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SOMMAIRE

Une bonne conception logicielle est a la base d'une
programmation de qualité, de méme qu'une bonne programmation
facilite l'entretien, l'analyse inverse et la ré-
utilisation. Au coeur méme de ces concepts se retrouve la
notion de "module". Dans plusieurs disciplines en génie
logiciel on s'intéresse soit a identifier les
caractéristiques d'une modularisation de qualité, pour
éventuellement proposer des critéres menant a une bonne
conception, soit a mesurer la qualité d'une conception ou
d'une programmation. Ainsi, la ré-utilisabilité d'un
logiciel sera-t-elle en partie fonction de sa modularité.
Malheureusement, aucun consensus n'est apparu dans ces
disciplines, que ce soit sur des notions aussi élémentaire
que la définition d'un module, et encore moins sur les
critéres pouvant servir a mesurer une modularisation. En
effet, bien que le couplage soit défini comme les liens qui
relient ensemble deux ou plusieurs modules, les criteres de
qualité du couplage sont subjectifs, et difficilement
mesurables. D'autres parts, quelques métriques de couplage
ont été proposées, mais les modéles sous-jacents, et les
métriques, sont ad-hoc soit & un type d'application (ré-
utilisabilité, analyse inverse, standards de programmation,
etc.), soit & un environnement particulier (package Ada,
procédure Pascal, objet C++, etc.).

Le but premier de cette recherche est donc de faire le point
sur la mesure du couplage logiciel, tout d'abord en passant
en revue critique les notions de module et de couplage, puis
en présentant exhaustivement 1l'état-de-l'art de la mesure du
couplage en insistant sur une présentation comparative de la
force et de la faiblesse de chacun des modeles.



Une taxonomie des constructeurs modulaires est présentée a
la section 1.3. En 2.3, un modéle de représentation et
d'analyse du couplage est proposé. Ces deux items
constituent un apport original a cette recherche.

Finalement, une problématique est identifiée et plusieurs
hypotheses de recherche sont soumises.
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INTRODUCTION

Le couplage logiciel est d'une grande importance en
conception, en programmation et en analyse inverse. C'est
un critere incontournable en qualité logicielle. Il est
pourtant essentiel dans le contexte de ce document de
définir le couplage et son domaine d'application, de
présenter les corrélations entre le couplage et la qualité
logicielle, et d'exhiber quelques applications.

Dans le cadre de cette étude, le couplage-systéme est
différencié du couplage inter-modulaire. Le couplage inter-
modulaire est constitué par les liens reliant entre eux deux
ou plusieurs modules, alors que le couplage-systéme est

défini comme 1l'ensemble du couplage inter-modulaire présent
dans ‘le systéme. Bien que ce soit, & la limite, un abus
terminologique, cela permet de considérer deux systémes en
fonction de leur couplage. Il est universellement accepté
gqu'un bas couplage est préférable a un haut couplage; un bas
couplage désigne peu de dépendances inter-modulaires et est
généralement associé a la qualité logicielle, tandis qu'un
haut couplage dénote beaucoup de dépendances inter-
modulaires et implique la pauvreté logicielle [Sommerville-

89, Schach-90].

Le couplage inter-modulaire est donc une abstraction
englobant toutes les dépendances inter-modulaires. Il sera
donc question de couplage-donnée et de couplage-contrdle.
Le couplage-donnée est présent quand un module référe (ou
peut référer) une donnée déclarée ailleurs, que ce soit en
lecture ou en modification. Dans ce dernier cas, il est
d'usage de qualifier ce genre d'accés d'effet de bord. Le
couplage-contr8le est identifié par 1l'invocation de
l'exécution d'une routine déclarée extérieurement. Ce genre
6



de distinction peut paraitre évident, mais elle est somme
toute assez artificielle: dans quelques situations, 1la
frontiére entre le couplage-donnée et le couplage-contrdle
est plutdt floue, comme dans l'invocation d'exécution d'une
variable-procédure. La dépendance est & la fois une
dépendance-contrdle et une dépendance-donnée. Une
dépendance sur un objet contenant des méthodes est aussi un
cas non évident. De plus, on peut aussi considérer le
couplage-référence, caractérisé par une référence a un
contenant sans référence au contenu, qu'il soit contréle ou
donnée. Etonnament, il est rare dans la littérature de

distinguer ces trois cas.

Le domaine d'application du couplage est 1l'ensemble sur
lequel on l'observe et sur lequel on espére le calculer:
soit l'ensemble des modules constituant un systéme logiciel.

Une modélisation du couplage est donc indissociable d'un
modele de la notion de module: la premiére partie en est
consacrée. Ici, le terme "modularité" désigne une
décomposition en modules effective, alors que
"modularisation" référe a l'action de décomposer ou de
concevoir un logiciel en modules. Ainsi, un ingénieur
logiciel effectue une modularisation lors d'une conception
et observe la modularité d'un systéme dans un cadre d'une
analyse inverse. Une modularisation de qualité est aussi
intuitive que difficile & définir et & enseigner [Bailie-
91]. Dans [Woodfield-8la], l'auteur conduit une étude
empirique de la corrélation entre la modularité et la
compréhension de programme, et conclue (& notre grande
surprise!) que plus un programme est bien modularisé,
meilleure est sa compréhension. Malheureusement, son étude
n'inclue pas de programme modularisé & outrance.

La mesure du couplage est importante et utile. Depuis la
publication d'une taxonomie du couplage dans [Myers-75], de



nombreux auteurs ont défini et expérimenté plusieurs
métriques dans toutes sortes de contextes.

Le couplage inter-modulaire peut é&tre ainsi associé
trivialement a l'effort nécessaire pour extraire un module
de son contexte, a le ré-utiliser, ou & le re-concevoir
[Colbrook-89, Choi-90, Purtilo-90, Power-90]. Dans [Selby-
88], l'auteur montre, dans un contexte d'entretien de
logiciel, comment une erreur peut étre localisée dans les

modules a haut couplage-donnée.

Moins trivialement, une mesure du couplage peut aider lors -
de la conception et de la programmation [Reynolds-84,
Mitchell-88, Gomaa-89, Muller-90].

Une étude empirique sur la corrélation entre le type de

couplage [Myers-75] et la facilité d'entretien démontre que
le type de couplage présent (et non sa quantité) a peu
d'importance sur la facilité d'entretien [Lohse-84]: 1la
classification de Myers ne refléte donc pas toute la
réalité. L'importance d'un nouveau modéle du couplage a la
fois qualitatif, quantitatif et universel, est donc évidente
[Ejiogu-90]. D'un tel modéle dérivera une métrique
applicable dans plusieurs contextes.



1. LA MODULARITE DU LOGICIEL

Qu'est-ce qu'un module? Il y aura autant de réponses
différentes que d'auteurs! On peut définir un module comme
un découpage permettant aux humains de mieux comprendre une

réalité complexe.

Dans ce chapitre, la notion de module sera cernée: depuis

les premiers auteurs jusqQu'a un parcours des constructeurs

modulaires disponibles dans les langages et environnements

contemporains. Finalement, une taxonomie de la modularité

permettra de capturer quelgues aspects fondamentaux. Cette
catégorisation est originale & la présente recherche.

Dans le contexte de ce document, le terme "modularité"
désigne une décomposition en modules déja effectuée, alors
que "modularisation" réfere a l'action de décomposer ou de
concevoir un logiciel en modules. Ainsi, un ingénieur
logiciel effectue une modularisation lors d'une conception
et observe la modularité d'un systeme dans un cadre d'une

analyse inverse.

1.1 Concepts fondamentaux et auteurs classiques

Une des premiéres tentatives de définition revient & David
Parnas [Parnas-72al: un module est un ensemble d'états,
accompagné de fonctions pour changer d'état, et de d'autres
fonctions retournant une vision de 1l'état actuel. Bien que
cela puisse sembler curieux a prime abord, sept mois plus
tard, il change sa définition de tout au tout [Parnas-72b,
Parnas-85]: un module est une affectation de travail, i.e.
une téche a faire. Rien de bizarre dans tout ceci; le
contexte était trés différent.
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Quelques années plus tard, Stevens et Myers dans [Stevens-
74, Myers-78] définissent un module par un ensemble
d'énoncés satisfaisant trois conditions:
(1) c'est un ensemble fermé,
(2) i1 a le potentiel d'étre invoqué par n'importe quel
autre module,
(3) i1 a le potentiel d'étre compilé séparément.

Déja cela semble a la fois général et plus précis.
Toutefois, considérer un module comme une entité
exclusivement exécutable semble trop limitatif: les
fichiers de déclarations et les packages Ada entre autre ne
peuvent étre considérés comme des modules.

Peu de temps aprés, Yourdon et Constantine [Yourdon-79]

offrent une définition acceptable: un module est

(1) une séquence lexicalement contigtie

(2) d'énoncé de programme,

(3) bornée par des éléments délimiteurs et
(4) ayant un nom d'agrégat.

Les quatre conditions énumérées couvrent un trés large
domaine et c'est cette définition qui est acceptée un peu
partout.

Notons pourtant que ces définitions n'en sont pas... Les
auteurs définissent un module par ses qualités et non par
son essence. La petite définition fournie en té&te de

chapitre décrit l'essence du module et non son existence.

10



1.2 Constructeurs modulaires

Lors d'une modularisation, il n'est pas évident si la
structure syntaxique du langage de conception affecte la
prise de décision associée au processus de raffinement
successif. Reynolds [Reynolds-90] présente un modéle de
raffinement successif couplé & la structure grammaticale du
langage de support. Une question naturelle serait de
s'interroger sur la relation entre la modularisation en
programmation et les primitives syntaxiques offertes par le
langage de programmation. Intuitivement, tout indique que
la méme relation existe au niveau de la programmation.

Les constructeurs modulaires disponibles dans les langages

de programmation contemporains seraient donc le Ysupport" de
la modularisation & ce niveau, un peu comme le langage
naturel est le support de la pensée humaine. De maniére
équivalente, s'il est difficile de réfléchir & un sujet
inexprimable, il devrait é&tre autant difficile de coder un
type de module dans un langage ne l'offrant pas en
primitive. As-t-on déja essayé de coder une co-routine ou

un moniteur en Fortran ou en Pascal?

Les constructeurs de modules au sens de Yourdon et

Constantine sont considérés.

Parmi les constructeurs modulaires universellement reconnus
[MacLennan-87, Ghezzi-87, Teufel-91], on compte:

* la procédure et la fonction

* la macro-définition, incluant le fichier de

déclarations

* le package Ada, le module au sens de Modula-2

* la classe et l'objet, au sens de SMALLTALK et C++

* la base de données

11



Les primitives "historiques" incluent:
* le paragraphe COBOL
* la routine (GOSUB) BASIC
* le BLOCK DATA au sens de Fortran

Un module dit environnemental est indépendant du langage de
programmation et n'est relatif qu'a l'environnement de
programmation:

* le fichier

* 1'unité de compilation

Les constructeurs a la sémantique spécialisée sont:
* la téche Ada
* le générique Ada (procédure et package)
* le moniteur de Hoare-

1.3 Une taxonomie de la modularité

Dans cette section, une taxonomie de la modularité
logicielle est présentée.

Le tableau ci-aprés est une classification des différents
constructeurs modulaires par granulité. Le critére de base
est capturé par la dichotomie contenant-contenu. Un
constructeur strictement contenant ne peut é&tre déclaré
localement a un autre constructeur. Un constructeur
uniquement contenu n'a pas le potentiel de définition
imbricable: il est strictement atomique.

12



granulité large | fichier

(contenant) | unité de compilation
_____________________ | e o - ————— — -

granulité moyenne | objet C++

(contenant et | procédure/fonction a-la Pascal
contenu) | constructeur local récursif

granulité fine routine style BASIC

[
{(contenu) | paragraphe COBOL
| macro-définition
| constructeur non-récursif

Le niveau de granulité exprime aussi la capacité de
regroupement du gontenant par rapport a la fonctionalité du
contenu. Ainsi, au niveau le plus élevé tous les
constructeurs modulaires sont susceptibles de s'y retrouver
(plus ou moins imbriqués), alors qu'au niveau le plus bas se
retrouvent les constructeurs atomigques. Le niveau de
granulité se définit par la déclaration du constructeur:

une procédure Ada peut étre de granulité moyenne si elle est
déclarée localement ou de granulité large si elle est
compilable séparément. En ce sens, une fonction "C"' est de
granulité large parce qu'elle est toujours compilable
séparément (non imbricable), alors qu'une procédure/fonction
Pascal est de granulité moyenne parce qu'elle est toujours
déclarée localement. Ce concept de granulité est donc
fortement relié aux notions de globalité et de localité.

13



2. LE COUPLAGE INTER-MODULAIRE

Le couplage inter-modulaire est constitué par les liens
reliant entre eux deux ou plusieurs modules; c'est une
abstraction englobant toutes les dépendances inter-
modulaires, quel que soit leur type. Il est universellement
accepté qu'un bas couplage est préférable & un couplage
élevé; un bas couplage désigne peu de dépendances inter-
modulaires et est généralement associé a la qualité
logicielle, tandis qu'un haut couplage dénote beaucoup de
dépendances inter-modulaires et implique la pauvreté
logicielle [Sommerville-89, Schach-90].

Le couplage et la cohésion constituent des critéres trés
importants de qualité [Krauskopf-90]. Parce qu'il sont

applicables tét dans le cycle de vie (dés la conception),
ils peuvent &étre utilisés dans toutes les phases
subséquentes, incluant la programmation, l'entretien,
l'analyse inverse, etc.

Dans ce chapitre, les notions de couplage et de cohésion
seront mis en relation, différentes taxonomies du couplage
sont présentées, puis une modélisation originale de la
représentation et de l'analyse du couplage est développé.

2.1 Le couplage versus la cohésion

La cohésion est le terme par lequel est désigné les
relations fonctionnelles intra-modulaires [Yourdon-79]. Un
module hautement cohérent ne contient aucun élément étranger
a sa fonctionnalité, alors qu'une cohésion de bas niveau
indique que le module contient plusieurs

instructions/déclarations n'ayant aucun rapport entre eux.

14



Le couplage et la cohésion sont intimement reliés. En
effet, ils sont une indication de la qualité de la:
décomposition modulaire: la cohésion capture le degré avec
lequel chagque module implante une seule

abstraction, alors que le couplage identifie 1'indépendance
de chague module. A une bonne conception modulaire est
associée un bas couplage et une cohésion élevée.
Inversement, si ces deux criteéres sont satisfaits, un
systéme sera considéré de bonne qualité modulaire.

Ainsi, Murtagh [Murtagh-84, Murtagh-91] présente des
algorithmes de restructuration de systéme pour réduire le
couplage-contrdle. Dans un contexte d'entretien logiciel,
Cimitile [Cimitile-90] propose un outil CASE de
restructuration pour conserver un couplage-donnée de bas

niveau. Selby [Selby-881 utilise le ratio couplage/cohésion
pour prédire la localisation d'erreurs.

2.2 La catégorisation du couplage

Myers [Myers-75] a le premier proposé une taxonomie du
couplage. Il distingue les six niveaux suivants (traduction
libre): ;

couplage par donnée (data coupling)

couplage par structure (stamp coupling)

couplage par contrbdle (control coupling)

(1)
(2)
(3)
(4) couplage extérieur (external coupling)
(5) couplage par région (common coupling)
(6)

couplage par contenu (content coupling)
L'ordre de présentation coincide avec l'ordre de préférence:
le niveau (1) étant le meilleur et le niveau (6) étant le

pire. Il faut distinguer la terminologie utilisée dans ce

15



document (couplage-donnée vs couplage-contrdle) du
vocabulaire de Myers. Le couplage (1) par donnée désigne
une dépendance inter-modulaire restreinte aux paramétres
procéduraux. Le couplage (2) fait référence au passage par
paramétre d'une structure dont quelques composantes sont
effectivement utilisées. Le couplage (3) est présent quand
la logique interne d'un module est contrdlée par un
paramétre. Le couplage (4) extérieur implique la présence
de variables globales homogenes. Le couplage (5) par région
indique la présence de variables communes hétérogénes.
Finalement, le couplage (6) désigne l'altération directe de
contrdle ou de données dans un module, ou quand deux modules
partagent le méme code [Yourdon-79]. Un bon exemple de
couplage par contenu est la "routine" BASIC qui peut
partager le méme espace que le programme principal: il

n'est pas nécessaire d'invoquer GOSUB pour exécuter le code

Ay} EVN gy
Ucdi1a Louullilic,

Yourdon et Constantine [Yourdon-79] reprennent la
classification de Myers pour n'en faire qu'une dimension
dans leur modeéle. Ils définissent quatre facteurs
influen¢ant la quantité de couplage:
(1) type de connection inter-modulaire
(transfers de contrdle)
(2) complexité de l'interface
(le nombre d'items transférés)
(3) type de flot d'information
(grosso-modo les niveaux de Myers)
(4) moment auguel l'information est associée aux
identificateurs

Le facteur (1) est un exemple de couplage-contrdle: on

tient compte de la complexité inhérente aux exceptions, aux
retours alternatifs, etc. Les facteurs (2) et (3) sont des
critéres de couplage-donnée. Le facteur (4) est un critére

16



de conception seulement. En effet, il s'agit de distinguer
entre la compilation, l1'édition des lien et 1'exécution.

Une information lue a 1l'exécution engendre un couplage moins
élevé qu'une constante spécifiée dans le code.

Quelques années plus tard, Hammons et Dobbs [Hammons-85]
reconnaissent les limitations du modéle de Myers dans un
contexte Ada. Ils proposent deux nouveaux niveaux:

(1) couplage par définition

(2) couplage par package

Le couplage (1) par définition est présent quand un module
référe une définition (un type par exemple) extérieur. Le
couplage (2) désigne gquand deux modules référent un
troisieme module, et réferent des définitions différentes du
troisieme. Il est ironique de constater que ces situations
ne sont pas uniques a Ada; elles se présentent courramment
en C, a travers la macro-expansion de fichiers #include. Le
langage C existait déja en 1975.

Nielsen [Nielsen-86] considere la catégorisation du couplage
dans un contexte de tédches paralléles Ada. Il introduit un
niveau supplémentaire a ceux de Myers et de Hammons:

(1) couplage par concurrence {(concurrency coupling)

Un systéme concurrent est bassement couplé si les
intéractions des tlches sont bien balancées, si l'attente
active est minimisée et si les instructions effectuées dans

les rendez-vous sont minimisées.

Embley et Woodfield [Embley-87, Embley-88] considérent une
catégorisation du couplage dans un contexte de type de
donnée abstrait (TDA), implanté dans un package Ada, un
module MODULA-2, un objet C++, etc. Ils identifient cing
types de couplage, présentés depuis le pire jusqu'au
meilleur (traduction libre): ‘

17



(1) couplage par malignité (surreptitious coupling)
(2) couplage par exploitation (covert coupling)
(3) couplage par visibilité (overt coupling)

(4) couplage par exportation (export coupling)
(5) couplage nil (nil coupling)

Le couplage (1) fait référence a un client utilisant la
connaissance de l'implantation, mais sans 1'accéder
directement. Par exemple, si on implante un TDA "vecteur
réel" avec une liste triée sur les index, un client pourrait
invoquer un parcours du vecteur dans l'ordre du tri plutdt
que dans 1l'ordre naturel de l'application. Le couplage (2)
"exploite" l'implantation au méme niveau syntaxique du TDA.
En Pascal par exemple, la syntaxe ne permet pas de cacher
l'implantation d'un TDA: 1les structures de données et les
procédures sont globales au client. Ainsi, le langage ne

peut empé&cher un client d*exploiter un TDA. Le couplage (3)
par visibilité indique qu'un client accéde 1l'implantation du
TDA (l'implantation est visible). Enfin, le couplage (4)
par exportation se différencie du couplage par donnée et du
couplage par définition/package, car un client déclare sa
propre variable et invoque les opérations définie
globalement. Le couplage (5) nil représente 1'absence de
couplage.

Finalement, Rising et Calliss [Rising-92] reprennent la
discussion depuis le début. Leur article fait le point sur
[Myers-78, Yourdon-79, Hammons-85, Embley-87, Embley-88].
Ils intégrent les niveaux développés par les auteurs
précédents en une taxonomie échelonnée sur huit niveaux,

spécifiés du meilleur au pire:
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(1) couplage nil [Embley]

(2) couplage par package [Hammons]
(3) couplage par exportation [Embley]
(4) couplage par définition [Hammons]
(5) couplage par visibilité [Embley]
(6) couplage extérieur [Myers]

(7) couplage par malignité [Embley]
(8) couplage par exploitation [Embley]

Il est intéressant de noter que Rising n'est pas en accord
avec Embley sur les gravités relatives de ses deux pires
couplages et a permuté dans sa liste les places respectives
des couplage par malignité et par exploitation.

2.3 Une modélisation du couplage

Dans cette section, un modéle de la représentation et de
l'analyse du couplage est présentée, de facon a identifier
qualitativement les types de couplage directement et
indirectement présents entre toutes les paires de modules.
Ce modele est indépendant de la granulité et du type de
module considéré. Il est aussi indépendant de-la taxonomie
du couplage. Le modéle s'applique donc aussi bien au
couplage a-la Myers entre des procédures Pascal qu'au calcul

de l'ordre de compilation de fichiers source Ada.

Il est doné nécessaire de fixer a-priori les sujets et les
objets de l'analyse: les sujets étant déterminés par les
modules d'un systéme alors qu'une taxonomie du couplage
définit les objets. Ainsi, la granulité modulaire
identifiée au chapitre 1 permet de cerner les constructeurs
modulaires pertinents. Une liste exhaustive des modules
présents doit &tre calculée. Le choix arbitraire d'une
définition du couplage, comme par exemple celle de Myers, ou
plus simplement 1'échelle nominale " (couplage-donnée,
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couplage-contrble, couplage-référence)" détermine le type de

résultat obtenu.

Le modéle est défini par une matrice a& deux dimensions. Les
rangées et les colonnes sont indexées par les modules
considérés. Chaque élément de la matrice est un ensemble

sur les valeurs de couplage. L'analyse consiste & définir
tous les ensembles dans la matrice.

CIBLE

SOURCE I'module_l module_2 - module_n
__________ | - e e - " "~ ——
module_1 | { } {...} { }
module_2 | { } {...} { }

|

I

!
module_n | { } {...} { }

Un module SOURCE est dépendant du module CIBLE. L'analyste
codifie la présence de dépendance directe entre le module_i
et le module_j par un ensemble dont les éléments sont des
valeurs de 1l'échelle du couplage considéré. Trivialement,
un ensemble vide signifie qu'aucun couplage n'existe entre
les deux modules tandis qu'un ensemble complet signifie que

tous les types de couplage sont présents.

La nature méme du couplage est directionnelle; cette matrice
n'est donc pas nécessairement symétrigque. De facon
évidente, un module A dépendant d'un module B n'implique pas
nécessairement que le module B est aussi dépendant de A.
Cette derniere situation se réalise en présence de deux
procédures mutuellement récursives, par exemple. Il est
toutefois important de noter que la diagonale principale ne
20



doit contenir que des ensembles vides. En effet, méme si un
module est "auto-dépendant" (!?) -- procédure directement
récursive par exemple -- le couplage est considéré nul.

Cette matrice contient une représentation du couplage direct
entre toutes les paires de modules. L'automatisation de ce
processus dépend de la calculabilité de 1'échelle de
couplage utilisée.

Pour obtenir la matrice du couplage direct et indirect, il
suffit de calculer la fermeture transitive de la matrice
initiale. En présence de n modules, ce calcule consomme
0(n"3) opérations et peut se faire sur-place.

Cette derniere matrice offre une représentation compléte des
dépendances de chaque module (par rangée) et des dépendances
dont—chagque-module—est—la cible (par colonne):
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3. LA MESURE DU COUPLAGE

La mesure du couplage est importante. Elle est, avec la
cohésion, une bonne indication de la qualité modulaire d'un
systéme [Yourdon-79, Card-85]. Sellers [Sellers-92] montre
que la métrique de McCabe, la complexité cyclomatique, est
insensible & la modularisation. Dans [Emerson-84] est
décrite une métrique discriminant la cohésion.

Une mesure du couplage pourrait é&tre utilisée & plusieurs -
étapes du cycle de vie [Basili-80, Conte-86], incluant la
conception en tout premier lieu. La quantification d'une
conception n'est pas neuve. Myers, Yourdon et Constantine
ont développé les notion de couplage et de cohésion dans ce

but " Une mesure de couplage est donc désirable.

3.1 La mesure basée sur les modéles existants

Dans 1l'espoir de pouvoir calculer une métrique basée sur les
modeles décrits précédemment, il faut investiguér la
calculabilité des différents types de couplages.

Dans le formalisme de Myers, on peut vérifier statiquement
le couplage par donnée et le couplage par contrdle. Par
contre, en présence de pointeurs, une vérification statique
du couplage par structure est impossible. Le couplage par
région est impossible a distinguer du couplage extérieur:
comment estimer 1'homogénéité d'une variable globale?
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Les quatre facteurs de Yourdon et Constantine souffrent
aussi de difficultés. Il n'existe pas de liste exhaustive
des types de transfers de contrdle: c¢'est dépendant du
langage. Les problemes des niveaux de Myers sont tous
présents dans le facteur (3).

Comme Hammons suggére une extension aux niveaux de Myers, on
ne peut pas non plus calculer son échelle.

Le niveau supplémentaire proposé par Nielsen est trop ambigu
pour pouvoir le calculer statiquement: comment estimer si
les t&ches sont bien balancées et si l'attente active est
minimale? (clairement non calculable)

Dans 1'échelle d'Embley, les niveaux (3), (4) et (5) sont

certainement calculables. Par contre, il est évident que
les niveaux (1) et (2) ne le sont pas.

3.2 La représentation du couplage

Dans cette section, la littérature relative a la
représentation du couplage est passée en revue, avec le but
avoué de démontrer que le traitement automatique de
l'information pertinente au couplage est possible.

Yau et Grabow [Yau-80] définissent un graphe dirigé
hiérarchique basé sur le principe de "graphe récursif"

associé a une base de donnée relationnelle. Leurs
applications sont strictement dans un environnement Pascal.
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Louise Moser [Moser-90] exhibe une représentation des
dépendances-données et du flot de contrdle dans un contexte
Ada, incluant rendez-vous, levée d'exception, capture
d'exception, terminaison de téche, importation et
initialisation de package, etc. Le traitement du graphe
peut étre intra ou inter-modulaire.

Callahan, Carle, Hall et Kenedy [Callahan-90] généralisent

un résultat de Barbara Ryder [Ryder-79] en construisant un

multi-graphe permettant le traitement des procédures et des
fonctions passées en paramétre.

Cimitile, DiLucca et Maresca [Cimitile-90] distinguent et
traitent les dépendances inter-modulaires actuelles et
potentielles. Les dépendances potentielles sont utiles pour

empé&cher de saturer le graphe.

Narayan Debnath [Debnath-90] produit une synthése du graphe
de flot de contrdle et du flot des données, sous le nom de
"Generalized Program Graph".

Dietrich et Calliss [Dietrich-91] utilisent une base de
données relationnelles pour définir des relations
d'importation, d'exportation, d'héritage et de déclaration,
le tout dans de multiples contextes trés différents.

Harrold et Malloy [Harrold-91, Harrold-93] ont accentué
leurs efforts sur les manipulations efficaces d'un graphe de
contrble et de donnée. Les informations obtenues sont
strictement inter-modulaires.
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3.3 Métriques existantes

Cette section est sfirement la plus importante du présent
document. En effet, une revue exhaustive et critique de la
littérature relative a la mesure du couplage est élaborée.
Sur la fois des lacunes et faiblesses constatées, une
problématique pourra é&tre identifiée plus loin. La
présentation respecte 1'ordre chronologique de publication.
Aucune classification par théme n'est tentée. Il est
important de noter que sur les quinze références citées,
seulement quatre proposent explicitement une modélisation du
couplage; les autres utilisent une mesure (le plus souvent
naive) du couplage comme composante d'une métrique dérivée
dans une application, ou valident une taxonomie

particulieére.

Il est étonnant de constater que les plus anciennes
tentatives, a l'exception de deux seulement, sont récentes.
Il s'agit donc d'un probléme relativement ancien, mais dont
le domaine de recherche est en pleine effervescence.

En 1979, Yourdon et Constantine [Yourdon-79] suggérent que
le couplage d'une conception structurée soit quantifié a
l'aide de la mesure du fan-in et du fan-out des composantes.
Une valeur de fan-in élevée est associée a un couplage élevé
parce que c'est une mesure directe de dépendance-contrdle.
Une valeur de fan-out élevée est associée a une complexité
élevée du module, en raison de la logique requise pour
contr8ler les invocations. Dans ce contexte, seule une
mesure de couplage d'une conception de systéme est

considéré.
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Un peu plus tard, Henry et Kafura [Henry-81] proposent la
mesure de couplage du module A au module B suivante:

couplage = (le nombre de procédures exportant de
l'information du module A
+
le nombre de procédures important de
l'information dans le module B)

*

le nombre de flots différents d'information.

Les auteurs soulignent qu'ils n'ont pas été capable de
valider cette mesure. Il s'agit strictement d'une mesure de
couplage~donnée.

Dans un domaine particulier (Ada), [Kirchgassner-87]
présente un outil automatisant 1'identification de
regroupement modulaires et la hiérarchisation statique des
modules. Le modeéele de couplage est particulier a Ada (comme
par exemple l'instantiation générique), et les relations de
couplage sont différentes du niveau microscopique (module)
au niveau macroscopique (groupement modulaire) .

Selby et Basili [Selby-88] utilisent le ratio
couplage/cohésion pour prédire l'effort d'entretien d'un
trés grand systéme. Leur modéle de couplage est simple. Le
triplet (p,x,q) est appellé "couplage-donnée" (data-binding)
si le module p communigue avec le module g via la variable
x. Le couplage entre p et g est le nombre de triplets
(p,x,q). Méme si cette mesure paralt odieusement simple (un
seul aspect du couplage a-la Myers), les auteurs ont pu la
valider (eh oui!) sur un systéme d'environ 135 KLOC. En
fait, les dés étaient pipés un peu: le systéme utilisé pour
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la validation ne contenait que ce type de couplage-donnée.
Par contre, Selby et Basili ont atteint de bons résultats en
ignorant completement le couplage-contrdle.

Encore une fois appliqué dans le monde Ada, Embley et
Woodfield [Embley-88] posent le postulat a-priori qu'un
package Ada ne doit contenir qQu'une seule implantation de
type de donné abstrait (TDA), et n'exporter que les
opérations définies par ce TDA. Sous cette hypothése, les
auteurs ont trouvé que les packages n'ayant aucune
connaissance de l'implantation des autres TDAs ont un
couplage plus bas que les packages manipulant la structure
de donnée d'un TDA. Cet article présente une validation de
la taxonomie du couplage présenté dans [Embley-87].

Gopal et Schach [Gopal-89] présentent un outil CASE orienté
Ada,;permettant-de-retracer-les références et les
modifications de variables dans un contexte d'aide a
l'entretien. Dans le méme esprit que [Kirchgassner-87], cet
outil permet aussi d'identifier les modules invoguants et
les modules invoqués. La notion de couplage n'est pas
explicitement discutée; elle est implicite en ce sens que
l'outil est un microscope sur les liens inter-modulaires,
autant statiques que dynamiquement observés. C'est un
générateur de références croisées sophistiqué. Vanek et
Culp [Vanek-89], Maarek [Maarek-88] présentent le méme type
d'outil, mais indépendant du langage. De méme, [Robillard-
91] exhibe un outil CASE sophistiqué qui intégre le calcul
de plusieurs métriques. Ince [Ince-90b] utilise ce type
d'outil pour détecter la dégradation structurelle lors de

l'entretien.
Le couplage dans [Oval-89] est utilisé pour mesurer
1'indépendance du graphe d'appel. Les arbres sous-jacents

au graphe d'appel, dont les racines sont les points d'entrée

27



des applications, peuvent partager des modules de services.
Ces modules sont qualifiés "indépendants". Les auteurs
définissent plusieurs métriques sur une échelle ratio basée
sur une mesure triviale du couplage-contrdle: les degrés
d'incidence et d'excidence des noeuds (i.e. le nombre de
modules distincts appelants et appelés). Ces métriques
permettent l'identification des noeuds indépendants. Une
critique peut sembler sévére: ce méme résultat
(l1'identification des noeuds indépendants) peut se calculer
directement sur le graphe d'appel par une fouille en
profondeur suivie d'un parcours préfixé.

Adamov et Richter [Adamov-90] définissent la complexité
"structurelle" inter-modulaire comprenant (entre autres) une
complexité de flot-de-contrdle, qui est proche mais
différente du couplage-contrdle (les modules directement
récursifs sont reconnus et une "dépendance" du module vers
lui-méme est introduite, alors qu'il est évident que la
récursivité directe n'engendre aucun couplage
supplémentaire), et qui définit la complexité d'"interface",
qui est essentiellement une tentative de couplage-donnée (en
effet, le modéle indique que la "quantité" de dépendance-
donnée est considérée, mais sans distinguer entre le nombre
de variables référencées et la taille de la variable
référencée: le probléme de la "quantité" de couplage-donnée
via un pointeur est escamoté). Il s'agit en fait d'une
mesure topologique sur le graphe d'appel et sur le graphe
d'interface.

Yaung et Raz [Yaung-92] analysent et mesurent des liens
inter-processus générés par une conception via un diagramme
de flot-de-données. Le couplage-contrble est totalement
absent. Le couplage-donnée est modélisé par une matrice
d'interconnectivité. La mesure du couplage est une mesure
de type "ratio". Une analyse de groupement est effectuée.
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Dans [Cherniack-93], le couplage est modélisé par une
combinaison linéaire (pondérée) des huit termes suivants:
nombre de parametres-donnée en mode IN,
nombre de paramétres-contrdle en mode IN,
nombre de parametres-donnée en mode OUT,
nombre de parameétres-contrdle en mode OUT,
nombre de variables globales utilisées en donnée,
nombre de variables globales utilisées en contrdle,
nombre de modules invoqués,
nombre de modules invoquant.

Les coefficients de la combinaison linéaire (la pondération
de chaque terme) ont été déterminés empiriquement dans des
contextes de ré-utilisabilité, de portabilité et
d'entretien. Les auteurs ont tenté de calculer le couplage

a=-la Myers, mais restent silencieux sur la distinction entre

les parametres/variables-donnée et contrble.

29



4. PROBLEMATIQUE

L'expérience de Lohse [Lohse-84] et les travaux de Hammons,
Nielsen et Embley [Hammons-85, Nielsen-86, Embley-87] ont
démontré que les taxonomies du couplage élaborées par
Myers/Yourdon-Constantine [Myers-75, Yourdon-79] ne
reflétent pas toute la réalité. De plus, le modéle enrichi
Yourdon-Hammons-Nielsen-Embley est intuitif, informel, et
impossible & calculer: il décrit plus une complexité
psychologique qu'une complexité logicielle objective. A ce
méme modéle enrichi correspond une échelle de type ordinal
[Roberts-79, Kaposi-91, Zuse-91] qui ne permet pas d'établir
de métriques comparatives. Finalement, dans la section 3.3,
il a été démontré qu'il n'y a pas de modéle satisfaisant du
couplage.

Le probléme évident est de définir un modéle du couplage
auquel correspondrait une échelle de type ordinal,
intervalle, ratio ou idéalement de type absolu [Roberts-79,
Kaposi-91, Zuse-91]; ce qui permet de définir une mesure
objective. En fait, Fenton et Melton [Fenton-90] montrent
comment associer une mesure du couplage basée sur le modéle
de Myers a une échelle ordinale.

Cette mesure devrait étre sensible au couplage-contrdle ET
au couplage-donnée; elle serait potentiellement multi-
dimensionnelle [Shepperd-90]. Elle serait vérifiée face aux
axiomes de [Weyuker-88, Lakshmanan-91, Cherniavsky-91].
Récemment dans [Chung-91], la complexité est exprimée avec
une notation asymptotique polynomiale, exactement comme une
complexité-temps algorithmique.

A la lumiére des chapitres précédents, au moins trois pistes
de recherche méritent une attention. Par ordre de
préférence d'investigation:
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HYPOTHESE 1: Un modéle du couplage serait dérivé des
modeles d'interconnection basés sur la théorie de
l'information [VanEmden-70, Chanon-74, Chen-78, Mohanty-81,
Boloix-85, Boloix-88, Chapin-89, Robillard-89, Como-90,
Torres-91, Harrison-92, Cook-93]. Une métrique obtenue
refleterait ainsi l'entropie du couplage. Une investigation
au niveau inter-modulaire de la mesure (intra-modulaire) de
Boloix semble prometteuse.

HYPOTHESE 2: Un modéle du couplage serait dérivé du modéle
de découpage de programme ("program slicing") [Lyle-88, Ott-
89, Horwitz-90].

HYPOTHESE 3: Un modéle du couplage serait dérivé de la

représentation de programme par un "polyndme

-~ POy 4 . . r Q2
caractéristique" [Cantona=83]-

Dans l'espoir de pouvoir calculer une éventuelle métrique,
il est nécessaire de passer en revue les points suivants:

(1) un modéle de modularité assez expressif est-il
disponible?

(2) est-il possible d'identifier (facilement) les
sources potentielles de couplage-donnée et de
couplage-contrdle pour tous les type de modules?

(3) une représentation du couplage est-elle disponible?

(4) existe-t-il des algorithmes efficaces pour
manipuler cette représentation?

(5) le contexte d'utilisation de la métrique est-il

bien défini?
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La notion de module de Yourdon et Constantine est assez
riche pour englober tous les constructeurs modulaires
connus. La taxonomie proposée pour la modularité (chapitre
1) ainsi que les caractérisations et la modélisation du
couplage (chapitre 2) permettent d'identifier les source
potentielles pour chagque module.

Comme le couplage est typiquement représenté par un graphe
dirigé ou un multi-graphe (c.f. section 3.2), les hypothéses
1, 2 et 3 sont équivalentes a associer la théorie de
l'information, le découpage et l'algébre polynomiale
respectivement a la théorie des graphes. Idéalement, une
éventuelle métrique serait calculée rapidement.
Heureusement, plusieurs algorithmes efficaces relatifs au

h Y

calcul de métriques ont été publiés & ce jour [Ryder-79,

Ammarguellat-92].

De plus, il faut définir le contexte d'utilisation d'une
métrique de fagon a effectuer une validation [Ejiogu-93] et
conduire d'éventuelles expériences empiriques. Les
contextes d'entretien, de ré-utilisation et plus
génériquement de qualité de programmation sont également
pertinents.
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