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SUMMARY

A numerical scheme is developed for the solution of the

unsteady, two dimensional, incompressible Navier—Stokes équations in

generalized coordinates. The goveming équations written in the

conservation form, are formulated in terms o-f pressure and velocity.

The scheme is based on a combination of forward and backward

dif-ferencing for the spatial derivatives o-f the flux and the pressure.

This characteristic allows.the use of a single computational cell -for

the continuity and momentum balances, together with the storage of the

pressure and the velocity components at the center of this calculation

élément. The resulting algorithm shows no oscillations on the velocity

or pressure -fields. Computing is made for a séries of channel flows

containing constrictions and enlargements.
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l.INTRODUCTION

Finite-volume procédures for the solution of the

primitive-variable form of the incompressible Navier-Stokes équations

in a général geometry, are based on the subdivision of the solution

demain into discrète volumes and applying the conservation laws over

thèse éléments. In this methodology three main aspects can be

distinguished: the demain discretization technique, the choice of a

computational élément for the storage location for the dépendent

variables, and the coupling between the continuity and momentum

équations.

A critical factor in the development of an accurate numerical

procédure for the salutian of fluid flow problems in général shapes,

is the choice of an appropriate coordinate System. Among the différent

techniques that can be used ta numerically discretize the domain o-f

interest, the body-conforming methodCl,23 bas been retained. In this

approach the governing .transport équations are formulated -for a

curvilinear caordinate System, where the géométrie characteristics of

the problem are intrinsically imbedded in generalized équations.

The second aspect, the construction of an ef-ficient

computational cell has been attempted by différent means, among them

the staggered grid methodC.33 is the mast widely used. As an

alternative, in RefC43 a scheme using an opposed differencing

technique in the main flow direction combined with an overlapping mesh

in the secondary direction has been presented. This procédure prevents

spurious oscillations in the pressure -field. In spite o-f this



particular discretization, it can be shown that such a method can only

be regarded as partially nonstaggered. This is because of the

requirement o-f an overlapping configuration in the secondary

Direction.

In the présent study, it is praposed to employ a completely

nonstaggered discretization by applying the opposed differencing idea

ta both directions. This yields a grid twice as fine in the secondary

direction, as well as allowing the removal of the restriction o+ an

odd number of grid points in that direction. As a result the location

o-f the physical properties are calculated at the center of the same

computational cell used -for bath the momemtum and the continuity

balances.

Finally, the most difficult aspect associated with the solution

of the incompressible Navier—Stokes équations in primitive variables,

is perhaps the constraint V V=0 that bas ta be satisfied everywhere.

In the présent effort this p-v coupling problem has been treated by

two alternative approaches. Both have in cammon a pressure équation

derived from the continuity and linearised momentum équations in a

manner similar ta that proposed by the SIMPLE methodC53. Their

différence lies in the way that the pressure ad justement is regarded

and applied.

The first method is based on a semi-implici t procédure, where

only the pressure gradient terms are treated implicitly on the

momentum équations; and with the continuity relation enforced at

every time step within a prescribed tolérance. In this case the



unsteady process is correctly followed.

In the second case, the pressure correction équation is

regarded as an artificial continuity equationC63, that relates the

pressure and velocity fields. In that instance the process does net

-follow the transient évolution; however the solution is meaningful

when the steady state is reached

2.EQUATIONS 0F MOTION.

When solving the équations of motion on a curvilinear coordinate

System, ane may retain as dépendent variables, either velocity

components along the curvilinear directions, or cartesian velocity

components. If the latter is chosen, the resulting System which is not

signi-ficantly more complex than their cartesian counterpart, remains

in the conservation law -form, and the discrète approximations car» be

easily handled.

With this approach, the time dépendent Navier-Stokes équations

can be written in conservât!ve form as;

|9 , H , ^ = JI . H - (D
3t 81. ô-n ôï a-q

where:



q = J

0

u

v

E = J

u

uU + pïx

vU + pî^

F = J UV + pT^x

vV + pïiy

R = J/R«

a

gllu^ + gl=Ur,

glaVï + glzvn

S = J/R., g31Uï, + g2iaiu,

gzxVï + gz3iVi

and R.=(pUoL/^), with Uo and L beeing référence values.

The curvilinear velocity components U,V and the cartesian

velocity components u,v are related by;

U = uïx + v~Ç,

V = UT(x + VT}y

(2)

The metric terme ïx » îy »T)x » r|y» the jacobian J and the contravariant

metric tensor components g11 ,gl:z,g=l ,and g32 are obtained from:

ix = y n/J, ïy =-ÎÎT,/J

r(x = -YÏ/J, Tiy = XTE/J



B

J=>i-e.y^- >;nyx

gll= ^ + ^ gX== ^^ + ^^

g2t= gl2 g=2= ^g + ^

3. DISCRETE FORMULATION

The temporal scheme used here is explicit, although it is only

first order accurate, it has been chosen because of the simplicity of

its implementatian. In compact form can be written as:

Aq + At (E^ + Fr,)" = At(R^ + Sr,)"

where A denotes the forward time différence aperator and n the time

level •

Attention is now -focused on the construction of the

computational cell, that is the storage and the approximation o-f the

spatial derivatives of the physical properties. The values of the

pressure and cartesian velocity components u and v, are défined at the

cell center (i+l/2,j+l/2> which is used far both mass and momentum



calculations, as shown in Fig.l. On the other hand, the curvilinear

velocity components U and V are located at the center o+ the faces

(i,j+l/2), (i+l,j+l/2) and (i+1/2,j),(i+1/2,j+1) respectively.

It is well known, that the unknown properties at the cell faces

cannât be linearly interpolated, as checkerboard fields would arise.

In the présent approach, .this problem is solved by applying a

combi nation of -forward and backward differencing for mass and pressure

respectively, along with the use of the weighted upstream différence

scheme of Raithby and TorranceC73 for the convected momentum f luxes

and diffusion terms.

In the î direction, mass gradients are obtained by upwind

differencing, so the flux through the downwind face i+1 is controlled

by the velacity at the center i+l/2,j+l/2 of the élément. Pressure

gradients on the other hand, are calculated via downwind différences,

that is to say, the pressure located at the cell center i+l/2,j+l/2

has ta be regarded as acting on the upstream face i.

In the T] direction, and in order ta avoid numerical errors due

to asymmetry, a sligthly différent treatment is applied. This implies

a global procédure composed o-f a séries of predictor-corrector steps

where the the forward—backward comb.i nation is applied in reverse ways

for successive time levels.

In a first step o-f the computation, upwinding differencing is

used for mass combined with downwinding for pressure. This is followed

by a corrector step, where downwind differencing -for mass together
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with upwinding for pressure is employed.

Thèse ideas, are naw to be applied ta the discrète analog of the

transport équations.

The discrète form of the continuity constraint, represented by

Eq.(l) can be written as:

^-'îy2-S-Ïl-A.J.Ï:a-il=_ZA'îy2-iL.r.dtÏl-^3 + ^^2-i-^l.ïlS.l-AÏl-Z^.'î^2-î.î:i^.2.fcA =

Aî AT1

This équation only involves the curvilinear D and V velocity

components at the locations i,j+1/2;i+1,j+1/2 and i+l/2,j;i+l/2,j+l

respectively. Thèse are obtained via the discrète form o+ Eq. <2) ,

where the cartesian velocity components appear. Thèse physical

properties, that are calculated from the momentum équations, are not

available at the above mentioned stations, but rather at the center of

the computational cell (i+1/2,j+1/2). However, as a result of the

opposed differencing procédure in both directions the curvilinear

components are obtained -from Eq. (2) as:

i) for the D components

Ut.j-t-a^a = Ui.—i./'z. j<-i^z <T|N) ± , j + Vi.—1^2. j—i^z (T^y) t , j

(4a)

Uf-i , joi/'a = Un-a.ys, j-^i^a <T]>« > n-a. , j + Vn-a. yz , j->-a. ya <Tly) n-i , j
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ii) for the V components

Vi-«-a-''S , j = Ui.^-i ^-a» j—i/•z (TÎX ) A , j + Va ^.i./•a , j—a.^-z (T|y) t . j

(4b)

VA-*-l ^s , j-»-l = UA-».i/•Z, j-t-i./•2 (T|»< ) A » ^-«-l + Vi. ^-i^z , j<-i ^•a <T|y) A , j^-i.

for an even step; and

Vn-a^Sî,.) = UA *.3L^2, J-*-1^Z (T|M ) ± , J + Vn-1^2. Jfl^Z <T|y) A , J

<4c)

V± -f-1. /"S. , J-^l = Ui-«-i ^a, _i-*-3^z <T|», ) 1 , j^-i + Vi.-^i ^-z, ji-^s^-z (T]y) i , j-t-i

-for an odd step.

where upwinding(or downwinding) is used independently o-f the signs of

n or v.

The discrète -form o-f the momentum équations al sa requires the

knowledge of the convected momentum fluxes and diffusion terms at the

cell faces; thèse terms are evaluated in a si mi lar way as in RefC43 by

employing the weighted upstream différence schemeC73



As mentioned earlier, the forward-backward differencing for mass

flow and pressure in the î direction , is reversed in the T] direction

•for succesive time levels. With this particularity, alternate momentum

équations are used -for odd and even steps. An example o-f the discrète

form of this équations is given in Appendix A.

4.SOLUTION PROCEDURE

The général algorithm is based on the iterative solution of a

set of équations for the individual variables. The séquence o-f

calcul étions can be outlined as fol lows.

First, pressure, cartesian and corresponding curvilinear

velocity -fields are guessed. Then, cartesian velocity increments are

obtained by solving the linearised form of the momentum équations.

Thèse resulting changes, located at the cell center, and denoted by

<5u* and 6v*, are then substitued into équations (4a) and (4b) or (4c)

to compute the corresponding contravariant velocity increments (SU* and

3V* at the cell faces. Thèse intermediate values that do not satisfy

mass conservation, are -finally added to the existing curvilinear

components U and V, resulting in modi+ied values denoted by U* and V"*,

which also do not verify the zéro—divergence condition.

To correct thèse U* and V* companents sa as ta yiel d a pressure

fi el d which drives velocities that satisfy both the momentum and the
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continuity équations simultaneously, a pressure équation is derived

from the discret!zed form of thèse équations. The derivation of this

équation follows standard procéduresC5,83 which have been modified for

a curvilinear mesh and employed in earlier WDrkC43.

By writing the discrète form of the mamentum équations twice,

once for the intermediate fields u*,v^ and p*, and then for the

corrected fields u = u^ + du'; v= v"" +6v; p= p* + dp, with u and v

meeting mass conservation; cartesian <5u,i5v and subsequent

contravariant velocity corrections i5U,.(5V can be approximated in terme

of pressure corrections as f al lows:

SU = fu<5p

<5V = f^<5p

Thèse values that dépend on the pressure changes <5p, al sa have ta

respect the conservation of mass, consequently they are substituted

into an équivalent form of Eq.3, leading ta a pressure correction

équation that can be abbreviated as;

iSp = -ÂD/At (5)

where D denotes a mass souce term (or continuity imbalance), and À a

convergence parameter that is function of the geometry of each cel l .

Once the pressure ad justement i5p=p-p*, and the conséquent

curvilinear velocity corrections <5V=U-U*, 5V=V-V* are calculated, the

provisional velocity and pressure fields U'?,V'N' and p**' are simply
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rectified by:

u = u-- + su

V = V» + 5V

p = p* + Sp

At this stage two distinct procédures were followed ta modify

thèse variables.

a) Approximate pressure correction équation

In this instance, a MAC-type techniqueC93 was employed to

iteratively update the pressure over the entire computatiDnal damai n

as:

Pmol = Pn, -À 7 V^/At (6)

This is carried out by applying a cell by cell sweep in the

inlet-autlet direction, until the différence of the pressure between

two successive iterations steps m and m+1 is less than a prescribed

limit; and consequently the continuity constraint is satis-fied.

b) Artificial Compressibility

This method described by Chorint:63 circumvents the traditional

problem in incompressible calculations, by adding a time derivative of

an artificial density ta the continuity équation. This artifice tums

the incompressible équations into an hyperbolic System. With such an



artificial compressibility term added, together with the use of a

state law defined by p = trzp, where cz représente a convergence

parameter, the perturbée! continuity équation can now be e>;pressed as:

ie + czv V = 0 (7)

Adopting a forward time différence appraximation as used

previously, the discrète -form of the pressure équation gives:

?"-<-! = pr. _ AtC=V V"-<-1 (8)

Whith this technique, the resulting scheme is obviously no

longer consistent during the transient stage, and the solution wi11

only represent the flow in the asymptotic l i mi t o-f the steady state.

As painted ont by RefC103, it is interesting to note that a

relation can be established between the pressure modification given by

Eq.(8) and the pressure correction represented by Eq.(6), which is

salved by a simple Jacoby-type procédure. Comparing thèse two

équations, one can conclude that if at each time step the pressure

correction Eq.(6) is not en-forced to satisfy V V -* 0, but only one

iteration is made, then the pressure correction method becomes the

density correction procédure with À = c:ZAt=.

It can be appreciated from this last relation, that the quantiy

cz dépends on A which is in turn is a function of the geometry of each

cell. As a conséquence, the term c= employed in the présent

development, is not a constant as is général l y the case when applying
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the arti+icial compressibility idea; and al l the contributing

parameters on the state law p = pc3 vary from point—to—point

After one or several iterations are done, depending on the

selected approach, the cartesian velocity components are decoded and

the boundary conditions applied. Finally the time level is advanced

and the cycle repeated until the steady state is reached.

Bath, the artificial density and pressure correction approaches,

were applied . to exploratory test cases; however no significant

di-f-ferences were noted in the required CPU time ta obtain a converged

flow fi el d.

5. APPLICATIONS

5.1 Flow between parai l el plates.

The first case chosen -for the validation of the method was that

of the developing l aminar flow between two parai l el plates. For this

type o-f -flaw a parabolic profile is expected to be formed at about

0.04ReC113, with the Reynolds .number based on the width o+ the

channel; SD computations were made in a channel with a length to width

ratio L/D=10 for Re=100, using a 63>îl5 grid.

Fi g.2a shows the predicted centerline velocity behaviour as

function o-f the distance from the ini et. The maximum attained value

agrées well with the analytical value o-f 1.5. Fig.2b depicts the

pressure at the wall as function of the normalized length. The
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calculated slope of Ap/Ax=-.12B o+ the pressure gradient compares very

well with the value of -12/Re from the analytical solution. On

Fig.2c, the calculated velocity pro-file just before the outlet (full

line) is compared with the analytical solution u(y)=6(y-y3) (dashed

linés). The results indicate a good agreement between both solutions.

5.2 Asymmetric Constriction

The second problem analyzed is the flow in a channel with an

asymmetric constriction. The géométrie characteristics of the selected

model were devised by RefE123 which uses a conformai coordinate

transformation to generate a f ami l y of channel configurations. The

chosen duct has been -fully tested by that author, using the

vorticity-stream -function farm o+ the Navier-Stokes équations.

At the inlet a developed profile is assumed, the discretization

uses a 63>;23 grid and tests up to Re=1000 were conducted. Figs.3a and

3b provide a velocity vectar plat and stream-function contours for

Re=1000. E>;amination of thèse illustrations clearly reveals a reversée!

flow région which increases with Reynolds number. The qualitative

agreement o-f thèse last figures with those reported by Réf.[123 is

good; however a detailed comparison disel ose some discrepancies. In

particular those conceming the séparation and reattachement points.

In the présent calculations no séparation appears -for Re=100, as

found by Re+C123. For a Reynolds number of 1000 the respective

séparation and reattachement points predicted by the current

computation, at the 0.43 and 2.45 >î locations (referred ta the maîiimun
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of the constriction) do nat coïncide with the estimated values of 0.19

and 3.75 o-f Ref E 123. With no expérimental data available for this

geometry it is no possible ta infer the better result.

5.3 Sinusoidal passage

In order ta verify-the scheme's stability in a more compleîî

geometry, the flow in a double-sinus channel was studied. The

discretization uses a 63x15 grid, with a developed velocity profile

imposed at the ini et, and a Reynolds number of 100.

Fi g.4a illustrâtes the calculated velocity fi el d, while Figs.4b

and 4c présent the corresponding steamlines and isobar contours

respectively. One can notice the formation o+ five distinct

recirculation bubbles; the last o-f them is the result at the

oscillatory movement of the fluid downstream of the distarted zone.

This movement final l y dies ont due ta the viscous e+fects.

The comple>;ity of the pressure behaviour can be appreciated on

Fig.4d, in which the pressure at the bottom (full line) and top

walls (dashed linés) is plotted as a function of. the distance from

the ini et. This result shows a shitfed périodie pattern of such

parameter between the upper and lower walls, as quaiitatively

e>;pected.

5.4 Je-ffery—Hamel Flow

The problem of the flow between nonparallel plane walls due ta a
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line source, known as the Jef+ery-Hamel fiow was ne>;t investigated.

The divergent duct considered for the numerical calculation was chosen

a-fter a test case studied by RefC133 and as is illustrated in Fig.Sa,

where a total angle of 10e is used for the divergence o+ the walls. At

the ini et one imposes a velocity profile corresponding ta the

analytical soiutionC14,153 for Re=684 defined as Re=Um»»<r/UT u«n«x

being the velocity along the axial streamline and r the radiai

position. The discretization was carried out with 63x19 grid points

For this geometry, tests were conducted for two différent

Reynolds numbers.

Fi g.5b illustrâtes the calculated (full line) and

analytical (square symbols) velocity profile u/Um.x for

Re=684. This remains constant along the duct aîîis and the section

selected for the représentation is that of the oui et. As expected both

profiles agrée well since the flow does not separate.

A second test was conducted for Re=2500, with the same i ni et

profile used -for the preceeding case. On Fig.5c is shown the computed

(full line) .and analytical (squares) narmalized velocity profiles

C153. Compared to fche previous e>;ample, both velocity profiles sharpen

up in the center with accompanying back-flaw régions near the walls

thafc match reasonably well with each other.
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NOMENCLATURE

e convergence parameter on the artificial équation o-f state

Cp pressure coefficient

D continuity imbalance

E,F flux vectors in ï and T| coordinate directions

giJ metric tensor components

J Jacobian of transformation matrix

L characteristic length

p pressure

p* estimated pressure

q vector o-f conservation variables

R,S viscous flu>î terms in î and T] coordinate directions

R— Reynolds number

t time

u,v velocity components in >î and y directions

-u.'><-,v* estimated cartesian velocity fi el d

U,V contravariant velocity componenfcs in I, and r| directions

U*,V^ tentative curvilinear velocity components

>;,y Cartesian coordinates

Ç,T| curvilinear coordinates

<5p pressure correction

At time step

i5u,fîv Cartesian velocity corrections

i3U,3V contravariant velacity corrections

À géométrie parameter



Subscripts

m iteration step

x,y Î,T| first partial differentiation

i,j - variable location

0 référence value

Superscript

n time level.



22

APPENDIX A

Let us denote the discretized time dépendent, flux, and viscous

terms of the u momentum équation as:

A»3 = J A -».l -^Z, -l-*- l ^:
(u"-<-A-u")i

At
'î-î.^-S.a-à.'î^î.^-S.

-(Jyu2-3-i:i.A.Aî:'-.^=_i:_-(Jyu)-î.j.Aî:i-^=,^ _ _______________^_

(JuV)K.ï./'2,j-^i - (JuV)t

AT1

Çl.j-«-l^z_^_Ç^^-l_^.j-*-l/'3 ^ Ç.î-'iî-^S.s.â.—Z.—Ç.Î-.'î.î-^Ss-â-Ï.î-^ = _^^_^-=_^-^-^^_^_= + -^-^_=^_^_

Then the conservation équations are written;

i) for an even time level

Ap + A^fc, + Snfc, + Pr.^. =0 (Al)



where F'nt,» is calculated by,

Pr.t>»
P*-«-3^13^.^.î:l-iî.S-i^Ïi!.2-i..î:iAd.î:3-^l^_Z_Eî-î:^-^3-t.A±l..^^-i!lSiî.2-i.j-Aï:^-.^.^

ÀÏ

+ Eî-î:î.^.SA.Aï5^S-^.'l3îî.2-:Lî:l.<SA.AïaL—Z_&î-î:l.^.zjLAïi:î.^.3^.'Î3iî.2-iLïl.^.zA-A

AT1

and with L) and V appearing in the Ano expression calculated by Eqs 4a

and 4b respect!vely; and

ii) far an odd time level

Ap + A^fc, + 5r,t, + Pr,t,o = 0 (A2)

with F'r.fc.o computed by:

Pl-*;3/'3^.J.Î:l.^S-i!Î^><.2-l-î:l.JE.;iÏ:i.^3_Z_£3-2:1.^.3-I.J.Ï:I.^13-i'Ï£îi.2-i.-t.^.Ï:i^=
"t>° - Aî

+ Ë*-:>:l.^S^.J.Ï:3..^S-i*ÎQîî.l.A.ïl-^Sj-A±â.—Z—&î.ïl.^SjLA=:JL^.S^.'Î3i!.A.S-î:l..ïlSj-A

AT]

where D and V are obtained through Eqs 4a and 4c respectively.
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Fig. 3a,3b Velocity field and stream-function contours for the
geometry of Ref [12 ]. Re=1000
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Fig. 4a,4b,4c Velocity field, stream-function and isobars contours in
double-sinusoidal channel. Re=100
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