
Titre:
Title:

Bang bang control of an overhead Cartesian crane

Auteurs:
Authors:

Romano M. De Santis, & S. Krau 

Date: 1993

Type: Rapport / Report

Référence:
Citation:

De Santis, R. M., & Krau, S. (1993). Bang bang control of an overhead Cartesian 
crane. (Rapport technique n° EPM-RT-93-06). https://publications.polymtl.ca/9562/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9562/

Version: Version officielle de l'éditeur / Published version 

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-93-06

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9562/
https://publications.polymtl.ca/9562/


& h iWl; i'i-H^ '? ;;'<'i;''' ;..ilJ,:J

EPM/RT-93/6

BANG BANG CONTROL 0F AN OVERHEAD CARTESIAN CRANE

k par

Romane M. DeSantis

S. Krau

Département de Génie Electrique et Génie Informatique

Ecole Polytechnique de Montréal

Mars 1993



Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous
quelque forme que ce soit, sans avoir obtenu au préalable l'autorisation écrite des auteurs.

Dépôt légal, septembre 1992
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Editions de l'Ecole Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, Succursale A
Montréal (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0,10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la manutention.
Régler en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole Polytechnique de
Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente
préalable dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.



BANG BANG CONTROL 0F AN OVERHEAD CARTESIAN CRANE

DeSantis, R.M., Krau, S.,

Génie Electrique et Génie Informatique
Ecole Polytechnique de Montréal

Montréal, Canada

Summary

A motion controller for an over-head Cartesian crane in 3-D space is designed under

the constraint that the control action belong to a discrète set ofassigned values. The design

procédure rests upon a two-step approach: fîrst, one détermines a constraint-free motion

controller satisfying the required dynamic spécifications; second, one replaces this controller

with an équivalent controller satisfying the discrète action constraint. The Hrst step is

implemented by adopting a heuristic 3-D extension of a wellproven 2-D controller. The

second step, by applying récent sliding mode results. Numerical simulations illustrate the

properties of the ensuing feedback System under buth nominal and perturbed operating

conditions.

Keywords: feedback, motion control, overhead crane, sliding mode.
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Ust of Symbols

x: state (in particular, the state of the crane);

u: control (in particular, a control of the crane);

\i: displacement of the girder with respect to the inertial frame;

\y displacement of the troiïey with respect to the girder;

\y angle between the z axis of the inertial frame and the z axis of the load frame;

X4: angle between the x je plane of the inertial frame and the vertical plane containing the
z axis of the load frame;

X5: torsional twist of the câble;

• • » »

X6: xl> X7:= X^, Xg=X3, X9:=X4;

u^: propulsion force applied to the girder,

U2: propulsion force applied to the trolley;

m j: mass of the girder;

niy: mass of the trolley;

m, : mass of the load;

l: length of the câble;

go: gravitational accélération;

Ig: inertia of the load with respect to the z axis;

l,: load inertia with respect to the x axis (and y axis);

p: twist compliance coefficient of the suspended câble;

a:+mgi+mtr+mi(,; b:=mg,+mtr; c:=mgjl; d:=mg,12+!(;

e:=I,-It-mg,I2; g:=mg,gol; h:=2mg,12+2(IfI,)



l. Introduction

The opération of an overhead Cartesian crane entails the motion control of the

girder, the trolley and the hoisting apparatus, so that the suspended load moves along a

prespecified path. Among the techniques successfully explored to automate this opération

are open and closed loop optimal control [RU, Sa.l, Ka.l], pôle placement and LQG linear

state feedback [Hu.l], and fuzzy controllers [Ya.l]. A common feature of thèse controllers

is that they are designed on the assumption that the voltage applied to the crane motors is

arbitrarily selectable within a certain continuous range of values. Practical considérations,

however, make it convenient or necessary that crane motors be energized with only a finite

number of voltage levels.

The natural approach in dealing with this requirement is to have recourse to

nonlinear techniques, such as équivalent gain, phase plane and time optimization [Slo.1,

Ts.l, Po.l]. The dynamic model ofthe crane is rather involved, however, and the modalities

of application of thèse techniques are not évident In addition, difficulties in the practical

implementation ofthe resulting controller as well as in the characterîzation ofits dynamic

and sensitivity properties, are to be expected.

A second approach to solving the problem might be to initially design a controller

by assuming a continuons range ofvoltage values, and to then implement this "continuous"

controiïer by means of a "discrète" controller which, though constrained by a fînite number

of output levels, does, nevertheless, produce an action équivalent to that of the original

controller. One way to implement this replacement could be to simply cascade a pulse-

width modulator with the continuous controller. However, in addition to the cost of the
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extra equipment involved, there is the disadvantage that a small delay is generated, which

may have a destabilizing influence on the feedback System.

The implementation ofthe continuous controller by means ofan appropriate discrète

sliding-mode controller oflers an alternative way [Ba.l, De.l, De.2, Utl]. As shown in thèse

références, a sliding-mode controller does not require a spécial equipment, nor does it

necessarily introduce an additional delay. Moreover, this controller offers the potential to

improve sensitivity to parameter variation and extemal perturbation. A Hrst application

ofsliding-mode techniques to the design of "discrète" motion controllers for overhead cranes

was explored in [De3]. Though this development bas demonstrated the modalities and the

feasibility of the approach, it is somewhat incomplète, however, in that it is confined to a

travel motion of the crane's load contained in a vertical plane (a 2-D motion with either the

trolley or the girder blocked). In what follows we will consider the more realistic case where

the trolley and the girder move concurrently, causing a 3-D motion of the load. In

accordance with [De3] we will pursue this objective by relying on the techniques developed

in [De.2]. It should be noted that with the transition from 2-D to 3-D motion, the

dynamics of the load becomes intrinsically nonlinear and intercoupled. As a conséquence,

Lyapunov linearization, which is routinely applied in the 2-D case, is no longer applicable.

In addition, a key hypothesis ofthe basic result in [De.2], which plays an essential rôle in

the planar case [De3], turns out not to be satisfied by the crane's dynamical model to be

considered in the 3-D case. Thèse difficulties will be overcome by modifying the main result

in [De.2] so as to make it applicable to the context under considération.
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2. The Mathematical Setting

From a mathematical point of view, the problem under considération may be

formulated as foUows: Let a nonlinear time-varying dynamical plant be described by the

differential équation

x(t) = fo(x,t) + Bo(x,t)(u(t)+p(t)) x(0) = XQ. (l)

where x(t) e R" represents the plant state, u(t) € Rm is the control, p(t) e Rm represents

the influence of parameter variations and external perturbations; ^(x,t) and Bo(x,t) are

appropriately dimensioned real-valued vector and matrix functions. The problem is to

design a (discrète) control, u(t), satisfying the following requirements: a) the feedback

System dynamicsmustconfonntoassigned spécifications; b)th®componentsof^^^

action, u(t), are constrained to belong to an assigned discrète set, Uj(t) e 11;:= {un, ..., Uy^},

i == l... m.

In many applications (such as the motion control of an overhead crane), various

techniques are available which successfully lead to a continuous controller satisfying the

fîrst requirement As mentioned in the introduction, one way to solve the problem is

therefore to assume that one such (continuous) controller Uo(x,t), is available, and to

develop a controller, u(x,t), satisfying the second requirement, and capable ofproducing the

same feedback system dynamics as UD(x,t).

Références [De.2, DeJ] suggest that this latter development may be carried out by

means cfa sliding-mode controller, obtained by the following procédure: Using the notation

a(t):= Bo(x,t)Bo+(x,t)S(t) (2)

where Bo+(x,t) denotes the pseudo-inverse of Bo(x,t), and



r ;
S(t) := <x(t) - fo(x,t) - Bo(x,t)uD(x,t)}dt, (3)

Jo

the discrète controller is selected so as to provide an output such that

u,*(t) e V,, i= l,.., m (4)

and

SGN{u;(t)-UD,(x,t)+p,(t)}:= - SGN{[Bo'a(t)],}. (5)

The key property of such a controller is formalized by the following result (a

variation oftheorem l in [De.2]):

Theorem l. If Bo(x,t) is of full rank, then: the dynamics of System (l) submitted to a

discrète control satisfying (2-5) are described by

•

x(t) = fo(x,t) + Bo(x,t)uD(x,t) (6)

Proof:

Consider the positive functional |a(t)|2, and observe that

l/2d/dt|a(t)|2= «y(t),<T(t)> (7)

=<a(t),BA+<x(t)-^(x,t)-BoUD(x,t)+Bo+{d/dt(BoBo+)}S(t)>

=<Bo'a(t),u(t)-UD(x,t)+p(t)+Bo+{d/dt(BoBo+)}S(t)>

=S<[Bo'a(t)],,u,(t)-UD,(x,t)+p,(t)+lBo+{d/dt(BoBo+)}S(t)].>. (8)

By selecting u; = u'; with u'; such that

SIGN{u,(t)-UD,(x,t)+p,(t)+[Bo+{d/dt(BoBo+)}S(t)],}=SIGN{[Bo'a(t)],}

(9)



we have

d/dt | o(t) 12=-S | [Bo'a(t)], | * | u,(t)uD,+p.(t)+ [Bo+{d/dt(BoBo+)}S(t)], |

ï 0 (10)

Setting a(0)=0, implies that

a(t)=0 for t>0, (11)

and therefore

•

a(t)=0 for t>0. (12)

This equality implies in turn that the state trajectory of the System is described by

•

x(t) = fo(x,t) + Bo(x,t)u^(t) + p(t), (13)

where u^u (commonly referred to as tfae eqmvalentcontrol)mu^^^^^

condition gives

"equ(t)=UD(x,t)-p(t)-Bo+{d/dt(BoBo+)}S(t). (14)

it follows that

rl /
S(t) := {x(t) - fo(x,t) - BoUD(x,t)}dt,

Jo

r
{Bo(u^(t)-UD(x,t)+p(t))}S(t)} = 0

Jo

r
<BoBo+{d/dt(BoBo+)}S(t)}
Jo (15)

This implies in turn that S(0)=0 also implies S(t)=0 for each t, and therefore

that



x(t) = fo(x,t) + Bo(x,t)uo(t) x(0) = XQ. (16)

Remark l. Under nominal operating conditions, the discrète œntroller considered by the

theorem générâtes a state trajectory identical to that of the continuous controller (nominal

trajectory). Under perturbed conditions, the state trajectory remains identical to the

nominal trajectory provided that parameter variations and external perturbations may be

represented in tenus of an input équivalent perturbation p(t).

Remark 2. Theorem l gives little information about the dynamical behavior of the System

in the présence of parameter variations and extemal perturbations that may not be

represented in terms ofthe vector p(t). This is contraiy to theorem l in [De.2], which uses

the additional hypothesis that Bo(x,t)Bo (x,t) isa constant matrix. This hypothesis allows

a more complète robustness characterization of the dynamics of the plant with respect to

more général perturbations. As will be évident from the model developed in the next

section (eqns 22,24), however, such hypothesis is not applicable in the case of an overhead

crane operating in 3-D space, hence the necessity of proceeding with a somewhat more

restrictive result and leaving open the question of the behavior of the discrète controller

under perturbations not representable by p(t).

3. Tbe Overhead Crane Model

With référence to Figure l, assuming a suspension câble of constant length, the

kinematic configuration of a Cartesian overhead crane can be represented in terms of

parameters Xi, x^, \^ and X4 where

Xi gives the position of the girder with respect to the inertial frame;



x^ gives the position of the trolley with respect to the girder;

X3 is the angle between the z axis of the inertial frame and the z axis of the load frame;

X4 is the angle between the z_x plane of the inertial frame and the vertical plane containing

the z axis of the load frame.

The state of the crane can in turn be represented in terms of a vector xcR9,

X':= [Xi X2 X3 X4 X5 Xé X7 Xg X<,]' (18)

where x^, \y Xy and X4 are as defined above, X5 is the torsional twist of the

câble, and

• • • »

X^:= Xp X^:= Xy Xg=Xg, X9:=X4. (19)

The control can be represented by a 2-D vector ueR2, u:= [u^Uz]', where Ui is the propulsion

force developed by the girder motor, and u^ is the force developed by the trolley motor.

Taking into account the non-holonomic constraint
•

X5= X9COSX3, (20)

and applying the Euler-Lagrange approach, the dynamics of the crane may be modelled in

terms ofthe differential équation (this mode! is adapted from [Ka.l])

x = f(x) + B(x)u

where xeR9, ueR2, and matrix functions f(x) and B(x) are described by

(21)

with

f(x):= B(x):=
'2 J (22)

FI':= [t, f2 f3 f^fs]' F2':= [f, ^ fg f,V
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[fl f; f3 f4 f5]) := [Xé X7 Xg Xg X9COS(X3)]'

FZ := M-1 FZ F2':= [f,, f^ fg £,]'

f^:=CSinX3COSX4(Xg2 +X92 )-2cCOSX3COSX4XgX9

f7:= CSinX3COSX4(Xg2 +X92 )+2csinX4COSX3XgX9

fg:= -esinx3Cosx4Xg2-gsinx3

f9:= -pCOSX3X5-hsinX3COSX3XgX9 (23)

and

B,:= Ml

l
0

0
0

0
l

0
0

M:=

a

0

ccosx3Sinx4

CS1I1X3COSX4

0

b

CCOSX3COSX4

-csinx3Sinx4

ccosx3Sinx4 csinx3cosx4

ccosx3cosx4 -€$111X38111X4

d 0

(24)

ml2 sinxg2 +IaCosx32 +ItSinx32

The inertia matrix of the load bas been assumed to be diagonal and given by

(25)



J:=

I< 0

0 I,

0 0

0

0

11

û^-uitrt-

J.^UA.t.lf

FlWVKC^

/:

"TTtoUtA^ DiSp.ta.cfcWltM-b
0

Figure l: 3-D Euclidean Overhead Crane
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4. Motion Controller Design

In accordance with sections l and 2, we first design a (continuous) motion controller.

As is common practice in similar studies, the controller selected is a member of the state

feedback family

[UD1 UD2l := UD:= -K[x - XD] (26)

where Xp represents the desired (equilibrium) state, and K is an appropriate (usually state-

dépendent) gain matrix.

Letting

XD:= [XDI xo2 000000 0]', (27)

where (x^i x^z) denotes the desired position of the trolley with respect to the fîxed frame,

a generalization of the approach in [Hu.l, De3] suggests that a suitable state feedback

controller is given by

• •

UD1 = -KA[X1-XD1 X3sin(x4) xl X3Sin(X4)] (28)

• •

Uo2=-KB[X2-XD2X3COS(X4)X2 X3COS(X4)] (29)

where K^, (Kg), is a constant matrix computed so as to stabilize the crane under the

hypothesis that the trolley (the girder) is blocked and that the crane motion is confined to

a vertical plane [De J, Hu.l, Kr.l].

Adopting the physical parameters in Table l, and characterizing the linearized model

associated with thèse constrained motions by the eigenvalues Pi =?2= ?3=P4 = -l (for

the vertical motion with the trolley blocked), and pi =p2 =Ps = ?4 = -1.5 (for the vertical

motion with the girder blocked), one obtains

KA = [-3920 -15660 237470 28300]
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KB = [-2478 -6608 -9940 -24063] (30)

Next, we consider the implementation of the continuous controller defined by (28-30) in

terms ofa discrète controller the entries ofwhich will be required to satisfy the constraint

u,'€U,:={u,j}, i=l,2,j=l,2, (31)

with

Ui ={ 0,+- 250, +- 600 +- 2500, +- 4500}

U^ ={ 0, +- 950, +- 1500, +- 3500}. (32)

Following theorem l, a suitable discrète controller may be obtained by selecting u,(t) so that

u, e U,, and

SGN{u,*(t)-UDi(x,t)+Mi(t)}:= - SGN{[Bo'o(t)],} (33)

where Bo(x) is given by (22, 24,25) and a(t) is obtained by combining (2, 3) with (22, 23).

Observe that

S(t):=
Si

(34)

with Si =0, and

r
Sz(t) := q - { Fo2(x) + Bo2(x)uD(x)}dt,

Jo
(35)

where

q:= 1x5X6X7X3X9]', (36)

and Fo2(x), BQ^CX) are the nominal values of F^x), ^(x)'

It follows that condition (33) becomes
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SGN{u,*(t).UD,(x,t)+max{|p,(t)|}}:=

SIGN{ [Bo2'(x)Bo2(x)Bo2+(x)S2(t)],} (37)

which is met by selecting u;'(t) as given by

u;(t)= - M(t).SIGN{[Bo2'(x)Bo2(x)Bo2+(x)S2(t)],} (38)

with M(t); the smallest élément in {Uy} such that

M(t),> K,(x,t)| +max|p,(t)|. (39)

mass of the girder (nig;) = 5000 Kg

mass of the trolley (m^) = 4200 Kg

mass of the load (m^) = 600 Kg

length of the câble (L) = 8 m

gravitational accélération (g) = 9 m/sec2

inertia of the load with respect to the z axis (Ig) = .1 Kg m2

inertia of the load with respect to the x axis (l,) = .01 Kg m2

inertia of the load with respect to the y axis (l;) = .01 Kg m2

compliance coefficient of the suspended câble (p) = .1 N*m/rad

Table l: Overhead crane nominal parameter values
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5. Simulation Experiments

The comparative behavior of the discrète controller and its continuous counterpart

have been investigated by simulation. The basic simulation test procédure adopted was as

follows: the crane's dynamic model is defined by (18-24), with the crane's nominal

parameters as in Table l. The continuous controller is described by (28,29) with K^, Kg as

in (30). The discrète controller is described by (31, 33). Both controllers are required to

implement a transfer ofthe crane from the initial state [00 0 00 0 000]' tothe final state

[11000000 0]'.

Test N.1: STEP RESPONSE UNDER NOMINAL OPERATING CONDITIONS

Objective: To illustrate comparative behavior under nominal operating conditions.

Modalities: As stipulated in the basic test procédure under nominal operating conditions

(absence of perturbation, System parameters corresponding to their expected values).

Résulta and Discussion: As predicted by theorem l, the results of this test (see Figures 2-4)

confirm that under nominal operating conditions the output behavior of the continuous

controller and of its discrète counterpart are essentially identical. The slight discrepancy

in the coordinate X4 is due simply to the influence of the intégration step used in the

simulation.

Test N.2: THE INFLUENCE 0F A BIGGER-THAN-EXPECTED LOAD MASS

Objective: To illustrate comparative behavior under a bigger-than-expected load mass.

Modalities: Identical to those of experiment N.l, except that the load mass is now assumed
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to be equal to 7000 Kg, rather than to have the nominal value of 5000 Kg.

Results and Discussion: The présence of a bigger-than-expected load mass causes

perturbations that cannot be represented in tenus of the vector p(t) considered by the

theorem. Thus a theoretical result allowing us to predict its influence is not available. The

simulation results in Figure 2 indicate, nevertheless, that the dynamics of the continuous

and the discrète controllers remain essentially équivalent They also indicate dynamic

behavior only slightly différent from the nominal one. The robustness to this type of

perturbation appears to be quite acceptable in both the discrète and the continuons

controller.

Test N3: INFLUENCE 0F EXTERNAL PERTURBATION

Objective: To illustrate comparative behavior under the application of a sinusoïdal

perturbation to the trolley.

Modalities: Identical to those in test N.l, except that now a sinusoïdal perturbation force

is applied to the trolley. The frequency ofthis perturbation is 0.2 hertz; the amplitude is 100

N.

Results and Discussion: With référence to theorem l, in this case we have p(t)= IOOB()

sin(.4?rt). From theorem l, we expect this perturbation to have an influence on the

dynamics of the continuous controller, and no influence on the dynamics of the discrète

controller. The results in Figure 3 confirm that this is in fact the case. It follows that from

the perspective of this test the sensitivity performance of the discrète controller is superior

to that of the continuous controller it attempts to emulate.
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Test N.4: INFLUENCE 0F A DEIAY IN THE LOOP

Objective: To analyze sensitivity to the présence of a delay in the feedback loop.

Modalities: Identical to those of experiment N.l, except that a delay of l msec is now

introduced in the application of the control action.

Results and Discussion: As the available theoretical results are not applicable in the

présence ofa delay, it is once again difficult to predict the outcome ofthis experiment prior

to its implementation. The simulation results (Figure 4), suggest that while the dynamic

behavior produced by both the continuous and the discrète controller is inïïuenced by this

perturbation, this influence is somewhat more damaging in the case of the latter controller.

This in turn suggests that in implementing the continuous controller by means ofa discrète

action particular attention bas to be paid to minimize such a delay.
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Conclusions

The design of a motion controller for an over-head Cartesian crane in 3-D space,

under the constraint that the control action belong to a set with a ïïnite number of values,

may be carried out by means of a two-step approach: ûrst, design a constraint-free

(continuous) controiïer satisfying the required motion spécifications; second, replace this

continuous controller with an équivalent sliding-mode (discrète) controller satisfying the

finite-number-of- values requirement. In implementing thîs approach, there are three main

difficulties: first, the solutions proposed in the literature for carrying out the Hrst step

appear to be either excessively complex (as, for instance, in [Ka.l]), or only applicable to

the 2-D case (as in [Ri.l, Hu.l, De J]); second, the présence of nonlinear intercouplings m

the 3-D model prevents a Lyapunov- type linearization of the plant model, and hence the

adoption ofresults based on such a linearization (as was the case in [De3]); third, the

dynamics of the crane do not satisfy the hypothesis that the matrix Bo(x,t)Bo+(x,t) be

constant (this hypothesis is required by the main theorem in [De.2]).

An effective way to overcome the fîrst difficulty is to obtain a 3-D controller by the

concurrent application of two 2-D controllers of the type proposed in [Hu.l, De3]. The

input to thèse controllers is represented by the projection of the load motion over the

vertical planes associated with the motion of the girder and of the trolley. The second and

third difficulties may be overcome by modifying the main result in [De.2] so as to make

it applicable to the problem under considération (theorem l).

Proceeding in this fashion, a discrète controller is obtained, of which the structure

is quite simple and easy to implement. Simulation results confirm theoretical predictions
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to the effect that under nominal operating conditions, the dynamics generated by the

discrète controller are identical to those characterizing the continuous controller. This

remains the case under the présence of input-equivalent parameter variations and external

perturbations (such as neglected forces acting on the girder or the trolley). The available

theory does enable prediction of the influence of (not input-equivalent) perturbations such

as those related to an only approximate knowledge of the crane's physical parameters (e.g.

mass load, girder and trolley mass, câble length, etc..). The simulation results do suggest,

however, that even in this case the dynamics of the discrète controller compare favorably

with those associated with the continuous controller.

On a less optimistic note, it must be added that the simulation results also suggest

that the performance of the discrète controller is problematic in the présence of a delay in

the control loop. In addition to this, we must expect that practical modifications of the

proposed scheme might be required in order to render the high-frequençy switching

produced by the discrète controller compatible with the physical capabilities of the crane

motors.
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