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SUMMARY

A numerical scheme is developed for the solution of the
unsteady, two dimensional, incompressible Navier—-Stokes equations in
generalized coordinates. The governing équations written in the
conservation form, are formulated in terms of pressure and velocity.
The scheme is 'based on a combination of forward and backward
differencing for the spafial derivatives of the flux and thg pressure.
This characteristic allows.the use of a single computational cell for
the continuity and moﬁentum balance%, together with the storage of the
pressure and the velocity components at the center of this calculation
element. The resulting algorithm shows no oscillations on the velocity
or pressure fields. Computing is made for a series of channel flows

containing constrictions and enlargements.



1. INTRODUCTION

Finite-volume procedures for the solution of the
primitive-variable form of the incompressible Navier-Stokes equations
in a general geometry, are based on the subdivision of the solution
domain into discrete volumes and applying the conservation laws over
these elements. In this methodology three main aspects can be
distinguished: the domain discretization technique, the choice of a
computational element for the storage 1location for the dependent
variables, and the coupling between the continuity and momentum

equations.

A critical factor in the development of an accurate numerical
procedure for the solution of fluid flow problems in general shapes,
is the choice of an appropriate coordinate system. Among the different
techniques that can be used to numerically discretize the domain of
interest, the body—-conforming methodl(1,2] has been retained. In this
approach the governing .transport equations are Fformulated Ffor a
curvilinear coordinate system, where the geometric characteristics of

the problem are intrinsically imbedded in generalized equations.

The second aspect, the construction of an efficient
computational cell has been attempted by different means, among them
the staggered grid methodlZ] is the most widely used. Aas an
alternative, in Refl4l a scheme using an opposed differencing
technigque in the main flow direction combined with an overlapping mesh
in the secondary direction has been presented. This procedure prevents

spurious oscillations in the pressure field. In spite of this
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particular discretization, it can be shown that such a method can only
be regarded as partially nonstaggered. This 1is because of the
requirement of an overlapping configuration in the secondary

direction.

In the present study, it is proposed to employ a completely
nonstaggered discretization by applying the opposed differencing idea
to both directions. This yields a grid twice as fine in the secondary
direction, as well as allowing the removal of the restrictio& of an
odd number of grid points in that direction. As a result the location
of the physical properties are caltulated at the center of the same
computational cell used Ffor both the ‘momemtum and the continuity

bal ances.

Finally, the most difficult aspect associated with the solution
of the incompressible Navier—-Stokes equations in primitive variables,
is perhaps the constraint v V=0 that has to be satisfied everywhere.
In the present effort this p-v coupling pfnblem has been treated by
two alternative approaches. Both have in common a pressure equation
derived +rom the continuity and linearised momentum equations in a
manner similar to that proposed by the SIMFPFLE methodiS3. Their
difference lies in the way that the pressure adjustement is regarded

and applied.

The first method is based on a semi-implicit procedure, where
only the pressure gradient terms are treated implicitly on the
momentum equations; and with the continuity relation enforced at

every time step within a prescribed tolerance. In this case the



unsteady process is correctly followed.

In the second case, the pressure correction eguation is
regarded as an artificial continuity equationl[&l, that relates the
pressure and velocity fields. In that instance the process does not
follow the transient evolution; however the solution is meaningful

when the steady state is reached

2. EQUATIONS OF MOTION.

When solving the equations of motion on a curvilinear coordinate
system, one may retain as dependent variables, either velocity
components along the curvilinear directions, or cartesian velocity
components. If the latter is chosen, the resulting system which is not
significantly more complex than their cartesian counterpart, remains
in the conservation law form, and the discrete approximations can be

easily handled.

With this approach, the time dependent Navier-Stokes equations

can be written in conservative form as:

99 , 9E , 9F _ 2R , 385 ”

at 8T ~ 8n  B%  on (1

where:
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and Rea={pusl /), with us and L beeing reference valués.
The curvilinear velocity components U,V and the cartesian
velocity cnmbnnents u,v are related by:
U = uf, + vi,
V = un + v,
The metric terms T.,E,3MwyThy the jacobian J and the contravariant

metric tensor components gt'?,g'=2,g®*,and g== are obtained from:

Ex = Y-.-,/J, Ey =—>4-,-,/J

I

Thn —ye/J, Ty = Xe/d
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Z%. DIGCRETE FORMULATION

The temporal scheme used here is explicit, although it is only
‘first order accurate, it has been chosen because of the simplicity of

its implementation. In compact form can be written as:

A + At{(Eg + Fp)™ = At(Re + Sp)7

where A denotes the forward time difference operator and n the time

level.

Attention is now focused on the construction of the
computational cell, that is the storage‘and the approximation of the

spatial derivatives of the physical properties. The values of the

pressure and cartesian velocity components u and v, are defined at the

cell center {(i+1/2,3+1/2) which is used for both mass and momentum



calculations, as shown in Fig.1l. On the other hand, the curvilinear
velocity components U and V are located at the center of the faces

{i,3+1/2), (i+1,j+1/2) and (i+1/2,j),(i+1/2,j+1) respectively.

It is well known, that the unknown properties at the cell faces
cannot be linearly interpolated, as checkerboard fields would arise.
In the present approach, this problem is solved by applying a
combination of forward and backward differencing for mass and pressure
respectively, along with the use of the weighted upstream difference
scheme of Raithby and Torrancel7] for the convected momentum fluxes

and diffusion terms.

In the ¥ direction, mass gradients are obtained by upwind
differencing, so the flux'thraugh the downwind face i+l is controlled
by  the velocity at the center i+1/2,i+1/2 of the element. Pressure
gradients -on the other hand, are calculated via downwind differences,
that is to say, the pressure located at the cell center i+1/2,j+1/2

has to be regarded as acting on the upstream face i.

In the n direction, and in order to avoid numerical errors due
to asymmetry, a sligthly different treatment is applied. This implies
a global procedure composed of a series of predictor-corrector steps
where the the forward-backward combination is applied in reverse ways

for successive time levels.

In a first step of the computation, upwinding differencing is
used for mass combined with downwinding for pressure. This is followed

by a corrector step, where downwind differencing for mass together



with upwinding for pressure is employed.

These ideas, are now to be applied to the discrete analog of the

transport equations.

The discrete form of the continuity constraint, represented by

Eq. (1) can be written as:

(I s va 9012 ~(JW g 3ea 2 +(JV)1+1/2LJ+1“(JV)1+1/=L;

AT Am

This equation only involves the curvilinear U and VV velocity
components at the locations i,j+1/25i+1,3+1/2 and i+1/2,33;i+1/2,3+1
respectively. These are obtained via the discrete form of Eq.(2),
where the cartesian velocity components appear. These physical
properties, that are calculated from the momentum equations, are not
avallable at the above mentioned stations, but rather at the center of
the computational cell (i+1/2,j+1/2). However, as a result of the
oppaosed differencing procedure in both directions the curvilinear

components are obtained from Eg. (2) as:
i) +or the U components

Uy L gv202 = Wa—a,z,9+1,28Mxls 3 + Va—asz,avar2{ny ), g
(4a)
U1+1.J+1/2 = U1+1/2,J+1/2(nx>1+1.J + V1+1/2.J+1/2(ny)1+1.d
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1i} for the V components

Viwa,=, 9 = Wararmyd—1,2(Mlda, g + Vawarz,3—2,2{Ny)a 3
. (4b)
V1+1/2.J+1 = U1+1/2.J+1/2(ﬂu)1.4+1 + V1+1/2.J+1/2(ny)1.J+1
for an even step; and
Vivr,2,3 F Usgasr2y3+1,2(Thed s, + Viwasrz,9+2,2(T) 1,4
(4c)
Viwar,2, 941 = Ugwrrz, 3o ,2{TNda, 342 + Viwarz,a+5,2(Ty) 1, 34+1

for an odd step.

where upwinding(or downwinding) is used independently of the signs of

0 or v.

The discrete form of the momentum equations also requires the
knowledge of the convected momentum fluxes and diffusion terms at the
cell faces; these terms are evaluated in a similar way as in Ref[41 by

employing the weighted upstream difference schemel71]



As mentioned earlier, the forward-backward differencing for mass
flow and pressure in the ¥ direction , is reversed in the n direction
for succesive time levels. With this particularity, alternate momentum
equations are used for odd and even steps. An example of the discrete

form of this equations is given in Appendix A.

4.50LUTION FROCEDURE

The general algorithm is based on the iterative solution of a
set of equations Ffor the individual variables. The sequence of

calculations can be putlined as follows.

First, pressure, cartesian and corresponding curvilinear
velority fields are guessed. Then, cartesian velocity increments are
obtained by solving the linearised form of the momentum equations.
These resulting changes, located at the cell center, and denoted by
du* and 4av*, are then substitued into eguations (4a) and (4b}) or {(4c)
to compute the corresponding contravariant velocity increments sU* and
s¥* at the cell faces. These intermediate values that do not satisfy
mass conservation, are +inally added to the existing curvilinear
components U and V, resulting in modified values denoted by U™ and V*,

which also do not verify the zero—divergence condition.

To correct these U™ and V* components so as to yvield a pressure

field which drives velocities that satisfybboth the momentum and the



continuity equations simultaneously, a pressure eqguation is derived
from the discretized form of these equations. The derivation of this
equation follows standard procedures(5,81 which have been modified for

a curvilinear mesh and employed in earlier work[41].

By writing the discrete form of the momentum equations twice,
once for the intermediate fields u®,v* and p*, and then Ffor the
corrected fields u = u™ +d8u; v= v* +8v; p= p* +d8p, with u and v
meeting mass conservation; cartesian du, dv and subsequent
contravariant velocity corrections 8U,8V can be approximated in terms

of pressure corrections as follows:

su

fYdp

av

fVap

These values that depend on the pressure changes 8p, also have to
respect the conservation of mass, consequently they are substituted
into an equivalent form of Eq.3, leading to a presswe correction

equation that can be abbreviated as:

8p = —AD/at (5)

where D denotes a mass souce term (or continuity imbalance), and A a

convergence parameter that is function of the geometry of each cell.

Once the presswre adjustement dSp=p-p*, and the consequent
curvilinear velocity corrections sV=U-U*, &V=V-V* are calculated, the

provisional velocity and pressure fields U*,Vv* and p* are simply
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rectified by:

u=u* + 3u

<
|

= V* + gV

p=p~ + ép

At this stage two distinct procedures were foilowed to modify

these variables.

a) Approximate pressure correction equation

In this instance, a MAC-type techniquel?] was employed to
iteratively update the pressure over the entire. computational domain

as:

Pm+1 = Pm —~A V V,/At {(6)

This is carried out by applying a cell by cell sweep in the
inlet-outlet direction, until the difference of the pressure between
two successive iterations steps m and m+l is less than a prescribed

limit; and consequently the continuity constraint is satisfied.

b} Artificial Compressibility

This method described by Chorinlél circumvents the traditional
problem in incompressible calculations, by adding a time derivative of
an artificial density to the continuity equation. This artifice turns

the incompressible equations into an hyperbolic system. With such an



artificial compressibility term added, together with the use of a
state law defined by p = c®p, where c¢* represents a convergence

parameter, the perturbed continuity equation can now be expressed as:

B, 2y oy =
3t + 2y ¥ = 0 (7)
Adopting a forward time difference approximation as used

previocusly, the discrete form of the pressure equétion gives:

potd = pm - aAtc®v yrnw2 : (83

Whith this technique, the resulting scheme is obviously no
longer consistent during the transient stage, and the solution will

only represent the flow in the asymptotic limit of the steady state.

As pointed out by Refl101, it is interesting to note that a
relation can be established between the pressure modification given by
Eg. (B) and the pressure correction represented by Eqg. (&), which 1is
=0l ved by & simple Jacoby—-type procedwe. Comparing these two
equations,; one can conclude that if at each time step the pressure
correction Eqg.{&6) 1is not enforced to satisfy vV - 0, but only one
iteration 1s made, then the pressuwe correction- method becomes the

density correction procedure with A = c2at=2,

It can be appreciated from this last relation, that the guantiy
c* depends on A which is in turn is a function of the geometry of each
cell. As a consequence, the term c* employed in the present

development, is not a constant as is generally the case when applving
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the artificial compressibility idea; and all the contributing

parameters on the state law p = pc® vary from point—-to-point

After one or several iterations are done, depending on the
selected approach, the cartesian velocity components are decoded and
the boundary conditions applied. Finally the time level is advanced

and the cycle repeated until the steady state is reached.

Both, the artificial density and pressure correction approaches,
were applied  to exploratory test cases; however no significant
differences were noted in the required CPU time to obtain a converged

flow +tield.
5. AFPLICATIONS
5.1 Flow between parallel plates.

The first case chosen for the validation of the method was that
of the developing laminar flow between two parallel plates. For this
type of flow a parabolic profile is expected to be formed at about
U.04Rel113, with the Reynolds _number based on the width of the
channel; so computations were made in a channel with a length to width

ratioc L/D=10 for Re=i00, using a 63x15 grid.

Fig.Za shows the predicted centerline velocity behaviour as
function of the distance from the inlet. The maximum attained value
agrees well with the analytical wvalue of 1.5. Fig.2b depicts the

pressure at the wall as function of the normalized length. The
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calculated slope of Ap/Ax=—.128 of the pressure gradient compares very
well with the value of -12/Re from the analytical solution. On
Fig.Z2c, the calculated velocity profile just before the outlet (full
line) is compared with the analytical solution u(y)=&(y—-y=) {dashed

lines). The results indicate a good agreement between both solutions.
o. 2 Asymmetric Constriction

The second problem analyzed is the flow in a channél with an
asymmetric constriction. The geometric characteristics of the selecéed
model were devised by Refl{l12] which uses a conformal coordinate
transformation to generate a family of channel configurations. The
chosen duct has been Ffully tested by that author, using the

vorticity—stream function form of the Navier—Stokes equations.

At the inlet a developed profile is assumed, the discretization
uses a 53xZ3 grid and tests up to Re=1000 were conducted. Figs.3a and
b provide a velocity vector plot and stream—function contours for
Re=1000. Examination of these illustrations clearly reveals a reversed
flow region which increases with Reynolds number. The qualitative
agreement of these last figures with those reported by Ref.[12] is
good; however a detailed comparison disclose some discrepancies.- In

particular those concerning the separation and reattachement points.

In the present calculations no separation appears for Re=100, as
found by Ref[iZ]J. For a Reynolds number of 1000 the respective
separation and reattachement points predicted by the current

computation, at the 0.4Z and 2.45 x locations (referred to the maximun
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of the constriction) do not coincide with the estimated values of .19
and Z.75 of Ref[i121. With no experimental data available for this
geometry 1t is no possible to infer the better result.
S. 3 Sinusoidal passage

In order to verify.the scheme’'s stability in a more complex
geometry, the flow in a double-sinus channel was studied. The

discretization uses a 6Zx15 grid, with a developed velocity profile

imposed at the inlet, and a Reynolds number of 100.

Fig.4a 1illustrates the calculated velocity field, while Figs.4b
and 4c present the corresponding steamlines and isobar contours
respecti;ely. One can notice the formation of Ffive distinﬁt
recirculation bubbles; the last of them 1is the result  aof the
oscillatory movement of the fluid downstream of the distorted zone,

This movement finally dies out due to the viscous effects.

The complexity of the pressure behaviow can be appreciated on
Fig.4d, in which the pressure at the bottom (full line) and top
walls {(dashed lines) is plotted as a function of_. the distance +from
the iniet. This result shows a shitfed periodic pattern of such
parameter between the upper and lower walls, as gualitatively

expected.
5.4 Jeffery—Hamel Flow

The problem of the flow between nonparallel plane walls due to a
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line sowce, known as the Jeffery—Hamel flow was next investigated.
The divergent duct considered for the numerical calculation was chosen
atfter a test case studied by ReflL1X] and as is illustrated in Fig.5a,
whe}e a total angle of 10° is used for the divergence of the walls. At
the inlet one imposes a velocity profile corresponding to the
analytical solutionl[14,15]1 for Re=684 defined as RE=Umaxl 7V, Umas
being the velocity along the axial streamline -and r the radial

position. The discretization was carried out with 63x19 grid points

For this geometry, tests were conducted Ffor two different

Reynolds numbers.

Fig.53b iliustrates the calculated (full line) and
analytical {square symbal s) . velocity profilé L W for
Re=&684. This remains constant along the duct axis and the section
selected for the representation is that of the oulet. As expected both

profiles agree well since the flow does not separate.

A second test was conducted for Re=2300, with the same inlet
profile used for the preceeding case. On Fig.5c is shown the computed
(full linmel) _and analytical {(squares) normalized velocity profiles
Li5]. Compared to the previous example, both velocity profiles sharpen
up in  the center with accompanying backflow regions near the walls

that match reasonably well with each other.
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NOMENCLATURE

convergence parameter on the artificial equation of state
pressure coefficient
continuity imbalance
flux vectors in § and 71 coordinate directions
metric tensor components
Jacobian of transformation matriux
characteristic length
pressuwe
estimated pressure
vector of conservation variables
viscous flux terms in T and n coordinate directions
Reynolds number
time
velocity components in x and y directions
estimated cartesian velocity field
contravariant velocity components in ¥ and 1 directions
tentative curvilinear velocity components
Cartesian coordinates
cuwrvilinear coordinates
pressure correction
time step
Cartesian velocity corrections
contravariant velocity corrections

geometric parameter



Subscripts

m iteration step

ey L4 first partial differentiation
1.3 . variable location

O reference value

Superscript

n time level.
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AFFENDIX A

Let us denote the discretized time dependent, flux, and viscous

terms of the uw momentum equation as:

- At L N T W AN PP
Ap = Jywr,z,3v2,2 AL
~ _ (JL!U)1+1,J+1/2 - (JUU)i,J-o-:./z
Ane = —=== Y £2

+ £§5V31+1/2,J+1 - (JUV)1+1/2;J

A7)
G, = Ctearasz = Cawa.gware | Cavasz,s = Civazz.aes
AL an

Then the conservation equations are written:

i) for an even time level

Ap + Anp + S5n + Proe = O (A1)



where Fonoe 15 calculated by,

AL

+ p1+1/2,1*3/gigﬂx)1+1/2,J+1 - P1+1/2,J*1/2(Jnx)1+1/2L£
4an

and with U and V appearing in the A.». expression calculated by Eqgs

and 4b respectively; and

ii1) for an opdd time level

ép + Anb + Snb + Pnbo = O (AE)

with Fhee computed by:

F = Pairzssz.awas2{dbxdava,orarz = Pavaszaovaszzidiuda i
Nnbo —

AT

+ Ei+1/2LJ+1/2(JBx)1+1/21J+1 - E:+1/213—1/2(Jﬂﬁl1+1lzlg

where U and V are obtained through Egs 4a and 4c respectively.

4a
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Velocity field, stream-

=100

function and isobars contours in
Re

Fig. 4a,4b,4c

double-sinusoidal channel.
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Fig. 4d Upper and lower wall pressure in a double-sinusoidal passage
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Fig. 5a Geometric characteristics of the divergent duct
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Fig. 5b Numerical and analytical solution of the Jeffery-Hamel

flow.

Re=684
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