POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE =50

Polytechnique Montréal DUNGEMIERIE
Titre: " -
Title: Analyse critique de la mesure du couplage logiciel
Auteurs:. Denis Valois, & Pierre N. Robillard
Authors:

Date: 1993
Type: Rapport / Report

LEL . 'Valois, D., & Robillard, P. N. (1993). Analyse critique de la mesure du couplage
Refergn;e.l logiciel. (Rapport technique n° EPM-RT-93-29).
Citation: nttps://publications.polymtl.ca/9532/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/9532/

Version: Version officielle de I'éditeur / Published version

Conditions d’utilisation

Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: o\ rT.93.29
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/9532/
https://publications.polymtl.ca/9532/

EPM/RT-93/29

Analyse critique de la mesure du couplage logiciel

Denis Valois M. Sc.

Pierre N. Robillard, Ph.D., Ing.

Département de génie électrique
et génie informatique

Ecole Polytechnique de Montréal

novembre 1993

3 0 NOV. 1993

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous quelque
forme que ce soit, sans avoir obtenu au préalable I’autorisation de I’auteur,
OU des auteurs

Dépot 1égal, novembre 1993
Bibliotheque nationale du Québec
Bibliotheque nationale du Canada

Pour se procurer une copie de ce document, s’adresser:

Les Editions de 1"Ecole Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la manutention.
Régler en dollars canadiens par cheque ou mandat-poste au nom de 1’Ecole Polytechnique de Montréal.

Nous n’honorerons que les commandes accompagnées d’un paiement, sauf s’il y a eu entente préalable
dans le cas d’établissements d’enseignement, de sociétés ou d’organismes canadiens.

TABLE DES MATIERES

RT3 11114 T T o = 3
REME CIEMENE S vt ittt ittt ittt ettt ae e e eenoenseneennss 5
S 51 ok afeTe 16 Vo] ol o) « KU 6
La modularité du 10giciel 9
1.1 Concepts fondamentaux et auteurs classiques 9
1.2 Constructeurs modulairesSououee it veeneennens, 11
1.3 Une taxonomie de la modularité 12
Le couplage inter-modulaireoeveereuennnn. 14
2.1 Le couplage versus la cohésionuveeu... 14
2.2 La catégorisation du couplageeeenenenn 15
2+-3-Une modélisation-du couplage i+ 19
La mesure AU COUPLage ..ttt it toeoeessennneeeennns 22
3.1 La mesure basée sur les modéles existants 22
3.2 La représentation du couplageceiuiun.. 23
3.2 Métriques existantesv.iiiiitt et erete e 25
Problématiqueovue... e e ettt 30
Bibliographie. . vttt ittt e e e e e e 33

SOMMAIRE

Une bonne conception logicielle est a la base d'une
programmation de qualité, de méme qu'une bonne programmation
facilite l'entretien, l'analyse inverse et la ré-
utilisation. Au coeur méme de ces concepts se retrouve la
notion de "module". Dans plusieurs disciplines en génie
logiciel on s'intéresse soit a identifier les
caractéristiques d'une modularisation de qualité, pour
éventuellement proposer des critéres menant a une bonne
conception, soit a mesurer la qualité d'une conception ou
d'une programmation. Ainsi, la ré-utilisabilité d'un
logiciel sera-t-elle en partie fonction de sa modularité.
Malheureusement, aucun consensus n'est apparu dans ces
disciplines, que ce soit sur des notions aussi élémentaire
que la définition d'un module, et encore moins sur les
critéres pouvant servir a mesurer une modularisation. En
effet, bien que le couplage soit défini comme les liens qui
relient ensemble deux ou plusieurs modules, les criteres de
qualité du couplage sont subjectifs, et difficilement
mesurables. D'autres parts, quelques métriques de couplage
ont été proposées, mais les modéles sous-jacents, et les
métriques, sont ad-hoc soit & un type d'application (ré-
utilisabilité, analyse inverse, standards de programmation,
etc.), soit & un environnement particulier (package Ada,
procédure Pascal, objet C++, etc.).

Le but premier de cette recherche est donc de faire le point
sur la mesure du couplage logiciel, tout d'abord en passant
en revue critique les notions de module et de couplage, puis
en présentant exhaustivement 1l'état-de-l'art de la mesure du
couplage en insistant sur une présentation comparative de la
force et de la faiblesse de chacun des modeles.

Une taxonomie des constructeurs modulaires est présentée a
la section 1.3. En 2.3, un modéle de représentation et
d'analyse du couplage est proposé. Ces deux items
constituent un apport original a cette recherche.

Finalement, une problématique est identifiée et plusieurs
hypotheses de recherche sont soumises.

REMERCIEMENTS

Je tiens a remercier certaines personnes étroitement liées a

cette recherche.

En tout premier lieu, & mon directeur de recherche Pierre N.
Robillard je présente mes respects et ma gratitude. Son
talent pour poser les bonnes questions furent une source

constante de motivation et de stimulation.

Denise Bigué, mon épouse, pour son infinie patience a mon
égard ainsi que sa cohésion constante mérite une mention
honorable, de méme que mon module-fils Claude pour avoir
hérité de certaines fonctions, et a l'encontre de toutes
théories conserve un couplage élevé avec ses parents:.

Je remercie également le Collége militaire de Saint-Jean
pour l'environnement stimulant et le soutien financier.

INTRODUCTION

Le couplage logiciel est d'une grande importance en
conception, en programmation et en analyse inverse. C'est
un critere incontournable en qualité logicielle. Il est
pourtant essentiel dans le contexte de ce document de
définir le couplage et son domaine d'application, de
présenter les corrélations entre le couplage et la qualité
logicielle, et d'exhiber quelques applications.

Dans le cadre de cette étude, le couplage-systéme est
différencié du couplage inter-modulaire. Le couplage inter-
modulaire est constitué par les liens reliant entre eux deux
ou plusieurs modules, alors que le couplage-systéme est

défini comme 1l'ensemble du couplage inter-modulaire présent
dans ‘le systéme. Bien que ce soit, & la limite, un abus
terminologique, cela permet de considérer deux systémes en
fonction de leur couplage. Il est universellement accepté
gqu'un bas couplage est préférable a un haut couplage; un bas
couplage désigne peu de dépendances inter-modulaires et est
généralement associé a la qualité logicielle, tandis qu'un
haut couplage dénote beaucoup de dépendances inter-
modulaires et implique la pauvreté logicielle [Sommerville-

89, Schach-90].

Le couplage inter-modulaire est donc une abstraction
englobant toutes les dépendances inter-modulaires. Il sera
donc question de couplage-donnée et de couplage-contrdle.
Le couplage-donnée est présent quand un module référe (ou
peut référer) une donnée déclarée ailleurs, que ce soit en
lecture ou en modification. Dans ce dernier cas, il est
d'usage de qualifier ce genre d'accés d'effet de bord. Le
couplage-contr8le est identifié par 1l'invocation de
l'exécution d'une routine déclarée extérieurement. Ce genre
6

de distinction peut paraitre évident, mais elle est somme
toute assez artificielle: dans quelques situations, 1la
frontiére entre le couplage-donnée et le couplage-contrdle
est plutdt floue, comme dans l'invocation d'exécution d'une
variable-procédure. La dépendance est & la fois une
dépendance-contrdle et une dépendance-donnée. Une
dépendance sur un objet contenant des méthodes est aussi un
cas non évident. De plus, on peut aussi considérer le
couplage-référence, caractérisé par une référence a un
contenant sans référence au contenu, qu'il soit contréle ou
donnée. Etonnament, il est rare dans la littérature de

distinguer ces trois cas.

Le domaine d'application du couplage est 1l'ensemble sur
lequel on l'observe et sur lequel on espére le calculer:
soit l'ensemble des modules constituant un systéme logiciel.

Une modélisation du couplage est donc indissociable d'un
modele de la notion de module: la premiére partie en est
consacrée. Ici, le terme "modularité" désigne une
décomposition en modules effective, alors que
"modularisation" référe a l'action de décomposer ou de
concevoir un logiciel en modules. Ainsi, un ingénieur
logiciel effectue une modularisation lors d'une conception
et observe la modularité d'un systéme dans un cadre d'une
analyse inverse. Une modularisation de qualité est aussi
intuitive que difficile & définir et & enseigner [Bailie-
91]. Dans [Woodfield-8la], l'auteur conduit une étude
empirique de la corrélation entre la modularité et la
compréhension de programme, et conclue (& notre grande
surprise!) que plus un programme est bien modularisé,
meilleure est sa compréhension. Malheureusement, son étude
n'inclue pas de programme modularisé & outrance.

La mesure du couplage est importante et utile. Depuis la
publication d'une taxonomie du couplage dans [Myers-75], de

nombreux auteurs ont défini et expérimenté plusieurs
métriques dans toutes sortes de contextes.

Le couplage inter-modulaire peut é&tre ainsi associé
trivialement a l'effort nécessaire pour extraire un module
de son contexte, a le ré-utiliser, ou & le re-concevoir
[Colbrook-89, Choi-90, Purtilo-90, Power-90]. Dans [Selby-
88], l'auteur montre, dans un contexte d'entretien de
logiciel, comment une erreur peut étre localisée dans les

modules a haut couplage-donnée.

Moins trivialement, une mesure du couplage peut aider lors -
de la conception et de la programmation [Reynolds-84,
Mitchell-88, Gomaa-89, Muller-90].

Une étude empirique sur la corrélation entre le type de

couplage [Myers-75] et la facilité d'entretien démontre que
le type de couplage présent (et non sa quantité) a peu
d'importance sur la facilité d'entretien [Lohse-84]: 1la
classification de Myers ne refléte donc pas toute la
réalité. L'importance d'un nouveau modéle du couplage a la
fois qualitatif, quantitatif et universel, est donc évidente
[Ejiogu-90]. D'un tel modéle dérivera une métrique
applicable dans plusieurs contextes.

1. LA MODULARITE DU LOGICIEL

Qu'est-ce qu'un module? Il y aura autant de réponses
différentes que d'auteurs! On peut définir un module comme
un découpage permettant aux humains de mieux comprendre une

réalité complexe.

Dans ce chapitre, la notion de module sera cernée: depuis

les premiers auteurs jusqQu'a un parcours des constructeurs

modulaires disponibles dans les langages et environnements

contemporains. Finalement, une taxonomie de la modularité

permettra de capturer quelgues aspects fondamentaux. Cette
catégorisation est originale & la présente recherche.

Dans le contexte de ce document, le terme "modularité"
désigne une décomposition en modules déja effectuée, alors
que "modularisation" réfere a l'action de décomposer ou de
concevoir un logiciel en modules. Ainsi, un ingénieur
logiciel effectue une modularisation lors d'une conception
et observe la modularité d'un systeme dans un cadre d'une

analyse inverse.

1.1 Concepts fondamentaux et auteurs classiques

Une des premiéres tentatives de définition revient & David
Parnas [Parnas-72al: un module est un ensemble d'états,
accompagné de fonctions pour changer d'état, et de d'autres
fonctions retournant une vision de 1l'état actuel. Bien que
cela puisse sembler curieux a prime abord, sept mois plus
tard, il change sa définition de tout au tout [Parnas-72b,
Parnas-85]: un module est une affectation de travail, i.e.
une téche a faire. Rien de bizarre dans tout ceci; le
contexte était trés différent.

9

Quelques années plus tard, Stevens et Myers dans [Stevens-
74, Myers-78] définissent un module par un ensemble
d'énoncés satisfaisant trois conditions:
(1) c'est un ensemble fermé,
(2) i1 a le potentiel d'étre invoqué par n'importe quel
autre module,
(3) i1 a le potentiel d'étre compilé séparément.

Déja cela semble a la fois général et plus précis.
Toutefois, considérer un module comme une entité
exclusivement exécutable semble trop limitatif: les
fichiers de déclarations et les packages Ada entre autre ne
peuvent étre considérés comme des modules.

Peu de temps aprés, Yourdon et Constantine [Yourdon-79]

offrent une définition acceptable: un module est

(1) une séquence lexicalement contigtie

(2) d'énoncé de programme,

(3) bornée par des éléments délimiteurs et
(4) ayant un nom d'agrégat.

Les quatre conditions énumérées couvrent un trés large
domaine et c'est cette définition qui est acceptée un peu
partout.

Notons pourtant que ces définitions n'en sont pas... Les
auteurs définissent un module par ses qualités et non par
son essence. La petite définition fournie en té&te de

chapitre décrit l'essence du module et non son existence.

10

1.2 Constructeurs modulaires

Lors d'une modularisation, il n'est pas évident si la
structure syntaxique du langage de conception affecte la
prise de décision associée au processus de raffinement
successif. Reynolds [Reynolds-90] présente un modéle de
raffinement successif couplé & la structure grammaticale du
langage de support. Une question naturelle serait de
s'interroger sur la relation entre la modularisation en
programmation et les primitives syntaxiques offertes par le
langage de programmation. Intuitivement, tout indique que
la méme relation existe au niveau de la programmation.

Les constructeurs modulaires disponibles dans les langages

de programmation contemporains seraient donc le Ysupport" de
la modularisation & ce niveau, un peu comme le langage
naturel est le support de la pensée humaine. De maniére
équivalente, s'il est difficile de réfléchir & un sujet
inexprimable, il devrait é&tre autant difficile de coder un
type de module dans un langage ne l'offrant pas en
primitive. As-t-on déja essayé de coder une co-routine ou

un moniteur en Fortran ou en Pascal?

Les constructeurs de modules au sens de Yourdon et

Constantine sont considérés.

Parmi les constructeurs modulaires universellement reconnus
[MacLennan-87, Ghezzi-87, Teufel-91], on compte:

* la procédure et la fonction

* la macro-définition, incluant le fichier de

déclarations

* le package Ada, le module au sens de Modula-2

* la classe et l'objet, au sens de SMALLTALK et C++

* la base de données

11

Les primitives "historiques" incluent:
* le paragraphe COBOL
* la routine (GOSUB) BASIC
* le BLOCK DATA au sens de Fortran

Un module dit environnemental est indépendant du langage de
programmation et n'est relatif qu'a l'environnement de
programmation:

* le fichier

* 1'unité de compilation

Les constructeurs a la sémantique spécialisée sont:
* la téche Ada
* le générique Ada (procédure et package)
* le moniteur de Hoare-

1.3 Une taxonomie de la modularité

Dans cette section, une taxonomie de la modularité
logicielle est présentée.

Le tableau ci-aprés est une classification des différents
constructeurs modulaires par granulité. Le critére de base
est capturé par la dichotomie contenant-contenu. Un
constructeur strictement contenant ne peut é&tre déclaré
localement a un autre constructeur. Un constructeur
uniquement contenu n'a pas le potentiel de définition
imbricable: il est strictement atomique.

12

granulité large | fichier

(contenant) | unité de compilation
_____________________ | e o - ————— — -

granulité moyenne | objet C++

(contenant et | procédure/fonction a-la Pascal
contenu) | constructeur local récursif

granulité fine routine style BASIC

[
{(contenu) | paragraphe COBOL
| macro-définition
| constructeur non-récursif

Le niveau de granulité exprime aussi la capacité de
regroupement du gontenant par rapport a la fonctionalité du
contenu. Ainsi, au niveau le plus élevé tous les
constructeurs modulaires sont susceptibles de s'y retrouver
(plus ou moins imbriqués), alors qu'au niveau le plus bas se
retrouvent les constructeurs atomigques. Le niveau de
granulité se définit par la déclaration du constructeur:

une procédure Ada peut étre de granulité moyenne si elle est
déclarée localement ou de granulité large si elle est
compilable séparément. En ce sens, une fonction "C"' est de
granulité large parce qu'elle est toujours compilable
séparément (non imbricable), alors qu'une procédure/fonction
Pascal est de granulité moyenne parce qu'elle est toujours
déclarée localement. Ce concept de granulité est donc
fortement relié aux notions de globalité et de localité.

13

2. LE COUPLAGE INTER-MODULAIRE

Le couplage inter-modulaire est constitué par les liens
reliant entre eux deux ou plusieurs modules; c'est une
abstraction englobant toutes les dépendances inter-
modulaires, quel que soit leur type. Il est universellement
accepté qu'un bas couplage est préférable & un couplage
élevé; un bas couplage désigne peu de dépendances inter-
modulaires et est généralement associé a la qualité
logicielle, tandis qu'un haut couplage dénote beaucoup de
dépendances inter-modulaires et implique la pauvreté
logicielle [Sommerville-89, Schach-90].

Le couplage et la cohésion constituent des critéres trés
importants de qualité [Krauskopf-90]. Parce qu'il sont

applicables tét dans le cycle de vie (dés la conception),
ils peuvent &étre utilisés dans toutes les phases
subséquentes, incluant la programmation, l'entretien,
l'analyse inverse, etc.

Dans ce chapitre, les notions de couplage et de cohésion
seront mis en relation, différentes taxonomies du couplage
sont présentées, puis une modélisation originale de la
représentation et de l'analyse du couplage est développé.

2.1 Le couplage versus la cohésion

La cohésion est le terme par lequel est désigné les
relations fonctionnelles intra-modulaires [Yourdon-79]. Un
module hautement cohérent ne contient aucun élément étranger
a sa fonctionnalité, alors qu'une cohésion de bas niveau
indique que le module contient plusieurs

instructions/déclarations n'ayant aucun rapport entre eux.

14

Le couplage et la cohésion sont intimement reliés. En
effet, ils sont une indication de la qualité de la:
décomposition modulaire: la cohésion capture le degré avec
lequel chagque module implante une seule

abstraction, alors que le couplage identifie 1'indépendance
de chague module. A une bonne conception modulaire est
associée un bas couplage et une cohésion élevée.
Inversement, si ces deux criteéres sont satisfaits, un
systéme sera considéré de bonne qualité modulaire.

Ainsi, Murtagh [Murtagh-84, Murtagh-91] présente des
algorithmes de restructuration de systéme pour réduire le
couplage-contrdle. Dans un contexte d'entretien logiciel,
Cimitile [Cimitile-90] propose un outil CASE de
restructuration pour conserver un couplage-donnée de bas

niveau. Selby [Selby-881 utilise le ratio couplage/cohésion
pour prédire la localisation d'erreurs.

2.2 La catégorisation du couplage

Myers [Myers-75] a le premier proposé une taxonomie du
couplage. Il distingue les six niveaux suivants (traduction
libre): ;

couplage par donnée (data coupling)

couplage par structure (stamp coupling)

couplage par contrbdle (control coupling)

(1)
(2)
(3)
(4) couplage extérieur (external coupling)
(5) couplage par région (common coupling)
(6)

couplage par contenu (content coupling)
L'ordre de présentation coincide avec l'ordre de préférence:
le niveau (1) étant le meilleur et le niveau (6) étant le

pire. Il faut distinguer la terminologie utilisée dans ce

15

document (couplage-donnée vs couplage-contrdle) du
vocabulaire de Myers. Le couplage (1) par donnée désigne
une dépendance inter-modulaire restreinte aux paramétres
procéduraux. Le couplage (2) fait référence au passage par
paramétre d'une structure dont quelques composantes sont
effectivement utilisées. Le couplage (3) est présent quand
la logique interne d'un module est contrdlée par un
paramétre. Le couplage (4) extérieur implique la présence
de variables globales homogenes. Le couplage (5) par région
indique la présence de variables communes hétérogénes.
Finalement, le couplage (6) désigne l'altération directe de
contrdle ou de données dans un module, ou quand deux modules
partagent le méme code [Yourdon-79]. Un bon exemple de
couplage par contenu est la "routine" BASIC qui peut
partager le méme espace que le programme principal: il

n'est pas nécessaire d'invoquer GOSUB pour exécuter le code

Ay} EVN gy
Ucdi1a Louullilic,

Yourdon et Constantine [Yourdon-79] reprennent la
classification de Myers pour n'en faire qu'une dimension
dans leur modeéle. Ils définissent quatre facteurs
influen¢ant la quantité de couplage:
(1) type de connection inter-modulaire
(transfers de contrdle)
(2) complexité de l'interface
(le nombre d'items transférés)
(3) type de flot d'information
(grosso-modo les niveaux de Myers)
(4) moment auguel l'information est associée aux
identificateurs

Le facteur (1) est un exemple de couplage-contrdle: on

tient compte de la complexité inhérente aux exceptions, aux
retours alternatifs, etc. Les facteurs (2) et (3) sont des
critéres de couplage-donnée. Le facteur (4) est un critére

16

de conception seulement. En effet, il s'agit de distinguer
entre la compilation, l1'édition des lien et 1'exécution.

Une information lue a 1l'exécution engendre un couplage moins
élevé qu'une constante spécifiée dans le code.

Quelques années plus tard, Hammons et Dobbs [Hammons-85]
reconnaissent les limitations du modéle de Myers dans un
contexte Ada. Ils proposent deux nouveaux niveaux:

(1) couplage par définition

(2) couplage par package

Le couplage (1) par définition est présent quand un module
référe une définition (un type par exemple) extérieur. Le
couplage (2) désigne gquand deux modules référent un
troisieme module, et réferent des définitions différentes du
troisieme. Il est ironique de constater que ces situations
ne sont pas uniques a Ada; elles se présentent courramment
en C, a travers la macro-expansion de fichiers #include. Le
langage C existait déja en 1975.

Nielsen [Nielsen-86] considere la catégorisation du couplage
dans un contexte de tédches paralléles Ada. Il introduit un
niveau supplémentaire a ceux de Myers et de Hammons:

(1) couplage par concurrence {(concurrency coupling)

Un systéme concurrent est bassement couplé si les
intéractions des tlches sont bien balancées, si l'attente
active est minimisée et si les instructions effectuées dans

les rendez-vous sont minimisées.

Embley et Woodfield [Embley-87, Embley-88] considérent une
catégorisation du couplage dans un contexte de type de
donnée abstrait (TDA), implanté dans un package Ada, un
module MODULA-2, un objet C++, etc. Ils identifient cing
types de couplage, présentés depuis le pire jusqu'au
meilleur (traduction libre): ‘

17

(1) couplage par malignité (surreptitious coupling)
(2) couplage par exploitation (covert coupling)
(3) couplage par visibilité (overt coupling)

(4) couplage par exportation (export coupling)
(5) couplage nil (nil coupling)

Le couplage (1) fait référence a un client utilisant la
connaissance de l'implantation, mais sans 1'accéder
directement. Par exemple, si on implante un TDA "vecteur
réel" avec une liste triée sur les index, un client pourrait
invoquer un parcours du vecteur dans l'ordre du tri plutdt
que dans 1l'ordre naturel de l'application. Le couplage (2)
"exploite" l'implantation au méme niveau syntaxique du TDA.
En Pascal par exemple, la syntaxe ne permet pas de cacher
l'implantation d'un TDA: 1les structures de données et les
procédures sont globales au client. Ainsi, le langage ne

peut empé&cher un client d*exploiter un TDA. Le couplage (3)
par visibilité indique qu'un client accéde 1l'implantation du
TDA (l'implantation est visible). Enfin, le couplage (4)
par exportation se différencie du couplage par donnée et du
couplage par définition/package, car un client déclare sa
propre variable et invoque les opérations définie
globalement. Le couplage (5) nil représente 1'absence de
couplage.

Finalement, Rising et Calliss [Rising-92] reprennent la
discussion depuis le début. Leur article fait le point sur
[Myers-78, Yourdon-79, Hammons-85, Embley-87, Embley-88].
Ils intégrent les niveaux développés par les auteurs
précédents en une taxonomie échelonnée sur huit niveaux,

spécifiés du meilleur au pire:

18

(1) couplage nil [Embley]

(2) couplage par package [Hammons]
(3) couplage par exportation [Embley]
(4) couplage par définition [Hammons]
(5) couplage par visibilité [Embley]
(6) couplage extérieur [Myers]

(7) couplage par malignité [Embley]
(8) couplage par exploitation [Embley]

Il est intéressant de noter que Rising n'est pas en accord
avec Embley sur les gravités relatives de ses deux pires
couplages et a permuté dans sa liste les places respectives
des couplage par malignité et par exploitation.

2.3 Une modélisation du couplage

Dans cette section, un modéle de la représentation et de
l'analyse du couplage est présentée, de facon a identifier
qualitativement les types de couplage directement et
indirectement présents entre toutes les paires de modules.
Ce modele est indépendant de la granulité et du type de
module considéré. Il est aussi indépendant de-la taxonomie
du couplage. Le modéle s'applique donc aussi bien au
couplage a-la Myers entre des procédures Pascal qu'au calcul

de l'ordre de compilation de fichiers source Ada.

Il est doné nécessaire de fixer a-priori les sujets et les
objets de l'analyse: les sujets étant déterminés par les
modules d'un systéme alors qu'une taxonomie du couplage
définit les objets. Ainsi, la granulité modulaire
identifiée au chapitre 1 permet de cerner les constructeurs
modulaires pertinents. Une liste exhaustive des modules
présents doit &tre calculée. Le choix arbitraire d'une
définition du couplage, comme par exemple celle de Myers, ou
plus simplement 1'échelle nominale " (couplage-donnée,

19

couplage-contrble, couplage-référence)" détermine le type de

résultat obtenu.

Le modéle est défini par une matrice a& deux dimensions. Les
rangées et les colonnes sont indexées par les modules
considérés. Chaque élément de la matrice est un ensemble

sur les valeurs de couplage. L'analyse consiste & définir
tous les ensembles dans la matrice.

CIBLE

SOURCE I'module_l module_2 - module_n
__________ | - e e - " "~ ——
module_1 | { } {...} { }
module_2 | { } {...} { }

|

I

!
module_n | { } {...} { }

Un module SOURCE est dépendant du module CIBLE. L'analyste
codifie la présence de dépendance directe entre le module_i
et le module_j par un ensemble dont les éléments sont des
valeurs de 1l'échelle du couplage considéré. Trivialement,
un ensemble vide signifie qu'aucun couplage n'existe entre
les deux modules tandis qu'un ensemble complet signifie que

tous les types de couplage sont présents.

La nature méme du couplage est directionnelle; cette matrice
n'est donc pas nécessairement symétrigque. De facon
évidente, un module A dépendant d'un module B n'implique pas
nécessairement que le module B est aussi dépendant de A.
Cette derniere situation se réalise en présence de deux
procédures mutuellement récursives, par exemple. Il est
toutefois important de noter que la diagonale principale ne
20

doit contenir que des ensembles vides. En effet, méme si un
module est "auto-dépendant" (!?) -- procédure directement
récursive par exemple -- le couplage est considéré nul.

Cette matrice contient une représentation du couplage direct
entre toutes les paires de modules. L'automatisation de ce
processus dépend de la calculabilité de 1'échelle de
couplage utilisée.

Pour obtenir la matrice du couplage direct et indirect, il
suffit de calculer la fermeture transitive de la matrice
initiale. En présence de n modules, ce calcule consomme
0(n"3) opérations et peut se faire sur-place.

Cette derniere matrice offre une représentation compléte des
dépendances de chaque module (par rangée) et des dépendances
dont—chagque-module—est—la cible (par colonne):

21

3. LA MESURE DU COUPLAGE

La mesure du couplage est importante. Elle est, avec la
cohésion, une bonne indication de la qualité modulaire d'un
systéme [Yourdon-79, Card-85]. Sellers [Sellers-92] montre
que la métrique de McCabe, la complexité cyclomatique, est
insensible & la modularisation. Dans [Emerson-84] est
décrite une métrique discriminant la cohésion.

Une mesure du couplage pourrait é&tre utilisée & plusieurs -
étapes du cycle de vie [Basili-80, Conte-86], incluant la
conception en tout premier lieu. La quantification d'une
conception n'est pas neuve. Myers, Yourdon et Constantine
ont développé les notion de couplage et de cohésion dans ce

but " Une mesure de couplage est donc désirable.

3.1 La mesure basée sur les modéles existants

Dans 1l'espoir de pouvoir calculer une métrique basée sur les
modeles décrits précédemment, il faut investiguér la
calculabilité des différents types de couplages.

Dans le formalisme de Myers, on peut vérifier statiquement
le couplage par donnée et le couplage par contrdle. Par
contre, en présence de pointeurs, une vérification statique
du couplage par structure est impossible. Le couplage par
région est impossible a distinguer du couplage extérieur:
comment estimer 1'homogénéité d'une variable globale?

22

Les quatre facteurs de Yourdon et Constantine souffrent
aussi de difficultés. Il n'existe pas de liste exhaustive
des types de transfers de contrdle: c¢'est dépendant du
langage. Les problemes des niveaux de Myers sont tous
présents dans le facteur (3).

Comme Hammons suggére une extension aux niveaux de Myers, on
ne peut pas non plus calculer son échelle.

Le niveau supplémentaire proposé par Nielsen est trop ambigu
pour pouvoir le calculer statiquement: comment estimer si
les t&ches sont bien balancées et si l'attente active est
minimale? (clairement non calculable)

Dans 1'échelle d'Embley, les niveaux (3), (4) et (5) sont

certainement calculables. Par contre, il est évident que
les niveaux (1) et (2) ne le sont pas.

3.2 La représentation du couplage

Dans cette section, la littérature relative a la
représentation du couplage est passée en revue, avec le but
avoué de démontrer que le traitement automatique de
l'information pertinente au couplage est possible.

Yau et Grabow [Yau-80] définissent un graphe dirigé
hiérarchique basé sur le principe de "graphe récursif"

associé a une base de donnée relationnelle. Leurs
applications sont strictement dans un environnement Pascal.

23

Louise Moser [Moser-90] exhibe une représentation des
dépendances-données et du flot de contrdle dans un contexte
Ada, incluant rendez-vous, levée d'exception, capture
d'exception, terminaison de téche, importation et
initialisation de package, etc. Le traitement du graphe
peut étre intra ou inter-modulaire.

Callahan, Carle, Hall et Kenedy [Callahan-90] généralisent

un résultat de Barbara Ryder [Ryder-79] en construisant un

multi-graphe permettant le traitement des procédures et des
fonctions passées en paramétre.

Cimitile, DiLucca et Maresca [Cimitile-90] distinguent et
traitent les dépendances inter-modulaires actuelles et
potentielles. Les dépendances potentielles sont utiles pour

empé&cher de saturer le graphe.

Narayan Debnath [Debnath-90] produit une synthése du graphe
de flot de contrdle et du flot des données, sous le nom de
"Generalized Program Graph".

Dietrich et Calliss [Dietrich-91] utilisent une base de
données relationnelles pour définir des relations
d'importation, d'exportation, d'héritage et de déclaration,
le tout dans de multiples contextes trés différents.

Harrold et Malloy [Harrold-91, Harrold-93] ont accentué
leurs efforts sur les manipulations efficaces d'un graphe de
contrble et de donnée. Les informations obtenues sont
strictement inter-modulaires.

24

3.3 Métriques existantes

Cette section est sfirement la plus importante du présent
document. En effet, une revue exhaustive et critique de la
littérature relative a la mesure du couplage est élaborée.
Sur la fois des lacunes et faiblesses constatées, une
problématique pourra é&tre identifiée plus loin. La
présentation respecte 1'ordre chronologique de publication.
Aucune classification par théme n'est tentée. Il est
important de noter que sur les quinze références citées,
seulement quatre proposent explicitement une modélisation du
couplage; les autres utilisent une mesure (le plus souvent
naive) du couplage comme composante d'une métrique dérivée
dans une application, ou valident une taxonomie

particulieére.

Il est étonnant de constater que les plus anciennes
tentatives, a l'exception de deux seulement, sont récentes.
Il s'agit donc d'un probléme relativement ancien, mais dont
le domaine de recherche est en pleine effervescence.

En 1979, Yourdon et Constantine [Yourdon-79] suggérent que
le couplage d'une conception structurée soit quantifié a
l'aide de la mesure du fan-in et du fan-out des composantes.
Une valeur de fan-in élevée est associée a un couplage élevé
parce que c'est une mesure directe de dépendance-contrdle.
Une valeur de fan-out élevée est associée a une complexité
élevée du module, en raison de la logique requise pour
contr8ler les invocations. Dans ce contexte, seule une
mesure de couplage d'une conception de systéme est

considéré.

25

Un peu plus tard, Henry et Kafura [Henry-81] proposent la
mesure de couplage du module A au module B suivante:

couplage = (le nombre de procédures exportant de
l'information du module A
+
le nombre de procédures important de
l'information dans le module B)

*

le nombre de flots différents d'information.

Les auteurs soulignent qu'ils n'ont pas été capable de
valider cette mesure. Il s'agit strictement d'une mesure de
couplage~donnée.

Dans un domaine particulier (Ada), [Kirchgassner-87]
présente un outil automatisant 1'identification de
regroupement modulaires et la hiérarchisation statique des
modules. Le modeéele de couplage est particulier a Ada (comme
par exemple l'instantiation générique), et les relations de
couplage sont différentes du niveau microscopique (module)
au niveau macroscopique (groupement modulaire) .

Selby et Basili [Selby-88] utilisent le ratio
couplage/cohésion pour prédire l'effort d'entretien d'un
trés grand systéme. Leur modéle de couplage est simple. Le
triplet (p,x,q) est appellé "couplage-donnée" (data-binding)
si le module p communigue avec le module g via la variable
x. Le couplage entre p et g est le nombre de triplets
(p,x,q). Méme si cette mesure paralt odieusement simple (un
seul aspect du couplage a-la Myers), les auteurs ont pu la
valider (eh oui!) sur un systéme d'environ 135 KLOC. En
fait, les dés étaient pipés un peu: le systéme utilisé pour

26

la validation ne contenait que ce type de couplage-donnée.
Par contre, Selby et Basili ont atteint de bons résultats en
ignorant completement le couplage-contrdle.

Encore une fois appliqué dans le monde Ada, Embley et
Woodfield [Embley-88] posent le postulat a-priori qu'un
package Ada ne doit contenir qQu'une seule implantation de
type de donné abstrait (TDA), et n'exporter que les
opérations définies par ce TDA. Sous cette hypothése, les
auteurs ont trouvé que les packages n'ayant aucune
connaissance de l'implantation des autres TDAs ont un
couplage plus bas que les packages manipulant la structure
de donnée d'un TDA. Cet article présente une validation de
la taxonomie du couplage présenté dans [Embley-87].

Gopal et Schach [Gopal-89] présentent un outil CASE orienté
Ada,;permettant-de-retracer-les références et les
modifications de variables dans un contexte d'aide a
l'entretien. Dans le méme esprit que [Kirchgassner-87], cet
outil permet aussi d'identifier les modules invoguants et
les modules invoqués. La notion de couplage n'est pas
explicitement discutée; elle est implicite en ce sens que
l'outil est un microscope sur les liens inter-modulaires,
autant statiques que dynamiquement observés. C'est un
générateur de références croisées sophistiqué. Vanek et
Culp [Vanek-89], Maarek [Maarek-88] présentent le méme type
d'outil, mais indépendant du langage. De méme, [Robillard-
91] exhibe un outil CASE sophistiqué qui intégre le calcul
de plusieurs métriques. Ince [Ince-90b] utilise ce type
d'outil pour détecter la dégradation structurelle lors de

l'entretien.
Le couplage dans [Oval-89] est utilisé pour mesurer
1'indépendance du graphe d'appel. Les arbres sous-jacents

au graphe d'appel, dont les racines sont les points d'entrée

27

des applications, peuvent partager des modules de services.
Ces modules sont qualifiés "indépendants". Les auteurs
définissent plusieurs métriques sur une échelle ratio basée
sur une mesure triviale du couplage-contrdle: les degrés
d'incidence et d'excidence des noeuds (i.e. le nombre de
modules distincts appelants et appelés). Ces métriques
permettent l'identification des noeuds indépendants. Une
critique peut sembler sévére: ce méme résultat
(l1'identification des noeuds indépendants) peut se calculer
directement sur le graphe d'appel par une fouille en
profondeur suivie d'un parcours préfixé.

Adamov et Richter [Adamov-90] définissent la complexité
"structurelle" inter-modulaire comprenant (entre autres) une
complexité de flot-de-contrdle, qui est proche mais
différente du couplage-contrdle (les modules directement
récursifs sont reconnus et une "dépendance" du module vers
lui-méme est introduite, alors qu'il est évident que la
récursivité directe n'engendre aucun couplage
supplémentaire), et qui définit la complexité d'"interface",
qui est essentiellement une tentative de couplage-donnée (en
effet, le modéle indique que la "quantité" de dépendance-
donnée est considérée, mais sans distinguer entre le nombre
de variables référencées et la taille de la variable
référencée: le probléme de la "quantité" de couplage-donnée
via un pointeur est escamoté). Il s'agit en fait d'une
mesure topologique sur le graphe d'appel et sur le graphe
d'interface.

Yaung et Raz [Yaung-92] analysent et mesurent des liens
inter-processus générés par une conception via un diagramme
de flot-de-données. Le couplage-contrble est totalement
absent. Le couplage-donnée est modélisé par une matrice
d'interconnectivité. La mesure du couplage est une mesure
de type "ratio". Une analyse de groupement est effectuée.

28

Dans [Cherniack-93], le couplage est modélisé par une
combinaison linéaire (pondérée) des huit termes suivants:
nombre de parametres-donnée en mode IN,
nombre de paramétres-contrdle en mode IN,
nombre de parametres-donnée en mode OUT,
nombre de parameétres-contrdle en mode OUT,
nombre de variables globales utilisées en donnée,
nombre de variables globales utilisées en contrdle,
nombre de modules invoqués,
nombre de modules invoquant.

Les coefficients de la combinaison linéaire (la pondération
de chaque terme) ont été déterminés empiriquement dans des
contextes de ré-utilisabilité, de portabilité et
d'entretien. Les auteurs ont tenté de calculer le couplage

a=-la Myers, mais restent silencieux sur la distinction entre

les parametres/variables-donnée et contrble.

29

4. PROBLEMATIQUE

L'expérience de Lohse [Lohse-84] et les travaux de Hammons,
Nielsen et Embley [Hammons-85, Nielsen-86, Embley-87] ont
démontré que les taxonomies du couplage élaborées par
Myers/Yourdon-Constantine [Myers-75, Yourdon-79] ne
reflétent pas toute la réalité. De plus, le modéle enrichi
Yourdon-Hammons-Nielsen-Embley est intuitif, informel, et
impossible & calculer: il décrit plus une complexité
psychologique qu'une complexité logicielle objective. A ce
méme modéle enrichi correspond une échelle de type ordinal
[Roberts-79, Kaposi-91, Zuse-91] qui ne permet pas d'établir
de métriques comparatives. Finalement, dans la section 3.3,
il a été démontré qu'il n'y a pas de modéle satisfaisant du
couplage.

Le probléme évident est de définir un modéle du couplage
auquel correspondrait une échelle de type ordinal,
intervalle, ratio ou idéalement de type absolu [Roberts-79,
Kaposi-91, Zuse-91]; ce qui permet de définir une mesure
objective. En fait, Fenton et Melton [Fenton-90] montrent
comment associer une mesure du couplage basée sur le modéle
de Myers a une échelle ordinale.

Cette mesure devrait étre sensible au couplage-contrdle ET
au couplage-donnée; elle serait potentiellement multi-
dimensionnelle [Shepperd-90]. Elle serait vérifiée face aux
axiomes de [Weyuker-88, Lakshmanan-91, Cherniavsky-91].
Récemment dans [Chung-91], la complexité est exprimée avec
une notation asymptotique polynomiale, exactement comme une
complexité-temps algorithmique.

A la lumiére des chapitres précédents, au moins trois pistes
de recherche méritent une attention. Par ordre de
préférence d'investigation:

30

HYPOTHESE 1: Un modéle du couplage serait dérivé des
modeles d'interconnection basés sur la théorie de
l'information [VanEmden-70, Chanon-74, Chen-78, Mohanty-81,
Boloix-85, Boloix-88, Chapin-89, Robillard-89, Como-90,
Torres-91, Harrison-92, Cook-93]. Une métrique obtenue
refleterait ainsi l'entropie du couplage. Une investigation
au niveau inter-modulaire de la mesure (intra-modulaire) de
Boloix semble prometteuse.

HYPOTHESE 2: Un modéle du couplage serait dérivé du modéle
de découpage de programme ("program slicing") [Lyle-88, Ott-
89, Horwitz-90].

HYPOTHESE 3: Un modéle du couplage serait dérivé de la

représentation de programme par un "polyndme

-~ POy 4 . . r Q2
caractéristique" [Cantona=83]-

Dans l'espoir de pouvoir calculer une éventuelle métrique,
il est nécessaire de passer en revue les points suivants:

(1) un modéle de modularité assez expressif est-il
disponible?

(2) est-il possible d'identifier (facilement) les
sources potentielles de couplage-donnée et de
couplage-contrdle pour tous les type de modules?

(3) une représentation du couplage est-elle disponible?

(4) existe-t-il des algorithmes efficaces pour
manipuler cette représentation?

(5) le contexte d'utilisation de la métrique est-il

bien défini?

31

La notion de module de Yourdon et Constantine est assez
riche pour englober tous les constructeurs modulaires
connus. La taxonomie proposée pour la modularité (chapitre
1) ainsi que les caractérisations et la modélisation du
couplage (chapitre 2) permettent d'identifier les source
potentielles pour chagque module.

Comme le couplage est typiquement représenté par un graphe
dirigé ou un multi-graphe (c.f. section 3.2), les hypothéses
1, 2 et 3 sont équivalentes a associer la théorie de
l'information, le découpage et l'algébre polynomiale
respectivement a la théorie des graphes. Idéalement, une
éventuelle métrique serait calculée rapidement.
Heureusement, plusieurs algorithmes efficaces relatifs au

h Y

calcul de métriques ont été publiés & ce jour [Ryder-79,

Ammarguellat-92].

De plus, il faut définir le contexte d'utilisation d'une
métrique de fagon a effectuer une validation [Ejiogu-93] et
conduire d'éventuelles expériences empiriques. Les
contextes d'entretien, de ré-utilisation et plus
génériquement de qualité de programmation sont également
pertinents.

32

BIBLIOGRAPHIE

[AbdElHafiz-89]
Abd-El-Hafiz, S. K.; Basili, V. R.; Caldiera, G.
"Toward Automated Support for Extraction of Reusable
Components",
Proceedings 1991 IEEE Conference on Software
Maintenance, Sorrento Italy (Oct 1991), pp 212-219.

[Adamov-90] -
Adamov, R.; Richter, L.
"A Proposal for Measuring the Structural Complexity of

Programs",
Journal of Systems and Software,

vol-12-no-1 {April-1990), pp 55-70-

[Agnarsson-85]
Agnarsson, S.; Krishnamoorthy, M. S.
"Towards a Theory of Packages',
Proceedings ACM SIGPLAN 85 Symposium on Language Issues
in Programming Environments, Seattle Wa (Jﬁne 1985),
in ACM SIGPLAN Notices, vol 20 no 7 (July 1985),
pp 117-130. _

[Ammarguellat-92]
Ammarguellat, Zahira.
"A Control-Flow Normalization Algorithm and Its
Complexity",
IEEE Transaction on Software Engineering,
vol 18 no 3 (March 1992), pp 237-251.

33

[Bailie-91]
Bailie, F.K.
"Improving the Modularization Ability of Novice
Programmers",
ACM SIGCSE Bulletin, vol 23 no 1 (March 1991),

pp 277-282.

[Baker-79]
Baker, A. L.; Zweben, S. H.
"The Use of Software Science in Evaluating Modularity
Concepts",
IEEE Transactions on Software Engineering,
vol 5 no 2 (1979), pp 110-120.

{Baker-80]

Baker, A L.; Zweben; S. H.

"A Comparison of Measures of Control Flow Complexity",
IEEE Transactions on Software Engineering,

vol SE-6 no 6 (Nov 1980), pp 506-512.

[Basi11i-80]
Basili, Victor R.
TORIAL MODEIL METRT FOR FTWARE AGEMENT

AND ENGINEERING,
IEEE Computer Society Press, 1980.

[Bastani-87]
Bastani, Farokh B.; Iyengar, S. Sitharama.
"The Effect of Data Structures on the Logical
Complexity of Programs",
Communications of the ACM,
vol 30 no 3 (March 1987), pp 250-259.

34

[Beane-84]
Beane, J.; Giddings, N.; Silverman, J.
"Quantifying Software Designs",
Proceedings 7th International Conference on Software
Engineering, Orlando USA (March 1984), pp 314-322.

[Belady-76]
Belady, L. A.; Lehman, M. M.
"A Model of Large Program Development®",
IBM Systems Journal, vol 15 no 3 (1976), pp 225-252.

[Benedusi-89]
Benedusi, P.; Cimitile, A.; De Carlini, U.
"A Reverse Engineering Methodology to Reconstruct
Hierarchical Data Flow Diagrams for Software

Maintenance",
Proceedings 1989 IEEE Conference on Software
Maintenance, Miami Florida (Oct 1989), pp 180-189.

[Bergstra-90]
Bergstra, J. A.; Heering, J.; Klint, P.
"Module Algebra",
Journal of the Association for Computing Machinery,
vol 37 no 4 (April 1990), pp 335-372.

[Berlinger-80]
Berlinger, E.
"An Information Theory Based Complexity Measure",
Proceedings 1980 Nat. Computer Conf., pp 773-779.

[Boloix-85]
Boloix, Germinal.
MESURE DE LA MPLEXITE DU L IEL UTILT T MODELE
D'INTER EXT P
Thése, Ecole Polytechnique de Montréal, Juin 1985.
35

[Boloix-88]
Boloix, Germinal; Robillard, Pierre N.
"Interconnectivity Metric for Software Complexity",
INFOR, vol 26 no 1 (Feb 1988), pp 17-39.

[Bourdoncle-90]

Bourdoncle, F,.

"Interprocedural Abstract Interpretation of Block
Structured Languages with Nested Procedures, Aliasing
and Recursivity",

Proceedings 1990 International Workshop on Programming

Language Implementation and Logic, Linkoping Sweden
(Aug 1990), pp 307-323.

[Bradley-91]

Bradley,; L.

"Evaluating Complex Properties of Object-Oriented
Design and Code",

Proceedings International Software Quality Conference,

Dayton Ohio (Oct 1991), pp 32-36.

[Callahan-90]
Callahan, David; Carle, Alan; Wolcott Hall, Mary;
Kennedy, Ken.
"Constructing the Procedure Call Multigraph",
IEEE Transactions on Software Engineering,
vol 16 no 4 (April 1990), pp 483-487.

[Calliss-89a]
Calliss, Frank W.
Inter-Module Code Analvsis Technigues for Software,
These, Durham University UK, 1989.

36

[Calliss-89Db]
Calliss, F.W.; Cornelius, B.dJ.
"Two Module Factoring Techniques",
Journal of Sofware Maintenance: Research and Practice,
vol 1 no 2 (Dec 1989), pp 81-89.

[Calliss-90]
Calliss, Frank W.; Cornelius, Barry J.
"Potpourri Module Detection",
Proceedings 1990 IEEE Conference on Software
Maintenance, San Diego Calif. (Nov 1990), pp 46-51.

[Cantona-83]
Cantona, G.; Cimitile, A.; Sansone, L. i
"Complexity in Program-Schemes: The Characteristic

ACM SIGPLAN Notices, vol 18 no 3 (1983), pp 22-30.

[Caplinger-85]
Caplinger, Michael.
"Structured Editor Support for Modularity and Data
Abstraction",
Proceedings ACM SIGPLAN 85 Symposium on Language Issues
in Programming Environments, Seattle Wa (June 1985),
in ACM SIGPLAN Notices, vol 20 no 7 (July 1985),
pp 140-147.

[Card-85]
Card, D. N.; Page, G. T.; McGarry, F.E.
"Criteria for Software Modularization",
Proceedings 8th International Conference on Software
Engineering, London UK (Aug 1985), pp 372-377.

37

[Card-88]
Card D. N.; Agresti, W. W.
"Measuring Software Design Complexity",
The Journal of Systems and Software, no 8 (1988),
pp 185-197.

[Card-90]
Card, D. N.; Glass, R. L.
Measuring Software Desiagn Qualitv,
Prentice-Hall, 1990.

[Carroll-88]
Carroll, M.D.; Ryder, B.G.
"Incremental Data Flow Analysis via Dominator and
Attribute Updates",
Proceedings 15th Annual ACM Symposium on Principles of
Programming Languages, San Diego Calif. (Jan 1988),
pp 274-284.

[Chanon-74]
Chanon, R. N,
"On a Measure of Program Structure®,
Proceedings of the Programming Languages Symposium,
G. Goos and J. Hartmanis eds., Springer-Verlag,
Paris 1974, pp 9-16. '

[Chapin-78]
Chapin, N.; Denniston, S. P.
"Characteristics of a Structured Program",
ACM SIGPLAN Notices, vol 13 no 5 (1978), pp 36-45.

38

[Chapin-89]
Chapin, N.
"An Entropy Metric for Software Maintainability",
Proceedings 22nd Annual Hawaii International Conference
on System Science vol II: Software Track,
Kailua-Kona Hawaii Jan 1989,
IEEE Computer Society Press, pp 522-523.

[Chen-78]
Chen, E. T.
"Program Complexity and Programmer Productivity",
IEEE Transactions on Software Engineering,
vol SE-4 no 3 (May 1978), pp 187-194.

(]

Yao; S5 C

e PR = £ m
"The Orientation of Modules Based on Graph
Decomposition",

IEEE Transactions on Computers, vol 40 (June 1991),

pp 774-780.

[Cherniack-93]
Cherniack, Jerome R.; Dhama, Harpal S.; Fandozzi,
Jeanne F.
"Tool for Computing Cohesion and Coupling. in Ada
Programs: DIANA Dependent Part",
Proceedings 12th Ada-Europe International Conference,
Paris France June 1993, Springer-Verlag, pp 180-196.

[Cherniavsky-91]
Cherniavsky, John C.; Smith, Carl H.
"On Weyuker's Axioms for Software Complexity Measures',
IEEE Transactions on Software Engineering,
vol 17 (June 1991), pp 636-638.

39

[Choi-90]
Choi, S.C.; Scacchi, W.
"Extracting and Restructuring the Design of Large
Systems",
IEEE Software, vol 7 no 1 (Jan 1990), pp 66-71.

[Chung-91]
Chung, C. M.; Lee, M. C.
"Polynomial Metric",
International Journal of Mini and Microcomputers,
vol 13 no 3 (1991), pp 89-99.

[Cimitile-90]
Cimitile, A.; Di Lucca G. A.; Maresca P.

"Maintenance and Intermodular Dependencies in Pascal

.
1]
Environment

11 7

Proceedings 1990 IEEE Conference on Software
Maintenance, San Diego Calif. (Nov 1990), pp 72-83.

[Cimitile-91]
Cimitile, Aniello; De Carlini, Ugo.
"Reverse Engineering: Algorithms for Program Graph
Production",
Software Practice & Experience,
vol 21 (May 1991), pp 519-537.

[Colbrook-89]
Colbrook A.; Smythe C.
"The Retrospective Introduction of Abstraction into
Software",
Proceedings 1989 IEEE Conference on Software
Maintenance, Miami Florida (Oct 1989), pp 166-173.

40

[Como-90]
Como, G.; Lanubile, F.; Visaggio, G.
"Evaluation of characteristics of design quality
metrics", _
Proceedings 2nd International Conference on Software
Engineering and Knowledge Engineering, Skokie IL USA
(June 1990), pp 195-201.

[Conte-86]
Conte, S. D.; Dunsmore, H. E.; Shen, V. Y.

SQOFTWARE ENGINEERING METRICS AND MODELS,

Benjamin/Cummings Publishing, 1986.

[Cook-82a]
Cook, M. L.
"Software Metrics: an Introduction and Annotated
Bibliography", _)
ACM SIGSOFT Software Engineering Notes,
vol 7 no 2 (April 1982), pp 41-60.

[Cook-82Db]
Cook, R. P.; Lee, I.
"A Contextual Analysis of Pascal Programs",
Software Practice and Experience, vol 12 (1982),
pp 195-203.

[Cook-91]
Cook, C.
"Information Theory Metric for Assembly Language",
Proceedings Third Annual Oregon Workshop on Software
Metrics, March 1991.

41

[Cook-93]
Cook, Curtis R.
"Information Theory Metric for a Program Language"*,
Software Engineering Strategies,
vol 1 no 1 (March/April 1993), pp 52-60.

[Crookes-83]
Crookes, D.; Fee, R.; Pickering, V.
"Building Syntax Graphs from Syntax Equations:
A Case Study in Modular Programming",
Software Practice and Experience, vol 13 (Dec 1983),
pp 1129-1139.

[Debnath-90]
Debnath, N.C.
"A-Study of Control Flow and Data Dependency
Interface", _
Proceedings 18th ACM Annual Computer Science
Conference, Washington DC (Feb 1990), p 435.

[Dietrich-91]
Dietrich, Suzanne W.; Caliss, Frank W.
"The Application of Deductive Databases to Inter-Module
Code Analysis®",
Proceedings 1991 IEEE Conference on Software
Maintenance, Sorrento Italy (Oct 1991), pp 120-128.

[Dumke-92]
Dumke, R.
£ re Metri
ibliograph £ nal k n rs,
Technical Report, University of Magdeburg, Germany,
March 1992.

42

[Ehrig-89a]
Ehrig, H.; Fey, W.; Hansen, H.; Lowe, M.; Jacobs, D.
"Algebraic Software Development Concepts for Module and
Configuration Families",
Proceedings 9th Conference on Foundations of Software
Technology and Theoretical Computer Science,
Bengalore India (Dec 1989), pp 181-192.

[Ehrig-89Db]
Ehrig, H.; Fey, W.; Hansen, H.; Lowe, M.; Jacobs, D.;
Langen, A.; Parisi-Presicce, F.
"Algebraic Specification of Modules and Configuration
Families",
Journal of Information Processing and Cybernetics,
vol 25 no 5-6 (1989), pp 205-232,

[Ejiogu-90]
Ejiogu, Lem O.)
“Beyond Structured Programming: an Introduction to the
Principles of Applied Software Metrics",
Structured Programming, vol 11 no 1 (1990), pp 27-43.

[Ejiogu-91]
Ejiogu, Lem O.

Software Engineering with Formal Metrics,
QED Publishing Group, Wellesley, Ma, 1991.

[Ejiogu-93]
Ejiogu, Lem O.
"Five Principles for the Formal Validation of Models of
Software Metrics",
ACM SIGPLAN Notices, vol 28 no 8 (August 1993),
pp 67-76.

43

[Elshoff-84]
Elshoff, J. L.
"Characteristic Program Complexity Measures",
Proceedings IEEE 7th International Conference on
Software Engineering, Orlando Florida (March 1984),

pp 288-293,

[Embley-87]
Embley, David W.; Woodfield, Scott N.
"Cohesion and Coupling for Abstract Data Types",
Proceedings 6th Annual International Phoenix Conference
on Computers and Communications, Phoenix Arizona
(1987), IEEE Computer Society Press, pp 229-234.

[Embley-88]
Embley, David-W.; Woodfield, -Scott-N-
"Assessing the Quality of Abstract Data Types Written
in Ada‘,
Proceedings 10th International Conference on Software
Engineering, 1988, IEEE Computer Society Press,
pp 144-153.

[Emerson-84]
Emerson, T. J.
"A Discriminant Metric for Module Cohesion',
Proceedings 7th International Conference on Software
Engineering, Orlando Florida (March 1984), pp 294-303.

[Engberts-91]
Engberts, Andre; Kozaczynski, Wojtek; Ning, Jim.
"Concept Recognition-Based Program Transformation',
Proceedings 1991 IEEE Conference on Software
Maintenance, Sorrento Italy (Oct 1991), pp 73-82.

44

[Esteva-90a]
Esteva, J. Carlo.
"Learning to Recognize Reusable Software by Induction",
Proceedings SPIE - The International Society for
Optical Engineering, vol 1293 no pt.2 (1990),
pp 654-670.

[Esteva-90b]
Esteva, J. C.; Reynolds, R. G.
"Learning to Recognize Reusable Software by Induction",
Proceedings 2nd International Conference on Software
Engineering and Knowledge Engineering,
Skokie IL (June 1990), pp 19-24.

[Evangelist-8

3]
Evangelist, W. M.

"Software Complexity Metric Sensitivity to Program
Structuring Rules",

The Journal of Systems and Software, vol 3 (1983),

pp 231-243.

[Fenton-86]
Fenton, N. E.; Whitty, R. W.
"Axiomatic Approach to Software Metrication Through
Program Decomposition",
The Computer Journal, vol 29 (Aug 1986), pp 330-339.

[Fenton-87]
Fenton, Norman E.; Kaposi, Agnes A.
"Metrics and Software Structure",
Information and Software Technology,
vol 29 (July/Aug 1987), pp 301-320.

45

[Fenton-90]
Fenton, N.; Melton, A.
"Deriving Structurally Based Software Measures",
Journal of Systems and Software,
vol 12 no 3 (July 1990), pp 177-187.

[Gannon-87]
Gannon, J. D.; Hamlet, R. G.; Mills, M. D.
"Theory of Modules",
IEEE Transactions on Software Engineering,
vol SE-13 no 7 (July 1987), pp 820-829.

[George-85]
George, Geoffrey; Leathrum, James F.
"Orthogonality of Concerns in Module Closure",

vol 15 no 2 (Feb 1985), pp 119-130.

[Ghezzi-87]
Ghezzi, Carlo; Jazayeri, Mehdi.

Programming Language Concepts,

John Wiley & Sons, New York, 1987.

[Gil1-91]
Gill, Geoffrey K.; Kemerer, Chris F.
"Cyclomatic Complexity Density and Software Maintenance
Productivity",
IEEE Transactions on Software Engineering,
vol 17 no 12 (Dec 1991), pp 1284-1288.

[Gomaa-89]
Gomaa, H.
"Structuring Criteria for Real-Time System Design",
Proceedings 1lth International Conference on Software
Engineering, Pittsburg PA (May 1989), pp 290-301.
46

[Gopal-89]
Gopal, Rajeev; Schach, Stephen R.
"Using Automatic Program Decomposition Techniques in
Software Maintenance Tools",
Proceedings 1990 IEEE Conference on Software
Maintenance, Miami Florida (Oct 1989), pp 132-141.

[Gordon-79]
Gordon, R. D.
"Measuring Improvements in Program Clarity",
IEEE Transactions on Software Engineering, -
vol SE-5 no 2 (March 1979), pp 79-90.

[Gries-85]
Gries, David; Prins, Jan.
"A New Notion-of - Encapsulation',
Proceedings ACM SIGPLAN 85 Symposium on Language Issues
in Programming Environments, Seattle Wa (June 1985),
in ACM SIGPLAN Notices, vol 20 no 7 (July 1985),
pp 131-139.

[Gusfield-91]
Gusfield, Dan.
A "Computing the Strength of a Graph",
SIAM Journal on Computing, vol 20 no 4 (Aug 1991),
pp 639-654,

[Hall-83]
Hall, N. R.; Preiser, S.
"Dynamic Complexity Measures for Software Design",
IEEE Computer, (1983), pp 57-66.

47

[Hall-84]
Hall, N. R.; Preiser, S.
"Combined Network Complexity Measures"',
IBM Journal of Research and Development,
vol 28 no 1 (Jan 1984), pp 15-27.

[Hall-93]
Hall, Mary W.; Kennedy, Ken.
"Efficient Call Graph Analysis",
ACM Letters on Programming Languages and Systems,
vol 1 no 3 (Sept 1993), pp 227-242.

[Hammons-85]
Hammons, Charles; Dobbs, Paul.
"Coupling, Cohesion and Package Unity in Ada",
ACM-SIGAda-Ada Letters; vol-4 no 6 (1985), pp 49-59.

[Hansen-88]
Hansen, H.; Lowe, M.
"Modular Algebraic Specifications®",
Proceedings International Workshop on Algebraic and
Logic Programming, Gaussig East Germany (Nov 1988),
pp 168-179.

[Harrison-84]
Harrison, W.
"Bibliography on Software Complexity Metrics",
ACM SIGPLAN Notices, vol 19 no 2 (1984), pp 17-27.

[Harrison-87]
Harrison, W.; Cook, C. R.
"A Micro/Macro Measure of Software Complexity",
The Journal of Systems and Software, vol 7 (1987),

pp 213-219.

48

[Harrison-92]
Harrison, W.
"An Entropy-Based Measure of Software Complexity",
IEEE Transactions on Software Engineering,
vol 18 no 11 (Nov 1992), pp 1025-1029.

[Harrold-89]
Harrold, M.J.; Soffa, M.L.
"Interprocedural Data Flow Testing“,
ACM SIGSOFT Software Engineering Notes,
vol 14 no 8 (Dec 1989), pp 158-167.

[Harrold-91]

Harrold, Mary Jean; Malloy, Brian.

"A Unified Interprocedural Program Representation for a
Maintenance Environment!",

Proceedings 1991 IEEE Conference on Software
Maintenance, Sorrento Italy (Oct 1991), pp 138-147.

[Harrold-93]
Harrold, Mary Jean; Malloy, Brian.
"A Unified Interprocedural Program Representation for a
Maintenance Environment"',
IEEE Transactions on Software_Engineering, vol 19 no 6
(June 1993), pp 584-593.

[Hecht-77]
Hecht, M. S.
Fl Analvsi f m r Pr ms,
Elsevier, 1977.

49

[Heitkoetter-90]
Heitkoetter, U.; Helling, B.; Nolte, H.
"Design Metrics and Aids to their Automatic
Collection",
Information and Software Technology,
vol 32 no 1 (Jan/Feb 1990), pp 79-87.

[Henry-81]
Henry, S.; Kafura, D.
"Software Structure Metrics Based on Information Flow",
IEEE Transactions on Software Engineering, ~
vol SE-7 no 5 (Sept 1981), pp 510-518.

[Henry-84]
Henry, S.; Kafura, D.

"“The Evaluation of Software Systems' Structure Using
Quantitative Software Metrics",

Software Practice and Experience, vol 14 no 6 (1984),
pp 561-573.

[Hoffman-90]
Hoffman, D.
"On Criteria for Module Interfaces",
IEEE Transactions on Software Engineering,
vol 16 no 5 (May 1990), pp 537-542.

[Hoffman-91]
Hoffman, Daniel M.; Strooper, Paul.
"Automated Module Testing in Prolog",
IEEE Transactions on Software Engineering,
vol 17 (Sept 1991), pp 934-943.

50

[Horwitz-90]
Horwitz, S.; Reps, T.; Binkley, D.
"Interprocedural Slicing Using Dependence Graphs",
ACM Transactions on Programming Languages and Systéms,
vol 12 no 1 (Jan 1990), pp 26-60.

[Hunter-86]
Hunter, D.; Kobitzsch, W.
"Measurement Interface Module for the Software
Development Environment®,
Electrical Communication, vol 60 no 3-4 (1986),
pp 256-258.

[Ince~85]
Ince, D. -
"The Influence of System Design Complexity Research on

the Design of Module Interconnection Languages",
ACM SIGPLAN Notices, vol 20 no 10 (Oct 1985), pp 36-43.

[Ince-89]
Ince, D.C.; Shepperd, M.J.
"An Empirical and Theoretical Analysis of an
Information Flow-Based System Design Metric",
Proceedings 2nd European Conference on Software
Engineering, Coventry UK (Sept 1989), pp 86-99,.

[Ince-90a]
Ince, D.
“An Annotated Bibliography of Software Metrics",
ACM SIGPLAN Notices, vol 25 no 8 (Aug 1990), pp 15-23.

51

[Ince~-90b]
Ince, D.; Shepperd, M.
"The Use of Cluster Techniques and System Design
Metrics in Software Maintenance",
Proceedings UK IT 1990 Conference,
Southampton UK (March 1990), pp 139-142.

[Jones-91]
Jones, C.
Applied Software Measurement,

McGraw-Hill, 1991.

[Kafura-82]
Kafura, D.; Henry, S.
"Software Quality Metrics Based on Interconnectivity",
The Journal of Systems and Software, vol 2 (1982),

pp 121-131.

[Kaposi-91]
Kaposi, Agnes A.
"Measurement Theory",

Software Engineer's Reference Book,

Butterworth-Heinemann Ltd, 1991.

[Kearney-86]
Kearney, J. K.
"Software Complexity Measurement",
Communications of the ACM, vol 29 no 11 (Nov 1986),
pp 1044-1050.

[Keutgen-81]
Keutgen, H.
A metric er_ngluggign of the modularization,
Lecture Notes on Computer Science 50, Springer Verlag,
1981. '
52

[Rirchgassner-87]
Kirchgassner, Walter; Persch, Guido; Uhl, Jurgen.
"Structural Analysis of Large Ada Systems",

Ada components: libraries and tools, Proc. Ada-Europe

International Conference, Stockholm 26-28 May 1987.

The Ada Companion Series, Cambridge University Press,

Sven Tafvelin eds.

[Krauskopf-90]
Krauskopf, J.
"Elemental Concerns (Software Design)",
IEEE Potentials, vol 9 no 1 (Feb 1990), pp 13-15.

[Ryu-90]
Kyu Jung Han; Jeong Ah Kim; Kyung Whan Lee.
"A-Quality Assessment Criterion of C++ Classes with
Abstract Data Types and Inheritance" (in Korean),
Journal of the Korea Information Science Society,
vol 17 no 5 (Sept 1990), pp 550-559.

[Lakshmanan-91] ,
Lakshmanan, K. B.; Jayaprakash, S.; Sinha, P. K.
"Properties of Control-Flow Complexity Measures",
IEEE Transactions on Software Engineering,
vol 17 no 12 (Dec 1991), pp 1289-1295.

[Leach-90]
Leach, R.J.
"Software Metrics and Software Maintenance",

Journal of Sofware Maintenance: Research and Practice,

vol 2 no 2 (June 1990), pp 113-142.

53

[Leavens-91]
Leavens, Gary T.
"Modular Specification and Verification of
Object-Oriented Programs*,
IEEE Software, vol 8 (July 1991), pp 72-80.

[Lee-87]
Lee, Tony T.
"An Information-Theoric Analysis of Relational
Databases 1I. Data Dependencies and Information
Metric",
IEEE Transactions on Software Engineering,
vol 13 no 10 (1987), pp 1049-1061.

"Consistency in Dataflow Graphs",
IEEE Transactions on Parallel and Distributed Systems,
vol 2 (April 1991), pp 223-235.

[Liu-90]
Liu, Sying-Syang; Wilde, Norman.
"Identifying Objects in a Conventional Procedural
Language: An Example of Data Design Recovery",
Proceedings 1990 IEEE Conference on Software
Maintenance, San Diego Calif. (Nov 1990), pp 266-271.

[Lohse-84]

Lohse, J. B.; Zweben, S. H.

"Experimental Evaluation of Software Design Principles:
an Investigation into the Effect of Module Coupling on
System and Modifiability",

Journal of Systems and Software, vol 4 (1984),

pp 301-308.

54

[Lowe-91]
Lowe, M.; Ehrig, H.; Fey, W.; Jacobs, D.
"On the Relationship Between Algebraic Module
Specifications and Program Modules",
Proceedings International Joint Conference on Theory
and Practice of Software Development Vol 2: Advances in
Distributed Computing (ADC) and Colloquium on Combining
Paradigms for Software Development (CCPSD),
Brighton UK (April 1991).

[Luttger-90]
Luttger, J.; Pauthner, G.; Schulengerg, H.
"Context Data Management System",
Electrical Communication, vol 64 no 4 (1990),
pp 341-347.

[Lyle-88] _ ,
Lyle, J. R.; Gallagher, K. B.
"Using Program Decomposition to Guide Modification",
Proceedings 1988 IEEE Conference on Software
Maintenance, Phoenix Arizona (Oct 1988), pp 265-269.

[Maarek-88]
Maarek, Y.S.
"On the Use of Cluster Analysis for Assisting
Maintenance of Large Software Systems"',
Proceedings 3rd Israel Conference on Computer Systems
and Software Engineering, Tel-Aviv Israel (June 1988),

pp 178-186.

[MacLennan-87]
MacLennan, Bruce J.

Principles of Programming Languages
Design, Evaluation, and Implementation,

Holt, Rinehart and Winston, New York, 1987.
55

[McAuliffe-88]
McAuliffe, Daniel.
"Measuring Program Complexity",
Computer, vol 21 (June 1988), pp 97-98.

[McCabe-89]
McCabe, Thomas J.; Butler, Charles W.
"Design Complexity Measurement and Testing",
Communications of the ACM, vol 32 no 12 (Dec 1989),
pp 1415-1425.

[Mennert-91]
Mennert, A.
Measuring Control Flow Complexity for Software
Development,

Technical Report, Siemens, Princeton, New Jersey, 1991,

[Mitchell-88]
Mitchell, R. J.
"Applying the Principle of Separation of Concerns in
Software Development",
Proceedings 15th IFAC/IFIP Workshop on Real Time
Programming, Valencia Spain (May 1988), pp 21-27.

[Mizuno-89]
Mizuno, M.
"An Iterative Method for Secure Inter-Procedural
Information Flow Control",
Proceedings 13th Annual International Computer Software
and Applications Conference, Orlando Florida
(Sept 1989), pp 286-291.

56

[Mohanty-81]
Mohanty, S. B.
"Entropy Metrics for Software Design Evaluation",
The Journal of Systems and Software, vol 2 (1981),
pp 39-46.

[Moser-90]
Moser, Louise E.
"Data Dependency Graphs for Ada Programs",
IEEE Trahsactions on Software Engineering,
vol 16 no 5 (May 1990), pp 498-509.

[Muhanna-91]
Muhanna, Waleed A.
"Composite Programs: Hierarchical Construction,

IEEE Transactions on Software Engineering,
vol 17 (April 1991), pp 320-333.

[Muller-89]
Muller, John H.; Spinrad, Jeremy.
"Incremental Modular Decomposition®,
Journal of the Association for Computing Machinery,
vol 36 no 1 (Jan 1989), pp 1-19.

[Muller-90]
Muller, Hausi A.; Uhl, James S.
"Composing Subsystem Structures Using (K,2)-Partite
Graphs",
Proceedings 1990 IEEE Conference on Software
Maintenance, San Diego Calif. (Nov 1990), pp 12-19.

57

[Murtagh-84]
Murtagh, Thomas P.
"A Less Dynamic Memory Allocation Scheme for Algol-like

Languages",
Proceedings 1lth Annual ACM Symposium on Principles of

Programming Languages, Salt Lake City Utah (Jan 1984),
pp 283-289,

[Murtagh-91]
Murtagh, Thomas P. _
"An Improved Storage Management Scheme for Block

Structured Languages",
ACM Transactions on Programming Languages and Systems,

vol 13 no 3 (July 1991), pp 372-398.

[Myers=75]
Myers, Glenford J. .
Reliable Software Through Composite Desian,

Petrocelli/Charter, 1975.

[Myers-77]
Myers, Glenford J.
"An Extension to the Cyclomatic Measure of Program

Complexity",

ACM SIGPLAN Notices, vol 12 no 10 (Oct 1977), pp 61-64.

[Myers-78]
Myers, Glenford J.
m i r r Desian,

Van Nostrand Reinhold, 1978.

58

[Nakagawa-89]
Nakagawa, A.T.; Futatsugi, K.
"Stepwise Refinement Process with Modularity:
an Algebraic Approach®,
Proceedings 1lth International Conference on Software
Engineering, Pittsburgh PA USA (May 1989), pp 166-177.

[Nani-90]
Nani, G.
"Comparing the Effectiveness of Decomposition Tools",
Advances in Modelling & Simulation, vol 19 no 3 (1990),
pp 13-36.

[Nass-91]
Nass, Richard.
"Maintain and Reengineer Existing C Programs",
Electronic Design, vol 39 (April 1991), p 154.

[Navlakha-87]
Navlakha, J. K.
"A Survey of System Complexity Metrics",
The Computer Journal, vol 30 no 3 (June 1987),
ppr 233-238.

[Nejmeh-88]
Nejmeh, Brian A.
"NPATH: a Measure of Execution Path Complexity and its
Applications",
Communications of the ACM, vol 31 (Feb 1988),
pp 188-200.

59

[Nielsen-86])
Nielsen, Kjell W.
"Task Coupling and Cohesion in Ada",
ACM SIGAda Ada Letters, vol 6 no 4 (July, August 1986),

pp 44-52.

[O1lson-90]
Olson, J.W.; Doran, M.V.; Longenecker, H.E., Jr.
"The Establishment and Application of a Metric for
Graphical Design Language",
Proceedings 18th ACM Annual Conference on Computer
Science, Washington DC (Feb 1990), p 407.

[Ott-89]
ott, L.M.; Thuss, J.J.
"The Relationship Between Slices and Module Cohesion™,

Proceedings 1lth International Conference on Software
Engineering, Pittsburgh PA (May 1989), pp 198-204.

[Oval-89]
Oval, Francois; Meuleau, Jean-Charles
"Mesure de l'Independance d'un Graphe d'Appel dans une
Application",
Proceedings 2nd International Workshop on Software
Engineering and its Applications, Toulouse France
(1989), pp 963-969.

[Overstreet-88]
Overstreet, C. Michael; Chen, Ji; Byrum, Frank.
"Program Maintenance by Safe Transformations",
Proceedings 1988 IEEE Conference on Software
Maintenance, Phoenix Arizona (Oct 1988), pp 118-123.

60

[Oviedo-80]
Oviedo, E. I.
"Control Flow, Data Flow, and Program Complexity",
Proceedings IEEE Computer Society's 4th International
Computer Software & Applications Conference (COMPSAC),
Chicago USA (Oct 1980), pp 146-152.

[Pariéi—Presicce-QO]
Parisi-Presicce, F.
"A Rule-Based Approach to Modular System Design",
Proceedings 12th International Conference on Software-

Engineering, Nice France (March 1990), pp 202-211.

[Parisi-Presicce-91]
Parisi-Presicce, F.
"Foundations of Rule-Based Design of Modular Systems",

Theoretical Computer Science, vol 83 no 1 (June 1991),
pp 131-155.

[Parnas-71]
Parnas, D. L.
"Information Distribution Aspects of Desigh
Methodology",
Proceedings IFIP Congress, Ljubljana Yougoslavia
(1971), pp 339-344.

[Parnas-72a]
Parnas, D. L.
"A Technique for Software Module Specification with
Examples",
Communications of the ACM, vol 15 (May 1972),
pp 330-336.

61

[Parnas-72Db]
Parnas, D. L. ,
"On the Criteria to be Used in Decomposing Systems into

Modules®,
Communications of the ACM, vol 15 (Dec 1972),

pp 1053-1058.

[Parnas-85]
Parnas, D. L.; Clements, P. C.; Weiss, D. M.

"The Modular Structure of Complex Systems",
IEEE Transactions on Software Engineering,
vol SE-11 no 3 (March 1985), pp 259-266.

[Paulson-92]
Paulson, Dan; Wand, Yair.
"An Automated Approach-to-Information Systems
Decomposition®,
IEEE Transactions.on Software Engineering,
vol 18 no 3 (March 1992), pp 174-189.

[Power-90]
Power, L. R.
"Post-Facto Integration Technology:
New Discipline for an 01d Practice",
Proceedings lst International Conference on Systems
Integration, Morristown NJ (April 1990), pp 4-13.

[Prather-84]
Prather, Ronald E.
"An Axiomatic Theory of Software Complexity Measure",

The Computer Journal, vol 27 no 4 (1984), pp 340-347.

62

[Pugh-92]
Pugh, William.
"Definition of Dependance Distance",
ACM Letters on Programming Languages and Systems,

vol 1 no 3 (Sept 1992), pp 261-265.

[Purtilo-90]
Purtilo, J. M.; Atlee, J. M.
"Improving Module Reuse by Interface Adaptation®,
Proceedings IEEE 1990 International Conference on
Computer Languages, New Orleans LA (March 1990),

pp 208-217.

[Ramamoorthy-86]
Ramamoorthy, C. V.; Garg, V.; Prakash, A.

"Programming-in-the Large',

IEEE Transactions on Software Engineering,
vol 12 no 7 (1986), pp 769-783.

[Reynolds-84]
Reynolds, R. G.
"Metrics to Measure the Complexity of Partial

Programs",
The Journal of Systems and Software, no 4 (1984),

pp 75-91.

[Reynolds-90]
Reynolds, R. G.; Maletic, J. I.
"An Introduction to Refinement Metrics: Assessing a
Programming
Language's Support of the Stepwise Refinement Process",
Proceedings 18th ACM Annual Conference on Computer
Science, Washington DC (Feb 1990), pp 82-88.

63

[Richardson-89]
Richardson, S.; Ganapathi, M.
"Interprocedural Analysis vs Procedure Integration®,
Information Processing Letters, vol 32 no 3 (Aug 1989),
pp 137-142.

[Rising-92]
Rising, Linda; Caliss, Frank W.
"Problems with Determining Package Cohesion and
Coupling",
Software Practice and Experience, -
vol 22 no 7 (July 1992), pp 553-571.

[Roberts-79]
Roberts, Fred S.

Measgurement Theorv,

Encyclopedia of Mathematics and its Applications Vol 7,
Addison-Wesley, 1979.

[Robillard-89]
Robillard, Pierre N.; Boloix, Germinal.
"The Interconnectivity Metrics: A New Metric Showing
How a Program is Organized",
The Journal of Systems and Software, vol 10 (1989),
pp 29-30.

[Robillard-91]
Robillard, Pierre N.; Coupal, Daniel;
Coallier, Francgois.
"Profiling Software Through the Use of Metrics",
Software Practice and Experience,
vol 21 no 5 (May 1991), pp 507-518.

64

[Rombach-84]
Rombach, H. D.
Quantitative evaluation of software quality

characteristics on the base of structurallv measures

(in German),
Thése, Universitat Kaiserslautern, 1984.

[Ross-86]
Ross, Donald L.
"Classifying Ada Packages",
ACM SIGAda Ada Letters, vol 6 no 4 (July/August 1986),
pp 53-65.

[Ryder-79]
Ryder, Barbara G. -
"Constructing the Call Graph of a Program";
IEEE Transactions on Software Engineering,
vol SE-5 no 3 (May 1979), pp 216-230.

[Ryder-90]
Ryder, Barbara Gershon; Landi, William; Pande, Hemant.
"Profiling an Incremental Data Flow Analysis
Algorithm*,
IEEE Transactions on Software Engineering,
vol 16 no 2 (Feb 1990), pp 129-140.

[Sampson-87]
Sampson, W. B.; Nevill, D. G.; Dugard, P. I.
"Predictive Software Metrics Based on a Formal
Specification",
Information and Software Technology,
vol 29 (June 1987), pp 242-248.

65

[Schach-90]
Schach, Stephen R.
FTWARE E EERING,
Aksen Associates, 1990.

[Schneidewind-91]
Schneidewind, Norman F.
"Setting Maintenance Quality Objectives and
Prioritizing Maintenance Work by Using Quality
Metrics",
Proceedings 1991 IEEE Conference on Software
Maintenance, Sorrento Italy (Oct 1991), pp 240-249,

[Seidewitz-87]
Seidewitz, Ed; Stark, Mike.
"Towards a General Object-Oriented Software Development

Methodology",
Ada Letters, vol 7 no 4 (1987), pp 54-67.

[Selby-88]
Selby, Richard W.; Basili, Victor R.
"Error Localization During Maintenance: Generating
Hierarchical System Descriptions from the Source Code
Alone", ‘
Proceedings 1988 IEEE Conference on Software
Maintenance, Phoenix Arizona (Oct 1988), pp 192-197.

[Sellers-92]
Sellers, B. Henderson.
"Modularization and McCabe's Cyclomatic Complexity",
Communications of the ACM, vol 35 no 12 (Dec 1992),

pp 17-19.

66

[Shepperd-90]
Shepperd, M.; Ince, D.
"Multi-Dimensional Modelling and Measurement of
Software Designs",
Proceedings 18th ACM Annual Conference on Computer
Science, Washington DC (Feb 1990), pp 76-81.

[Shumate-88]
Shumate, Ken; Nielsen, Kjell.
"A Taxonomy of Ada Packages",
ACM Ada Letters, vol 8 no 2 (1988), pp 55-76.

[Sommerville-89]
Sommerville, Ian.

SOFTWARE ENGINEERING,

Addison-Wesley, 1989,

[Stevens-74]
Stevens, W. P.; Myers, G. J.; Constantine, L. L.
"Structured Design",
IBM Systems Journal, vol 13 no 2 (1974), pp 115-139.

[Stubbs-84]
Stubbs, Michael.
"An Examination of the Resolution of Structure Clashes
by Structure Inversion",
The Computer Journal, vol 27 (Nov 1984), pp 354-361.

[Tai-84]
Tai, K.
"A Program Complexity Metric Based on Data Flow
Information Control Graphs",
Proceedings 7th International Conference on Software
Engineering, Orlando Florida (March 1984), pp 239-248.

67

[Teufel-91]
Teufel, Bernd.
izati f Pr o ,

Springer-Verlag, Vienne, 1991.

[Torres-91]
Torres, W. R.; Samadzadeh, M.
"Software Reuse and Information Theory Based Metrics",
Proceedings 1991 Symposium on Applied Computing,
Kansas City April 1991, IEEE Computer Society Press,
pp 437-446.

[Troy-81]
Troy, D. A.; Zweben, S. H.
"Measuring the Quality-of Structured Designs",
The Journal of Systems and Software, vol 2 (June 1981},
pp 113-120.

[Turner-80]
Turner, dJ.
"The Structure of Modular Programs",
Communications of the ACM, vol 23 no 5 (May 1980),
pp 272-277.

[VanEmden-70]
Van Emden, M. H.
"Hierarchical Decomposition of Complexity",
Machine Intelligence, vol 5 (1970), pp 361-380.

[VanVerth-87]
Van Verth, P. B.
"A Program Complexity Model that Includes Procedures",
Buffalo, 1987.

68

[Vanek-89]
Vanek, Leonard I.; Culp, Mark N.
"Static Analysis of Program Source Code using EDSA",
Proceedings 1989 IEEE Conference on Software
Maintenance, Miami Florida (Oct 1989), pp 192-199.

[Watanabe-60]
Watanabe, S.
"Information Theoretical Analysis of Multivariate
Correlation",
IBM Journal, vol 4 (1960), pp 66-82.

[Watson-87]
Watson, S. E.
"Ada Modules*,
ACM.SIGAda-Ada- Letters, vol-7-no-4 {July,-August—1987);
pp 79-84.

[Weiss-92]
Weiss, Michael.
"The Transitive Closure of Control Dependence',
ACM Letters on Programming Languages and Systems,
vol 1 no 2 (June 1992), pp 178-190.

[Weyuker-88]
Weyuker, E. J.
"Evaluating software complexity measures",
IEEE Transactions on Software Engineering,
vol 14 (Sept 1988), pp 1357-1365.

69

[(Whitworth-80]
Whitworth, Mark H.; Szulewski, Paul A.
"The Measurement of Control and Data Flow Complexity in
Software Designs‘,
Proceedings IEEE Computer Society's 4th International
Computer Software and Applications Conference
(COMPSAC), Chicago USA (1980), pp 735-743.

[Wilde-89]
Wilde, Norman; Huitt, Ross; Huitt, Scott.
"Dependency Analysis Tools: Reusable Components for
Software Maintenance",
Proceedings 1989 IEEE Conference on Software
Maintenance, Miami Florida (Oct 1989), pp 126-131.

[Woodfield-80]

Woodfield, S. N.

n £ imation ndi i
Programming Model to Include Modularity Factors,
Thése, Dept of Computer Sc. Purdue University,
Dec 1980.

[Woodfield-8la]
Woodfield, S. N.; Dunsmore, H. E.; Shen, V. Y.
"The Effect of Modularization and Comments on Program
Comprehension",
Proceedings 5th International Conference on Software
Engineering (March 1981), pp 215-222.

[Woodfield-81b]
Woodfield, S. N.; Shen, V. Y.; Dunsmore, H. E.
"A Study of Several Metrics for Programming Effort",
The Journal of Systems and Software,
vol 2 no 2 (Dec 1981), pp 97-103.

70

[Woodward-79]
Woodward, M. R.; Hennel, M. A.; Hedley, D.
"A Measure of Control Flow Complexity in Program Text",
IEEE Transaction on Software Engineering,
vol SE-5 no 1 (Jan 1979), pp 45-50.

[Yadav-90]
Yadav, S. B.
“Control and Definition Modularization: an Improved
Software Design Technique for Organizing Programs",
IEEE Transactions on Software Engineering,
vol 16 no 1 (Jan 1990), pp 92-99.

[Yau-80]
Yau, S. S.; Grabow, P. C.
"A Model for Representing the Control Flow and Data
Flow of Program Modules",
Proceedings IEEE Computer Society's 4th International
Computer Software & Applications Conference (COMPSAC) ,
Chicago USA (Oct 1980), pp 153-160.

[Yau-91]
Yau, S. S.; Wiharja, I.
"An Approach to Module Distribution for the Design of
Embedded Distributed Software Systems",
Information Sciences, vol 56 no 1-3 (Aug 1991),
pp 1-22,

[Yaung-92]
Yaung, Alan T.; Raz, Tzvi.
"Linkage Analysis of Processes",
Software Practice and Experience,
vol 22 no 10 (Oct 1992),
pp 849-862.

71

[Yourdon-79]
Yourdon, Edward; Constantine, Larry L.
R RED IGN,
Prentice-Hall, 1979.

[Zuse-91]
Zuse, Horst.
ARE MPLEXTITY MEASURE METHODS,
Walter de Gruyter Inc, 1991.

72

