
Titre:
Title:

Analyse critique de la mesure du couplage logiciel

Auteurs:
Authors:

Denis Valois, & Pierre N. Robillard

Date: 1993

Type: Rapport / Report

Référence:
Citation:

Valois, D., & Robillard, P. N. (1993). Analyse critique de la mesure du couplage
logiciel. (Rapport technique n° EPM-RT-93-29).
https://publications.polymtl.ca/9532/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9532/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-93-29

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9532/
https://publications.polymtl.ca/9532/

3 0 NOV. 1993

EPM/RT-93/29

Analyse critique de la mesure du couplage logiciel

<?
Denis Valais M. Se.

Pierre N. Robillard, Ph.D., Ing.

Département de génie électrique
et génie informatique

Ecole Polytechnique de Montréal

novembre 1993

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous quelque
forme que ce soit, sans avoir obtenu au préalable l'autorisation de l'auteur,

OU des auteurs

Dépôt légal, novembre 1993
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Editions de l'Ecole Polytechnique
École Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514)340-4473
Télécopie: (514)340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la manutention.
Régler en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente préalable
dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.

TABLE DES MATIÈRES

Sommaire ... 3

Remerciements 5

Introduction 6

l. La modularité du logiciel 9

1.1 Concepts fondamentaux et auteurs classiques 9

l.2 Constructeurs modulaires 11

l.3 Une taxonomie de la moâularité 12

2. Le couplage inter-modulaire 14

2.l Le couplage versus la cohésion 14

2.2 La catégorisation du couplage 15

2.3 Une modélisation du couplage 19

3. La mesure du couplage 22

3.1 La mesure basée sur les modèles existants 22

3.2 La représentation du couplage 23

3.2 Métriques existantes 25

4. Problématique'..................... 30

Bibliographie....................................... 33

SOMMAIRE

Une bonne conception logicielle est à la base d'une

programmation de qualité, de même qu'une bonne programmation

facilite l"entretien, l'analyse inverse et la ré-

utilisation. Au coeur même de ces concepts se retrouve la

notion de "module". Dans plusieurs disciplines en génie

logiciel on s'intéresse soit à identifier les

caractéristiques d'une modularisation de qualité, pour

éventuellement proposer des critères menant à une bonne

conception, soit à mesurer la qualité d'une conception ou

d'une programmation. Ainsi, la ré-utilisabilité d'un

logiciel sera-t-elle en partie fonction de sa modularité.

Malheureusement, aucun consensus n'est apparu dans ces

disciplines, que ce soit sur des notions aussi élémentaire

que la définition d'un module, et encore moins sur les

critères pouvant servir à mesurer une modularisation. En

effet, bien que le couplage soit défini comme les liens qui

relient ensemble deux ou plusieurs modules, les critères de

qualité du couplage sont subjectifs, et difficilement

mesurables. D'autres parts, quelques métriques de couplage

ont été proposées, mais les modèles sous-jacents, et les

métriques, sont ad-hoc soit à un type d'application (ré-

utilisabilité, analyse inverse, standards de programmation,

etc.), soit à un environnement particulier (package Ada,

procédure Pascal, objet C++, etc.).

Le but premier de cette recherche est donc de faire le point

sur la mesure du couplage logiciel, tout d'abord en passant

en revue critique les notions de module et de couplage, puis

en présentant exhaustivement l'état-âe-1'arfc de la mesure du

couplage en insistant sur une présentation comparative de la

force et de la faiblesse de chacun des modèles.

Une taxonomie des constructeurs modulaires est présentée à

la section 1.3. En 2.3, un modèle de représentation et

d'analyse du couplage est proposé. Ces deux items

constituent un apport original à cette recherche.

Finalement, une problématique est identifiée et plusieurs

hypothèses de recherche sont soumises.

REMERCIEMENTS

Je tiens à remercier certaines personnes étroitement liées à

cette recherche.

En tout premier lieu, à mon directeur de recherche Pierre N.

Robillard je présente mes respects et ma gratitude. Son

talent pour poser les bonnes questions furent une source

constante de motivation et de stimulation.

Denise Bigué, mon épouse, pour son infinie patience à mon

égard ainsi que sa cohésion constante mérite une mention

honorable, de même que mon module-fils Claude pour avoir

hérité de certaines fonctions, et à rencontre de toutes

théories conserve un couplage élevé avec ses parents.

Je remercie également le Collège militaire de Saint-Jean

pour l'environnement stimulant et le soutien financier.

INTRODUCTION

Le couplage logiciel est d'une grande importance en

conception, en programmation et en analyse inverse. C'est

un critère incontournable en qualité logicielle. Il est

pourtant essentiel dans le contexte de ce document de

définir le couplage et son domaine d'application, de

présenter les corrélations entre le couplage et la qualité

logicielle, et d'exhiber quelques applications.

Dans le cadre de cette étude, le couplage-système est

différencié du couplage inter-modulaire. Le couplage inter-

modulaire est constitué par les liens reliant entre eux deux

ou plusieurs modules, alors que le couplage-système est

défini comme l'ensemble du couplage inter-môâulàirë présent

dans le système. Bien que ce soit, à la limite, un abus

terminologique, cela permet de considérer deux systèmes en

fonction de leur couplage. Il est universellement accepté

qu'un bas couplage est préférable à un haut couplage; un bas

couplage désigne peu de dépendances inter-modulaires et est

généralement associé à la qualité logicielle, tandis qu'un

haut couplage dénote beaucoup de dépendances inter-

modulaires et implique la pauvreté logicielle [Sommerville-

89, Schach-90].

Le couplage inter-modulaire est donc une abstraction

englobant toutes les dépendances inter-modulaires. Il sera

donc question de couplage-donnée et de couplage-contrôle.

Le couplage-donnée est présent quand un module réfère (ou

peut référer) une donnée déclarée ailleurs, que ce soit en

lecture ou en modification. Dans ce dernier cas, il est

d'usage de qualifier ce genre d'accès d'effet de bord. Le

couplage-contrôle est identifié par l'invocation de

l'exécution d'une routine déclarée extérieurement. Ce genre

6

de distinction peut paraître évident, mais elle est somme

toute assez artificielle: dans quelques situations, la

frontière entre le couplage-donnée et le couplage-contrôle

est plutôt f loue, comme dans l'invocation à'exécution d'une

variable-procédure. La dépendance est à la fois une

dépendance-contrôle et une dépendance-donnée. Une

dépendance sur un objet contenant des méthodes est aussi un

cas non évident. De plus, on peut aussi considérer le

couplage-référence, caractérisé par une référence à un

contenant sans référence au contenu, qu'il soit contrôle ou

donnée. Etonnament, il est rare dans la littérature de

distinguer ces trois cas.

Le domaine d'application du couplage est l'ensemble sur

lequel on l'observe et sur lequel on espère le calculer:

soit l'ensemble des modules constituant un système logiciel.

Une ïnoâêUsâfcion au couplage est âônc ihâissocîaËle d'un

modèle de la notion de module: la première partie en est

consacrée. Ici, le terme "modularité" désigne une

décomposition en modules effective, alors que

"modularisation" réfère à l'action de décomposer ou de

concevoir un logiciel en modules. Ainsi, un ingénieur

logiciel effectue une modularisation lors d'une conception

et observe la modularité d'un système dans un cadre d'une

analyse inverse. Une modularisation de qualité est aussi

intuitive que difficile à définir et à enseigner [Bailie-

91]. Dans [Woodfield-Sla], l'auteur conduit une étude

empirique de la corrélation entre la modularité et la

compréhension de programme, et conclue (à notre grande

surprise!) que plus un programme est bien modularisé,

meilleure est sa compréhension. Malheureusement, son étude

n'inclue pas de programme modularisé à outrance.

La mesure du couplage est importante et utile. Depuis la

publication d'une taxonomie du couplage âans [Myers-75], de

nombreux auteurs ont défini efc expérimenté plusieurs

métriques dans toutes sortes de contextes.

Le couplage inter-modulaire peut être ainsi associé

trivialement à l'effort nécessaire pour extraire un module

de son contexte, à le ré-utiliser, ou à le re-concevoir

[Colbrook-89, Choi-90, Purtilo-90, Power - 90]. Dans [Selby-

88], l'auteur montre, dans un contexte d'entretien de

logiciel, comment une erreur peut être localisée dans les

modules à haut couplage-donnée.

Moins trivialement, une mesure du couplage peut aider lors -

de la conception et de la programmation [Reynolds-84,

Mitchell-88, Gomaa-89, Muller-90].

Une étude empirique sur la corrélation entre le type de

couplage [Myërs-75] et la fàcilifce d'entretien démontre que

le type de couplage présent (et non sa quantité) a peu

d'importance sur la facilité d'entretien [Lohse-84]: la

classification de Myers ne reflète donc pas toute la

réalité. L'importance d'un nouveau modèle au couplage à la

fois qualitatif, quantitatif et universel, est donc évidente

[Ejiogu-90]. D'un tel modèle dérivera une métrique

applicable dans plusieurs contextes.

l. LA MODULARITÉ DU LOGICIEL

Qu'est-ce qu'un module? Il y aura autant de réponses

différentes que d'auteurs! On peut définir un module comme

un découpage permettant aux humains de mieux comprendre une

réalité complexe.

Dans ce chapitre, la notion de module sera cernée: depuis

les premiers auteurs jusqu'à un parcours des constructeurs

modulaires disponibles dans les langages et environnements

contemporains. Finalement, une taxonomie de la moâularité

permettra de capturer quelques aspects fondamentaux. Cette

catégorisation est originale à la présente recherche.

Dans le contexte de ce document, le terme "modulante"

désigne une décomposition en modules déjà effectuée, alors

que "modularisafcion" réfère à l'action de décomposer ou de

concevoir un logiciel en modules. Ainsi, un ingénieur

logiciel effectue une modularisation lors d'une conception

et observe la modularité d'un système dans un cadre d'une

analyse inverse.

1.1 Concepts fondamentaux et auteurs classiques

Une des premières tentatives de définition revient à David

Parnas [Parnas-72a]: un module est un ensemble d'états,

accompagné de fonctions pour changer d'état, et de d'autres

fonctions retournant une vision de l'état actuel. Bien que

cela puisse sembler curieux à prime abord, sept mois plus

tard, il change sa définition de tout au tout [Parnas-72b,

Parnas-85]: un module est une affectation de travail, i.e.

une tâche à faire. Rien de bizarre dans tout ceci; le

contexte était très différent.

9

Quelques années plus tard, Stevens et Myers dans [Stevens-

74, Myers-78] définissent un module par un ensemble

d'énoncés satisfaisant trois conditions:

(l) c'est un ensemble fermé,

(2) il a le potentiel d"être invoqué par n'importe quel

autre module,

(3) il a le potentiel d"être compilé séparément.

Déjà cela semble à la fois général et plus précis.

Toutefois, considérer un module comme une entité

exclusivement exécutable semble trop limitatif: les

fichiers de déclarations et les packages Ada entre autre ne

peuvent être considérés comme des modules.

Peu de temps après, Yourdon et Constantine [Yourdon-79]

offrent une définition acceptable: un module est

(l) une séquence lexicalement contigûe

(2) d'énoncé de programme,

(3) bornée par des éléments délimifceurs et

(4) ayant un nom d'agrégat.

Les quatre conditions énumérées couvrent un très large

domaine et c'est cette définition qui est acceptée un peu

partout.

Notons pourtant que ces définitions n'en sont pas... Les

auteurs définissent un module par ses qualités et non par

son essence. La petite définition fournie en tête de

chapitre décrit l'essence du module et non son existence.

10

1.2 Constructeurs modulaires

Lors d'une modularisation, il n'est pas évident si la

structure syntaxique du langage de conception affecte la

prise de décision associée au processus de raffinement

successif. Reynolds [Reynolds-90] présente un modèle de

raffinement successif couplé à la structure grammaticale du

langage de support. Une question naturelle serait de

s'interroger sur la relation entre la modularisation en

programmation et les primitives syntaxiques offertes par le

langage de programmation. Intuitivement, tout indique que

la même relation existe au niveau de la programmation.

Les constructeurs modulaires disponibles dans les langages

de programmation contemporains seraient donc le "support" de

la modularisafcion à ce niveau, un peu comme le langage

naturel est le support de la pensée humaine. De manière

équivalente, s'il est difficile de réfléchir à un sujet

inexprimable, il devrait être autant difficile de coder un

type de module dans un langage ne l'offrant pas en

primitive. As-t-on déjà essayé de coder une co-routine ou

un moniteur en Fortran ou en Pascal?

Les constructeurs de modules au sens de Yourdon et

Constantine sont considérés.

Parmi les constructeurs modulaires universellement reconnus

[MacLennan-87, Ghezzi-87, Teufel-91], on compte:

* la procédure et la fonction

* la macro-définition, incluant le fichier de

déclarations

* le package Ada, le module au sens de Modula-2

* la classe et l'objet, au sens de SMALLTALK et C++

* la base de données

11

Les primitives "historiques" incluent:

* le paragraphe COBOL

* la routine (GOSUB) BASIC

* le BLOCK DATA au sens de Fortran

Un module dit environnement a l est indépendant du langage de

programmation et n'est relatif qu'à l'environnement de

programmation :

* le fichier

* l'unité de compilation

Les constructeurs à la sémantique spécialisée sont:

* la tâche Ada

* le générique Ada (procédure et package)

* le moniteur de Hoare-

1.3 Une taxonomie de la modularité

Dans cette section, une taxonomie de la modularité

logicielle est présentée.

Le tableau ci-après est une classification des différents

constructeurs modulaires par granulité. Le critère de base

est capturé par la dichotomie confcenant-confcenu. Un

constructeur strictement contenant ne peut être déclaré

localement à un autre constructeur. Un constructeur

uniquement contenu n'a pas le potentiel de définition

imbricable: il est strictement atomique.

12

GRANULITÉ MODULAIRE CONSTRUCTEURS MODULAIRES

granulité large

(contenant)

l fichier

l unité de compilation

granulité moyenne

(contenant et

contenu)

objet C++

procédure/fonction à-la Pascal

constructeur local récursif

granulité fine

(contenu)

routine style BASIC

paragraphe COBOL

macro-définition

constructeur non-récursif

Le niveau de granulité exprime .aussi la capacité de

regroupement du contenant par rapport à la fonctionalité du

contenu. Ainsi, au niveau le plus élevé tous les

constructeurs modulaires sont susceptibles de s'y retrouver

(plus ou moins imbriqués), alors qu'au niveau le plus bas se

retrouvent les constructeurs atomiques. Le niveau de

granulité se définit par la déclaration du constructeur:

une procédure Ada peut être de granulité moyenne si elle est

déclarée localement ou de granulité large si elle est

compilable séparément. En ce sens, une fonction "C" est de

granulité large parce qu'elle est toujours compilable

séparément (non imbricable), alors qu'une procédure/fonction

Pascal est de granulité moyenne parce qu'elle est toujours

déclarée localement. Ce concept de granulité est donc

fortement relié aux notions de globalité et de localité.

13

2. LE COUPLAGE INTER-MODULAIRE

Le couplage inter-modulaire est constitué par les liens

reliant entre eux deux ou plusieurs modules; c'est une

abstraction englobant toutes les dépendances inter-

modulaires, quel que soit leur type. Il est universellement

accepté qu'un bas couplage est préférable à un couplage

élevé; un bas couplage désigne peu de dépendances inter-

modulaires et est généralement associé à la qualité

logicielle, tandis qu'un haut couplage dénofce beaucoup de

dépendances inter-modulaires et implique la pauvreté

logicielle [Sommerville-89, Schach-90].

Le couplage et la cohésion constituent des critères très

importants de qualité [Krauskopf-90]. Parce qu'il sont

applicables tôt dans le cycilê âë vie (dès la conception) ,

ils peuvent être utilisés dans toutes les phases

subséquentes, incluant la programmation, l'entretien,

l'analyse inverse, etc.

Dans ce chapitre, les notions de couplage et de cohésion

seront mis en relation, différentes taxonomies du couplage

sont présentées, puis une modélisation originale de la

représentation et de l'analyse du couplage est développé.

2.1 Le couplage versus la cohésion

La cohésion est le terme par lequel est désigné les

relations fonctionnelles intra-modulaires [Yourdon-79]. Un

module hautement cohérent ne contient aucun élément étranger

à sa fonctionnalité, alors qu'une cohésion de bas niveau

indique que le module contient plusieurs

instructions/déclarations n'ayant aucun rapport entre eux.

14

Le couplage et la cohésion sont intimement reliés. En

effet, ils sont une indication de la qualité de la

décomposition modulaire: la cohésion capture le degré avec

lequel chaque module implante une seule

abstraction, alors que le couplage identifie l'indépendance

de chaque module. A une bonne conception modulaire est

associée un bas couplage et une cohésion élevée.

Inversement, si ces deux critères sont satisfaits, un

système sera considéré de bonne qualité modulaire.

Ainsi, Murtagh [Murtagh-84, Murtagh-91] présente des

algorithmes de restructuration de système pour réduire le

couplage-contrôle. Dans un contexte d'entretien logiciel,

Cimitile [Cimitile-90] propose un outil CASE de

restructuration pour conserver un couplage-donnée de bas

niveau. Selby [Selby-88] utilise le ratio couplage/cohésion

pour prédire la localisation d'erreurs.

2.2 La catégorisation du couplage

Myers [Myers-75] a le premier proposé une fcaxonomie du

couplage. Il distingue les six niveaux suivants (traduction

libre):

(l) couplage par donnée (data coupling)

(2) couplage par structure (stamp coupling)

(3) couplage par contrôle (control coupling)

(4) couplage extérieur (external coupling)

(5) couplage par région (common coupling)

(6) couplage par contenu (content coupling)

L'ordre de présentation coïncide avec l'ordre de préférence:

le niveau (l) étant le meilleur et le niveau (6) étant le

pire. Il faut distinguer la terminologie utilisée dans ce

15

document (couplage-donnée vs couplage-contrôle) du

vocabulaire de Myers. Le couplage (l) par donnée désigne

une dépendance inter-modulaire restreinte aux paramètres

procéduraux. Le couplage (2) fait référence au passage par

paramètre d'une structure dont quelques composantes sont

effectivement utilisées. Le couplage (3) est présent quand

la logique interne d'un module est contrôlée par un

paramètre. Le couplage (4) extérieur implique la présence

de variables globales homogènes. Le couplage (5) par région

indique la présence de variables communes hétérogènes.

Finalement, le couplage (6) désigne l'altération directe de

contrôle ou de données dans un module, ou quand deux modules

partagent le même code [Yourdon-79] . Un bon exemple de

couplage par contenu est la "routine" BASIC qui peut

partager le même espace que le programme principal: il

n'est pas nécessaire d'invoquer GOSUB pour exécuter le code

de la routine.

Yourdon et Constantine [Yourdon-79] reprennent la

classification de Myers pour n'en faire qu'une dimension

dans leur modèle. Ils définissent quatre facteurs

influençant la quantité de couplage:

(l) type de connection inter-modulaire

(transfers de contrôle)

(2) complexité de l'interface

(le nombre d'items transférés)

(3) type de f lot d'information

(grosso-modo les niveaux de Myers)

(4) moment auquel l'information est associée aux

identificateurs

Le facteur (l) est un exemple de couplage-contrôle: on

tient compte de la complexité inhérente aux exceptions, aux

retours alternatifs, etc. Les facteurs (2) et (3) sont des

critères de couplage-donnée. Le facteur (4) est un critère

16

de conception seulement. En effet, il s'agit de distinguer

entre la compilation, l'édifcion des lien et l'exécution.

Une information lue à l'exécution engendre un couplage moins

élevé qu'une constante spécifiée dans le code.

Quelques années plus tard, Hammons et Dobbs [Hammons-85]

reconnaissent les limitations du modèle de Myers dans un

contexte Ada. Ils proposent deux nouveaux niveaux:

(l) couplage par définition

(2) couplage par package

Le couplage (l) par définition est présent quand un module

réfère une définition (un type par exemple) extérieur. Le

couplage (2) désigne quand deux modules réfèrent un

troisième module, et réfèrent des définitions différentes du

troisième. Il est ironique de constater que ces situations

ne sont pas uniques à Ada; el l es s e près ent ent courramment

en C, à travers la macro-expansion de fichiers #include. Le

langage C existait déjà en 1975.

Nielsen [Nielsen-86] considère la catégorisation du couplage

dans un contexte de tâches parallèles Ada. Il introduit un

niveau supplémentaire à ceux de Myers et de Hammons:

(l) couplage par concurrence (concurrency coupling)

Un système concurrent est bassement couplé si les

interactions des tâches sont bien balancées, si l'attente

active est minimisée et si les instructions effectuées dans

les rendez-vous sont minimisées.

Embley et Woodfield [Embley-87, Embley-88] considèrent une

catégorisation du couplage dans un contexte de type de

donnée abstrait (TDA), implanté dans un package Ada, un

module MODULA-2, un objet C++, etc. Ils identifient cinq

types de couplage, présentés depuis le pire jusqu'au

meilleur (traduction libre):

17

(l) couplage par malignité (surreptitious coupling)

(2) couplage par exploitation (coverfc coupling)

(3) couplage par visibilité (overt coupling)

(4) couplage par exportation (export coupling)

(5) couplage nil (nil coupling)

Le couplage (l) fait référence à un client utilisant la

connaissance de l'implantation, mais sans l'accéder

directement. Par exemple, si on implante un TDA "vecteur

réel" avec une liste triée sur les index, un client pourrait

invoquer un parcours du vecteur dans l'ordre du tri plutôt

que dans l'ordre naturel de l'application. Le couplage (2)

"exploite" l'implantation au même niveau syntaxique du TDA.

En Pascal par exemple, la syntaxe ne permet pas de cacher

l'implantation d'un TDA: les structures de données et les

procédures sont globales au client. Ainsi, le langage ne

peut empêcher un client d'exploiter un TDA. Le couplage (3)

par visibilité indique qu'un client accède l'implantation du

TDA (l'implantation est visible). Enfin, le couplage (4)

par exportation se différencie du couplage par donnée et du

couplage par définition/package, car un client déclare sa

propre variable et invoque les opérations définie

globalement. Le couplage (5) nil représente l'absence de

couplage.

Finalement, Rising et Calliss [Rising-92] reprennent la

discussion depuis le début. Leur article fait le point sur

[Myers-78, Yourdon-79, Hammons-85, Embley-87, Embley-88] .

Ils intègrent les niveaux développés par les auteurs

précédents en une taxonomie échelonnée sur huit niveaux,

spécifiés du meilleur au pire:

18

(l) couplage ni l [Embley]

(2) couplage par package [Hammons]

(3) couplage par exportation [Embley]

(4) couplage par définition [Hammons]

(5) couplage par visibilité [Embley]

(6) couplage extérieur [Myers]

(7) couplage par malignité [Embley]

(8) couplage par exploitation [Embley]

Il est intéressant de noter que Rising n'est pas en accord

avec Embley sur les gravités relatives de ses deux pires

couplages et a permuté dans sa liste les places respectives

des couplage par malignité et par exploitation.

2.3 Une modélisation du couplage

Dans cette section, un modèle de la représentation et de

l'analyse du couplage est présentée, de façon à identifier

qualitativement les types de couplage directement et

indirectement présents entre toutes les paires de modules.

Ce modèle est indépendant de la granulité et du type de

module considéré. Il est aussi indépendant de la taxonomie

du couplage. Le modèle s'applique donc aussi bien au

couplage à-la Myers entre des procédures Pascal qu'au calcul

de l'ordre de compilation de fichiers source Ada.

Il est donc nécessaire de fixer a-priori les sujets et les

objets de l'analyse: les sujets étant déterminés par les

modules d'un système alors qu'une taxonomie du couplage

définit les objets. Ainsi, la granulité modulaire

identifiée au chapitre l permet de cerner les constructeurs

modulaires pertinents. Une liste exhaustive des modules

présents doit être calculée. Le choix arbitraire d'une

définition du couplage, comme par exemple celle de Myers, ou

plus simplement l'échelle nominale "(couplage-donnée,

19

couplage-contrôle, couplage-référence)

résultat obtenu.

détermine le type de

Le modèle est défini par une matrice à deux dimensions. Les

rangées et les colonnes sont indexées par les modules

considérés. Chaque élément de la matrice est un ensemble

sur les valeurs de couplage. L'analyse consiste à définir

tous les ensembles dans la matrice.

CIBLE

SOURCE

module_l

module_2

l module_

l {..

l {..

..)

..}

l module_

{.

{.

..)

..}

_2 module_n

{.

{.

.}

.}

module_n l {...} {...} {...}

Un module SOURCE est dépendant du module CIBLE. L'analyste

codifie la présence de dépendance directe entre le module_i

et le module_j par un ensemble dont les éléments sont des

valeurs de l'échelle du couplage considéré. Trivialement,

un ensemble vide signifie qu'aucun couplage n'existe enfcre

les deux modules tandis qu'un ensemble complet signifie que

tous les types de couplage sont présents.

La nature même du couplage est directionnelle; cette matrice

n'est donc pas nécessairement symétrique. De façon

évidente, un module A dépendant d'un module B n'implique pas

nécessairement que le module B est aussi dépendant de A.

Cette dernière situation se réalise en présence de deux

procédures mutuellement récursives, par exemple. Il est

toutefois important de noter que la diagonale principale ne

20

doit contenir que des ensembles vides. En effet, même si un

module est "auto-dépendant" (!?) -- procédure directement

récursive par exemple -- le couplage est considéré nul.

Cette matrice contient une représentation du couplage direct

entre toutes les paires de modules. L'automatisation de ce

processus dépend de la calculabilité de l'échelle de

couplage utilisée.

Pour obtenir la matrice du couplage direct et indirect, il

suffit de calculer la fermeture transitive de la matrice

initiale. En présence de n modules, ce calcule consomme

0(nA3) opérations et peut se faire sur-place.

Cette dernière matrice offre une représentation complète des

dépendances de chaque module (par rangée) et des dépendances

dont chaque module est la cible (par colonne).

21

3. LA MESURE DU COUPLAGE

La mesure du couplage est importante. Elle est, avec la

cohésion, une bonne indication de la qualité modulaire d'un

système [Yourdon-79, Card-85]. Sellers [Sellers-92] montre

que la métrique de McCabe, la complexité cyclomatique, est

insensible à la modularisation. Dans [Emerson-84] est

décrite une métrique âiscriminant la cohésion.

Une mesure du couplage pourrait être utilisée à plusieurs -

étapes du cycle de vie [Basili-80, Conte-86], incluant la

conception en tout premier lieu. La quantification d'une

conception n'est pas neuve. Myers, Yourdon et Constantine

ont développé les notion de couplage et de cohésion dans ce

but. Une mesure de couplage est donc désiratîle.

3.1 La mesure basée sur les modèles existants

Dans l"espoir de pouvoir calculer une métrique basée sur les

modèles décrits précédemment, il faut investiguer la

calculabilité des différents types de couplages.

Dans le formalisme de Myers, on peut vérifier statiquement

le couplage par.donnée et le couplage par contrôle. Par

contre, en présence de pointeurs, une vérification statique

du couplage par structure est impossible. Le couplage par

région est impossible à distinguer du couplage extérieur:

comment estimer l'homogénéifcé d'une variable globale?

22

Les quatre facteurs de Yourdon et Constantine souffrent

aussi de difficultés. Il n'existe pas de liste exhaustive

des types de transfers de contrôle: c'est dépendant du

langage. Les problèmes des niveaux de Myers sont tous

présents dans le facteur (3).

Comme Hammons suggère une extension aux niveaux de Myers, on

ne peut pas non plus calculer son échelle.

Le niveau supplémentaire proposé par Nielsen est trop ambigu

pour pouvoir le calculer statiquement: comment estimer si

les tâches sont bien balancées et si l'attente active est

minimale? (clairement non calculable)

Dans l'échelle d'Embley, les- niveaux (3), (4) et (5) sont

certainement calculables. Par contre/ iï est év^

les niveaux (l) et (2) ne le sont pas.

3.2 La représentation du couplage

Dans cette section, la littérature relative à la

représentation du couplage est passée en revue, avec le but

avoué de démontrer que le traitement aufcomatique de

l'information pertinente au couplage est possible.

Yau et Grabow [Yau-80] définissent un graphe dirigé

hiérarchique basé sur le principe de "graphe récursif"

associé à une base de donnée relationnelle. Leurs

applications sont strictement dans un environnement Pascal.

23

Louise Moser [Moser-90] exhibe une représentation des

dépendances-données et du flot de contrôle dans un contexte

Ada, incluant rendez-vous, levée d'exception, capture

d'exception, tenninaison de tâche, importation et

initialisation de package, etc. Le traitement du graphe

peut être intra ou inter-modulaire.

Callahan, Carle, Hall et Kenedy [Callahan-90] généralisent

un résultat de Barbara Ryder [Ryder-79] en construisant un

multi-graphe permettant le traitement des procédures et des

fonctions passées en paramètre.

Cimitile, DiLucca et Maresca [Cimitile-90] distinguent et

traitent les dépendances inter-modulaires actuelles et

potentielles. Les dépendances potentielles sont utiles pour

empêcher de saturer le graphe.

Narayan Debnath [Debnath-90] produit une synthèse au graphe

de f lot de contrôle et du f lot des données, sous le nom de

"Generalized Program Graph".

Dietrich et Calliss [Dietrich-91] utilisent une base de

données relationnelles pour définir des relations

d'importât ion, d'exportation, d'héritage et de déclaration,

le tout dans de multiples contextes très différents.

Harrold efc Malloy [Harrold-91, Harrold-93] ont accentué

leurs efforts sur les manipulations efficaces d'un graphe de

contrôle et de donnée. Les informations obtenues sont

strictement inter-modulaires.

24

3.3 Métriques existantes

Cette section est sûrement la plus importante du présent

document. En effet, une revue exhaustive et critique de la

littérature relative à la mesure du couplage est élaborée.

Sur la fois des lacunes et faiblesses constatées, une

problématique pourra être identifiée plus loin. La

présentation respecte l'ordre chronologique de publication.

Aucune classification par thème n'est tentée. Il est

important de noter que sur les quinze références citées,

seulement quatre proposent explicitement une modélisation du

couplage; les autres utilisent une mesure (le plus souvent

naive) du couplage comme composante d'une métrique dérivée

dans une application, ou valident une fcaxonomie

particulière.

Il est étonnant de constater que les plus anciennes

tentatives, à l'exception de deux seulement, sont récentes.

Il s'agit donc d'un problème relativement ancien, mais dont

le domaine de recherche est en pleine effervescence.

En 1979, Yourdon et Constantine [Yourdon-79] suggèrent que

le couplage d'une conception structurée soit quantifié à

l'aide de la mesure du fan-in et du fan-out des composantes.

Une valeur de fan-in élevée est associée à un couplage élevé

parce que e'est une mesure directe de dépendance-contrôle .

Une valeur de fan-out élevée est associée à une complexité

élevée du module, en raison de la logique requise pour

contrôler les invocations. Dans ce contexte, seule une

mesure de couplage d'une conception de système est

considéré.

25

Un peu plus tard, Henry et Kafura [Henry-81] proposent la

mesure de couplage du module A au module B suivante:

couplage = (le nombre de procédures exportant de

l'information du module A

+

le nombre de procédures important de

l'information dans le module B)

*

le nombre de f lots différents d'information.

Les auteurs soulignent qu'ils n'ont pas été capable de

valider cette mesure. Il s'agit strictement d'une mesure de

couplage-donnée.

Dans un domaine particulier (Aâa), [Kîrchgâssnër-87]

présente un outil automatisant l'identification de

regroupement modulaires et la hiérarchisation statique des

modules. Le modèle de couplage est particulier à Ada (comme

par exemple l'instantiation générique), et les relations de

couplage sont différentes du niveau microscopique (module)

au niveau macroscopique (groupement modulaire) .

Selby et Basili [Selby-88] utilisent le ratio

couplage/cohésion pour prédire l'effort d'entretien d'un

très grand système. Leur modèle de couplage est simple. Le

triplet (p,x,q) est appelle "couplage-donnée" (data-binding)

si le module p communique avec le module q via la variable

x. Le couplage entre p et g est le nombre de triplets

(p,x,q). Même si cette mesure paraît odieusement simple (un

seul aspect du couplage à-la Myers), les auteurs ont pu la

valider (eh oui!) sur un système d'environ 135 KLOC. En

fait, les dés étaient pipés un peu: le système utilisé pour

26

la validation ne contenait que ce type de couplage-donnée.

Par contre, Selby et Basili ont atteint de bons résultats en

ignorant complètement le couplage-contrôle.

Encore une fois appliqué dans le monde Ada, Embley et

Woodfield [Embley-88] posent le postulât a-priori qu'un

package Ada ne doit contenir qu'une seule implantation de

type de donné abstrait (TDA), et n'exporter que les

opérations définies par ce TDA. Sous cette hypothèse, les

auteurs ont trouvé que les packages n'ayant aucune

connaissance de l'implantation des autres TDAs ont un

couplage plus bas que les packages manipulant la structure

de donnée d'un TDA. Cet article présente une validation de

la taxonomie du couplage présenté dans [Embley-87].

Gopal et Schach [Gopal-89] présentent un outil CASE orienté

Ada, permefefcant de retracer les références et les

modifications de variables dans un contexte d'aide à

l'entretien. Dans le même esprit que [Kirchgassner-87], cet

outil permet aussi d'identifier les modules invoquants et

les modules invoqués. La notion de couplage n'est pas

explicitement discutée; elle est implicite en ce sens que

l'outil est un microscope sur les liens inter-modulaires,

autant sfcatiques que dynamiquement observés. C'est un

générateur de références croisées sophistiqué. Vanek et

Culp [Vanek-89], Maarek [Maarek-88] présentent le même type

d'outil, mais indépendant du langage. De même, [Robillard-

91] exhibe un outil CASE sophistiqué qui intègre le calcul

de plusieurs métriques. Ince [Ince-90b] utilise ce type

d"outil pour détecter la dégradation structurelle lors de

l'entretien.

Le couplage dans [Oval-89] est utilisé pour mesurer

l'indépendance du graphe d'appel. Les arbres sous-jacents

au graphe d'appel, dont les racines sont les points d'entrée

27

des applications, peuvent partager des modules de services.

Ces modules sont qualifiés "indépendants". Les auteurs

définissent plusieurs métriques sur une échelle ratio basée

sur une mesure triviale du couplage-contrôle: les degrés

d'incidence et d'excidence des noeuds (i.e. le nombre de

modules distincts appelants et appelés) . Ces métriques

permettent l'identification des noeuds indépendants. Une

critique peut sembler sévère: ce même résultat

(l'identification des noeuds indépendants) peut se calculer

directement sur le graphe d'appel par une fouille en

profondeur suivie d'un parcours préfixé.

Adamov et Richter [Adamov-90] définissent la complexité

"structurelle" inter-moâulaire comprenant (entre autres) une

complexité de flot-de-contrôle, qui est proche mais

différente du couplage-contrôle (les modules directement

récursifs sont reconnus et une "dépendance" du module vers

lui-même est introduite, alors qu'il est évident que la

récursivité directe n'engendre aucun couplage

supplémentaire), et qui définit la complexité d'"interface",

qui est essentiellement une tentative de couplage-donnée (en

effet, le modèle indique que la "quantité" de âépendance-

donnée est considérée, mais sans distinguer entre le nombre

de variables référencées et la taille de la variable

référencée: le problème de la "quantité" de couplage-donnée

via un pointeur est escamoté). Il s'agit en fait d'une

mesure topologique sur le graphe d'appel et sur le graphe

d'interface.

Yaung et Raz [Yaung-92] analysent et mesurent des liens

inter-processus générés par une conception via un diagramme

de flot-de-données. Le couplage-contrôle est totalement

absent. Le couplage-donnée est modélisé par une matrice

d'interconnectivité. La mesure du couplage est une mesure

de type "ratio". Une analyse de groupement est effectuée.

28

Dans [Cherniack-93], le couplage est modélisé par une

combinaison linéaire (pondérée) des huit termes suivants:

nombre de paramètres-donnée en mode IN,

nombre de paramètres-contrôle en mode IN,

nombre de paramètres-donnée en mode OUT,

nombre de paramètres-contrôle en mode OUT,

nombre de variables globales utilisées en donnée,

nombre de variables globales utilisées en contrôle,

nombre de modules invoqués,

nombre de modules invoquant.

Les coefficients de la combinaison linéaire (la pondération

de chaque terme) ont été déterminés empiriquement dans des

contextes de ré-utilisabilité, de portabilité et

d'entretien. Les auteurs ont tenté de calculer le couplage

à -1 a Myer s, ma l s re s tent s±lenc ieux sur la dis tinction en t: re

les paramètres/variables-donnée et contrôle.

29

4. PROBLÉMATIQUE

L'expérience de Lohse [Lohse-84] et les travaux de Hammons,

Nielsen et Embley [Hammons-85, Nielsen-86, Embley-87] ont

démontré que les taxonomies du couplage élaborées par

Myers/Yourdon-Constantine [Myers-75, Yourdon-79] ne

reflètent pas toute la réalité. De plus, le modèle enrichi

Yourdon-Hammons-Nielsen-Embley est intuitif, informel, et

impossible à calculer: il décrit plus une complexité

psychologique qu'une complexité logicielle objective. A ce

même modèle enrichi correspond une échelle de type ordinal

[Roberfcs-79, Kaposi-91, Zuse-91] qui ne permet pas d'établir

de métriques comparatives. Finalement, dans la section 3.3,

il a été démontré qu'il n'y a pas de modèle satisfaisant du

couplage.

Le problème évident est de définir un modèle du couplage

auquel correspondrait une échelle de type ordinal,

intervalle, ratio ou idéalement de type absolu [Roberts-79,

Kaposi-91, Zuse-91]; ce qui permet de définir une mesure

objective. En fait, Fenton et Melton [Fenton-90] montrenfc

comment associer une mesure du couplage basée sur le modèle

de Myers à une échelle ordinale. '

Cette mesure devrait être sensible au couplage-contrôle ET

au couplage-donnée; elle serait potentiellement mulfci-

dimensionnelle [Shepperd-90]. Elle serait vérifiée face aux

axiomes de [Weyuker-88, Lakshmanan-91, Cherniavsky-91] .

Récemment dans [Chung-91], la complexité est exprimée avec

une notation asymptotique polynomiale, exactement comme une

complexité-temps algorithmique.

A la lumière des chapitres précédents, au moins trois pistes

de recherche méritent une attention. Par ordre de

préférence d'investigation:

30

HYPOTHÈSE l: Un modèle du couplage serait dérivé des

modèles d"interconnection basés sur la théorie de

l'information [VanEmden-70, Chanon-74, Chen-78, Mohanfcy-81,

Boloix-85, Boloix-88, Chapin-89, Robillard-89, Como-90,

Torres-91, Harrison-92, Cook-93]. Une métrique obtenue

refléterait ainsi l'entropie du couplage. Une investigation

au niveau inter-modulaire de la mesure (intra-modulaire) de

Boloix semble prometteuse.

HYPOTHÈSE 2 : Un modèle du couplage serait dérivé du modèle

de découpage de programme ("program slicing") [Lyle-88, Ott-

89, Horwitz-90].

HYPOTHESE 3 : Un modèle du couplage serait dérivé de la

représentation de programme par un "polynôme

caract éri s t i que" [€ant ona- 83] .

Dans l'espoir de pouvoir calculer une éventuelle métrique,

il est nécessaire de passer en revue les points suivants:

(l) un modèle de modularité assez expressif est-il

disponible?

(2) est-il possible d'identifier (facilement) les

sources potentielles de couplage-donnée et de

couplage-contrôle pour tous les type de modules?

(3) une représentation du couplage est-elle disponible?

(4) existe-t-il des algorithmes efficaces pour

manipuler cette représentation?

(5) le contexte d'utilisation de la métrique est-il

bien défini?

31

La notion de module de Yourdon et Constantine est assez

riche pour englober tous les constructeurs modulaires

connus. La taxonomie proposée pour la modularité (chapitre

l) ainsi que les caractérisations et la modélisation du

couplage (chapitre 2) permettent d'identifier les source

potentielles pour chaque module.

Comme le couplage est typiquemenfc représenté par un graphe

dirigé ou un multi-graphe (e.f. section 3.2), les hypothèses

l, 2 et 3 sont équivalentes à associer la théorie de

l'information, le découpage et l'algèbre polynomiale

respectivement à la théorie des graphes. Idéalement, une

éventuelle métrique serait calculée rapidement.

Heureusement, plusieurs algorithmes efficaces relatifs au

calcul de métriques ont été publiés à ce jour [Ryder-79,

Overstreet-88, Mizuno-89/ Maller-

Ammarguellat-92].

De plus, il faut définir le contexte d'utilisation d'une

métrique de façon à effectuer une validation [Ejiogu-93] et

conduire d'éventuelles expériences empiriques. Les

contextes d'entretien, de ré-utilisation et plus

génériquement de qualité de programmation sont également

pertinents.

32

BIBLIOGRAPHIE

[AbdElHafiz-89]

Abd-El-Hafiz, S. K.; Basili, V. R.; Caldiera, G.

"Toward Automated Support for Extraction of Reusable

Components",

Proceedings 1991 IEEE Conférence on Software

Maintenance, Sorrento Italy (Cet 1991), pp 212-219.

[Adamov-90]

Adamov, R.; Richter, L.

"A Proposai for Measuring the Structural Complexity of

Programs",

Journal of Systems and Software,

voll2nGl(Aprill990),pp55-70.

[Agnarsson-85]

Agnarsson, S.; Krishnamoorthy, M. S.

"Towards a Theory of Packages",

Proceedings ACM SIGPLAN 85 Symposium on Language Issues

in Programming Environments, Seattle Wa (June 1985),

in ACM SIGPLAN Notices, vol 20 no 7 (July 1985),

pp 117-130.

[Ammarguellat-92]

Ammarguellat, Zahira.

"A Control-Flow Normalization Algorithm and Its

Complexity",

IEEE Transaction on Software Engineering,

vol 18 no 3 (March 1992), pp 237-251.

33

[Bailie-91]

Bailie, F.K.

"Improving the Modularization Ability of Novice

Programmers",

ACM SIGCSE Bulletin, vol 23 no l (March 1991),

pp 277-282.

[Baker-79]

Baker, A. L.; Zweben, S. H.

"The Use of Software Science in Evaluating Modularity

Concepts",

IEEE Transactions on Software Engineering,

vol 5 no 2 (1979), pp 110-120.

[Baker-80]

Baker, A. L.; Zweben, S. H.

"A Comparison of Measures of Control Flow Complexity",

IEEE Transactions on Software Engineering,

vol SE-6 no 6 (Nov 1980), pp 506-512.

[Basili-80]

Basili, Victor R.

TUTORIAL ON MODELS AND METRICS FOR SOFTWARE MANAGEMENT

AND ENGINEERING,

IEEE Computer Society Press, 1980.

[Bastani-87]

Bastani, Farokh B.; lyengar, S. Sitharama.

"The Effect of Data Structures on the Logical

Complexity of Programs",

Communications of the ACM,

vol 30 no 3 (March 1987), pp 250-259.

34

[Beane-84]

Beane, J.; Giddings, N.; Silverman, J.

"Quanfcifying Software Designs",

Proceedings 7th International Conférence on Software

Engineering, Orlando USA (March 1984), pp 314-322.

[Belady-76]

Belady, L. A.; Lehman, M. M.

"A Model of Large Program Development",

IBM Systems Journal, vol 15 no 3 (1976), pp 225-252.

[Benedusi-89]

Benedusi, P.; Cimitile, A.; De Carlini, U.

"A Reverse Engineering Methodology to Reconstruct

Hierarchical Data Flow Diagrams for Software

Mainfeenanee",

Proceedings 1989 IEEE Conférence on Software

Maintenance, Miami Florida (Oct 1989), pp 180-189.

[Bergstra-90]

Bergstra, J. A.; Heering, J.; Klint, P.

"Module Algebra",

Journal of the Association for Computing Machinery,

vol 37 no 4 (April 1990), pp 335-372.

[Berlinger-80]

Berlinger, E.

"An Information Theory Based Complexifcy Measure",

Proceedings 1980 Nat. Computer Conf., pp 773-779.

[Boloix-85]

Boloix, Germinal.

MESURE DE LA COMPLEXITE DU LOGICIEL UTILISANT UN MODELE

D•INTERCONNEXIONS,

Thèse, Ecole Polytechnique de Montréal, Juin 1985.

35

[Boloix-88]

Boloix, Germinal; Robillard, Pierre N.

"Interconnectivity Metric for Software Complexity",

INFOR, vol 26 no l (Feb 1988), pp 17-39.

[Bourdoncle-90]

Bourdoncle, F.

"Interprocedural Abstract Interprétation of Block

Structured Languages with Nested Procédures, Aliasing

and Recursivity",

Proceedings 1990 International Workshop on Programming-

Language Implementation and Logic, Linkoping Sweden

(Aug 1990), pp 307-323.

[Bradley-91]

Bradley, L.

"Evaluating Complex Properties of Object-Oriented

Design and Code",

Proceedings International Software Quality Conférence,

Dayton Ohio (Oct 1991), pp 32-36.

[Callahan-90]

Callahan, David; Carle, Alan; Wolcott Hall, Mary;

Kennedy, Ken,.

"Constructing the Procédure Call Multigraph",

IEEE Transactions on Software Engineering,

vol 16 no 4 (April 1990), pp 483-487.

[Calliss-89a]

Calliss, Frank W.

Inter-Module Code Analvsis Techniques for Soffcware,

Thèse, Durham Uni versity UK, 1989.

36

[Calliss-89b]

Calliss, F.W.; Cornelius, B.J.

"Two Module Factoring Techniques",

Journal of Sofware Maintenance: Research and Practice,

vol l no 2 (Dec 1989), pp 81-89.

[Calliss-90]

Calliss, Frank W.; Cornelius, Barry J.

"Potpourri Module Détection",

Proceedings 1990 IEEE Conférence on Software

Maintenance, San Diego Calif. (Nov 1990), pp 46-51.

[Cantona-83]

Cantons, G.; Cimitile, A.; Sansone, L.

"Complexity in Program-Schemes: The Characteristic

Polynomial",

ACM SIGPLAN Notices, vol 18 no 3 (1983), pp 22-30.

[Caplinger-85]

Caplinger, Michael.

"Structurée! Editer Support for Modularity and Data

Abstraction",

Proceedings ACM SIGPLAN 85 Symposium on Language Issues

in Programming Environments, Seafctle Wa (June 1985),

in ACM SIGPLAN Notices, vol 20 no 7 (July 1985),

pp 140-147.

[Card-85]

Gard, D. N.; Page, G. T.; McGarry, F.E.

"Criteria for Software Modularization",

Proceedings 8th International Conférence on Software

Engineering, Lonâon UK (Aug 1985), pp 372-377.

37

[Card-88]

Card D. N.; Agresti, W. W.

"Measuring Software Design Complexity",

The Journal of Systems and Software, no 8 (1988),

pp 185-197.

[Card-90]

Card, D. N.; Glass, R. L.

Measurina Software Desian Oualitv,

Prentice-Hall, 1990.

[Carroll-88]

Carroll, M.D.; Ryder, B.C.

"Incremental Data Flow Analysis via Dominafcor and

Attribute Updates",

PrGeeeâïngslSthAnnualACM Symposium on Principïe

Programming Languages, San Diego Calif. (Jan 1988),

pp 274-284.

[Chanon-74]

Chanon, R. N.

"On a Measure of Program Structure",

Proceedings of the Programming Languages Symposium,

G. Goos and J. Hartmanis eds., Springer-Verlag,

Paris 1974, pp 9-16.

[Chapin-78]

Chapin, N.; Denniston, S. P.

"Characteristics of a Structured Program",

ACM SIGPLAN Notices, vol 13 no 5 (1978), pp 36-45.

38

[Chapin-89]

Chapin, N.

"An Entropy Mefcric for Software Mainfcainabilifcy",

Proceedings 22nd Annual Hawaii International Conférence

on System Science vol II: Software Track,

Kailua-Kona Hawaii Jan 1989,

IEEE Computer Sociefcy Press, pp 522-523.

[Chen-78]

Chen, E. T.

"Program Complexity and Programmer Productivity",

IEEE Transactions on Software Engineering,

vol SE-4 no 3 (May 1978), pp 187-194.

[Cheng-91]

Cheng, C. K.; Yao, S^^^^^Z

"The Orientation of Modules Based on Graph

Décomposition",

IEEE Transactions on Computers, vol 40 (June 1991),

pp 774-780.

[Cherniack-93]

Cherniack, Jérôme R.; Dhama, Harpal S.; Fandozzi,

Jeanne F.

"Tool for Computing Cohésion and Coupling in Ada

Programs: DIANA Dépendent Part ",

Proceedings 12th Ada-Europe International Conférence,

Paris France June 1993, Springer-Verlag, pp 180-196.

[Cherniavsky-91]

Cherniavsky, John C.; Smith, Carl H.

"On Weyuker's Axioms for Software Complexity Measures",

IEEE Transactions on Software Engineering,

vol 17 (June 1991), pp 636-638.

39

[Choi-90]

Choi, S.C.; Scacchi, W.

"Extracting and Restructuring the Design of Large

Systems",

IEEE Software, vol 7 no l (Jan 1990), pp 66-71.

[Chung-91]

Chung, C. M.; Lee, M. C.

"Polynomial Metric",

International Journal of Mini and Microcomputers,

vol 13 no 3 (1991), pp 89-99.

[Cimitile-90]

Cimitile, A.; Di Lucca G. A.; Maresca P.

"Maintenance and Intermodular Dependencies in Pascal

Environment"-,

Proceedings 1990 IEEE Conférence on Software

Maintenance, San Diego Calif. (Nov 1990), pp 72-83.

[Cimitile-91]

Cimitile, Aniello; De Carlini, Ugo.

"Reverse Engineering: Algorithms for Program Graph

Production",

Software Practice & Expérience,

vol 21 (May 1991), pp 519-537.

[Colbrook-89]

Colbrook A.; Smythe C.

"The Rétrospective Introduction of Abstraction into

Software",

Proceedings 1989 IEEE Conférence on Software

Maintenance, Miami Florida (Oct 1989), pp 166-173.

40

[Como-90]

Como, G.; Lanubile, F.; Visaggio, G.

"Evaluation of characteristics of design quality

metrics",

Proceedings 2nd International Conférence on Software

Engineering and Knowledge Engineering, Skokie IL USA

(June 1990), pp 195-201.

[Conte-86]

Conte, S. D.; Dunsmore, H. E.; Shen, V. Y.

SOFTWARE ENGINEERING METRICS AND MODELS,

Benjamin/Cummings Publishing, 1986.

[Cook-82a]

Cook, M. L.

"Software Meferies:-^^^^^^^

Bibliography",

ACM SIGSOFT Software Engineering Notes,

vol 7 no 2 (April 1982), pp 41-60.

[Cook-82b]

Cook, R. P.; Lee, I.

"A Contextual Analysis of Pas'cal Programs",

Software Practice and Expérience, vol 12 (1982),

pp 195-203.

[Cook-91]

Cook, C.

"Information Theory Metric for Assembly Language",

Proceedings Third Annual Oregon Workshop on Software

Metrics, March 1991.

4l

[Cook-93]

Cook, Curtis R.

"Information Theory Metric for a Program Language",

Software Engineering Stratégies,

vol l no l (March/April 1993), pp 52-60.

[Crookes-83]

Crookes, D.; Fee, R.; Pickering, V.

"Building Syntax Graphs from Syntax Equations:

A Case Study in Modular Programming",

Software Practice and Expérience, vol 13 (Dec 1983),

pp 1129-1139.

[Debnath-90]

Debnath, N.C.

"A Study of Centrol Flow^

Interface",

Proceedings 18th ACM Annual Computer Science

Conférence, Washington DC (Feb 1990), p 435.

[Dietrich-91]

Dietrich, Suzanne W.; Caliss, Frank W.

"The Application of Deductive Databases to Inter-Module

Code Analysis",

Proceedings 1991 IEEE Conférence on Software

Maintenance, Sorrento Italy (Oct 1991), pp 120-128.

[Dumke-92]

Dumke, R.

Software Metrics:

A bibliocrraphv of our analvsed books and r>apers,

Technical Report, University of Magdeburg, Germany,

March 1992.

42

[Ehrig-89a]

Ehrig, H.; Fey, W.; Hansen, H.; Lowe, M.; Jacobs, D.

"Algebraic Software Development Concepts for Module and

Configuration Familles",

Proceedings 9th Conférence on Foundations of Software

Technology and Theoretical Computer Science,

Bengalore India (Dec 1989), pp 181-192.

[Ehrig-89b]

Ehrig, H.; Fey, W.; Hansen, H.; Lowe, M.; Jacobs, D.;

Langen, A.; Parisi-Presicce, F.

"Algebraic Spécification of Modules and Configuration

Families",

Journal of Information Processing and Cybernetics,

vol 25 no 5-6 (1989), pp 205-232.

[Ejiogu-90]

Ejiogu, Lem 0.

"Beyond Structured Programming: an Introduction to the

Principles of Applied Software Metrics",

Structured Programming, vol 11 no l (1990), pp 27-43.

[Ejiogu-91]

Ejiogu, Lem 0.

Software Engineering with Formai Metrics,

QED Publishing Group, Wellesley, Ma, 1991.

[Ejiogu-93]

Ejiogu, Lem 0.

"Five Principles for the Formai Validation of Models of

Software Metrics",

ACM SIGPLAN Notices, vol 28 no 8 (August 1993),

pp 67-76.

43

[Elshoff-84]

Elshoff, J. L.

"Characteristic Program Complexity Measures",

Proceedings IEEE 7th International Conférence on

Software Engineering, Orlando Florida (March 1984),

pp 288-293.

[Embley-87]

Embley, David W.; Woodfield, Scott N.

"Cohésion and Coupling for Abstract Data Types",

Proceedings 6th Annual International Phoenix Conférence

on Computers and Communications, Phoenix Arizona

(1987), IEEE Computer Society Press, pp 229-234.

[Embley-88]

Embley, David W^^^

"Assessing the Quality of .Abstracfc Data Types Written

in Ada",

Proceedings lOth International Conférence on Software

Engineering, 1988, IEEE Computer Society Press,

pp 144-153.

[Emerson-84]

Emerson, T. J.

"A Discriminant Metric for Module Cohésion",

Proceedings 7th International Conférence on Software

Engineering, Orlando Florida (March 1984), pp 294-303.

[Engberfcs-91]

Engberts, André; Kozaczynski, Wojtek; Ning, Jim.

"Concept Recognition-Based Program Transformation",

Proceedings 1991 IEEE Conférence on Software

Maintenance, Sorrento Italy (Oct 1991), pp 73-82.

44

[Esteva-90a]

Esteva, J. Carlo.

"Learning to Recognize Reusable Software by Induction",

Proceedings SPIE - The International Society for

Optical Engineering, vol 1293 no pt.2 (1990),

pp 654-670.

[Esteva-90b]

Esteva, J. C.; Reynolds, R. G.

"Learning fco Recognize Reusable Software by Induction",

Proceedings 2nd International Conférence on Software

Engineering and Knowledge Engineering,

Skokie IL (June 1990), pp 19-24.

[Evangelist-83]

Evangelisfe, W. M.

"Software Complexity Metric Sensitivity to Program

Sfcructuring Rules",

The Journal of Systems and Software, vol 3 (1983),

pp 231-243.

[Fenton-86]

Fenton, N. E.; Whitty, R. W.

"Axiomatic Approach to Software Metrication Through

Program Décomposition",

The Computer Journal, vol 29 (Aug 1986), pp 330-339.

[Fenton-87]

Fenton, Norman E.; Kaposi, Agnès A.

"Mefcrics and Software Structure",

Information and Software Technology,

vol 29 (July/Aug 1987), pp 301-320.

45

[Fenton-90]

Fenton, N.; Melton, A.

"Deriving Structurally Based Software Measures",

Journal of Systems and Software,

vol 12 no 3 (July 1990), pp 177-187.

[Gannon-87]

Gannon, J. D.; Hamlet, R. G.; Mills, M. D.

"Theory of Modules",

IEEE Transactions on Software Engineering,

vol SE-13 no 7 (July 1987), pp 820-829.

[George-85]

George, Geoffrey; Leathrum, James F.

"Orthogonality of Concerns in Module Closure",

SoffewarePracfciceanâ Expérience,

vol 15 no 2 (Feb 1985), pp 119-130.

[Ghezzi-87]

Ghezzi, Carlo; Jazayeri, Mehdi.

Proarammina Lanauaae Concepts,

John Wiley & Sons, New York, 1987.

[Gill-91]

Gill, Geoffrey K.; Kemerer, Chris F.

"Cyclomatic Complexity Density and Software Maintenance

Productivity",

IEEE Transactions on Software Engineering,

vol 17 no 12 (Dec 1991), pp 1284-1288.

[Gomaa-89]

Gomaa, H.

"Structuring Criteria for Real-Time System Design",

Proceedings llth International Conférence on Software

Engineering, Pittsburg PA (May 1989), pp 290-301.

46

[Gopal-89]

Gopal, Rajeev; Schach, Stephen R.

"Using Automatic Program Décomposition Techniques in

Software Maintenance Tools",

Proceedings 1990 IEEE Conférence on Software

Maintenance, Miami Florida (Oct 1989), pp 132-141.

[Gordon-79]

Gordon, R. D.

"Measuring Improvements in Program Clarifcy",

IEEE Transactions on Software Engineering,

vol SE-5 no 2 (March 1979), pp 79-90.

[Gries-85]

Gries, David; Prins, Jan.

"A New Notion ofEneapsulafci.on'S

Proceedings ACM SIGPLAN 85 Symposium on Language Issues

in Programming Environments, Seattle Wa (June 1985),

in ACM SIGPLAN Notices, vol 20 no 7 (July 1985),

pp 131-139.

[Gusfielâ-91]

Gusfield, Dan.

"Computing the Strength of a Graph",

SIAM Journal on Computing, vol 20 no 4 (Aug 1991),

pp 639-654,

[Hall-83]

Hall, N. R.; Preiser, S.

"Dynamic Complexity Measures for Software Design",

IEEE Computer, (1983), pp 57-66.

47

[Hall-84]

Hall, N. R.; Preiser, S.

"Combined Network Complexity Measures",

IBM Journal of Research and Development,

vol 28 no l (Jan 1984), pp 15-27.

[Hall-93]

Hall, Mary W.; Kennedy, Ken.

"Efficient Call Graph Analysis",

ACM Letters on Programming Languages and Systems,

vol l no 3 (Sept 1993), pp 227-242.

[Hammons-85]

Hammons, Charles; Dobbs, Paul.

"Coupling, Cohésion and Package Unity in Ada",

AGM SîGAda Ada Lette^s, vol-^

[Hansen-88]

Hansen, H.; Lowe, M.

"Modular Algebraic Spécifications",

Proceedings International Workshop on Algebraic and

Logic Programming, Gaussig East Germany (Nov 1988),

pp 168-179.

[Harrison-84]

Harrison, W.

"Bibliography on Software Complexity Metrics",

ACM SIGPLAN Notices, vol 19 no 2 (1984), pp 17-27.

[Harrison-87]

Harrison, W.; Cook, C. R.

"A Micro/Macro Measure of Software Complexity",

The Journal of Systems and Software, vol 7 (1987),

pp 213-219.

48

[Harrison-92]

Harrison, W.

"An Entropy-Based Measure of Software Complexity",

IEEE Transactions on Software Engineering,

vol 18 no 11 (Nov 1992), pp 1025-1029.

[Harrold-89]

Harrold, M.J.; Soffa, M.L.

"Interprocedural Data Flow Testing",

ACM SIGSOFT Software Engineering Notes,

vol 14 no 8 (Dec 1989), pp 158-167.

[Harrold-91]

Harrold, Mary Jean; Malloy, Brian.

"A Unified Interprocedural Program Représentation for a

Mainfeenance EnvirQn^®R^^^^^^^^

Proceedings 1991 IEEE Conférence on Software

Maintenance, Sorrento Italy (Oct 1991), pp 138-147.

[Harrold-93]

Harrold, Mary Jean; Malloy, Brian.

"A Unified Interprocedural Program Représentation for a

Maintenance Enviromnent",

IEEE Transactions on Software Engineering, vol 19 no 6

(June 1993), pp 584-593.

[Hechfc-77]

Hecht, M. S.

Flow Analvsis of Compufcer Proarams,

Elsevier, 1977.

49

[Heitkoetter-90]

Heitkoetter, U.; Helling, B.; Nolte, H.

"Design Metrics anâ Aids to their Automatic

Collection",

Information and Software Technology,

vol 32 no l (Jan/Feb 1990), pp 79-87.

[Henry-81]

Henry, S.; Kafura, D.

"Software Structure Metrics Based on Information Flow",

IEEE Transactions on Software Engineering,

vol SE-7 no 5 (Sept 1981), pp 510-518.

[Henry-84]

Henry, S.; Kafura, D.

"The Evaluation OÊ Software Systems'^^^^S^^

Quantitative Software Metrics",

Software Practice and Expérience, vol 14 no 6 (1984),

pp 561-573.

[Hoffman-90]

Hoffman, D.

"On Criteria for Module Interfaces",

IEEE Transactions on Software Engineering,

vol 16 no 5 (May 1990), pp 537-542.

[Hoffman-91]

Hoffman, Daniel M.; Strooper, Paul.

"Automated Module Testing in Prolog",

IEEE Transactions on Software Engineering,

vol 17 (Sept 1991), pp 934-943.

50

[Horwitz-90]

Horwitz, S.; Reps, T.; Binkley, D.

"Interprocedural Slicing Using Dependence Graphs",

ACM Transactions on Programming Languages and Systems,

vol 12 no l (Jan 1990), pp 26-60.

[Hunter-86]

Hunter, D.; Kobitzsch, W.

"Measurement Interface Module for the Software

Development Environment",

Electrical Communication, vol 60 no 3-4 (1986),

pp 256-258.

[Ince-85]

Ince, D.

"The Influence OÊ System De&^

the Design of Module Interconnection Languages",

ACM SIGPLAN Notices, vol 20 no 10 (Oct 1985), pp 36-43

[lnce-89]

Ince, D.C.; Shepperd, M.J.

"An Empirical and Theoretical Analysis of an

Information Flow-Based System Design Metric",

Proceedings 2nd European Conférence on Software

Engineering, Coventry UK (Sept 1989), pp 86-99.

[Ince-90a]

Ince, D.

"An Annotated Bibliography of Software Metrics",

ACM SIGPLAN Notices, vol 25 no 8 (Aug 1990), pp 15-23.

51

[Ince-90b]

Ince, D.; Shepperd, M.

"The Use of Cluster Techniques and System Design

Metrics in Software Maintenance",

Proceedings UK IT 1990 Conférence,

Southampton UK (March 1990), pp 139-142.

[Jones-91]

Jones, C.

Applied Software Measurement,

McGraw-Hill, 1991.

[Kafura-82]

Kafura, D.; Henry, S.

"Software Quality Metrics Based on Interconnectivity",

The Journal o£ Systems andSo£feware,^^v^

pp 121-131.

[Kaposi-91]

Kaposi, Agnès A.

"Measurement Theory",

Software Enaineer's Référence Book,

Butterworth-Heinemann Ltd, 1991.

[Kearney-86]

Kearney, J. K.

"Software Complexity Measurement",

Communications of the ACM, vol 29 no 11 (Nov 1986) ,

pp 1044-1050.

[Keutgen-81]

Keutgen, H.

A mefcric for évaluation of fche modularization,

Lecture Notes on Computer Science 50, Springer Verlag,

1981.

52

[Kirchgassner-87]

Kirchgassner, Walter; Persch, Guido; Uhl, Jurgen.

"Structural Analysis of Large Ada Systems",

Ada components: libraries and tools, Proc. Ada-Europe

International Conférence, Stockholm 26-28 May 1987.

The Ada Companion Séries, Cambridge University Press,

Sven Tafvelin eds.

[Krauskopf-90]

Krauskopf, J.

"Elemental Concerns (Software Design)",

IEEE Potentials, vol 9 no l (Feb 1990), pp 13-15.

[Kyu-90]

Kyu Jung Han; Jeong Ah Kim; Kyung Whan Lee.

"À Qualifey Âssessment CrifeeriGH of^

Abstract Data Types and Inheritance" (in Korean),

Journal of the Korea Information Science Society,

vol 17 no 5 (Sept 1990), pp 550-559.

[Lakshmanan-91]

Lakshmanan, K. B.; Jayaprakash, S.; Sinha, P. K.

"Properties of Control-Flow Complexity Measures",

IEEE Transactions on Software Engineering,

vol 17 no 12 (Dec 1991), pp 1289-1295.

[Leach-90]

Leach, R.J.

"Software Metrics and Software Maintenance",

Journal of Sofware Maintenance: Research and Practice,

vol 2 no 2 (June 1990), pp 113-142.

53

[Leavens-91]

Leavens, Gary T.

"Modular Spécification and Vérification of

Object-Oriented Programs",

IEEE Software, vol 8 (July 1991), pp 72-80.

[Lee-87]

Lee, Tony T.

"An Information-Theoric Analysis of Relational

Databases I. Data Dependencies and Information

Met rie",

IEEE Transactions on Software Engineering,

vol 13 no 10 (1987), pp 1049-1061.

[Lee-91]

Lee, Eâward^ Ashford.

"Consisfcency in Dataflow Graphs",

IEEE Transactions on Parallel and Distributed Systems,

vol 2 (April 1991), pp 223-235.

[Liu-90]

Liu, Sying-Syang; Wilde, Nonnan.

"Identifying Objects in a Conventional Procédural

Language: An Example of Data Design Recovery",

Proceedings 1990 IEEE Conférence on Software

Maintenance, San Diego Calif. (Nov 1990), pp 266-271.

[Lohse-84]

Lohse, J. B.; Zweben, S. H.

"Expérimental Evaluation of Software Design Principles:

an Investigation into the Effect of Module Coupling on

System and Modifiability",

Journal of Systems and Software, vol 4 (1984),

pp 301-308.

54

[Lowe-91]

Lowe, M.; Ehrig, H.; Fey, W.; Jacobs, D.

"On the Relationship Between Algebraic Module

Spécifications and Program Modules",

Proceedings International Joint Conférence on Theory

and Pracfcice of Software Development Vol 2 : Advances in

Distributed Computing (ADC) and Colloquium on Combining

Paradigms for Software Development (CCPSD) ,

Brighton UK (April 1991).

[Luttger-90]

Luttger, J.; Pauthner, G.; Schulengerg, H.

"Context Data Management System",

Electrical Communication, vol 64 no 4 (1990),

pp 341-347.

[Lyle-88]

Lyle, J. R.; Gallagher, K. B.

"Using Program Décomposition to Guide Modification",

Proceedings 1988 IEEE Conférence on Software

Maintenance, Phoenix Arizona (Oct 1988), pp 265-269.

[Maarek-88]

Maarek, Y.S.

"On the Use of Cluster Analysis for Assisting

Maintenance of Large Software Systems",

Proceedings 3rd Israël Conférence on Computer Systems

and Software Engineering, Tel-Aviv Israël (June 1988),

pp 178-186.

[MacLennan-87]

MacLennan, Bruce J.

Principles of Proarammina Lanauaaes

Design. Evaluation, and Implementation,

Holt, Rinehart and Winston, New York, 1987.

55

[McAuliffe-88]

McAuliffe, Daniel.

"Measuring Program Complexity",

Computer, vol 21 (June 1988), pp 97-98.

[McCabe-89]

McCabe, Thomas J.; Butler, Charles W.

"Design Complexity Measurement and Testing",

Communications of the ACM, vol 32 no 12 (Dec 1989),

pp 1415-1425.

[Mennerfc-91]

Mennert, A.

Measurina Control Flow Complexitv for Software

Developmenfc,

Technl cal Reporfe, S i emens, Pr^neeton, New Jers ey, 1991.

[Mitchell-88]

Mitchell, R. J.

"Applying the Principle of Séparation of Concerns in

Software Development",

Proceedings 15th IFAC/IFIP Workshop on Real Time

Programming, Valencia Spain (May 1988), pp 21-27.

[Mizuno-89]

Mizuno, M.

"An Iterative Method for Secure Inter-Procedural

Information Flow Control",

Proceedings 13th Annual International Computer Software

and Applications Conférence, Orlando Florida

(Sept 1989), pp 286-291.

56

[Mohanty-81]

Mohanty, S. B.

"Entropy Metrics for Software Design Evaluation",

The Journal of Systems and Software, vol 2 (1981),

pp 39-46.

[Moser-90]

Moser, Louise E.

"Data Dependency Graphs for Ada Programs",

IEEE Transactions on Software Engineering,

vol 16 no 5 (May 1990), pp 498-509.

[Muhanna-91]

Muhanna, Waleed A.

"Composite Programs: Hierarchical Construction,

C i rcularifey, and- Deadloeks",

IEEE Transactions on Software Engineering,

vol 17 (April 1991), pp 320-333.

[Muller-89]

Muller, John H.; Spinrad, Jeremy.

"Incremental Modular Décomposition",

Journal of the Association for Computing Machinery,

vol 36 no l (Jan 1989), pp 1-19.

[Muller-90]

Muller, Hausi A.; Uhl, James S.

"Composing Subsystem Structures Using (K,2)-Partite

Graphs",

Proceedings 1990 IEEE Conférence on Software

Maintenance, San Diego Calif. (Nov 1990), pp 12-19.

57

[Murtagh-84]

Mur tagh, Thomas P.

"A Less Dynamic Memory Allocation Scheme for Algol-like

Languages",

Proceedings llth Annual ACM Symposium on Principles of

Programming Languages, Sait Lake City Utah (Jan 1984),

pp 283-289.

[Murtagh-91]

Murtagh, Thomas P.

"An Improved Storage Management Scheme for Block

Structured Languages",

ACM Transactions on Programming Languages and Systems,

vol 13 no 3 (July 1991), pp 372-398.

[Myers-75]

Myers, Glenford J.

Reliable Software Throuah Composifce Desian,

Petrocelli/Charter, 1975.

[Myers-77]

Myers, Glenford J.

"An Extension to fche Cyclomatic Measure of Program

Complexity",

ACM SIGPLAN Notices, vol 12 no 10 (Oct 1977), pp 61-64.

[Myers-78]

Myers, Glenford J.

Composite / Strucfcured Desicrn,

Van Nostrand Reinhold, 1978.

58

[Nakagawa-89]

Nakagawa, A.T.; Futatsugi, K.

"Stepwise Refinement Process wifch Modularity:

an Algebraic Approach",

Proceedings llth International Conférence on Software

Engineering, Pitfcsburgh PA USA (May 1989), pp 166-177.

[Nani-90]

Nani, G.

"Comparing the Effectiveness of Décomposition Tools",

Advances in Modelling & Simulation, vol 19 no 3 (1990),

pp 13-36.

[Nass-91]

Nass, Richard.

"Maintain and Reengineer Ex^

Electronic Design, vol 39 (April 1991), p 154.

[Navlakha-87]

Navlakha, J. K.

"A Survey of System Complexity Metrics",

The Computer Journal, vol 30 no 3 (June 1987),

pp 233-238.

[Nejmeh-88]

Nejmeh, Brian A.

"NPATH: a Measure of Exécution Path Complexity and its

Applications",

Communications of the ACM, vol 31 (Feb 1988),

pp 188-200.

59

[Nielsen-86]

Nielsen, Kjell W.

"Task Coupling and Cohésion in Ada",

ACM SIGAda Ada Letfcers, vol 6 no 4 (July, August 1986),

pp 44-52.

[Olson-90]

Olson, J.W.; Doran, M.V.; Longenecker, H.E., Jr.

"The Establishment and Application of a Metric for

Graphical Design Language",

Proceedings 18th ACM Annual Conférence on Computer

Science, Washington DC (Feb 1990), p 407.

[Ott-89]

Ott, L.M.; Thuss, J.J.

'^The Relafeionshi^ B

Proceedings llth International Conférence on Software

Engineering, Pittsburgh PA (May 1989), pp 198-204.

[Oval-89]

Oval, François; Meuleau, Jean-Charles

"Mesure de l'Indépendance d'un Graphe d'Appel dans une

Application",

Proceedings 2nd International Workshop on Software

Engineering and its Applications, Toulouse France

(1989), pp 963-969.

[Overstreet-88]

Oversfcreet, C. Michael; Chen, Ji; Byrum, Frank.

"Program Maintenance by Safe Transformations",

Proceedings 1988 IEEE Conférence on Software

Maintenance, Phoenix Arizona (Oct 1988), pp 118-123.

60

[Oviedo-80]

Oviedo, E. I.

"Control Flow, Data Flow, and Program Complexifcy",

Proceedings IEEE Computer Society's 4th International

Computer Software & Applications Conférence (COMPSAC),

Chicago USA (Oct 1980), pp 146-152.

[Parisi-Presicce-90]

Parisi-Presicce, F.

"A Rule-Based Approach to Modular System Design",

Proceedings 12fch International Conférence on Software -

Engineering, Nice France (March 1990), pp 202-211.

[Parisi-Presicce-91]

Parisi-Presicce, F.

'^Foundations o£ Rule-Base^^

Theorefcical Computer Science, vol 83 no l (June 1991),

pp 131-155.

[Parnas-71]

Parnas, D. L.

"Information Distribution Aspects of Design

Methoâology",

Proceedings IFIP Congress, Ljubljana Yougoslavia

(1971), pp 339-344.

[Parnas-72a]

Parnas, D. L.

"A Technique for Software Module Spécification with

Examples",

Communications of the ACM, vol 15 (May 1972),

pp 330-336.

61

[Parnas-72b]

Parnas, D. L.

"On the Criteria to be Used in Decomposing Systems into

Modules",

Communications of the ACM, vol 15 (Dec 1972),

pp 1053-1058.

[Parnas-85]

Parnas, D. L.; Cléments, P. C.; Weiss, D. M.

"The Modular Structure of Complex Systems",

IEEE Transactions on Software Engineering,

vol SE-11 no 3 (March 1985), pp 259-266.

[Paulson-92]

Paulson, Dan; Wand, Yair.

'^An Automated Àpproach feo^^^^^^^^î^^^

Décomposition",

IEEE Transactions on Software Engineering,

vol 18 no 3 (March 1992), pp 174-189.

[Power-90]

Power, L. R.

"Post-Facto Intégration Technology:

New Discipline for an Old Practice",

Proceedings Ist International Conférence on Systems

Intégration, Morristown NJ (April 1990), pp 4-13.

[Prather-84]

Prather, Ronald E.

"An Axiomatic Theory of Software Complexity Measure",

The Computer Journal, vol 27 no 4 (1984), pp 340-347.

62

[Pugh-92]

Pugh, William.

"Définition of Dépendance Distance",

ACM Letters on Programming Languages and Systems,

vol l no 3 (Sept 1992), pp 261-265.

[Purtilo-90]

Purtilo, J. M.; Atlee, J. M.

"Improving Module Reuse by Interface Adaptation",

Proceedings IEEE 1990 International Conférence on

Computer Languages, New Orléans LA (March 1990),

pp 208-217.

[Ramamoorthy-8 6]

Ramamoorthy, C. V.; Garg, V.; Prakash, A.

"Prograniming i^^^^^fe

IEEE Transactions on Software Engineering,

vol 12 no 7 (1986), pp 769-783.

[Reynolds-84]

Reynolds, R. G.

"Metrics to Measure the Complexity of Partial

Programs",

The Journal of Systems and Software, no 4 (1984),

pp 75-91.

[Reynolds-90]

Reynolds, R. G.; Maletic, J. I.

"An Introduction to Refinement Metrics: Assessing a

Prograrmning

Language's Support of the Stepwise Refinement Process",

Proceedings 18th ACM Annual Conférence on Computer

Science, Washington DC (Feb 1990), pp 82-88.

63

[Richardson-89]

Richardson, S.; Ganapathi, M.

"Interprocedural Analysis vs Procédure Intégration",

Information Processing Letters, vol 32 no 3 (Aug 1989),

pp 137-142.

[Rising-92]

Rising, Linda; Caliss, Frank W.

"Problems with Determining Package Cohésion and

Coupling",

Software Practice and Expérience,

vol 22 no 7 (July 1992), pp 553-571.

[Roberts-79]

Roberts, Fred S.

Measurement TheoEv,

Encyclopedia of Mathematics and its Applications Vol 7,

Addison-Wesley, 1979.

[Robillard-89]

Robillard, Pierre N.; Boloix, Germinal.

"The Interconnectivity Metrics: A New Metric Showing

How a Program is Organized",

The Journal .of Systems and Software, vol 10 (1989),

pp 29-30.

[Robillard-91]

Robillard, Pierre N.; Coupai, Daniel;

Coallier, François.

"Profiling Software Through the Use of Mefcrics",

Software Practice and Expérience,

vol 21 no 5 (May 1991), pp 507-518.

64

[Rombach-84]

Rombach, H. D.

Ouanfcitative évaluation of software aual i tv

characfceristics on the base of structurallv measures

(in German),

Thèse, Universitat Kaiserslautern, 1984.

[Ross-86]

Ross, Donald L.

"Classifying Ada Packages",

ACM SIGAda Ada Letters, vol 6 no 4 (July/August 1986),

pp 53-65.

[Ryder-79]

Ryder, Barbara G.

"Consferuefeing febe Gal^

IEEE Transactions on Software Engineering,

vol SE-5 no 3 (May 1979), pp 216-230.

[Ryder-90]

Ryder, Barbara Gershon; Landi, William; Pande, Hemant.

"Profiling an Incremental Data Flow Analysis

Algorifchm",

IEEE Transactions on Software Engineering,

vol 16 no 2 (Feb 1990), pp 129-140.

[Sampson-87]

Sampson, W. B.; Nevill, D. G.; Dugard, P. I.

"Predictive Software Mefcrics Based on a Formai

Spécification",

Information and Software Technology,

vol 29 (June 1987), pp 242-248.

65

[Schach-90]

Schach, Stephen R.

SOFTWARE ENGINEERING,

Aksen Associâtes, 1990.

[Schneidewind-91]

Schneidewind, Norman F.

"Setting Maintenance Quality Objectives and

Prioritizing Maintenance Work by Using Quality

Metrics",

Proceedings 1991 IEEE Conférence on Software

Maintenance, Sorrento Italy (Oct 1991), pp 240-249.

[Seidewitz-87]

Seidewitz, Ed.; Sfcark, Mike.

'^Towards a Général Objee^fe^^

Methodology",

Ada Letters, vol 7 no 4 (1987), pp 54-67.

[Selby-88]

Selby, Richard W.; Basili, Victor R.

"Error Localization During Maintenance: Generating

Hierarchical System Descriptions from the Source Code

Alone",

Proceedings 1988 IEEE Conférence on Software

Maintenance, Phoenix Arizona (Oct 1988), pp 192-197.

[Sellers-92]

Sellers, B. Henderson.

"Modularization and McCabe's Cyclomatic Complexity",

Communications of the ACM, vol 35 no 12 (Dec 1992),

pp 17-19.

66

[Shepperd-90]

Shepperd, M.; Ince, D.

"Multi-Dimensional Modelling and Measurement of

Software Designs",

Proceedings 18th ACM Annual Conférence on Compufcer

Science, Washington DC (Feb 1990), pp 76-81.

[Shumate-88]

Shumate, Ken; Nielsen, Kjell.

"A Taxonomy of Ada Packages",

ACM Ada Letters, vol 8 no 2 (1988), pp 55-76.

[Sommerville-89]

Sommerville, lan.

SOFTWARE ENGINEERING,

Addison-Wesley, 1989.

[Stevens-74]

Stevens, W. P.; Myers, G. J.; Constantine, L. L.

"Structured Design",

IBM Systems Journal, vol 13 no 2 (1974), pp 115-139.

[Stubbs-84]

Stubbs, Michael.

"An Examination of the Résolution of Structure Clashes

by Structure Inversion",

The Computer Journal, vol 27 (Nov 1984), pp 354-361.

[Tai-84]

Tai, K.

"A Program Complexity Metric Based on Data Flow

Information Control Graphs",

Proceedings 7th International Conférence on Software

Engineering, Orlando Florida (March 1984), pp 239-248.

67

[Teufel-91]

Teufel, Bernd.

Oraanization of Proarammina Lanauaaes,

Springer-Verlag, Vienne, 1991.

[Torres-91]

Torres, W. R.; Samadzadeh, M.

"Software Reuse and Information Theory Based Metrics",

Proceedings 1991 Symposium on Applied Computing,

Kansas City April 1991, IEEE Computer Society Press,

pp 437-446.

[Troy-81]

Troy, D. A.; Zweben, S. H.

"Measuring the Quality-of Sfcructured Designs",

The Journal o f SysfeemsanâSof^

pp 113-120.

[Turner-80]

Turner, J.

"The Structure of Modular Programs",

Communications of the ACM, vol 23 no 5 (May 1980),

pp 272-277.

[VanEmden-70]

Van Emden, M. H.

"Hierarchical Décomposition of Complexity",

Machine Intelligence, vol 5 (1970), pp 361-380.

[VanVerth-87]

Van Verth, P. B.

"A Program Complexity Model that Includes Procédures",

Buffalo, 1987.

68

[Vanek-89]

Vanek, Leonard I.; Culp, Mark N.

"Sfcatic Analysis of Program Source Code using EDSA",

Proceedings 1989 IEEE Conférence on Software

Maintenance, Miami Florida (Oct 1989), pp 192-199.

[Watanabe-60]

Watanabe, S.

"Information Theoretical Analysis of Multivariate

Corrélation",

IBM Journal, vol 4 (1960), pp 66-82.

[Watson-87]

Watson, S. E.

"Ada Modules",

ACM SIGÀdâ Ada Lêfefee^s, vol 7 no^^^^ 4

pp 79-84.

[Weiss-92]

Weiss, Michael.

"The Transitive Closure of Control Dependence",

ACM Letters on Programming Languages and Systems,

vol l no 2 (June 1992), pp 178-190.

[Weyuker-88]

Weyuker, E. J.

"Evaluating software complexity measures",

IEEE Transactions on Software Engineering,

vol 14 (Sept 1988), pp 1357-1365.

69

[Whitworth-80]

Whitworth, Mark H.; Szulewski, Paul A.

"The Measurement of Control and Data Flow Complexity in

Software Designs",

Proceedings IEEE Computer Society's 4th International

Computer Software anâ Applications Conférence

(COMPSAC), Chicago USA (1980), pp 735-743.

[Wilde-89]

Wilde, Norman; Huitt, Ross; Huitt, Scott.

"Dependency Analysis Tools: Reusable Components for

Software Maintenance",

Proceedings 1989 IEEE Conférence on Software

Maintenance, Miami Florida (Oct 1989), pp 126-131.

[WQodfield-80]

Woodfield, S. N.

Enhanced Effort Esfcimafcion bv Extendina Bas-ir:

Proarammina Model to Include Modularitv Factors,

Thèse, Dept of Computer Se. Purdue University,

Dec 1980.

[Woodfield-Sla]

Woodfield, S. N.; Dunsmore, H. E.; Shen, V. Y.

"The Effect of Modularization and Comments on Program

Compréhension",

Proceedings 5fch International Conférence on Software

Engineering (March 1981), pp 215-222.

[Woodfield-Slb]

Woodfield, S. N.; Shen, V. Y.; Dunsmore, H. E.

"A Study of Several Metrics for Programming Effort",

The Journal of Systems and Software,

vol 2 no 2 (Dec 1981), pp 97-103.

70

[Woodward-79]

Woodward, M. R.; Hennel, M. A.; Hedley, D.

"A Measure of Control Flow Complexity in Program Text",

IEEE Transaction on Software Engineering,

vol SE-5 no l (Jan 1979), pp 45-50.

[Yadav-90]

Yadav, S. B.

"Control and Définition Modularization: an Improved

Software Design Technique for Organizing Programs",

IEEE Transactions on Software Engineering,

vol 16 no l (Jan 1990), pp 92-99.

[Yau-80]

Yau, S. S.; Grabow, P. C.

"A Mode! for Represen^

Flow of Program Modules",

Proceedings IEEE Computer Society's 4th International

Computer Software & Applications Conférence (COMPSAC),

Chicago USA (Ocfc 1980), pp 153-160.

[Yau-91]

Yau, S. S.; Wiharja, I.

"An Approach to Module Distribution for the Design of

Embedded Distribufceâ Software Systems",

Information Sciences, vol 56 no 1-3 (Aug 1991),

pp 1-22.

[Yaung-92]

Yaung, Alan T.; Raz, Tzvi.

"Linkage Analysis of Processes",

Software Practice and Expérience,

vol 22 no 10 (Oct 1992),

pp 849-862.

71

[Yourdon-79]

Yourdon, Edward; Constantine, Larry L.

STRUCTURED DESIGN,

Prentice-Hall, 1979.

[Zuse-91]

Zuse, Horst.

SOFTWARE COMPLEXITY MEAFîTT'RRfi ANT) MRTHnn.c;

Walter de Gruyter Inc, 1991.

72

ÉCOLE POLVTECHNIOUE DE MONTREAL

3S3340Ô2B9Î

l

