
Titre:
Title:

Comprehensive software metrics framework

Auteurs:
Authors:

Germinal Boloix, & Pierre N. Robillard

Date: 1994

Type: Rapport / Report

Référence:
Citation:

Boloix, G., & Robillard, P. N. (1994). Comprehensive software metrics framework.
(Rapport technique n° EPM-RT-94-07). https://publications.polymtl.ca/9587/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9587/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-94-07

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9587/
https://publications.polymtl.ca/9587/

0 7 AVR, Wt

EPM/RT-94/07

Comprehensive Software Metrics Framework

Germinal Boloix

Pierre N. Robillard

Département de génie électrique
et génie informatique

École Polytechnique de Montréal
Mars 1994

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage,
sous quelque forme que ce soit, sans avoir obtenu au préalable l'autorisation de l'auteur,

OU des auteurs

Dépôt légal, novembre 1993
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Éditions de l'École Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la
manutention. Régler en dollars canadiens par chèque ou mandat-poste au nom de l'École
Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente

préalable dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.

Comprehensive Software Metrics

Framework

Germinal Boloix, Pierre N. RobiIIard

8 March 1994
Ecole Polytechnique de Montréal

Département de Génie Electrique et de Génie Informatique

O.P. 6079 succ Centre Ville

Montréal, Québec H3C 3A7
Tel. (514) 340-4031,340-4238 - Fax. (514)340-3240

boloix@rgl.polymtl.ca

pnr@rgl.polymtl.ca

Abstract

We propose a comprehensive software metrics framework to guide organizations in

classifying software metrics data. The framework facilitâtes identifying homogeneous

metrics data for comparison purposes. It can be used in the establishment of metncs pro-

grams in organizations. The framework intégrâtes system's knowledge into three perspec-

tives: the software production project, the characteristics of the System, and its
organizational environment. The framework takes in considération ancient studies on pro-

ductivity models and software quality factors, introducing an important dimension that

characterizes the contribution of the System to the organization.

The framework perspectives represent the before (Le., development or enhance-

ment), during (i.e., the product itself), and after (i.e., post-evaluation stage) views of sys-

tems. The project dimension considers the characteristics of the agents, the process and

the tools during software production. The system dimension depicts the characteristics of

the product, its technology, and its performance. Finally, the organizational dimension that

identifies the domain of the problem, introduces factors related to compliance of the sys-

tem meeting its requirements, the usability of the System from the user's perspective, and

the contribution of the System to the organization.

We expect the framework to help practitionners in sharing and extrapoladng experi-

ences consistently inside their organization and among différent organizations. Research-

ers can benefit from the framework when using real data from industrial sites in their

studies. Improvements in software engineering practice are expected by sharing a com-
mon framework based on a comprehensive analysis of the software, its construction, and

its contribution.

Keywords: software metrics, metrics framework, System benefits, homogeneous metrics

data, productivity factors, quality factors

1.0 Introduction

Software metrics represent a useful resource to assess the characteristics of software

and the software production process. Software metrics provide supporting aids for more

accurate estimation of project milestones, monitoring of project progress, and évaluation

of project results. Estimation using analogy from previous expériences is improved with

trustful historical metrics. Project control activities may detect abnormal trends monitor-

ing software metrics. Project évaluations may recommend changes to the process model,
to the software development methodology, to the type of personnel involved and their

training, to improve productivity.

There are several factors that affect software projects data. Productivity of software

development or maintenance is a familiar concern that affects the cost of software; person-

nel considérations are paramount in the cost of a System. Another conçern is the complex-

ity of software; characteristics of the software détermine how easy it is to produce,

impacting also software cost. Another aspect that has not received adecuate attention is

how human and organizational productivity are directly affected by the use of computer
Systems [GBL91]; it is important to evaluate the contribution of a System to the organiza-

don. However, there are so many factors affecting the software and its production process

that a systematic approach to select those factors is required.

Organizations have gathered software metrics data for years following undefined

frameworks; that data has not been carefully characterized for future use. Historical

project data is useful to compare projects of similar size, application domain, and com-
plexity. Reasons behind lack of confidence on historical software metrics data collected in

industries lie on inappropriate categorization of project attributes due to unclear measure-

ment objectives. Statistics from completed projects can be helpful to détermine correla-

tions among several variables such as size, complexity, and quality, versus effort. When

data like effort is gathered, therc are many parameters that influence its relationship to

software productivity (e.g., personnel expérience, software development methods and

tools, type of software application, and so on). If such data is not well characterized,
through a software metrics framework that categorizes the data, it is not possible to com-

pare projects or Systems consistently, and it is less reliable to make good use of the data for

estimation purposes.

Several researchers have proposée! the use of metric data collected from industry to

perform multivariables studies. Most of this type of research has been donc by correlating

product metrics with effort; thèse research results can be misleading. Without characteriz-

ing the environment surrounding the data, parameters like effort of development or main-

tenance are not trustful for corrélation purposes. One way of overcoming this problem is

by documenting the conditions under which the System was produced, the characteristics

of the software itself, and the results of using the software, such that similar projects be

identified for statistical analysis studies. Homogeneity surrounding metrics data is

requu-ed to make meaningful comparisons.

The benefits of operating a System in an organization is an area of concern for any

business. Productivity is the fundamental économie measure of a technology's contribu-

tion. Delivered computing power in the U.S. economy has increased by more than two

orders ofmagnitude since 1970 yet productivity, especially in the service sector, seems to

have stagnated [B93]. There is a lack of metrics for usability and productivity of people
and organizations who use computers. There are almost no quantitative behavioral mea-

sures of général trends, over the years, on how human and organizational productivity are

directly affected by the use ofcomputer Systems [GBL91].

The importance of différent types of knowledge to be gathered during software
projects is recognized in conceptual modelùig. Mylopoulus [LZ91] suggested the impor-

tant types of knowledge to gather for a System in what was called 'worlds'. The usage

world keeps information about the (organizational) environment; the development world

describes the process that led to the development (or maintenance) of the information sys-

tem; the System worid describes the System at différent layers of implementation détail;

and the subject world consists of the subject matter for the System.

In an effort to establish an homogeneous estimation base, Boehm [B81] suggested

three basic modes of development for software projects: organic, semidetached and

embedded; several features that permit classifying thèse modes, and cost drivers affectting

project estimation were also proposed. Other authors have suggested additional productiv-

ity factors FWF77], [BZ78], [M81], [RB89], [CDS86], [KM091]. In général, thèse pro-
ductivity approaches emphasize product, personnel, project, and computer attributes.

Software quality has also been subject to analysis, pioneer work by Boehm et al., [BBL76]
and McCall [M79] suggest the importance of software quality characteristics. SEI's Capa-

bility Maturity Model (CMM) has been suggested to improve current software production
practices, it assesses the software process maturity level of organizations [H88]. Other

important factors that affect projects such as application domain, software technology and

people expérience are not directly consideredin CMM [PCC93].

Internai software characteristics also have an impact on productivity. Business

applications (e.g., transaction-oriented) differfrom scientific applications (e.g., mathemat-
ical, simulation). Real time process control Systems also differ from database applications.

Even within a particular type of application there are différences on emphasis. Some

applications are more user interaction orientée rather than computation oriented, while

others are more database oriented or décision support oriented.

Our objective is to develop a comprehensive software metrics framework that facili-

tates the sélection of a basic set of atù-ibutes to characterize software projects. There are

many factors affecting the productivity of projects, the quality of software, and the bene-

fits obtained from Systems opération. A top-down approach, as the one suggested in this

paper, has the advantage of providing a metrics sélection mechanism that avoids overflow
on the number of metncs to be gathercd. The framework provides a hierarchical classifica-

tion of metrics data through three basic perspectives: the production process, the internai

characteristics of software, and the contribution of the software to the organization. The

framework can be used to classify software projects data for analysis purposes. It can be

used to identify a set of attributes required for estimation purposes. It can also be used as

the baseline to establish what type of metrics data to gather in an organization.

The article is organized as follows. Section 2 présents current approaches to charac-

terize software projects, see also the appendix. Section 3 describes the comprehensive

software metrics framework and its levels of categorization. Section 4 présents current

approaches versus our framework. Section 5 présents an example project classification.

Finally, section 6 gives some conclusions and further research.

2.0 Current approaches

There are several models suggested in the literature that allow categorization of

projects, quality, and producdvity factors. Productivity models include Walston et al., pro-

ductivity factors [WF77]; Basili et al., factors affecting software development [BZ78];
Boehm's Software Development Modes and Cost Drivers [B81]; Mohanty's Software

Cost Estimation factors [M81]; SEI's Capability Maturity Model [H88]; Conte et al., fac-
tors affecting productivity [CDS86]; Ramsey et al., homogeneous projects [RB89];
Kemayel et al., factors for programmer productivity [KM091]. Software quality models

include those suggested by Boehm et al., [BBL76] and McCall [M79]. Sec the appendix
for additional détails on each approach.

Walston and Félix producfivity factors

The objective of this research was to search for a method of estimadng program-

ming productivity [WF77]. Twenty-nine factors that correlate with programming

productivity were identified, related to complexity, user participation, personnel

expérience and qualifications, staff size/duration, programming techniques, con-

straints on the programs, type of application, data base classes of items, and pages of
documentation.

Basili and Zelkowitz factors on software development

Data from several projects was collected at the Software Engineering Laboratory

(NASA Goddard Space Flight Center and the University of Mariland) to evaluate
software engineering méthodologies [BZ78]. For each project, a set of factors that

affect software development were gathered: people factors, problem factors, process

factors, product factors, resource factors, and tools.

Boehm's Software Development Modes and Cost Drivers

Boehm [B81] distinguishes three modes of software development: organic, semide-
tached and embedded. The important features that allow the identification of Soft-

ware Development Modes are: organizational understanding of product objectives;

expérience in working with related software Systems; confonnance with pre-estab-

lished requircments; conformance with external interface spécifications; concurrent

development of associated new hardware and operational procédures; innovative

data processing architectures, algorithms; premium on early completion; product

size range. Boehm also proposed several cost drivers for estimation purposes, orga-

4

nized by product attributes, computer attributes, personnel attributes, and project

attnbutes.

Mohanty's Software Cost Estimation factors

Mohanty {M81] identifed the significant factors that have been considered by vari-
ous model builders in the literature. Factors were organized by System size, data

base, System complexity, type of program, documentation, environment, and other

factors.

SEI's Capability Maturity Model

The CMM [H88] is designed to provide guidance to control the software production
process and to evolve towards software excellence. The model indendfies the cur-

rentprocess maturity level of an organization and the most critical issues to software

quality and process improvement.

Conte, Dunsmore and Shen factors on productivity

There are many factors that appear to affect the software development process and

the product [CDS86]. S orne of the factors that affect productivity are related to peo-

ple factors, process factors, product factors, and computer factors.

Ramsey and Basili homogeneous environment

The software which provided the data for Ramsey and Basili's study was developed

at the NASA Goddard Space Flight Center [RB89]. The authors claim the software
development environment was homogeneous, i.e., many similar projects are devel-

oped for the same application area. Additional considérations for homogeneous

environments arc: a standard process model, software development methodology is

similar across projects, and a great deal ofreuse of code from prior projects.

Kemayel, Mili, and Ouederni programmer productivity factors

In a survey study the authors suggested 33 controllable factors of programmer pro-

ductivity [KM091]. Thèse factors are related to personnel, the software process and

the user community.

Boehm, Brown, and Lipow software qualify factors

A set of important software characteristics related to quality were proposed
[BBL76]. Metrics to assess the degree to which the software has the defined charac-

teristic were developed and con-elated with the characteristics. Refinements were

performed to the set of characteristics into a set that supports software quality evalu-

ation. Relationships were established among characteristics and refined characteris-

tics. Finally, the metrics were also rcfined.

MacCall software quality criteria

Eleven quality factors were proposed, grouped according to three orientations or

viewpoints (Le., product opération, product révision and product transition) [M79].
The factors are conditions or characteristics which actively contribute to the quality

of the software. Factors represent a management-oriented view of software quality.

To introduce a dimension of quantification, this management orientation must be

translatée! into a software-related viewpoint. This is accomplished by defining a set

of criteria for each factor. The criteria are independent attributes of the software, or

the software production process, by which the quality can be judged, defined, and

measured. Finally, quality metrics can be established to provide a quantitative mea-

sure of the attnbutes represented by the criteria.

After analysing thèse productivity models suggested in the literature, it is possible to
identify the main areas that impact project productivity. Project personnel has definitely a
major impact, even though it is difficult to quantify because of subjective criteria; person-

nel includes users, managers, analyst and programmers involved in the software produc-

tion process. The process model and the development methodology define the software

production environment; large projects usually follow a strict process that générâtes pre-

specified deliverables, requiring greater overhead than smaller projects; availability of

reusable parts improves the productivity of the process. The structure of the software also

has an impact on productivity; software architecture détermines the général decomposi-

tion criteria. Structuring processing towards input, output or interactive applications is a
source of product différences. Finally, the type of technology available for software pro-

duction (e.g., CASE tools, project control tools) and system implementation (Le., target
technology), détermines the level of automation of the system and its production process.

3.0 Metrics Framework

A comprehensive software metrics framework's purpose is to organize the impor-

tant dimensions impacring software project data. Software is more than its internai charac-

teristics and the production process that créâtes it, software provides a service to

customers. Using the framework, metrics data can be classified consistently, using the

three perspectives (Le., project, System, environment), for comparison purposes. Homoge-
neous project data, derived from the framework, can be used for analysis or estimation

purposes. Each development or évolution project (e.g., new, correction, modification,

enhancement) should register metrics information following the framework. Spécifie char-
acteristics of each project are recorded, to account for différent circumstances during the

life cycle of a System; a System that followed a rigourous development methodology, may

face more relaxed maintenance activities, or vice versa. System internai characteristics

help to understand its complexity. Finally, organizational environment considérations pro-

vide the system's contribution from the user perspective. Figure l shows the three per-

spectives of the framework.

FIGURE l. Metrics Framework Dimensions

3.1 Eléments of the framework

The comprehensive software metrics framework considers not only the process to

produce the software and the characteristics of the software itself, but also introduces the

importance of the organizational environment where the software is used. It includes

important factors to characterize projects and intégrâtes several variables affecting soft-

ware metrics data into the following dimensions: project, System, and environment. Each
dimension introduces a séries of factors that have to be assessed according to différent lev-

els of categorization.

PROJECT

Project organizations use to carry out activities in coordinated ways. Project teams

differ in how they operate as well as in their underlying observable opération. Projects can

be coordinated by a traditional hierai'chy of authority, by reliance on individual initiative,

by collaborative discussion and negotiation, or by virtue of alignment with a common

vision or direction [C93].

The process that led to the development of the System, together with the design deci-

sions and their justification, constitutes the backbone to improved quality and productiv-

ity. The methodology adopted to build the system détermines the characteristics of the
tangibles to produce. The team of System analysts and programmers participating during

development or maintenance is a major factor for successful Systems. Tools to aid during

the production of software acknowledge the available automatic facilities. AU this knowl-

edge is relevant during the initial development of the System, and also later on during its

évolution.

The type ofproject identifies the main orientation of the activities (Le., development

or maintenance). A System may be subject to several changes after development (e.g., cor-
rection, modification, enhancement) during its lifetime; each of those tasks is performed

by différent projects, each with différent characteristics.

Process

• Process model: the type of process model (e.g., waterfall, prototyping, incremental) and

its level of description formality are factors that détermine project management suc-

cess. Planning and control activities are better performed when précise process models

are established. Considérations about how conformance of requircments would be han-

dled, should be defined when establishing the process model, as rework activities

impact productivity. Flexibility of the process model also détermines its applicability
under différent circumstances; constrained processes require a more sévère style of

control than those more informally oriented.

• Methods: well documented guidelines détermine the type of aids available to the devel-

oper and the expected deliverables. Step by step guidelines documenting precisely the

products to générale have to be assessed; the degrce of tailoring flexibility to adapt

guidelines to spécifie cases has to be evaluated. Artifacts' notation expressing product
models indicate their level of formality; working products and deliverables have to be

assessed for their formality.

• Innovative applications have to be differentiated from rutine applications, the former

requires much more effort through triai and error, and more rework activities because of

their level of uncertainty. System uniqueness and its degree of difficulty affect produc-

tivity of the process.

• Reuse of existing artifacts such as spécifications or code is another factor to consider

when characterizing the software development environment. Development of Systems

using libraries of components is significantly différent than building Systems anew.

To characterize the process model, an outside process assessment facility may be

required. SEI's assessment procédure indicates the level of maturity of the organization,

and provides more background to the possible quality of the software being produced.

Boehm's software development modes is another way to characterize the software process
envu-onment.

Agents

Team size is a factor that affect productivity because of group dynamics. The level

of formality of the project organization has to be determined. Well defined project organi-

zations with rigid command Unes and pre-established authority décision points, have to be

differentiated from informai organizations; autocratic organizations also differ from dem-

ocratic styles of project management. Expérience of personnel involved during software

development may impact attributes of the software (e. g., quality, complexity); it is well

recognized that the quality of resources has a major impact on project quality and produc-

tivity. Motivation is also an important characteristic to retain, even if difficult to measure

objectively.

The expérience of personnel involved during software production relate to:

• Application domain: knowledge of the problem demain by previous expérience or by
participating in other projects related to the same domain. Managers, analysts and

users' expérience in the application demain have a definite impact on productivity.

• Technology and tools: target technology expérience (e.g., real time, distributed applica-

tions); programming language expérience; operating System expérience. Expérience
using software tools facilitâtes production work. Designers and programmers are pri-

marily affected by technology considérations. Managers and users should possess a

basic knowledge of software Systems.

• Methods: familiarity with the software production method; degree of expertise with the
techniques; availability of standards and guidelines. Managers require a général under-

standing of the methods, whercas producers rcquire a solid understanding of the tech-

mques.

• Project control: communication and project management skills may impact productiv-

ity. Previous expérience working on teams and familiarity with the team may improve

productivity. Availability of software metrics to compare with normal trends help con-

trolling the project. Management requires to master project control skills.

Tool

The importance of using tools in software projects is well recognized by the soft-

ware community, though definite conclusions on their impact are lacking. It is hoped that

tools would contribute to increased productivity. It is important to document the type of

tools used in software projects as more tool assessment is expected in the near future.

• Automation: tools to produce the software impact the quality of deliverables and the

productivity of developers and managers. It is convenient to assess the level of automa-

tion in the project. CASE tools and project control tools impact project efficiency.

SYSTEM

Characteristics to be included in this dimension are related to the internai character-

istics of the System and the implementation technology. The static point of view, as well as

the dynamic aspects of performance of the system are considered. It also is possible to

characterize the System according to its architecture; Perry et al., [PW92] and Shaw [S 89]
provide possible scenaria to classify software architectures; associating the System with a

pardcular architecture provides a précise categorization of System's metrics data.

Product

During the software production cycle, différent products are generated and referred.

Characteristics of products, including work products, deliverables and the final software,

are assessed on their formality. Products are the result of process activides, thus a close

relationship between processes and products exists. Keep in mind that the software being

produced, together with its documentation constitutes the output of the process.

• Type of System: batch, real time, or distributed.

• Level of formality of products generated.

• Degrce of reuse within the delivered software or other type of documentation.

• The size and complexity of the System are factors that affect the productivity of agents

involved during development. Size may be measured using function-oriented software

metrics (e.g., function points) or implementadon-oriented software metrics (e.g.. Unes

of code, software science).

• Functional distribution provides an internai view of the System in terms that may be

close to the user (e.g., inputs, outputs, files, interfaces, inquires), or to the software

implementation (e.g., System architecture, module hierarchy).

• Documentation about the System at several layers of détail, from spécifications and

conceptual design to implementation. System manuals and documentation produced
and maintained have to be identified.

Performance

• Non-functional requirements: aspects such as reliability, robustness, efficiency, and

accuracy.

• Constraints imposed on the System have to be identified; exécution time, tumaround

time, and main storage requirements.

• Error tolérance conditions that détermine fault tolérant computing; condnuity of opera-
tion under non-nominal conditions.

• Accountability of software performance; possibility to measure performance; instru-

mentation of software to measure performance.

Technology

• Target software technology allows classification of Systems for purposes of compari-

sons. Language and operating System characteristics, as well as hardware characteris-

tics are identified. Single user or multi user microcomputers, minicomputers, and

mainframes. Third génération languages (e.g., Fortran, Cobol), object-oriented lan-

guages (e.g., C++, Eiffel, Smalltalk), and advanced languages (e.g., 4GL, ADA, Pro-
log, Lisp) and simple database managers (e.g., Dbase IV) to advanced Data Base

Management Systems (e.g., DB2). Operating Systems like MS/DOS and MS/Windows
toUnixorMVS.

ENVIRONMENT

The benefits provided by the System impact positively customers. Customers use a

System when it helps them to solve problems, identify opportunities, look good to others,

or simply feel good. A quality System to assure customer satisfaction should be part of any

software production process [Z93]. The characteristics of the interfaces with the environ-

ment provide the information about its functionality and its importance to the organiza-

don. Characteristics to be included in this dimension are related to the application domain,

compliance with requirements, usability considérations, and contribution to the organiza-

10

don. Application demain characteristics identify the information maintained in the sys-

tem; business applications should be differentiated from scientific applications.

Compliance involves the overall évaluation of the System from the users perspec-

tive. An important activity is to verify that users requirements are meet by the System.

Usability involves some degree of subjectivity because it is the user's évaluation of the

System. Some researchers in this area have suggested its importance and possible objec-
tive quantification ofits indicators [N92], [GBL91]. Contribudon of a System to the orga-
nization is a very important indicator to evaluate a System, there are however serious

difficulties as to how to quantify this factor because, besides économie benefits, there are

intangible benefits difficult to quantify [B93], [GW91], [C91].

Compliance

• Evaluation of System from the users perspective. User satisfaction and attitudes towards

the system.

• Verify that user requirements are meet by the System. This may involve security and

safety requirements, and disaster protection.

• Verify the impact on users and theu- jobs.

• Verify characteristics of the information maintained by the System. The adequacy,

appropriateness, timeliness and currency of information.

Usability

Characteristics of the usability of System have been traditionally subjective. The

user's appraisal of a System is based on a séries of évaluations, including précision and

easy of use.

• Effort required to learn, operate, prépare input, and interpret output of a System.

• Level ofredundancy requested by the System.

• Level of uniformity of interfaces and their level of complexity.

Contribution

The rôle of information technology in organizational activities and their impact on

the cost structures of firms and markets has to be evaluated. However, Systems have to be

assessed with regard to spécifie managerial contexts; business functions, market condi-

dons, industi'y characteristics, and organizational cultures have an impact on the assess-
ment.

• Characteristics of the organizational environment within which the System is intended

to function. The size and structure of the organization involved with the System (e.g.,

number of departments and personnel interacting with the System), and activities

required from agents.

• Type of activities being performed with the information supplied by the System, as well
as activities required to gather the data to be supplied to the System. Décision making

activities that help run the organization and their value to the organization or society.

11

• Increases in productivity or market share by introducing a new system or enhancing an

existing one.

Figure 2 présents an Entity-Relationship Diagram that décomposes the framework

further into factors. A System may be subjetjo several projects during its lifetime. A sys-

tem opérâtes _in some organizational environment. A projectfollows a process, it involves

some agents, and uses some tools. The System is composed_of products, it behaves with
some performance level, and is implemented in a particular technology. The environment

seeks compliance with System requirements, it évaluâtes the usability of the System from

the user perspective, and it reçoives a contribution or benefit operating the System.

The three perspectives of the framework arc orthogonal as defined. Thèse perspec-

tives represent the before (i.e., development or enhancement), during (i.e., the product

itself), and after (i.e., post-evaluation stage) view of Systems. However, depending on the
interprétation, it is possible to think that there are factors affecting more than one dimen-

sion. To avoid misinterpretations, it is important to précise the point of view for each fac-

tor. For example, technology considérations may be associated to more than one

perspective: project control tools and CASE tools are used during the production process;

the System is implemented using a particular hardware and software; users interface with

the System through workstations. Further on, the technology used during the production

process may be intimately related to the target technology that implements the System.

Nevertheless, our concern for technology is clearly defined under the System dimension; it

is the System's technology the one being characterized, and not the tools' technology or
the user's interface technology.

When implementing a metrics program for an organization, the data to gather

requires additional détail. Each factor within the dimensions may require the identification

of subsequent attributes to be measured using several possible metrics. Product metncs

and process metrics are typical examples of factors that may introduce several attnbutes to

account for quantitative parameters (e.g., size, complexity, productivity). Metrics within
each dimension may require nominal or ordinal measurement scales because of a lack of

accepted objective measurements in the software community.

12

FIGURE 2. Factors afTecting each dimension of the framework

subject_to

behaves
PERFORMANCE

PRODUCT

operates_in

implemented
TECHNOLOGY

l seeks

ENVIRONMENT

COMPLIANCE

USABILITY

receives CONTRIBUTION

13

3.2 Quantitative framework

We have identified in the last section the major dimensions and their associated fac-

tors. For purposes of classifying projects according to the framework, it is necessary to

define catégories for each factor. For some factors there have already been suggestions on
categorization (e.g., SEI's Capability Matunty Model and Boehm's Software Develop-

ment Modes may be used to categorize the process environment), other factors require the

définition of catégories. In many cases, nominal or ordinal scales are necessary because

there are no available metncs yet suggested in the literature. We suggest an initial set of

catégories for purposes of understanding how to use the framework to categorize Systems.

PROJECT

Projects follow spécifie organizational paradigms that define how working groups
set priorities and deal with human issues. Thèse include aspects of how to manage extrême

possitions such as continuity and change, tradition and innovation, individual and group,

and unity and diversity [C93].

-l: small software teams (e.g., less than 6 people) develop software in a highly familiar,

in-house environment. Most of the people have expérience in working with similar appli-

cations. Expérience with System technology is recognized and System support is easily

available. Motivation tends to be high because of individual recognition.

0: medium size software teams (e.g., between 7 and 15) develop software in a constrained

environment with semi-formal project organization. Team members have an intermediate

level of expérience with related applications. System expérience tends to be high. Motiva-

don is intermediate because of limited authority.

+1: large size software teams (e.g., over 15) develop software in a constrained environ-

ment with formai project organization. Expérience is centered around a few experts; team

members have a wide mixture of expérience with rclated applications, and System experi-

ence is also varied. Motivation tends to be low because of the volatility of personnel.

Process

-l: the project is characterized as one without a stable environment for producing soft-

ware. Méthodologies are adapted for each project and there is no organizational leaming

from expériences. Performance can only be predicted by individual, rather than project,

capability.

0: the project follows a standard process for producing software. The software engineering

and software management processes group facilitâtes software process définition and
improvement efforts. An organization-wide training program is implemented to ensure

that the staff and managers have the knowledge and skills required to carry out their tasks.

Projects use the organization-wide standard software process to create their own defined

14

software process that encompasses the unique characteristics of the project. Each project

uses a peer review process to enhance product quality.

+1: the project sets quantitative quality goals for software products. Productivity and qual-

ity are measured for important software process activities. A process database is used to

collect and analyze the data from a carefully defined process. Software processes have
been instrumented with weU-defined and consistent measures that establish the quantita-

tive foundation for evaluating project processes and products.

The support and partial automation of software production activities is performed

using computer-aided software engineering tools. There is growing interest in tools that

support the software production process. A référence framework classifies thèse tools into

tools that support only spécifie tasks in the software process, workbenches that support

only one or a few activities, and environments that support (a large part of) the software

process [F94].

-l: rudimentary programming tools are available for software production. Basic project-

management tools are available (Le., PERT tools). Text editors, spreadsheets and data-

bases are available for editing purposes

0: programming, vérification and validation, configuration management, and metncs and

measurement tools are available for software production. Advanced project-management

tools are available (i.e., estimation, planning, agendas, bulleting boards, conférence

desks). Text and graphical editors, spreadsheets and databases are available for editing

purposes.

+1: workbench (CASE) tools and software development envu-onments arc available for

software production. User-interface-development workbenches are available. Text and

graphical editors, spreadsheets and databases are available for editing purposes.

SYSTEM

There are several catégories of Systems widely known by the software community.

S orne examples are real-time computing, fault-tolerant computing, high safety and secu-

rity computing, high-performance networks, and multimédia technologies.

Technoloev

-l: single user and multi user microcomputers and minicomputers, using several types of

languages, from third génération languages (e.g., Fortran, Cobol) and languages like C or

Pascal. Simple database management Systems (e.g., Dbase IV). Operating Systems like

MS/DOS, MS/Windows, Unix.

0: multi user mainframe technology using third génération languages (e.g., Fortran,

Cobol) and languages like C or Pascal, to object oriented languages like C++. Data Base
Management Systems like Oracle or DB2. Operating Systems like Unix, MVS, OS/2.

15

+1: open Systems computer technology allowing distnbuted computing, using several lan-

guages, from third génération and object-oriented, to advanced languages (i.e., 4GL,
ADA, Prolog, Lisp) and DBMS or OODB. Time-sharing networks are available with
advanced operating Systems.

Product

Measurement of product attnbutes is the area that has received more attention fi-om

the software metrics community. Traditional metncs like lines of code, cyclomatic number

and Halstead Software Science have been followed by functional metncs like function

points. There is a large amount of literature documenting product metrics. To categorize

the product at this high level, we suggest size and complexity metrics. However, it is

important to evaluate the possibility of using the architectural style as an alternative way

of classifying the product.

-l: small size ofno more than 50 thousand Unes of code (or équivalent function points).

Low complexity, including straight forward nesting.

0: medium size of up to 300 thousand Unes of code. Medium complexity, including simple

nesting and some intermodule control.

+1: large size of millions Unes of code. High complexity, including highly nested logic
and/or considérable intermodule control.

Performance

Performance analysis is the measuring and modeling of software's time, space, effi-

ciency, and accuracy. It eventually drives to the tuning of the software to improve thèse

characteristics. Reliability is the probability of failure-free opération of a System for a
specified period of time. Predicting, measuring and managing the reliability of software
Systems is a major objective of software engineering.

-l: low requirements on reliability, accuracy, and efficiency. The effect of a software fail-

ure is an easy recoverable loss to users.

0: medium requirements on reliability, accuracy, and efficiency. The effect of a software

failure is a situation from which users can recover without extrême penalty.

+1: high requircments on reliability, accuracy and efficiency. The effect of a software fail-

ure can be a major financial loss or a massive human inconvenience.

ENVIRONMENT

There are many différent organizational environments associated with aplication

domains. Organizations may be divided by function, by type of product, or by type of
project. Applications can be classified as oriented to transacùon processing, maintaining

the corporate database, opération Systems for process control and scientific computing,

16

and décision support Systems. Additional example envu-onments may help any future tax-

onomy endeavors:

• transportation Systems, vehicular traffic control, and air traffic control;

• manufacturing facilities that need to quickly reconfigure plant opérations to meet

changing requirements and permit on-line maintenance and opération.

• sensor Systems for monitoring weather patterns, seismic data, the status of power-distri-

bution grids, and pollutant distribudon

• satellites, fiber-opric networks, and high-speed switches that transmit large volumes of

live audio, vidéo, and text data.

• patient monitoring, heart-lung machines, CAT (Computer Axial Tomography) scan-

ners, MRI (Magnetic Résonance Imaging), and other advanced médical equipment.

• surveillance, command and control, and other défense Systems.

Compliance

-l: basic requirements are not satisfactory fulfilled by the System. There is no impact on

the users and theirjobs. The user's appraisal of the System is poor.

0: basic requirements are fulfilled by the System. There is some impact on the users and

their jobs. The user's évaluation of the System indicates that some areas could be

improved.

+1: all requirements are fulfilled by the System. The service provided by the System is

appropriate, the information is adéquate, current, and on time. There is a major positive

impact on the users and theirjobs. The user's compliance has been evaluated satisfactorily

by the users.

Usabilitv

-l: the System is not providing interfaces in user terms. Redundant information is requu'ed

form the users. The System requires a long time to learn.

0: the System provides interfaces in user terms. The System requires a fair amount of time

to learn. The user is concemed with the System because error messages are not clear and

there are no shortcuts for experienced users.

+1: the System is user-oriented, it is efficient to use, prevents errors from the user and sig-

nal clearly the seriousness of the errors. Infrequent users have facilities to retum to use the

System without having to leam it over, and fréquent users find shortcuts that improve their

efficiency of use. The System requires a short time to learn

Contribution

-l: there is no major contribution to the organization, the System has automated the same

tasks performed manually.

17

0: the process of decision-relevant information is donc in a cost-effective way, improving

the quality and speed of management décision making processes. Improvements on moni-

toring and performance measurements have reduced cost by inducing decentralization of

décisions.

+1: external coordination cost have been reduced, making the organization more cost-
effective. At the same time internai coordination cost have been reduced. The System pro-

vides tangible benefits to the organization.

FIGURE 3. Framework catégories

PROJECT g
So
<

VI
M
u
u

CL,
ô

E2
+1

0

-l

-l

+1
Compliance

Usability

Contribution

ENVIRONMENT

SYSTEM

Product

Performance

Technology

From the catégories just suggested, it is possible to evaluate if all combinations are

possible. Uncommon situations would be to have a small team developing a large System,
or the inverse, a large team developing a small System. Another uncommon case would be

to have rudimentary tools to develop Systems in a sophisticated process environment, or

have rudimentary tools to build large Systems. It would also be uncommon to implement a

System with high performance requirements in a low profile technology.

18

4.0 Current approaches versus the framework

Let us find out the relationship between our framework and current approaches pre-

sented in Section 2. Table l was built to relate the dimensions of the framework with each

of the current approaches. The numbers in the table are related to each factor suggested in

those approaches (see the appendix). Current productivity approaches take in consider-

ation primarily project considérations (Le., process andpeople), also some System charac-
teristics (i.e., product, performance) and finally some aspects of usability. Current

software quality factors approaches do not account for the project dimension (i.e., the pro-

cess), rather concentratmg m the System dimension (Le., the product), and some usability
factors. durent approaches do not suggest any factor related to the contribution of the sys-

tem to the organization.

Let us présent a summary of results of the analysis of Table l:

PROJECT

Agent: there is a complète agreement between current approaches and our framework. The

expérience of participants is the primary élément considered within this factor. Addition-

nally, team characteristics and their organization are also included under agent.

Process: development méthodologies, process model, current programming practices, use

of standards, and so forth correspond directly with the framework. Current approaches

stress issues about who participated during the process (e.g., users, designers, program-
mers) or who originated System changes; thèse were classified as process concems and not

as agent factors, even though they affect both. Aspects related to schedules, budget and

project constraints were also classified under this item. Productivity concems that relate

several factors (e.g., people, activities) were also classified under process. Hardware under

concurrent development was classified as a process concem rather than a product concem.

Tool: usage of tools during software production corresponded directly with our frame-

work. Concems about turnaround dme during development, as well as the power of the

tools, were accounted for in this factor. Availability of several locations for software pro-

duction were also accounted in the tool factor.

SYSTEM

Technology: aspects about the target language and the software and hardware to run the

System corresponded directly to this factor; one approach identified some spécifie devices

like displays and random access devices. Portability aspects and device independence

were attached to performance rather than technology.

Product: aspects about size and complexity of the product correspond directly with the

framework. Type of software, such as batch, real time and so on, were related to the prod-

uct instead of the domain. The final product (i.e., the System), documentation produced

during the process, and opération and users manuals were classified under product.

Aspects such as constraints on program design, that affect the product, were rather classi-

fied under process. The extent that a program can be reused in another application was

19

Table l: Framework versus current approaches

PROJECT

SYSTEM

ENVIRON-
MENT

Agent

Process

Tool

Technology

Product

'erformance

Compliance

Usability

Contribution

WF
77

4,5,

7,8,

2.^
6:f0,

11

15,16,
17,18

L2,13

^, 20,
^1,22,
'5,26,

)-1,28,Î9'""'

13, 24

14

l

BZ
78

1,2

5,7.
y, io

.6,17

J5
.8719,
10,21

9

3,4,

12,1-

6>,11\ï'

B
81

8,9,

0,11,

12

13,
15

7,.Ï'4

6

2,3

1'4
5'

M
81

.8,

15,36,
18

-2,13,
-4,19,

!7,40

26,
39

-27,2i
29,'3Q
31; 34

1.2. 3,

[, 5, 6,» */ ? uî

J, 8, 9,

^ 15,[6; n\
)0:2l:
12, 23,
'4,25

$2,33

11

SEI

CM]S

CDS
86

l

3,4,5
6,8,

17,2:

7,9:10
23

2

11,13,
15,16,
i8,20

12,1-
21,2'

19

RB
89

2,3,
4

l

KMC
91

.--20,

\9-32

11,22,
13,24,
'6,27

25,
28

BBL
76

1,3,

5,6,?
7,10

[2,13,
.9,20,
11,22

OTT
Ll,14
15,16

2

_8,.

17/18,
>3

Me
79

11

1,6,
^,8,

10,
Il,12,
L4,17,

18,19,
'0,22,
15,26,
3,31,

n, 33

V7S7
),15,
L6,21,
13.24

4,13

5,
H, 28,
19

~ZXJ

classified under product; degree of reuse was not mentioned by any of the approaches.

Reusability is a notion that affects also the process dimension.

Performance: constraints imposed on the software related to timing or storage, reliability,

and efficiency, are classified under performance. Robustness, error tolérance, accuracy,

and instrumentation were also classified under performance. Performance considérations

have a close relationship with the évaluation of the System in the compliance factor. Porta-

bility was associated to performance instead of technology. There is also the issue of sys-

tem security and safety that might be associated to usability or performance, but we have

associated thèse to compliance.

ENVIRONMENT

The type of problem or application, such as real time, mathematical, and business applica-

tions, suggested by current approaches, were associated to the product. However, it is con-
venient to recognize its relationship to the environment.

Compliance: software quality models suggest completeness cnteria that we associated to

compliance. Secunty and privacy, and safety concerns were marginally mentioned by cur-

rent approaches, and also classified under compliance. There is no explicit mention ofcus-

tomer System évaluation in current approaches.

Usability: interface complexity or quality, and System operability were classified under

usability. Accessibility, communicativeness and human-engineered concems were also

associated to usability. Concems on degree of familiarity with the System for purposes of

using shortcuts were also identified under usability.

Contribution: none of the approaches identified factors on the contribution of the System

to the overall productivity of the organizadon. Nevertheless, performance factors may

impact the contribution of the System to the organization.

5.0 Using the framework

Let us apply the framework to a hypothetical System adapted from the literature

according to our interprétation [Y89]. The example describes the information processing

activities for a publishing company that prints software engineering books. The company

has no expérience building information Systems, thus requiring to engage some personnel

and a consulting firm for development purposes.

The company is part of a larger régional organization and interacts with other

departmets like Accounting and Technical Services. Intemally, the editorial is composed

of four departments. Administration Services handles the day to day interactions with the

customers; orders, invoice, payments, returns and crédits, arranging shipments of books,
and interacted with the Accounting Department. Sales & Marketing produces the catalogs

for the various books, running ads in computer magazines, sending brochures, calling to

large corporations for sales pmposes. Acquisitions finds new authors and new books, dis-

cussing with authors up to the point of getting a manuscript. Editing takes a manuscript

21

and tums it into a published book, copyediting of the book, mteracting with printers to
obtain proposais; artwork, book cover and inside contents were also part of their responsi-

bilities.

Project

Agent (-1) The team of developers is small, with some expérience in this type of Systems,

and having access to the expérience of the consulting firm. l senior analyst, l user repre-

sentative, l senior programmer, and l junior programmer. The project organization is

informai.

Process (-1) The System is an ad-hoc type of software development. The System is built

anew, withoutreuse ofexisting parts. The methodology is Structured Analysis and Design

and the process model is waterfall.

Tool (-1) There are some project control tools available, text editors and the C compiler.

System

Technology (-1) The language is C in the Unix operating System, runing in a PDP-11/45.

Product (-1) The size of the System is small, between 10 t0 20 thousand lines of code.

There are 50 books in stock; 4 to 6 new titles per year; two dozen authors; interaction with

200 potential authors; 50 orders per day; average order $100; 50,000 books shipped per
year. The documentation being generated is composed of Data Flow Diagrams, Data Dic-

tionary, Process Spécifications, Entity Relationship Diagrams, Code, and Opérations Man-

ual. The System is file-oriented with textual screen-interactions.

Performance (-1) There are no major concerns on reliability of the System, and there is no

major impact in case of software failures.

Environment

It is a business application in the book publishing industry. The following departments are
using the System: Administrative Services, Sales & Marketing, Acquisitions, and Edito-

rial. Twenty persons interact with the System, five persons per department. The organiza-

tion is very small with a yearly income of less than $10 million. The type of data kept by
the System is books, customers, orders, payments, authors, retums, inventory, and so on.

Compliance (0) Compliance with requirements is fair. The users are not very familiar with

computerized applications.

Usability (-1) The are no major contributions on usability. The external entities interactmg

with the System: are Customers, Management, Authors, Warehouses, Sales, Editors,
Crédit Agencies, Printers, Accounting, Marketing

Contribution (-1) The System is replacing the current manual System. There are no major

économie benefits expected from the System.

22

NGURE 4. Example classification

+1
Compliance

Usability

Contribution

Product

Performance

Technology

According to this example, each of the perspectives, except compliance, remain at

the lowest category level. The development project is rudimentary, the System is symple,

and the environment's évaluation is fair. In terms of Boehm's software development

modes, this project would classify as organic.

6.0 Conclusions and further research

We have proposed a comprehensive software metrics framework that intégrâtes in a

top down fashion important characteristics of Systems, their development environment,

and the organizational appraisal of the System. The framework includes aspects related to

project characteristics during the évolution of software, the software internai structure,

and the organizational environment where the software is used. Several factors that impact

project productivity, product quality, and users satisfaction can be organized around the

three dimensions of the framework (i.e., project, System, environment). The framework

perspectives represent the before (i.e., development or enhancement), during (i.e., the
product itself), and after (i.e., post-evaluation stage) view of Systems.

Project formality involves several parameters such as project organization, process

model, software représentation techniques, and degree of automation during the process.

The expérience of developers, users, and managers involved during software production is

another factor taken into considération. Tools used during software production have to be

23

identified to characterize the level of automation during software production. Innovation,

independently of being domain-oriented or technical-oriented has an impact on the pro-

ductivity of the project.

The characteristics of the System depicts its internai structure, its functional distnbu-

tion, and product size and complexity. The target technology that implements the software

identifies precisely the available building blocks for the System, including the hardware
and the software environment within which the System is operating. Performance consid-

erations contribute to characterize dynamic features important for évaluation purposes.

The organizational environment surrounding the opération of the System provides

additional information to classify the System. Compliance with requirements, the usability

of the system, and the contribution of the System to the organization are the factors to
account for in this dimension. Characteristics of the organization and the scope of the sys-

tem within the organization are indicators of the importance of the System. Embedded sys-

tems functioning within précise interfaces e an be differentiated from information Systems

that interact with users from différent locations. The characteristics of the interfaces with

agents, departments, and other Systems, indicates the degree of formality and reliability of

the System.

The comprehensive software metrics framework acknowledges current contnbu-

tions from productivity and quality models, and introduces an additional perspective

related to the organizational appraisal of the operating software. It has been identified in

this research that current approaches on productivity and quality have neglected the

importance of the contributions of Systems to the organization. Economie benefits are a

primary concern for any organization, as well as intangible contributions of the System,
like improving service to customers. Customer satisfaction issues and the social impact of

computing (sec for example CACM spécial issue, January 1994) have received research

contributions lately, and we expect that the software enginering community, in particular
the software metrics community, will get eventualy involved in proposing metrics in thèse

areas. Metrics that consider the overall benefits of a System to the organizadon are cur-

rently needed. CosVbenefit analysis of operational Systems, as well as software quality

évaluations involving user satisfaction should be included in organizational metrics pro-

grams.

The framework, as depicted, présentée! the first two levels of decompositional fac-

tors. Metrics can be suggested for each factor and more détail can be added to the frame-

work, by introducing additional levels of décomposition. Each of thèse factors can be

decomposed into several subfactors or attributes, and corresponding metrics be suggested.

It would be, for the organization, a matter of evaluating the cost involved in gathering that
additional détail. Using the framework it is possible to understand the meaning of each

factor or subfactor, and to understand precisely the relationships of composite metncs,

those computed from measures corresponding to more than one factor.

We believe that by classifying projects according to thèse dimensions, it is possible
to utilize historical records consistently. There are many variables that affect software pro-

duction, the framework provides a véhicule to classify project similarity. Boehm sug-

24

gested software development modes [B81] to characterize software projects. SEI's

Capability Maturity Model also proposed a classification in terms of process model con-

siderations. Each organization has to détermine the set of metrics to be gathered for each

project using the framework, following guidelines like the GQM and improvement para-

digms [BR88], according to their own needs.

Defining a comprehensive software metrics framework to be shared among organi-

zations is a step towards improvement oriented software engineering. According to imple-

mented metrics programs, the initial stage of implementation in an organization requires

the establishment of a subset of metrics to demonstrate its feasibility. Our research is a top

down categorization of important factors to be considered for an organization metncs pro-

gram. Further research is required to détermine a basic set of metncs that could be used to

exchange data among organizations. Useful analysis and comparisons can be performed

when it is possible to extrapolate metrics gathered following the framework.

There are several applications to the framework. The framework allows classifying

software projects data uniformly for comparison purposes. The framework can be used as

a baseline to establish metric programs in organizations. Assessment of selected metrics,

for analysis or estimation purposes, can be validated against the framework. Current
research involves validating and proposing a set of metrics for an organizaûon. Validation

of the framework requires classifying several real Systems to refine its catégories.

More research is required to propose metrics for each of the factors and attnbutes

identified in the framework. Metrics at high levels are mostly subjective and are repre-

sented using basic measurement scales like nominal or ordinal. The objective is to propose

metrics for low level attributes at the lowest measurement scale (Le., absolute), and obtain

composite metrics at higher levels of the framework hierarchy with higher measurement

scales (i.e., interval or ratio).

Further research to classify automatically Systems from historical metrics data is

deemed important. As the amount of information being gathered for a System increases,

mechanisms have to be devised to détermine commonality among metric data. The goal

would be to attach automatically a System to the catégories of the framework, avoiding

subjective classifications.

Références

[B81] Boehm, B. 'Software Engineering Economies', Prentice-Hall, Inc., 1981.

[B93] Brynjolfsson, E. The Productivity Paradox of Information Technology', Communi-

cations ofACM, Vol. 36, No. 12, December 1993, pp. 66-77.

[BBL76] Boehm, B.W.; Brown, J.R.; Lipow, M. 'Quantitative Evaluation of Software

Quality', International Conférence on Software Engineering, 1976, pp.592-605.

25

[BR88] Basili, V.R.; Rombach, H.D. The TAME Project: Towards Improvement-Ori-

ented Software Environments', IEEE Transactions on Software Engineering, Vol. 14, No.

6, June 1988, pp. 758-773.

[BZ78] Basili, V.R.; Zelkowitz, M.V. 'Analyzing Medium-scale Software Development',

3rd. International Conférence on Software Engineering, May 10-12, 1978, Atlanta, Geor-

gia, USA.

[C91] Clemons, E.K. 'Evaluation of Stratégie Investments in Information Technology',

Communications ofthe ACM, Vol. 34, No. l, January 1991, pp.22-36.

[C93] Constantine, L.L. 'Work Organization: Paradigms for Project Management and

Organization', Communications ofthe ACM, Vol. 36, No. 10, October 1993, pp.34-43.

[CDS86] Conte, S.D.; Dunsmore, H.E.; Shen, V.Y. 'Software Engineering Metrics and

Models', The Benjamin / Cummins Publishing Çompany, Inc. 1986.

[F94] Fuggetta, A. 'A Classification of CASE Technology', IEEE Computer, Vol. 26, No.

12, Dêcember 1993, pp. 25-38.

[GBL91] Gould, J.D.; Boies, S.J.; Lewis, C. 'Making Usable, Useful, Productivity.

Enhancing Computer Applicatons', Communications ofthe ACM, Vol. 34, No. l, January

1991,pp.74-85.

[GC87] Grady, R.B.; Caswell, D.L. 'Software Metrics: establishing a company-wide pro-
gram', Prentice-Hall, 1987.

[GW91] Gurbaxani, V.; Whang, S. The impact of Information Systems on Organizations

and Markets', Communications of the ACM, Vol. 34, No. l, January 1991, pp.59-73.

[H88] Humphrey, W.S. 'Characterizing the Software Process: A Maturity Framework',

IEEE Software, March 1988, pp. 73-79.

[KM091] Kemayel, L.; Mili, A.; Ouederni, I. 'Controllable Factors for Programmer Pro-

ductivity: A Statistical Study', Journal of Systems and Software, 1991; 16, pp.151-163

[LZ91] Loucopoulos, P.; Zicari, R. 'Conceptual Modeling, Databases and CASE: An Inte-

grated View of Information Systems Development', McGraw Hill, 1990.

[M79] McCall, J.A. 'An Introduction to Software Quality Metrics', in 'Software Quality

Management', Cooper, J.D. and Fisher, M.J., editors. Petrocelly Books, Inc. 1979, pp. 127-
142.

[M81] Mohanty S.N. 'Software Cost Estimation: Présent and Future', Software-Practice

and Expérience, Vol. 11, 1981, pp. 103-121.

[N92] Nielsen, J. 'The Usability Engineering Life Cycle', ŒEE Computer, March 1992,
pp. 12-22.

26

[P93] Pfieeger, S.L. 'Lessons Learned in Building a Corpçrate Metncs Program', IEEE

Software, May 1993, pp. 67-74.

[PCC93] Paulk, M.C; Curtis, B.; Chrissis, M.B.; Weber, C.W. 'Capability Maturity
Model, Version 1.1', IEEE Software, July 1993, pp. 18-27.

[PW92] Perry, D.E.; Wolf, A.L. 'Foundations for the Study of Software Architecture',

ACM SIGSOFT, Software Engineering Notes, Vol. 17, No. 4, Oct. 1992, pp.40-52.

[RB89] Ramsey C.L.; Basili V.R. 'An Evaluation of Expert Systems for Software Engi-

neering Management', IEEE Transactions on Software Engineering, Vol. SE-15, No. 6,

June 1989, pp. 747-759.

[S89] Shaw, M. 'Larger Scale Systems Require Higher-Level Abstractions', ACM SIG-

SOFT, Software Engineering Notes, Vol. 14, No. 3, May 1989, pp. 143-146.

[S93] Subramanian, G.H. 'An Empincal Examination of Software Development Modes',

Journal of Systems and Software, 1993; 23:3-7.

[WF77] Walston, C.E.; Felk, C.P. 'A method of programming measurement and estima-

don', IBM Systems Journal, No. l,1977,pp.54-73.

[Y89] Yourdon, E. 'Modem StructuredAnalysis', Prentice-Hall, 1989.

[Z93] Zultner, R.E. 'TQM for Technical Teams', Communications of the ACM, Vol. 36,

No. 10, October 1993, pp. 78-91.

27

Appendix

PRODUCTIVITE FACTORS

Walston and Félix productivity factors

The objective of this research was to search for a method of estimadng program-

ming productivity. Twenty-nine factors that correlate with programming producdvity were

identified:

• l. Customer interface complexity

• 2. User participation in the définition of requirements

• 3. Customer originated program design changes

• 4. Customer expérience with the application arca of the project

• 5. Overall personnel expérience and qualifications

• 6. Percentage of programmers doing development who participated in design of func-

tional spécifications

• 7. Previous expérience with operational computer

• 8. Previous expérience with programming languages

• 9. Previous expérience with application of similar or greater size and complexity

• 10. Ratio of average staff size to duration (people / month)

• 11. Hardware under concurrent development

• 12. Development computer access, open under spécial rcquest

• 13. Development computer access, closed

• 14. Classified security environment for computer and 25% of programs and data

• 15. Structured programming

• 16. Design and code inspections

• 17. Top down development

• 18. Chief programmer team usage

• 19. Overall complexity of code developed

• 20. Complexity of application processing

• 21. Complexity of program flow

• 22. Overall constraints on program design

• 23. Program design constraint on main storage

• 24. Program design constraints on timing

• 25. Code for real time or interactive opération, or executing under sévère timing con-

straint

28

• 26. Percentage of code for delivery

• 27. Code classified as non-mathematical application and I/O formatting programs

• 28. Number of classes of items in the data base per 1000 lines of code

• 29. Number of pages of delivered documentation per 1000 Unes of delivered code

Basili and Zelkowifz factors on software development

Data from several projects was collected at the Software Engineering Laboratory

(NASA Goddard Space Flight Center and the Universoty of Mariland) to evaluate soft-
ware engineering méthodologies. For each project, a set of factors that affect software

development were gathered.

People factors

• l. size and expertise of development team,

• 2. team organization

Problem factors

• 3. type ofproblem to solve,

• 4. magnitude of problem,

• 5. format of spécifications,

• 6. constraints placed upon solution

Process factors

• 7. spécification,

• 8. design languages

• 9. programming languages,

• 10. techniques such as code reading, walkthroughs, top-down design and structured

programming

Product factors

c 11. reliability,

• 12. size of System,

• 13. efficiency,

• 14. structure of control

Resource factors

• 15. target and development computer System,

• 16. development time,

• 17.budget

29

Tools

• 18. libraries,

• 19. compilers,

• 20. testing tools,

• 21. maintenance tools

Boehm's Software Development Modes

Boehm disdnguises three modes of software development: organic, semidetached

and embedded.

Organic Mode

Small software teams develop Systems in a highly familiar, in-house environment.

Personnel in the project have extensive expérience working with related Systems within

the organization, and have a thorough understanding of how the System under develop-

ment will contribute to the organization's objectives. There is no communication over-

head. The project is relatively relaxed about the way the software meets its requirements

and interface spécifications, allowing for negotiation when discrepancies anive. The

development environment is stable. Minimal need for innovative architectures or algo-

rithms. There is low premium on early completion of the project. The projects are rela-

tively small (50 KDSI). Larger organic products may be developed by using existing
software.

Semidetached Mode

Team members have an intermediate level of expérience with relàted Systems.

Teams are composed of a wide mixture of experienced and inexperienced people. Team

expérience is about some aspects of the System under development, but not others. A typi-

cal project might be a transaction processing System with some very rigorous interfaces.

The size of the software is greater than the organic-mode (300 KDSI).

Embedded Mode

The project needs to operate within tight constraints. The Systems must operate

within a strongly coupled complex of hardware, software, régulations, and operational

procédures. Negotiation is not very easy, requiring to expend more effort in accomodating

changes and fixes. This type of projects charts its way through unknown territory, requir-

ing smaller teams of analysts during the early stages to avoid communication overhead.

During detailed design and implementation, large teams are required to build the System

faster.

Boehm distinguished the following features for Software Development Modes

• Organizational understanding of product objectives

30

• Expérience in working with related software Systems

• Conformance with pre-established requirements

• Conformance with extemal interface spécifications

• Concurrent development of associated new hardware and operational procédures

• Innovative data processing architectures, algorithms

• Premium on early completion

• Product size range

Boehm proposed the following cost drivers for estimation purposes

Product Attributes

• l. Required software reliability: probability the software perfbrms its intended func-

dons satisfactorily over its next run or its next quantum of execudon time

• 2. Data base size: the total amount of data, its structure, and complexity of data han-

dling activities

• 3. Software product complexity: level of complexity by type of module; control, com-

putation, device-dependent, data management

Computer attributes

• 4. Exécution time constraint imposed upon a software subsystem

• 5. Main storage constraint imposed on a software System

• 6. Virtual machine volatility (hardware and software that the subsystem calls upon to

accomplish its tasks)

• 7. Computer turnaround time: response time experienced by the project team develop-

ing the subsystem

Personnel Attributes

• 8. Analyst capability: rating of five levels of analyst capability

• 9. Application expérience: time of expérience of the team with this type of application

• 10. Programmer capability: factors related to programmer ability, efficiency and thor-

oughness, and ability to cooperate and communicate

• 11. Virtual machine expérience: time of project team expérience with the virtual
machine

• 12. Language expérience: time of project team expérience with the programming lan-

guage

31

Project Attri bûtes

• 13. Use of modem programming practices: spécifie practices included are top down

requirements analysis and design, structured design, top down incremental develop-

ment, design and code walkthroughs and inspections, structurée! code, program librar-

lan

• 14. Use of software tools to develop the software

• 15. Development schedule constraint: from strechout to accelerated schedule con-

straints

Factors not included in Boehm's COCOMO

• Type of application

• Language level

• Other size measures: complexity, entities, and spécifications

• Requirements volatility

• Personnel continuity

• Management quality

• Customer interface quality

• Amount of documentation

• Hardware configuration

• Security and privacy restrictions

Mohanfy's factors in software cost estimation

Significant factors that have been considered by vanous model builders to estimate

software cost are organized by System size, data base, System complexity, type of pro-

gram, documentation, environment, and other factors.

System size

• l. Number of estimated instructions

• 2. Number of delivered machine language instructions

• 3. Number of delivered source language instructions

• 4. Percentage of new instructions

• 5. Percentage of clerical instructions

• 6. Number of décision instructions

• 7. Number of non-decision instructions

• 8. Percentage of information storage and retrieval instructions

32

Data base

• 9. Number of words in data base

System complexity

• 10. System complexity

• 11. Complexity of interfaces

• 12. System uniqueness (familiarity with problem, hardware, software)

• 13. Job type and difficulty (number of System interactions)

• 14. Degree of difficulty (old-easy, medium, hard; new-easy, medium, hard)

• 15. Hardware-software interfaces

• 16. Program structure considération

• 17. Number of files, reports, and application programs

• 18. Total life cycle manpower, total development manpower, total test and validation

manpower

• 19. Total life cycle time and total development time

Type of program

• 20. Type of application (business/non-businessO

• 21. Program catégories (control, i/o, pre/post processor, algorithm, data management,
time-critical)

• 22. Real-time/non-real-time

Documentation

• 23. Documentation in pages

• 24. Number of document types for customer

• 25. Number of document types for internai use

Environment

« 26. System development environment

• 27. New or old computer

• 28. Spécial displays (used/not used)

• 29. Number of display consoles

• 30. Random access device (used/not used)

• 31. Language used (HOL/Assembly)

• 32. Core occupancy constraints

• 33. Computer system speed and memory capacity

33

• 34. Time sharing or batch processing

• 35. Programmer familiarity with language/compiler, etc.

• 36. Programmer expérience in programming (years)

• 37. Programmer participation in design (percentage of total effort)

• 38. Personnel continuity

• 39. Number of locations for program development

• 40. Productivity (lines of code/unit dme)

Other factors

• Number of miles travelled

• Prequency of opération after delivery of software

• Degree and time phasing of simulation

• Intent of prototype code

• Fault tolérant computing

• Safety

• Single CPU/multi-CPU application environment

« Growth requtrements-maintainability

SEI's Capability Maturity Model

The CMM is designed to provide guidance to control the software production pro-

cess and to evolve towards software excellence. The model indentifies the current process

maturity level of an organization and the most critical issues to software quality and pro-

ces s improvement.

The CMM contains five levels of software process maturity: Initial, Repeatable,

Defined, Managed, and Optimizing.

Initial: the organizadon is characterized as one without a stable environment for develop-

ing and maintaining software. Few stable software processes are in place, and perfor-

mance can only be predicted by individual, rather than organizational, capability.

Repeatable: the organizadon has installed basic software management controls; that is,

stable processes are in place for planning and tracking the software project. Project soft-

ware managers track software costs, schedules, and functionality; problems in meeting

commintments are identified. Software configuration management procédures are used to

baseline and control software requirements. Project standards exist, and the software qual-

ity assurance group ensures that they are followed. In essence, there is a stable, managed,
working environment.

Defined: the organization has a standard process for developing and maintaining software

across the organization. The software engineering and software management processes

34

group facilitâtes software process définition and improvement efforts. An organization-

wide training program is implemented to ensure that the staff and managers have the

knowledge and skills required to carry out their tasks. Projects use the organization-wide

standard software process to create their own defined software process that encompasses

the unique characteristics of the project. Each project uses a peer review process to

enhance product quality.

Managed: the organization sets quantitative quality goals for software products. Produc-

tivity and quality are measured for important software process activities across all projects

in the organization. A process database is used to collect and analyse the data from a care-
fully defined process. Software processes have been instrumented with well-defined and

consistent measures that establish the quantitative foundation for evaluating project pro-

cesses and products.

Optimizing: the organization focuses on continuous process improvement. The organiza-

don has the means to identify weak process éléments and strengthen them, with the goal of

preventing the occurrence of defects. Statistical évidence is available on process effective-

ness and is used in performing cost-benefit analyses on new technologies. Innovations that

exploit the best software engineering practices are identified.

Conte, Dunsmore and Shen factors on productivity

Therc are a large amount of factors that appear to affect the software development

process and the product. Some of the factors suggested by the authors are:

People factors

• l. individual capability, years of expérience, language expérience, expérience with sim-

ilar problems, previous expérience with the System being used, the size of the team,
organization of the team, expérience of the team working together, morale level of indi-

viduals, the quality of management

Process factors

• 2. the programming language,

• 3. use of a program design or spécification language,

• 4. top down design, HIPO diagrams, use of structured programming, use of chief pro-

grammer teams, code walkthroughs, code inspections,

• 5. milestones,

• 6. use of a program librarian,

• 7. testing tools, automatic flowcharters, optimizing compilers, utility tools,

• 8. the development schedule,

• 9. data base System availability,

• 10. multisite development

35

Product factors

• 11. size of the product, size of the data base,

• 12. real-time requircments, reliability, portability,

• 13. control structure, data structure, number of modules, module coupling,

• 14. memory requirements,

• 15. complexity,

• 16. the amount of reused code,

• 17. state ofproblem définition,

• 18. the amount of documentation ,

• 19. security restrictions,

• 20. type of software

Computer factors

• 21. response time, tumaround times,

• 22. hardware under concurrent development,

• 23. the development machine System volatility,

• 24. storage constraints, timing constraints

Ramsey and Basili homogeneous environment

The software which provided the data for Ramsey and Basili's study was developed

at the NASA Goddard Space Flight Center. The authors claim the software development

environment is homogeneous, i.e., many similar projects are developed for the same apli-

cation area. The considérations for homogeneous environments are:

• l. S âme application area

• 2. A standard process model

• 3. Software development methodology is similar across projects

• 4. Great deal of reuse of code from prior projects

Kemayel, Mili, and Ouederni programmer productivity factors

Controllable factors suggested by this authors are related to personnel, the software
process and the user community.

Kemayel, Mili and Ouederni proposed the following 33 controllable factors:

36

Personnel factors

Motivation

• l. Recognition: réaction of the institution to programmer's performance

• 2. Achievement: satisfaction the programmer gains from doing a challenging task prop-

erly

• 3. The work: nature of the tasks to be executed

• 4. Responsibility: degree ofresponsibility to personnel

• 5. Advancement: possibility of career improvement

• 6. Salary: rémunération to personnel

• 7. Possibility for growth: professional growth expected in the company

• 8. Interpersonal relations, subordinates:

• 9. Status: importance of the worker in the company

• 10. Interpersonal relations, superiors

• 11. Interpersonal relations, peers

• 12. Technical supervision: willingness of supervisors to help solve problems

• 13. Company policy and administration: command structure of the company

• 14. Working conditions: office, space, and so on

• 15. Factors in personal life

• 16. Job security

Personnel expérience

• 17. Application domain expérience

• 18. Virtual machine expérience: working logical environment

• 19. Programming language expérience

• 20. Expérience with the user community: famUiarity with the user community

Process factors

Project management

• 21. Using a goal structure

• 22. Adherence to a software life cycle: précise définition of stages

• 23. Adherence to an acdvity distribution: précise définition of activities

• 24. Usage of cost estimation procédures: software cost-estimation model being used

37

Programming environment

• 25. Programming tools: use and power of tools

• 26. Modem programming practices: use of advanced techniques

• 27. Programming standards

• 28. Power of equipment used: memory space and time limitations

User factors

• 29. Previous éducation in computing

• 30. Expérience in computing: previous use of computers

• 31. Expérience with the type of application: involvement in similar applications

• 32. Expérience with the group of programmers / analysts

QUALITE FACTORS

Boehm et al., software quality framework

A set of characteristics important for software were proposée. Metrics to assess the

degree to which the software has the defined characteristic were developed and correlated

with the characteristics. Refinements were perfïomed to the set of characteristics into a set

that supports software quality évaluation. Relationships were established among charac-
teristics and refined characteristics. Finally, the metrics were also refined. The characteris-

tics developed were:

Characteristics

l. Understandability: Code possesses the characteristic understandability to the extend

that its purpose is clear to the inspector.

2. Completeness: Code possesses the characteristic completeness to the extent that all its

parts are présent and each part is fully developed.

3. Conciseness: Code possesses the characteristic conciseness to the extent that excessive
information is not présent.

4. Portability: Code possesses the characteristic portability to the extent that it can be oper-

ated easily and well on configurations other than its current one.

5. Consistency: Code possesses the characteristic internai consistency to the extent that it

contains uniform notation, terminology and symbology within itself, and external consis-

tency to the extend that the content is traceable to the requirements.

6. Maintainability: Code possesses the characteristic maintainability to the extent that it
facilitâtes updating to satisfy new requirements or to correct deficiencies.

38

7. Testability: Code possesses the characteristic testability to the extent that it facilitâtes
the establishment of vérification criteria and supports évaluation of its performance.

8. Usability: Code possesses the characteristic usability to the extent that it is reliable, effi-

cient and human-engineered.

9. Reliability: Code possesses the characteristic reliability to the extent that it can be
expected to perform its intended functions satisfactorily.

10. Structuredness: Code possesses the characteristic structuredness to the extent that it

possesses a definite pattem of organization of its interdependent parts.

11. Efficiency: Code possesses the characteristic efficiency to the extent that it fulfills its
purpose without waste of resources.

Refined Characteristics

12. Device-Independence: Code possesses the characteristic device-independence to the

extent that it can be executed on computer hardware configurations other than its current

one.

13. Self-Containedness: Code possesses the characteristic self-containedness to the extent

that it performs all its explicit and implicit functions within itself.

14. Accuracy: Code possesses the characteristic accuracy to the extent that its output are
sufficiently précise to satisfy their intended use.

15. Robustness/Integnty: Code possesses the characteristic robustedness to the extent that

it can continue to perform despite some violation of the assumptions in its spécification.

16. Accountability: Code possesses the characteristic accountability to the extent that its

usage can be measured.

17. Accessibility: Code possesses the characterisdc accessibility to the extent that it facili-

tates sélective use of its parts.

18. Communicativeness: Code possesses the characteristic communicativeness to the

extent that it facilitâtes the spécification of inputs and provides outputs whose form and

content are easy to assimilate and use.

19. Self-Descriptiveness: Code possesses the characteristic self descriptiveness to the

extent that it contains enough information for a reader to détermine or verify its objectives,

assumptions, constraints, inputs, outputs, components, and révision status.

20. Legibility: Code possesses the characteristic legibility to the extent that its function is
easily discerned by reading the code.

39

21. Augmentability: Code possesses the characteristic augmentability to the extent that it
can easily accomodate expansion in component computational functions or data storage

requrrements.

22. Modifiability: Code possesses the characteristic modifiability to the extent that it facil-
itates the incorporation of changes, once the nature of the desired change has been deter-

mined.

23. Human Engineering: Code possesses the characteristic human engineering to the

extent that it fulfills its purpose without wasting the user's time and energy, or degrading

their morale.

McCall Software Quality factors

Eleven quality factors were porposed, grouped according to three orientations or

viewpoints (i.e., product opération, product révision and product transition). The factors
are conditions or characteristics which actively contribute to the quality of the software.

Factors represent a management-oriented view of software quality. To introduce a dimen-
sion of quantification, this management orientation must be translated into a software-

related viewpoint. This is accomplished by defining a set of criteria for each factor. The
criteria are independent attributes of the software, or the software production process, by

which the quality can be judged, defined, and measurcd. Finally, quality metrics can be
established to provide a quantitative measure of the attributes represented by the criteria.

Factors

l. Correctness: Extent to which a program satisfies its spécifications and fulfills the user's

mission objectives.

2. Reliability: Extent to which a program can be expected to perform its intended function

with requircd précision.

3. Efficiency: The amount of computing resources and code required by a program to per-

form a function.

4. Integrity: Extent to which access to software or data by unauthorized persons can be

controlled.

5. Usability: Effort requrred to learn, operate, prépare input, and interpret output of a pro-

gram.

6. Maintainability: Effort required to locate and fix an error in an operational program.

7. Testability: Effort required to test a program to insure it performs its intended function.

8. Flexibility: Effort required to modify an operational program.

9. PortabUity: Effort required to transfer a program from one hardware configuration and/

or software System environment to another.

40

10. Reusability: Extent to which a program can be used in other applications-related to the

packagmg and scope of the functions that the programs perform.

11. Interoperability: Effort required to couple one System with another..

Criteria

12. Traceability: Those attnbutes of the software that provide a thread from the require-

ments to the implementation with respect to the spécifie development and operational

envu-onment

13. Completeness: Those attributes of the software that provide full implementation of the

functions required

14. Consistency: Those attributes of the software that provide uniform design and imple-

mentation techniques and notations

15. Accuracy: Those attributes of the software that prôvide the required précision in calcu-

lations and outputs

16. Error Tolérance: Those attributes of the software that provide continuity of opération

under non-nominal conditions

17. SimpUcity: Those attnbutes of the software that provide implementation of functions

in the most understandable manner. (Avoiding practices that increase complexity).

18. Modularity: Those attributes ofthe software thatprovide a structure ofhighly indepen-
dent modules

19. Generality: Those attributes of the software that provide breadth to the functions per-

formed

20. Expandability: Those attributes of the software that provide for expansion of data stor-

âge requirements or computational functions

21. Instrumentation: Those attributes of the software that provide for the measurements of
usage or identification of errors

22. Self-Descriptiveness: Those attributes of the software that provide explanation of the

implementation of a function

23. Exécution Efficiency: Those attributes of the software that provide for minimum pro-

cessing time

24. Storage Efficiency: Those attributes of the software that provide for minimum storage

requirements during opération

25. Access Conû'ol: Those attributes of the software that provide for control of the access
of software and data

4l

26. Access Audit: Those attnbutes of the software that provide for an audit of the access of

software and data

27. Operability: Those attributes of the software that détermine opération and procédures

concemed with the opération of software

28. Training: Those attnbutes of the software that provide transition from current opera-

tion or initial familiarization

29. Communicativeness: Those attributes of the software that provide useful inputs and

outputs which can be assimilated

30. Software System Independence: Those attnbutes of the software that détermine its

dependency on the software environment (operating Systems, utilities, input/output rou-

tines, etc.)

31. Communications Commonality: Those attributes ofthe software thatprovide the use
of standard protocols and interface rutines

32. Data Commonality: Those attributes of the software that provide the use of standard

data représentations

33. Conciseness: Those attributes of the software that provide for implementation of a

fonction with a minimum amount of code

42

ECOLE POLYTECHNIQUE DE MONTRÉAL

111
3 C1334 OQ2B6??b 5

