
Titre:
Title:

Beyond static metrics

Auteurs:
Authors:

Pierre N. Robillard

Date: 1994

Type: Rapport / Report

Référence:
Citation:

Robillard, P. N. (1994). Beyond static metrics. (Rapport technique n° EPM-RT-94-
26). https://publications.polymtl.ca/9564/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9564/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-94-26

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9564/
https://publications.polymtl.ca/9564/

^>'.

EPM/RT-94/26

Beyond Static Metrics

Pierre N. Robillard

Département de génie électrique
et génie informatique

Ecole Polytechnique de Montréal
Novembre 1994

2 2 ? fô95

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage,
sous quelque forme que ce soit, sans avoir obtenu au préalable l'autorisation de l'auteur,

OU des auteurs

Dépôt légal, novembre 1993
Bibliothèque nationale du Québec
Bibliofhèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Editions de l'Ecole Polytechnique
École Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la
manutention. Régler en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole
Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente

préalable dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.

Beyond Static Metrics

Picrrc-N. Robillard,

Laboratoire de recherche en génie logiciel
Ecole Polytechnique de Montréal

C.P. 6079, Succ. Centreville, Montréal, Qc. Canada, H3C 3A7

Tel. 514-340-4238 Fax 514-340-3240 E-mail robillard@rgl.polymtl.ca

Abstract :

This report proposes three ways to look at information obtained from the

static analyzer tool, each corresponding to the level of knowledge

processed by the static analyzer: lexical, syntactical and stylistic. The static

documentation is the listing of the information resulting from the static

analysis. The content of this documentation could be drawn or visualized.

Static measures are obtained by counting components of information.

Static predictions are based on static measurements. This approach

outlines the information content of each measure and enables définition of

predictive demain of a measure. Examples taken from industrial projects

illustrate typical types of information at each level. New application

avenues derived from this model are discussed.

1. Introduction

This report gives an overview ofthe various uses of data obtained from static analyzers

and proposes a new model that intégrâtes the various aspects ofstatic software analysis.

The purpose is to outline the information content ofthis in documenting, visualizing,

measuring and predicting software characteristics. This approach will provide the reader

with a comprehensive understanding ofthe state ofthe art and show the benefits and

limitations ofthis data.

The framework we shall adopt in this report is that a program is a kind of information
structure, just as a book is a kind of information structure. We call this approach static

analysis because it looks at information structure and not the information content or the

application demain ofthe program. The static analyzer is a tool, which extracts spécifie

data from the information structure. Three activiries are conducted with the results of the

static analysis: documentadon, measurement and predicrion.

Measurements based on static analyzer data have been used for more than 20 years. Few

outstanding results, if any, have been published. Failure might be due to our limited

understanding of static analysis data and unfounded expectadons of theu' benefits.

An overview of the évolution of stade analysis is presented. This review does not prétend

to be comprchensive, but rather outlines the évolution of the domain. The static analysis
of source code was inidally associated with the measurement of program complexity and
the word metric was introduced. Later, the word metric was generalized to mean any

measure related to software, i.e. productivity metrics, reliability metrics, etc. Today,

measures from static analyzers are only a small component of the software metrics world.

We can identify three phases in the évolution of the domain. The first phase, which lasted
10 years starting in 1975, was dominated by work on static measurements and the so-

called complexity metrics. The second phase (spanning the next five years) was
characterized by enthusiasm for various metrics. The third phase promoted the
implementation of metrics programs. [Dumk93] prepared a comprehensive, subdivided
bibliography of most of the works published in software metrics. The following textbook
références are indicative of this évolution.

The pioneering work of McCabe [McCa76], which introduces the cyclomatic number, and
Halstead [Hals77], which introduced Software Science, have had a strong influence on the
perception and usefulness of stade measures. Thèse metrics are still in use and are part of

metrics implementation programs and research projects.

The following three références are typical of the second phase. They introduce metrics,

thetr applications and some instructions for metrics implementation programs. Conte

[Cont86] introduces the reader to the world of software metrics and models, their ultimate
goal being to enable better understanding and control of the development process, and

better estimation of its cost.

The central point ofZuse's textbook [Zuse91] is to provide readers with the necessary
knowledge and tools for critically evaluating existing and future software complexity
measures. An additional goal is to prépare the reader for a detailed study of the methods
of application of measurement theory, the définition and use of scales, the description of
measures as an ordinal or a ratio scale, the methods for analyzing the static complexity of

programs, the types of complexity measures used to analyze the static complexity of

programs and applications of software complexity measurements in practice. The book

présents two ways to discuss software complexity measures, the first a theoretical

foundation of the measurcment of software complexity, and the second detailed discussion

of more than ninety software complexity measures and their application to software

complexity measurement.

Fenton [Fent91] in his book describes a rigorous framework for software metrics, the
obligations one has regarding measurement, the things one will want and need to measure,

and the approaches that attempt to do so. It enables one to détermine for oneself whether

the published metrics and models are doing thejob they claim to do and the one that is

wanted. It also shows what to do if they are not. The book shows how to eut through the

myriad of metrics and models that appear in the literature and see how and where thèse fit
into a software engineering measurement framework.

The following références are related to the third phase and are concemed with the
implementation of a metrics program.

The purpose ofJones'book [Jone91] is to demonstrate that software is in fact capable of
accurate measurements, and that the measurements have notable practical value to both

the management and the technical community within the software industry. The content of

the books is intended to cover all the broad topics and most of the spécifie ones associated
with starting a full corporate measurement program that encompasses productivity,

quality, and human factors.

Brady's book [Brad87] on implementing software metrics programs help one to better
develop thèse programs in one's organization, analyze our approach to software metrics

implementation and décide which metrics are the most appropriate for one's development
and implementation processes, describe some immédiate benefits at the project level and
andcipate difficuldes.

Moller and Paulish's tide [Moll93]: Software Metrics: A practitioner's guide to improved
product development, shares successful expériences with applying software metrics to
project management. It contains practical suggestions for implementmg metrics, and also

contains summaries of successful techniques on metrics implementadon ând the benefîts

which resulted within industrial organizadons.

The purpose of Hetzel's book [Hetz93] is to show how to make software measurement
work in an organization. The book is also about getting working software practitioners
and managers to use measurements routinely and to enthusiastically embrace measurement
as a way of life. Finally, this book is about gettmg all of us to take grcater professional
rcsponsibility in presenting measurement data.

This paper intégrâtes all thèse viewpoints into a comprehensive model of the information

content resulting from static analysis. Section 2 describes the static analyzer's three levels

ofprocessing. Each of the following sections présents the three levels for processing

static analysis data and illustrâtes them with examples: documentation, measurement, and

prediction.

The work and ideas presented are based on many years of expérience with static analyzers
in an industrial environment at BELL CANADA and a research environment at École
Polytechnique de Montréal. Projects on which static analysis was conducted cover

management information Systems, compilers, network management Systems and real-time

embedded communication Systems.

2. Model of static information structure.

The information that can be extracted from a System dépends on the knowledge we have

in this System. A stade analyzer is an information extracting machine. The more

knowledge encoded in the stade analyzer, the more information can be gleaned from the

analysis. If the only knowledge encoded in an analyzer is the recognidon of a carriage

retum character, then the only information that can be extracted is the identificadon of

carriage retum characters or the number of lines.

On the other hand, if we can encode the knowledge needed to recognize a good structure

programming style, it is likely that informadon on structure programming workmanship
could be extracted. A problem arises when more information is expected from the stade

analyzer than the encoded knowledge allows. The model proposes a classification for the

level ofknowledge encoded in the static analyzer and the various types ofinformadon
processing resulting from the static analysis.

The stade analyzer extracts components of the information structure at each level of the

analysis: tokens at the lexical, statements and relationships at the syntactical and
workmanship or style at the stylistic level. The next section describes the type of
knowledge encoded at each level.

The resulting infonnadon can be processed in three ways: listed, counted or correlated.

The lisring of information is called the program's static documentation. The counting of
information components is caUed static measurement and the use of information content to

fit a predictive model is called static predicdon.

Each way of processing information is related to the level of knowledge available in the
stade analyzer. Table l shows the rclationships between the processing level and the
information processing type.

T^able l_Model of information processing type based on knowledge level.

Processing type/
Analysisleyel^

lexical

syntactical

stylisdc

Static documentation

lisdng

drawing

visualizadon

Static measures

counting tokens

countmg

relationships

coundng model

characteristics

Stade prediction

based on vocabulary
size

based on

relationships

based on modelmg

3. Static analyzer.

The purpose of static analysis is to extract accurate and comprehensive data ft-om the

source code. This extraction is based on encoded knowledge. Three mechanisms are

used to encode knowledge: regular expressions, grammar rules and algorithm

implementation. This section introduces the three levels of stade analyzer processing

corresponding to the encoding mechanism: lexical, syntactical and stylistic.

3.1 Lexical analysis

Lexical analysis is the fîrst step in staric analysis. The lexical informadon is based on the

tokens composing the information structure. Lexical analyzers use regular expressions to

identify tokens. This can be donc with a software tool called LEX.

The three basic groups of token are the symbols (+,-,*,/ etc.), the reserved words (IF,DO,

FOR, etc.) and others. Thèse last could be subdivided into idenrifiers, strings and
comments, for example. Figure l shows typical LEX expressions.

The granularity and the specificity of the lexical analysis dépend on the accuracy of the
regular expressions. For example, the simplest analysis recognizes only the Carriage

Retum character to count the LOC (lines of code), while a comprehensive analysis

rccognizes all the words and symbols composing a program (variables, function names,

key words, symbols, etc.). The lexical analyzer defines the vocabulary used in the

followmg levels of analysis. The data obtained from the lexical analysis is programming-

language-dependent.

An application improvement is to fonnally measure the information content of the regular
expressions composing the lexical analyzer. This measure can provide a basis for

specifying the recognidon power of a lexical analyzer or its vocabulary size and accuracy.

/* symbols */
"&&"
<t/tt

«\»

<'."

f

/* reserved words */
"while"

/* others*/
/* idendficators */

[a-z_A-Z][a-z_A-ZO-9]*

IDENTIFICATOR }
/* unknown */

{ retum AND }
{ rcturn PARL }
{ return PARR }
{ rctum PTCOM }

{retumWHILE}

{ return

{ retum ERROR }

Figure l LEX EXPRESSIONS for a WHILE

3.2 Syntactical analysis

Syntactical analysis uses a set of production rules to identify the link between tokens and

Rules can be written at various levels of complexity. The comprehensive analyzer has a

complète set of mles. Context-free programming languages like Pascal and C are casier to

analyze than context-dependent language like FORTRAN and COBOL. Figure 2 shows a
typical YACC input file composed of BNF expressions. The data obtained from the
syntactical analysis is programming-language-dependent.

One application improvement is to formally measure the information content of the
production rules composing the analytical analyzer. This measure can provide a basis for
specifying the capacity of the syntactical analyzer.

/* statements list définition*/
statementsjst : statements

l statementsjst PTCOM statements

/* boolean_expression définition */

boolean_expression : IDENTIFICATOR
l boolean_expression AND IDENTIHCATOR

/* statements définition*/

statements : WHILE PARL boolean_expression PARR statementjst {/* process information */}

Figure 2 BNF expression for a WHILE construct.

3.3 Stylistic analysis

Stylisdc analysis is derived from a model of the programming constructs and is based on

syntacdcal and lexical analysis. Data on the style of the program information structures is

then extracted from the source code. Stmctured programming is an example of construct

programming style. Style détection results from the implementation of an algorithm that

defines it. The algorithm captures the knowledge on style.

Research could be done to define a taxonomy of styles based on the types of tokens and

syntacdcal rules they are using. A formai définition of style could also be explored. Style

could be related to design maturity. BuUd-and-fbi programs might not have the same

programming style as formally code-inspected programs.

A generic and comprehensive model is needed to represent and integrate our knowledge

of computer programs. Such a model should include all the tokens and their reladonships.

This will increase our understanding of programming style and enable us to find
relationships between programming style and quality of design, readability, maintenance
effort, reliability, programming effort, etc. The quality of the documentation obtained from
the static analyzer dépends direcdy on the capacity of the various analysis levels. The more

accurate and complète the model représentation is the more useful the stade analyzer data

willbe.

4. STATIC DOCUMENTATION.

Stade documentation should not be confused with program documentation, which is

related to the content or the application demain of the program. Program documentation

usually refers to the internai documentaùon of the program and is made up of comment

statements and significant variable names. Static analyzers could detect the occurrence

(quantity) of internai documentation, but not assess its quality content.

Static documentation is useful for identifying and locating the components of a program.
Some software is still built using an opportunistic approach or on a trial-and-error basis.

Programming functions, constructs, statements and variables are assembled by the

programmer to implement a functionality. The information structure is not the result of a

well-thought-out design process. Programming tokens and statements are written as

needed. Static documentation provides the information structure of the program. Static

documentation is useful for understanding programs, whether for maintenance,

development or quality control activities like inspecdon. In an idéal envu-onment where all

the tokens are well designed beforc programming, a stade analyzer will still be useful to
confirm that the program is written according to the design.

The following show examples of the static documentation resuldng from each level of
analysis.

4.1 Listing

A useful way to represent the data obtained from lexical analysis is to provide the list of

tokens at the System, module or statement level. The System level is made up of

comprehensive cross-referenced information between files, modules and functions, and

identifies functions with identical names within or across executable modules, listing all the

function names within a library. At the module level it provides lists of funcdons, global
variable names, parameters, etc. At the statement level it provides type of data and

control structures, comment Unes, variable déclarations, and much more. It is a powerful

tool for checking the completeness and integrity of a software System.

The listed part of the static documentation can be stored in a database and programmers
can generate queries to help them understand the software product. Examples of such

queries are: list all the funcrions called by a given main function, list Ae global variables
used in a given function, list all statements that use a given variable name, etc.

4.2 Drawing

Syntactical analysis provides the relationship between the tokens. This information is best
représentée! by drawing tools. Drawing is defined as the technique of represendng an
object in its parts. Drawing should not be confused with visualization which refers to
interprétation, as will be seen later. Sophisticated software tools provide drawings at

various levels of abstraction and where all display éléments are connected to the source

code. The user can toggle back and forth between the drawn views and the corresponding
programmmg components.

Figure 3 shows a typical call tree. Each box represents a software unit and the lines show
the links to rclated software units. The tool automatically finds the boxes connecting any

selected box. Others featurcs are finding recursion paths in funcdon calling séquences and

displaying the hierarchy ofinclude files, for example.

a
rmn:_c

~ />

FONC_»

nmcje
^L

FBNCJ»

FIUIC_B

rmcji

^

ri»n:_c
runcjp

rasc s

-^

FUm:_H

-^

rascjK

a
FUNC_C

^
Figure 3 Drawing of architectural call tree

The thrce-dimensional view in Figure 4 shows a global view of the links between routines.

The horizontal axes represent the number of calls made to (x) and from (y), the software
units. The vertical axis represents the number of software units. Highly interiocked

roudnes are easily identifiable. Such a représentation of measures gives an overview of the

System and enables the désigner to better understand the coupling of the System and take

action on the most needed funcdons.

FnqifncyCount

0
5

10
is

TonlCdTo
20

25
»

-10

-9

•a

•7

•€

•5

•4

•3

•2

•l

-0

5

B
TotdCdFrom

Figure 4 3-D View of the links between software units.

8

Ideally, any request rcgarding token locadon and its relationship to the program could be
listed or drawn. Static documentadon is an inventory of the information structure of a

program.

4.3 Visualization

A style is a particular technique by which something is donc, created or performed, or a
convention with respect to spelling, punctuation, capitalization and typographic
arrangement and display, followed up in wridng or prindng.

Stylistic analysis is based on a model or a convention. An example of prindng style is
statement indentation, while structured programming is an example ofprogramming style.

The results of stylistic analysis can be tabulated as, for example, a list of indented

statements or a list of breaches of structure. The rcsults can also be visualized according

to a model, for example, control flow, data flow, etc. Visualization is defined as the

process of mterpreting in visual terms or of putdng into visible form. In this case,

visualization refers to expressing a model in a visual fonn.

A typical model type is illustrated by the visualizatiOn of the control flow. Control flow
could be représentée! as an assembly drawing. In this case, the représentation is limited to

showing the Unk between the control statements in a structured program. The simplest

visualization mechanisms provide a virtual sketch of the source code, in which case the
information cannot be traced back to the source code.

However, formai représentation of control flow style enables a link to be made with the

source code. The following shows a typical example of formai style définition and its
automadc représentation. It is called iconic control flow visualization [Robi93].

Programs are decomposed into basic blocks. Each basic block is represented by an icon.

Icons are assemblée according to defined rules. The block définitions, the aggregations

and association rules define the conceptual model. The process keeps all control-related

information as it appears in the source code. The icons provide a visual représentation,

which is independent of the size or complexity of the control flow. The représentation is

also programming-language-independent.

A basic block is a séquence of consécutive statements in which the flow of control enters

at the beginning and leaves at the end without halting, or the possibility of branching,
except at the end. The représentation of the relationships among the basic blocks forms
the control flow graph.

A basic block is représentée! by a vertical Une with an entry and an exit connector. There

are four kinds ofconnectors: sequendal, terminal, label and branching. A node,

reprcsented by a horizontal Une, links connectors to programming language statements.

The following describes the various types of connectors applied to the basic blocks, and
the resulting icons. Sequential connectors are represented by empty circles. Figure 5A
shows a basic block terminated by sequential connectors. Figures 5B and 5C show blocks

with terminal connectors that define the beginning or the ending program nodes. A label

connector is represented by an arrow-tail at the beginning of a basic block. Figure 5D
shows a basic block inputted by a label and outputted by a sequenrial connector. A
branching connecter is reprcsented by an arrow-head at the end of the block. Figure 5E

shows a sequendal block with a branching end connector.

A node is needed when block ends have more than one connector: for example, a block

which can be entered by a sequential or a label connector, or a block which can be exited

by a sequential or a branching or multibranching connector. Figure 5F shows a block

which can be entered by a label or a sequential flow. Figure 5G shows a block which
contains a conditional statement, so that it is terminated by two branchings.

A backward branching is a basic block that reverses the normal top-down sequential flow.

Figure 5H shows the représentation of a backward branching block with a sequendal node
and a double vertical line terminated by a branching. Formai aggregations and associadon
rules are used to group the resulting icons of a program together to represent the complète

control flow.

A) Sequential

B) Beginning

C) Ending

D) Inputed label

E) Branching

F) Node with sequential
and label

G) Node with two branchings

H) Backward branching

A/

v^v

Figure 5 Basic block icons

10

Figure 6 illustrâtes the resulting control-flow représentation. Du-ected arcs link origin

nodes to destination nodes. A forward arc follows the normal flow of exécution (drawn as

a single line). A backward arc follows the reverse flow, as in the retum arc of a loop

(drawn as a double line). The node number is a pointer to the Une statement in the source
code. A dynamic visualization can display the source code corresponding to any arc.

Half-plane représentation allows the identifîcadon of arc crossings. The crossings that

violate the rules of structured programming are called breaches of structure, and are

shown by square dots.

This graphical representaùon of the control flow corresponds to the général interprétation

of graph theory. Arcs contain statements from the source code. Nodes are the logical

states of a program where arcs go from one node to another.

•+.

în+ry Node^

ExitNode,

•̂<•

• 1 ZL
19
35
37
37
39
42

M
^:

!:
62
66
68

-68 ~^

69

Forward Arc

JL
l

t

3

^ >ossing

^< 2 Breaches

Backward Arc

Figure 6 Final rcprcsentadon of the control graph.

Stylisric analysis is based on defined styles. The style could be defined at the lexical level
by requiring spécial wording for variable or funcdon names or at the syntactical level by

requiring, for example, that all IF constructs have an ELSE part. It could also be on a

formai model, as shown for the control flow. Visualization of the stylistic analysis enables

the programmer to see its conformance to the style.

5. Static Software Measurements

Static metrics are defined as measurements made from stade analyzer data. They are three

types of measurements corresponding to the type of analysis: lexical, syntacùcal and

stylistic.

11

The meaning of the terms metrics and measure have been discussed in the literature
[Zuse91] [Fent91]. We use the term measure, which is defined as follows:

A measure is an empirical objective assignment ofa number (or Symbol)
to an entity to characterize a spécifie attribute.

This section describes and illustrâtes with typical examples the type of measurements that
can be donc at each level of analysis.

5.1 Counting Tokens

Lexical analysis provides the list ofprogramming language tokens, and coundng thèse
tokens constitues the measurements from the list. They are on absolute scale. Number of

operators, number of operands, number of IF key words, etc. are examples of well-known

measures of this type. Software Science [Hals77] is based on such measurements. Some

measures may have dubious meaning. Exhaustive lists of thèse measures are available in

the literature [Coté] [Zuse91].

Statistical analyses have revealed not surprismgly, that most of thèse lists of token-type

measures are correlated to the size of the software unit [Robi91]. The larger the software

unit, the more tokens they have. None of the measure distributions shows statistical

normality, which makes convendonal inteipretation of average, mean and other moments

almost meaningless. Figure 7 shows the project distribution for the number of lines of
code (LOC). LOC are detected by the occurrence of the CR tokens as discussed before.

On the horizontal axes are the functions in decreasing order of measurement values from

the left-hand side. On the vertical axis are the measurcment values for each function; the

distribudon shows the full range of measurement values for the project. This distribudon

is typical of any item in the list of tokens.

Figure 7 Distribution of the number of LOC

12

Such measures are useful in evaluating the relative and absolute sizes of a software unit

within a system. Development practices could varied depending on various size

measurements.

5.2 Counting relationships

Measures based on syntactical analysis take into account the rclationships between the
tokens. Such measures are: conditional span, unreachable statements (dead code), fan-in,

fan-out, nested levels. Thèse are counting measures and are evaluated on an absolute

scale. Some of thèse measures are indicators of structure problems or bad

implementation. Dead code is an example of this. Figure 8 shows the distribution of the
maximum of nested levels per software unit. Thèse measures could be used to identify

inspection schedule priorities among modules.

Figure 8 Distribution of the maximum nested levels

5.3 Counting Model Characten'stics

Measures based on style analysis are derived from a model of the components of the
software product. Thèse measures could be of the ratio or absolute scale type. Breach of

structure, cyclomatic number, the measure of interconnectivity and the number of paths

are examples of this.

13

Figure 9 shows the project distribution for the number of paths per module. On the
horizontal axis are the functions in decreasing order of the measured value from the left-

hand side. On the vertical axis are the measured values for each function. The

distributions show the full range of the measured values for the project. Tesdng policy
can defined the usual range of values for a project and the identification of any funcdons
that have out-of-range values. In this example, functions with more than 10,000 paths are

idendfîed as being out of range.

10000000000

1000000000

100000000

10000000

1000000
w

2 100000
.t0

10000

1000

100

10

1

Figure 9 Number-of-paths distribution.

5.4 Measurements représentations

Most of the measures could be représentée! by a distribution. The usual range is

déterminée! for each measure distribution. A percentile profile for a project shows the

number of functions that fall within the selected range of measure values. AU the funcdons

that have unusual measure values are idendfled and listed.

Figure 10 shows the percentile profiles for 15 selected measures. Percendle profiles

consist of two-color columns. The black in each column represents the percentage of

unusual functions. Thèse are below or above the usual range of values. Black in the upper

part corresponds to the percentage of functions exceeding the range's upper bound. Black

in the lower part corresponds to the percentage of functions below the range's lower

bound. The darker the profile, the more unusual the project.

14

Figure 10 Percentile profile.

This way ofhandling measurement data is tmly objective and does not assume any
prediction on the values. It provides the project manager with various measures of the

project. The following examples illustrate the benefits of thèse measures. A measure of the

size of the internai documentation (number of comments) shows an under-documented

group of modules. The programmers involved in writing thèse modules were trained to

improve their documentation skill. Modules with an unusual number of paths werc

revised and design inspections were enforced. The measures and their distributions are

powerful tools to support project manager décisions.

Usual range is defîned by the state ofthe practice within an organization. Usual measure
ranges are actually empirically determined by software engineers and project managers
working on a given project. The définition of usual range dépends on the type of
organization, software application and the development environment.

Research is currently in progress to find a statisdcal approach to the définition of usual
range. A formai and documented définition will enables organizations to share theu- data

of usual-range behavior and then evaluate project improvement using new practices or

processes.

5.5 Interconnectivity

Interconnectivity measures intégrale the structural as well as the textual aspects of a

program in such a way that the organization of a program can be seen graphically. They
integrate the principal attributes of a program, including control flow, data flow and
program size into the same model. [Robi90].

The interconnections among statements are represented in a table that intégrâtes data

flow, control flow and program size. Rows represent statements, and columns represent

variable définitions, variable redefinitions and control structures. The level of

interconnection among statements within a program is calculated using the informadon

theory concepts of entropy and excess entropy.

We view a program as a System that is divided into many subsystems, in hierarchical order.

This approach dovetails perfectly with the structured programming concepts, where each

component has one input and one output, and may also be divided hierarchically. Two

15

types of possible interconnection among statements are idendfied, those due to the various

exécution séquences and defined by conditional statements, and those generated among

statements themselves by the définition or rcdefinidon of variables.

A table comprising statements, variables and structures is used to represent a program and

its attributes, control flow data flow and program size. In this représentation all the
attributes are integrated to produce a cohérent évaluation by the measures. The

statements correspond to the rows and the structures to the columns. The table is filled

with interconnectivity data.. The data flow corresponds to the links between statements

that the variables produce. The control flow is determined by the links between statements
occurring in the same control structures. The éléments in the interconnectivity table are

zéros or ones. Ones in a column mean interconnections among those statements. Criteria

for filling the table are based on the mathematical model. The value of the interconnecdons
is obtained by analysis of the pattems of zéros and ones.

The degree of relationship among statements dépends on the degree of simUarity (or
différence) in the patterns. The entropy function is used to measure the variability of the
pattems. The higher the entropy, the greater the variabiUty in pattems.

The model has been tested with real data to demonstrate its consistency when changes in

the program text or structure are made. Structuring rules have been studied and selected

based on their capacity to be extracted automatically from the program text according to
the attributes considered by the interconnectibility metric. The rules are grouped under
four major headings: modularity, simplicity, control structures and data représentation.

For every rules expresessed, we make two versions of the same program. Version l does

not implement the rules whereas version 2 does it. AU together, we have 12 différent

programs with two versions each. Every pair of programs is designed to evaluate the

effect on the measure of one, and only one, given rule. The results reveal that the

measure is sensidve to every modificadon. Moreover the measure is sensitive in a positive

way and improvement in the program lowers the measure.

Typical inteconnecdon profiles are shown in Figures 11 and 12. Thèse two programs have

exactly the same functionality, but are based on différent implementations. The first is a

program composed of large nested control structures (more that 40 statements within a

structure) with small data arrays, while the second program is mostly written sequentially
and has structures that mainly contain fewer than 15 statements. The interconnection

profile has proven useful in comparing various implementation stratégies.

16

W^WWi
*.•.". 's-

i-!-!Î!iiS">w<-."-v'-ft-:-:'>>W*

«'•.'Wi^mi.v.".::^' :<- "

^^^^.vwwM

îwy

f^ym.wmxs^ -^ - y '
.%<*:.;; .^. ,

:<•:«<.* •;**\'U-.*.*.*:*.'.*A\VA<':S\—.—A-.W\'.'.',>,'; :î

.-.:A- "

Rv.Wv.i
•îwWWkVUWkWV.'AW.W

;8 '"•• i»

m^^^s^;

>,W.'.<v,lW.';*;>;'i<\<'

Figure 11 Example of interconnection profiles
i •'- i

« x« ï

^•AW.W.W.W.^ ff " t-

Figure 12 continued.

17

6. Static Prediction

This section discusses the predictive potential of thèse measurements. To predict is to

forecast on the basis of observation, expérience or scientific reason. We called this static

prcdiction because the basis of observation is static measurements.

A measure is an assessment of some entity which already exists. Predicdng from a

measurc is a complex activity that requires the validation of models based on extensive

expérimental work and statisrical analysis [Robi91] [Muns89]. A prediction is an
évaluation of an attribute of some entity which does not yet exist. For example, based on

the static measure of the software product, we would like to predict its reliability, quality,

testability, maintainability, etc.

To do this we need a model that defines an association between static measures and a

predicdon System [Litt88]. A prediction System consists of a mathemadcal model together
with a set of prediction procédures for determining unknown parameters, and interpreting

results.

Prediction is often an association between an internai and an extemal software attribute.

Although predictions among internai software attributes are possible, their usefuhiess is

questionable.

6.1 Based on tokens

The information content of the measure resulting from coundng tokens is limited and is

strongly size-related. Prcdicdon théories, quality model or practices based on metrics

derived from the number of tokens in a program have a very weak basis.

The COCOMO model [Boeh.81] is an interesting example where a lexical measure,
number of Unes of code (LOC), is used to predict development effort and to esdmate time.

In this particular case the domain ofprediction (effort-time) is not related to the

measurement domain (LOC). A successful prediction is accidentai and the model has been

shown to be unreliable in most circumstances. An analogy with the making of a book will

illustrate this point.

The measure of the number of words or sentences could be used as a predictor of the

effort or the dme needed to translate the book from French to English, for example.

However, it is not a good predictor of the effort needed to write it. The effort needed to
write a book dépends on the subject (application), the expérience of the writer in the
application demain and the writing acdvity, and on the tools used: typewriter, word

processor, software speller, thesaurus, etc. COCOMO extends the prediction domain of

an objective predictor (LOC) by empu-ically weighdng it with subjective factors.

Based on this analogy, LOC is a good predictor of the effort needed to translate good
formai design into programming language statements. Any model based on LOC and

exceeding this range is more speculative than predictive.

6.2 Based on reîationships

Predictions based on syntactical measures are related to the organization of the System.

18

Fan-in and fan-out are measures derived from the interrelationships of functions, modules

and software units. Stade observations could be coupled with expérience observations
such as error rate or maintenance effort, to predict future behavior.

It is important to realize that prediction based on measures of the rclationship should be

related to the prediction relationships problem. For example, fan-in and fan-out could be

used to predict errors resulting from the misuse of global variables or erroneous calling
séquences. Thèse measures could be used to predict the effort needed to maintain part of

the architecture of the System. Using fan-in and fan-out to predict overall effort

maintenance may not be appropriate since some of the effort might be required to modify

the internai control structure, data structure and variable initiation which have nothing to

do with the basis of the observadons.

6.3 Based on models

A model is a description or analogy used to help visualize something that cannot be
directly observed.

The cyclomatic number [McCa76] is an example of a simple model represented by a
mathematical formula. This model describes the relationship between the node and the

edge of a graph made by the conditional statements of the programs. The way to organize

the various conditional statements is linked to the programming style. Such a style could
be dépendent on the application, the design or the programmer'experience. Limiting a

module to a V(g) of less than 12 is a stylistic constraint. It is like requiring that there be
fewer than 12 sentences in a paragraph. Based, for example, on the premise that smaller

paragraphs are casier to understand than larger ones.

Programming styles have various components. Most of the syntacdcal rules could be used

to define stylistic components. Global variables, data structures, pointers, macros,

funcdons calls, etc. are all examples of various stylistic components that could have a

strong effect on maintainability, readability, testability etc.

The predicdve power of a model is limited by the domain of the observed values. It could
be hazardous, for example, to predict program complexity based only on an elementary

model of programming construct style.

Predictions based on the stylistic measure could be related to design, maintainability,
readability, etc., but may be counter-productive in terms of efficiency.

The measure of the number of paths is an indicator of the various ways the parts could be

linked together. Intuitivly we know that the greater this number the more effort is needed
to understand or modify the product. This example shows the use of measure distribution
to define the profile of a project and identify functions that are unusual according to this
profile.

6.4 Based on composite measures

Measures could be grouped together based on their predictive domain. A model is based
on the mixing of the various metrics, but care is taken to respect the predictive demain of

each measure. In other words, measurements derived from the lexical domain are used to

19

predict size component only. Measurements derived from the syntactical domain are used
to predict organizational behavior, and measurements derived from style considérations
are used to predict the style charateristic of a project. The model uses a tree structure

where each branch of the tree is a spécifie predicdve demain.

The following illustrâtes one example of a prediction model based on the three types of
static software measures (size, organization and style). The example illustrâtes the model

for predicting the analyzability of a software unit. This is the level of effort needed to
understand a software unit during, for example, a maintenance task.

Experiments are needed in order to better understand the association of the various
predicdve domains and the size of the rcsulting predictive domain.

6.5 Predicting Software Analyzability.

This section describes the use of stade measures to détermine the analyzability of a
software unit. The analyzability of software modules varies widely within a project. The

simplest module might be quickly understood by someone unfamiliar with the application,

while others are so complex that even experienced software engineers can spend a

significant amount of time trying to understand them.

Experts use a rule-based System to define the analyzability level of a module prior to its
modification. The measurcment is also taken after modification to evaluate the 'complexity

gain' of the process.

We identify five analyzability levels. In practice, there are no clear-cut boundaries

between thèse levels, but rather they form a continuum from one level to another. The

following defines the typical modules in increasing order ofcomplexity:

Level l: Basic Udlity Modules. Thèse are the simplest modules. They are usually small

and have very few conditional constructs. Their tasks are simple and self-évident. They do

not call many modules and are at the bottom of the call graph. The number ofpaths is very

small.

Level 2: Spécifie Subtask Modules. Subtask modules are more difficult to understand than

basic utility modules. They use some conditional constructs and sometimes call other

modules. The number ofpaths is limited, but nontrivial. Thèse modules are often

rcfinements of more important tasks.

Level 3: Switohing Modules. Switching modules use many condidonal constructs in an
organized way. The organization is mostly sequential or nested, but rarely mixed. The

number ofpaths could be considérable. Thèse modules are used to select from among

many tasks based on some control variable or calculated condition. The selected modules

could be of any level of complexity.

Level 4: Decisional Modules. Decisional modules use many conditional constructs in a

mixed way. The task implemented is often part of a more complex algorithm. The goal is

usually to compute data based on numerous Boolean expressions.

20

Level 5: Algorithmic Modules. Algorithmic modules are the more difficult to understand.
There are many mixed constructs: sequential, nested, condidonal and looped. The number

ofpathsis large.

Modules are automatically associated with an appropriate analyzability level by a
classification table based on four measures.

NCN Number of conditional constructs.

TCT Total number of calls to other modules.

NL Number of looping constructs.

NP Number of independent paths.

Size

Syntactical architecture

Syntactical statements

Stylisdc

A team of experienced software engineers has defined and validated the following
classification table:

LEVELS

l

2.1

2.2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

_4.5

5.1

5.2

5.3

NCN

0-1

0-1

2-5

2-5

GT.5

GT,5

GT.5

2-5

2-5

GT.5

GT.Â

GT.5

^-5_

GT.5

GT.5

NL

*

*

0-2

0-2

0

A
1-3

1-2

GT.2

0

1-3

GT. 3

GT.2

1-3

GT.3

NP

*

*

201.400

1-200

LT. 0.2NCN2

GT.0.8 NÇN2

1-400

GT. 400

l-500

(0.2 - 0.8) NCN2

401 -1000

l -1000

GT. 500

GT. 1000

GT. 1000

TCT

0-1

GT.l

*

*

*

*

*

*

*

*

*

*

*

*

*

Table 6.5.1. Metrics classification table for the 5 levels

The following table présents preliminary results obtained from the classification table. The
level 5 modules represent only 17.9% of the modules, but they received 58.7% of the
modifications

21

Level

Number of modules

Percentage of modules

Number of modifications

Percentage of modification

5_

117

17.9%

64

58.7%

4

_45

6.9%

3

2.8%

3

332_

50.9%

37

33.9%

2

65^

10.0%

2

1.8%

l

93

14.3%

3

2.8%

Total

652

100%

109

100%

Table 6.5.2. Preliminary results obtained from the classification table.

The data illustrate the following points:

The module's analyzability levels taken from each project have been validated by
groups of software engineers. 5 modules from each level (a total of 25) were given to a

team of software developers. Team members had to rate each module according to the

narrative module's analyzability defmidon. Metric values were not available to them.

Module analyzability is strongly correlated to the maintenance effort for exisdng
projects and to the development effort for new projects.

Thèse results are helpful in planning the effort required for the maintenance of modules.

This information is also useful during the implementadon phase, since programmers are

now aware of the type of module on which they are working. Inspections and walk-

throughs could be planned and focused on the type of module analyzability level.

Figure 13 illustrâtes a typical level distribution. The Y axis contains the number of
software units per level. With such a graph, re-engineering, redesigning and maintenance

efforts can be more precisely evaluated.

700

600

500

400

300

200

100

0

<»

/>

y

/

/

/

/

Level 1 Levé! 2 Levé! 3 Level 4 Levé) 5

Figure 13 Analyzability level classifications

22

Controlled experiments are needed to validate the relationship between the metrics' values
and the quality factors. A well-designed quality and measurement program can provide

indicators for process improvement

7. Conclusion

The use of static analyzers in software engineering is a reverse-engineering approach. The

static analyzer extracts the list of tokens (lexical analysis), dérives the relationship between

the tokens (syntacdcal analysis) and computes conformance of particular relationships to a

defmed style.

Eâch analysis level performed by the static analyzer is based on some knowledge. The
knowledge is encoded as regular expressions, grammadcal rules or procédural algorithms.

This knowledge is used by the software tool to extract information components from the
source code. Thèse information components can be used in three ways: they can be listed,

measured or used to predict software characterisdcs.

This approach provides insight on static software measures. Based on this model, we

propose new directions in the software application of stade measures and in software

metrics rcsearch.

The static analyzer should be a standard tool in any software environment. Developers and

maintainers will benefit from a reverse-engineering and documentation tool such as this.

However, it is important to realize that static analyzers are notjust front-end compiler.

The main différence lies in their target output. Compilers arc built to produce efficient
machine code and they usually do not record information that is relevant to the
programmer. Memory addresses are more important than variable names. Static

analyzers as described in this paper are designed to extract infonnation useful for a human
being.

Research is needed to formally define the knowledge level ofeach component ofa static
analyzer and the information content of the rcsulting analysis.

A generic model is needed to define software programs in terms of their tokens and their
relationships. Such a model will enable us to define the type of knowledge requu-ed to do
any documentation, measurement or prediction task.

Organizations can define the type of static documentation needed before accepdng of a

module. This documentation information can then be obtained automatically during the

acceptance procédure.

Organizations should clearly disdnguish between design documents, the drawing of
existing software components and visualization of information based on a model.

The appropriate use of measures can provide insight into software projects. Much
confusion can also result from the misuse of measures. Measurement data should not be

confused with interprétation of the measurement data. Measurcment data constitutes

objective information, the content of which has to be formally defined.

23

Organizations should be aware that the meaning of measures is not always clearly defined.

Static analyzers which collect the data are not yet standardized, like compilers are for
example, and the computation of the measures is often not documented. The Unes of code

measure (LOC) is a typical example of this. A line of code could be logical, physical or a
mixturc of both, and computation can be a combination of the following: new lines, test

Unes, comments, include files, déclarative statements, etc.

This paper proposes a model to make a clear distincdon between data, a measure and a

prcdiction based on the measure. It also introduces the predictive domain of a measure. It

is important to distinguish between the measure and the interprétation of the measure. For

example, the number of Boolean expressions is an objective measure, while the

complexity number is the interprétation of the measure. An implicit or explicit model
assumes that there is a corrélation between the number of Boolean expressions and the

complexity of the software. Some measurc names convey implicit meanings that could be
misleading.

Progress in software engineering that enables the sharing of information demands that the
process of collecdng data be formalized and the measure-naming convention be

standardized.

Theoreticians arc building models of software programs to help promote an understanding
of the relationships among the data provided by stade analyzers. Theoretical work on
comprehensive models is needed to improve our understanding of measurements.

Programmers could readily use the information obtained from static analyzers to

complément the documentation of their software Systems. Project managers display

measurcment distributions to identify any unusual software units.

Designers can verify some of their specificadons by visualizing the control and data flows.
Finally, software quality engineers can make some predictions on the quality or the risk
inhérent in the System based on software measurement. Re-engineering, reverse-

engineering, testing, and maintenance are some of the acdvities that benefit from static

analysis.

The problem of metric validation remains, however, and can be solved by studies of the

relationships between the measures and data on error rates, development costs and

reliability indicators. Such studies could be viewed as the next step toward the validadon
of this model. The neural network is a promising new tool for metric validation, and
object-oriented approaches offer new applications for stade metrics. We believe that the
formai modeling of source code is a prerequisite for any breakthrough in the
understanding of stade metrics.

8. Acknowledgments

This paper summarizes the work resulùng from a team effort. Many people have been

working on this project in the past five years. My thanks to André Beaucage and Jean

Mayrand for their major involvement in the design and development of the software tool

DATRDÎ, and to software engineers Martin Leclerc and Claude Leblanc for the
implementation. Thanks, too, to Dr. Germinal Boloix for his fruitful comments and

24

discussion on the subject and to the many graduate students who participated in this
project, specifically Jean Mayrand (Ph.D.), Jean Sebasden Neveu, Philippe Mathieu and
Hélène Beneteau de Laprairie.

This work is supportée! by BELL CANADA. We are grateful to professionals from
François Coallier's group at Bell Canada for their supports and comments.

9. Références

[Boeh81] Boehm B.W. Software Engineering Economies, Prentice Hall,
EnglewoodCliffsNJ.,1981

[Brad87] Brady R. B. and Caswell D.L. Software Metrics : Establishing a company-wide

program, Prentice-Hall Inc. Englewood 1987

[Cont86] Conte et al, Software Engineering Metrics and Models,
The Benjamin/Cummings Publishing Comp., 1986,

[Dumk93] R. R. Dumke, Software Metrics, A subdivided bibliography,
Research Report IRB-007/92, Otto Von Guericke University of Magdeburg
Gemany, July 1993.

[Fent91] Norman E. Software Metrics A rigorous approach. chapman &Hall London 1991.

[Hals77], Halstead, M.H. Eléments of Software Science. New York Elsevier North-Holland, 1977)

[Hetz93] Hetzel B. Making software measurement Work, QED Publishing
Wellesley, MA, 1993

[Jone91] Jones C., Applied Software Measurement, McGraw-Hill, Inc. 1991.

[Litt88]. Littlewood, B. Forecasting Software Reliability, Software reliability Modelling
and Identification, Lecture Notes in computer Science 341,

Springer-Verlag,, 141-209,1988

[McCa76] McCabe, Thomas J., A Complexity Measure,
IEEE Trans. on Soft. Eng. Dec. 1976, pp 308-320

[MoI193] Moller K.H and Paulish D.J. Software Metrics A practitioner's guide to improved
product development Chapman&Hall 1993

[Muns89] Munson J.C. and Khoshgoftaar, The Dimensionality of Program Complexity,.
Proceedings of the l Ith International conférence on software Engineering,
Pittsburg, pp. 245-253, may 1989.

[Robi89] Robillard P.,N., Boloix G., The Interconnectivity Metrics: A New Metric Showing How
a program is Organized. The Journal of System and Software 10,29-39,1989.

[Robi91] Robillard P. N., Coupai D., Study on the Normality of Metric Distribution,
Proceeding of the 3rd Annual Workshop on Software Metrics,
Silver falls, Oregon, March 17-19, 1991

[Robi93] Robillard P. N., Simoneau M., "Iconic Control Graph Représentation",

Software-Practice and Expérience, Vol. 23(2), 223-234.

[Zuse91] Horst Zuse, Software Complexity, Measures and Methods,
Walter de Gruyter, Berlin 1991.

25

ÉCOLE POI.YTECHNIQUE DE MONTREAL

