Nous utilisons I'interpolation itérative de Lagrange classique pour
plus de clarté, cependant, tout ce dont nous avons besoin est un schéma différentiable
et permettant la reconstruction exacte des polynémes d’un certain degré. Par ex-
emple, de nombreux schémas M — band peuvent étre utilisés [6] mais aussi des

schémas beaucoup plus généraux.

On peut montrer que nous avons la relation

Fyons1 (t) =D Fhone1 (n/) Fygpi1 (bt — )

Appliquant la transformée de Fourier, nous obtenons

Fb;;c:kl (f) = Db,2k+1 (E) Fb;;-‘rl (é/b)
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Pookr1 (£) =D Fyont1 (n/b) e ™.

2. La fonction de corrélation

Notons par Fg s la fonction de corrélation du couple (%, ¢),

Nous disons que gg et ¢ sont des fonctions duales si

/o;qz(m)qb(x——k)dazzéoyk

On peut vérifier facilement que lorsque ¢ et ¢ sont des fonctions duales, alors
FJ; 4 (k) = 6xo pour tout entier k. C’est pourquoi nous disons que la fonction
de corrélation de deux fonctions duales est aussi la fonction fondamentale d’un

schéma d’interpolation.

Notons la transformée de Fourier par



Lemme 2.1. Si ¢, ¢ € I2?, alors ﬁ%¢ &) = \/.2??43_(5; (€)

Preuve. Parce que la transformée de Fourier est unitaire dans L2

B 6 = \/% [ers, () dy
- -\/=/¢(m) (/e"fyqb (x—y) dy) dz

= \/5; /qb (/ e~ uta) g () du) dx
= / ¢ (z) e “*dx

= Varg(©e(e) m

Dans ce qui suit, nous allons supposer que gz et ¢ sont des fonctions duales

dans L% (R) et qu’elles satisfont

$(€) = mo(e/b)d (/) (21
$(E) = o (E/b)d(¢/b) (2.2)

Lemme 2.2. Si ¢ et ¢ satisfont les équations 2.1 et 2.2, alors Fg é satisfait une
équation similaire,

By, (€)= p(E/b) F, (¢/b)



ou

Preuve.

Py, (6 = VI ©(©)
— 5 (¢/b) o (£/b) V21 (€/b) & (€ /b)
= T (£/b) 7o (£/b) F , (¢/b) W

Exemple 2.3. Supposons que ¢ = ¢ =y¢ est une fonction d’échelle de Daubechies.
(I y a une version b—adique des ondelettes de Daubechies mais nous ne con-
sidérons que l'originale ou b = 2 [6].) On sait que la fonction de corrélation
correspondante F 4 .4 sera une fonction fondamentale de I'interpolation itérative
de Lagrange (]2, section 6.5], [9], [10]), en fait, Fy 4 s = Fan_1. Nous connaissons

le filtre de la fonction d’échelle y¢: nous avons

mo(©) = - J“;"%)Nc(s)



ou |L£(&))° = L (¢) satisfait

avec

Notre formule 2.3 donne

vl No1+k
pan-1(§) = cos®™£/2 3 sin?* £/2. (2.4)
k=0 k

Exemple 2.4. Supppons maintenant que ¢ et ¢ sont des fonctions d’échelle de
Cohen-Daubechies-Feauveau [1, section 6] (i.e. ¢ =y ﬁi et ¢ =n¢). Puisque

N + N est toujours air, définissons n = (N + N} /2. Les filtres sont donnés par
] p p

N (€) = e7¢/2 cogN £/2 (2.5)



) ~ n-1{ n—14+k%
N (€) = e7*/2 cosM £ /2 > sin?* £ /2 (2.6)
’ k=0
k .

avec k =1 si N est impair et kK = 0 si N est pair. En multipliant ces équations,

nous obtenons

~n-1{ n—1+%k
N7 (&) . o (€) = (cos&/2)M+N 3 sin® £/2.
k=0 k

Nous voyons que

Py () = W(S)N,ﬁ mg (§)

(voir I’équation 2.4) ce qui implique que
Fyii1(y) = /N,ﬁ(Z () v¢ (z — y) dz. (2.7)

3. L’interpolation dyadique des moyennes de Donoho

David Donoho [5] a construit une famille de multirésolutions duales & la fonction
de Haar. Il est facile de vérifier que ses ondelettes sont les premidres dérivées des

fonctions fondamentales de V'interpolation itérative de Lagrange (F,). En effet, il



montre que

ToFust (2) = 0 0+ 1) = 0 (2

ol ¢, est la fonction d’échelle satisfaisant

E+1
/k On (2)dz = by

et telle qu’elle permet la reconstruction exacte des polynémes de degré n. Il ob-
serve aussi[5, section 3.2.2] que @, @4 et g ont, numeériquement, les mémes filtres
que les fonctions d’échelle de Cohen-Daubechies-Feauveaul[l, section 6] notées par
1,3q;, 1,5gg et 1,7& En fait, nous savons maintenant qu’il existe un résultat plus
général. Par exemple, aprés un changement d’échelle, nous avons que

dN

N,ﬁ¢ ~ deF

N4N-1

ou ]'VV’QZ est une ondelette de Cohen-Daubechies-Feauveau. Nous allons montrer

ce résultat (voir théoréme 5.1).



4. Les multirésolutions b-adiques

Rappelons qu'une multirésolution b-adique [2] est donnée d’abord par une famille

de sous-espaces fermés {V;}, , satisfaisant
MooV oV,

et

UjezV; = L* (R),
NjezV; = {0}.

L’aspect ”b-adique” surgit lorsque l’on exige que f € V; & f (V) € V. Sup-
posons maintenant que nous avons deux multirésolutions de la sorte : {Vj}jez et
{ %}jez' De plus, il nous faut deux fonctions d’échelle duales ¢ et ¢ avec 2 b-1)
ondelettes {1y,...,¢p_1} et {zzl,...,@b_l}. Nous appelons ¢ et q~§ des fonctions
d’échelle parce {¢ (- —n)}, .4 et {q~5 (- — n)}nez doivent former des bases pour 1}
et Vp respectivement. Les ondelettes forment des ensembles duals <7,sz, @Z,> = Oy, et

elles doivent étre perpendiculaires aux fonctions d’échelles <¢k, ¢~>> = <¢, ’sz> =0
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Vk =1,...,b— 1. Toutes ces fonctions doivent avoir des filtres, c’est-a-dire que

o~

$(€) = m(e/b)(E/b),
$(&) = m(e/b)de/b)

et

e (€) = gu(£/b)(E/D),
D (€) = G (E/5)§(¢/b)

Ve =1,...,b6=1 {tp (- —n)},cqz et {1/;k (-— n)}nez sont des bases pour les espaces

WE et WE qui satisfont
Vai=WhoW e..owr!,

Vi=VoWl e..eWr

On peut vérifier que les B-splines de degré N peuvent étre utilisées comme
fonctions d’échelle ot les V, correspondant sont les espaces de splines avec pour

noeuds les nombres b-adiques de profondeur j. De plus, comme nous allons le

11



montrer, une multirésolution duale a la multirésolution des splines est donnée par

Vo = span{Fb(N) ((—n):ne€ Z}

ou Fb(N) est la N**™¢ dérivée de la fonction fondamentale b-adique. On peut voir
a quel point c’est naturel simplement en utilisant I'intégration par parties et en
observant que la N*™¢ dérivée d’une B-spline de degré N est une combinaison
de fonctions de Dirac sur les entiers. Dans le cas dyadique, cela nous meéne aux

ondelettes de Cohen-Daubechies-Feauveau.

5. Ondelettes de CDF b-adiques

Remarque 2. Notons que dans le cas dyadique, une partie de ce qui suit peut

étre fait en utilisant la formule de commutation de Lemarié [7, Proposition 2].

Si y¢ est la B-spline de degré N, nous avons

dav NN !
—wné (@) =3 (—1)'6 (x— L+ [N/2)) (5.1)
= l

Supposons que N est choisi suffisamment grand de telle maniére & ce que F), +ho1 €

12



CN. Appliquons N dérivées a I’équation 2.7, nous avons alors

dv =, dY
i@ = [ 58 @) gy wé (- y)da (5.2
N N N+1 o
-3 (D)™ v 5® @ +1-[N/2))
=0 l

Donc, on peut prendre

N, (bz — k) wherek=1,...,b—1

— o)
() = aFN+ﬁ—1

pour a €R/{0}, un coefficient de normalisation. En effet, utilisant 'intégration

par parties, on peut voir que

/NCIS( ) N+)N l(bx_k)dmzo

puisque Fyy 5 ,(bn —k) =0 pour n € Z et k = 1,....b — 1. Finalement, il est
pratique de choisir

a=1/[Fl5. ¢

L2'

Les filtres correspondants peuvent étre facilement calculés (voir les tableaux

I, IT et II ot nous avons choisi a =1 et b = 3).

13



5.1. Cas dyadique

Nous prenons maintenant la transformée de Fourier de I’équation 5.2 pour obtenir

oy NN N+l _ie(1~[N/2)) it
F ©=1> (—1)" T Rt/ N AR (5.3)

N+N-1 =1
Laissons gy (§) étre la fonction définie par

(€)- (5.4)

<0

Fe (@) =av () wi

H]

L’équation 5.3 nous donne une formule pour gy (£),

N N '
w©) = S| |ayrescim
=0 l
. LIN/2 i N N+l -1
= p[ /]Z (-“1) 2
=0 l

avec z = e~ %, Nous pouvons alors calculer que

v (&) = ()N (1- Z_l)N



= (—2i)" "/ 25in™ £/2

avec k = 1 s1 NV est impair et k = 0 si N est pair.

Rappelons que Cohen, Daubechies et Feauveau ont choisi les filtres suivants

pour leurs ondelettes :

waimi(§) = Mo (E+me ™,

L

v (€) = nme(€+m)e®,
Nous sommes spécialement intéressé par le filtre de 'ondelette duale,

Ny (€) = %€/ 2T g (————5 ; ﬂ)
= (—1)N e %ir et/ 2 ginN £/2

= (M2 Netgy (6).

Done, nous avons que

wiP (€ = (~D)MAe ety () | G (¢/2)

N NY
(-1 g Nemer2 pO (¢ /9)

15



Nous pouvons maintenant prendre la transformée inverse pour obtenir une formule

explicite.

Théoréme 5.1. Supposons que N est suffisamment grand pour avoir F' S

N+N-1

N o _ S . (N)
CcV, si N,N?,l) est une ondelette de Cohen-Daubechies-Feauveau et si FN+N—1 est la
N#*me dérivée de la fonction fondamentale de l'interpolation itérative de Lagrange
de degré N + N —1 alors

7 - N
N (2) = (F)MHN L (22 1),

Nous pouvons utiliser ce résultat pour comprendre comment la régularité et
la géométrie des ondelettes N,ﬁ{; varient selon N et N (voir les graphiques 5.1,
5.2, 5.3 et 5.4). Par exemple, nous pouvons maintenant voir clairement pourquoi
lorsque 1’on accroit N pour N fixe, la forme de N, mZ demeure la méme pour N

grand (voir 2} p.271).

16



Graphique 5.1: Fy (z)

6. Relevement interpolatoire des B-splines

En général, on peut choisir

TIOEDY Fs (@ =k —r—[N/2])
=0l N1

17



Graphique 5.2: EdEFQ (z) =1’91/~) (&%l)

puisque 'intégration par parties nous permet de vérifier facilement que

/ Nqﬁ(ac)N,ﬁ 55 (x —n)dx = bop

(en utilisant 1'équation 5.1). Si nous écrivons

ctid

D7 (@)= [ F(s)ds

— X

18
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Graphique 5.3: %FQ (z) = —2 250 (z;r_l)

N
et yY° (z) = %LD*N 8 (x), alors on peut obtenir les ondelettes primaires par la

formule générale
v (@) =ny° (bz —k) = D n¢ (¢ —n) / N (by — k) 5 6 (y —n)dy

n

ot k=1,...,b—1 puisque yy° (bx — I) est dual avec Nﬁik.

19



. 3 ~
Graphique 5.4: Ed;g'Fg (z) = —4 3% (%l)
Remarque 3. Nous pouvons maintenant voir que N _,V&S et par conséquent Nk
ont un support compact. Voir la preuve de la proposition 6.1.
6.1. Cas dyadique

Il nous reste a montrer comment on peut écrire N ﬁgg (la fonction d’échelle duale de
Cohen-Daubechies-Feauveau) comme la N®™¢ dérivée de I'interpolation itérative

de Lagrange. Cependant, puisque nous prenons N dérivées, il est entendu qu’une

20



telle formule ne sera pas unique.

Proposition 6.1. Supposons que N est suffisamment grand pour avoir F’ €

N+N-1

CN, nous avons alors

ou
0o N-1+4+k& ™)
GEDY Fols (@—k—k—[N/2)).
=0\ N-1

Preuve. Premitrement, il nous faut montrer que f, ~ (z) € L2 (R). Puisqu’il
s’agit d’une fonction continue, il suffit de montrer qu’elle a un support compact.

Pour ce faire, observons que

est un polynéme de degré N — 1 sur N. L’interpolation itérative de Lagrange de
degré N + N-1 préserve les polynémes du degré correspondant et les fonctions
fondamentales ont toujours un support compact, en conséquence Iy (x) doit

avoir un support compact.

21



On peut maintenant prendre la transformée de Fourier de fN,ﬁ
A = MR v g
o (8= > z FN+N—1 (€)
k=0 N -1

ou
o N=14+k |
a(@)=an () SRHRHIN/2]
k=0 an

Rappelons que

av () = ()Y (1)

22



et notre somme est la série de Taylor de (1 — 2) ~N et donc, nous avons pour 21

que

N2 N-1+k
(I—2)" x> =1
k=0 N-1

En conséquence o (§) = 1 pour £5£0 ce qui est suffisant pour écrire que dans L2,

11 ne nous reste plus qu’a prendre la transformée inverse pour montrer le résultat.

7. Conclusion

Alors que ce qui précede repose sur des idées bien comprises (voir par exem-
ple [7]), nous pensons que notre dérivation des ondelettes de Cohen-Daubechies-
Feauveau rend plus limpide certaines de leurs propriétés. En particulier, puisque
la régularité de I'interpolation itérative de Lagrange est connue [3], la régularté des
ondelettes correspondantes est automatiquement établie. Nous obtenons aussi un
algorithme différent pour calculer ces fonctions. Nous savons [3] que les dérivées

des fonctions fondamentales peuvent étre calculées exactement sur les nombres

23



b-adiques d’une certaine profondeur en un nombre fini d’opérations par la formule

FO (k/¥) [57 =S F (n/6) FO (k — ). |

Notons que ’on peut facilement calculer F() sur les entiers en utilisant les pro-
priétés de l'interpolation itérative de Lagrange.

Il serait intéressant d’étudier d’autres schémas d’interpolation itérative C* et
de voir quels types d’ondelettes ils pourraient donner (les filtres ” M-band” mais
aussi d’autres cas ou la transformée de Fourier échoue a cause du manque de
symétrie). Ces travaux sont liés au schéma de relévement de Wim Swelden [11].
En effet, dans un autre document [4], nous avons montré que ces idées menent
a la construction d’ondelettes sur I'intervalle sans I'utilisation d’un processus de
Gram-Schmidt en faisant usage de certains schémas d’interpolation itérative sur
I'intervalle (voir [8] et [5]). En utilisant la remarque 1, il suffit de choisir un
schéma d’interpolation itérative qui ”vit” sur la subdivision choisie. Par exemple,

cecl pourrait mener & des ondelettes sur des subdivisions irréguliéres.
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Tableau I : Quelques filtres tryadiques (b= 3) (2 = e™%)

N { N | filtres primaires (5770)

filtres duals (5 o)

N ERFREEE- sk
+ 22—}— '81_124__54{’25

15 ?}"'%"{'% 72S7)28 + 7251927 - 72326 - 7;;25 - 72193;4
ol + sy + e 4 L+ S2
729z 2432 2432 243 729
_’712%’72_'%%"33 729Z+729z+7296

2 [2 |gmt+d&+3+22+32? | s +tonta+idL+2:
+522 — 28

2 |4 [srtet3tiz+352" | sim —mir —m s
‘ot o o+ 22+ 222
-%z3—-2i7z4 z +243

Tableau II : Quelques filtres d’ondelettes duales tryadiques (b = 3)

N | filtres ymy

1 |1~22—22

2 |1—2z+4222— 222428
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Tableau III : Quelques filtres d’ondelettes primaires tryadiques (b = 3)

N { N | filtres g ym

A, 8 4 14, 4.2, 5.3, 10,4 5.5
212 |5zt Z— A gt i tars

2.4 10 5 40, 4.2 4 A4
s tan Ty wg o me et et g

8 16 112
2 4 729z° 72924 243z3 + 72922 + 7292 + 243Z

2 143 TT 44 285 7 6_ 147 _ 78
z + 517 T e T gt T aEY gl — Ts

714 e 35
72955 72977 24323 + Tme7 e 7907 + — 2437
1122 100,4 | 38 5 _ 6_ 16 7 _ 8 8

+ *+ 758 7297 T 7957 243z 798% T 7287
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