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RÉSUMÉ 

Les opérations minières peuvent générer de grandes quantités de roches stériles, lesquelles sont 

souvent entreposées en surface, dans des haldes généralement construites à proximité des sites de 

production. Cependant, la gestion et la restauration des haldes à stériles peuvent s’avérer complexes 

en raison notamment de leur grande taille et des risques d'instabilités géochimiques et 

géotechniques. La valorisation des stériles pour la construction de routes minières peut donc être 

une alternative intéressante au stockage en surface, tant sur le plan économique qu'environnemental. 

Le réseau routier sur un site minier est en effet un élément critique et vital du processus de 

production, et il a un impact direct et significatif sur la productivité et les coûts. Les propriétés 

mécaniques des stériles sont des paramètres essentiels pour améliorer la conception des routes de 

transport de la mine, mais les résultats et informations sur les propriétés mécaniques des roches 

stériles de mines en roches dures sont relativement limitées. De plus, les outils de conception et les 

méthodes de mesure ont généralement été développés pour des applications civiles, et leur 

applicabilité aux routes minières (qui sont souvent soumises à une charge de trafic 

significativement différente de celle des autoroutes) reste incertaine. 

L'objectif principal de ce projet était donc d'évaluer les propriétés mécaniques des roches stériles 

soumises au chargement des camions miniers afin d'améliorer la conception des routes minières. 

L'applicabilité des normes et des méthodes expérimentales au laboratoire ainsi que des modèles 

mathématiques aux stériles a été évaluée. L'effet des propriétés de base et des facteurs climatiques 

sur les propriétés mécaniques des stériles a été quantifié. Des modèles d'apprentissage automatique 

ont été développés au moyen de différents algorithmes afin de prédire les propriétés mécaniques 

des stériles. 

Un grand nombre d’essai CBR et triaxiaux, de différentes dimensions et sous différents types de 

contraintes, ont été réalisés dans cette étude. Les niveaux de contrainte proposés dans les normes 

existantes (p.ex. AASHTO T307 et EN 13286) était significativement plus faibles que les 

contraintes attendues sur les sites miniers puisque ces normes ont été développées pour le design 
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des autoroutes. Des conditions expérimentales différentes et des chemins de contraintes plus élevés 

ont donc été proposés et appliqués dans cette étude afin de représenter les conditions typiques 

causées par des camions miniers extra-lourds. 

Les essais CBR dynamiques ont été proposés comme une alternative efficace aux essais triaxiaux 

dynamiques afin d’estimer le comportement de déformation résiliente et permanente des stériles. 

Les résultats ont montré que l'impact de la fréquence de chargement et de la forme d'onde dans les 

essais CBR dynamique était limité, tandis que le module équivalent mesuré augmentait de manière 

significative avec la contrainte. L'équation et le modèle développés pour les essais CBR 

dynamiques se sont avérés fiables pour décrire la rigidité et la déformation permanente des stériles. 

Le rapport optimal gravier/sable des stériles broyés se situait entre 1 et 1,5 et a contribué à obtenir 

un module de résilience et une résistance au cisaillement plus élevés, ainsi qu'une déformation 

permanente plus faible. Une augmentation de la teneur en fines a, au contraire, entraîné la 

diminution du module d'élasticité et de la déformation permanente mais aussi une augmentation 

significative de la résistance au cisaillement. Le rapport gravier/sable optimal des stériles non 

broyés avec une taille de particule maximale de 60 mm était d'environ 5 et le taux de déformation 

permanente a augmenté de manière significative lorsque la taille maximale des particules a été 

réduite à 25 mm. Une augmentation de l’énergie de compactage a entraîné une diminution 

significative de la déformation permanente des stériles ; les stériles d'une granulométrie maximale 

de 60 mm, d'un rapport gravier/sable de 5 et d'une teneur en fines de 5 % ont montré une résistance 

au cisaillement plus élevée. 

Les cycles de gel-dégel ont entraîné une réduction du module d'élasticité et de la résistance au 

cisaillement, et une augmentation de la déformation permanente. Une plus grande teneur en eau 

pendant les cycles de gel-dégel a également entraîné une augmentation significative de la 

déformation permanente. Les résultats ont également montré que les cycles mouillage-séchage 

pouvaient contribuer à augmenter la rigidité, le CBR et la déformation permanente des stériles 

broyés. 
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Le modèle MR-θ  et le modèle MEPDG sont apparus fiables pour décrire le comportement du 

module de résilience des stériles sous différentes conditions de contraintes. Le modèle de Rahman 

et Erlingsson (étendu à l'aide d'une approche d'écrouissage) était bien adapté pour décrire 

l'accumulation de déformation permanente avec le nombre de cycles de chargement causés par la 

succession de nombreux chemins de contraintes. Des modèles de prédiction des coefficients k1, k2, 

a et b, exprimés en fonction des propriétés physiques de base et des facteurs climatiques, ont 

également été proposés afin de prédire le module de résilience et la déformation permanente des 

stériles. Les modèles proposés pourraient être utilisés pour prédire les propriétés mécaniques des 

stériles sur le terrain, mais devraient être améliorés en utilisant davantage de résultats d'essais et 

ainsi étendre leur capacité de généralisation. 

Différents algorithmes d'apprentissage automatique, y compris la régression linéaire multiple 

(MLR), la machine à vecteurs de support (SVM), les k plus proches voisins (KNN), l'arbre de 

décision (DT), la forêt aléatoire (RF), le réseau de neurones à rétropropagation (BPNN) et la 

neuroévolution des topologies d'augmentation (NEAT) ont été utilisées pour développer des 

modèles de prédiction du CBR, du module de résilience et de la déformation permanente des 

stériles broyés à partir des propriétés de base des matériaux. Huit propriétés (densité sèche, énergie 

de compactage, teneur en fines, taille maximale des particules, CC, CU, D10 et D60) ont été 

sélectionnées comme variables d'entrée pour les modèles CBR, et le nombre de cycles de 

chargement, la pression de confinement et la contrainte de déviation ont été ajoutés comme 

variables d'entrée supplémentaires pour les modèles de module de résilience et de déformation 

permanente. L'architecture optimale des modèles d'apprentissage automatique a été déterminée par 

l'étude des hyperparamètres. Une étude comparative a montré que les modèles DT, RF et BPNN 

permettaient d’obtenir de meilleurs résultats pour le CBR, le module de résilience et la déformation 

permanente, respectivement. 

Les résultats présentés dans cette thèse devraient contribuer à donner aux exploitants miniers des 

indications générales pour sélectionner et préparer les stériles à utiliser dans la construction de 
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routes minières. Les recommandations proposées pourraient améliorer les performances à court et 

à long terme des routes minières et réduire les besoins d'entretien, et ainsi diminuer la 

consommation de carburant, améliorer la durée de vie des composants des véhicules (en particulier 

les pneus), augmenter la productivité et réduire les coûts d'exploitation. 
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ABSTRACT 

Mining operations can generate large amounts of waste rocks, which are often stored on the surface, 

in piles, close to production sites. However, the management and reclamation of waste rock piles 

can be challenging because of their large size and the risks for geochemical and geotechnical 

instabilities. The valorization of waste rocks for the construction of mine haul roads is an attractive 

alternative to surface disposal, both economically and environmentally. The mine haul road 

network is, indeed, a critical and vital component of the production process, which directly and 

significantly impacts mine productivity and costs. Waste rock mechanical properties are critical 

parameters to improve mine haul roads design, but the relevant research on the mechanical 

properties of waste rocks from hard rock mine are relatively limited. Also, design tools and 

measurement methods were usually developed for civil applications, and their applicability to mine 

haul roads (which are subjected to significantly different traffic loading compared to highways) 

remains uncertain. 

The main objective of this project was therefore to evaluate the mechanical properties of waste 

rocks under mining truck loading to improve the design of mine haul roads. The applicability of 

laboratory test standards and methods, and of mathematical regression models to waste rocks was 

assessed. The effect of basic properties and climatic factors on the mechanical properties was 

quantified. Machine learning models for predicting the mechanical properties of waste rocks were 

also developed using different algorithms. 

A large number of CBR and triaxial tests, of various dimensions and with different load types, were 

carried out in this study. The stress levels proposed in the existing laboratory tests standards (e.g., 

AASHTO T307 and EN 13286) were significantly lower than the stress state within mine haul 

roads since these standards were initially developed for the highway design. High stress levels were 

therefore proposed and applied in this study to represent the typical stress conditions caused by 

extra heavy mining trucks. 
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Repeated load CBR tests appeared to be an effective alternative to repeated load triaxial tests to 

estimate resilient and permanent deformation behavior of waste rocks. Results showed that the 

impact of loading frequency and waveform in repeated load CBR tests was limited, while the 

measured equivalent modulus increased significantly with contact stress. The developed equation 

and model for repeated load CBR tests were reliable to describe the stiffness and permanent 

deformation of waste rocks, respectively. 

The optimum gravel-to-sand ratio of crushed waste rocks was between 1 and 1.5 and contributed 

to provide higher resilient modulus and shear strength, and lower permanent strain. An increase in 

fines content could, to the contrary, result in the decrease of resilient modulus and permanent strain 

but also to significant increase of shear strength. The optimum gravel-to-sand ratio of uncrushed 

waste rocks with 60 mm of maximum particle size was around 5 and the permanent strain rate 

increased significantly when the maximum particle size was decreased to 25 mm. An increasing of 

compaction effort resulted in a significant decrease in permanent strain of waste rocks; waste rocks 

with 60 mm of maximum particle size, a gravel-to-sand ratio of 5, and 5% of fines showed higher 

shear strength. 

Freeze-thaw cycles resulted in a reduction of the resilient modulus and shear strength, and an 

increase of the permanent deformation. A greater water content during freeze-thaw cycles also 

resulted in a significant increase of the permanent deformation. Results also showed that wetting-

drying cycles could contribute to increase the stiffness, CBR, and permanent deformation of 

crushed waste rocks. 

MR-θ model and MEPDG model appeared reliable to describe the resilient modulus behavior of 

waste rocks under different stress conditions. Rahman and Erlingsson model (extended using time 

hardening approach) was well adapted to fit the accumulation of permanent strain with number of 

loading cycles caused by numerous stress paths. Coefficient prediction models (k1, k2, a, and b), 

expressed as a function of basic physical properties and climatic factors, were also developed to 

predict the resilient modulus and permanent strain of waste rocks. The proposed models could be 
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used to predict the mechanical properties of waste rocks in the field, but would need to be improved 

using more test results to extend their generalization capacity. 

Different machine learning algorithms, including multiple linear regression (MLR), support vector 

machine (SVM), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), 

backpropagation neural network (BPNN), and neuroevolution of augmenting topologies (NEAT), 

were therefore used to develop prediction models for CBR, resilient modulus, and permanent 

deformation of crushed waste rocks based on experimental data. Eight properties (dry density, 

compaction energy, fines content, maximum particle size, CC, CU, D10, and D60) were selected as 

input variables for CBR models, and number of loading cycles, confining pressure, and deviator 

stress were chosen as the input variables for the resilient modulus and permanent deformation 

models. The optimum architecture of machine learning models was determined through 

hyperparameters study. A comparison study showed that the DT, RF, and BPNN models provided 

better results for CBR, resilient modulus, and permanent deformation, respectively. 

The results presented in this thesis should contribute to give mine operators general indications to 

select and prepare waste rocks to be used in haul road construction. The proposed recommendations 

could improve the short and long-term performance of haul roads and reduce the need for 

maintenance, and therefore decrease fuel consumption, improve vehicle component lifetime 

(especially tires), increase productivity and reduce operation costs. 
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 INTRODUCTION 

1.1 Description of the problem 

Mining operations generate large amounts of waste rocks, low grade ore materials which are often 

stored on the surface, in piles, close to production sites. Waste rock piles are typically large 

structures which can exceed 300 m in height, and can cover more than 500 million m2 in area 

(McCarter 1990). Waste rock piles generally show important segregation and hydrogeological and 

geochemical properties can be significantly heterogeneous because of spatial variability of 

mineralogy, particle size and porosity (Fala et al. 2012; Amos et al. 2015). Geotechnical and 

geochemical risks associated with waste rock piles management represent a great challenge for 

mining compagnies, with potentially huge impact on life, property, health, and environment (Sheets 

and Bates 2008; Adamczyk 2016). 

The valorization (i.e., the reuse) of waste rocks for the construction of mine haul roads is an 

attractive alternative to surface disposal, both economically and environmentally. The mine haul 

road network is, indeed, a critical and vital component of the production process, which directly 

and significantly impacts mine productivity and costs (Thompson et al. 2019). The length of haul 

roads can be 10 to 40 km on some surface mine sites and therefore require a lot of materials for 

their construction (Thompson and Visser 2003). The poor performance of mine haul roads can 

result in the increase of road maintenance and vehicle operating costs. The materials used for 

construction have a significant influence on the performance of haul roads, but finding appropriate 

materials can sometimes be difficult (Thompson et al. 2019), and borrowing the required materials 

in the vicinity of the mine can also have significant environmental impacts. Waste rocks are an 

interesting alternative to natural materials and their mechanical properties usually make them quite 

suitable for such applications. In practice, waste rocks have been used for haul roads construction 

in many years and on many mine sites (Tannant and Regensburg 2001). However, waste rocks are, 

as mentioned previously, highly heterogeneous and variable, and must therefore be carefully 
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selected to ensure a good performance of the road and minimize costs. For example, waste rocks 

used for wearing course should not contain to many fines to reduce dust generation, but should also 

contain enough fines to maintain adequate binding characteristic (Thompson and Visser 2007). 

Selection and/or preparation of waste rocks for haul road construction consist therefore in defining 

optimal properties to answer various and sometimes opposing objectives. 

Mine haul roads are typical low-volume and short-service-life roads, and the empirical design 

method is therefore often used in the field (Tannant and Regensburg 2001; Thompson et al. 2019). 

California Bearing Ratio (CBR) design method is one of the commonly used methods in practice. 

However, this method cannot guarantee the adequate road performance since it cannot account for 

influence factors such as climatic effects and traffic information during the haul road design. 

Mechanistic design for haul roads is therefore also needed to ensure the road performance. In the 

mechanistic design procedure, the mechanical properties, such as shear strength, resilient modulus, 

and permanent deformation, are generally used to compute pavement response under traffic loading. 

However, experimental studies on the mechanical properties of waste rocks are scarce. The 

laboratory equipment for the measurement of waste rock properties is very specific (and therefore 

often rare) because of the wide range of particle sizes. Coarse-grained waste rocks require 

specialized laboratory equipment since the corresponding sample and apparatus size should 

increase significantly. However, the usual laboratory apparatus is generally designed for fine-

grained materials such as sands and clays. Also, the testing of the mechanical properties is usually 

complex and costly. Repeated load triaxial tests are usually used to evaluate the resilient modulus 

and permanent deformation of pavement materials, but these tests usually consist of numerous 

stress paths and more than ten thousand loading cycles, and are therefore very time-consuming. 

Also, the preparation of triaxial specimens is generally complex especially for loose and angular 

waste rocks. From an engineering perspective, predictive models would therefore be very useful to 

evaluate the resilient modulus and permanent deformation behavior of waste rocks. Some 

mathematical models were proposed to describe the mechanical behavior of pavement materials 
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under traffic loading (Lekarp et al. 2000b, 2000a). However, the applicability of the existing models 

to waste rocks from hard rock mines need be assessed. Different techniques such as machine 

learning therefore can be used to develop prediction models for waste rocks. 

Moreover, the existing approaches and standards for laboratory tests were initially developed for 

fine-grained soils and aimed at civil engineering applications (such as highways), and they may 

therefore not be applicable to waste rocks and mine haul roads because of the entirely different 

particle size and traffic loading imposed by extreme heavy mining trucks. For example, AASHTO 

T307 standard (2017) procedures was developed for evaluating resilient modulus of pavement soils. 

As a consequence, the stress level applied in AASHTO T307 is significantly lower than that 

observed in haul roads due to extra heavy mining trucks (with payload capacity regularly increasing 

and around 450 mt these days) (Thompson et al. 2019). The applicability of available testing 

standards to mine haul roads is therefore uncertain, and should therefore be verified, and, if 

necessary, adapted. 

Several physical factors (e.g., density, gradation, water content, material type, and particle shape) 

can influence the mechanical properties of waste rocks (Lekarp et al. 2000a, 2000b). The effect of 

physical factors on mechanical properties can change with the type of materials (Brown and Selig 

1991; Kolisoja 1997; Lekarp et al. 2000a, 2000b) and can therefore not be directly extrapolated 

from other studies on different materials. The effect of physical factors of waste rocks therefore 

should be specifically quantified. In addition to physical properties, environmental factors such as 

freeze-thaw and wetting-drying cycles can also affect the mechanical properties of pavement 

materials (Gullà et al. 2006; Ling et al. 2015). However, most of the relevant studies focus on fine-

grained materials or subgrade materials for highways. Many Canadian mines being located in cold 

climates, the impact of environmental factors on the mechanical properties of waste rocks should 

be studied to improve the design of mine haul roads. This has become even more critical following 

climate change and the lengthening of mine life span which often exceed several decades these 

days. 
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1.2 Research question 

How do the physical properties and climatic conditions affect waste rocks mechanical properties 

and can influence the efficiency and durability of haul roads? This question was addressed 

considering that the mechanical properties of waste rocks can be influenced by the physical 

properties (e.g., gradation, compaction, and water content) and climate factors (freeze-thaw and 

wetting-drying cycles). 

 

1.3 Research objectives 

The main objective of this research was to investigate the mechanical properties, and establish 

guidelines to optimize the selection of waste rocks to improve the performance of haul roads. 

Specific objectives of this project research included: 

1. Assess the applicability of the existing laboratory test approaches or standards developed for 

civil engineering to waste rocks and mine haul roads. 

2. Evaluate the suitability of repeated load CBR test as an alternative to repeated load triaxial test 

for estimating the stiffness and permanent deformation of waste rocks. 

3. Assess the effect of gravel-to-sand ratio and fines content on the mechanical properties of waste 

rocks, and propose the optimum gradation for haul roads. 

4. Assess the effect of maximum particle size, compaction effort, and water content on the 

mechanical properties of waste rocks. 

5. Assess the impact of freeze-thaw and wetting-drying cycles on the variation of waste rocks 

mechanical behavior with time. 
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6. Evaluate the applicability of existing models for fitting resilient modulus and permanent 

deformation of waste rocks. 

7. Develop prediction models for the mechanical properties of waste rocks using machine learning. 

Note: This project focused on non-acid generating waste rocks from hard rock mines only. Waste 

rocks produced by coal mines have completely different properties and cannot be related to the 

material tested in this research. Also, sulfide bearing and potentially acid generating waste rocks 

should not be used in haul road because they would be directly exposed to atmospheric conditions 

and oxidation. 

 

1.4 Thesis outline 

Chapter 2 presents a detailed literature review of waste rocks management and valorization, design 

of mine haul roads, and waste rocks mechanical properties. Chapter 3 describes the tested materials 

and laboratory methodology used in this research. The applicability of existing standard protocol 

of repeated load triaxial test to waste rocks in mine haul roads was assessed, and repeated load 

CBR test was also evaluated to estimate the stiffness and permanent deformation behavior of waste 

rocks in Chapter 4 and 5. Chapter 6 discusses the effect of gravel-to-sand ratio and fines content 

on the resilient modulus, shear strength, and permanent deformation of crushed waste rocks; the 

optimum gravel-to-sand ratio and fines content was also proposed to optimize the gradation of 

crushed waste rocks used in mine haul roads. More laboratory tests were carried out to study the 

effect of the physical factors (including maximum particle size, gradation, compaction energy, and 

water content) on the mechanical properties of uncrushed (coarse-grained) waste rocks in Chapter 

7. In addition to these physical factors, the effect of environmental factors, i.e., freeze-thaw and 

wetting-drying cycles, on the mechanical properties (CBR, shear strength, stiffness, and permanent 

deformation) was also evaluated using repeated load CBR and triaxial tests in Chapter 8. The 

measured resilient modulus and permanent deformation of waste rocks presented in Chapter 4, 5, 
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6, 7, and 8 were fitted using existing regression models. Different machine learning algorithms 

were assessed for predicting CBR, resilient modulus, and permanent deformation of crushed waste 

rocks, and the optimum prediction models were developed in Chapter 9 and 10. Finally, Chapter 

11 and 12 summarize the main results of this research and proposes some recommendations for 

future work. 

 

1.5 Main contributions and originality of the thesis 

The main contribution of this study was to provide a better understanding of the mechanical 

behaviour of waste rocks under mining traffic loading. The knowledge acquired through this 

doctoral project will be helpful to maximize the valorization of waste rocks in mine haul roads 

while improving their performance and durability. 

1. High stress levels were proposed for laboratory tests to represent the typical stress state in mine 

haul roads caused by extreme heavy mining trucks. Repeated load CBR test, as a relatively simple 

laboratory test, was applied in this project, and the corresponding fitting models were developed 

to estimate the stiffness and permanent deformation of waste rocks. 

2. The effect of physical properties (gradation, compaction, and water content) and climatic 

factors (freeze-thaw and wetting-drying cycles) on the mechanical properties of waste rocks was 

quantified in the laboratory, and the measured mechanical behaviour was also described using 

mathematical models. The experimental results could provide a better understanding on the 

mechanical characterization of crushed and uncrushed waste rocks and the scale effect in the 

extrapolation of medium scale laboratory tests. The findings were also beneficial to the selection 

and preparation of waste rocks for haul road design in the field. 

3. The machine learning models were developed for predicting the CBR, resilient modulus, and 

permanent deformation of waste rocks. The model architectures were determined by evaluating the 

hyperparameters effect on the model performance. 



 

 

7 

4. Several machine learning algorithms (i.e., multiple linear regression MLR, k-nearest neighbors 

KNN, decision tree DT, random forest RF, support vector machine SVM, backpropagation neural 

network BPNN, and neuroevolution of augmenting topologies NEAT) were applied and compared 

for predicting the mechanical properties of waste rocks, and the optimum algorithms for CBR, 

resilient modulus, and permanent deformation were determined. 
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 LITERATURE REVIEW 

2.1 Management and valorization of waste rocks 

A mine is an excavation in the earth from which profitable ores and minerals are extracted. The ore 

can be extracted from an open pit mine, or an underground mine. Waste rocks are low grade ore 

materials, and they are typically produced in large quantities from both underground and open pit 

mining. 

The particle size distribution of waste rocks generally ranges from clay-size to boulders fractions 

(Figure 2.1(a)), from 0.001 to 1000 mm (Figure 2.1(b)) (Gamache-Rochette 2004; Wickland and 

Wilson 2005; James et al. 2013; Smith et al. 2013; Amos et al. 2015). Generally, nearly 50% of 

waste rocks in weight are gravel size (Leps 1970; Williams and Walker 1983). The coefficient of 

uniformity (CU= D60 D10⁄ ) of waste rocks is typically greater than 20 (Maknoon 2016). The bulk 

density of waste rocks measured in the field can vary between 1600 and 2200 kg/m3, while the 

specific gravity of waste rock particles can range from 2.6 to 4.8 and more (Maknoon 2016). The 

saturated hydraulic conductivity of mine waste rocks varies widely because of the variability of 

particle sizes. The saturated hydraulic conductivity increases with the average particle size of waste 

rocks, but typically varies between 10-2 m/s for igneous/metamorphic rocks and 10-5 m/s for clayey 

basaltic andesite (Morin 1991). 
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Figure 2.1: Typical particle size of waste rocks; (a) waste rocks at Canadian Malartic Mine, the 

particle size showed significant heterogeneity with some fine particles (< 2 mm) in the top layers 

while the particle size at the bottom of the pile can exceed 1.5 m; (b) the mean and standard 

deviation particle size distributions (< 50 mm) of waste rocks from different piles, and a larger-

scale (92 kg) particle size measurement of waste rocks for size fraction < 900 mm at Diavik 

Diamond Mine in Canada (Smith et al. 2013). 

 

Waste rocks are generally stored on the surface, in piles (or dumps), close to the production sites 
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(Blowes 1997; Bian et al. 2009; Aubertin 2013). Waste rock piles are usually constructed using end 

dumping, push dumping, free dumping, and drag line spoiling (McLemore et al. 2009). The 

selection of disposal technique depends on the site conditions, economic considerations and 

environmental policy (Blowes 1997; Aubertin 2013). The piles are typically large-scale structures 

which can exceed 300 m in height and several dozens of hectares in area (McCarter 1990). 

Generally, waste rock piles show important segregation and hydrogeological and geochemical 

properties can be significantly heterogeneous because of spatial variability of mineralogy, particle 

size and porosity, and disposal method (Fala et al. 2012; Amos et al. 2015). 

Geotechnical instabilities of waste rock piles, including internal and surface erosion, sliding along 

the side slopes, and foundations instabilities, are among the main challenges faced by the industry 

(Aubertin, 2013). Slope failures of waste rocks piles may have a huge impact on life, property, 

health, and on the environment (Sheets and Bates 2008; Adamczyk 2016). The stability of waste 

rock piles is a complex problem, which can be affected by many factors such as the properties of 

waste rocks, the geometry of the piles, the foundation conditions, pore pressures, and climatic 

conditions (Hustrulid et al. 2001; Blight 2009; McLemore et al. 2009; Poisson et al. 2009; Aubertin 

2013). The instability risks during the operation and after mine closure can be minimized by, for 

example, building the pile using benches with height smaller than 25 m (at least 2 benches), 

compacting and inclining the surface of each bench (5% slope or more), and maintaining the overall 

slope of the pile below 26° (Aubertin 2013; Maknoon and Aubertin 2020). 

Waste rock piles are also exposed to potential environmental risks as well as geochemical 

instabilities. Waste rock piles containing reactive minerals (such as sulfides) may generate acid 

mine drainage (AMD) or contaminated neutral drainage (CND) (Fala et al. 2012; Aubertin 2013; 

Aubertin et al. 2016). AMD is typically produced from the oxidation of sulfidic minerals, such as 

pyrite and pyrrhotite in contact with oxygen and water, and is characterized by low pH (Skousen 

et al. 2017) and high concentrations of dissolved sulphates, iron and metals (Blowes et al. 1994; 
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Aubertin 2013). CND may also develop from the oxidation of sulfidic minerals, but the pH of the 

leachate remains close to neutrality while the concentration of sulfate, metals, and metalloids can 

be high (Aubertin 2013; Amos et al. 2015). The reclamation of waste rock piles is complex because 

the required lifetime of reclamation can be very long (even indefinite; Vick, 2001), which presents 

a major environmental risk and financial liability for the mining industry (Wickland and Wilson 

2005; Seal II and Shanks III 2008; Amos et al. 2015; Aubertin et al. 2016). Waste rock piles 

management therefore can be complex, costly, and environmentally hazardous (Aubertin et al. 

2016). 

Other avenues and techniques were recently developed to improve management and valorization 

of waste rocks, such as in cover systems (Pabst 2011; Aubertin et al. 2016), waste rock inclusions 

in tailings impoundments (James and Aubertin 2012), mine backfill (Li et al. 2019), and mine haul 

roads (Thompson et al. 2019). The valorization of waste rocks for the construction of mining 

facilities contributes to decrease the amounts of materials that need to be borrowed in the 

environment, therefore decreasing environmental footprint and promoting circular economy 

(Wilson et al. 2006; James et al. 2013; Ferdosi et al. 2015a). 

 

2.1.1 Valorization in cover systems 

Waste rocks can be used in cover systems, such as covers with capillary barrier effects (CCBE), 

store-and-release (SR) covers, or single-layer covers coupled with an elevated water table (EWT) 

(Christensen and O’Kane 2005; Pabst 2011; Aubertin et al. 2016; Gorakhki and Bareither 2017; 

Kalonji-Kabambi et al. 2020a, 2020b). 

CCBE are an efficient approach to control AMD production from mine waste disposal sites 

(Bussière et al. 2007; Aubertin 2013), especially for relatively humid climates. The objective of the 

CCBE is to limit oxygen migration by creating capillary barrier effects (Bussière et al. 2003; 
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Bussière et al. 2007). The capillary barrier phenomenon can appear when a fine-grained material 

is placed in contact with a coarse-grained material above the water table. Waste rocks can be used 

for the construction of the coarse-grained layers because it is coarse, relatively permeable, and with 

a low air entry value (Bussière et al. 2007; Pabst 2011; Kalonji-Kabambi et al. 2017; Kalonji-

Kabambi et al. 2020b, 2020a). Recent studies have also shown that reactive waste rock could be 

used in the bottom capillary break layer (Larochelle et al., 2019). 

SR covers can be used to control water percolation to reactive mineral wastes. A homogeneous 

cover system layer with a well-graded texture and with sufficient storage capacity can be used to 

retain water during the wet season, and release a significant portion of water to the atmosphere by 

evaporation and transpiration during dry periods (Christensen and O’Kane 2005; Gorakhki and 

Bareither 2017). Waste rocks are usually not suitable as a stand-alone SR cover, but compacted 

waste rocks (with reduced hydraulic conductivity) can be placed on the surface of tailings, at the 

base of the SR cover system, to form a capillary barrier effect (Christensen and O’Kane 2005). The 

cost associated with SR covers is typically lower than conventional covers that constructed using 

low-permeability soils and/or impermeable geomembranes (Albright et al. 2010). 

Single layer cover with EWT is an alternative approach to the water cover technique, and aims to 

maintain tailings saturated to limit oxidation (Dagenais et al. 2006). A cover built with a coarse-

grained material favors infiltration and limits water evaporation (Dobchuk et al. 2013; Pabst et al. 

2017). Waste rocks could be used as a protection layer to limit evaporation (Dagenais et al. 2006). 

 

2.1.2 Valorization in waste rock inclusions 

Mine waste co-disposal consists in disposing simultaneously or in alternate layers waste rocks and 

tailings in the same surface storage facility. Tailings usually have low permeability and slow 

consolidation rates, and impoundments can face long term stability issues related to low shear 
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strength (Wickland and Wilson 2005; Wickland et al. 2006). Co-disposing waste rocks and tailings 

can improve the hydro-geotechnical properties of the mixture (typically with higher strength and 

lower hydraulic properties) (Wickland and Wilson 2005; Bussière 2007a). Waste rock inclusions 

(WRI) are an alternative co-disposal technique to the mixing or layering approaches (L.Bolduc and 

Aubertin 2014; Saleh-Mbemba et al. 2019). The construction of tailing impoundments with WRI 

consists in placing waste rocks linear inclusions within the tailings storage facilities and at the base 

of the impoundment, to act as a drainage layer and columns and to compartmentalize the 

impoundment into several cells (Bussière 2007a; James et al. 2013; James et al. 2017). 

WRI can contribute to improve physical and chemical stability of the tailings, favor their drainage, 

increase their mechanical strength, facilitate the rehabilitation of the site, reduce AMD generation 

rate of waste rocks and reduce the volume of waste rocks that need to be stored in piles (Bussière 

2007a; James et al. 2013). WRI can also significantly improve the seismic performance and 

stability of a tailings impoundment because of the higher stiffness and shear strength of waste rocks 

(James and Aubertin 2012; Ferdosi et al. 2015b, 2015a; James et al. 2017). 

 

2.1.3 Valorization in mine backfill 

Underground mining can lead to severe surface subsidence (Gray 1990). Waste rocks are widely 

used (together with other types of mine wastes) to fill underground stopes (Yang 2016; Sun et al. 

2018) and goafs in longwall mining coal mines (Pappas and Mark 1993; Li et al. 2019) to control 

surface subsidence. 

Waste rocks filled in stopes, usually called rockfill, have a limited ground support capability and 

self-standing height in the absence of binder (Hassani and Archibald 1998). Rockfill is generally 

used where no requirements for side and base exposures such as working floors (Yang 2016). 

Rockfill with binders can provide active support for the extraction of adjacent stopes (Hassani and 
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Archibald 1998; Sun et al. 2018). The binders generally consist of Portland cement, slag, and fly 

ash (Li and Aubertin 2003; Yang 2016). The efficiency of rockfill is also influenced by the 

gradation of waste rocks, filling method, raise dip and length, free fall height, and stope geometry 

(Yu 1989; Farsangi 1996; Yang 2016). 

Waste rocks are also used to build barricades (or bulkheads) to retain backfill in stopes. Compared 

to the traditional barricades constructed using bricks, concrete blocks, and reinforced shotcrete, 

waste rock barricades are significantly simpler, faster, and lower cost (Yang et al. 2017). In addition, 

this type of barricades is easier to dismantle for ore recovery (Yang et al. 2017). 

 

2.1.4 Valorization in mine haul roads 

Finally, waste rocks are also often used to build mine haul roads because of their hardness, 

durability, low rolling resistance, easy accessibility and relatively low cost (Arulrajah et al. 2012; 

Thompson et al. 2019). 

In open pit mines, the mine haul road network is a critical and vital component of the production 

process. Mine haul road length varies widely from mine to mine. Temporary haul road length 

ranges from 0.5 km to 10 km, while the length of permanent haul roads varies from 1.3 km to 

14 km (Tannant and Regensburg 2001). Mine haul roads are generally subjected to extra heavy 

vehicle loading. For example, mining trucks size and capacity have grown significantly during the 

last few decades, with payload capacity increasing to 450 mt, and tire pressure sometimes 

exceeding 1000 kPa ("Belaz-7571 series"). In comparison, the gross vehicle weight limit of three 

axles straight truck for highway is 24.25 mt in Canada which is much lower than mining trucks 

(Woodrooffe 2010). Haul roads therefore need high strength and stiffness capacity. 

The performance of haul roads can significantly affect the mine productivity and costs. Operations 

safety, productivity, and equipment longevity are dependent on well-designed, constructed and 
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maintained haul roads (Thompson et al. 2019). The selection of waste rocks for haul road 

construction should be commensurate with safety, operational, environmental and economic 

considerations (Thompson et al. 2019). For example, waste rocks should not contain weathered 

rock, clay or soil, to be used in base layer construction, but should rather be blocky, hard material, 

with less than 20% fines (Thompson 2015). For wearing course, waste rocks should not be too fine 

otherwise it may be slippery and dusty, and too unbound, or it will produce loose stones, raveling 

and, in both cases, rapidly increasing rolling resistance and operational risks once the road is 

trafficked (Thompson 2011c). More details about the design of mine haul roads are presented in 

the following section. 

 

 

2.2 Mine haul road design 

The design of mine haul roads typically involves geometric, structural, functional, and maintenance 

designs (Tannant and Regensburg 2001; Thompson et al. 2019). The present research was more 

particularly related to the structural and functional design of haul roads. 

 

2.2.1 Geometric design 

Geometric design of mine haul roads involves both vertical and horizontal plane of roads, berm 

walls, and drainage (Thompson et al. 2019). Geometric layout of mine haul rods should allow the 

vehicles to operate up to the design speed, but since the same roads are used to for laden and 

unladen haulage, the laden travel times should also be minimized using appropriate geometric 

alignment, whilst accepting compromise (generally in the form of speed limits) on the unladen 

return haul (Thompson et al. 2019). 



 

 

16 

Stopping distance requirements are a critical component of the geometric design, which has a 

significant impact on the operational safety of mine haul road (Tannant and Regensburg 2001). The 

ISO 3450 standard typically gives 114 m stopping distance at 10% downgrade at 50 km/h and 73 m 

at 40 km/h, which satisfy most mine ramp road designs where rear-dump trucks are used 

(Thompson et al. 2019). Stopping distance also depends on the type of wearing course material, 

moisture, climatic conditions, type of tyre, inflation pressures, load and vehicle speed (Tannant and 

Regensburg 2001). For example, a greater stopping distance should be considered for wet roads, 

poor and slippery road surface, spillage and sub-standard tyres. The sight distance of a driver should 

be equal to or greater than the stopping distance of the vehicle, and the horizontal and vertical 

curves of a road should be planned accordingly (Figure 2.2). 

 

 

Figure 2.2: Sight distances for (a) vertical curve and (b) horizontal curve (Thompson et al. 2019). 

 

The width of a haul road must allow safe vehicle manoeuvrability and maintain road continuity. In 

most cases, a straight stretch of road should be 3 to 4 times width of the truck, excluding shoulders, 

berms and drains (Tannant and Regensburg 2001). 

Horizontal curves should be designed to ensure that all vehicles can safely negotiate the curve at a 

given speed, which should consider sight distance and minimum turning radius. The minimum 

(a) (b)
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curve radius can be calculated from the following equation (Thompson et al. 2019): 

R=
v0

2

127(Umin+e)
          2.1 

Where R: minimum curve radius, m; Umin: coefficient of lateral friction supply; v0: vehicle speed, 

m/s; e: super-elevation applied, m/m width of road. Super-elevation of a curve is required to reduce 

the centrifugal forces on the truck when it run through the corner.  

Grades generally vary between 0 and 12% on long roads and may approach 20% on short roads. 

Most haul roads grades in the field varied between 6% and 10% (Thompson et al. 2019). 

A drainage ditch is excavated on each side of the road, and the depth is typically 0.5 m lower than 

the top of the subgrade. The slope of the sides of the ditch should not be steeper than 3H:1V 

(Thompson et al. 2019). 

 

2.2.2 Structural design 

The objective of structural design is to allow haul roads to carry the imposed loads without 

excessive deformation of the pavement, and avoid excessive maintenance (Thompson and Visser 

1996). 

A haul road cross-section can be broadly divided into subgrade, subbase, base, and wearing (surface) 

course (Figure 2.3) (Tannant and Regensburg 2001). The thickness of subbase and base layer are 

generally 1 to 2 m, but the subbase thickness can be up to 10 m when a higher road elevation is 

required. The wearing course is generally 0.3 to 1 m in thickness. The pavement must limit the 

strains in the subgrade, and the upper layers must protect the underlying layers. Vertical 

compressive strains induced in a pavement by heavy wheel loads decrease with depth, so the stiffest 

materials are usually placed on top (Thompson and Visser 1996; Kumar 2000). In general, applied 

load, subgrade strength, structural thickness and layer strengths mainly control the structural 
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performance of a haul road (Thompson and Visser 1996, 1997b, 1997a). 

 

 

Figure 2.3: The typical cross-section of mine haul roads (in-pit and ex-pit roads), the road layers 

include subgrade, subbase, base, and wearing (surface) course (Thompson et al. 2019). 

 

Historically, the structural-design techniques for haul roads consisted of placing several layers of 

granular materials over in-situ materials, and adding more layers to provide adequate strength as 

excessive deterioration occurred (Thompson and Visser 1996). This method heavily relies on the 

available experience from previous road construction, and it is therefore difficult to ensure the 

adequate haul road performance. California Bearing Ratio (CBR) method and mechanistic design 

method were therefore proposed to better design mine haul roads. 

 

California Bearing Ratio (CBR) method 

California Bearing Ratio (CBR) method was first used for haul roads by the United States Bureau 

of Mines (USBM) (Thompson and Visser 1996). CBR method is widely used in practice because 
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it is a simple and straight forward design method based on the Boussinesq semi-infinite single layer 

theory, which assumes a constant elastic modulus for different materials in the pavement (Kumar 

2000). 

In CBR method, surface layer must have higher CBR than underlying layers, and the change in 

CBR should not be too abrupt (Thompson 2011a). The layer thickness can be determined using 

CBR curve chart (Figure 2.4), or calculated (Thompson 2010, 2011a): 

ZCBR=
9.81tw

p
[0.104+0.331e(-0.0287tw)] [2×10

-5(
CBR

p
)
] [(

CBR

p
)

-(0.415+p×10-4)

]    2.2 

Where tw: truck wheel load (metric tons); p: tire pressure, kPa; ZCBR: layer thickness, m. 

When the equivalent single wheel load (ESWL) is used to estimate wheel load (to account for the 

tandem rear axle), the layer thickness ZESWL (m) can be calculated using the following equation 

(Thompson 2010, 2011a): 

ZESWL=ZCBR+ [0.184+ (0.086CBR+
17.76CBR

tw
)]

-1

      2.3 

CBR design chart that relate pavement, base and subbase thickness to truck wheel load and CBR 

values was also developed, such as the USBM CBR design chart (Figure 2.4). The thickness of 

mine haul roads can be estimated for various wheel loads generated by typical 6-wheeled rear-

dump trucks together with the bearing capacities of various soil types defined by the Unified Soil 

Classification (USCS) and the American Association of State Highway and Transportation 

Officials (AASHTO) systems (Thompson et al. 2019). 

CBR design method is particularly simple and useful to estimate the total cover thickness needed 

over the subgrade material. However, CBR design method is not applicable to design the 

multilayered roads with a base layer of selected waste rocks (Thompson 2011b). Also, this method 

does not account for the properties of the wearing course material, the service life of haul roads 

and traffic volumes. Also, CBR was originally designed for paved roads and surfaces for airfields, 
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and is less applicable to unpaved roads, especially haul roads which experience different wheel 

geometry and construction materials from highways (Thompson and Visser 1996, 1997b, 1997a). 

CBR method tends to result in under-design in most cases, but may be over-conservative for haul 

roads with very short designed life (Tannant and Regensburg 2001). 
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Figure 2.4: United States Bureau of Mines (USBM) CBR design chart for mine haul roads 

(Thompson 2019). 
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Mechanistic design method 

The mechanistic method (including linear and nonlinear elastic modelling), relies on 

mechanistically derived data to which empirical procedures are applied, therefore extending the 

applicability of the technique (Thompson and Visser 1996, 1997b, 1997a). 

Mechanistic method, based on a theoretical elastic multi-layer system model of road layers, is more 

accurate than CBR for multi-layer haul roads (Kumar 2000; Thompson 2011c). Unbound aggregate 

and subgrade layers can show nonlinear and stress-dependent behavior (usually represented by 

resilient modulus) under traffic loading (Tutumluer 1995; Lekarp et al. 2000a). Unbound aggregate 

typically exhibits stress-hardening behavior, while subgrade soil tends to exhibit stress-softening 

behavior (Pyo 2012). For mechanistic method, resilient modulus of pavement materials is therefore 

generally used for computing the vertical strains in a haul road (Thompson 2011b). This method is 

usually applied using software or numerical codes to calculate layers thickness such as ELSYM5, 

MePADS, CIRCLY6, Finite Difference Method (e.g. FLAC), and Finite Element Method (e.g. 

ANYSIS and ABAQUS) (Chen et al. 1995; Pyo 2012; Thompson 2015). 

Two design criteria are used in mechanistic design method, namely the factor of safety (FOS) (the 

ratio of ultimate available shear strength to actual working shear stress) for the two uppermost 

layers, and the vertical elastic compressive strain for road layers. The vertical strain criterion 

usually correlates well with structural performance of the haul road (Morgan et al. 1994; Thompson 

1996; Kumar 2000; Paige-Green 2007), while the FOS criterion is not always applicable since the 

applied stresses are significantly lower than the ultimate strength of the different layers (Thompson 

and Visser 1996, 1997b). The vertical strain limit depends on the design lifetime of the road and 

the traffic density, and can be calculated using the following equations: 

Es=21600/N0.28  (Knapton 1989)       2.4 

Es=80000/N0.27  (Tannant and Regensburg 2001)      2.5 
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Where Es: allowable strain limit (micro strain); N: number of load repetitions. 

 

The critical strain limit is typically around 1500 micro-strain at the top of the subgrade (Morgan et 

al. 1994) and 2000 micro-strains at the road surface (Thompson et al. 2019). More accurate strain 

values can be determined according to the category of road to be built and the associated operating 

life and traffic volumes (Figure 2.5). 

Mechanistic design method is more accurate than the CBR method for designing mine haul roads 

since it directly takes into account the different material properties, number of loaded trucks, and 

designed life of haul roads (Thompson and Visser 2000a; Tannant and Regensburg 2001; 

Thompson 2010). However, the mechanical properties of waste rocks including shear strength and 

resilient modulus are necessary for this method, indicating the application of this method needs 

more advanced laboratory or field tests than CBR test. 
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Figure 2.5: Haul road classification and associated mechanistic structural design limiting strain 

criteria (Knapton 1989). 

 

2.2.3 Functional design 

Functional design refers to the ability of a haul road to provide an economic and safe ride. 

Trafficability is dictated to a large degree by the choice, application, and maintenance of locally 

available wearing course materials (Thompson and Visser 1996, 1997b, 2000b). Road geometrics, 

climate and traffic volumes also influence the performance of the wearing course. Poor functional 

performance induces poor ride quality, excessive dust, increased tire wear and damage and an 

accompanying loss of productivity, which all induce an increase in overall vehicle operating and 

maintenance costs (Thompson and Visser 1997a). 
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The wearing course faces the greatest weathering and highest dynamic loads because of truck 

travels (Kaufman and Ault 1977; Kumar 2000; Thompson 2011c). Usual wearing course materials 

for haul roads include compacted gravel, crushed stone, asphaltic concrete, roller compacted 

concrete, and stabilized earth (Tannant and Regensburg 2001). Asphaltic concrete offers a high 

coefficient of road adhesion and creates a smooth surface that reduces dust problems. However, 

asphalt offers little resistance to development of ice or snow glaze, and the high cost of asphaltic 

road wearing course severely restricts its applicability to haul roads which have a relatively short 

life. Stabilized earth usually cannot create a sufficient haul road wearing course, but it can 

significantly reduce the quantity of base material required. 

Waste rocks are an interesting alternative to construct haul roads because of the relatively low cost, 

high strength, and availability. Compared to other valorization methods, the large haul road 

network can consume more waste rocks, which can greatly relieve the pressure of waste rocks 

management in the field. However, it needs relatively frequent maintenance, and waste rocks may 

require screening or crushing. Also, it can generate dust problems in dry weather, or because of 

frost action (fines>10%) (Kaufman and Ault 1977; Tannant and Regensburg 2001). Generally, 

wearing course is constructed with fine gravel (<19 mm) with closely controlled grading to avoid 

dust problems while maintaining proper binding characteristic of the material. Grading and 

plasticity parameters can be used to predict the functional performance of a wearing course material. 

For example, a specification for haul road wearing course materials has been proposed and used in 

South Africa (Thompson and Visser 2000b) based on a parametric relationship suggested in 

Transport Recommendations for Highways (TRH 20). The specification is based on the parameters 

of shrinkage product (SP) and grading coefficient (GC), and it recommends that GC and SP should 

range from 25 to 32, and from 95 to 130, respectively. A defect score progression model, based on 

traffic, maintenance and wearing course material interactions, also has been developed to calculate 

the functional performance of a particular wearing course material (Thompson and Visser 2013): 
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LDDD=1.261+DM(0.000121⋅CBR⋅KT-0.02954⋅GC+0.009824⋅SP⋅DR)    2.6 

LDDI=1.7929+D[0.002276⋅KT+GC(0.01029⋅DR-0.010887)]     2.7 

DSMIN=37.9164+12.7093⋅M-0.15799⋅KT+1.3836⋅GC-0.08752⋅SP     2.8 

Where LDDD: rate of defect score decreases immediately following last maintenance cycle; LDDI: 

rate of defect score increases; DSMIN: minimum defect score in maintenance cycle; KT: average 

daily tonnage hauled (kt); WM: wearing course material type; P075: percentage of material passing 

0.075 mm sieve; DR: Dust ratio; PI: plasticity index; CBR: 100% modified California Bearing 

Ratio of wearing course material; GC: grading coefficient; P2 is percentage of material passing 2.0 

mm sieve; P475 is percentage of material passing the 4.75 sieve; SP: shrinkage product; PL: 

plasticity limit; D: days since last maintenance; DM: days between last maintenance and minimum 

cycle defect; DSMIN: minimum defect score in cycle. 

However, only one mechanical property (i.e., CBR) is considered in this defect model for 

predicting the performance of waste rocks for wearing course. Other mechanical properties, such 

as shear strength, stiffness (or resilient modulus), and permanent deformation, also affect the road 

performance (Atkinson 1992; Tannant and Regensburg 2001; Douglas 2016; Thompson et al. 2019). 

Moreover, climatic conditions affect the physical and mechanical properties of waste rocks, and 

then impact the selection of waste rocks for haul roads. For example, in wet climate, fines should 

be less than 10% to prevent muddy and slippery conditions when wet. In drier climates, fines should 

exceed 5% to prevent raveling or loosening of wearing course aggregates (Thompson 2015). On 

the other hand, excessive fines in drier climates can lead to dust problems (Thompson and Visser 

2013). Therefore, the prediction of road defect and selection of waste rocks should take more 

indexes into account. 
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2.2.4 Maintenance design 

Maintenance design concerns the optimal frequency of wearing course maintenance commensurate 

with minimum vehicle operating and road maintenance costs (Figure 3.7) (Thompson and Visser 

2000a). The maintenance design is complementary to the structural and functional designs 

(Thompson and Visser 1996, 1997b). The optimum maintenance frequency for a haul road can be 

determined using the maintenance management system (MMS) (Thompson and Visser 2000a). 

Road roughness is the principal measurement of pavement condition that can be directly related to 

both vehicle operating costs and the frequency of maintenance activities and is therefore the basis 

of the MMS. The progression model is a function of wearing course material parameters, traffic 

volumes and maintenance interval (Thompson and Visser 1997a, 2000a, 2013). 

Predictive models for Rolling resistance (RR) progression and Vehicle operating cost (VOC) were 

developed to minimize total road costs and can be written (Thompson and Visser 2013): 

RDS=RDSMIN+ [
RDSMAX-RDSMIN

1+eDg
]       2.9 

LDRDI=1.768+0.001D(2.69KT-72.75PI-2.59CBR-9.35GC+1.67SP)   2.10 

RDSMIN=31.1919-0.05354SP-0.0152CBR      2.11 

RDSMAX=7.6415+0.4214KT+0.3133GC+0.4952RDSMIN    2.12 

Where RDS: roughness; RDSMIN: minimum roughness defect score immediately following last 

maintenance cycle; RDSMAX: maximum roughness defect score; LDRDI: rate of roughness defect 

score increase; RR: rolling resistance, N/kg; RRMIN: minimum rolling resistance at RDS=0; 

LDRRI: rate of increase in rolling resistance from RRMIN; V: vehicle speed, km/h. 

Vehicle operating and road maintenance cost models: 

FCU=1.02+[UVMV(296TRU+4.5V)+LGVMV(246TRU+0.027V2)]×10
-5

   2.13 



 

 

28 

FCF=-3.575+UVM(0.092-0.016DV)+0.0017LGVM      2.14 

TW=0.098+0.0015RDS+0.002|GR|        2.15 

P

VP
=(67.28+2.31RDS)H0.375         2.16 

ML=220 (
P

VP
)

0.45

           2.17 

Where FCU: Truck fuel consumption (mL/s) for unfavourable (against the load) grades; FCF: 

Truck fuel consumption (mL/s) for favorable (with the load) grades; TW: Truck tyre wear (tyres 

consumed per 1000 km for a 6 wheeled truck); P: Truck parts cost (per 1000 km); VP: Truck 

replacement value (×10-5); ML: Maintenance labour costs (per 1000 km); L: Truck loading (laden 

is 1, unladen is 0); DV: Truck drive type (electric wheel motors is 1, mechanical drive is 0); GVW: 

Truck gross (laden) vehicle mass, t; UVW: Truck unladen vehicle mass, t; TRU: Total resistance 

(against the load), %; GR: Road grade, %; H: Truck age (total operating hours ×10-3). 

MMS are effective to predict maintenance frequency of a haul road, but for complex mine road 

networks where material is sourced and hauled from a large and highly variable number of loading 

points, the MMS can become onerous for the road maintenance design (Thompson et al. 2003). 

The real-time maintenance management system (RT-MMS) is therefore often considered a more 

effective approach to mine road network maintenance management. Since most large mines operate 

trucks with on-board diagnostic data collation, road condition can be monitored on a real-time basis 

through on-board vibration signature analysis. The defect locations and type and road rolling 

resistance can then be monitored and repaired on a real-time basis (Thompson et al. 2003). 

 

The literature review on haul road design indicates that CBR and resilient modulus of waste rocks 

are necessary input parameters for the CBR and mechanistic design method, respectively. Shear 

strength of waste rocks is another critical geotechnical property influencing the stability of haul 
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roads (Tannant and Regensburg 2001; Long et al. 2011; Arulrajah et al. 2014; Byun et al. 2020). 

Shear strength is therefore generally used in the mechanistic design method to calculate the factor 

of safety (FOS) (Thompson et al. 2019). The permanent deformation behavior of waste rocks is 

directly related to rutting, one of the most common deteriorations in flexible pavements (Erlingsson 

2012). Excess rutting can decrease the driving quality and safety because of hydroplaning and 

reduced skid resistance of the haul road surface (Rahman and Erlingsson 2015a; Salour and 

Erlingsson 2017). The critical properties of waste rocks, i.e., CBR, resilient modulus, shear strength, 

and permanent deformation, should be studied to improve the structural and functional design, and 

to decrease the maintenance frequency of mine haul roads. The following sections therefore 

reviews these mechanical properties of waste rocks. 

 

 

2.3 Shear strength of waste rocks 

Shear strength is the maximum shearing resistance of a granular material along its failure plane. 

Shear strength of waste rocks is one of the critical geotechnical properties influencing the 

performance of haul roads (Tannant and Regensburg 2001; Long et al. 2011; Byun et al. 2020). 

Waste rocks are considered cohesionless, and their effective stress shear strength envelope 

therefore passes through the origin of the Mohr stress diagram (Duncan et al. 2014). The angle of 

internal friction of waste rocks varies between 21° and 62° depending on the material properties 

such as gradation, dry density, and water content (more details see below section 2.3.2) (Aubertin 

2013). 

The shear strength of saturated materials is usually interpreted by extending Terzaghi’s effective 

stress concept to the Mohr-Coulomb failure criterion using the following equation: 

τ=c'+(σ-uw) tan ϕ'          2.18 
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Where τ: shear strength, kPa; ϕ': the effective stress angle of internal friction, °; c': the effective 

stress cohesion intercept of waste rocks, kPa; σ-uw: the effective normal stress on the failure plane, 

kPa. 

Bishop (1959) developed a model extending the principle of effective stress to unsaturated soils by 

introducing a variable χ related to the degree of saturation, and which varies between 0 for dry 

state and 1 for saturated state: 

τ=c'+[(σ-ua)+χ(ua-uw) ]tan ϕ'         2.19 

Fredlund et al. (1978) modified Bishop (1959) model by considering the shear strength contribution 

caused by suction τus: 

τ=c'+(σ-ua) tan ϕ' +τus         2.20 

 

2.3.1 Measurement of shear strength 

Shear strength testing methods can be divided into forced (direct shear) and free shear plane 

(indirect shear) tests. Direct shear methods usually use instruments with linear or rotary shear 

kinematics such as direct shear box test and shearing grouser test, while indirect shear methods are 

usually based on soil compression such as triaxial compression test and cone penetrometer test 

(Stefanow and Dudziński 2021). 

Direct shear box test is one of the simplest shear tests to conduct. The specimen is sheared along a 

direct plane and the confining pressure is equal to the normal pressure (ASTM D6528 2017). The 

size of shear boxes (length×width×height) in laboratory typically ranges from 60×60×20 mm to 

300 × 300 × 150 mm (Bagherzadeh-Khalkhali and Mirghasemi 2009). Large-scale direct tests 

(600×600×400 mm) were also developed in the field to fit large size particles (Xu et al. 2011). 

Triaxial test is more complex than direct shear test but also provides more information such as pore 
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water pressure and effective stress. Compared to direct shear test, the shear failure plane of triaxial 

test is not predetermined, and the stress distribution on the failure plane is uniform. The triaxial test 

specimen is enclosed by rubber membrane and a confining pressure is applied prior to and during 

shearing. The specimen is subjected to an increasing vertical stress and will ultimately fail at an 

angle approximately equal to the angle of internal friction. Triaxial tests typically include 

consolidated drained (ASTM D7181 2020), consolidated undrained (ASTM D4767 2020), and 

unconsolidated undrained (ASTM D2850 2015) tests. The shear strength of materials is 

significantly affected by the specimen size, the specimen height to maximum particle size and the 

specimen diameter to maximum particle size ratios are generally greater than 50 and 6, respectively 

(Jewell and Wroth 1987; Cerato and Lutenegger 2006; ASTM D4767 2020; Deiminiat et al. 2020). 

However, the usual triaxial test instruments for soils are generally smaller than 100 mm in diameter, 

which limits the applicability of these instruments to waste rocks. Large-scale triaxial testing 

equipment was developed to accommodate coarse-grained particles, for example, Indraratna et al. 

(1998) and Zhang et al. (2020) used 300 mm diameter×600 mm high specimen to measure the 

shear strength of ballast, Lee et al. (2017) used 500×900 mm, 700×1200 mm, and 900×1650 mm 

triaxial cells to measure the shear strength of ballast, and Ovalle et al. (2014) used 250×375 mm 

and 1000×1500 mm triaxial cells to measure the shear strength of waste rocks with 40 and 160 mm 

of maximum particle size, respectively (Figure 2.5). The applied confining pressure for large-scale 

triaxial test can exceed to 1 to 10 MPa (Ovalle et al. 2020). In this study, a series of triaxial tests 

with 150×300 mm and 300×600 mm specimen size was carried out on waste rocks to study the 

shear strength. 
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Figure 2.6: Large-scale triaxial test apparatus; (a) 1000 mm diameter and (b) 250 mm diameter 

(Ovalle et al. 2014). The tested materials were rock aggregates with maximum particle size 40 mm 

and 160 mm and uniformity coefficient 2. 

 

2.3.2 Factors affecting shear strength 

Several factors can affect the shear strength of waste rocks, such as density, particle size, particle 

shape, particle size distribution, mineralogy, and water content (Williams and Walker 1983; 

Yazdanjou et al. 2008; Duncan et al. 2014; Alshameri et al. 2016). 

Density plays an important effect on the shear strength of waste rocks, and the angle of internal 

friction generally increases with density (Duncan et al. 2014). Marsal (1973) found that the 

variation of angle of internal friction caused by density is 3° to 4° at 65 kPa of normal stress, and 

it decreases to 1.5° at 3.45 MPa. Al-Hussaini (1983) and Holtz and Gibbs (1957) also reported 

similar findings for crushed basalt rocks and gravelly soils. 

Literature is sometimes contradictory regarding the effect of particle size on shear strength. Shear 
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strength tends to increase with the maximum particle size according (Bala and Bishnoi 2016), while 

Marachi et al. (1972) argued that shear strength decreased with the maximum particle size and 

Roner (1985) found that the influence of maximum particle size on the shear strength of quartzite 

ballast was negligible. It was suggested that the shear strength increases as the particle size 

increases to a critical diameter, above which no significant variation would occur (Ionescu 2004). 

Particle shape also has an impact on shear strength. Higher angularity particles usually provide a 

strong interlocking effect, which results in a higher angle of internal friction (Holtz and Gibbs 

1956). However, angularity particles may also lead to poor compaction and higher deformations 

(Pike 1973). 

The shear strength is typically higher for well-graded granular materials than for uniformly graded 

materials (Ionescu 2004). Smaller particles can fill voids between larger particles in well-graded 

waste rocks, which results in a denser packing state that brings a greater resistance to shear. The 

shear strength is generally higher for waste rocks with a higher coefficient of uniformity (Marsal 

and La Rosa 1976; Rico et al. 1977). On the other hand, excessive fines in aggregates may cause a 

significant reduction in shear strength although the corresponding coefficient of uniformity 

increases in this case (Kalcheff 1974). The shear strength of waste rocks is mostly affected by the 

frictional resistance of gravel particles when they represent more than 70% in waste rocks weight. 

If gravel content is below 40%, the shear strength of waste rocks is mostly controlled by the 

frictional resistance of the sand particles. When the gravel content is between 40 and 70%, the 

shear strength is controlled by the frictional resistance provided by both the gravel and sand 

particles in the mixtures (Vallejo 2001). 

Shear strength of waste rocks is also controlled by particle crushing (Bala and Bishnoi 2016). For 

example, Ovalle and Dano (2020) reported that particle breakage tended to increase with particle 

size and caused a slight decrease of shear strength for coarse waste rocks with 40 to 160 mm 

maximum particle size. 
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Water content in waste rocks is typically around residual and therefore quite low (Ferry et al. 2002). 

Therefore, in general water does not transmit suction effectively to the particle contact point and 

increases in suction will not necessarily result in a significant increase of shear strength. A decrease 

in shear strength is, however, possible for low suctions when waste rocks desaturate rapidly 

(Vanapalli et al. 1996). An increasing degree of saturation could significantly reduce the strength 

of loose waste rocks, but had a negligible effect on the shear strength of compacted waste rocks 

(Williams and Walker 1983). 

Climatic factors can also affect the shear strength of waste rocks. Freeze-thaw cycles generally 

result in a decrease of shear strength (Aldaood et al. 2016; Lu et al. 2019), depending on 

environmental factors and material properties such as the availability of water (Yong et al., 1985), 

cooling rate (Broms and Yao, 1964), particle size distribution, and fines content (Liu et al., 2016; 

Zhang et al., 2017). The frost expansion of pore water can also lead to a redistribution of particles 

and porosity, therefore altering the mechanical properties of the material (Aldaood et al. 2016; 

Ishikawa et al. 2019; Lu et al. 2019). 

 

 

2.4 California Bearing Ratio (CBR) of waste rocks 

California bearing ratio (CBR) is the one of the most used parameters in road design (also see 

section 2.2.2). CBR is an easy and reliable measurement of the relative resistance of pavement 

materials to uniaxial penetration (ASTM D1883 2016). The suitability and stability of construction 

materials is usually evaluated using CBR, also for haul roads. For example, the CBR of waste rocks 

used for the construction of wearing course of mine haul roads should be greater than 80% 

(Thompson et al. 2019). 
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2.4.1 Measurement of CBR 

The laboratory CBR test was developed by the California Division of Highways in the 1920s, and 

then approved by American Society for Testing and Material (ASTM) in 1961 (Shi et al. 2017). 

CBR test has been widely used to evaluate the strength of subgrade, subbase, and base materials 

(less than 19 mm), to evaluate the bearing capacity of various soil structures such as earth dams, 

road fillings, highways, and mine haul roads. The CBR value is expressed as the ratio (multiplied 

by 100) of the unit load on the piston required to penetrate 2.5 mm and 5.1 mm of the test material 

to the unit load required to penetrate material of well-graded crushed stone (ASTM D1883 2016). 

The diameter of standard CBR mold and piston is 152.4 mm and 49.63 mm, respectively (Figure 

2.7). The compacted specimen is penetrated by the piston at a constant rate of 1.3 mm/min. The 

CBR tests can be performed on soaked and unsoaked soil samples (ASTM D1883 2016). 

Laboratory CBR tests were carried out on crushed waste rocks in this study. 

The field CBR test (ASTM D4429 2004) can be used to verify laboratory CBR test results. Field 

CBR test uses a loading jack to force a piston into the investigated material. The jack is loaded 

against dead weights or a heavy piece of equipment such as a loaded dump truck (Sayida et al. 

2019) and the test can therefore be cumbersome to conduct. Also, the results of the laboratory and 

field CBR test may show differences depending on the material type, water content, and dry density 

(Kurnaz and Kaya 2019). The in-situ CBR values of soils also can be determined using Dynamic 

Cone Penetrometer (DCP), which is lighter and less costly than field CBR test (Zumrawi 2014). 
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Figure 2.7: Laboratory CBR test setup (Laverdière 2019). The tested materials were crushed waste 

rocks, and the diameter of CBR mold and piston was 152.4 mm and 49.63 mm, respectively. 

 

2.4.2 Factors affecting CBR 

CBR depends on many factors such as maximum dry density, optimum moisture content, liquid 

limit, plastic limit, plasticity index, soil types, permeability, and soaking condition (Talukdar 2014). 

CBR typically increases with compaction effort and dry density (Lakshmi et al. 2016; Laverdière 

2019; Al-Obaydi et al. 2021). CBR also generally increases with particle size (Patel and Desai 2010; 

ul Rehman et al. 2015; Yao et al. 2016; Laverdière 2019). However, CBR also can decrease as 

particle size increases if the fines content is too small (Salam et al. 2018). In this case, fines are not 

sufficient to fill voids which remain empty, therefore decreasing CBR of granular materials. 

Typically, fines content above 12% are sufficient to limit this effect (Salam et al. 2018). 

Fines content can significantly impact the CBR, for example, Laverdière (2019) suggested that the 
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CBR of waste rocks is maximum for a fines content of approximately 10%. Other research studies 

also showed that the optimum fines content regarding CBR comprised between 8 and 10% when 

unbound granular material had over 35% gravel (Siswosoebrotho et al. 2005; Farias et al. 2018). 

The grain-to-grain contact of coarser material that offers a structural strength can, however, become 

less effective for fines content greater than the optimum, leading to a decrease of CBR (Yoder and 

Witczak 1991). 

Finally, CBR also decreases with moisture content, and soaked CBR of soils with large fines 

content may decrease compared to unsoaked samples (Razouki and El-Janabi 1999; Talukdar 2014). 

The presence of excessive water would reduce the effective strength and soften the connectors of 

filler (fines) (Aiban and Mohammed 2002). On the other hand, CBR tends to reach the maximum 

at around optimum water content because of the higher dry density (Laverdière 2019). 

 

2.4.3 Predictive models for CBR 

CBR test can be time consuming because representative soil samples should be collected from the 

location selected and then remolded at field dry density and water content. Also, preparing soaked 

CBR sample can take about a week (Bassey et al. 2017). Several CBR prediction models based on 

easily determinable parameters, such as dry density, water content, coefficient of uniformity, and 

particle size distribution, were therefore developed (Kin 2006; Ferede 2010). The applied dataset 

is generally divided into training and testing dataset, and the training dataset is used to optimize 

the hyperparameters while the testing dataset is used to evaluate the accuracy of the developed 

machine learning models. In general, around 80% and 20% of the dataset can be used for the 

training and testing, respectively, when the total dataset is large enough (Taskiran 2010; de Souza 

et al. 2020; Tenpe and Patel 2020). If the total dataset is relatively small, around 70% and 30% of 

the dataset can be used as the training and testing dataset, respectively (Ghorbani and 

Hasanzadehshooiili 2018; Kaloop et al. 2019; Oskooei et al. 2020). 
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 However, most of the available models were proposed for fine-grained subgrade soils (Gregory 

and Cross 2007; Lakshmi et al. 2016; Bassey et al. 2017; Katte et al. 2019; Sreelekshmypillai and 

Vinod 2019), and they are not applicable to waste rocks because of the quite different physical and 

mechanical properties. CBR predictive model for coarse-grained pavement materials documented 

in the National Cooperative Highway Research Program (2001) of United States of America 

through the “Guide for Mechanical-Empirical Design of New and Rehabilitated Pavement 

Structures” is one of the most cited models, and D60, diameter at 60% passing from grain size 

distribution is used as predictor in this model. However, only one physical property is considered 

in this model, which limits its prediction accuracy to waste rocks since other properties also affect 

CBR (see above section 2.4.2): 

CBR=28.09D60
2            2.21 

Rehman et al. (2017) also proposed two models to predict the CBR of coarse-grained materials 

based on the coefficient of uniformity CU and maximum dry density MDD (pcf). However, the 

limited number of predictors and small developing data (41 samples) would limit the prediction 

accuracy to new materials, i.e., waste rocks in this study: 

CBRs=0.7CU+8.5          2.22 

CBRs=0.7CU+0.045MDD+3.4        2.23 

Machine learning, as an analytical alternative to conventional statistical method, is also used to 

develop the predictive models for CBR, and these models often have a higher prediction accuracy 

than conventional regression models (Erzin and Turkoz 2016; Kurnaz and Kaya 2019; Tenpe and 

Patel 2020) (Table 2.1). The selected input features for the machine learning models are different, 

but they typically are the basic soil properties, such as gravel content, sand content, fines content, 

liquid limit, plasticity index, water content, and dry density. Although these machine learning 

models showed reliable prediction accuracy (R2 > 0.9) in the literature, their applicability to waste 

rocks is uncertain because of the different material properties (e.g., gradation and mineralogy) or 
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they are difficult to replicate since some critical information about these models is lacking in the 

literature (e.g., the layer’s weights and bias of the neural network). The algorithm backpropagation 

neural network (BPNN) is generally used to develop the machine learning models in the literature. 

The architecture of BPNN is an important factor that can influence its computational efficiency 

and prediction accuracy (Pan et al. 2019). However, the determination of the BPNN architecture 

mainly depends on trial and error methods based on the network performance, which is time-

consuming and increases the workload. Other common algorithms, such as k-nearest neighbors 

(KNN), decision tree (DT), and random forest (RF), therefore should be evaluated for the 

development of CBR predictive models for waste rocks. 

 

Table 2.1: Examples of machine learning models used for predicting CBR reported in the literature. 

BPNN is usually used in most studies, and the basic physical properties are generally used as input 

features. These models were developed for different materials from subgrade soils to base materials. 

References Technic Input 
No. of 

datasets 
Material R2 

Tenpe and Patel (2020) BPNN G, S, PI, wopt, γdmax 389 Subgrade soil 0.89 

de Souza et al (2020) BPNN G, S, silt, clay, color 1790 Subgrade soil 0.997 

Ghorbani and 

Hasanzadehshooiili (2018) 
BPNN 

lime, microsilica, curing 

days, curing conditions 
90 

Lime and 

microsilica 
0.99 

Erzin and Turkoz (2016) BPNN 
Gs, CU, CC, d, w, Q, Fel, 

Ca, C, A 
61 Sands 0.939 

Varghese et al. (2013) BPNN dmax, wopt, PL, LL 112 Fine-grained soils 0.93 

Taskiran (2010) 
BPNN, 

GEP 

LL, PI, d, wopt, P#200, 

S, G 
151 

Base and subbase 

material 
0.91 

Where BPNN: backpropagation neural network; GEP: gene expression programming; d: dry density, kg/m3; w: 

gravimetric water content, %; LL: liquid limit, %; PI: plastic index, %; P#200: percentage of soil particles passing 

through #200sieve, %; wopt: optimum water content, %; G: gravel percentage, %; S: sand percentage, %; γdmax: 
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maximum dry unit weight, -; Gs: specific gravity, -; CU: coefficient of uniformity, -; CC: coefficient of curvature, 

-. 

 

 

2.5 Resilient modulus of waste rocks 

The low stiffness of waste rock layers of haul roads can result in poor trafficability under wet 

weather, churning, and excessive deformation (Thompson et al. 2019). The poor pavement 

performance increases the road maintenance costs and vehicle operating costs. Resilient modulus 

is a parameter generally used to characterize unbound granular material stiffness (Lekarp et al. 

2000a), and is typically used in mechanistic design method to compute pavement response under 

traffic loading (Thach Nguyen and Mohajerani 2016). Resilient modulus of pavement materials is 

defined as the ratio of the repeated axial deviator stress to the recoverable axial strain, as shown in 

the following equation (AASHTO T307 2017): 

MR=
σd

εr
    2.24 

Where MR: resilient modulus, MPa; σd: deviator stress, MPa; and εr: recoverable axial strain, -. 

 

2.5.1 Measurement of resilient modulus 

The common method for characterizing the resilient behavior of unbound granular materials is the 

repeated load triaxial test conducted in the laboratory (EN 13286 2004; AASHTO T307 2017). 

AASHTO T307 (2017) standard provides two stress levels to simulate the stress conditions in base 

and subbase and subgrade materials of highways, respectively. For subgrade soils, the applied 

confining pressure and deviator stress ranges between 13.8 and 41.4 kPa, and between 13.8 and 
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68.9 kPa, respectively. For base/subbase soils, the applied confining pressure and deviator stress 

ranges between 20.7 and 137.9 kPa, and between 20.7 and 275.8 kPa, respectively. Each stress path 

is generally applied at least 100 cycles to obtain the representative resilient modulus. A repeated 

axial cyclic stress, load duration (0.1 s), and cyclic duration (1.0 to 3.1 s) is generally applied to a 

cylindrical specimen during repeated load triaxial tests, and the haversine-shaped load from is 

usually used to simulate the traffic loading. EN 13286 standard (2004) also proposed two stress 

levels (low and high) to evaluate the resilient behavior of unbound mixtures. The confining 

pressure in this standard ranges from 20 to 150 kPa, while the deviator stress varies from 30 to 

475 kPa for high stress level, and from 20 to 300 kPa for low stress levels. However, the proposed 

stress levels in these two standards are significantly lower than the stress state in mine haul roads. 

The specimen diameter to maximum particle size is generally greater than 5, and the specimen 

height should be at least 2 times the diameter (AASHTO T307 2017). However, the usual repeated 

load triaxial test instruments for soils are generally smaller than 150 mm (300 mm in height) in 

diameter, which limits the applicability of these instruments to coarse-grained waste rocks. 

Generally, the particles greater than 25.4 mm shall be scalped off prior to testing with 150 mm 

diameter of specimen. Some larger apparatuses have been developed in recent years to measure the 

resilient behavior of coarse-grained aggregates, and the diameter and height sizes increase to 300 

and 600 mm, respectively (Nair and Latha 2012, 2015; Cao et al. 2021). In this study, repeated load 

triaxial tests with both 150 mm and 300 mm specimen diameter were carried out on waste rocks to 

study the resilient modulus 

Repeated load triaxial tests are, however, complex, time consuming, and costly, especially 

considering the short-service-life of mine haul roads. Repeated load CBR tests were therefore 

proposed as an alternative to indirectly evaluate resilient behavior of pavement materials (Molenaar 

2008). The principle of repeated load CBR test is similar to the standard CBR test, except that 

cyclic loading is applied (Molenaar 2008; ASTM D1883 2016). Resilient modulus determined 
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using repeated load CBR tests are typically greater than using repeated load triaxial tests (Araya 

2011). An “equivalent modulus” (Eequ.) was therefore proposed to normalize the repeated load CBR 

test results and compare them to the triaxial resilient modulus (Opiyo 1995; Molenaar 2008). 

Several equivalent modulus equations were developed based on elastic theory and regression fitting 

(Table 2.2). A series of repeated load CBR tests were conducted on crushed waste rocks, and the 

applicability of existing equivalent modulus equations to waste rocks was also assessed in this 

study. 

 

Table 2.2: Equivalent modulus equations for repeated load CBR test. 

Equation Description References 

Eequ.=
1.797(1-ν0.889)σpr

u1.098
  No friction Opiyo (1995) 

Eequ.=
1.375(1-ν1.286)σpr

u1.086
  Full friction Opiyo (1995) 

Eequ.=
1.513(1-ν1.104)σpr

u1.012
  Without strain gauges Araya (2011) 

Eequ.=
0.144(σV-2νσH)

u
  With strain gauges Araya (2011) 

Where Eequ. : equivalent modulus, kPa; σp : plunger stress, equal to total plunger load/plunger area, kPa; u : 

vertical elastic (resilient) deformation of materials under plunger, mm; ν: Poisson’s ratio of tested material, -; 

σV and σH: vertical and horizontal (or lateral) stresses applied on the specimen, kPa. 

 

Plate load test is widely used in the field to evaluate the stiffness of pavement systems (ASTM 

D1195 1997; Alshibli et al. 2005). The test consists of applying a static load in uniform increments 

on a circular plate (usually 305 mm in diameter) resting on the pavement surface and measuring 
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the corresponding deflections, and the load is usually transmitted to the plate via a hydraulic jack 

acting against a reaction frame (Alshibli et al. 2005). 

Falling weight deflectometer (FWD) is a deflection testing device operating on the impulse loading 

principle, and it has been used extensively to assess the resilient modulus of pavement layer in the 

field (Mehta and Roque 2003). The portable (or light) falling weight deflectometer (PFWD or 

LFWD) is one of the recent in-situ non-destructive testing devices that has been developed to 

measure the pavement stiffness (Alshibli et al. 2005). The working principle of PFWD is similar 

with FWD, but it is easy to use, portable and easy to transport, quick to perform the test and analysis, 

which gives quick results and relatively cheap compared to the conventional FWD equipment 

(George et al. 2009). In addition to PFWD, GeoGauges, also known as the stiffness gauge, is a 

portable device capable of performing simple and robust measurements of the in situ stiffness and 

elastic modulus of pavement soils (Alshibli et al. 2005). 

 

2.5.2 Factors affecting resilient modulus 

A number of factors such as stress conditions, gradation, density, particle shape, and freeze-thaw 

cycles can affect resilient modulus (Lekarp et al. 2000a). It is important for design purposes to 

study how the resilient modulus varies with the influencing factors. 

The resilient response of waste rocks significantly dependents on the applied stress levels. The 

resilient modulus increases considerably with an increase in confining pressure and sum of 

principal stresses (Witczak 2004; Ba et al. 2013). The effect of confining pressure is more 

significant than deviator stress on resilient modulus (Uthus 2007). 

Resilient modulus generally increases with density (Lekarp et al. 2000a; Yao et al. 2016), and the 

resilient modulus of dense uniform materials is generally higher than loose materials (Robinson 

1974). The increasing in density could result in significant increase in the number of particle 
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contacts, which would decrease the deformation in particle contacts and increase the resilient 

modulus (Kolisoja 1997). The effect of density on resilient modulus is more significant for a 

partially crushed aggregate than a fully crushed aggregate (Hicks and Monismith 1971). 

Gradation of waste rocks is a key factor that affects the resilient modulus (Duong et al. 2016; 

Hatipoglu et al. 2020). Well-graded aggregates generally provide higher stiffness (Xiao et al. 2012; 

Xiao and Tutumluer 2017). However, the resilient modulus of aggregates with uniformly gradation 

may be slightly higher than that of well-graded one (Thom and Brown 1988), as well-graded 

materials can hold water in pores, which decreases the stiffness (Plaistow 1994). The gravel-to-

sand ratio is a practical and easy-to-use criterion which is often used to optimize aggregate 

gradations (Xiao et al., 2012). The aggregate with around 1.5 of gravel-to-sand ratio shows higher 

density and resilient modulus when the maximum particle size is 19 mm (Xiao et al. 2012; Xiao 

and Tutumluer 2017). Fines content is another important factor influencing the resilient modulus 

of aggregates, the increasing of fines content can increase the resilient modulus because the more 

voids are filled (Thom and Brown 1988; Kamal et al. 1993), but excessive fines could decrease the 

stiffness (Hicks and Monismith 1971; Mishra and Tutumluer 2012). 

Resilient modulus generally increases with the maximum particle size of aggregates (Kolisoja 

1997). The major part of a load applied on aggregates is transmitted by particle queues, and when 

the load is transmitted via coarser particles, the smaller number of particle contacts results in less 

total deformation and consequently higher stiffness (Kolisoja 1997). 

Water content or degree of saturation can affect the resilient modulus of waste rocks (Lekarp et al. 

2000a), and the resilient modulus generally decreases with growing saturation level, and it may 

decrease significantly as complete saturation is approached (Lekarp et al. 2000a; Gudishala 2004). 

Cyclic loading may result in the development of positive pore water pressure for saturated materials, 

which would reduce the effective stress and deformation resistance, and consequently reduce the 

stiffness of materials (Araya 2011). The resilient modulus of fine graded materials is more sensitive 
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to water content than coarse graded materials (Sweere 1990). 

Waste rocks with angular to subangular shaped particles generally show better load spreading 

properties and a higher resilient modulus (Lekarp et al. 2000a). On other hand, the resilient modulus 

of natural gravel with rounded particles is higher than that of crushed materials at the same density 

level, and one of the possible reasons is that rounded gravel particles are easier to rearrange and to 

reach a more stable structure (Janoo and Bayer II 2001). 

Freeze-thaw cycles can lead to waste rocks degradation, and even a small number of freeze-thaw 

cycles may lead to a significant reduction in resilient modulus (Bozyurt et al. 2013). The effect of 

freeze-thaw cycles on resilient modulus is more significant when larger percentage of fine particles 

are in aggregates (Simonsen et al. 2002). Dense materials tend to dilate under freeze-thaw cycles, 

while loose materials are densified under freeze-thaw cycles and may show an increase in resilient 

modulus (Liu et al. 2018). 

 

2.5.3 Descriptive models 

Several mathematical procedures for describing the stress dependence of resilient modulus using 

various stress variables were developed. A great majority of the models found are based on simple 

curve-fitting procedures, using the data from laboratory repeated load triaxial tests. 

One approach in dealing with the effect of stress on resilient modulus is the expression of resilient 

modulus as a function of the sum of the principal stresses, or bulk stress, which is known as two-

parameter model or MR-θ model (Seed et al. 1967): 

MR=k1θ
k2 or MR=k1 (

θ

p
a

)
k2

        2.25 

Where k1 and k2: regression constants; p
a
: the reference stress/atmospheric pressure (100 kPa); 

θ: the bulk stress, θ=σ1+σ2+σ3=σ1+2σ3=3σ3+σd, kPa. 
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MR-θ  model assumes a constant Poisson’s ratio, which is then used to calculate radial strain. 

However, Poisson’s ratio is not a constant and varies with applied stresses, so this model may not 

always be reliable (Lekarp et al. 2000a). The major limitation of the MR-θ model is that it does 

not account for shear stresses and shear strains during loading (Uzan 1985). Also, MR-θ model is 

not capable of predicting volumetric strain and dilative behavior of granular materials under 

repeated triaxial loading (Senadheera et al. 1995). 

Uzan (1985) developed a separate three-parameter model for granular materials that accounts for 

both confining pressure and deviator stress: 

MR=k1(
θ

p
a

)
k2

(
σd

p
a

)
k3

          2.26 

Where k1, k2, and k3: regression coefficients; σd: deviator stress, kPa. Uzan model is reliable to 

describe the resilient modulus behavior of dense-graded materials (Uzan 1985). 

Uzan model was modified by replacing the deviator stress term with an octahedral shear stress term. 

The bulk stress and octahedral shear stress terms in the model are normalized using atmospheric 

pressure (Witczak and Uzan 1988): 

MR=k1p
a

(
θ

p
a

)
k2

(
τoct

p
a

)
k3

         2.27 

Where τoct: the octahedral shear stress, deviator stress, τoct= ( √2 3⁄ )(σ1-σ3), kPa; k1, k2, and k3: 

regression coefficients. 

The Mechanistic-Empirical Pavement Design Guide (MEPDG) (NCHRP 2004) proposed a 

modified version of the Witczak and Uzan model (1988) to characterize the resilient modulus of 

the unbound base, sub-base, and subgrade layers, as follows: 

MR=k1p
a

(
θ

p
a

)
k2

(
τoct

p
a

+1)
k3

        2.28 

Huurman (1997) proposed a four-parameter model based on MR-θ model, and the model takes 

into account principal stresses: 
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MR=k1(
σ3

p
a

)
k2

[1-k3(
σ1

σ1f
)
k4

]        2.29 

Where k1 , k2 , k3 , and k4 : regression coefficients; σ1 : major principal stress, kPa; σ3 : minor 

principal stress, kPa; σ1f: major principal stress at failure, kPa. This model is reliable to describe 

the resilient behavior of unbound granular materials at high stress level that close to failure, but it 

cannot describe an increment of resilient modulus with an increasing deviator stress but far from 

failure (Araya 2011). 

The resilient modulus of unbound aggregates is not only stress-dependent but also moisture-

dependent. One resilient model employing an environmental factor to represent the moisture 

dependence was proposed in the current mechanistic-empirical pavement design (AASHTO 2008): 

log
MR

MRopt
=a+

b-a

1+exp[ln
-b

a
+km∙(S-Sopt)]

        2.30 

Where MRopt : resilient modulus at reference condition; a : minimum of log( MR MRopt⁄ ) ; b : 

maximum of log( MR MRopt⁄ ); km: regression parameter; S-Sopt: variation of degree of saturation, 

expressed in decimal. 

Other resilient modulus models have been proposed considering the saturation factor and the matric 

suction to reflect the moisture dependence (Lytton 1996; Gu et al. 2014): 

MR=k1Pa (
θ-3𝜃wfhm

Pa
)

k2

(
τoct

Pa
)

k3

        2.31 

Where θw : volumetric water content; hm : matric suction in the aggregate matrix; f : saturation 

factor, 1≤ f ≤ 1 θw⁄  . The matric suction hm  should be determined in discriminating different 

moisture contents. 

These models are widely used to describe the resilient modulus of pavement materials in the 

literature. The applicability of these models to waste rocks was evaluated, and MR-θ model and 

MEPDG model were used to fit the measured resilient modulus of waste rocks in this study. 
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2.5.4 Predictive models 

The measurement of resilient modulus in the laboratory or field are generally complex, time 

consuming, and costly. The coarse-grained waste rocks increase the measurement difficulty since 

the particular instruments are needed in this case. The resilient modulus prediction models would 

be beneficial to reduce costs and ensure optimal pavement performance. Several prediction models 

were proposed to estimate the resilient modulus of waste rocks based on relatively simple 

properties such as CBR, LFWD modulus, and dynamic cone penetration index DCP. 

AASHTO (1984) proposed a model to estimate the resilient modulus based on CBR of pavement 

materials: 

MR=17.63CBR
0.64

          2.32 

Two models similar with AASHTO model were also developed based on CBR, and these models 

are widely used for mine haul roads design (Thompson et al. 2019): 

MR=21.1CBR
0.64

 (CBR<15)         2.33 

MR=19CBR
0.68

 (CBR>15)         2.34 

Gudishala (2004) proposed three models to estimate resilient modulus based on Geogauge modulus, 

LFWD modulus, and dynamic cone penetration index DCP of base course and subgrade materials:  

MR=20.3(EGEO)
0.54

          2.35 

MR=73.3(ELFWD)
0.25

         2.36 

MR=425.4(DCP)
-0.25

         2.37 

All these models are expressed as a simple power function, but the in-situ or laboratory CBR or 

DCP tests are still needed. They were developed through fitting limited data, which can affect the 

prediction accuracy to waste rocks. Also, resilient modulus is a stress-dependent property rather 

than a constant (see section 2.5.2 and 2.5.3), so these regression models cannot predict the resilient 

modulus behavior of waste rocks under different stress conditions. 
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Machine learning is also used to develop the predictive models for resilient modulus based on 

physical properties and stress conditions in recent years (Table 2.3). Different machine learning 

algorithms including BPNN, SVR, GA, and ANFIS were used to develop the predictive models. 

The machine learning models typically have reliable prediction accuracy (R2 > 0.85) for different 

materials (from subgrade soils to base aggregates). The prediction performance is influenced by 

the number of used datasets, and the bigger dataset generally can better train and test the machine 

learning models. However, the applicability of these models to waste rocks is uncertain because of 

the different minerology. 

 

Table 2.3: Some machine learning models for predicting resilient modulus for different pavement 

materials reported in the literature, different algorithms, input features, and number of datasets 

were used for these models. 

References Technic Input 
No. of 

datasets 
Material R2 

Oskooei et al. (2020) BPNN BR, DR, SR, OMC, qu, σc, σd 645 Recycled aggregates 0.96 

Ghorbani et al. (2020b) BPNN γd, w, qc, fs 124 
Cohesive subgrade 

soils 
0.99 

Ghorbani et al. (2020a) ANN-GA 
LL, PI, P#200, wopt, w, Sr, 

qu, σ3, σd 
283 

Cohesive subgrade 

soils 
0.97 

Ghorbani et al. (2020b) 
BPNN, 

SVR 
NFT, σ3, σd, Mat 150 Demolition wastes 0.997 

Kaloop et al. (2019) 
BPNN, 

LSSVM 
RCM, θ p

a
⁄ , τ p

a
⁄  128 

Construction and 

demolition waste 
0.887 

Ren et al. (2019) BPNN PI, γdmax, w, No., σc, σd 2120 Subgrade soil 0.90 

Saha et al. (2018) BPNN 
P#3/8, P#200, PL, PI, wopt, 

γdmax, TMC, gs, Ψ 
779 

Plastic and 

nonplastic base 

materials 

0.90 

Sadrossadat et al. (2016) ANFIS 
P#200, LL, PI, wopt, w, Sr, qu, 

σ3, σd 
418 Cohesive Ohio soils 0.973 
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Kim et al. (2014) BPNN 

P#10, #40, #60, #200, Clay, 

Swell, Shrink, dmax, wopt, 

LL, PI, EI, σ1, σ3, θ 

27 Subgrade soils 0.86 

Nazzal and Tatari (2013) ANN-GA 
P#4, P#40, w, P#200, wopt, 

d, LL, dmax 
- Subgrade soils 0.92 

Park HI et al. (2009b) BPNN dmax, CU, P#200, σ3, σd 272 
subgrade soils and 

subbase materials 
0.982 

Where BPNN: backpropagation neural network; ANN: artificial neural network; GA: genetic algorithm; SVR: support vector 

regression; LSSVM: least square support vector machine; ANFIS: adaptive neuro-fuzzy inference system; BR: binder ratio, -; qu: 

unconfined compression strength, kPa; σc: confining pressure, kPa; σd: deviatoric stress, kPa; d: dry density, kg/m3; w: gravimetric 

water content, %; qc: cone tip resistance, -; fs: sleeve friction resistance, -; LL: liquid limit, %; PI: plastic index, %; P#4, #10, #40, 

#60, #200, and #3/8: percentage of soil particles passing through #4, #10, #40, #60, #200, and #3/8 sieve, respectively, %; wopt: 

optimum water content, %; Sr: degree of saturation, %; G: gravel percentage, %; S: sand percentage, %; FC: fines content, %; γdmax: 

maximum unit dry weight, -; RCM: recycled clay masonry; No.: number of F-T cycles, -; gs: gradation scale parameter, -: Ψ: shape 

parameter, -; Gs: specific gravity, -; CU: coefficient of uniformity, -; CC: coefficient of curvature, -; Q, Fel, Ca, C, and A: the 

proportions of quartz, feldspar, calcite, corund, and amorphous minerals, respectively; EI: erosion index, -; θ: bulk stress, kPa. 

 

 

2.6 Permanent deformation of waste rocks 

The permanent deformation of waste rocks can be caused by compaction, crushing and material 

migration under traffic loading (Tholen 1980; Lekarp 1999). The development of permanent 

deformation in unbound granular materials typically consists of two phases (Erlingsson et al. 2017). 

The permanent strain increases rapidly with loading cycles in the initial phases. This phase is 

usually characterized as post-compaction, which is accompanied by densification of the material, 

reduction in pore volume and volumetric change of the material (Werkmeister et al. 2004; El-

Basyouny et al. 2005). In the second phase, the deformation rate becomes more or less constant 

and is dominated by volume change (Werkmeister et al. 2004). The shakedown concept is typically 

used to describe the behavior of pavement materials under repeated loading (Werkmeister et al. 

2001; Werkmeister et al. 2004). Based on the shakedown theory, the evolution of permanent strain 
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with loading cycles can be classified into three categories (A, B or C). Werkmeister (2003) 

suggested the following criteria to define the shakedown boundaries based on the repeated load 

triaxial test results, which have been adopted in the European standard Cyclic Load Triaxial Test 

for Unbound Mixtures (EN 13286 2004). The shakedown categories of unbound granular materials 

depend on the applied stress levels (Werkmeister et al. 2004): 

Range A (plastic shakedown): (εp
5000-εp

3000)<0.045×10
-3

 

Range B (plastic creep): 0.045×10
-3

<(εp
5000-εp

3000)<0.4×10
-3

 

Range C (incremental collapse): (εp
5000-εp

3000)>0.4×10
-3

 

Where εp
5000 and εp

3000correspond to the accumulated permanent strains measured at the 5000th 

and 3000th loading cycles during the repeated load triaxial tests. 

In range A, the post-compaction is completed, and the material becomes stable with no further 

permanent strain after a finite number of load applications. In range B, the permanent strain rate 

decreases with the number of loads and progressively becomes very low and nearly constant. Yet, 

the permanent strain continues to accumulate but at a very slow rate. In range C, the permanent 

strain decreases very slowly compared to ranges A or B, and permanent strain continues to 

accumulate with load applications, ultimately leading to failure (Werkmeister 2003; EN 13286 

2004; Werkmeister et al. 2004). The shakedown categories are often used in pavement analysis and 

design (Collins and Boulbibane 1998, 2000; Tao et al. 2010). For highway engineering, materials 

falling in range A can be used provided the total accumulated strain is sufficiently small, materials 

in range B may be permitted for a limited number of load cycles (e.g. short term roads) while 

materials in range C are not authorized (Werkmeister et al. 2004). However, the applicability of 

shakedown theory and the corresponding criteria to haul roads need further investigations because 

of the specificities of haul roads, such as high stress levels, low-volume traffic, short-service-life, 

and relatively low running speed of mining trucks. 
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2.6.1 Measurement of permanent deformation 

Permanent deformation of pavement materials are generally measured using multistage repeated 

load triaxial tests (EN 13286 2004). The specimen is exposed to a series of consecutive stress paths 

of varying magnitudes to determine the maximum stress levels which should not be exceeded to 

avoid the development of excessive permanent deformations (EN 13286 2004). Applied stress 

levels in repeated load triaxial tests should cover the stress range to which the material will be 

subjected in the field (EN 13286 2004). There are two sets of stress levels (low stress level LSL 

and high stress level HSL) proposed in EN 13286-7 standard, the stress levels are divided into five 

sequences, with each sequence containing 5 or 6 stress paths with a constant confining pressure 

and different deviator stresses. Each stress path is applied for at least 10000 cycles. However, these 

two stress levels are developed for highways, and they are significantly lower than the stress states 

observed in mine haul roads. 

The repeated load triaxial test apparatus shall be able to apply the required cyclic loading to a 

cylindrical specimen with a diameter larger than 5 times the maximum particle size of the material, 

and a height twice the diameter (EN 13286 2004). The usual specimen diameter is lower than 

150 mm because of the limitation of test instruments. Few studies developed larger repeated load 

triaxial testing apparatus to measure the permanent deformation behavior of coarse-grained 

specimens, such as 300 mm in diameter and 600 mm in height (Nair and Latha 2012, 2015; Cao et 

al. 2021). In this study, a series of multistage repeated load triaxial tests with 150 mm and 300 mm 

specimen diameter were carried out on waste rocks to evaluate the permanent deformation behavior. 

The most traditional technique for measuring rut depth (permanent deformation) in the field is the 

straightedge method (Wang 2005). This method is simple and accurate if proper technique is used, 

but it is time-consuming and difficult to perform especially with limited traffic control (Hoffman 

and Sargand 2011). The mechanical profilometer or transverse profile beam also can be used for 
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measuring pavement surface permanent deformation in the field (Hoffman and Sargand 2011). This 

method can level each profile in a series to produce an interpolated, three-dimensional pavement 

profile (Hoffman and Sargand 2011). Laser rut measurement system can give immediate and 

accurate transverse profiles used for the detection and characterization of pavement rutting (Wang 

2005; Hoffman and Sargand 2011). The measured rutting measurement data can be viewed in real 

time, and this test method can be carried out at a normal traffic speed (Wang 2005; Hoffman and 

Sargand 2011). 

Heavy vehicle simulator, one type of accelerated pavement tests, can be used to evaluate the 

performance (including permanent deformation) of full-scale pavements in an accelerated manner, 

which can fill the important gap between mechanistic-empirical design models using laboratory 

materials testing characterization and real, long-term pavement performance monitoring and 

analysis data (Du Plessis et al. 2018). 

 

2.6.2 Factors affecting permanent deformation 

Lekarp (2000b) summarized the research on permanent deformation, and it was reported that 

permanent deformation of granular materials is affected by several factors such as stress condition, 

number of loading cycles, water content, density, and gradation. 

Stress condition is one of the most important factors affecting the permanent behaviour of granular 

materials (Lekarp et al. 2000b). Permanent strain generally increases with deviator stress, while it 

decreases as confining pressure increases (Morgan 1966). The permanent deformation of waste 

rocks is also directly related to the ratio of deviator stress to confining pressure (Lashine et al. 1971; 

Brown and Hyde 1975). Some studies tried to explain the permanent deformation using the ultimate 

shear strength, and the static failure line was considered as a boundary for permanent deformation 

(Gidel et al. 2001; Korkiala-Tanttu 2005). However, Lekarp and Dawson (1998) argued that 
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ultimate shear strength and stress levels that cause sudden failure were of no interest for the 

accumulation of permanent strain, since failure in granular materials under repeated loading was a 

gradual process and not a collapse as in static failure tests. 

The development of permanent deformation of granular materials is a gradual process with number 

of loading cycles, and the significance of number of loading cycles has been mentioned in the 

literature. The rate of increasing of permanent strain of waste rocks decreases significantly after a 

certain number of loading cycles, and an equilibrium state can be established in this case (Brown 

and Hyde 1975). This stabilization of granular materials generally can be achieved at low stress 

levels, while high stress levels can result in a continuous increasing of permanent strain (Barksdale 

1972). 

Water content also can affect permanent deformation, and a high degree of saturation could result 

in high pore pressure and low effective stress, and consequently low permanent deformation 

resistance (Barksdale 1972; Lekarp et al. 2000b). An increase in water content may result in a large 

increase of permanent strain even without generation of excess pore water pressure because of the 

lubricating effect of water in granular materials (Thom and Brown 1988). The increase of 

permanent deformation caused by wetting was also observed in the field (Maree et al. 1982). 

Permanent deformation resistance generally increases with density (Lekarp et al. 2000b). The 

increase of compaction effort can result in significant decrease of permanent deformation (Allen 

1973). The effect of density on permanent deformation may be more significant for angular 

aggregates than rounded aggregates since rounded aggregates have higher initial density for the 

same compaction effort (Holubec 1969). 

The uniform grading waste rocks without compaction generally have lower permanent deformation, 

while the effect of gradation on permanent deformation is limited when the materials are heavily 

compacted (Thom and Brown 1988). The permanent deformation could increase as the fines 

content increases (Thom and Brown 1988). Waste rocks with sharp particle edges or angular 
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particles are generally tended to have more grain abrasion, and thus high resistance to permanent 

deformation, while rounded particles tended to slip easily (Janoo 1998; Araya 2011). 

The climate conditions also can affect the permanent deformation behaviour of waste rocks. 

Permanent deformation generally increases gradually with the number of freeze-thaw cycles, and 

the first several cycles have the greatest impact (Li et al. 2013; Lu et al. 2019). The unbound 

granular materials at high water content subjected to freeze-thaw cycles may fail after thousands 

of loading cycles (Bilodeau et al. 2011). 

 

2.6.3 Descriptive models 

Several models were proposed in the literature to describe the permanent strain of unbound granular 

materials. These models are usually expressed as a function of number of loading cycles and other 

parameters such as deviator stress and mean bulk stress. Different modeling techniques from the 

literature and their mathematical expressions are reviewed in this section. 

Barksdale (1972) carried out a comprehensive study of the permanent behavior of base course 

materials using repeated load triaxial tests. Barksdale found that the accumulated permanent strain 

is proportional to the logarithm of the number of loading cycles and proposed the lognormal model: 

εp=a+blog(N)           2.38 

Where εp: permanent strain, -; a and b: regression coefficients, -; N: number of loading cycles, -. 

Sweere (1990) studied the long-term permanent response of granular materials after 106 loading 

cycles using repeated load triaxial tests. It was found that the lognormal model cannot fit the test 

results well, and Sweere proposed a log-log model for many loading cycles: 

εp=a𝑁b           2.39 

Wolff and Visser (1994) performed a series of full-scale heavy vehicle simulator tests to study the 
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permanent behavior after several million loading cycles. The test results showed that the permanent 

deformation can be divided into two phases, i.e., the initial phase of up to 1200000 loading cycles 

with rapid development of permanent deformation and constantly diminishing rate of increase. 

Sweere model failed to give a reliable fitting of permanent strain in this case, and Wolff and Visser 

developed a different stress-strain model with three regression coefficients a, b, and c: 

εp=(cN+a)(1-e-bN)          2.40 

Barksdale model, Sweere model, and Wolff and Visser model are relatively simple because these 

models only relate the permanent strain to the number of loading cycles. stress condition is one of 

the most important factors influencing the permanent behavior of granular materials (Lekarp et al. 

2000b), but these models do not take it into account, which may limit their applicability for fitting 

permanent strain caused by different stress paths. Some models were therefore proposed to 

combine the influence of the number of loading cycles and stress conditions on permanent strain 

(Gidel et al. 2001; Korkiala-Tanttu 2005; Rahman and Erlingsson 2015a), and these models are 

essentially improvements over previous models (Erlingsson and Rahman 2013). 

Gidel et al. (2001) proposed a model that combines the stress conditions, shear strength parameter, 

and the number of loading cycles: 

εp=ε0(1-(
N

100
)
-B

)(
Lmax

p
a

)
u

(m+
s

p
max

-
q

max

p
max

)
-1

       2.41 

Where ε0 , B , and u : regression material parameters, -; p
max

  and q
max

 : the maximum applied 

hydrostatic stress and deviator stress, respectively, kPa; p
a
: the reference stress, 100 kPa; m and 

s: the slope and the intercept of the Mohr-Coulomb failure line in the mean bulk stress p - deviator 

stress q space, respectively, and they are determined using static triaxial tests; Lmax in the model 

can be calculated using the following equation: 

Lmax=√p
max

2+q
max

2          2.42 
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Korkiala-Tanttu (2005) developed a model to describe the development of permanent strain using 

a power law function of the number of loading cycles. The impact of stress condition on permanent 

strain is taken into account in this model by introducing the shear stress ratio:  

εp=CNb R

A-R
           2.43 

Where C and b: regression parameters, -; A: the maximum theoretical shear stress ratio, and it is 

recommended to be 1.05; R is the shear stress ratio defined as follows: 

R=
q

q
f

            2.44 

q
f
=mp+s           2.45 

Rahman and and Erlingsson (2015a) proposed a model that directly takes into account the effect of 

stress condition on permanent strain by introducing the term Sf: 

εp=aNbSfSf           2.46 

Where a and b: regression parameters associated with the material, and the term Sf describes the 

effect of stress condition on permanent strain, and it is expressed as: 

Sf=
(q p

a
⁄ )

(p p
a

⁄ )
α           2.47 

Where α: a parameter determined using regression analysis, and it is generally recommended to 

be 0.75. 

However, the permanent deformation models mentioned above were initially developed to fit 

permanent strain of a single stress path in repeated load triaxial tests. The models can be extended 

using time hardening approach to fit the accumulated permanent strain measured by multistage 

repeated load triaxial tests. Time hardening approach has been widely used for fitting accumulated 

permanent strain through considering the effect of stress history (Lytton et al. 1993; Zhou et al. 

2010; Erlingsson and Rahman 2013; Mohammadinia et al. 2020; Li et al. 2021). More details about 
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the application of time hardening approach for permanent deformation models can be found in 

section 3.6. The applicability of these models (extended using time hardening approach) to waste 

rocks was evaluated, and the Rahman and Erlingsson model was particularly used to fit all the 

measured permanent deformation data in this study. 

 

2.6.4 Predictive models 

Multistage repeated load triaxial tests can be time consuming, sophisticated, and expensive, 

especially when up to 30 stress paths are used, each applied for 10000 cycles (EN 13286 2004; 

Saberian et al. 2020). Waste rocks also require larger and more specific equipment to accommodate 

larger particles and greater stresses (Mishra et al. 2013; Qian et al. 2014; Sun et al. 2014). 

Conducting lots of permanent deformation tests may result in delay in the progress of the project 

and lead to escalation of the project cost. However, the prediction of permanent deformation is a 

very complex process and the development of prediction model based on the laws of geomechanics 

is very difficult because of highly heterogeneous nature of aggregate particles and testing 

environments (Ullah et al. 2020). Therefore, there are very few prediction models available that is 

expressed as a function of easily determinable parameters. The common used method is to calibrate 

the regression parameters of the descriptive models (see section 2.6.3) by fitting test results, and 

then using them to extrapolate the permanent deformation of soils subjected to different stress 

conditions and loading cycles (Rahman and Erlingsson 2015a; Erlingsson et al. 2017; Zhang, Peng, 

et al. 2020). However, this prediction method still needs to conduct some permanent deformation 

tests, and the accuracy of this method heavily relies on the fitted experimental data. 

Machine learning method is therefore used to develop prediction models for permanent 

deformation (Ullah et al. 2020). Artificial neural network (ANN) is the most common used 

algorithm in the literature, for example, Ghorbani et al. (2020a) developed an artificial neural 

network model for predicting permanent strain of demolition wastes. The machine learning models 
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usually exhibit reliable prediction accuracy. However, the materials used in the literature are 

different from waste rocks, which prevents a direct application of the machine learning models to 

waste rocks in this study. 

 

 

2.7 Knowledge frontiers 

The shear strength, CBR, resilient modulus, and permanent deformation are important properties 

for the mine haul road design (section 2.2.2). However, the literature review presented above has 

shown that relevant research on the mechanical properties of waste rocks from hard rock mine is 

relatively limited, especially for mine haul roads that are subjected to significantly different traffic 

loading compared to highways. The present project therefore focused on the measurement (in the 

laboratory), the description, and the prediction of the mechanical properties of waste rocks for mine 

haul roads. Also, the existing laboratory test procedures and standards (sections 2.5.1 and 2.6.1) 

were evaluated and modified to better apply to waste rocks. The impacting factors on the 

mechanical properties of waste rocks were also quantified. The results of this study will be helpful 

to complement and specify the abundant literature summarized above, and more precisely to 

understand the mechanical behaviour of waste rocks under heavy mine truck loading, to improve 

the performance of mine haul roads, and to valorise waste rocks in such infrastructures.
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 EXPERIMENTAL METHODOLOGY 

3.1 Sampling and origin of waste rocks 

Canadian Malartic Mine is an open pit gold mine located in the Abitibi region, in Quebec province, 

Canada. Mining operations produce large quantities of waste rocks, and the waste rocks have been 

used to build the mine haul roads at this mine. Waste rocks are also crushed because the original 

waste rock particles can exceed 1 m which limits its valorization in practice. A total of 1.5 tons (4 

barrels) of waste rocks were sent to Polytechnique Montreal in August 2019. The received 

materials were categorized into two groups, i.e., 2 barrels were crushed waste rocks with 25 mm 

maximum particle size and 2 barrels were uncrushed waste rocks with 60 mm maximum particle 

size. Received waste rocks were wet and heterogeneous, and were therefore first dried (at room 

temperature, using fans) and sieved into different portions for their storage and the preparation of 

homogeneous samples in the laboratory. The crushed and uncrushed waste rocks are generally used 

to construct the wearing course and base/subbase course, respectively (Figure 3.1). 

Particle shape index test, mineralogy test, specific gravity, and modified Proctor test were carried 

out on crushed waste rocks to determine the basic physical properties. CBR tests (standard and 

repeated load) and triaxial tests (monotonic and repeated load) were conducted on crushed waste 

rocks to evaluate the applicability of test approaches and standards, and the effect of gradation and 

climatic factors on the mechanical properties (CBR, shear strength, stiffness, and permanent 

deformation). Large-scale triaxial tests (monotonic and repeated load) were carried out on 

uncrushed waste rocks to study the mechanical properties of coarse-grained materials, and the 

effect of maximum particle size, gradation, compaction effort, and water content. 
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Figure 3.1: Mine haul roads at Canadian Malartic Mine (2019); the wearing course was constructed 

using crushed waste rocks and the base course was constructed using uncrushed waste rocks. 

 

 

3.2 Characterization of waste rocks 

3.2.1 Particle size distribution 

The particle size distribution curves of both crushed and uncrushed waste rock samples were 

determined using sieving (ASTM C136/C136M, 2019) (Figure 3.2). The mesh sizes of the sieves 

used were 0.075 mm, 1.19 mm, 2 mm, 2.38 mm, 3.36 mm, 4.75 mm, 8 mm, 9.5 mm, 14 mm, 

19 mm, 25 mm, and 40 mm. 

Crushed waste rocks contained around 69% of gravel (> 4.75 mm), 27% of sand (< 4.75 mm) and 

4% of fines (< 0.075 mm), and were therefore classified as a poorly graded gravel (GP) (USCS; 
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(ASTM D2487 2017). Particles larger than 19 mm accounted for around 5% in weight in crushed 

waste rocks. The D10 and CU of crushed waste rocks were 0.4 mm and 25.5, respectively. 

Uncrushed waste rocks were composed of 80% of gravel, 15% of sand and 5% of fines, and they 

were also classified as a poorly graded gravel corresponding to the symbol GP. The D10 and CU of 

uncrushed waste rocks were 0.7 mm and 38.6, respectively. 

 

 

Figure 3.2: Particle size distributions of crushed and uncrushed waste rocks, and the maximum 

particle size for crushed and uncrushed waste rocks were 25 mm and 60 mm, respectively. 

 

3.2.2 Particle shape 

The Elongation index and Flakiness index of coarse particles (> 6.3 mm) were measured using 

length gauge and thickness gauge according to IS 2386 standard (IS 2386 1963). The elongation 

index represents the percentage by weight of particles whose greatest dimension (i.e., length) is 
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greater than 1.8 times the mean dimension (mean sieve size). The flakiness index corresponds to 

the percentage by weight of particles whose smallest dimension (i.e., thickness) is less than 0.6 

times the mean dimension (mean sieve size). The measured Elongation index and Flakiness index 

of crushed waste rocks were 38.56±1.62% and 34.95±2.08%, respectively. 

 

3.2.3 Mineralogy 

The mineralogy of the crushed waste rocks was measured using X-ray diffraction (XRD; Bruker 

A.X.S. Advance D8 at UQAT laboratory). Three samples were prepared and analyzed. Waste rocks 

were mainly composed of quartz (23-28%), albite (34-43%), muscovite (10-12%), chlorite (6-8%), 

corundum (5-8%), and diopside (5-8%). Waste rocks also contained a small fraction of sulfides (1% 

of pyrite) but were considered non-acid generating because of the presence of a significant 

buffering capacity (Tremblay and Hogan 2001; Golder 2019). The detailed test results can be found 

in APPENDIX A. 

 

3.2.4 Specific gravity 

The specific gravity of crushed waste rock particles smaller and larger than 4.75 mm was measured 

using ASTM C127 (2015) and ASTM D854 (2014) standards, respectively. The measured specific 

gravity of particles larger and smaller than 4.75 mm was 2.71 and 2.75, respectively. The water 

absorption of particles larger than 4.75 mm was also estimated during the specific gravity test, and 

it was 0.41%. 
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3.2.5 Compaction properties 

The moisture-density relationship of crushed waste rocks was measured using modified effort 

Proctor compaction tests (ASTM D1557-12e1, 2012). Particles larger than 19 mm were removed 

(sieved) to accommodate the sample to the 152.4 mm diameter Proctor mold. The maximum 

attainable degree of saturation was around 85%; above, water would leak out of the sample during 

compaction. The optimum water content was 5.6%, for a corresponding maximum dry density of 

2334 kg/m3 (Figure 3.3). 

 

 

Figure 3.3: The modified Proctor test results (moisture-density relationship) for crushed waste 

rocks; the optimum water content and maximum dry density was 5.6% and 2334 kg/m3, 

respectively. 
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3.3 California Bearing Ratio (CBR) tests 

3.3.1 Standard CBR tests (ASTM D1883) 

CBR tests were conducted using a 100 kN loading frame. A 50 kN load cell, located under the 

frame beam, was used to measure applied load, and a 50 mm linear variable differential transformer 

(LVDT) was used to measure displacements (Figure 3.4). A 49.63 mm diameter circular plunger 

penetrated a compacted specimen of 152.4 mm diameter and 127 mm height. The penetration rate 

of plunger was maintained constant at 1.3 mm/min. The tests continued until 10 mm of penetration 

or until the load limit of the equipment was reached (with a minimum of 5.08 mm penetration). 

The stress corresponding to a penetration of 5.08 mm was then compared to the standard value 

10 MPa given in the ASTM D1883 standard (2016) to determine the CBR of crushed waste rocks. 

In this research, four CBR tests were carried out to evaluate the effect of wetting-drying cycles on 

CBR value of crushed waste rocks. The particles larger than 19 mm were removed (sieved) to 

accommodate the CBR mold size (diameter = 152.4 mm). All the CBR specimens were prepared 

with 4% of initial gravimetric water content, and using modified compaction effort (ASTM D1883 

2016). Specimens were subjected to 0, 5, 10, and 15 wetting-drying cycles. One wetting-drying 

cycle corresponded to the immersion of the specimen in water (allowing the free access of water 

to the top and bottom of specimens) at room temperature (20 ℃) for 72 hours followed by drying 

at room temperature using a fan for 72 hours. The specimens were subjected to a surcharge load of 

4.54 kg during wetting-drying cycles. Swelling during wet-dry cycles was recorded. More details 

about these CBR tests can be found in Chapter 8. 
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Figure 3.4: CBR test apparatus in Research Institute of Mines and Environment (RIME); it consists 

of a loading frame, linear variable differential transformer (LVDT), load cell, plunger (or piston), 

stabilizing bar, and a waste rock specimen. 

 

3.3.2 Repeated load CBR test 

Repeat load CBR tests were carried out using the same apparatus (including the plunger and mold) 

as the standard CBR tests (section 3.3.1) to estimate stiffness and permanent deformation of 

crushed waste rocks (Figure 3.4). The vertical deformation was considered equal to the vertical 

displacement of the plunger during loading and unloading and measured by the LVDT. The axial 

vertical load was measured using the load cell. Repeated load CBR tests were performed in the 

load-controlled mode. A total of 39 repeated load CBR tests were carried out in this project. 

Stiffness (equivalent modulus): the stiffness of crushed waste rocks was evaluated using 32 
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repeated load CBR tests. Two sets of cyclic loading sequences were defined for repeated load CBR 

tests to study the stiffness of crushed waste rocks, i.e., a low stress level (LSL) sequence developed 

for civil engineering (highways) (AASHTO T307 2017) and a high stress level (HSL) specifically 

developed in this study to represent mining engineering applications (mine haul roads) more 

realistically (Table 3.1). The LSL cyclic loading sequences were based on the AASHTO T307 

standard procedures developed for repeated load triaxial tests (AASHTO T307 2017), and the HSL 

cyclic load sequences were based on the typical stress levels observed on mine haul roads. A total 

of 100 cycles were applied for each stress path. The tested specimens were prepared with different 

initial gravimetric water contents (2%, 3%, 4%, 5%, 6%, 7%, and 8%) to investigate the impact of 

dry density on stiffness (Table 3.2). Different compaction energies were also used to prepare 

specimens, i.e., standard effort (STD), 600 kN-m/m3 (ASTM D698 2012) and modified effort 

(MOD), 2700 kN-m/m3 (ASTM D1557 2012). An alternative compaction method (MOD 81) was 

also used in this study. MOD 81 compaction used a modified effort hammer (44.48 N), but with 81 

blows per layer (instead of 56 blows; the rest of the test being identical to ASTM D1557-12e1 

(2012). The objective of MOD 81 was to simulate a higher compaction energy (3905 kN-m/m3) 

which was more representative of field conditions. The influence of contact stress on tested 

stiffness was studied by using 2%, 5%, 10%, and 15% of maximum axial stress (Table 3.2). The 

impact of loading frequency on measured stiffness of crushed waste rocks was studied by using 

different loading frequency 0.1, 0.3, 0.5, and 0.7 Hz for repeated load CBR tests. Two types of 

loading waveforms, i.e., haversine waveform and square waveform, were used to investigate the 

effect of loading waveforms on measured stiffness. Soaking and drying specimens were also 

prepared and tested to evaluate the stiffness corresponding to the most unfavorable field conditions 

in situ. The soaking and drying specimens were prepared using modified compaction effort. More 

details about these tests can be found in Chapter 4. 
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Table 3.1: Cyclic loading sequences (including different maximum axial stress MAS) used for 

repeated load CBR tests. Low stress level (LSL) and high stress level (HSL) correspond to the 

stress state for highways and mine haul roads, respectively. 

LSL  HSL  

Stress path MAS, kPa  Stress path MAS, kPa 

1 100  1 200 

2 300  2 700 

3 500  3 1200 

4 700  4 1700 

5 900  5 2200 

6 1100  6 2700 

   7 3200 

   8 3700 

   9 4200 

   10 4700 

   11 5200 

 

Table 3.2: Properties of repeated load CBR tests specimens. SC: stress conditions; w: initial water 

content; Fre.: loading frequency; LW: loading waveform; CS: contact stress; LSL: low stress level; 

HSL: high stress level; CE: compaction effort; MOD: modified compaction effort; STD: standard 

compaction effort; MOD 81: compaction effort with 81 blows per layer; H: haversine waveform; 

S: square waveform. 

No. SC w (%) Fre. (Hz) CS (%) CE LW Duplicates 

1 LSL 4 0.3 2 MOD H 2 

2 LSL 4 0.3 5 MOD H 1 

3 LSL 4 0.3 10 MOD H 3 

4 LSL 4 0.1 10 MOD H 2 

5 LSL 4 0.3 15 MOD H 3 

6 LSL 4 0.3 10 MOD S 2 

7 LSL 4 0.5 10 MOD H 2 

8 LSL 4 0.7 10 MOD H 2 

9 LSL 2 0.3 10 MOD H 1 

10 LSL 3 0.3 10 MOD H 1 

11 LSL 5 0.3 10 MOD H 1 

12 LSL 6 0.3 10 MOD H 1 



 

 

69 

13 LSL 7 0.3 10 MOD H 1 

14 LSL 8 0.3 10 MOD H 1 

15 LSL 4 0.3 10 STD H 1 

16 LSL 4 0.3 2 MOD S 1 

17 LSL 4 0.3 10 MOD 81 H 1 

18(soaked) LSL 4 0.3 10 MOD H 1 

19(dried) LSL 4 0.3 10 MOD H 1 

20 HSL 4 0.3 10 MOD H 3 

21 HSL 4 0.3 15 MOD H 1 

 

Permanent deformation: the permanent deformation behavior of crushed waste rocks was 

evaluated using three repeated load CBR tests. In these tests the maximum axial plunger stress 

varied from 100 to 4000 kPa. Specimens were compacted using modified effort 2700 kN-m/m3 

(ASTM D1883 2016) and with an initial gravimetric water content of 4%. Each stress path was 

applied either 6000, 3000 or 1000 times, to evaluate the permanent deformation behavior of 

crushed waste rocks. More details about permanent deformation tests can be found in Chapter 5. 

Effect of wetting-drying cycles: the effect of wetting-drying cycles on stiffness and permanent 

deformation was also investigated using four repeated load CBR tests. Four specimens were 

prepared to evaluate the effect of wetting and drying cycles. Specimens were prepared with an 

initial gravimetric water content of 4%, and using modified compaction effort (ASTM D1883, 

2016). The wetting and drying process was same as for standard CBR tests, i.e., the immersion of 

the specimen in water (allowing the free access of water to the top and bottom of specimens) at 

room temperature (20 ℃) for 72 hours followed by drying at room temperature using a fan for 72 

hours. The specimens were subjected to 0, 5, 10, and 15 wetting and drying cycles. More details 

about these tests can be found in Chapter 8. 
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3.4 Triaxial tests 

3.4.1 Monotonic triaxial test 

Consolidated drained monotonic triaxial tests were carried out to measure the shear strength (peak 

deviator stress) of crushed waste rocks (ASTM D7181 2020). Monotonic triaxial tests were 

conducted following repeated load triaxial tests, so these tests were post-cyclic monotonic triaxial 

tests. The unpaved mine haul roads are compacted extremely in the field because of the traffic 

loading of heavy mining trucks. Post-cyclic monotonic triaxial tests are therefore considered 

appropriate to evaluate the realistic shear strength of waste rocks in haul roads. Triaxial tests were 

carried out using a 100 kN loading frame and 1000 kPa stress controllers. A 50 kN load cell and a 

50 mm LVDT completed the setup (Figure 3.5). Specimens were 150 mm in diameter and 300 mm 

in height, and the waste rock particles larger than 19 mm were removed. All the specimens were 

prepared using modified compaction effort (2700 kN-m/m3) (ASTM D1557 2012). Specimens 

were sheared at a constant axial rate of 0.015 mm/sec, and the deviator stress was recorded during 

shear process. A total of 23 crushed waste rocks specimens were prepared and tested to determine 

the Mohr-Coulomb envelope, and to assess the effect of gradation and freeze-thaw cycles on the 

shear strength of crushed waste rocks. 
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Figure 3.5: Triaxial test setup used in RIME; it consists of a loading frame, linear variable 

differential transformer (LVDT), load cell, triaxial cell, pressure controllers, a waste rock specimen, 

and a computer. 

 

Mohr-Coulomb envelope: six monotonic triaxial tests were conducted under different confining 

pressures (i.e. 50 (duplicate), 100, 135, 200, and 300 kPa) to determine the Mohr-Coulomb 

envelope. The testing specimens were prepared at 4% initial gravimetric water content. More 

details about these six tests can be found in Chapter 5. 

Effect of gradation: nine monotonic triaxial tests were conducted to study the effect of gradation 

on shear strength of crushed waste rocks under 50 kPa of confining pressure. The specimens for 

these nine tests were prepared at an initial gravimetric water content of 4%. Specimens’ gradations 

were different, and the gravel-to-sand ratio and fines content were altered. Specimens’ properties 

are summarized in Table 3.3. More details about these tests can be found in Chapter 6. 
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Table 3.3: Physical properties of crushed waste rocks specimens for various gradations; 𝜌𝑑: dry 

density; Dmax: maximum particle size; CU: coefficient of uniformity; CC: coefficient of curvature; 

D60: 60% of the soil particles are finer than this size; D30: 30% of the soil particles are finer than 

this size; D10: 10% of the soil particles are finer than this size; PG: percentage of gravel; PS: 

percentage of sand; GS: gravel-to-sand ratio; FC: fines content. 

No. 

𝜌𝑑 Dmax CU CC D60 D30 D10 PG PS GS FC 

kg/m3 mm - - mm mm mm % % - % 

1 2108 4.75 16.92 0.98 2.2 0.53 0.13 0 96.25 0 3.75 

2 2259 19 23.53 2.88 4.0 1.4 0.17 32.08 64.17 0.5 3.75 

3 2299 19 39.47 3.09 7.5 2.1 0.19 48.13 48.13 1.0 3.75 

4 2276 19 36.00 3.48 9.0 2.8 0.25 57.75 38.5 1.5 3.75 

5 2211 19 27.63 4.42 10.5 4.2 0.38 67.08 29.17 2.3 3.75 

6 2190 19 23.00 5.26 11.5 5.5 0.5 72.19 24.06 3.0 3.75 

7 2240 19 76.92 12.31 10.0 4.0 0.13 66.21 28.79 2.3 5.0 

8 2311 19 40.00 5.18 10.0 3.6 0.25 64.12 27.88 2.3 8.0 

9 2304 19 237.50 20.632 9.5 2.8 0.04 61.33 26.67 2.3 12.0 

 

Effect of freeze-thaw cycles: eight monotonic triaxial tests were carried out to study the effect of 

freeze-thaw cycles on shear strength of crushed waste rocks under 50 kPa confining pressure. The 

eight specimens were prepared using modified compaction effort and were subjected to different 

freeze-thaw cycles (0-16). One freeze-thaw cycle consisted in placing a specimen in a temperature-

controlled freezer with a constant temperature of -20 ℃ for 24 hours, and then moving it to a room 

with a temperature of 20 ℃ for 24 hours. A temperature of -20 ℃ is common in the literature 

(Tian et al. 2019; Zou et al. 2020) and was also considered representative of field conditions in 
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Canada. Tests information is summarized in Table 3.4 and more details can be found in Chapter 8. 

 

Table 3.4: Physical properties of specimens subjected to different freeze-thaw cycles; w0: initial 

gravimetric water content. 

No. No. of freeze-thaw cycles w0 (%) Dry density (kg/m3) 

1 0 4 2217 

2 2 4 2220 

3 4 4 2225 

4 7 4 2226 

5 10 4 2230 

6 16 4 2226 

7 10 2 2226 

8 10 5 2223 

 

3.4.2 Repeated load triaxial test 

Repeated load triaxial tests were carried out using the same apparatus as the monotonic triaxial 

tests. The objective was to evaluate the resilient modulus and permanent deformation of crushed 

waste rocks under drained conditions (Figure 3.5). The tests were conducted using haversine 

loading pulses with no rest period and with a 0.2-0.3 Hz loading frequency. A total of 22 repeated 

load triaxial tests were carried out on crushed waste rocks in this study. 

Effect of stress levels on resilient modulus: two repeated load triaxial tests were conducted to 

evaluate the effect of stress levels on the resilient modulus of crushed waste rocks (AASHTO T307 

2017). Two stress levels, i.e., low stress level (LSL) and high stress level (HSL) simulated the stress 

conditions in highways and mine haul roads, respectively. LSL and HSL testing sequences 

consisted of a succession of combinations of axial and confining stresses. LSL testing sequence 

was based on AASHTO T307 standard (2017), which was initially proposed for highway design. 

The maximum axial stress in LSL was varying from 20.7 to 275.8 kPa and confining pressure was 
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between 20.7 and 137.9 kPa (Table 3.5). The stress level proposed in AASHTO T307 protocol was, 

however, significantly lower than the tire pressure of haul trucks expected on mine sites (often 

around 1000 kPa ("Electric drive mining truck 960e-2k"). HSL stress combinations of axial and 

confining stresses were therefore proposed in this study to evaluate the resilient behavior of crushed 

waste rocks under conditions more representative of heavy haul trucks (Table 3.5). In HSL, the 

maximum axial stress and confining pressure were between 80 and 2000 kPa, and between 100 and 

1000 kPa, respectively. A total of 100 cycles were applied for each stress path (except during the 

conditioning stress path which was made of 500 cycles), with a haversine shaped loading pulse and 

a frequency of 0.3 Hz, for both LSL and HSL tests. Two specimens were prepared for LSL and 

HSL tests using modified compaction effort (2700 kN-m/m3) and an initial gravimetric water 

content of 4%. The resilient modulus was defined and calculated as the ratio of the cyclic deviator 

stress to the recoverable axial strain (AASHTO T307 2017). More details about these tests can be 

found in Chapter 4. 

 

Table 3.5: Low stress level (LSL) and high stress level (HSL) testing sequences for repeated load 

triaxial tests; the cyclic loading parameters include confining pressure (CP), maximum axial stress 

(MAS), and cyclic stress (CYS). 

LSL  HSL 

No. 
CP MAS CYS CS  

No. 
CP MAS CYS CS 

(kPa)  (kPa) 

0 103.4 103.4 93.1 10.3  1 100 80 72 8 

1 20.7 20.7 18.6 2.1  2 100 150 135 15 

2 20.7 41.4 37.3 4.1  3 100 200 180 20 

3 20.7 62.1 55.9 6.2  4 300 240 216 24 

4 34.5 34.5 31.0 3.5  5 300 450 405 45 

5 34.5 68.9 62.0 6.9  6 300 600 540 60 

6 34.5 103.4 93.1 10.3  7 500 400 360 40 

7 68.9 68.9 62.0 6.9  8 500 750 675 75 

8 68.9 137.9 124.1 13.8  9 500 1000 900 100 
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9 68.9 206.8 186.1 20.7  10 700 560 504 56 

10 103.4 68.9 62.0 6.9  11 700 1050 945 105 

11 103.4 103.4 93.1 10.3  12 700 1400 1260 140 

12 103.4 206.8 186.1 20.7  13 900 720 648 72 

13 137.9 103.4 93.1 10.3  14 900 1350 1215 135 

14 137.9 137.9 124.1 13.8  15 900 1800 1620 180 

15 137.9 275.8 248.2 27.6  16 1000 800 720 80 

      17 1000 1500 1350 150 

      18 1000 2000 1800 200 

 

Effect of stress levels on permanent deformation: three repeated load triaxial tests were 

conducted to evaluate the effect of stress levels on the permanent deformation of crushed waste 

rocks (EN 13286 2004). Three different stress levels, i.e., low stress level (LSL), high stress level 

(HSL), and high stress level for mining (HSLM), were used for this study (Table 3.6). LSL and 

HSL are proposed in European Standard 13286 (2004), which consist of five sequences, and each 

sequence contains 5 or 6 stress paths with a constant confining pressure and different deviator 

stresses (Table 3.6). A total of 10000 loading cycles were applied for each stress path. HSLM was 

specifically defined in this study to represent typical stress conditions within mine haul roads. 

HSLM was divided into 4 sequences, and each of these sequences contained 4 stress paths 

characterized by a constant confining pressure but different deviator stresses (Table 3.6). The 

confining pressure and deviator stress ranged from 80 to 550 kPa, and from 100 to 1500 kPa, 

respectively. In total, 6000 loading cycles were applied for each stress path in HSLM tests. The 

number of cycles was smaller than in the standard since mine haul roads are typically low-volume 

roads. The three specimens were prepared using modified compaction effort (2700 kN-m/m3) with 

an initial gravimetric water content of 4%. More details about these three tests can be found in 

Chapter 5. 

 

Table 3.6: Stress levels with different confining stress σ3 and deviator stress σd for repeated load 
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triaxial tests; LSL and HSL are prescribed by the European Standard (EN 13286 2004), and HSLM 

was defined in this study for mining applications (see text for details). 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 

σ3, kPa σd, kPa σ3, kPa σd, kPa σ3, kPa σd, kPa σ3, kPa σd, kPa σ3, kPa σd, kPa 

LSL 

20 20 45 60 70 80 100 100 150 100 

20 40 45 90 70 120 100 150 150 200 

20 60 45 120 70 160 100 200 150 300 

20 80 45 150 70 200 100 250 150 400 

20 100 45 180 70 240 100 300 150 500 

20 120 45 210 70 280 100 350 150 600 

HSL 

20 50 45 100 70 120 100 200 150 200 

20 80 45 180 70 240 100 300 150 300 

20 110 45 240 70 320 100 400 150 400 

20 140 45 300 70 400 100 500 150 500 

20 170 45 360 70 480 100 600 150 600 

20 200 45 420 70 560     

HSLM 

80 100 200 300 350 400 550 600   

80 200 200 500 350 700 550 900   

80 300 200 700 350 1000 550 1200   

80 400 200 900 350 1300 550 1500   

 

Effect of gradation: the effect of gradation on resilient modulus and permanent deformation was 

studied using nine additional repeated load triaxial tests. These repeated load triaxial tests used the 

same specimens with the monotonic triaxial tests for the gradation study, and the information of 

specimen preparation can be found in section 3.4.1 and Table 3.3. More details about these nine 

tests can be found in Chapter 6. 

Effect of freeze-thaw cycles: the effect of freeze-thaw cycles on the resilient modulus and 

permanent deformation was evaluated using eight repeated load triaxial tests. These repeated load 

triaxial tests used the same specimens with the monotonic triaxial tests for the effect of freeze-thaw 



 

 

77 

cycles, and the information of specimen preparation can be found in section 3.4.1 and Table 3.4. 

More details about these eight tests can be found in Chapter 8. 

 

 

3.5 Large-scale triaxial tests 

3.5.1 Monotonic triaxial test 

Large-scale post-cyclic monotonic triaxial tests were carried out on 600 mm high and 300 mm 

diameter uncrushed (coarse-grained) waste rock samples. These tests were consolidated drained 

tests for the evaluation of shear strength (peak deviator stress) (ASTM D7181 2020). The testing 

apparatus mainly consisted of a load frame (250 kN), a triaxial cell (2000 kPa), a load cell (100 kN), 

a linear strain conversion transducer (LSCT, 100 mm of measurement range), and a cell pressure 

controller (2000 kPa), a back pressure controller (2000 kPa) (Figure 3.6). The load cell and LSCT 

was used to record the axial load and axial deformation, respectively. The cell pressure controller 

was used to maintain the confining pressure as applied during triaxial tests. A hammer was 

especially designed for compacting the large waste rock samples in this study. The hammer was 

made of a 5 kg rammer dropped from a height of 1 m, and the diameter of the baseplate surface 

was 160 mm. The compaction energy produced by one blow of this hammer was 2.5 times the 

energy caused by modified Proctor hammer (ASTM D1557 2012). The samples were sheared at a 

constant axial rate of 0.02 mm/sec under a constant confining pressure of 50 kPa, and the deviator 

stress was recorded during the shear process. 
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Figure 3.6: Large-scale triaxial test setup in RIME; it consists of a loading frame, linear strain 

conversion transducer (LSCT), load cell, triaxial cell, pressure controllers, water tank, and a waste 

rock specimen. 

 

A total of 12 large-scale monotonic triaxial tests were carried out to study the effect of maximum 

particle size, gravel-to-sand ratio, fines content, compaction effort, and water content on shear 

strength of coarse-grained waste rocks. All the waste rock samples were prepared with five layers 

of 12 cm, each compacted with 31 (180 kJ/m3), 62 (360 kJ/m3), or 93 (540 kJ/m3) blows of the 

hammer corresponding different compaction effort. The maximum particle size was 25, 40, and 

60 mm, respectively. The fines content and gravel-to-sand ratio varied from 0% to 5% and 10%, 

and varied from 1 to 3, 5, and 8, respectively. The influence of water content on mechanical 
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properties of waste rock samples was investigated by using 1%, 2%, and 4% of initial gravimetric 

water content to prepare the samples. The information of tested specimens is summarized in Table 

3.7. More details about the large-scale monotonic triaxial tests can be found in Chapter 7. 

 

Table 3.7: The tested waste rock samples and the corresponding physical properties including dry 

density 𝜌𝑑 (kg/m3), D10 (mm), D30 (mm), D60 (mm), coefficient of curvature CC (-), coefficient of 

uniformity CU (-), compaction effort C (kJ/m3), maximum particle size Dmax (mm), gravel-to-sand 

ratio GS (-), fines content FC (%), and water content w (%). 

No. 𝜌𝑑 D10 D30 D60 CC CU C Dmax GS FC w 

kg/m3 mm mm mm - - kJ/m3 mm - % % 

1 2008 0.7 8.5 27 3.8 38.6 360 60 5 5 2 

2 1990 0.25 5.7 18 7.2 72.0 360 40 3.7 6.8 2 

3 2115 0.1 3.7 10 13.7 100.0  360 25 2.5 9 2 

4 2061 0.17 2.2 9 3.2 52.9 360 60 1 5 2 

5 2037 0.25 5 22 4.5 88.0 360 60 3 5 2 

6 1939 1.8 9.5 28 1.8 15.6 360 60 8 5 2 

7 1932 2.5 9.5 28 1.3 11.2  360 60 5 0 2 

8 2023 0.075 7 25 26.1 333.3 360 60 5 10 2 

9 1876 0.7 8.5 27 3.8 38.6 180 60 5 5 2 

10 2018 0.7 8.5 27 3.8 38.6 540 60 5 5 2 

11 2004 0.7 8.5 27 3.8 38.6  360 60 5 5 1 

12 2017 0.7 8.5 27 3.8 38.6  360 60 5 5 4 

 

3.5.2 Repeated load triaxial test 

Large-scale repeated load triaxial tests were carried out to investigate the effect of maximum 

particle size, gravel-to-sand ratio, fines content, compaction effort, and water content on resilient 

modulus and permanent deformation of uncrushed waste rocks. These tests were conducted under 

drained conditions. The repeated load triaxial test apparatus was same with the monotonic triaxial 

tests. A total of four successive stress paths were applied on waste rock samples with increasing 
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deviator stresses and confining pressures (Table 3.8). The confining pressure varied from 45 to 

150 kPa and the deviator stress ranged from 120 to 320 kPa. Each stress path was applied for 3000 

cycles with a frequency of 0.025 Hz with no rest period. All tests were performed in a stress-

controlled mode using haversine loading pulses. The axial deformation and load were recorded 

during repeated load triaxial tests, and the resilient modulus (the ratio of deviator stress to 

recoverable axial strain; (AASHTO T307 2017)) and permanent strain were then calculated for 

each cycle. A total of 12 repeated load triaxial tests were conducted. These repeated load triaxial 

tests used the same specimens with the large-scale monotonic triaxial tests on uncrushed waste 

rocks, and the information of specimen preparation can be found in section 3.5.1 and Table 3.7. 

More details about the large-scale repeated load triaxial tests can be found in Chapter 7. 

 

Table 3.8: Stress paths applied in large-scale repeated load triaxial tests; σ3: confining pressure, 

kPa; σd: deviator stress, kPa. 

Stress path 1 2 3 4 

σ3, kPa 45 70 100 150 

σd, kPa 120 160 200 320 

 

A total of 112 laboratory tests (including CBR and triaxial tests) were conducted to measure the 

CBR, shear strength, stiffness, and permanent deformation of crushed and uncrushed waste rocks 

from Canadian Malartic Mine. All the laboratory tests information in this project is summarized in 

Table 3.9, including the test type, specimen size, tested materials, number of tests, and the 

corresponding Chapter that the test results are presented. 

 

Table 3.9: Summary of the laboratory tests on crushed and uncrushed waste rocks in this project; 

ϕ: specimen diameter, mm; h: specimen height, mm. 
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Test type Specimen size (ϕ×h) Material No. Chapter 

Standard CBR 152.4×127 mm Crushed 4 8 

Repeated load CBR 152.4×127 mm Crushed 39 4, 5, and 8 

Monotonic triaxial 150×300 mm Crushed 23 5, 6, and 8 

Repeated load triaxial 150×300 mm Crushed 22 4, 5, 6, and 8 

Large-scale monotonic triaxial 300×600 mm Uncrushed 12 7 

Large-scale repeated load triaxial 300×600 mm Uncrushed 12 7 

 

 

3.6 Regression model fitting 

MR-θ model (Eq. 2.25 in section 2.5.3) and MEPDG model (Eq. 2.28 in section 2.5.3) were used 

to fit the measured resilient modulus of waste rocks by minimizing the coefficient of determination 

R2 calculated on the resilient modulus, and the model coefficients were calibrated. The fitting 

results were presented in Chapter 4, 6, 7, and 8. The correlations between the model coefficients 

and gradation and climatic factors were also investigated, which could be used to estimate the 

resilient modulus of waste rocks in the field (see Chapter 6 and 8). 

The applicability of the descriptive models of permanent deformation (in section 2.6.3) to waste 

rocks was evaluated in Chapter 5. Gidel et al. model (2001) (Eq. 2.41 and 2.42 in section 2.6.3) 

and Korkiala-Tanttu model (2005) (Eq. 2.43, 2.44, and 2.45 in section 2.6.3) and Rahman and 

Erlingsson model (2015a) (Eq. 2.46 and 2.47 in section 2.6.3) were used to fit the measured 

permanent deformation of waste rocks since these models are more suitable to describe coarse-

grained materials strain at different stress conditions (Rahman and Erlingsson 2015b; Erlingsson 

et al. 2017). These models relate the permanent strain to number of loading cycles and stress 
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condition. However, Gidel et al. model, Korkiala-Tanttu model, and Rahman and Erlingsson model 

were initially proposed for single stress path repeated load triaxial tests and must be modified to 

describe multistage repeated load triaxial tests. Time hardening was proposed to consider the stress 

history effect caused by previous loading stress paths. The approach consists in introducing the 

equivalent loading cycles Ni
eq

 (Lytton et al. 1993; Zhou et al. 2010; Erlingsson and Rahman 2013; 

Mohammadinia et al. 2020; Li et al. 2021) which is calculated based on the current ith stress 

condition and the accumulated permanent strain achieved by previous stress paths. The total 

number of loading cycles N is then modified as (N-Ni-1+Ni
eq) in which Ni-1 is the total number 

of loading cycles at the end of the previous (i-1)th stress path. In the present study, Gidel et al. 

(2001), Korkiala-Tanttu (2005), and Rahman and Erlingsson (2015a) models were modified to 

include time hardening. Model coefficients were calibrated on experimental data using the method 

of least squares, and the error between experimental and predicted accumulated permanent strains 

was assessed using coefficient of determination R2. The fitting accuracy of these models was 

presented and compared in Chapter 5. Rahman and Erlingsson model (extended using time 

hardening approach) was used to fit the accumulated permanent strains of crushed waste rocks with 

different gradations (Chapter 6), strains of crushed waste rocks subjected to climatic factors 

(Chapter 8), and strains of uncrushed waste rocks with different physical properties (Chapter 7). 

 

 

3.7 Machine learning (more details are given in Chapter 9 and 10) 

Machine learning method was used to develop prediction models for CBR, resilient modulus, and 

permanent deformation of crushed waste rocks based on the experimental data, and these models 

were developed using Python in this project. Seven different types of algorithms were used and 

compared to develop machine learning models for predicting CBR, resilient modulus, and 

permanent deformation of crushed waste rocks, namely multiple linear regression (MLR), k-
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nearest neighbors (KNN), decision tree (DT), random forest (RF), support vector machine (SVM), 

backpropagation neural network (BPNN), and neuroevolution of augmenting topologies (NEAT). 

The principle of these algorithms can be found in Chapter 9 and 10. The correlations between basic 

parameters (including material physical properties and applied stress conditions) and the 

mechanical properties of crushed waste rocks were investigated to determine the input variables 

for the machines learning models. Particularly, Pearson correlation coefficient r analysis was 

conducted to determine the input variables for the CBR prediction models. The input variables 

were normalized using the Z-Score normalization method (Jain et al. 2005): 

Xi
*=

Xi-μ

σ
           3.1 

Where Xi
*: the normalized input values; Xi: the experimental input values; μ: the mean value of 

the input variable; and σ: the standard deviation of the input variable. 

The normalized data were then split between a training dataset and a testing dataset (to verify the 

generalization capability of the trained machine learning models). In this study, 70-80% of the total 

experimental data were selected randomly for the training dataset (for the training and validation 

of the machine learning models), while the remaining 20-30% data were used as the testing dataset 

(to test the developed machine learning models). 

The prediction performance of machine learning models was assessed using coefficient of 

determination (R2, Eq. 3.2), mean squared error (MSE, Eq. 3.3), mean absolute error (MAE, 

Eq. 3.4), and Huber loss Lδ  (Eq. 3.5). These metric functions are widely used to assess the 

prediction accuracy of machine learning models for regression tasks (Zhang and Goh 2013; Kang 

et al. 2019; Meyer 2019; Gupta et al. 2020; Zheng 2020; Lee et al. 2021). A value of R2 closer to 1 

means a better performance (Fan et al. 2019). MSE value is always positive, and it is ideal to be 

close to zero (Chen 2010; Chollet 2018; Vidal and Kristjanpoller 2020). MAE value is always 

positive, and the smaller the value of MAE is, the better the model performs. Huber loss combines 

analytical tractability of MSE and outlier-robustness of MAE (Yi and Huang 2017; Sun et al. 2020). 
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Where n: number of data sets; 𝑦𝑖 and 𝑦𝑖
∗: the experimental and predicted values of the ith output, 

respectively; and �̅�: the mean of the experimental values. The given constant δ in Huber loss 

controls the transitions from a quadratic function (for small values of |y
i
-y

i
*|) to an absolute value 

function (when the value of |y
i
-y

i
*| exceeds δ) (Huber 1973, 1992). 

The hyperparameters study was also conducted to determine the optimum architecture of machine 

learning models. The hyperparameters study included the effect of the number of neighbors in 

KNN model, the maximum DT depth, the number of estimators in RF model, and the number of 

hidden neurons and hidden layers in BPNN model on the prediction accuracy. More details about 

the machine learning models can be found in Chapter 9 and 10. 
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  ARTICLE 1: ESTIMATION OF RESILIENT BEHAVIOR OF 

CRUSHED WASTE ROCKS USING REPEATED LOAD CBR TESTS 

 

Shengpeng Hao and Thomas Pabst 

This article has been published online in Transportation Geotechnics in February 2021. 

 

Abstract: Crushed waste rocks (CWR), generated from mining operations, have been widely used 

for the construction of mine haul roads because of their low-cost, high-strength, and availability. 

Resilient modulus is a necessary input to mechanistic design for mine haul roads, but its 

determination usually requires advanced and complex equipment such as repeated load triaxial 

(RLT) test. Repeated load CBR (RLCBR) tests are simpler and more often available, and were 

therefore investigated in this study to estimate CWR resilient behavior under low and high stress 

levels. RLCBR equivalent modulus calculated using various equations were validated using RLT 

resilient modulus. The MR-θ model showed good representation and prediction of CWR resilient 

behavior under both low and high stress levels. A new equation was also proposed to predict more 

precisely the equivalent modulus of CWR based on RLCBR tests. Results showed that the impact 

of loading frequency and waveform was limited, while the measured equivalent modulus increased 

significantly with contact stress (especially when contact stress < 10%). The effect of dry density 

and soaking on equivalent modulus was negligible, but specimen drying resulted in a marked 

increase of the equivalent modulus. The good agreement between RLCBR equivalent modulus and 

RLT resilient modulus indicates that RLCBR tests could be an effective alternative to RLT tests to 

estimate resilient behavior of CWR used in mine haul roads. 

Keywords: Crushed waste rock, Mine haul roads, Resilient modulus, Repeated load CBR test, 

Equivalent modulus. 



 

 

86 

4.1 Introduction 

Waste rocks are low grade ore materials produced by mining operations to access ore. Waste rocks 

are often stored on the surface, in piles, close to production sites. Management and reclamation of 

waste rocks piles can be challenging because of their large size and the risks for geochemical and 

geotechnical instabilities (Aubertin 2013). The reuse (or valorization) of waste rocks for roads 

construction is therefore an attractive alternative to surface disposal, both economically and 

environmentally (Thompson et al. 2019). Most mines already use crushed waste rocks (CWR) for 

the construction of haul road wearing courses because of their hardness, durability, low-cost and 

availability (Thompson et al. 2019). 

Mine haul roads are typically unpaved flexible roads, and the design, construction and maintenance 

of the road surface or wearing course is critical to trafficability (Tannant and Regensburg 2001). 

Potholes, rutting, and settlement are the major symptoms of haul road deterioration, and are mainly 

caused by precipitation, runoff, heavy traffic volume, spring breakup, vehicle spillage, and poor 

compaction (Tannant and Regensburg 2001). More specially, the low stiffness of wearing course 

layers can result in poor trafficability under wet weather, churning, and excessive deformation 

(Thompson et al. 2019). The deterioration can result in reduced pavement performance and 

increase of road maintenance costs and vehicle operating costs. However, haul roads design 

methods are often empirical and rely heavily on local experience (Thompson et al. 2019). However, 

such empirical approaches cannot account for the influence factors such as pavement materials 

properties, climatic effects, and traffic information during the haul road design. Mechanistic design 

for unpaved haul roads is therefore needed. Resilient modulus is a parameter generally used to 

characterize unbound granular material stiffness (Lekarp et al. 2000a) and can be defined as 

(AASHTO T307 2017): 

MR=
σd

εr
           4.1 

Where MR: resilient modulus [MPa]; σd: deviator stress [MPa]; and εr: recoverable axial strain 
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[-]. 

Resilient modulus is typically used in mechanistic design methods to compute pavement response 

under traffic loading (Thach Nguyen and Mohajerani 2016). Waste rocks resilient behavior is 

characterized by non-linear behavior under external loading imposed by vehicles and is highly 

stress sensitive (Lekarp et al. 2000a; Coronado et al. 2016). Various models were proposed to 

describe the stress dependence of resilient modulus as a function of confining pressure, deviator 

stress, and/or bulk stress, and most constitutive models usually comprise two or three constant 

parameters evaluated empirically (Lekarp et al. 2000a). 

The resilient behavior of soil and aggregate materials is usually obtained using repeated load 

triaxial (RLT) tests in the laboratory (AASHTO T307 2017). RLT tests are, however, complex, time 

consuming, and costly, especially considering the short-service-life of mine haul roads. 

Conventional RLT tests were also developed for civil roads, such as public highways, rather than 

mine haul roads which are subjected to extra heavy vehicle loading. For example, haul trucks size 

and capacity have grown significantly during the last few decades, with payload capacity increasing 

to 450 mt, and tire pressure sometimes exceeding 1000 kPa ("Belaz-7571 series"). In comparison, 

the gross vehicle weight limit of three axles straight truck for highway is 24.25 mt in Canada which 

is much lower than mining trucks (Woodrooffe 2010). 

Repeated load CBR (RLCBR) tests were therefore proposed as an alternative to indirectly evaluate 

resilient behavior of fine-grained materials (i.e., sand and black cotton clay) (Molenaar 2008). The 

principle of RLCBR test is similar to the standard CBR test, except that cyclic loads are applied 

(Molenaar 2008; ASTM D1883 2016). 

The research for RLCBR test technique is relatively limited, especially regarding the impact of 

frequency, waveform, and contact stress on test results. For instance, the contact stress (or load) is 

usually set to a relatively low value to maintain a positive contact between the specimen and the 

plunger, and to simulate the weights of overlying layers. Some studies also set contact stress to 
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zero to minimize the influence of contact stress (Molenaar 2008; Bhattacharjee and 

Bandyopadhyay 2015). Other researchers set it to 0.1 to 0.3 MPa (Araya et al. 2010; Molenaar et 

al. 2011), 0.1 kN (Haghighi et al. 2017), 10 kPa (Sas et al. 2012; Sas and Gluchowski 2013), or 10% 

of the maximum plunger load (Sparsha et al. 2016) to ensure the plunger remains stable during the 

cyclic loading and unloading. The differences between test setups makes it difficult to compare the 

RLCBR results from different research. 

Resilient modulus determined using RLCBR are typically greater than using RLT tests (Araya 

2011). An “equivalent modulus” (Eequ.) was therefore proposed to normalize the RLCBR test results 

and compare them to the RLT resilient modulus (Opiyo 1995; Molenaar 2008). Several equivalent 

modulus equations were developed based on elastic theory and regression fitting (Table 4.1). 

However, these equations were developed for low stress levels, and mainly for lateritic soil and 

fine-textured metamorphic rock. 

 

Table 4.1: Equivalent modulus equations for RLCBR test. Eequ.: equivalent modulus [kPa]; σp: 

plunger stress, equal to total plunger load/plunger area [kPa]; u : vertical elastic (resilient) 

deformation of materials under plunger [mm]; ν: Poisson’s ratio of tested material [-]; σV and σH: 

vertical and horizontal (or lateral) stresses applied on the specimen [kPa]. 

No. Name Description Equation Reference 

1 NF No-Friction Eequ.=
1.797(1-ν0.889)σpr

u1.098
  (Opiyo 1995) 

2 FF Full-Friction Eequ.=
1.375(1-ν1.286)σpr

u1.086
  (Opiyo 1995) 

3 WOSG Without Strain Gauges Eequ.=
1.513(1-ν1.104)σpr

u1.012
  (Araya 2011) 

4 WSG With Strain Gauges Eequ.=
0.144(σV-2νσH)

u
  (Araya 2011) 
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The aim of this study was therefore to estimate the resilient behavior of CWR under low and high 

stress levels by using RLCBR and RLT tests. The stress state of RLCBR specimens was estimated 

using transfer functions, and the applicability of existing equivalent modulus equations under low 

and high stress levels was evaluated by comparing the calculated equivalent modulus to the RLT 

resilient modulus. A modified equation was also proposed to estimate the equivalent modulus of 

CWR under low and high stress levels. The effects of cyclic loading frequency, contact stress, and 

waveform, and of specimen properties (dry density, soaking, and drying) on CWR equivalent 

modulus were also investigated. In addition to the wearing course of haul roads (Thompson et al. 

2019), CWR also can be used for the construction of base layers for public roads (Barksdale 1984; 

Titi and Matar 2018), and other structures at mine sites such as waste rock inclusions within tailings 

impoundments (Ferdosi et al. 2015a). Determine the resilient modulus of CWR could also be useful 

for all these different applications. 

 

 

4.2 Materials and methods 

4.2.1 Material sampling and characterization 

The tested CWR material was obtained from Canadian Malartic Mine, an open pit gold mine 

located in the Abitibi region, in Quebec province, Canada. Uncrushed waste rocks were used for 

the construction of the base layer and crushed waste rocks for the wearing course. The CWR was 

representative of the material typically used for haul road surface layer construction at the mine. 

The particles larger than 19 mm were removed (sieved) because of the limitation of specimen size 

in the CBR mold (diameter = 152.4 mm) (ASTM D1883 2016). 

The particle size distribution (PSD) was measured in the laboratory using sieving (ASTM 

C136/C136M 2019) (Figure 4.1(a)). The material had a very small amount (around 3.7%) of fines 
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(< 75 microns). It was a poorly graded gravel with 3.72% fines and was classified as GP (ASTM 

D2487 2017). 

Proctor compaction tests were carried out on CWR material using modified effort (ASTM D1557 

2012) (Figure 4.1(b)). The optimum water content was 5.6% corresponding to a maximum density 

d = 2334 kg/m3. The maximum attainable degree of saturation of CWR specimens was 85%; 

above, water would leak out from the mold. Specific gravity of particles under and over 4.75 mm 

was determined (ASTM D854 2014, C127 2015). X-ray diffraction (XRD) tests were conducted 

to determine the CWR mineralogy. The CBR of this CWR was around 115% under modified 

compaction effort with 5.5% initial gravimetric water content (Laverdière 2019), which met the 

strength requirement for haul road wearing courses (> 80%, (Thompson et al. 2019)). 

The basic properties of CWR, i.e. mineralogy, specific gravity, water absorption, optimum water 

content, maximum dry density, shape index, coefficient of uniformity, coefficient of curvature, 

grading coefficient, dust ratio, and CBR are summarized in Table 4.2. 
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Figure 4.1: (a) Particle size distribution of tested crushed waste rocks, and (b) Proctor test results. 

 

Table 4.2: (a) Mineralogy of tested CWR in this study, (b) Geotechnical properties of CWR. a: 

particle size < 4.75 mm; b: particle size > 4.75 mm; coefficient of uniformity CU = D60/D10 and 

coefficient of curvature CC = D30
2/(D60×D10); the CBR value was measured under modified 

compaction effort with 5.5% initial gravimetric water content. 

(a) 

Mineralogy Proportion Mineralogy Proportion 

Quartz 26.08±2.46% Diopside 6.50±1.34% 

Albite 38.74±4.30% Anhydrite 2.42±0.48% 

Muscovite 10.87±1.42% Pyrite 1.08±0.15% 

Chlorite 7.12±0.97% Rutile 1.18±0.79% 
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Corundum 6.80±1.33%   

(b) 

Properties Values Standard/Reference 

Specific gravity a 2.75 (ASTM D854 2014) 

Specific gravity b 2.71 
(ASTM C127 2015) 

Water absorption b 0.41% 

Elongation index 38.56±1.62% 
(IS 2386 1963) 

Flakiness index 34.95±2.08% 

Optimum water content 5.6% 
(ASTM D1557 2012) 

Maximum dry density 2334 kg/m3 

Coefficient of uniformity 7.98 
(ASTM D2487 2017) 

Coefficient of curvature 2.21 

Grading coefficient 25.6 
(Thompson et al. 2019) 

Dust ratio 0.47 

CBR 115% (ASTM D1883 2016; Laverdière 2019) 

 

4.2.2 RLCBR tests 

RLCBR tests were carried out using a loading frame (100 kN), stress controllers (1000 kPa), a load 

cell (50 kN), a linear variable differential transformer (LVDT), and a PC, to estimate resilient 

behavior of CWR material (Figure 4.2(a)). The vertical deformation during RLCBR tests was 

considered equal to the vertical displacement of the plunger during loading and unloading and 

measured by a LVDT. The axial vertical load was measured using a 50 kN capacity external load 

cell. A standard CBR mold (diameter: 152.4 mm and height: 178 mm, including a 51 mm 

compaction collar), and a plunger of 49.63 mm diameter were used to prepare and penetrate the 

CWR specimens. Tests were performed in the load-controlled mode. 

Two sets of cyclic loads sequences, i.e., low stress level (LSL) for civil engineering (highways) 

and high stress level (HSL) for mining engineering (mine haul roads), were defined for RLCBR 

tests (Table 4.3). A total of 100 cycles were applied for each load sequence, and the contact stress 

was 10% of the maximum axial stress. The LSL cyclic load sequences were based on the AASHTO 
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T307 standard procedures developed for RLT tests (AASHTO T307 2017), and the HSL cyclic 

load sequences were based on the typical stress levels observed on mine haul roads. 

 

Table 4.3: Low stress level (LSL) and high stress level (HSL) testing sequences for RLCBR tests. 

The cyclic loading parameters include maximum axial stress (MAS), cyclic stress (CYS), and 

contact stress (CS). 

LSL  HSL 

No. MAS (kPa) CYS (kPa) CS (kPa)  No. MAS (kPa) CYS (kPa) CS (kPa) 

1 100 90 10  1 200 180 20 

2 300 270 30  2 700 630 70 

3 500 450 50  3 1200 1080 120 

4 700 630 70  4 1700 1530 170 

5 900 810 90  5 2200 1980 220 

6 1100 990 110  6 2700 2430 270 

     7 3200 2880 320 

     8 3700 3330 370 

     9 4200 3780 420 

     10 4700 4230 470 

     11 5200 4680 520 

 

Araya et al. (2012) developed a set of transfer functions to estimate the vertical and horizontal (or 

lateral) stresses, Poisson’s ratio and elastic modulus (i.e. WSG equation in Table 4.1) of the tested 

specimen based on linear elastic theory. These functions were developed based on the assumption 

that the granular material under the plunger is carrying most of the load, thus the stress and strains 

along the central axis are considered as representative of the bulk specimen. The transfer functions 

depend on plunger stress, vertical plunger deformation and lateral strain. However, the 

measurement of the lateral strain is complex and limits the application of these transfer functions. 

Therefore, the original transfer functions were modified to estimate the vertical and horizontal 

stress based on plunger stress and Poisson’s ratio (Eq. 4.2, 4.3). The ratio of horizontal to vertical 
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stress was a linear function of Poisson’s ratio (Eq. 4.4). The bulk stress (Eq. 4.5) then could be 

calculated based on Eq. 4.3 and 4.4, and was used for the model fitting (MR-θ model) in this study. 

σH=0.363νσpe(0.072
υ⁄ )         4.2 

σV=0.368σp          4.3 

The ratio of horizontal stress to vertical stress, 𝛼, was obtained by: 

α=0.986νe(0.072
υ⁄ )≈0.9617υ+0.0919 (R2 = 0.9996)     4.4 

Then the bulk stress was calculated as follows: 

θ=(0.7078υ+0.4356)σp        4.5 

The Poisson’s ratio of granular material is typically between 0.3 and 0.5 (Tannant and Regensburg 

2001). A value  = 0.35 is often considered representative of granular material such as waste rocks 

(Thompson and Visser 1997b; Tannant and Regensburg 2001; Laverdière 2019) and was therefore 

considered to calculate the equivalent modulus in this study. 

The cyclic loading caused by moving vehicles can generally be represented by a square waveform 

close to the pavement surface, and a haversine or triangle waveform deeper (Hu et al. 2010). In this 

study, both haversine and square shaped load pulses were used to simulate traffic loading (Figure 

4.2(b)). 
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Figure 4.2: (a) RLT and RLCBR tests setup; (b) haversine and square shaped load pulses used in 

RLCBR tests; the total load applied to the specimen included the contact (constant) and cyclic 

(resilient) loads. 

 

Different cyclic loading frequencies (0.1, 0.3, 0.5, and 0.7 Hz) and different contact stress (2%, 5%, 

10%, and 15% of maximum axial stress) were applied during RLCBR tests to investigate their 

effect on the measured equivalent modulus. 

The vertical deformation was recorded during RLCBR tests, and the average elastic (resilient) 

deformation of the last five loading cycles of each stress sequence was used to calculate the 

equivalent modulus. 

 

4.2.3 Specimen preparation 

The CWR specimens for RLCBR tests were prepared with different initial gravimetric water 

contents (2%, 3%, 4%, 5%, 6%, 7%, and 8%) to investigate the impact of dry density on equivalent 

modulus. Different compaction energies were also used to prepare RLCBR specimens, i.e., 

standard effort (STD), 600 kN-m/m3 (ASTM D698 2012) and modified effort (MOD), 2700 kN-

m/m3 (ASTM D1557 2012). An alternative compaction method (MOD 81) was also used in this 
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study. MOD 81 compaction used a modified effort hammer (44.48 N), but with 81 blows per layer 

(instead of 56 blows; the rest of the test being identical to ASTM D1557-12e1). The objective was 

to simulate a higher compaction energy (3905 kN-m/m3) which was more representative of field 

conditions where compaction is achieved using heavy haul trucks. 

Soaking and drying specimens were also prepared and tested to evaluate the RLCBR equivalent 

modulus corresponding to the most unfavorable field conditions in situ. The soaking and drying 

specimens were prepared using modified compaction effort. A 4.54 kg of surcharge weights was 

placed on the compacted CWR specimen during soaking and drying. The mold and weights were 

immersed in water allowing the free access of water to the top and bottom of the specimen at room 

temperature (around 20°C). The specimen was soaked for four days (i.e. 96 hours) according to the 

ASTM D1883 Standard (2016). The water level was maintained constant, and the swelling of the 

soaked specimen was recorded. In practice, no swell was observed during soaking. The compacted 

CWR specimen was dried in oven at a uniform temperature of 110°C for one day (i.e. 24 hours). 

The mass of specimen was determined after 16 hours of drying, and then placed it into the oven 

for another 8 hours. The mass of specimen after 16 and 24 hours were compared to ensure the 

specimen dried completely. 

In total, 32 RLCBR tests (including duplicates) were carried out with different loading features and 

specimen properties (Table 4.4). 

 

Table 4.4: Summary of RLCBR tests carried out in this study. SC: stress conditions; w: initial water 

content; Fre.: loading frequency; LW: loading waveform; CS: contact stress; LSL: low stress level; 

HSL: high stress level; CE: compaction effort; MOD: modified compaction effort; STD: standard 

compaction effort; MOD 81: compaction effort with 81 blows per layer; H: haversine waveform; 

S: square waveform. 

No. SC w (%) Fre. (Hz) CS (%) CE LW Duplicates 
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1 LSL 4 0.3 2 MOD H 2 

2 LSL 4 0.3 5 MOD H 1 

3 LSL 4 0.3 10 MOD H 3 

4 LSL 4 0.1 10 MOD H 2 

5 LSL 4 0.3 15 MOD H 3 

6 LSL 4 0.3 10 MOD S 2 

7 LSL 4 0.5 10 MOD H 2 

8 LSL 4 0.7 10 MOD H 2 

9 LSL 2 0.3 10 MOD H 1 

10 LSL 3 0.3 10 MOD H 1 

11 LSL 5 0.3 10 MOD H 1 

12 LSL 6 0.3 10 MOD H 1 

13 LSL 7 0.3 10 MOD H 1 

14 LSL 8 0.3 10 MOD H 1 

15 LSL 4 0.3 10 STD H 1 

16 LSL 4 0.3 2 MOD S 1 

17 LSL 4 0.3 10 MOD 81 H 1 

18(soaked) LSL 4 0.3 10 MOD H 1 

19(dried) LSL 4 0.3 10 MOD H 1 

20 HSL 4 0.3 10 MOD H 3 

21 HSL 4 0.3 15 MOD H 1 

 

Compaction energy and initial water content had a direct influence on the dry density of RLCBR 

specimen. For example, the dry density increased from 2196 to 2334 kg/m3 (around +6%) when 

the water content increased from 1.9% to 5.6% (Figure 4.3). The final water content after RLCBR 

tests was always measured and was typically slightly lower than the initial water content. It 

increased about 9%, i.e., from 2039 to 2227 kg/m3, when the compaction energy increased from 

STD (600 kN-m/m3) to MOD (2700 kN-m/m3). The increase of dry density was, however, 

insignificant when the compaction energy increased from MOD to MOD 81 (3905 kN-m/m3). The 

minimum and maximum dry densities of CWR specimen for RLCBR tests in this study were 2039 

and 2334 kg/m3, respectively. 
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Figure 4.3: Dry density of RLCBR specimens for different final water contents (1.9%, 2.5%, 3.3% 

4.1%, 5.0%, 5.4%, and 5.6%) and compaction efforts (STD, MOD, and MOD 81). 

 

4.2.4 RLT test 

The RLT tests were conducted under drained conditions on 300 mm high and 150 mm diameter 

specimens. The tests were carried out using the same test apparatus than for RLCBR tests (Figure 

4.2(a)). A low (LSL) and a high (HSL) stress levels were employed for RLT tests. The LSL and 

HSL testing sequences consisted of a succession of combinations of axial and confining stresses 

(Table 4.5). 

AASHTO T307 standard was employed for LSL testing sequence. This standard was initially 

proposed for highway design, with a maximum axial stress varying from 20.7 to 275.8 kPa and 

confining pressure from 20.7 to 137.9 kPa. 

The stress level applied in AASHTO T307 protocol is, however, significantly lower than the tire 

pressure of haul trucks, e.g., around 1000 kPa ("Electric drive mining truck 960e-2k"). HSL stress 

combinations of axial and confining stresses were therefore also proposed in this study to evaluate 
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the resilient behavior of CWR material under heavy haul trucks (Table 4.5). The maximum axial 

stress and confining pressure were between 80 and 2000 kPa, and between 100 and 1000 kPa, 

respectively, which could cover the range of stress variation in the field, even for the heavier mining 

truck (e.g., BELAZ 75710 with 450 mt of payload capacity). A total of 100 repetitions were 

employed for each cyclic loading sequence (except the conditioning stress path with 500 cycles), 

with a haversine shaped loading pulse and a frequency of 0.3 Hz, for both LSL and HSL RLT tests. 

RLT specimens were prepared using modified compaction effort (2700 kN-m/m3), and this high 

compaction energy could minimize the effect of the rapid accumulation of vertical permanent strain. 

Specimens were prepared with an initial gravimetric water content w = 4%. 

The RLT resilient modulus was calculated as the average ratio of the deviator stress and the 

recoverable axial strain (Eq. 4.1) for the last five loading cycles of each stress sequence. 

 

Table 4.5: Low stress level (LSL) and high stress level (HSL) testing sequences for RLT tests; the 

cyclic loading parameters include confining pressure (CP), maximum axial stress (MAS), cyclic 

stress (CYS), contact stress (CS), and number of loading cycles. 

LSL  HSL 

No. 
CP MAS CYS CS  

No. 
CP MAS CYS CS 

(kPa)  (kPa) 

0 103.4 103.4 93.1 10.3  1 100 80 72 8 

1 20.7 20.7 18.6 2.1  2 100 150 135 15 

2 20.7 41.4 37.3 4.1  3 100 200 180 20 

3 20.7 62.1 55.9 6.2  4 300 240 216 24 

4 34.5 34.5 31.0 3.5  5 300 450 405 45 

5 34.5 68.9 62.0 6.9  6 300 600 540 60 

6 34.5 103.4 93.1 10.3  7 500 400 360 40 

7 68.9 68.9 62.0 6.9  8 500 750 675 75 

8 68.9 137.9 124.1 13.8  9 500 1000 900 100 

9 68.9 206.8 186.1 20.7  10 700 560 504 56 

10 103.4 68.9 62.0 6.9  11 700 1050 945 105 
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11 103.4 103.4 93.1 10.3  12 700 1400 1260 140 

12 103.4 206.8 186.1 20.7  13 900 720 648 72 

13 137.9 103.4 93.1 10.3  14 900 1350 1215 135 

14 137.9 137.9 124.1 13.8  15 900 1800 1620 180 

15 137.9 275.8 248.2 27.6  16 1000 800 720 80 

      17 1000 1500 1350 150 

      18 1000 2000 1800 200 

 

 

4.3 Test results 

4.3.1 RLCBR test results 

The vertical resilient deformation of CWR under the plunger was recorded continuously during 

RLCBR tests. The resilient deformation increased with increasing maximum axial stress (plunger 

stress) in all cases (Figure 4.4). For example, for the LSL RLCBR tests with 0.3 Hz, haversine 

waveform, 10% contact stress, 4% initial water content, and MOD compaction effort, the resilient 

deformation increased from around 0.0252 to 0.0657 mm (±0.008 mm) when the maximum axial 

stress increased from 100 to 1100 kPa (Figure 4.4(a)). For the HSL RLCBR tests with the same 

loading features and specimen properties with LSL RLCBR tests, the resilient deformation 

increased from around 0.0363 to 0.1664 mm ( ± 0.027 mm) with the maximum axial stress 

increasing from 200 to 5200 kPa. The deviation of deformation caused by the duplicates increased 

from around 0.003 to 0.027 mm with the maximum axial stress increasing from 200 to 5200 kPa 

(Figure 4.4(b)). 

Further investigation of the effect of loading features and specimen properties on test results was 

conducted based on equivalent modulus in Section 4.4. 
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Figure 4.4: Measured resilient deformation during RLCBR tests under (a) low stress level and (b) 

high stress level, the deviation of deformation was caused by the duplicates. 

 

CWR specimens were characterized after compaction and RLCBR tests, and compared to the 

original material properties (before the tests). Results showed some differences in the grain size 

distribution (Figure 4.5). The proportion of coarse particles (14-19 mm) decreased between 3 and 

8%, depending on compaction energy. The decrease was more pronounced for higher compaction 

energies (-8% for MOD 81 compaction) than for small energies (-4% for STD compaction). On the 

other hand, the fine content (< 0.075 mm) increased, by up to 7% for MOD 81. Compaction and 

cyclic loads therefore appeared to have crushed some of the coarse particles (> 14 mm), which is 

relatively common in such tests (Cetin et al. 2014). 
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Figure 4.5: Particle size distribution of CWR specimens before and after RLCBR tests. 

 

4.3.2 RLT Resilient modulus 

CWR resilient modulus was assessed using RLT tests under both LSL and HSL conditions. 

Measured resilient modulus tended to increase significantly with increasing bulk stress (Figure 4.6). 

The resilient modulus of CWR material under high stress condition was significantly higher than 

for low stress conditions. For example, for LSL RLT test, the resilient modulus increased from 

around 137 to 455 MPa as the bulk stress increased from 82.8 to 689.5 kPa. For HSL RLT tests, 

the resilient modulus increased from 313 to 1238 MPa when the bulk stress increased from 380 to 

5000 kPa. The increase of resilient modulus with bulk stress was non-linear, and the increasing rate 

decreased as the bulk stress increased. For example, for LSL RLT test the increase of resilient 

modulus was around 120 MPa when the bulk stress increased from 120 to 340 kPa, but 85 MPa 

when the bulk stress increased from 210 to 410 kPa. HSL RLT tests showed a similar trend. 
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Figure 4.6: CWR resilient modulus measured by RLT tests under low (LSL) and high (HSL) stress 

levels. 

 

 

4.4 Calibration of equivalent modulus 

4.4.1 Model fitting of resilient modulus 

The stress dependency of CWR resilient modulus was analyzed using different models (Dunlap 

1963; Seed et al. 1967; Moossazadeh and Witczak 1981; Uzan 1985; Witczak and Uzan 1988; Pezo 

and Hudson 1994; Ni et al. 2002). The MR-θ model appeared to be the most suitable for the tested 

material. This model was proposed by Seed et al. (1967) for fine-grained subgrade soils, granular 

based materials, and bituminous surface courses, and can be written: 

MR=k1p
a

(
θ

p
a

)
k2

          4.6 

Where k1, and k2: regression coefficients; θ : bulk stress [kPa]; and pa: atmospheric pressure 

(100 kPa). 
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The MR-θ model is widely accepted, and is considered accurate as long as stresses remain below 

the static failure condition (Elliott and David 1989). 

The parameters (k1 and k2) of MR-θ model were fitted (or calibrated) for both LSL and HSL RLT 

tests by minimizing the coefficient of determination R2 calculated on the resilient modulus (Figure 

4.7(a), (b)). The coefficient of determination was higher than 0.9 for both LSL and HSL RLT tests, 

which is deemed acceptable. 

The calibrated MR-θ model parameters (k1 and k2) for LSL and HSL tests were slightly different 

(Figure 4.7(a), (b)) and the resilient modulus predicted using HSL fitting curve was generally 

greater than that predicted by LSL fitting curve for bulk stress < 6000 kPa (Figure 4.7(c)). Usually, 

the tire pressure of mining trucks can reach 1000 kPa ("Electric drive mining truck 960e-2k"), so 

the bulk stress in haul roads can vary between 1000 and 3000 kPa. Therefore, the resilient modulus 

prediction model (e.g. MR-θ  model in this paper) calibrated from LSL RLT testing results 

(AASHTO T307 2017) tended to underestimate the resilient behavior of CWR material used in 

mine haul roads, as CWR exhibited some “stiffening” with increasing stress levels. 

Predicted resilient modulus should be zero when the bulk stress is zero, based on the fitted model 

(Figure 4.7(c)) but it seemed to be different based on Figure 4.7(a), (b). Capillarity (or matric 

suction) is a typical reason for non-null resilient modulus (Tian et al. 1998; Ekblad and Isacsson 

2006). However, in this case, the measured pore water suction during the RLT test did not exceed 

8 kPa, and the effect of capillarity on the resilient modulus was therefore deemed limited in this 

study. The use of two membranes (0.3 mm and 0.6 mm thick) could have increased the cyclic 

loading resistance of the specimens (Henkel and Gilbert 1952; Evans and Seed 1987; Evans et al. 

1992). 
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Figure 4.7: Fitting curves of MR-θ model for CWR resilient moduli under (a) low stress level 

(LSL) and (b) high stress level (HSL); (c) comparison of calibrated (fitted) curves for LSL and 

HSL conditions, the dashed line represents the extrapolation of resilient modulus. 

 

4.4.2 Calculation and validation of equivalent modulus 

The CWR equivalent modulus was determined from RLCBR tests using existing equivalent 

modulus equations reported in the literature (Table 4.1). These equations are based on the resilient 

deformation and plunger stress recorded during the RLCBR tests. 

The calculated equivalent moduli were compared to RLT resilient moduli (Figure 4.8, 4.9). The 

objective was to evaluate the applicability of the different equations in Table 1 to CWR material. 

The equivalent moduli were also fitted using MR-θ model (Eq. 4.6). The bulk stress of RLCBR 

specimen was calculated based on the maximum axial stress (plunger stress) and Poisson’s ratio 

(0.35) (Eq. 4.5). For this validation, the RLCBR tests with 4% initial water content, 10% contact 

stress, 0.3 Hz frequency, haversine waveform, and MOD compaction effort were selected, so the 

loading features and specimen properties were the same as for RLT tests. 

For LSL RLCBR tests, the equivalent modulus increased from around 100 to 600 MPa as the bulk 

stress increased from 50 to 650 kPa. The MR-θ model was able to describe relatively well the 

equivalent moduli calculated by different equations, with a regression coefficient R2 always greater 

than 0.85 (Figure 4.8). The equivalent moduli calculated by WOSG equation were relatively lower 
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(around -75 MPa) than with other equations. The equivalent modulus computed with the WOSG 

equation seemed more accurate, i.e., closer to RLT resilient modulus, for LSL RLCBR tests. Indeed, 

the fitting curves seemed coincide (Figure 4.8(d)). The model parameters (k1 and k2) for the 

equivalent moduli calculated by WOSG equation (1.488 and 0.571, respectively) were the closest 

to the ones estimated for the resilient moduli (1.559 and 0.520, respectively). 

 

 

Figure 4.8: Comparison of RLCBR equivalent moduli and RLT resilient moduli under low stress 

level (LSL). (a) Full-Friction (FF) equation (Opiyo 1995), (b) No-Friction (NF) equation (Opiyo 
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1995), (c) With Strain Gauges (WSG) equation (Araya 2011), and (d) Without Strain Gauges 

(WOSG) equation (Araya 2011). Fitting curves (MR-θ model) with corresponding parameters (k1 

and k2) and coefficient of determination R2 are also shown. 

 

The same approach was used to compare equivalent moduli and resilient moduli for HSL condition. 

The equivalent modulus calculated for HSL RLCBR tests showed similar trend than the LSL tests, 

but the values reached were higher (up to 1100 MPa). The equivalent modulus increased from 

around 200 to 1100 MPa when the bulk stress increased from 135 to 3550 kPa (Figure 4.9). All the 

equivalent modulus equations gave relatively accurate results (i.e. were close to RLT resilient 

moduli). The MR-θ model could fit all the equivalent moduli satisfactorily (R2 > 0.9). The NF 

equation performed relatively better, with a maximum difference of moduli smaller than 50 MPa. 

The model parameters (k1 and k2) were also closer to resilient moduli (Figure 4.9(b)). The NF 

equation was therefore deemed more reliable to calculate equivalent modulus from HSL RLCBR 

tests in this study. For HSL RLCBR tests, WOSG equation showed underestimation in equivalent 

modulus (around -100 MPa) (Figure 4.9(d)). 
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Figure 4.9: Comparison of RLCBR equivalent moduli and RLT resilient moduli under high stress 

level (HSL). (a) Full-Friction (FF) equation (Opiyo 1995), (b) No-Friction (NF) equation (Opiyo 

1995), (c) With Strain Gauges (WSG) equation (Araya 2011), and (d) Without Strain Gauges 

(WOSG) equation (Araya 2011). Fitting curves (MR-θ model) with corresponding parameters (k1 

and k2) and coefficient of determination R2 are also shown. 

 

4.4.3 Development of a new equivalent modulus equation 

The FF, NF, and WOSG equivalent modulus equations (Table 4.1) had the same general form, i.e. 
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they were a function of plunger stress σp  and vertical resilient deformation u . This form was 

developed from elastic theory (Araya 2011) and can be generalized to: 

E=
k1(1-vk2)σpr

uk3
         4.7 

A new equivalent modulus equation for CWR was therefore developed here using the same form 

as Eq. 4.7. The Poisson’s ratio (v = 0.35) and the radius of plunger (r = 24.815 mm) were fixed. 

The values of k1, k2 and k3 in the new equation were determined from a fitting procedure based on 

the resilient moduli predicted by MR-θ model for LSL and HSL RLCBR tests. The new equivalent 

modulus equation could therefore be expressed as follows: 

Eequ.=
2.432(1-v2.630)σp∙r

u0.766
          4.8 

 

 

Figure 4.10: Comparison of equivalent modulus calculated by new equation and resilient modulus 

predicted by MR-θ model under both low and high stress levels. 

 

This new equation seemed reasonably reliable to calculate equivalent modulus for both LSL and 

HSL RLCBR tests with a satisfactory coefficient of determination (R2 = 0.93) (Figure 4.10). The 
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values of parameters k1, k2 and k3 in this new equation were different from existing equations in 

Table 4.1, with k1 and k2 being relatively higher while k3 was lower than that in previous equations. 

 

4.4.4 Effect of loading features and specimen properties 

The equivalent moduli of all RLCBR tests were calculated using the new equation (Eq. 4.8). 

RLCBR loading features (contact stress, frequency, and waveform) and specimen properties (dry 

density, soaking, and drying) all had an effect on the equivalent modulus and were further 

investigated (Figure 4.11). The equivalent modulus increased linearly with maximum axial stress 

for all tests. 

CWR equivalent modulus was sensitive to contact stress for both LSL and HSL conditions (Figure 

4.11(a), (b)), and increased with increasing contact stress. For example, the average equivalent 

modulus for a contact stress of 15% was 23% greater (i.e. +50 MPa) than a contact stress of 2% 

(Figure 4.11(a)). For HSL tests, the average increase of equivalent modulus was 12% as the contact 

stress increased from 10% to 15% (Figure 4.11(b)). The equivalent modulus seemed to be more 

sensitive to contact stress when it was lower than 10% of the maximum axial stress. This value of 

10% is also the contact stress recommended for RLT tests to maintain a positive contact between 

the cap and the specimen and to simulate the weight of overlying materials (AASHTO T307 2017). 

The effect of frequency on equivalent modulus of CWR material appeared to be neglectable, with 

an average variation caused by the change of frequency (between 0.1 and 0.7 Hz) less than 25 MPa 

(Figure 4.11(c)). This was consistent with previous research carried out on crushed limestone 

(Boyce et al. 1976). Some reported that the resilient modulus could increase slightly when the 

frequency increased to 3.3 Hz (Seed et al. 1965) but the variation of frequency used this study 

(from 0.1 to 0.7 Hz) was too limited to confirm these observations for CWR. Also, usually, low 

frequencies allows the elastic strains to recover completely (Fairhurst et al. 1990). 
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The impact of loading waveform (i.e. square or haversine) on equivalent modulus was also limited, 

and the equivalent modulus with square loading was smaller 11% (-30 MPa) than with haversine 

loading (Figure 4.11(d)). Previous research tended to show that the square loading could result in 

significant decrease in resilient modulus (around 10-60%) (Barksdale et al. 1997; Shafabakhsh and 

Tanakizadeh 2015). However, most of these results were obtained for hot mix asphalt (HMA), 

which behavior is more viscoelastic compared to CWR. In this case, and for elastic materials in 

general, stress-strain behavior for elastic materials (such as CWR) is usually less sensitive to 

loading features (Lekarp et al. 2000a). 

The equivalent moduli measured in this study were not significantly affected by dry density either, 

and the average change of equivalent modulus between the maximum and minimum dry densities 

tested (i.e. 2039 and 2334 kg/m3) was lower than 25 MPa (< 11%; Figure 4.11(e)). However, the 

interval of dry densities (induced by the changes of initial water contents and compaction energies) 

were relatively limited in this study (< 14.5%). In comparison, the resilient modulus of crushed 

rock increased significantly as the density increased by around 66% (Hicks and Monismith 1971). 

Some laboratory investigations also found that the effect of density on resilient modulus was 

limited and much lesser for fully crushed than for partially crushed (i.e. mixing both crushed and 

non-crushed materials) aggregates (Hicks and Monismith 1971). Further investigation should 

therefore be conducted to evaluate the resilient behavior of partially crushed waste rock. 

Finally, soaking of CWR specimens had limited influence on the equivalent modulus (Figure 

4.11(f)). The average variation observed between soaked and un-soaked specimens was smaller 

than 32 MPa (< 11%). The absence of expansive minerals (such as gypsum or montmorillonite) in 

the tested CWR material (Table 4.2) could be a reason for this observation (Kuttah and Sato 2015). 

On the other hand, drying had a marked effect on the measured equivalent modulus, with an 

average increase of around 200 MPa. Indeed, specimen drying in oven tends to create bonds 

between CWR particles, which tend to significantly increase CWR stiffness (Valdes and Cortes 
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2014). 

Based on these results, it appears that drying of road materials in summer is also likely to be 

beneficial to the resilient behavior and the trafficability of the roads (even though they would also 

produce more dusts; (Thompson and Visser 2007)). The influence of CWR soaking caused by 

rainfall on the resilient behavior of haul roads seems, however, to be limited. 
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Figure 4.11: Influence of (a) contact stress (CS) for LSL RLCBR tests and (b) for HSL RLCBR 

tests, (c) frequency, (d) loading waveform, (e) dry density, and (f) specimen soaking and drying on 

CWR equivalent modulus. 

 

 

4.5 Discussion and final remarks 

Laboratory tests results indicated that RLCBR tests were able to estimate the resilient behavior of 

CWR satisfactorily through equivalent modulus calculations. The influence of loading frequency, 

waveform, specimen dry density, and soaking on equivalent modulus appeared limited, while the 

increase of contact stress and specimen drying resulted in a significant increase of the equivalent 

modulus. These results were, however, not validated for other types of waste rock. Mineralogy can 

have a marked effect on the resilient modulus of cohesive soils (Achampong et al. 1997), but was 

not investigated in this study. 

The RLCBR tests results also depend on the accuracy of the loading actuator and nature of the 

software employed, and a high loading frequency generally gives less accurate load records for the 

minimum and maximum peaks of the loading cycle (Araya 2011). Similar limitations were also 

observed in this study. Also, the equipment used in this study was not designed specifically for 

RLCBR tests, and the plunger and mold were developed for static CBR tests, which could have 

affected the precision of the tests. The trends described are, however, considered representative of 

CWR resilient behavior. The RLCBR tests stability and repeatability under different loading 

frequency was evaluated by calculating the root mean squared error (RMSE) of equivalent modulus 

between duplicates. The 0.5 Hz frequency resulted in a significant increase of the RMSE 

(+65 MPa), which means the stability and precision of RLCBR test decreased significantly (Figure 

4.12). The prediction for 0.7 Hz was even smaller (+160 MPa). However, these values were 
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significantly smaller than the loading frequencies caused by mining trucks (CAT 793F) on haul 

roads which typically are around 3 to 4 Hz (assuming a driving speed of 12 to 15 km/h and a 

payload rear tire contact radius of around 0.55 m). Therefore, the impact of higher loading 

frequency on CWR resilient behavior should be investigated. 

 

 

Figure 4.12: Root mean squared error (RMSE) of RLCBR equivalent modulus between duplicates 

for different test frequencies (0.1, 0.3, 0.5, and 0.7 Hz). 

 

Poisson’s ratio of CWR material was not measured in this study and was assumed to be constant 

and equal to 0.35. In practice, Poisson’s ratio is not a constant and it may increase with a decrease 

in confining pressure and an increase in deviator stress (Hicks and Monismith 1971). The density, 

fines content, water content, aggregate type, and particle shape also affect the Poisson’s ratio 

(Lekarp et al. 2000a). Poisson’s ratio of CWR should therefore be measured in the laboratory to 

increase the accuracy of resilient and equivalent modulus estimation. 
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The effect of wetting and drying cycles on resilient behavior could be considered in a more realistic 

manner, for example, using wave propagation techniques as suggested by others (Said Razouki and 

Salem 2017). The freeze-thaw cycles were not considered in this study either, but can result in frost 

heave of pavement surface and a strength decrease of subgrade and base course in cold regions 

(Domitrović et al. 2019; Ishikawa et al. 2019). A more complete understanding of the mechanical 

behavior of the CWR material during freeze-thaw cycles would therefore be required for the mines 

located in cold regions (like in Canada). 

Using a standard CBR mold limits the maximum particle size to 19 mm. In practice, even a wearing 

course should also have a maximum particle size (usually 40 mm) to provides a stronger matrix 

(Araya et al. 2012; Thompson et al. 2019). Larger diameters RLCBR or RLT tests are therefore 

recommended to evaluate the resilient behavior of coarser and more representative waste rocks. 

Although a wide range of stress conditions (i.e., LSL and HSL) was applied in this study, the stress 

distribution and deformation in haul roads should also be determined using numerical simulations. 

In this case, non-linear elastic model should be used to accurately simulate the response of CWR 

layers under moving mining trucks (Coffey et al. 2018). However, the aim of this study was to 

evaluate the resilient behavior of CWR under low and high stress levels by using RLCBR and RLT 

tests. The evaluation of the performance (i.e. stress distribution and deformation) of the haul road 

constructed with the CWR exceeded the scope of this study. 

The effect of principal stress reorientation on permanent deformation behavior of CWR was not 

taken into account in this study. In practice however, a reorientation of the principal stress can 

occur in real pavement structures under moving traffic load (Qian et al. 2016) which could result 

in large permanent strain, exceeding the deformation measured using RLT tests in the laboratory 

(Lekarp et al. 2000b; Qian et al. 2016). Such effect should be further investigated in the future 

studies. 

The equation proposed in this study (Eq. 4.8) has the same structure as the existing NF, FF, and 
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WSOG equations (see Table 4.1), but with different parameters, which provides a more precise 

estimation of the CWR equivalent modulus under both low and high stress levels. Compared to the 

WSG equation, this new equation is easier to use since the horizontal and vertical stresses are not 

required. However, this equation needs to be validated before it can be applied to other materials. 

 

 

4.6 Conclusions 

In this study, the CWR resilient behavior was investigated under low and high stress level 

conditions by using RLCBR and RLT tests. The RLCBR equivalent modulus was compared to RLT 

resilient modulus, and the effect of loading features (frequency, contact stress, and waveform) and 

specimen properties (dry density, soaking, and drying) on CWR resilient behavior was investigated. 

Based on the results of this study the following statements can be made: 

1. The MR-θ model showed good description for both RLCBR equivalent modulus and RLT 

resilient modulus. The prediction models calibrated from conventional RLT tests (e.g. AASHTO 

T307) could underestimate the resilient modulus of CWR used in mine haul roads. 

2. The WOSG and NF equation were shown to yield satisfactory calculation of equivalent 

modulus for LSL and HSL RLCBR tests, respectively. A new equivalent modulus equation as a 

function of plunger stress and vertical resilient deformation was proposed to evaluate LSL and HSL 

RLCBR equivalent modulus with a coefficient of determination R2 > 0.93. 

3. The influence of loading frequency and waveform (haversine and square) on measured 

equivalent modulus was neglectable in the conducted tests. Equivalent modulus was, however, 

sensitive to contact stress, especially when the contact stress was lower than 10% of the maximum 

plunger stress. 

4. The effect of dry density was limited since the change of dry density was relatively small in 
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this study. The influence of specimen soaking was insignificant because there is no expansive 

composition in this CWR material, while the specimen drying resulted in an obvious increase in 

equivalent modulus because of the cementation of particles. 

This study was part of a more comprehensive research program which aimed at optimizing mine 

haul road design using waste rocks. The permanent deformation behavior of crushed waste rocks 

was also studied using repeated load triaxial and CBR tests, and the tests results will be presented 

in another article. Additional laboratory tests are ongoing to study the gradation effect on 

mechanical properties of crushed waste rocks. 
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Abstract: Crushed waste rocks (CWR) are widely used to build mine haul roads. However, the 

permanent deformation in waste rocks layers can result in surface rutting. Realistic prediction of 

pavement rutting requires models that can accurately capture the permanent deformation behaviour 

under repeated loading. However, such models are usually based on advanced laboratory apparatus 

such as multistage (MS) repeated load triaxial (RLT) tests. In this study, a new approach, using 

MS repeated load CBR (RLCBR) tests, was proposed to estimate the permanent deformation 

behaviour of CWR. MS RLCBR tests are faster, easier and more often available than MS RLT 

tests. A series of MS RLCBR and MS RLT tests for different stress levels were therefore carried 

out on the same material to characterize CWR permanent deformation behaviour. Results showed 

that Rahman and Erlingsson model that modified by time hardening approach could satisfactorily 

capture CWR permanent deformation behaviour for MS RLT tests. A new model was proposed 

and fitted on MS RLCBR test results to predict CWR permanent deformation behaviour. This 

model performed well in describing MS RLCBR test results and predicting the CWR permanent 

deformation behaviour. Results indicate that MS RLCBR tests could be an effective alternative to 

MS RLT tests for estimating the permanent deformation behaviour of CWR. 

Keywords: Crushed waste rocks, Mine haul roads, Permanent deformation, repeated load CBR 

tests, repeated load triaxial tests. 
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5.1 Introduction 

Mining operations produce large quantities of waste rocks that can be valorized to build mine haul 

roads (Thompson 2011c). Pavements are typically subjected to cyclic stresses of varying 

magnitudes caused by the moving traffic loads, which can lead to resilient (or elastic) deformation 

and permanent (or plastic) deformation (Lekarp et al. 2000a). Permanent deformation can result 

from material compaction, crushing and particle migration (Tholen 1980; Lekarp 1999). The 

gradual accumulation of permanent deformation in pavement layers can result in rutting, one of the 

most common deteriorations in flexible pavements (Erlingsson 2012). Excess rutting can decrease 

the driving quality and safety because of hydroplaning and reduced skid resistance of the road 

surface (Rahman and Erlingsson 2015a; Salour and Erlingsson 2017). This phenomenon is 

particularly critical in mine haul roads because of the ultra-high weight of mining trucks. As a 

consequence, poor functional performance can lead to increased tire wear and damage and an 

accompanying loss of productivity, and result in an increase of overall vehicle operating and 

maintenance costs (Thompson and Visser 2007). 

The development of permanent deformation in unbound granular material typically consists of two 

phases (Erlingsson et al. 2017). First, the permanent strain increases rapidly with loading cycles 

during the initial phase because of post-compaction. Post compaction is accompanied by 

densification, decrease in pore volume and volumetric change of the material (Werkmeister et al. 

2004; El-Basyouny et al. 2005). In the second phase, the deformation rate becomes more or less 

constant and is dominated by volume change (Werkmeister et al. 2004). The shakedown concept 

is typically used to describe the behaviour of pavement materials under repeated loading 

(Werkmeister et al. 2001; Werkmeister et al. 2004; Mohammadinia et al. 2020). Based on the 

shakedown theory, the evolution of permanent strain with loading cycles can be classified into 
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three categories (A, B or C). Werkmeister (2003) suggested the following criteria to define the 

shakedown boundaries based on the repeated load triaxial (RLT) test results, and they have been 

adopted in the European standard Cyclic Load Triaxial Test for Unbound Mixtures (EN 13286 

2004). The shakedown categories of unbound granular materials depend on the applied stress levels 

(Werkmeister et al. 2004): 

Range A (plastic shakedown): (εp
5000-εp

3000)<0.045×10
-3

 

Range B (plastic creep): 0.045×10
-3

<(εp
5000-εp

3000)<0.4×10
-3

 

Range C (incremental collapse): (εp
5000-εp

3000)>0.4×10
-3

 

Where εp
5000 and εp

3000correspond to the accumulated permanent strains measured at the 5000th 

and 3000th loading cycles during the RLT tests. 

In range A, the post-compaction is completed, and the material becomes stable with no further 

permanent strain after a finite number of load applications. In range B, the permanent strain rate 

decreases with the number of loads and progressively becomes very low and nearly constant. Yet, 

the permanent strain continues to accumulate but at a very slow rate. In range C, the permanent 

strain decreases very slowly compared to ranges A or B, and permanent strain continues to 

accumulate with load applications, ultimately leading to failure (Werkmeister 2003; EN 13286 

2004; Werkmeister et al. 2004). The shakedown categories are often used in pavement analysis and 

design (Collins and Boulbibane 1998, 2000; Tao et al. 2010). For highway engineering, materials 

falling in range A can be used provided the total accumulated strain is sufficiently small, materials 

in range B may be permitted for a limited number of load cycles (e.g. short term roads) while 

materials in range C are not authorized (Werkmeister et al. 2004). However, the applicability of 

shakedown theory and the corresponding criteria to haul roads need further investigations because 

of the specificities of haul roads, such as high stress levels, low-volume traffic, short-service-life, 

and relatively low running speed of mining trucks. 
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Permanent deformation and shakedown categories of pavement materials are generally measured 

using multi stage (MS) RLT tests (EN 13286 2004). In these tests, the specimen is exposed to a 

series of consecutive stress paths of varying magnitudes to determine the maximum stress levels 

which should not be exceeded to avoid the development of excessive permanent deformations (EN 

13286 2004). Applied stress levels in MS RLT tests should cover the stress range to which the 

material will be submitted in the field (EN 13286 2004). Various models were proposed for 

permanent strain prediction, which parameters are generally calibrated by fitting the permanent 

strains measured by RLT tests. These calibrated models can then be used to predict the permanent 

deformation behaviour of pavement materials caused by moving vehicles in the field. These models 

are usually a function of number of loading cycles and stress conditions (e.g., deviator stress q and 

mean bulk stress p) (Barksdale 1972; Sweere 1990; Wolff and Visser 1994; Lekarp et al. 2000b; 

Gidel et al. 2001; Korkiala-Tanttu 2005; Rahman and Erlingsson 2015a). The existing models were 

initially developed for highway engineering, but the applicability to mine haul roads with high 

stress levels should be evaluated. The size and capacity of mining trucks have, indeed, increased 

significantly over the past decades, and can now exceed 450 mt ("Belaz-7571 series", 2018). In 

comparison, the gross vehicle weight of three axles straight truck considered for highway design 

in Canada is 24.25 mt (Woodrooffe, 2010). 

Also, MS RLT tests can be time consuming, sophisticated, and expensive, especially when up to 

30 stress paths are used, each applied for 10 000 cycles (EN 13286 2004; Saberian et al. 2020). 

CWR tests also require larger and more specific equipment to accommodate larger particles and 

greater stresses (Mishra et al. 2013; Qian et al. 2014; Sun et al. 2014). MS repeated load CBR 

(RLCBR) tests were therefore proposed in this study as an alternative to evaluate permanent 

deformation behaviour of CWR used as pavement materials in haul roads. The principle of MS 

RLCBR test is similar to the standard CBR test, except that cyclic loads are applied (Opiyo 1995; 

Molenaar 2008; ASTM D1883 2016). MS RLCBR tests are frequently used to estimate the resilient 

modulus (Molenaar 2008; Molenaar et al. 2011; Araya et al. 2012; Sas et al. 2012; Bhattacharjee 
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and Bandyopadhyay 2015; Abid et al. 2017; Haghighi et al. 2017), but more rarely to evaluate 

permanent deformation behaviour. Therefore, it is necessary to identify the permanent deformation 

behaviour of CWR under MS RLCBR tests. Also, the existing permanent deformation models, 

which were primarily proposed for RLT tests, cannot be used directly for RLCBR tests (because 

of the completely different stress states within the specimens (Araya 2011). 

The aim of this paper was, therefore, to evaluate the permanent deformation behaviour of CWR 

using MS RLT and RLCBR tests over a wide range of stress levels. The applicability of three 

constitutive models from the literature were evaluated. A model was then proposed to fit MS 

RLCBR test results, and to determine material parameters for Rahman and Erlingsson model to 

predict the permanent deformation behaviour of CWR. Finally, the Rahman and Erlingsson model 

parameters (a, b, and 𝛼 ) calibrated by the proposed new model and MS RLCBR tests were 

validated using MS RLT test data. 

 

5.2 Methodology 

5.2.1 Material characterization 

The tested CWR were sampled on Canadian Malartic Mine, an open pit gold mine located in the 

Abitibi region, in Quebec province, Canada (Bussière 2007a; James et al. 2013). Particles larger 

than 19 mm were removed (sieved) to accommodate the specimen to the 152.4 mm diameter CBR 

mold. The particle size distribution of CWR was tested using sieving in the laboratory ((ASTM 

C136/C136M 2019); Figure 5.1(a)). The tested CWR had a small amount (< 4%) of fines (< 75 m), 

and was classified as a well-graded gravel corresponding to the dual symbol GW-GM (ASTM 

D2487 2017). Maximum particle size was 25 mm and grading coefficient (Thompson 2010)) 

Gc = 25.6. Overall, the tested crushed waste rock was considered representative of materials 

typically used to build the surface layer of mine haul roads (Thompson 2010; Laverdière 2019). 
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The moisture-density relationship was measured using modified effort Proctor compaction tests 

(ASTM D1557 2012). The optimum water content was 5.6%, for a corresponding maximum dry 

density of 2334 kg/m3 (Figure 5.1(b)). The maximum attainable degree of saturation was around 

85%; above, water would leak out of the sample during compaction. Specific gravity (GS) of CWR 

particles finer and coarser than 4.75 mm was 2.75 and 2.71, respectively (ASTM D854 2014, C127 

2015). Sample mineralogy was measured using X-ray diffraction (XRD) tests. CWR contained a 

small fraction of sulfides (1% of pyrite) but was considered non-acid generating because of a 

significant buffering capacity (Tremblay and Hogan 2001; Golder 2019). Additional properties of 

tested CWR are summarized in Table 5.1. 

 

 

Figure 5.1: (a) Particle size distribution of tested crushed waste rocks, and (b) moisture-density 

relationship of crushed waste rocks measured by modified effort Proctor tests. 

 

Table 5.1: Geotechnical and geochemical properties of tested crushed waste rocks. a: particle size 

smaller than 4.75 mm; b: particle size larger than 4.75 mm; coefficient of uniformity CU = D60/D10 

and coefficient of curvature CC = D30
2/(D60×D10). 

Mineralogy Proportion  Properties  Standard 

Quartz 26.08±2.46%  Specific gravity a 2.75 (ASTM D854 2014) 
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Albite 38.74±4.30%  Specific gravity b 2.71 
(ASTM C127 2015) 

Muscovite 10.87±1.42%  Water absorption b 0.41% 

Chlorite 7.12±0.97%  Elongation index 38.56±1.62% 
(IS 2386 1963) 

Corundum 6.80±1.33%  Flakiness index 34.95±2.08% 

Diopside 6.50±1.34%  Optimum water content 5.6% 
(ASTM D1557 2012) 

Anhydrite 2.42±0.48%  Maximum dry density 2334 kg/m3 

Pyrite 1.08±0.15%  Coefficient of uniformity 7.98 
(ASTM D2487 2017) 

Rutile 1.18±0.79%  Coefficient of curvature 2.21 

 

Six static triaxial tests were also conducted under different confining pressures (i.e. 50 (duplicate), 

100, 135, 200, and 300 kPa). The static test was carried out under drained condition. The testing 

specimens (300 mm in height and 150 mm in diameter) were prepared at 4% initial gravimetric 

water content using modified compaction effort (2700 kN-m/m3). The deviator stress at failure (qf) 

for each CWR specimen was plotted as a function of the mean bulk stress-deviator stress (i.e., p-

q), and the Mohr-Coulomb envelope was estimated using linear regression. The slope (m) and 

intercept (s) of the Mohr-Coulomb failure line were 2.02 and 221.96 kPa, respectively (Figure 5.2). 

 

 

Figure 5.2: Mohr-Coulomb failure envelope in mean bulk stress-deviator stress space. 
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5.2.2 MS RLT tests 

A total of three standard and modified MS RLT tests were carried out to measure the permanent 

deformation of CWR for different stress levels. MS RLT tests were conducted in load-controlled 

mode using a 100 kN loading frame and 1000 kPa stress controllers. A 50 kN load cell (error < 0.03% 

of applied load) recorded continuously the actual load applied on top of the specimens. The vertical 

deformation of the specimen was monitored using a linear variable differential transformer (LVDT) 

placed on the load cell. Specimens (300 mm in height and 150 mm in diameter) were prepared with 

4% of initial gravimetric water content (w) using modified compaction effort (i.e. 2700 kN-m/m3). 

MS RLT tests were conducted following the European Standard 13286-7 (2004) with two sets of 

stress levels (low stress level (LSL)) and high stress level (HSL)). Each stress level consisted of 

five sequences, and each sequence contained 5 or 6 stress paths with a constant confining pressure 

and different deviator stresses (Table 5.2). In this study, 10 000 loading cycles were applied in each 

stress path. 

The tire pressure of mine trucks could reach 1000 kPa ("Electric drive mining truck 960e-2k"  

2020), which is significantly higher than the deviator stress applied in LSL and HSL. Therefore, 

another high stress level was specifically defined in this study to represent typical stress conditions 

within mine haul roads and was referred to as HSLM (M standing for mining). HSLM was divided 

into 4 sequences, and each of these sequences contained 4 stress paths that had a constant confining 

pressure but different deviator stresses (Table 5.2). The confining pressure and deviator stress 

ranged from 80 to 550 kPa, and from 100 to 1500 kPa, respectively. In total, 6000 loading cycles 

were applied in each stress path. 

In this study, MS RLT tests were carried out using haversine loading pulses with no rest period and 

with a 0.3 Hz loading frequency. The CWR specimens were tested under drained condition. The 

axial deformation of the CWR specimens was recorded during the MS RLT tests. 
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Table 5.2: Stress levels with different confining stress (CS) and deviator stress (DS) for MS RLT 

tests, LSL and HSL are prescribed by the European Standard (EN 13286 2004), and HSLM was 

defined in this study for mining applications (see text for details). 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 

CS, kPa DS, kPa CS, kPa DS, kPa CS, kPa DS, kPa CS, kPa DS, kPa CS, kPa DS, kPa 

LSL 

20 20 45 60 70 80 100 100 150 100 

20 40 45 90 70 120 100 150 150 200 

20 60 45 120 70 160 100 200 150 300 

20 80 45 150 70 200 100 250 150 400 

20 100 45 180 70 240 100 300 150 500 

20 120 45 210 70 280 100 350 150 600 

HSL 

20 50 45 100 70 120 100 200 150 200 

20 80 45 180 70 240 100 300 150 300 

20 110 45 240 70 320 100 400 150 400 

20 140 45 300 70 400 100 500 150 500 

20 170 45 360 70 480 100 600 150 600 

20 200 45 420 70 560     

HSLM 

80 100 200 300 350 400 550 600   

80 200 200 500 350 700 550 900   

80 300 200 700 350 1000 550 1200   

80 400 200 900 350 1300 550 1500   

 

5.2.3 MS RLCBR tests 

A total of three MS RLCBR tests were performed in which each stress path was applied either 6000, 

3000 or 1000 times (i.e. cycles), to evaluate the permanent deformation behaviour of CWR 

employing the same load frame than that for MS RLT tests. 

A standard CBR mold (152.4 mm in diameter and 178 mm in height with a 51 mm compaction 

collar), and a 49.63 mm diameter plunger were used to prepare and penetrate CWR specimens. All 
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specimens for MS RLCBR tests were compacted using modified effort 2700 kN-m/m3 (ASTM 

D1883 2016), and with an initial gravimetric water content of 4%. 

Ten stress paths (noted SP1 to SP10) were defined in this paper (Table 3). MS RLCBR tests were 

carried out using haversine loading pulse with no rest period, and the loading frequency was 0.3 Hz. 

The deformation of the sample was monitored using a LVDT placed on the load cell. 

Several transfer functions were proposed to estimate the stress state of CBR specimen under 

vertical plunger loading and are based on linear elastic theory to calculate the vertical and 

horizontal (or lateral) stresses, Poisson’s ratio and elastic modulus (Araya et al. 2012). The 

estimation of stress state is generally based on the applied plunger stress, and corresponding 

vertical and lateral deformation of the specimen. However, the measurement of lateral deformation 

of CBR specimen is difficult, which limits the applicability of the existing functions. Therefore, 

the existing transfer functions were modified to calculate the vertical and horizontal stresses using 

the applied plunger stress and Poisson’s ratio v of tested material (Eq. 5.1 and 5.2); (Hao and Pabst 

2021)). The ratio of horizontal to vertical stress d varied linearly with the Poisson’s ratio v (Eq. 5.3). 

The bulk stress p
c
 (Eq. 5.4) was calculated based on vertical and horizontal stresses (Eq. 5.1-5.3), 

and was used to propose a new model. 

σH=0.363νσpe(0.072
υ⁄ )         5.1 

σV=0.368σp           5.2 

d=0.986νe(0.072
υ⁄ )≈0.9617υ+0.0919 (R2 = 0.9996)     5.3 

p
c
=(0.7078υ+0.4356)σp        5.4 

The Poisson’s ratio v of granular material is typically between 0.3 and 0.5 (Tannant and 

Regensburg 2001). A Poisson’s ratio of 0.35 was used here to estimate the stress state of MS 

RLCBR specimens (Thompson and Visser 1997b; Tannant and Regensburg 2001; Laverdière 

2019). 
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The stress levels used for MS RLT and RLCBR tests were chosen so results would be comparable: 

the mean bulk stress used for MS RLT tests ranged from around 25 (LSL) to 1000 kPa (HSLM) 

(Table 5.2), and the maximum axial plunger stress for MS RLCBR tests varied from 100 to 

4000 kPa which corresponded to a mean bulk stress between 23 and 900 kPa (Eq. 5.4; Table 5.3). 

 

Table 5.3: Stress path (SP) for MS RLCBR tests with different maximum axial stress (MAS) and 

the corresponding maximum axial load (MAL). 

SP MAS, kPa MAL, N  SP MAS, kPa MAL, N 

1 100 193.4  6 2000 3867.1 

2 200 386.7  7 2500 4833.9 

3 500 966.8  8 3000 5800.7 

4 1000 1933.6  9 3500 6767.5 

5 1500 2900.3  10 4000 7734.2 

 

5.3 Results 

5.3.1 MS RLT test results 

The influence of stress levels on accumulated permanent strains measured by MS RLT tests was 

significant (Figure 5.3). For most stress paths, permanent strain first rapidly increased during the 

first 500 loading cycles, and then reached an equilibrium state after post-compaction stabilization 

(i.e. after around 2000 cycles), and limited increase in permanent stain occurred during the 

following loading cycles. Stress path 16 (1500 kPa) in HSLM were slightly different and showed 

continuous increase of permanent strain for all cycles. The accumulated permanent strains during 

sequence 1 for LSL and HSL was similar, i.e. around 0.0025 after 60 000 cycles and for a maximum 

deviator stress of 120 kPa and 200 kPa, respectively. The difference of accumulated permanent 

strains between LSL and HSL then increased as the loading cycles and the difference in deviator 

stress increased. The final accumulated permanent strains were 0.007 and 0.008 for LSL and HSL, 
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respectively (Figure 5.3(a) and (b)). 

The accumulated permanent strain for HSLM also increased with the stress paths, but the curve 

was steeper than for LSL and HSL because of the significantly greater deviator stress. The final 

accumulated permanent strain after four sequences and 96 000 cycles was around 0.012 that was 

much higher than LSL and HSL (Figure 5.3(c)). 

 

 

Figure 5.3: Accumulation of permanent strain of crushed waste rocks measured during MS RLT 

tests for different stress levels ((a) LSL: Low Stress Level, (b) HSL: High Stress Level, and (c) 
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HSLM: High Stress Level for Mining Engineering). SP: stress path (see Table 5.2). 

 

The shakedown range was calculated for each stress path of the MS RLT tests (Werkmeister 2003; 

EN 13286 2004). The trace of the Mohr-Coulomb yield surface, the applied stress paths, and the 

shakedown ranges for each stress path were plotted in p-q space for each of the three MS RLT tests 

(Figure 5.4). The shakedown range increased gradually from A to B and from B to C as the applied 

deviator stress increased in each sequence (confining pressure remained constant). For HSL, 

shakedown range increased from A to B when the ratio of peak axial stress to confining pressure 

exceeded 9. For example, the shakedown range became B for the last two stress paths in sequence 

1 and 2, as the ratio of peak axial stress to confining pressure was 9.5, 11, 9, and 10.3, respectively 

(Figure 5.4(b)). However, for LSL, shakedown range increased from A to B when the ratio of peak 

axial stress to confining pressure was greater than 5 in sequence 1 and 3, and greater than 3.5 for 

sequence 5. For HSLM, the limit ratio of peak axial to confining pressure for shakedown range B 

was around 4 for sequence 1, 2, and 3. In this case, however, the last stress path in sequence 4 (i.e. 

stress path 16 in Figure 5.3(c)) was in range C, corresponding to the rapid increase of permanent 

strain observed with loading cycles (also see above) although the ratio of peak axial stress to 

confining pressure was smaller than 4 (Figure 5.4(c)). One of the possible reasons for the 

inconsistent shakedown limit (i.e., ratio of peak axial stress to confining pressure) could be that the 

stress path history may affect the permanent deformation behaviour (Lytton et al. 1993; Zhou et al. 

2010; Erlingsson and Rahman 2013). 

Shakedown range C in stress path 16 in HSLM could lead to the failure of CWR and result in 

rutting (Werkmeister et al. 2004). However, in practice, the stress conditions within haul roads may 

be more complex than the applied stress paths in MS RLT tests, and a constitutive model should 

be determined to predict the permanent deformation behaviour of CWR in the field. 
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Figure 5.4: Trace of Mohr-Coulomb yield surface, applied stress paths and corresponding measured 

shakedown ranges for MS RLT tests for (a) LSL, (b) HSL, and (c) HSLM. 

 

5.3.2 MS RLCBR test results 

The accumulated permanent strain tended to increase with the number of loading cycles and the 

applied stress for all the three MS RLCBR tests, but the trends depended on the stress paths and 

the number of cycles for each stress path (Figure 5.5). 

For the MS RLCBR test with 6000 cycles for each stress path, the accumulated permanent strain 

increased to around 0.02 after 10 stress paths corresponding to a maximum stress of 4000 kPa (also 

see Table 5.3). For the first five stress paths (i.e. maximum axial stress MAS < 1500 kPa), the trend 

of the permanent strain for each stress path was similar to MS RLT tests, i.e., the permanent strain 

increased rapidly during the first 2000 loading cycles, and then became more or less constant. 

However, the accumulated permanent strain kept increasing with cycles after stress path 5, 

especially for stress path 9 and 10, where the increase was almost linear (Figure 5.5). 

The final accumulated permanent strains for the MS RLCBR tests with 1000 and 3000 cycles were 

0.013 and 0.025 after10 stress paths, respectively (Figure 5.5). The slope of accumulated permanent 

strain increased significantly as the number of loading cycles for each stress path decreased from 

6000 to 3000 and 1000. For the tests with 3000 and 1000 cycles, the permanent strain increased 

continuously for most stress paths above stress path 2. A probable explanation for the rapid increase 
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was that the permanent strains for these stress paths were still in the initial post-compaction phase 

and the CWR specimen was not able to reach a stable equilibrium state because of the insufficient 

loading cycles. This may explain the higher final accumulated permanent strain for the test with 

3000 cycles per stress path than that for 6000 cycles. 

The deviator stress applied for MS RLT test under HSLM and MS RLCBR test were similar, but 

the corresponding magnitude and trend of permanent strain were different. One of the possible 

reasons was that the confining pressure was different between these two tests. It indicates that MS 

RLCBR tests results cannot directly be used to characterize the permanent deformation behaviour 

of CWR under cyclic traffic loading. The existing permanent deformation models cannot be applied 

for RLCBR tests since the confining pressure (or horizontal stress) in RLCBR test specimen was 

inconstant with the vertical plunger stress during the cyclic loading. 

 

 

Figure 5.5: Accumulation of permanent strain of crushed waste rocks measured by MS RLCBR 

tests with 6000, 3000, and 1000 loading cycles for each stress path. Stress paths are defined in 

Table 3. 
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5.4 Results analysis and discussion 

5.4.1 Applicability of existing permanent deformation models to CWR 

Several models were proposed in the literature to describe the permanent strains measured during 

RLT tests and predict the permanent deformation behaviour of pavement materials in the field. 

These models are usually a function of the number of loading cycles and other parameters such as 

deviator stress and mean bulk stress (Lekarp et al. 2000b; Erlingsson et al. 2017). For example, 

Barksdale (1972), Sweere (1990), and Wolff and Visser (1994) developed permanent deformation 

models that relate the amount of permanent strain to the number of loading cycles and which have 

been widely used for unbound granular materials for single stage RLT tests. However, these models 

do not take into account the stress condition (which is one of the most important factors affecting 

the permanent deformation of granular materials; (Lekarp et al. 2000b), which limits their 

application and accuracy for MS RLT tests. Gidel et al. (2001) and Korkiala-Tanttu (2005) 

proposed models that relate the development of permanent strain to the shear strength 

characterization of materials and number of loading cycles. Rahman and Erlingsson (2015a) also 

developed a permanent deformation model for unbound granular materials that directly takes into 

account the stress level and the number of loading cycles. These models are usually more suitable 

to describe and predict coarse-grained materials strain (Rahman and Erlingsson 2015b; Erlingsson 

et al. 2017) 

However, Gidel et al. (2001) model, Korkiala-Tanttu (2005) model, and Rahman and Erlingsson 

(2015a) model were initially proposed for single stress path RLT tests, and must be modified to 

describe MS RLT tests. Time hardening was proposed to take into account the stress history effect 

caused by previous loading stress paths. The approach consists in introducing the equivalent 

loading cycles Ni
eq

 (Lytton et al. 1993; Zhou et al. 2010; Erlingsson and Rahman 2013; 

Mohammadinia et al. 2020; Li et al. 2021) which is calculated based on the current ith stress 

condition and the accumulated permanent strain achieved by previous stress paths. The total 
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number of loading cycles N is then modified as (N-Ni-1+Ni
eq) in which Ni-1 is the total number 

of loading cycles at the end of the previous (i-1)th stress path. 

In the present study, Gidel et al. (2001), Korkiala-Tanttu (2005), and Rahman and Erlingsson 

(2015a) models were modified to include time hardening. Model parameters were calibrated on 

experimental data (Figure 5.6 and Table 5.4) using the method of least squares, and the error 

between experimental and predicted accumulated permanent strains was assessed using coefficient 

of determination R2. 

Rahman and Erlingsson model was able to describe the accumulated permanent strains accurately 

for all the stress levels with R2 > 0.92 (Figure 5.6 and Table 5.4). The fitted curves matched the 

measured accumulated permanent strain satisfactorily for LSL and HSL with R2 > 0.99, although 

the model tended to slightly underestimate the strain for the last three stress paths in LSL (Figure 

5.6). The performance of Rahman and Erlingsson model for HSLM was not as good as for LSL 

and HSL, but was still deemed satisfactorily with R2 = 0.92. A possible reason for the relatively 

lower coefficient of determination may have been the shakedown range C for stress path 16 (Figure 

5.6). Korkiala-Tanttu model fitted the accumulated permanent strain acceptably with R2 > 0.84, but 

the fitting performance decreased with the increasing of stress levels. The fitting performance of 

Gidel et al. model was low for the three stress levels (R2 < 0) in this study. One possible reason for 

the lower prediction accuracy of Gidel et al. and Korkiala-Tanttu models was the lack of significant 

correlation between the permanent deformation behaviour of CWR and the shear strength 

properties (which was also reported by Lekarp et al. (1996) for unbound granular materials). 

The prediction accuracy of shakedown ranges for Rahman and Erlingsson model was also higher 

than that for Korkiala-Tanttu model and Gidel et al. model (Figure 5.7), and was greater than 80% 

for LSL and HSL. However, the model accuracy for HSLM was relatively low (around 70%) and 

the model failed to predict the shakedown range C of stress path 16 in HSLM. The relatively few 

stress paths available for HSLM probably affected negatively the accuracy of the calibrated model. 
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Despite these limitations, Rahman and Erlingsson model seemed more accurate to describe the 

accumulated permanent strains of CWR under different stress levels in this study. 

 

 

Figure 5.6: Measured and modelled accumulated permanent strain using Rahman and Erlingsson 

model as a function of number of loading cycles during MS RLT tests for LSL, HSL, and HSLM. 

 

Table 5.4: Permanent deformation models and calibrated parameters for crushed waste rocks for 

different stress levels. Coefficient of determination R2 are also presented. The Rahman and 

Erlingsson model parameter α was set as 0.75 according to the model author’s recommendation 

(Rahman and Erlingsson 2015a). The Korkiala-Tanttu model parameter A=1.05 as recommended 

(Korkiala-Tanttu 2005). 

Model  Calibrated Material Parameters R2 

Rahman and Erlingsson 

(2015a) Model 

εp=aNbSfSf  Sf=
(q pa

⁄ )

(p pa
⁄ )

α  

 
a×10-3 b 𝛼 LSL HSL HSLM 

 
0.321 0.07 0.75 0.994 0.994 0.921 

Gidel et al. (2001) Model 
 

ε0 B u LSL HSL HSLM 
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εp=ε0(1-(
N

100
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p
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u

(m+
s

p
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-
q

max

p
max

)
-1

 

Lmax=√p
max

2+q
max

2  

 

0.015 0.403 0.053 -0.193 -1.054 -3.372 

Korkiala-Tanttu (2005) Model 

εp=CNb R

A-R
  R=

q

qf

  q
f
=mp+s  

 
C×10-3 b A LSL HSL HSLM 

 
0.652 0.203 1.05 0.995 0.952 0.847 

Where εp: permanent strain [-]; N: the number of loading cycles [-]; q: deviator stress [kPa]; p: mean bulk 

stress (one-third of the sum of the principle stresses) [kPa]; pa: the reference stress taken equal to the 

atmospheric pressure (100 kPa); pmax: the maximum applied confining pressure [kPa]; qmax: the maximum 

deviator stress [kPa]; m and s: the slope and intercept of the Mohr-Coulomb failure line plotted in p-q space, 

respectively. 

 

 

Figure 5.7: Prediction accuracy of the shakedown ranges for Rahman and Erlingsson model, 

Korkiala-Tanttu model, and Gidel et al. model on crushed waste rocks under LSL, HSL, and HSLM. 

 

5.4.2 A new model for RLCBR test 

Model development 

The existing permanent deformation models (Table 5.4) were developed primarily to predict the 
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permanent deformation behaviour from RLT test results but cannot be used directly for RLCBR 

tests (see above). Therefore, a new model was proposed in this study to describe the RLCBR test 

results, and to determine the Rahman and Erlingsson model parameters (a, b, and α): 

εp=aNbβSf
'

βS
f

'
          5.5 

Sf
'
=

(σp p
a

⁄ )

(p
c

p
a

⁄ )
α =

(σp p
a

⁄ )

[(0.2359υ+0.1452)σp p
a

⁄ ]
α       5.6 

The new model was developed based on Rahman and Erlingsson model formulation. The increase 

of accumulated permanent strain with number of loading cycles was described as a power function 

like in the Sweere model, which was able to describe RLT test results well (Rahman and Erlingsson 

2015a). A term Sf
'
 was introduced in this new model to describe the effect of stress condition 

(similarly to Sf in Rahman and Erlingsson model). The amount of permanent strain was correlated 

with Sf
'
 via multiplying it with the model parameter a (Eq. 5.5). Sf

'
 was also incorporated as the 

exponent of the number of loading cycles with model parameter b, because the curve slope of 

permanent strain versus number of loading cycles was related to the applied stress condition 

(Rahman and Erlingsson 2015a). The maximum axial plunger stress σp and the mean bulk stress 

p
c
 (Eq. 5.4) were incorporated in the calculation of Sf

'
 to account for the stress characteristics of 

RLCBR specimen (Eq. 5.6). The confining (horizontal) stress within RLCBR specimen caused by 

the plunger stress and rigid mold walls was not constant (contrary to RLT tests), so the mean bulk 

stress p
c
 was also linked with the confining stress in addition to the maximum principal stress (i.e. 

the vertical stress). Hence, a parameter β  was introduced to regularize model parameter Sf
'
 

(Eq. (5)). In this study, β = 0.5 was chosen because it provided the best fitting to MS RLCBR tests 

results for CWR. 

The time hardening approach was also applied for this new model to reflect the influence of stress 

history on permanent deformation in MS RLCBR test. At the beginning of any ith stress path of 
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the MS RLCBR test, the accumulated permanent strain from previous stress paths was used to 

determine the equivalent number of loading cycles Ni
eq

 that was required to achieve the same 

amount of accumulated permanent strain for the current ith stress path. The equivalent number of 

loading cycles Ni
eq

 for this new model can be calculated using Eq. 5.7. The permanent strain at 

loading cycles N in Eq. (5) therefore can be modified as N-Ni-1+Ni
eq

 under the current stress path. 

The developed model therefore can be rewritten for fitting the accumulated permanent strain εp
i
 

in the ith stress path in MS RLCBR test as shown in Eq. 5.8. 

Ni
eq

= (
εpi-1

aβSf
')

1

bβSf
'

          5.7 

εp
i
=a(N-Ni-1+Ni

eq)bβSf
'

βSf
'
         5.8 

 

Calibration and validation of new model for CWR 

The developed new model (Eqs. (6)~(8)) was used to fit the accumulated permanent strains of 

CWR measured by MS RLCBR tests (Figure 5.8). This model was able to fit relatively precisely 

(R2 > 0.99) the accumulated permanent strains of CWR from MS RLCBR tests with 6000, 3000, 

and 1000 cycles for each stress path (Figure 5.8). The fitted model parameters for the different MS 

RLCBR tests varied slightly, but remained in the typical range for these parameters (Erlingsson et 

al. 2017). For example, the value of a varied from 0.330×10-3 to 0.382×10-3 and the model 

parameter b from 0.070 to 0.075 (Table 5). These variations indicate that the model may also be 

influenced by the number of loading cycles per stress path. The values of parameters a and b 

calibrated by new model and MS RLCBR tests were close to that calibrated by Rahman and 

Erlingsson model and MS RLT tests, particularly the MS RLCBR test with 6000 cycles performed 

better (see Table 5.4 and 5.5). 
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The precision of calibrated parameters in Table 5 was evaluated by comparing the predicted and 

measured accumulated permanent strain by MS RLT tests (Figure 5.9). The prediction performance 

of Rahman and Erlingsson model with the parameters calibrated using MS RLCBR tests with 6000 

cycles per stress path (R2=0.99) was better than that with 3000 and 1000 cycles per stress path 

(R2=0.92). The accuracy of shakedown ranges predictions was greater than 80% for LSL and HSL, 

and above 70% for HSLM. The model calibrated with 1000 and 3000 cycles per stress path tended 

to overestimate the accumulated permanent strain for all the stress levels (Figure 5.9(a) and (b)), 

indicating that insufficient stress loading cycles could result in an overestimation of model 

parameters a and b. In other words, the number of loading cycles for each stress in MS RLCBR 

test should be at least 6000 to determine stable model parameters for Rahman and Erlingsson model 

and to predict adequately the permanent deformation behaviour of CWR. 

Model parameters calibrated using MS RLCBR tests and the new model could reasonably predict 

the permanent deformation behaviour of CWR with R2 > 0.92 for permanent strains and a 

prediction accuracy for shakedown ranges 70~80% in this study. It indicated that this new model 

for RLCBR tests was equivalent with Rahman and Erlingsson model for RLT tests. 

 

 

Figure 5.8: Experimental accumulated permanent deformation developed in MS RLCBR test with 
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6000, 3000, and 1000 cycles per stress path and the corresponding fitting curves by new model. 

 

Table 5.5: Calibrated new model parameters and coefficient of determination R2 by fitting the MS 

RLCBR test results with 6000, 3000, and 1000 cycles. The model parameter α was also set 0.75 

which was same with Rahman and Erlingsson model for MS RLT tests in this study. 

MS RLCBR tests a×10-3 b 𝛼 β R2 

6000 0.33 0.070 0.75 0.5 0.991 

3000 0.382 0.075 0.75 0.5 0.990 

1000 0.342 0.072 0.75 0.5 0.995 
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Figure 5.9: Measured and predicted accumulated permanent strain for LSL, HSL, and HSLM by 

Rahman and Erlingsson model with the parameters calibrated by new model and MS RLCBR tests, 

(a) 1000 cycles, (b) 3000 cycles, and (c) 6000 cycles per stress path. 

 

5.5 Discussion 

A new model was developed to fit RLCBR test data, and then this model was extended to fit MS 
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RLCBR test results through time hardening approach. This new model can be used to calibrate the 

Rahman and Erlingsson model parameters (i.e. a, b, and 𝛼) for which could then be used to predict 

the permanent deformation behaviour of CWR with a good precision. Although the CWR used in 

this study is representative of hard rock mines (Bussière 2007a; James et al. 2013), the new model 

developed for MS RLCBR tests should be validated for other materials. 

The proposed new model in this paper was based on Rahman and Erlingsson model, and it is 

assumed that the material parameters (a, b, and 𝛼) used in these two models were equivalent. The 

good prediction of permanent deformation behaviour of CWR proved that the new model was 

effective. However, the parameter 𝛽 (𝛽 = 0.5 in this study), which was introduced to regularize 

the stress condition within RLCBR specimen, need to be further studied with more data to establish 

reasonable ranges for its determination. Number of loading cycles in RLCBR test can affect the 

new model accuracy to calibrate the model parameters, and the insufficient loading cycles can 

result in overestimation in the parameters. The study results show that the more cycles applied in 

RLCBR test the better for this model to calibrate Rahman and Erlingsson model parameters, but it 

can lead to rapid increase in experimental time. 

The apparatus that used to conduct RLCBR test is initially designed for static (or standard) CBR 

test, which may affect the test results precision in this study, especially considering the repeatability 

of cyclic load test is relatively low (Boudreau 2003). Zhang et al. (2019) showed that the cyclic 

loading frequency can influence the permanent deformation of on high-speed railway ballast. 

However, the applied loading frequency is 0.3 Hz which is relatively low because of the limitation 

of the laboratory apparatus in this study. The effect of loading frequency therefore cannot be taken 

into account in this paper. The permanent deformation response of granular materials is also 

affected by several factors, such as water content, dry density, and particle size distribution (Lekarp 

et al. 2000b; Touqan et al. 2020). Further research should therefore be concentrated on the effect 

of these factors on the material parameters of the model. 
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Poisson’s ratio of CWR was not measured during RLCBR and RLT tests, and was assumed to be 

equal to 0.35 in the proposed model. However, Poisson’s ratio is not a constant value and may 

increase as confining pressure decreases and deviator stress increases (Hicks and Monismith 1971). 

Measurement of Poisson’s ratio by evaluating the radial strain (AASHTO T307 2017) could 

contribute to increase the accuracy of the permanent deformation model. 

Finally, the models used in this study do not consider the reorientation of principal stress often 

observed in pavement structures for moving traffic loading (Qian et al. 2016). Such effect could, 

however, lead to large permanent deformation, exceeding the measured value using laboratory RLT 

tests (Lekarp et al. 2000b; Qian et al. 2016). The principal stress rotation therefore may affect the 

model parameters such as a in Rahman and Erlingsson model. Such effect should be further 

investigated and, if possible, implemented in the models to better predict deformation under field 

conditions. 

 

 

5.6 Conclusions 

In this study, a series of MS RLT and RLCBR tests with different stress levels and loading cycles 

were conducted to investigate the CWR permanent deformation behaviour. Three existing 

permanent deformation models modified using time hardening approach were evaluated to describe 

and predict permanent deformation of CWR measured by MS RLT tests results. A new model was 

also proposed to describe and predict permanent deformation of CWR based on MS RLCBR tests. 

Based on the results of this study it was concluded that: 

The effect of stress levels on accumulated permanent strains and shakedown ranges of CWR was 

significant. The accumulated permanent strain for HSLM increased much quicker than that for LSL 

and HSL conditions, and rang C appeared for high deviator stress path in HSLM. 
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Rahman and Erlingsson model appeared to be the most representative model to characterize the 

CWR permanent deformation behaviour (R2 > 0.92). A model was proposed for MS RLCBR tests 

based on Rahman and Erlingsson model. This model was able to fit MS RLCBR tests results quite 

well (R2 > 0.99). 

The model parameters (i.e. a, b, and 𝛼 for Rahman and Erlingsson model) calibrated by the new 

model and MS RLCBR test results were able to satisfactorily predict the permanent deformation 

behaviour of CWR with R2 > 0.92, and the accuracy of the shakedown ranges was greater than 

70%. The proposed model seemed therefore an effective alternative to predict the CWR permanent 

deformation behaviour from MS RLCBR tests. 

The number of loading cycles for each stress path in MS RLCBR test could affect the calibration 

of model parameters (a, b, and 𝛼), and the insufficient loading cycles may result in overestimation 

in model parameters. Model parameters that calibrated from MS RLCBR test with 6000 cycles was 

more precise to predict the permanent deformation behaviour of CWR than with less loading cycles 

(i.e. 3000 and 1000). It would therefore be recommended to carry out MS RLCBR test with as 

many cycles as possible for each stress path. 

The model developed in this paper should be validated for other materials and compared to field 

measurements. Additional MS RLT and RLCBR tests are ongoing to study the permanent 

deformation behaviour of CWR with different properties (e.g. gradation, water contents, and 

freeze-thaw cycles). 
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Abstract: Crushed waste rocks, generated from mining operations, have been widely used for 

mining infrastructure constructions such as haul roads because of their low-cost, high-strength, and 

availability. Crushed waste rocks gradation can, however, vary a lot, depending on blasting, 

mineralogy and crushing process, but is a key factor influencing the mechanical properties of 

crushed waste rocks (including resilient modulus, permanent deformation, and shear strength). 

Gradation should therefore be optimized to enhance their performance in the field. A series of 

repeated load and monotonic triaxial tests were carried out on crushed waste rocks with different 

gravel-to-sand ratios and fines contents. Results showed that the optimum gravel-to-sand ratio was 

between 1 and 1.5 and contributed to provide higher resilient modulus and shear strength, and 

lower permanent strain. An increase in fines content could, to the contrary, result in the decrease of 

resilient modulus and permanent strain but also to significant increase of shear strength. MR-θ 

model and Rahman and Erlingsson model (extended using time hardening approach) were well 

adapted to describe resilient modulus and accumulated permanent strain, respectively, as a function 

of stress condition and number of loading cycles. Prediction models were therefore developed to 

predict the resilient modulus and permanent strain of crushed waste rocks based on correlation 

analysis results. 

Keywords: Crushed waste rocks, Gradation, Resilient modulus, Permanent deformation, Shear 
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strength, Repeated load triaxial test. 

 

 

6.1 Introduction 

Mining operations generate large amounts of waste rocks that are often stored on the surface, in 

piles. However, the management and reclamation of waste rock piles can be challenging because 

of their large size and the risks for geotechnical and geochemical instabilities (Aubertin 2013). 

Waste rocks have been widely reused (or valorized) for the construction of various infrastructures 

such as dams (Bussière 2007a), waste rock inclusions (James et al. 2013), cover systems (Bussière 

et al. 2003; Aubertin et al. 2016), mine haul roads (Thompson et al. 2019), and highways (Ahmed 

and Abouzeid 2009; Amrani et al. 2019) because of their low cost, high strength, and availability. 

For example, most mines already use crushed waste rocks for the construction of haul road wearing 

courses (Thompson et al. 2019). The valorization of waste rocks for the construction of 

infrastructures helps to decrease the amounts of materials that need to be borrowed in the 

environment, so it also contributes to decrease environmental footprint and promote the circular 

economy. 

The performance of these engineered infrastructures depends significantly on the mechanical 

properties of waste rocks such as their resilient modulus, permanent deformation, and shear 

strength (Tannant and Regensburg 2001; Aubertin 2013; Thompson et al. 2019). The resilient 

modulus and permanent deformation characteristics of unbound aggregates under traffic loading 

are, for example, important factors for road design, as they are strongly related to the rutting, 

cracking and other road diseases (Erlingsson 2012; Thompson et al. 2019). Unbound aggregates 

with low shear strength generally indeed show high lateral and vertical deformation accumulation 

under loading (Xiao and Tutumluer 2017; Byun et al. 2020). The deterioration of road layers can 
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result in reduced pavement performance and an increase of road maintenance and vehicle operation 

costs. Shear strength is a common index used for the design and safety assessment of infrastructures 

such as waste rock piles (Omraci et al. 2003; Zheng et al. 2005; Du et al. 2012), tailing dams (Blight 

1969), and roads (Tannant and Regensburg 2001; Long et al. 2011; Byun et al. 2020). For example, 

low shear strength could lead to landslides at large piles, which would cause huge losses of lives 

and environmental degradation (Zheng et al. 2005; Bao et al. 2019). However, a previous survey 

suggests that up to 30% of active waste piles have the potential of geotechnical instability (Dawson 

et al. 1998). 

Gradation of aggregates is a key factor that affects the mechanical properties including resilient 

modulus (Duong et al. 2016; Hatipoglu et al. 2020), permanent deformation (Wang et al. 2018), 

and shear strength (Xiao et al. 2012; Yang and Luo 2018; Qi, Cui, Chen, et al. 2020). Previous 

studies showed that well-graded aggregates generally provide good mechanical performance with 

respect to stiffness, rutting resistance, and shear strength (Thom and Brown 1988). The gravel-to-

sand ratio is a practical and easy-to-use criterion which is often used to optimize aggregate 

gradations (Xiao et al., 2012). Fines content is another important factor influencing the mechanical 

properties of aggregates, but its effect varies depending on the authors. For example, some studies 

concluded that the resilient modulus increased with fines content (Thom and Brown 1988; Kamal 

et al. 1993), while Hicks and Monismith (1971), and Mishra and Tutumluer (2012) observed that 

the resilient modulus was decreasing as fines content increased. Excessive fines can also result in 

increasing permanent deformation (Tutumluer and Pan 2008). 

Stress parameters also have a significant impact on the measured mechanical properties of granular 

materials. The stress-strain relationship should therefore be modeled as accurately as possible using 

constitutive models (Lekarp et al. 2000a, 2000b). Over the years, several researchers have proposed 

constitutive models for predicting resilient modulus and permanent strain of unbound aggregates. 

These models are generally expressed as a function of stress conditions (e.g. confining pressure, 



 

 

162 

deviator stress, and bulk stress) and number of loading cycles (especially for permanent 

deformation models) (Lekarp et al. 2000a, 2000b). The model coefficients are generally determined 

by fitting the repeated load triaxial test results (EN 13286 2004; AASHTO T307 2017). However, 

repeated load triaxial test is a relatively sophisticated test, and characterization can therefore be 

costly, and time-consuming, especially when multiple loading stages are applied. Prediction of 

model coefficient based on performance-related soil physical properties (e.g., water content, 

density, degree of compaction, coefficient of uniformity, and coefficient of curvature) can therefore 

be very useful in practice (Malla and Joshi 2007). Such method is much simpler and economical, 

especially considering the short-service-life of mine haul roads, because the evaluation of the 

physical properties is more straightforward and less expensive than conducting triaxial tests. 

Several researchers developed empirical regression models to predict the coefficients of resilient 

modulus and permanent deformation models (Drumm et al. 1990; Santha 1994; Mohammad et al. 

1999; Rahim and George 2005; Malla and Joshi 2007, 2008). However, existing regression models 

were generally developed for fine-grained materials such as subgrade soils, which limits their 

applicability to waste rocks. Hence, developing regression models that can reflect the robust 

linkages between gradation and mechanical properties of waste rocks would be helpful for mining 

operators. 

In this study, a series of multistage repeated load and monotonic triaxial tests were carried out on 

crushed waste rocks with different gradations. The mechanical properties characterized by resilient 

modulus, permanent deformation, and shear strength were compared to evaluate the effect of 

gravel-to-sand ratio and fines content. The measured resilient modulus and accumulated permanent 

strain were fitted using MR-θ model and Rahman and Erlingsson model (extended using time-

hardening approach), respectively. Coefficient prediction models were then developed using 

multiple linear regression for predicting the MR-θ  model and Rahman and Erlingsson model 

coefficients (k1, k2, a, and b) based on the physical properties of crushed waste rocks, including dry 

density and gradation parameters. 
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6.2 Materials and method 

6.2.1 Studied materials 

The tested crushed waste rocks were obtained from Canadian Malartic Mine, an open pit gold mine 

located in the Abitibi region (Quebec, Canada) and were typical of many hard rock mines (Bussière 

2007a; James et al. 2013). The maximum particle size of crushed waste rocks on the mine site was 

25 mm, but the particles larger than 19 mm (around 5% by weight) were removed by sieving to 

accommodate the triaxial test mold size (diameter = 150 mm). The original gradation of crushed 

waste rocks contained around 66% of gravel (> 4.75 mm), 30% of sand (< 4.75 mm) and 4% of 

fines (< 0.075 mm) (ASTM C136/C136M 2019). The material was classified as a poorly graded 

gravel (GP) based on Unified Soil Classification System (USCS; (ASTM D2487 2017)). The 

specific gravity measured using relative density (ASTM C127 2015) and water pycnometer 

(ASTM D854 2014) was 2.71 and 2.75 for particle size > 4.75 and < 4.75 mm, respectively. The 

optimum water content (measured using ASTM D1557) was 5.6% corresponding to a maximum 

density d = 2334 kg/m3 for the original gradation (Hao and Pabst 2021). X-ray diffraction (XRD) 

test results showed that the studied crushed waste rocks were mainly composed of quartz (23-28%), 

albite (34-43%), muscovite (10-12%), and chlorite (6-8%), corundum (5-8%), and diopside (5-8%). 

Crushed waste rocks were considered non-acid generating (Tremblay and Hogan 2001; Golder 

2019). 

 

6.2.2 Specimen preparation 

A total of 9 gradations (including the original material) were prepared to evaluate the effect of both 

the gravel-to-sand ratio and the fines content on crushed waste rock mechanical properties (Figure 

6.1). The gravel-to-sand ratio (GS) is defined as the percentage retained on the No.4 sieve (i.e. 

4.75 mm) divided by the percentage passing the No.4 sieve and retained on the No.200 sieve (i.e. 
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0.075 mm). Fines content (FC) is defined as the percentage passing the No.200 sieve. GS was 

varied from 0 to 3, and FC was increased from 3.75% to 12% based on typical gradations observed 

in the field (Laverdière 2019; Thompson et al. 2019). Each sample was named GSxFCy% 

corresponding to GS = x and FC = y%. The original gradation of sampled crushed waste rocks was 

named GS2.3FC3.75%, i.e. GS = 2.3 and FC = 3.75%. The crushed waste rocks named 

GS0FC3.75% did not contain gravel particles (> 4.75 mm). 

 

 

Figure 6.1: Particle size distribution of the different grading crushed waste rocks tested in this 

research; GS: gravel-to-sand ratio, FC (%): fines content. 

 

6.2.3 Repeated load triaxial tests 

Repeated load triaxial tests were conducted to evaluate the resilient behavior and the development 

of permanent deformation of crushed waste rocks under different stress levels. Monotonic triaxial 

tests (see below) were carried out to measure the shear strength. Both repeated load and monotonic 
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triaxial tests were conducted on 300 mm high and 150 mm diameter specimens under drained 

conditions. All specimens were prepared with an initial gravimetric water content w = 4% and 

compacted in ten layers using modified compaction effort 2700 kN-m/m3 and 56 blows (ASTM 

D1557 2012). Specimens were sealed within two rubber membranes (0.304 mm and 0.635 mm 

thickness, respectively) to limit the risk to damage the thin membrane because of the angular 

particles and deep holes distributed on the specimen surface (especially under high confining 

pressures). A cuprum porous disc was placed on each end of the specimen.  

Specimen characteristics are summarized in Table 1. For FC = 3.75%, the dry density varied with 

GS, and reached a peak value (2299 kg/m3) for GS = 1; above, dry density started to decrease. For 

GS = 2.3, the dry density increased gradually from 2211 to 2311 kg/m3 as FC increased from 3.75% 

to 8% but remained relatively constant for greater fines contents (Table 6.1). 

 

Table 6.1: Physical properties of crushed waste rocks specimens for various gradations; 𝜌𝑑: dry 

density; Dmax: maximum particle size; CU: coefficient of uniformity; CC: coefficient of curvature; 

D60: 60% of the soil particles are finer than this size; D30: 30% of the soil particles are finer than 

this size; D10: 10% of the soil particles are finer than this size; PG: percentage of gravel; PS: 

percentage of sand; GS: gravel-to-sand ratio; FC: fines content. 

Name 
𝜌𝑑 Dmax CU CC D60 D30 D10 PG PS GS FC 

kg/m3 mm - - mm mm mm % % - % 

GS0FC3.75% 2108 4.75 16.92 0.98 2.2 0.53 0.13 0 96.25 0 3.75 

GS0.5FC3.75% 2259 19 23.53 2.88 4.0 1.4 0.17 32.08 64.17 0.5 3.75 

GS1FC3.75% 2299 19 39.47 3.09 7.5 2.1 0.19 48.13 48.13 1.0 3.75 

GS1.5FC3.75% 2276 19 36.00 3.48 9.0 2.8 0.25 57.75 38.5 1.5 3.75 

GS2.3FC3.75% 2211 19 27.63 4.42 10.5 4.2 0.38 67.08 29.17 2.3 3.75 

GS3FC3.75% 2190 19 23.00 5.26 11.5 5.5 0.5 72.19 24.06 3.0 3.75 

GS2.3FC5% 2240 19 76.92 12.31 10.0 4.0 0.13 66.21 28.79 2.3 5.0 

GS2.3FC8% 2311 19 40.00 5.18 10.0 3.6 0.25 64.12 27.88 2.3 8.0 

GS2.3FC12% 2304 19 237.50 20.632 9.5 2.8 0.04 61.33 26.67 2.3 12.0 
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Four successive stress sequences were applied for repeated load triaxial test, and each sequence 

included three stress paths that were combinations of confining pressure and deviator stress (Table 

6.2). The confining pressure varied from 20 to 100 kPa and the deviator stress varied from 80 to 

700 kPa. Each stress path was applied for 6000 cycles. All tests were performed in a load-controlled 

mode using haversine loading pulses with no rest period and a loading frequency of 0.2 Hz. Axial 

deformation and load were recorded during triaxial tests using a linear variable differential 

transformer (LVDT) and a 50 kN load cell, respectively. The resilient modulus MR  (MPa) of 

crushed waste rocks was defined as the ratio of the cyclic deviator stress σd  (MPa) to the 

recoverable axial strain εr (-) (AASHTO T307 2017): 

MR=
σd

εr
            6.1 

The variation of resilient modulus at the initial cycles (< 100) of each stress path was relatively 

significant since this phase corresponded to the stage where the permanent strain developed quickly, 

and the loading-unloading path did not form a close cycle in the stress-strain plane (Duong et al. 

2016). Afterward, the cyclic loading led to a progressive stabilization of the particle arrangement 

and a relatively steady value of resilient modulus. The final value of resilient modulus after 6000 

loading cycles was therefore considered as the representative for each stress path. 

The permanent strain at each loading cycles was calculated as the ratio of permanent axial 

displacement to specimen height (EN 13286 2004): 

εp(N)=
Lp(N)

L0
          6.2 

Where εp(N) : permanent strain at loading cycle N; Lp(N) : permanent axial displacement at 

loading cycle N, defined as the displacement accumulated from the beginning of the first cycles to 

the end of cycle N; L0: the initial height of the tested specimen, i.e. 300 mm in this study. 



 

 

167 

Repeated load triaxial test results were also interpreted in terms of shakedown. The shakedown 

concept is generally used for ranking pavement materials on the basis of plastic deformability (EN 

13286 2004). Permanent deformation tests can lead to three ranges of behavior including plastic 

shakedown (range A), plastic creep (range B), and incremental collapse (range C) (Werkmeister et 

al. 2001; Werkmeister et al. 2004). The shakedown range of crushed waste rocks for each stress 

path was assessed based on the value of (εp
5000-εp

3000) using following criteria (EN 13286 2004): 

Plastic shakedown-range A: (εp
5000-εp

3000)<0.045×10
-3

 

Plastic creep-range B: 0.045×10
-3

<(εp
5000-εp

3000)<0.4×10
-3

 

Incremental collapse-range C: (εp
5000-εp

3000)>0.4×10
-3

 

Where εp
5000  and εp

3000 correspond to the permanent strains measured at the 5000th and 3000th 

loading cycles in each stress path. Generally, materials in range C should not be authorized in a 

well-designed pavement (Werkmeister et al. 2004). 

 

Table 6.2: Stress sequences for repeated load triaxial tests; σ3 : confining pressure, kPa; σd : 

deviator stress, kPa. 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 

Stress path σ3 σd Stress path σ3 σd Stress path σ3 σd Stress path σ3 σd 

1-1 20 80 2-1 45 180 3-1 70 240 4-1 100 300 

1-2 20 140 2-2 45 300 3-2 70 400 4-2 100 500 

1-3 20 200 2-3 45 420 3-3 70 560 4-3 100 700 

 

6.2.4 Monotonic triaxial tests 

Following the repeated load triaxial test, a consolidated drained (CD) monotonic triaxial test was 

carried out to evaluate the post-cyclic shear strength of crushed waste rocks specimens (AASHTO 
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T307 2017; ASTM D7181 2020). The consolidation was conducted by decreasing the confining 

pressure from 100 kPa (applied during the last sequence of the repeated load triaxial tests) to 50 kPa. 

The monotonic triaxial test was performed in a strain-controlled mode, and specimens were sheared 

at a constant axial rate of 0.015 mm/sec. The axial stress-strain curve for each specimen was 

recorded, and the peak deviator stress for different gradations was compared in this study. The 

shear test was stopped when the axial strain reached to 5%. 

 

 

6.3 Test results 

Stress condition was a critical factor influencing the resilient behavior of crushed waste rocks 

(Figure 6.2). Resilient modulus generally increased gradually with the applied deviator stress for a 

given confining pressure (i.e., different stress paths in one sequence). For example, for the 

specimen of GS2.3FC3.75% (original gradation), the resilient modulus increased from 150 MPa to 

185 MPa when the deviator stress increased from 80 kPa to 200 kPa (i.e., from stress path 1-1 to 

1-3). Resilient modulus also tended to increase with the stress sequence resulting from an 

increasing in stress level (or bulk stress here). In the following content, only the results for stress 

path 1-3, 2-3, 3-3, and 4-3 are presented to study the effect of gradation (GS and FC) on resilient 

modulus, but resilient modulus showed similar trend for the other stress paths. The measured stress-

strain curves from monotonic triaxial tests on crushed waste rocks with different gradations can be 

found in APPENDIX B. 
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Figure 6.2: Evolution of resilient modulus of GS2.3FC3.75% (original gradation) with stress path 

(GSxFCy%: specimen prepared with a gravel-to-sand ratio GS = x and a fines content FC = y%). 

The red dots were the stress path 1-3, 2-3, 3-3, and 4-3 that were used to study the effect of GS and 

FC in the following sections. Similar trends were observed for the other specimens. 

 

6.3.1 Effect of gravel-to-sand ratio (GS) on crushed waste rock mechanical 

properties 

The GS ratio had a significant impact on the resilient modulus of crushed waste rocks (Figure 

6.3(a)). Resilient modulus tended to increase significantly (+20 to 30%) when GS increased from 

0 to 1.5. Above this value, the resilient modulus tended to decrease, but more slowly (< -10%) and 

somewhat stabilized for GS greater than 2.3. A GS of 1.5 seemed therefore optimum for the resilient 

behavior when FC was 3.75%. 

The GS ratio also had a considerable influence on the shear strength of crushed waste rocks (Figure 

6.3(b)). The peak deviator stress under 50 kPa confining pressure increased significantly from 1050 

to 1280 kPa (+22%) as GS increased from 0 to 1. It then decreased gradually when GS exceeded 
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1, to around 1100 kPa for GS = 3. The trend between shear strength and GS was identical with the 

variation of dry density with GS. The dry density increased from 2108 to 2299 kg/m3 when GS 

increased from 0 to 1, and then decreased to 2190 kg/m3 for GS = 3. This confirmed that the dry 

density was one of the critical factors influencing the shear strength of crushed waste rocks (Hamidi 

et al. 2009). The optimum GS value of crushed waste rocks (FC = 3.75%) was 1 regarding to shear 

strength. 

 

 

Figure 6.3: Measured mechanical properties of crushed waste rocks with different gravel-to-sand 

ratios (GS) (0, 0.5, 1, 1.5, 2.3, and 3); (a) resilient modulus (for stress path 1-3, 2-3, 3-3, and 4-3), 

and (b) shear strength (peak deviator stress under 50 kPa of confining pressure). 
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The accumulated axial permanent strain typically increased with the number of loading cycles, and 

depended on the gradation of crushed waste rocks (Figure 6.4). The permanent strain curves for 

GS = 0.5 and 1 were similar, and final accumulated permanent strain was around 0.013 after 72000 

cycles (12 stress paths) for both specimens. When GS increased to 1.5, the strain increasing for 

stress path 3-3 was significantly lower than that for GS = 0.5 and 1. When GS increased to 2.3, the 

trend inversed, and the strain curve was significantly greater than that for GS = 1.5. As GS 

increased to 3, the permanent strain rapidly increased, especially in stress path 3-3 where the 

increasing in permanent strain was around 0.005. 

The variation of permanent strain for various GS also influenced the shakedown range for the 

considered stress paths (Figure 6.4). The value of (εp
5000-εp

3000) in the first stress path for different 

specimens was very close although the shakedown range was different (A or B). Also, the 

permanent deformation behavior in the first stress path was more sensitive to the initial state of the 

tested specimen than to the GS ratio. Therefore, the shakedown range in stress path 1-1 was not 

taken into account in the analysis of gradation effect. The shakedown range in stress path 2-2 varied 

from B (plastic creep) to A (plastic shakedown) as GS increased from 0.5 to 1.5. Similarly to the 

trend of permanent strain observed when GS exceeded 1.5, the shakedown range also increased 

from A to B in stress path 3-2, and from B to C (incremental collapse) in stress path 3-3 and 4-3 

for GS = 3. The optimum GS considering the permanent deformation behavior in this study was 

1.5 for crushed waste rocks with FC = 3.75%. 
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Figure 6.4: Evolution of accumulated permanent strain with the number of loading cycles for 

crushed waste rocks with different gravel-to-sand ratios (GS) (0, 0.5, 1, 1.5, 2.3, and 3), and the 

corresponding shakedown range for each stress path. 

 

6.3.2 Effect of fines content (FC) on crushed waste rock mechanical properties 

The value of FC also affected the resilient modulus of crushed waste rocks (Figure 6.5(a)). For 

stress paths 1-3 and 2-3, the resilient modulus increased slightly (< 5%) when FC increased from 

3.75% to 5%. As the stress level increased to 3-3 and 4-3, the resilient modulus change was not 

significant and was only slightly greater (< 5%) for FC = 3.75% than for FC = 5%. When FC > 5%, 

the increasing in FC resulted in a decrease of resilient modulus. For example, when FC increased 

from 5% to 12%, the resilient modulus decreased from 295 to 250 MPa, and from 395 to 375 MPa, 

for stress paths 2-3 and 4-3, respectively. Therefore, the optimum FC in terms of resilient modulus 
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appeared to be around 5% (with GS = 2.3). The shear strength of crushed waste rocks showed 

different trend with FC (Figure 6.5(b)). The peak deviator stress (under 50 kPa of confining 

pressure) increased from 1135 to 1410 kPa (+24%) as FC increased from 3.75% to 8%, and then 

decreased when FC exceeded 8%. The maximum shear strength measured for FC = 8% could be 

(mostly) attributed to the greater higher dry density (2311 kg/m3) in this case. 

 

 

Figure 6.5: Measured mechanical properties of crushed waste rocks with different fines contents 

(FC) (3.75%, 8%, and 12%); (a) resilient modulus (for stress path 1-3, 2-3, 3-3, and 4-3), and (b) 

shear strength (peak deviator stress under 50 kPa of confining pressure). 
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Unlike the stiffness softening, an increasing FC from 3.75% to 12% resulted in a decrease of 

permanent strain (Figure 6.6). For example, the increasing of permanent strain for FC = 8% was 

around 0.001 in stress path 1-3, which was significantly lower than for FC = 3.75% where the 

increasing of permanent strain was around 0.003. When FC increased to 12%, the accumulated 

permanent strain curve was significantly lower than that for FC = 3.75% and 8%, and the final 

strain was around 0.01. On the other hand, the shakedown range in stress path 3-2 changed from A 

to B when FC exceeded 3.75%, but the values of (εp
5000-εp

3000) for different FC in this stress path 

were similar. Therefore, the increase of FC from 3.75 to 12% contributed to decrease the permanent 

deformation of crushed waste rocks (GS = 2.3). 

 

 

Figure 6.6: Evolution of accumulated permanent strain with the number of loading cycles for 

crushed waste rocks with different fines contents (FC) (3.75%, 8%, and 12%), and the 

corresponding shakedown range for each stress path. 
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6.4 Interpretation of test results 

The impact of gradation (GS and FC) on the mechanical properties of crushed waste rocks can be 

attributed to the variation of specimen fabric. The fabric of crushed waste rocks consists of gravel, 

sand, and fines, in which the gravel particles form the skeleton that serves as a primary load-

carrying network to transmit the major part of a axial load, while the fine particles (sand and fines) 

fill the void space enclosed by the gravel particles (Knight 1935; Xiao et al. 2012). The fine 

particles typically can have two effects, according to their location in the fabric: the fine particles 

between the gravel particles along the stress chain can weaken the interlocking of stress chain and 

promote sliding, while the fines in the pores can inhibit the gravel particle sliding (Qi, Cui, Dupla, 

et al. 2020). 

 

6.4.1 Effect of gravel-to-sand ratio (GS) 

The load-carrying network at low GS (i.e. GS < 1 in this study) cannot be formed, and the 

mechanical behavior of crushed waste rocks is primarily dominated by the fine particles. The low 

number of contacts between gravel particles reduces the load bearing capacity of crushed waste 

rocks (Xiao et al. 2012; Shi et al. 2021). Therefore, the resilient modulus and shear strength was 

relatively low in this case (Figure 6.3). The permanent deformation is primarily resulting from the 

compression of fine particles rather than the rearrangement of gravel particles for GS < 1, so the 

specimen is relatively stable and there was no rapid increasing in permanent strain although the 

stiffness and shear strength is low (Figure 6.4). 

When GS increases to 1, a continuous load-carrying network can be developed in the specimen. 

The relatively higher dry density (2299 kg/m3) compared other GS ratios (0-3) indicates the fine 

particles almost completely occupy the voids enclosed by gravel particles at GS = 1. Hence, the 

fine particles can provide adequate support to the load-carrying network in this case, and the 
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mechanical behavior of crushed waste rocks is dominated by both gravel and fine particles. The 

resilient modulus and shear strength therefore increased significantly, but the variation in 

permanent deformation was relatively low. When GS increases to 1.5, the number of contacts 

between gravel particles increases, which leads to an increase of resilient modulus. However, the 

decrease of fine particles content can also weaken the support to the load-carrying network, which 

becomes more significant at high axial strain and stress, resulting in the decrease in shear strength 

for GS = 1.5 in this study. 

The support from fine particles would continue to decrease as GS exceeds 1.5, and the shear 

strength would decrease gradually with GS (Figure 6.3).The mechanical behavior of crushed waste 

rocks is primarily dominated by friction resistance between gravel particles for GS > 1.5 (Xiao et 

al. 2012). The resilient modulus decreased slightly with GS, and significantly less than shear 

strength, indicating that the impact of fine particles on resilient modulus of crushed waste rocks is 

limited for high GS ratio. The permanent deformation increased significantly and the shakedown 

range C (incremental collapse) observed for stress paths 3-3 and 4-3 for GS = 3 (Figure 6.4) could 

indicate gravel particle breakage or rearrangement (Werkmeister et al. 2001). It appears therefore 

that insufficient fine particles could fail to provide adequate support to the load-carrying network 

and material with high GS may not be very stable under high stress levels (Xiao et al. 2012). 

In this study, the optimum GS for the resilient modulus, permanent deformation, and shear strength 

was between 1 and 1.5 with a FC = 3.75%. Xiao et al. (2012) proposed a method (Eq. 6.3) to 

approximate the optimum gradation of aggregates, which is derived from the maximum particle 

size in the specimen Dmax and shape factor n from Talbot equation: 

Gravel

Sand
=

p
75mm

-p
4.75mm

p
4.75mm

-p
0.075mm

=
1-(

4.75

Dmax
)

n

(
4.75

Dmax
)

n
-(

0.075

Dmax
)

n =
(Dmax)n-4.75n

4.75n-0.075n       6.3 

Considering the maximum diameter Dmax of crushed waste rocks was 19 mm, the optimum GS 

calculated with Eq. (3) was between 0.9 and 1.4 for porosities n comprised between 0.4 and 0.6. 
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This approximation method seems therefore acceptable to evaluate the optimum gradation of 

crushed waste rocks. 

The above analysis of GS effect on mechanical properties can contribute to optimize the 

preparation and/or selection of waste rocks used on sites in various infrastructures. Modifying the 

gradation to get closer to the optimum GS could for example benefit the geotechnical stability of 

dams and piles that is significantly related to the shear strength (Blight 1969; Zheng et al. 2005). 

The choice of the optimum gradation also implies considering other properties and design 

constraints. For example, for mine haul roads, the water permeability of waste rock layers is one 

of the critical factors influencing the driving quality in humid regions with heavy rainfall (Tannant 

and Regensburg 2001). In this case, increasing the GS could contribute to increase significantly the 

permeability, while limiting the decrease of stiffness (as observed in Figure 6.3, resilient modulus 

decreased slightly, i.e. < -10%, with exceeding optimum GS). 

 

6.4.2 Effect of fines content (FC) 

The effect of fines on aggregates mechanical properties is multifactorial (Lekarp et al. 2000a, 

2000b; Duong et al. 2016). On one side, an optimum fines content in voids between gravel particles 

can inhibit or slow down the rearrangement of gravel particles during shearing, while on the other 

side, fines between gravel particles can reduce the specimen stiffness. As a consequence, the shear 

strength increased significantly as FC increases from 3.75% to 8%, but the resilient modulus 

decreased slightly (see Figure 6.5). However, excessive fines content (12% in this study) would 

decrease the number of contacts between gravel particles, and break the load-carrying network in 

the material. 

For GS = 2.3, the optimum FC was 5%, 12%, and 8% for resilient modulus, permanent deformation, 

and shear strength, respectively. In practice, the selection of optimum FC would, however, also 
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need to consider climate factors (Tannant and Regensburg 2001; AASHTO M-147 2008; 

Thompson et al. 2019). For example, when crushed waste rocks are used for the wearing course of 

mine haul roads, FC should not exceed 10% to prevent muddy and slippery conditions (Thompson 

et al. 2019). On the other hand, FC should also be greater than 5% to prevent raveling or loosening 

of crushed waste rocks in drier climates (Thompson et al. 2019). Finally, economy also influences 

the FC selection in practice (Hatipoglu et al. 2020). Optimization is indeed dependent of operation 

constraints. For example, the FC of an aggregate material is highly variable, and it dependents on 

the crushing process, transportation, and stockpiling in a quarry or mine site (Hatipoglu et al. 2020). 

The change in FC of aggregate base materials can therefore significantly affect the cost of 

valorization in haul, similarly to what is observed for highways (Hatipoglu et al. 2020). Also, 

decreasing the FC of crushed waste rocks implies sieving, which will raise the construction cost of 

infrastructures, especially for a massive project such as the large-scale network of haul roads at an 

open pit mine (10-40 km in length; (Thompson and Visser 2003)).  

The gradation effect on the mechanical properties of crushed waste rocks was also quantified using 

the concept of structural model (Li and Wong 2016), and the detailed results can be found in 

APPENDIX D. 

 

 

6.5 Prediction of resilient modulus and permanent deformation from 

gradation 

Experimental results showed that the influence of gradation on the mechanical properties of 

crushed waste rocks was significant. However, the optimum gradation (GS and FC) measured in 

this study was only valid for crushed waste rocks with limited gradations. Also, conducting the 

repeated load triaxial test was time-consuming and required specific equipment. A predictive model 
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based on the gradation properties could therefore be useful in practice to estimate the mechanical 

properties efficiently (Rahim and George 2005; Malla and Joshi 2007). 

 

6.5.1 Constitutive model fitting 

Resilient modulus 

The MR-θ model was used to describe the measured resilient modulus. This model was proposed 

by Seed et al. (1967) for different kinds of pavement materials, and can be written: 

MR=k1p
a

(
θ

p
a

)
k2

         6.4 

Where k1, and k2: regression coefficients; θ : bulk stress [kPa]; and pa: atmospheric pressure 

(100 kPa). The MR-θ model is widely accepted because of its simplicity and efficiency, and is 

considered accurate as long as stresses remain below the static failure condition (Elliott and David 

1989). 

The model coefficients (k1 and k2) were calibrated for each gradation by minimizing the coefficient 

of determination R2 calculated on the resilient modulus (Figure 6.7 and Table 6.3). The coefficient 

of determination R2 was higher than 0.9 for all specimens and the fitting performance of MR-θ 

model was therefore deemed acceptable. The model coefficient k1 was affected significantly by 

gradation, and tended to increase with the stiffness of crushed waste rocks. Model coefficient k2 

tended to decrease with stiffness, and its variation was relatively small (between 0.42 and 0.64; 

Table 6.3) and little dependent on gradation. 
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Figure 6.7: Model fitting (MR-θ model) of measured resilient modulus for crushed waste rocks 

with different gradations (GSxFCy%: specimen prepared with a gravel-to-sand ratio GS = x and a 

fines content FC = y%); (a) GS0FC3.75%, (b) GS0.5FC3.75%, (c) GS1FC3.75%, (d) 

GS1.5FC3.75%, (e) GS2.3FC3.75% (original), (f) GS3FC3.75%, (g) GS2.3FC5%, (h) 

GS2.3FC8%, and (i) GS2.3FC12%. 

 

Table 6.3: Calibrated model coefficients k1 and k2 and coefficient of determination R2 for resilient 

modulus of crushed waste rocks with different gradations. 

 k1 k2 R2 

GS0FC3.75% 0.861 0.636 0.933 

GS0.5FC3.75% 0.989 0.578 0.981 

GS1FC3.75% 1.394 0.455 0.945 

GS1.5FC3.75% 1.335 0.512 0.977 

GS2.3FC3.75% 1.232 0.542 0.993 



 

 

181 

GS3FC3.75% 1.456 0.452 0.954 

GS2.3FC5% 1.322 0.487 0.940 

GS2.3FC8% 1.373 0.425 0.931 

GS2.3FC12% 1.185 0.491 0.968 

 

Permanent deformation 

The Rahman and Erlingsson model (Rahman and Erlingsson 2015a) was used to fit the measured 

accumulated permanent strain. Rahman and Erlingsson model is a function of mean bulk stress p, 

deviator stress q, and number of loading cycles N (Eq. 6.5 and 6.6). This model showed good fitting 

performance to unbound granular materials in previous studies (Rahman and Erlingsson 2015a; 

Erlingsson et al. 2017). It can be written: 

εp=aNbSfSf           6.5 

Sf=
(q p

a
⁄ )

(p p
a

⁄ )
α           6.6 

Where εp: permanent strain [-]; N is number of loading cycles [-]; q: deviator stress, [kPa]; p: mean 

bulk stress (one-third of the sum of the principal stresses), [kPa]; p
a
: the reference stress taken 

equal to the atmospheric pressure (100 kPa); a , b , and α : model coefficients obtained from 

regression analysis. 

However, Rahman and Erlingsson model was initially developed to fit permanent strain of a single 

stress path in repeated load triaxial tests. The model was therefore extended using time hardening 

approach to fit the accumulated permanent strain measured by multistage repeated load triaxial 

tests in this study. Time hardening approach has been widely used for fitting accumulated 

permanent strain through considering the effect of stress history (Lytton et al. 1993; Zhou et al. 

2010; Erlingsson and Rahman 2013; Mohammadinia et al. 2020; Li et al. 2021). The extended 

Rahman and Erlingsson model can be written (Rahman and Erlingsson 2015a): 

εp
i
=a(N-Ni-1+Ni

eq)bSfSf         6.7 
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Where εp
i
 is the accumulated permanent strain in the ith stress path; the total number of loading 

cycles N from the beginning of the test is modified as N-Ni-1+Ni
eq

, Ni-1 is the total number of 

loading cycles at the end of (i-1)th stress path, and Ni
eq

 is the equivalent number of loading cycles 

for ith stress path, which is required to develop the same amount of permanent strain that is 

accumulated from all the previous stress paths. Equivalent number of loading cycles Ni
eq

 can be 

calculated using Eq. 6.8 based on the accumulated permanent strain at the end of (i-1)th stress path 

εp
i-1

. 

Ni
eq

= (
εpi-1

aSf

)

1

bSf
         6.8 

Model coefficient α was relatively constant and close to 0.45 for all gradations. In the following, 

the value of α was therefore fixed to 0.45 to minimize the number of model coefficients in this 

study. 

The extended Rahman and Erlingsson model was able to fit the accumulated permanent strain 

satisfactorily with coefficient of determination R2 greater than 0.95 for all the cases (Figure 6.8 and 

Table 6.4). The model coefficient a was affected significantly by gradation, and tended to increase 

with the accumulated permanent strain. The value of a was lower than 1×10-3 for GS0.5FC3.75% 

and GS2.3FC12%, and it was relatively high (> 1.5×10-3) for GS2.3FC3.75% and GS3FC3.75%. 

Model coefficient b presented the opposite trend and tended to decrease with gradation (Table 6.4). 
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Figure 6.8: Model fitting (Rahman and Erlingsson model) of accumulated permanent strain for 

crushed waste rocks with different gradations (GSxFCy: specimen prepared with a gravel-to-sand 

ratio GS = x and a fines content FC = y%); (a) GS0.5FC3.75, (b) GS1FC3.75, (c) GS1.5FC3.75, 

(d) GS2.3FC3.75 (original), (e) GS3FC3.75, (f) GS2.3FC8, and (g) GS2.3FC12. 

 

Table 6.4: Calibrated model coefficients a and b and coefficient of determination R2 for 

accumulated permanent strain of crushed waste rocks with different gradations (α =0.45 in this 

study). 

 a (10-3) b R2 

GS0.5FC3.75% 0.665 0.052 0.983 

GS1FC3.75% 1.038 0.034 0.986 

GS1.5FC3.75% 1.128 0.025 0.975 

GS2.3FC3.75% 1.621 0.024 0.992 

GS3FC3.75% 2.356 0.017 0.985 

GS2.3FC8% 1.119 0.031 0.986 

GS2.3FC12% 0.606 0.041 0.994 
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6.5.2 Correlation analysis 

Model coefficients (k1, k2, a, and b) can be correlated with the physical properties of crushed waste 

rocks through regression. In this study, dry density (𝜌𝑑) and gradation parameters were used as 

independent variables for the estimation of model coefficients. Gradation parameters included 

maximum particle size (Dmax), coefficient of uniformity (CU), coefficient of curvature (CC), D60, 

D30 and D10 (i.e., 60%, 30%, and 10% of the soil particles are finer than this size, respectively), 

percentage of gravel (PG), percentage of sand (PS), gravel-to-sand ratio (GS), and fines content 

(FC), parameters which are widely used to characterize soil gradation (Al-Hussaini 1983; Duong 

et al. 2016; Wang et al. 2017; Salam et al. 2018; Xu, Liu, et al. 2019; Hatipoglu et al. 2020; Qi, 

Cui, Chen, et al. 2020; Su et al. 2020; Shi et al. 2021). Correlation analysis was conducted using 

Pearson correlation coefficient (r). Pearson coefficient r is a statistical metric that measures the 

strength and direction of a linear relationship between two variables x and y (Eq. 6.9), which has 

been widely used for correlation analysis (Lee Rodgers and Nicewander 1988; Erzin and Turkoz 

2016; Lee et al. 2021). It can be written: 

rxy=
∑ (xi-x̅) ∑ (y

i
-y̅)

√∑ (xi-x̅)
2√∑ (y

i
-y̅)

2
         6.9 

Where x̅=
1

n
∑ xi

N
i=1  denotes the mean of x, y̅=

1

n
∑ y

i
N
i=1  denotes the mean of y. 

Generally, two variables are considered strongly correlated when |r| ≥ 0.8 ; an acceptable 

correlation exists when 0.2 < |r| < 0.8; and the correlation is weak when |r| ≤ 0.2 (Smith 1986). 

The correlation results showed that eight properties had a medium to high correlation with MR-θ 

model coefficient k1 (i.e., |r| ≥ 0.2). More particularly, there was a strong correlation between D60, 

PG, and PS and k1 with |r| ≥ 0.8. Correlation with D30 (0.77), GS (0.74), Dmax (0.71), 𝜌𝑑 (0.51), 

and D10 (0.50) was slightly smaller but still acceptable (Figure 6.9(a)). Among all gradation 
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properties included in the correlation analysis, CC, FC, and CU had weak correlations with k1 

(|r| ≤ 0.2). Properties D60, PG, and PS also had a strong correlation with MR-θ model coefficient 

k2 (|r| ≥ 0.8), but all the remaining eight physical properties also showed some correlation with 

coefficient > 0.2. The direction of the correlation (i.e., the sign of Pearson coefficient r) between 

the physical properties and k1 and k2 was inverse because of the reverse effects of gradation on k1 

and k2 (Table 6.3). 

Pearson correlation analysis showed that all the physical properties (𝜌𝑑, D30, FC, D10, PG, D60, GS, 

CU, CC, and PS) could affect Rahman and Erlingsson model coefficients a and b (|r| ≥ 0.2; Figure 

6.9(b)). Particularly, D10, D30, and 𝜌𝑑 had strong correlation with coefficient a, and D60, D30, PG, 

D10 and GS had strong correlation with coefficient b (|r| ≥ 0.8). The directions of the correlation 

between gradation properties and coefficients a and b were also inverse (Table 6.4). 
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Figure 6.9: Pearson correlations between physical properties and model coefficients (a) k1 and k2 

in MR-θ model, and (b) a (10
-3

) and b in Rahman and Erlingsson model. 
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6.5.3 Coefficient prediction 

The model coefficients (k1, k2, a, and b) are generally determined through fitting experimental 

results, but repeated load triaxial test is relatively costly and time-consuming. The prediction 

models for k1, k2, a, and b, expressed as a function of gradation properties, were therefore developed 

in this study. 

The number of independent variables in a model should generally be minimized to develop a robust 

link between the independent and dependent variables (Neter et al. 1989; Rahim and George 2005). 

On the other hand, using an insufficient number of independent variables could result in poor fitting. 

In this study, it was therefore decided to minimize the number of independent variables by 

eliminating the gradation properties with high correlations. Considering that most gradation 

parameters are mutually connected in practice (for example CU and D60), independent variables 

which were correlated with a factor |r| > 0.95 were eliminated. The correlation between CU and 

CC, between PG and D60, between GS and D60, between GS and D30, between GS and PS, between 

GS and PG, between PS and PG, and between PS and D60 was higher than 0.95 (Figure 6.10), and 

therefore, only parameters D60, D30, Dmax, 𝜌𝑑, and D10 were selected as the independent variables 

for predicting MR-θ model coefficient k1. Following the same reasoning, parameters PS, Dmax, 𝜌𝑑, 

FC, CC, and D10 were chosen as independent variables to predict coefficient k2. Finally, D10, D30, 

D60, CU, 𝜌𝑑, and FC were used to predict Rahman and Erlingsson model coefficient a and b. The 

predictive models for k1, k2, a, and b were developed using multiple linear regression method 

(Eq. 6.10-6.13). The coefficient of determination R2 was higher than 0.85 for k1 and k2, and was 

0.99 for a and b. 

k1=0.0385D60+0.0068D30-0.0137Dmax+0.0018𝜌𝑑+0.5613D10-3.0381   6.10 

k2=0.0017PS+0.0252Dmax-0.0021𝜌𝑑+0.0212FC-0.0107CC-0.4838D10+4.7688   6.11 

a (×10
-3

)=-26.8692D10+3.3927D30+0.003𝜌𝑑-0.4197D60-0.0071CU-0.5597FC-2.4021  6.12 



 

 

188 

b=-0.0157D60+0.12D30-1.3028D10-0.0003𝜌𝑑-0.0006CU-0.0145FC+0.9145  6.13 

 

6.5.4 Validation of the predictive models 

The developed predictive models (Eq. 6.10-6.13) were verified using the literature (Table 6.5). The 

data on resilient modulus and permanent deformation from the literature were obtained from the 

same laboratory test used in this study, i.e., repeated load triaxial tests, but the tested materials were 

different and the gradation varied over a wide range. The prediction error was quantified using the 

root mean square error (RMSE) and a factor (ypre-ymea)/ymea, where ypre and ymea was predicted and 

measured mechanical property values (either resilient modulus MR or permanent strain PS), 

respectively (Figure 6.10). 

The prediction performance of the resilient modulus model was acceptable for results presented in 

Tutumluer et al. (2009), Araya (2011), Cetin et al. (2014), and Soliman and Shalaby (2016) with 

(MRpre-MRmea)/MRmea ranging from -0.5 to 0.5 and RMSE < 145 for most points (> 90%) (although 

the prediction performance was lower than that of data from this study (Figure 6.10(a)). However, 

the model tended to underestimate slightly the resilient modulus for Maghool et al. (2019) with 

(MRpre-MRmea)/MRmea ≈  -0.5 and RMSE = 211. On the other hand, the resilient modulus was 

overestimated for Gu, Ye, et al. (2020), and this overestimation tended to increase with bulk stress. 

The tested materials from Gu, Ye, et al. (2020) and Maghool et al. (2019) were mixed materials of 

crushed tuff and Kaolin clay, and mixed materials of electric arc and ladle furnace slags, 

respectively, and their mineralogy was very different from typical crushed waste rocks, which may 

be one of the possible reasons for observed discrepancies. However, the proposed model was 

relatively accurate for crushed waste rocks. 

The proposed prediction models however tended to underestimate the permanent strain with (PSpre-

PSmea)/PSmea < -0.5 and RMSE > 3×10-3 for all the literature results considered here (Figure 6.10(b) 



 

 

189 

(Lekarp et al. 1996; Tutumluer et al. 2009; Jing et al. 2018; Byun et al. 2020; Gu, Zhan, et al. 2020). 

This relatively low prediction performance can be attributed to the fact that permanent strain is 

more complex and sensitive to material properties than resilient modulus. For example, different 

materials with the same gradation often show different permanent deformation behavior 

(Tutumluer et al. 2009). Other properties such as compaction, saturation, and maximum particle 

size also could affect the permanent deformation behavior, but they were not taken into account in 

the developed model. Still, the proposed predictive model for permanent strain can remain useful 

but would require further work to improve its precision. 

 

Table 6.5: The literature used for the validation of prediction models for resilient modulus (MR) 

and permanent strain (PS), and the material information including material type, maximum particle 

size Dmax, coefficient of curvature CC, coefficient of uniformity CU. 

Reference Property Material Dmax (mm) CC (-) CU (-) 

Tutumluer et al. (2009) MR, PS Gravel, Dolomite 25 2.5-120 18-1500 

Araya (2011) MR Crushed rock, 

Ferricrete, Limestone 

gravel 

32 1-4 12-40 

Cetin et al. (2014) MR Texas, Rockville, 

Churchville, 

Bladensburg 

38 0.5-6 60-135 

Soliman and Shalaby (2016) MR Crushed limestone, 

Gravel 

19 1.5-10 20-400 

Maghool et al. (2019) MR Electric arc furnace 

slag, Ladle furnace 

slag 

20 1-4.5 5-60 

Gu, Ye, et al. (2020) MR Crushed tuff 

aggregates, Kaolin 

clay 

30 4.8 30 

Lekarp et al. (1996) PS Dolomitic magnesian 

limestone, 

Granidiorite, Slate 

waste, Sand and 

1.5, 40, 75 0.2-1.5 2-110 
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gravel, Leighton 

buzzard sand 

Jing et al. (2018) PS Missillac fine sand 4 1-2 3-9 

Byun et al. (2020) PS Crushed aggregates 

(granite, basalt, and 

limestone) 

25.4 0.5-3.5 30-155 

Gu, Zhan, et al. (2020) PS Crushed tuff, Kaolin 

clay 

30 2.8 20.6 

This study MR, PS Crushed waste rocks 19 0.9-21 16-240 
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Figure 6.10: Prediction performance of the developed models on (a) resilient modulus (MR) and (b) 

permanent strain (PS); the root mean square error (RMSE) and (ypre-ymea)/ymea were used to describe 

the prediction error, where ypre and ymea were predicted and measured value, respectively; the blue 

zone represented the value of (ypre-ymea)/ymea ranged from -0.5 to 0.5 that was deemed acceptable. 

 



 

 

192 

6.6 Discussion and final remarks 

A series of repeated load and monotonic triaxial tests were carried out on crushed waste rocks to 

study the relationship between mechanical characteristics and gradation. Coefficient prediction 

models (k1, k2, a, and b), were also developed to estimate resilient modulus and permanent strain 

based on gradation properties. These models were validated using data from literature, indicating 

that the prediction performance for resilient modulus was relatively good while permanent strain 

tended to be somewhat underestimated. Although the crushed waste rocks used in this study were 

representative of hard rock mines (Bussière 2007a; James et al. 2013), the limited available 

database did influence the models’ accuracy and generalization. Also, further would be required to 

extrapolate the trends observed and the proposed models to waste rocks which maximum particle 

size can exceed a meter (Williams and Walker 1983; James et al. 2013). In addition, this paper only 

focused on gradation, but other properties influence the soil mechanical properties, such as water 

content, degree of compaction, and particle shape (Al-Hussaini 1983; Duong et al. 2016; Yang and 

Luo 2018; Gu, Zhan, et al. 2020; Shi et al. 2021), and these should therefore be taken into account 

in future studies. 

In this study, post-cyclic monotonic triaxial tests were conducted to assess the shear strength of 

crushed waste rocks. The cyclic loading causes additional compaction on the waste rock samples, 

which could result in a higher shear strength. The differences between experimental procedures 

make it difficult to compare the results with that from literature (Indraratna et al. 1998; Bray et al. 

2009; Seif El Dine et al. 2010). Also, only one monotonic triaxial test was carried out on each 

sample to estimate the stress-strain curve of crushed waste rocks under 50 kPa of confining 

pressure, which limits the accuracy of the friction angle determination accurately (Xiao et al. 2014; 

Chen and Zhang 2016). Therefore, more monotonic triaxial tests should be carried out on crushed 

waste rocks without cyclic loading compression to study their shear behavior under different stress 

states. 
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Rahman and Erlingsson model (extended using time hardening approach) was able to accurately 

describe the measured accumulated permanent strain in this study. However, fitting performance 

of the extended model heavily relies on the initial values of the model coefficients (i.e., a, b, and 

𝛼), and these are generally determined through trial and error method, which is time-consuming 

and complex especially when a large number of stress paths are applied in one multistage repeated 

load triaxial test. Although Rahman and Erlingsson (2015a) provided a detailed fitting process 

using Microsoft Excel, the engineer experience and judgement has a severe impact on the model 

fitting performance. This is one of the limitations of conventional regression models when dealing 

with complex and highly nonlinear data (Karlaftis and Vlahogianni 2011). One possible solution 

could consist in introducing machine learning to predict accumulated permanent strain (Ghorbani, 

Arulrajah, Narsilio, and Horpibulsuk 2020a). 

 

 

6.7 Conclusions 

A research study was undertaken to investigate the effect of gradation (i.e., gravel-to-sand ratio GS 

and fines content FC) on mechanical characteristics of crushed waste rocks from Canadian Malartic 

Mine using repeated load and monotonic triaxial tests. Predictive models were also developed for 

MR-θ model coefficients k1 and k2 and Rahman and Erlingsson model coefficients a and b based 

on the gradation properties of crushed waste rocks. The results of the current study are summarized 

as follows: 

1. An increasing in GS increased the resilient modulus and shear strength of crushed waste rocks 

until the optimum GS, and the optimum GS was 1.5 and 1 for stiffness and shear strength, 

respectively. The resilient modulus decreased slightly when exceeding optimum GS while the 

decrease of shear strength was more marked. The permanent strain decreased slowly as GS 
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increased from 0.5 to 1.5, but it increased very sharply (sometimes even reaching shakedown range 

C, i.e., incremental collapse) when GS increased to 3. 

2. The resilient modulus tended to decrease with FC, and an optimum FC around 5% was 

recommended regarding stiffness. FC had a significant influence on shear strength, and a maximum 

shear strength was reached for FC = 8%. The variation of shear strength was directly correlated 

with the variation of dry density. Permanent strain tended to decrease when FC increased from 

3.75% to 12% but selecting an optimum FC would require to consider other specifications in 

practice (e.g., AASHTO M-147 specifications for highway base layers and Guidelines for mine 

haul road design). 

3. MR-θ model and Rahman and Erlingsson model (extended using time hardening) performed 

well for fitting measured resilient modulus and accumulated permanent strain, respectively. 

Coefficient prediction models (k1, k2, a, and b), expressed as a function of gradation properties, 

were developed using multiple linear regression, and they were able to evaluate the effect of 

gradation on resilient modulus and permanent deformation of crushed waste rocks. The prediction 

performance of MR-θ  model was acceptable, the predicted permanent strain tended to be 

somewhat underestimated. The proposed models could be used to predict the mechanical properties 

of crushed waste rocks as a function of their gradation on other mines sites but would need to be 

improved using more test results to extend their generalization capacity. 
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  MECHANICAL CHARACTERIZATION OF COARSE-

GRAINED WASTE ROCKS USING LARGE-SCALE REPEATED LOAD 

AND MONOTONIC TRIAXIAL TESTS 

 

Abstract: Mining operations produce large quantities of waste rocks, which are usually disposed 

of in waste rock piles, but can also be valorized in various infrastructures on mine sites. For 

example, waste rocks are widely used to construct mine haul roads. The engineering performance 

of these haul roads significantly depends on the mechanical characteristics of the materials used 

for the construction. However, available experimental studies on coarse-grained waste rocks are 

relatively limited, mainly because of their large grain size and the scarcity of adapted testing 

equipment. In this study, a series of repeated load and monotonic triaxial tests (300 mm in diameter 

and 600 mm in height of specimen) were carried out to evaluate the resilient modulus, permanent 

deformation, and shear strength of coarse-grained waste rocks (up to 60 mm of maximum particle 

size) with different gradations. Results showed that an increasing in maximum particle size and 

compaction effort resulted in growth of resilient modulus and shear strength and decrease of 

permanent deformation. The optimal gravel-to-sand ratio to maximize resilient modulus and shear 

strength was around 5. Permanent strain was relatively constant when the gravel-to-sand ratio was 

between 1 and 5, but it decreased significantly when the ratio increased to 8. The impact of fines 

content and water content on the mechanical properties of coarse-grained waste rocks was 

relatively limited. The experimental findings in this study would be beneficial to the construction 

of haul roads using coarse-grained waste rocks in the field. 

Keywords: Waste rocks, Physical properties, Resilient modulus, Permanent deformation, Shear 

strength, Repeated load triaxial test, Mine haul roads. 
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7.1 Introduction 

Waste rocks, a by-product of mining, are typically produced in large quantities at open pit mines. 

The particle size distribution of waste rocks from hard rock mines generally varies from clay-size 

(0.002 m or less) to boulders fractions (1 m and above) (Williams and Walker 1983; James et al. 

2013). Waste rocks are usually stored on the surface in piles, close to production sites. However, 

the management and reclamation of large size waste rock piles can be challenging both during the 

mine operation and after closure (Aubertin 2013), and an interesting alternative management 

approach therefore consists in valorizing them in various infrastructures on mine sites (Demers and 

Pabst, 2020). Waste rocks are for example widely reused for mine haul roads construction because 

of their low cost, high strength, and availability (Aubertin et al. 2016; Thompson et al. 2019; Hao 

and Pabst 2021). Waster rocks are generally crushed for the constructions of the surface layer, while 

the subbase can be built from waste rocks containing particles larger than 100 mm in some cases 

(Tannant and Regensburg 2001). Valorization of waste rocks in haul roads provides a number of 

environmental and geotechnical benefits and can, notably reduce the material demand, typically 

borrowed from the environment (Thompson et al. 2019). 

The performance of haul roads significantly depends on the mechanical characteristics of waste 

rocks such as their shear strength, resilient modulus, and permanent deformation. In general, 

resilient modulus is used as the input parameter for the mechanistic design of haul roads, and shear 

strength is used to calculate the factor of safety (Thompson et al. 2019). The permanent deformation 

behavior of waste rocks is directly related to rutting, one of the most common deteriorations in 

flexible pavements (Erlingsson 2012). Excess rutting can decrease the driving quality and safety 

because of hydroplaning and reduced skid resistance of the haul road surface (Rahman and 

Erlingsson 2015a; Salour and Erlingsson 2017). The mechanical properties of unbound aggregates 

are affected by several factors such as stress condition, density, gravel-to-sand ratio, fines content, 
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maximum particle size, water content, and particle shape (Lekarp et al. 2000a, 2000b). Density 

plays an important effect on the mechanical properties of waste rocks, and the shear strength 

(Duncan et al. 2014) and resilient modulus (Lekarp et al. 2000a; Yao et al. 2016) generally increases 

with density (Lekarp et al. 2000a, 2000b). Compaction effort and water content for sample 

preparation are directly related to the dry density of aggregates. Gradation of waste rocks is another 

key factor that affects the shear strength (Ionescu 2004), resilient modulus (Duong et al. 2016; 

Hatipoglu et al. 2020), and permanent deformation (Thom and Brown 1988), and gravel-to-sand 

ratio and fines content are the critical gradation parameters that links to the mechanical properties 

of aggregates (Mishra and Tutumluer 2012; Xiao et al. 2012). The effect of these physical 

properties on the mechanical properties of waste rocks needs to be quantified to optimize the 

selection of waste rocks for haul roads construction. 

However, the relevant research on the mechanical properties of coarse-grained waste rocks from 

hard rock mine is relatively limited, especially because large-scale testing equipment which is 

required to characterize materials are also relative scarce. This is particularly the case for the 

resilient modulus and permanent deformation which measurement typically require using repeated 

load triaxial tests (EN 13286 2004; AASHTO T307 2017). Repeated load triaxial test is 

sophisticated, costly, and time-consuming, especially when multi stages are applied in the tests (EN 

13286 2004) and even more when large particle sizes must be accommodated. 

In this study, a series of repeated load and monotonic triaxial tests were carried out on coarse-

grained waste rocks with up to 60 mm maximum particle size. Various samples were prepared and 

tested to account for the naturally large variability and heterogeneity of waste rocks. The resilient 

modulus, permanent deformation, and shear strength were compared to evaluate the effect of these 

basic physical properties. 
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7.2 Experimental procedure 

7.2.1 Large-scale triaxial apparatus 

Repeated load and monotonic triaxial tests were carried out on large 600 mm high and 300 mm 

diameter waste rock samples (Figure 7.1(a) and (b)). The testing apparatus mainly consisted of a 

load frame (250 kN), a triaxial cell (2000 kPa), a water tank, a load cell (100 kN), a linear strain 

conversion transducer (LSCT, 100 mm of measurement range, < 0.2% error), a cell pressure 

controller (2000 kPa, < 5 kPa error), a back pressure controller (2000 kPa), and a control panel 

(including control valves for water supply system and a pressure indicator). The load cell and LSCT 

were used to record the axial load and axial deformation, respectively. The cell pressure controller 

was used to maintain the confining pressure during triaxial tests. In total, 12 tests were carried out; 

their preparation is described below. 

 

 

Figure 7.1: Laboratory devices used in this study; (a) large-scale triaxial apparatus; (b) one waste 

rock sample (300×600 mm); (c) hammer specifically designed for compacting large samples. 
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7.2.2 Test materials and samples preparation 

Tested coarse-grained waste rocks were sampled at Canadian Malartic Mine, an open pit gold mine 

located in the Abitibi region, in Quebec province, Canada. Generally, the ratio between the diameter 

of the specimen and the largest particles in a triaxial test should be at least equal to 5 (EN 13286 

2004), so the particles larger than 60 mm were removed (sieved). The sieved material was 

composed of around 80% of gravel (> 4.75 mm), 15% of sand (75 𝜇m-4.75 mm), and 5% of fines 

(< 75 𝜇m), and was classified as a poorly graded gravel corresponding to the symbol GP (ASTM 

D2487 2017). A hammer was especially designed for compacting the large waste rock samples in 

this study. The hammer was made of a 5 kg rammer dropped from a height of 1 m on a base plate 

with 160 mm diameter, and the compaction effort caused by one below of this hammer was 6.7 

times the standard Proctor test hammer (ASTM D698 2012) (Figure 7.1(c)). All the waste rock 

samples were prepared with five layers of 12 cm, and each layer was compacted using 62 blows of 

the hammer except the samples for the study of compaction effort effect (see Table 1). 

A total of 12 waste rock specimens were prepared with different physical properties, and the 

objective was to evaluate: 

Effect of maximum particle size Dmax: Three samples were prepared with different maximum 

particle sizes, i.e., 25, 40, and 60 mm (specimen Dmax25, Dmax40, and Dmax60 in Figure 7.2 and 

Table 7.1). The initial water content for all the samples preparation was 5%. 

Effect of gravel-to-sand ratio GS: Four samples were prepared using different gravel-to-sand ratios, 

i.e., 1, 3, 5, and 8 (specimen GS1, GS3, GS5, and GS8). The maximum particle size, fines content, 

and water content was 60 mm, 5%, and 2%, respectively, for all these four samples. 

Effect of fines content FC: Three samples were prepared with different fines contents, i.e., 0%, 5%, 

and 10% (specimen FC0%, FC5%, and FC10%). The maximum particle size, gravel-to-sand ratio, 

and water content was 60 mm, 5, and 2%, respectively, for all the three samples. 
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Effect of compaction effort C: Three compaction efforts (C31, C62, and C93) was used to prepare 

waste rock samples, i.e., 31, 62, and 93 blows on each of the five layers of the samples (specimen 

C31, C62, and C93). The compaction effort C31, C62, and C93 were correspond to 180, 360, and 

540 kJ/m3, respectively. All the samples had the same maximum particle size (60 mm), gravel-to-

sand ratio (5), fines content (5%), and water content (2%). 

Effect of water content w: Three initial gravimetric water contents, i.e., 1%, 2%, and 4%, were used 

to prepare waste rock samples (specimen w1%, w2%, and w4%). The final water contents after test 

for w1%, w2%, and w4% were 0.9%, 1.8%, and 2.3%, respectively. The variation of compaction 

effort and water content for the sample preparation was directly related to the effect of density on 

the mechanical properties of waste rocks. The maximum particle size, gravel-to-sand ratio, fines 

content, and water content was 60 mm, 5, 5%, and 2%, respectively, for all the samples. 

The particle size distributions of the samples are summarized in Figure 7.2. The original gradation 

of waste rocks was with Dmax60, GS5, and FC5%. Dmax60, GS5, FC5%, C62, and w2% were the 

same one sample in this study. The physical properties of tested samples are summarized in Table 

7.2, including the corresponding grading parameters, compaction effort and water content. 
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Figure 7.2: Particle size distribution of the different specimens tested (also see Table 7.1 for other 

specimen properties); Dmax: maximum particle size, mm; GS: gravel-to-sand ratio, FC: fines 

content, %. Specimens not presented in this figure had the same particle size distribution curve as 

the original material. 

 

Table 7.1: Tested waste rock samples with their physical properties including dry density 𝜌𝑑 

(kg/m3), D10 (mm), D30 (mm), D60 (mm), coefficient of curvature CC (-), coefficient of uniformity 

CU (-), compaction effort C (kJ/m3), maximum particle size Dmax (mm), gravel-to-sand ratio GS (-), 

fines content FC (%), and water content w (%). 

Name 𝜌𝑑 D10 D30 D60 CC CU C Dmax GS FC w 

kg/m3 mm mm mm - - kJ/m3 mm - % % 

Effect of maximum particle size Dmax 

Dmax25 2115 0.1 3.7 10 13.7 100.0  360 25 2.5 9 2 

Dmax40 1990 0.25 5.7 18 7.2 72.0 360 40 3.7 6.8 2 

Dmax60 2008 0.7 8.5 27 3.8 38.6 360 60 5 5 2 

Effect of gravel-to-sand ratio GS 

GS1 2061 0.17 2.2 9 3.2 52.9 360 60 1 5 2 
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GS3 2037 0.25 5 22 4.5 88.0 360 60 3 5 2 

GS5 2008 0.7 8.5 27 3.8 38.6 360 60 5 5 2 

GS8 1939 1.8 9.5 28 1.8 15.6 360 60 8 5 2 

Effect of fines content FC 

FC0% 1932 2.5 9.5 28 1.3 11.2  360 60 5 0 2 

FC5% 2008 0.7 8.5 27 3.8 38.6 360 60 5 5 2 

FC10% 2023 0.075 7 25 26.1 333.3 360 60 5 10 2 

Effect of compaction effort C 

C31 1876 0.7 8.5 27 3.8 38.6 180 60 5 5 2 

C62 2008 0.7 8.5 27 3.8 38.6 360 60 5 5 2 

C93 2018 0.7 8.5 27 3.8 38.6 540 60 5 5 2 

Effect of water content w 

w1% 2004 0.7 8.5 27 3.8 38.6  360 60 5 5 1 

w2% 2008 0.7 8.5 27 3.8 38.6 360 60 5 5 2 

w4% 2017 0.7 8.5 27 3.8 38.6  360 60 5 5 4 

 

7.2.3 Repeated load and monotonic triaxial tests 

Repeated load triaxial tests were carried on the prepared samples to measure resilient modulus and 

permanent deformation of waste rocks under drained conditions. A total of four successive stress 

paths were applied with increasing deviator stresses and confining pressures (Table 7.2). The 

confining pressure varied from 45 to 150 kPa and the deviator stress ranged from 120 to 320 kPa. 

Each stress path was applied for 3000 cycles with a frequency of 0.025 Hz with no rest period. All 

tests were performed in a stress-controlled mode using haversine loading pulses. The axial 

deformation and load were recorded during repeated load triaxial tests, and the resilient modulus 

(the ratio of deviator stress to recoverable axial strain; (AASHTO T307 2017)) and permanent 

strain were then calculated for each cycle. 

Following the repeated load triaxial test, a consolidated drained (CD) monotonic triaxial test was 

carried out to evaluate the post-cyclic shear strength of crushed waste rocks specimens (AASHTO 
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T307 2017; ASTM D7181 2020). The consolidation was conducted by decreasing the confining 

pressure from 150 kPa (applied during the last sequence of the repeated load triaxial tests) to 50 kPa. 

The monotonic triaxial test was performed in a strain-controlled mode, and specimens were sheared 

at a constant axial rate of 0.02 mm/sec. The axial stress-strain curve for each specimen was 

recorded, and the peak deviator stress for different specimens was compared in this study. The 

shear test was stopped when the axial strain reached 12%. 

 

Table 7.2: Stress paths applied in repeated load triaxial tests in this study. 

Stress path 1 2 3 4 

Confining pressure (kPa) 45 70 100 150 

Deviator stress (kPa) 120 160 200 320 

 

 

7.3 Experimental results and interpretation 

The average resilient modulus of the last 100 cycles of each stress path was calculated as the 

representative modulus for each stress path. Only permanent strains measured at each 10 cycles 

from the 1st to 100th cycles, and at each 100 cycles from the 100th to 3000th loading cycles were 

presented in this paper. The effect of maximum particle size, gravel-to-sand ratio, fines content, 

compaction effort, and water content on the resilient modulus, permanent deformation, and shear 

strength of waste rocks were analyzed individually in the following, but some general observations 

could be made for all the tests carried out in this study. First, the resilient modulus of waste rocks 

always tended to increase with the stress path (i.e., the stress level), independently of the specimen 

physical properties (Figure 7.3-7.7). This was explained by the fact that the higher deviator stress 

and confining pressure contribute to higher compaction and particle interlocking (Leng et al. 2017). 

Also, the development of permanent strain in waste rocks typically consisted of two phases, which 
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was particularly noticeable during stress path 1 and 4 in this study (Figure 7.3-7.7). The permanent 

strain indeed increased rapidly with loading cycles in the initial phases. This phase was 

characterized as post-compaction, which was accompanied by densification of the material, 

reduction in pore volume and volumetric change of the material (Werkmeister et al. 2004; El-

Basyouny et al. 2005). In the second phase, the deformation rate became more or less constant and 

was dominated by volume change (Werkmeister et al. 2004). Finally, the stress-strain curve under 

50 kPa of confining pressure was similar for all the different samples (Figure 7.3-7.7). The deviator 

stress indeed increased first rapidly under the initial axial strain (< 1%), but then significantly more 

slowly. Also, there was no significant decline observed for any specimen as axial strain increased 

to 12%, and this was likely because the tested waste rocks were relatively loose. 

 

7.3.1 Effect of maximum particle size 

The resilient modulus increased gradually with the maximum particle size Dmax increasing from 25 

to 40 and 60 mm (Figure 7.3(a)). For the Dmax25 sample, the resilient modulus was 114, 142, 165, 

and 221 MPa for stress path 1 (0-3000 cycles), 2 (3000-6000 cycles), 3 (6000-9000 cycles), and 4 

(9000-12000 cycles), respectively. When Dmax increased to 40 mm, the resilient modulus increased 

by 25 to 45% compared to Dmax25 for each stress path. When Dmax continued to increase to 60 mm, 

the resilient modulus also increased but at a slower rate became relatively low (around 5% 

compared to Dmax40).  

Maximum particle size also affected the permanent strain of waste rocks, and the final accumulated 

permanent strain of the three tested samples after four stress paths (12000 cycles) was between 

0.005 and 0.007 (Figure 7.3(b)). During the stress path 1, the value of accumulated permanent 

strain of Dmax25 was lower than that of Dmax40 and Dmax60, but this difference became relatively 

small during stress path 2 and 3. The strain curves of Dmax25 and Dmax40 were quite close during 

stress path 4, and were also higher than for Dmax60, and this difference tended to increase with the 
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loading cycles. The slope of permanent strain curve for Dmax25 was also steeper than that of Dmax40 

and Dmax60, especially during the three first stress paths.  

The stress-strain curves for Dmax25 and Dmax40 were very close when the axial strain was lower 

than 4% (Figure 7.3(c)). The peak deviator stress increased gradually with the maximum particle 

size Dmax, and it was around 500, 600, and 700 kPa for Dmax25, Dmax40, and Dmax60, respectively. 

In general, the observed effects of maximum particle size on resilient modulus and permanent 

deformation were consistent with previous studies. For example, previous research also found that 

resilient modulus tended to increase and permanent deformation to decrease with maximum 

particle size (Gray 1962; Thom and Brown 1988; Kolisoja 1997). Coarser particles indeed 

contribute to transmit the major part of the load and the smaller number of particle contacts induces 

less deformation, which results in higher stiffness (Lekarp et al. 2000a). The higher dry density of 

Dmax25 (2110 kg/m3; see Table 7.1) resulted in a lower permanent strain during initial loading 

cycles, but the rate of permanent strain was higher because the smaller number of coarse particles 

reduced the sample load resistance, especially for high stress levels. Previous study also found that 

shear strength tended to increase with the maximum particle size (Bala and Bishnoi 2016). The 

most probably reason for this observation is that larger maximum particle size such as Dmax40 and 

Dmax60 could develop a stronger contact force network thus resulting in greater shear strength (Xu, 

Tang, et al. 2019). 

The experimental results indicate that increasing the maximum particle size (25-60 mm) of waste 

rocks may be beneficial to the mechanical response of mine haul roads. However, the maximum 

particle size of waste rocks for the haul road construction in the field can be larger than 100 mm 

(Tannant and Regensburg 2001), which is significantly higher than 60 mm tested in this study. 
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Figure 7.3: Mechanical characterization comparison of waste rocks with different maximum 

particle size Dmax 25, 40, and 60 mm; (a) resilient modulus, (b) accumulated permanent strain, and 

(c) shear strength, i.e., stress-strain curves under 50 kPa of confining pressure. 

 

7.3.2 Effect of gravel-to-sand ratio 

The gravel-to-sand ratio GS only slightly affected the resilient modulus of waste rocks in this study 

(Figure 7.4(a)). For example, the difference of resilient modulus between specimens GS1 (gravel 
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to sand ratio = 1), GS3 and GS5 was relatively small and usually less than 5% for all stress paths. 

The resilient modulus of GS8 was around 10% lower than that of the other specimens. 

The accumulated permanent strain of waste rocks also decreased for increasing GS, and this effect 

became more significant as the stress path increased (Figure 7.4(b)). Despite this general trend, the 

final accumulated permanent strain after four stress paths was relatively similar for all specimens 

and between 0.004 and 0.006. 

The gravel-to-sand ratio effect on waste rocks shear strength was, however, significant, and the 

peak deviator stress under 50 kPa of confining pressure increased gradually from around 520 to 

700 kPa as GS increased from 1 to 5 (Figure 7.4(c)). The trend tended to stabilize for greater gravel 

to sand ratio and the stress-strain curve for GS8 was slightly lower than that of GS5. 

The gravel-to-sand ratio effect on the waste rocks mechanical properties can be attributed to the 

change induced to the waste rocks fabric (Thom and Brown 1988; Kolisoja 1997). Gravel particles 

usually enclose a void space that sand particles fill in, while fines fill the void space created by 

sand particles (Xiao et al. 2012). The amounts of coarse particles (gravel) in waste rocks could 

develop load-transferring chain that served to transmit the major part of a load, while the fine 

particles (sand and fines) were able to reinforce the load-carrying network of coarse particles and 

prevent buckling of the fabric network (Knight 1935). When the GS was greater than 5, the dry 

density decreased significantly (Table 7.1) indicating that the void space increased since fine 

particles could not fill the void space sufficiently anymore, which could explain that the resilient 

modulus for GS8 sample was relatively lower than for GS1, GS3, and GS5. However, the shear 

strength for GS5 and GS8 was higher than for GS1 and GS3 in this study. The most probably reason 

for this observation is that the interlocking of large angular particles plays a more important role 

than the density in the shear process of coarse-grained waste rocks. Although GS8 showed 

relatively low permanent strain in this study, it is expected that the sample with high GS value may 

not be very stable under high stress levels (Xiao et al. 2012). 
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Based on these results, the optimum gravel to sand ratio was therefore estimated around 5. The 

gravel-to-sand ratio is a practical parameter to modify the material gradation, and the finding in 

this study therefore can be used to guide the selection of waste rocks for the haul road construction 

in the field. 

 

 

Figure 7.4: Mechanical characterization comparison of waste rocks with different gravel-to-sand 

ratio GS1 (gravel to sand = 1:1), GS3, GS5, and GS8; (a) resilient modulus, (b) accumulated 

permanent strain, and (c) shear strength, i.e., stress-strain curves under 50 kPa of confining pressure. 
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7.3.3 Effect of fines content 

The impact of fines content FC on the resilient modulus of waste rocks was generally insignificant 

(Figure 7.5(a)). The resilient modulus for FC0% and FC10% was close, and around 155, 212, 262, 

and 350 MPa for stress path 1, 2, 3, and 4, respectively. The resilient modulus was slightly smaller 

(-15 MPa) for FC = 5% than to other tested fines contents tested, but this difference was not deemed 

significant. 

The variation of FC in the range of 0-10% also had a limited influence on the waste rocks 

permanent strain (Figure 7.5(b)). The accumulated permanent strain curves for FC0%, FC5% and 

FC10% were also close, and the final permanent strain after four stress paths (12000 cycles) was 

around 0.005 in all cases. 

The shear strength for FC5% was around 15% greater than that of FC0% and FC10% (Figure 

7.5(c)), but the stress-strain curves under 50 kPa confining pressure were all very close, and the 

peak deviator stress was around 600 to 700 kPa in all cases. 

In general, a proper fines content is existed to provide the optimal packing state of aggregates 

where the optimum mechanical properties can be obtained (Jehring and Bareither 2016). However, 

the effect of fines content was limited in this study. Similarly, Hicks (1970) also reported that the 

variation of fines content in the range of 2-10% had a minor influence on resilient modulus. This 

was probably explained by that the tested fines content was very limited (<10%), and the 

mechanical behavior of waste rocks was mainly dominated by the coarse-grained particles in this 

case (Jehring and Bareither 2016). 

Waste rocks (at least in hard rock mines) are indeed usually characterized by a small amount of 

fines which rarely exceed 10% (Gamache-Rochette 2004; Bussière 2007b). The fines content 

therefore is not a critical parameter regarding to the mechanical properties of waste rocks for the 

haul road construction. However, in practice, the selection of fines content would also need to 

consider climate conditions (Tannant and Regensburg 2001; AASHTO M-147 2008; Thompson et 
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al. 2019). For example, when waste rocks are used for the surface layer of haul roads, fines content 

should not exceed 10% to prevent muddy and slippery conditions (Thompson et al. 2019). On the 

other hand, fines content should also be greater than 5% to prevent raveling or loosening of waste 

rocks in drier climates (Thompson et al. 2019). 

 

 

Figure 7.5: Mechanical characterization comparison of waste rocks with different fines content FC 

0%, 5%, and 10%; (a) resilient modulus, (b) accumulated permanent strain, and (c) shear strength, 

i.e., stress-strain curves under 50 kPa of confining pressure. 
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7.3.4 Effect of compaction effort 

The resilient modulus of waste rocks increased with dry density caused by different compaction 

efforts (Figure 7.6(a)). The resilient modulus for C31 (i.e., 31 blows applied for each layer of a 

sample, 180 kJ/m3, 1876 kg/m3 of dry density) was around 135, 185, 230, and 305 MPa for stress 

path 1, 2, 3, and 4, respectively. Resilient modulus increased by approximately 20 MPa as 

compaction effort increased to C62 (360 kJ/m3, 2008 kg/m3 of dry density), and an additional 

20 MPa for compaction effort C93 (540 kJ/m3, 2018 kg/m3 of dry density). 

The slope of accumulated permanent strain curve for C31 was significantly steeper than for the 

other specimens, and the final strain was around 0.0135 after four stress paths (Figure 7.6(b)). 

When the compaction effort increased to C62 and C93, the permanent strain decreased significantly, 

especially during stress path 4 (9000-12000 cycles). The strain curves for C62 and C93 were close, 

and the final strain was around 0.005 (between 2 and 3 times smaller than for C31). 

The peak deviator stress under 50 kPa confining pressure for C31 was around 550 kPa (Figure 

7.6(c)), but it increased significantly to 700 kPa (+27%) when the compaction effort increased to 

C62. Additional compaction contributed to increase the peak deviator stress only slightly to a 

maximum of 750 kPa. 

The effect of compaction effect on the mechanical properties of waste rocks can be attributed to 

the increase of dry density (Table 7.1). The number of particle contacts per particle increases 

significantly when dry density increases, resulting from additional compaction effort, which in turn 

decreases the average contact stress corresponding to a certain external load. As a consequence, 

the deformation in particle contacts decreases and the resilient modulus increases (Kolisoja 1997). 

The effect of compaction effort became significant as the compaction effort increased from C31 

(180 kJ/m3) to C62 (360 kJ/m3) because the increase of dry density was important (+7%), while 

the dry density increased only slightly (< 0.5%) when compaction effort increased from C62 

(360 kJ/m3) to C93 (540 kJ/m3), and so the effect of compaction effort was also limited in this case. 
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The experimental results indicate that an increasing of compaction effort would be beneficial to the 

mechanical response of mine haul roads because of the growth of dry density. However, the effect 

of excessive compaction effort higher than a certain value (i.e., 360 kJ/m3 in this study) would be 

limited for the road performance, but it can increase the cost of road construction. The reasonable 

compaction effort for the road construction needs further study to reach a balance between road 

performance and construction cost because the particle size used in the field can be different or 

larger than the tested materials in this study. 
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Figure 7.6: Mechanical characterization comparison of waste rocks under different compaction 

effort C, i.e., 31, 62, and 93 blows applied for each layer of a sample corresponding to 180, 360, 

and 540 kJ/m3, respectively; (a) resilient modulus, (b) accumulated permanent strain, and (c) shear 

strength, i.e., stress-strain curves under 50 kPa of confining pressure. 

 

7.3.5 Effect of water content 

The influence of water content w on waste rocks resilient modulus was not significant for low stress 

levels (Figure 7.7(a)). The resilient modulus of specimens w1%, w2% and w4% was close and 

around 150, 200, and 250 MPa for stress path 1, 2, and 3, respectively. When the stress level 

increased to stress path 4 (150 kPa of confining pressure and 320 kPa of deviator stress), the 

resilient modulus of w4% increased to around 370 MPa that was around +40 MPa compared to 

other specimens. 

There was no clear trend between the water content and the permanent deformation. The difference 

of permanent deformation for different water contents was limited in the initial three stress paths 

but increased slightly in the last stress path (150 kPa of confining pressure and 320 kPa of deviator 

stress) (Figure 7.7(b)). The final permanent strain was relatively similar around 0.006 for all 

samples. 

The waste rocks with 4% water content showed slightly higher shear strength than specimen with 

lower water content, and the peak deviator stress was around 800 kPa under 50 kPa confining 

pressure (Figure 7.7(c)). The peak deviator stress for w1% and w2% was both around 700 kPa. 

The main impact of the water content is the variation of the density of waste rocks which is 

probably explained by that adding water to the waste rocks enables fine particles to move past one 

another during the application of the compaction forces (Thompson 2011c). However, the increase 

of dry density caused by water content (1-4%) was limited in this study (2004-2017 kg/m3; see 
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Table 7.1). This could explain the limited influence of water content. The maximum water content 

achievable in these tests was around 4% of initial water content (2.3% of final water content), and 

any additional water would leak out during the specimen preparation and cyclic loading. The 

impact of water content on the mechanical properties of coarse-grained waste rocks was therefore 

limited in the laboratory and similar behavior is also expected in the field. 

The waste rocks, especially used in haul roads, are generally relatively dry and usually at their 

residual water content, for example, the measured gravimetric water content of waste rocks 

(< 25 mm) on mine haul roads at the site was between 2% and 4% (Laverdière 2019). The water 

contents used in this study therefore covered typical ranges observed in the field. The experimental 

results indicate that water content of coarse-grained waste rocks would not be a critical factor 

influencing the mechanical performance of haul roads, but it is directly related to the dust issues in 

the field, which would affect the trafficability and environment (Thompson et al. 2019). 
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Figure 7.7: Mechanical characterization comparison of waste rocks samples prepared using 

different water content w, 1%, 2%, and 4%; (a) resilient modulus, (b) accumulated permanent strain, 

and (c) shear strength, i.e., stress-strain curves under 50 kPa of confining pressure. 

 

For coarse-grained waste rocks (Dmax60 mm), the optimum gravel-to-sand ratio is around 5 that is 

higher than that for crushed waste rocks (Dmax19 mm; optimum ratio is around 3) measured in the 

previous study. The large angular particles can develop a strong and stable soil fabric and these 

particles would dominate the mechanical behavior of waste rocks, which also results in a high 



 

 

226 

porosity in this case. The effect of fines content and water content in coarse-grained waste rocks is 

therefore insignificant compared to crushed waste rocks. Also, the shear strength behavior for 

coarse-grained and crushed waste rocks is significantly different, i.e., there is no significant 

reduction occurred in shear strength with axial strain for coarse-grained waste rocks while an 

apparent peak deviator stress is observed during sample shearing for crushed waste rocks. It 

indicates that coarser waste rocks have higher resistance to shear stress. 

Coarse-grained waste rocks are generally used for the base and subbase layers of haul roads, and 

these layers play the most important role in bearing the traffic loading of mining trucks while 

crushed waste rocks are generally used for the surface layer to provide safe ride (Tannant and 

Regensburg 2001; Thompson et al. 2019). Considering the difference of mechanical properties 

between coarse-grained and crushed waste rocks, waste rocks with relatively larger particles and 

higher content of gravel are recommended for the construction of base and subbase layers to carry 

heavy mining trucks in the field. However, the maximum particle size should be smaller than the 

2/3 of the layer thickness (Tannant and Regensburg 2001). 

 

 

7.4 Discussion and final remarks 

The mechanical characterization of coarse-grained waste rocks from Canadian Malartic Mine was 

evaluated using a series of repeated load and monotonic triaxial tests. The influence of maximum 

particle size Dmax (25, 40, and 60 mm), gravel-to-sand ratio GS (1, 3, 5, and 8), fines content FC 

(0%, 5%, and 10%), compaction effort C (180 kJ/m3, 360 kJ/m3, and 540 kJ/m3), and water content 

w (1%, 2%, and 4%) on mechanical properties including resilient modulus, permanent deformation, 

and shear strength was quantified in this study. The experimental effects of Dmax, GS, FC, C, and 

w on the mechanical properties are summarized in Figure 7.8. 
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Figure 7.8: The measured effect of maximum particle size Dmax, gravel-to-sand ratio GS, fines 

content FC, compaction effort C, and water content w on the mechanical properties of waste rocks 

including resilient modulus, shear strength, and permanent deformation; the symbol  means the 

mechanical property increases with the physical property; the symbol  means the mechanical 

property decreases with the physical property; and the symbol = means the effect of the physical 

property is insignificant. 

 

The maximum particle size of waste rocks was 60 mm, but it was still much smaller than the large 

particles (up to 1 mm) in the field (Williams and Walker 1983; James et al. 2013). The ratio of 

specimen diameter to maximum particle size should be higher than 5 for repeated load triaxial test 

(EN 13286 2004; AASHTO T307 2017), and it generally should be higher than 6 for monotonic 

test (ASTM D6528 2017; Deiminiat et al. 2020). When the maximum particle size is very large, 

performing such tests in laboratory with field material size becomes difficult or impossible. The 

scaling-down techniques, including scalping, parallel, replacement, and quadratic, are often used 

to obtain a modeled sample excluding oversize particles (Deiminiat et al. 2020). However, it is 

unclear which of the four scaling-down techniques yields the most representative mechanical 

properties of waste rocks from hard rock mines. 

Also, only four stress paths and 3000 cycles per stress path were applied for the repeated load 

triaxial tests in this study since the large-scale triaxial apparatus was only able to run at a low 
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loading frequency (0.025 Hz). In contrast, AASHTO standard T307 (AASHTO T307 2017) 

suggests to apply 15 stress paths to evaluate the resilient behavior of soils, and European standard 

EN 13286 (EN 13286 2004) recommend that at least 10000 loading cycles are applied for each 

stress path to evaluate the long-term permanent deformation of unbound mixtures. To better 

evaluate the resilient and permanent behavior of coarse-grained waste rocks and confirm the trends 

observed in this study, more stress paths and loading cycles should be applied in repeated load 

triaxial tests by using more advanced triaxial apparatus. 

Post-cyclic monotonic triaxial tests were conducted to assess the shear strength of waste rocks in 

this study since the sample preparation of coarse-grained waste rocks is time-consuming and 

technologically sophisticated. The cyclic loading causes additional compaction on the waste rock 

samples, which could result in a higher shear strength. This difference in experimental procedure 

makes the comparison between test results in published literature difficult (Indraratna et al. 1998; 

Bray et al. 2009; Seif El Dine et al. 2010). Also, only one monotonic triaxial test was carried out 

on a specific sample to estimate the stress-strain curve of waste rocks under 50 kPa of confining 

pressure, and the friction angle of waste rocks could therefore not be determined accurately. 

Therefore, more monotonic triaxial tests should be carried out on coarse-grained waste rocks to 

study their shear behavior under different stress states. 

 

 

7.5 Conclusions 

In this study, the mechanical characterization of coarse-grained waste rocks from Canadian 

Malartic Mine was investigated by using large-scale repeated load and monotonic triaxial tests. 

The effects of maximum particle size, gravel-to-sand ratio, fines content, compaction effort, and 

water content on mechanical properties of waste rocks were analyzed. Based on the results of this 
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study the following statements can be made: 

1. An increasing in maximum particle size (25-60 mm) resulted in growth of resilient modulus 

and shear strength and decrease of permanent deformation. The optimal gravel-to-sand ratio 

regarding to the resilient modulus and shear strength was around 5. Permanent strain was close 

when the gravel-to-sand ratio ranged between 1 and 5, but it decreased significantly when the ratio 

increased to 8. 

2. The effect of compaction effort on the mechanical properties of coarse-grained waste rocks 

was significant. An increasing of compaction effort from 180 to 360 kJ/m3 resulted in significant 

increase of resilient modulus and shear strength and decrease of permanent deformation because 

of the increase of dry density. However, the impact of more compaction effort (540 kJ/m3) on the 

density and mechanical properties was limited. 

3. The influence of fines content (0-10%) and water content (final value 0.9-2.3%) on the resilient 

modulus, shear strength, and permanent deformation of coarse-grained waste rocks was 

insignificant because the variation of these factors was relatively small, and the change of dry 

density caused by these factors was limited. 

The mechanical behavior of coarse-grained waste rocks with 60 mm of maximum particle size was 

different to crushed waste rocks with 19 mm of maximum particle size. The experimental results 

in this study would be helpful for the construction of base/subbase layers using coarse-grained 

waste rocks in the field. 
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 ARTICLE 4: EFFECT OF FREEZE-THAW AND WETTING-

DRYING CYCLES ON THE CBR, SHEAR STRENGTH, STIFFNESS, 

AND PERMANENT DEFORMATION OF CRUSHED WASTE ROCKS 
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Abstract: Waste rocks produced from mining operations are widely reused for the construction of 

mine haul roads. However, seasonal changes expose mining facilities to repeated freeze-thaw and 

wetting-drying cycles which can significantly affect the geotechnical characteristics of the 

materials in situ. A better management and valorization of waste rocks therefore require a more 

detailed understanding of the geotechnical properties of waste rocks subjected to freeze-thaw and 

wetting-drying cycles. In this study, cyclic and monotonic triaxial and CBR tests were carried out 

to measure the stiffness, shear strength, CBR, and permanent deformation of crushed waste rocks 

subjected to freeze-thaw and wetting-drying cycles. Samples were prepared to simulate field 

conditions and were subjected to 16 freeze-thaw cycles and 15 wetting-drying cycles. Results 

showed that freeze-thaw cycles resulted in a reduction of the resilient modulus and shear strength, 

and an increase of the permanent deformation. A greater water content during freeze-thaw cycles 

also resulted in a significant increase of the permanent deformation. Results also showed that 

wetting-drying cycles could contribute to increase the stiffness, CBR, and permanent deformation 

of crushed waste rocks. Results were then used to develop predictive models based on MEPDG 

model and Rahman and Erlingsson model to estimate the effect of freeze-thaw cycles on resilient 

modulus and permanent deformation.  

Keywords: Mine haul roads, Crushed waste rocks, Freeze-thaw cycles, Wetting-drying cycles, 
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Stiffness, Shear strength, CBR, Permanent deformation. 

 

 

8.1 Introduction 

Mine haul road network is a critical and vital component of the mining production process at open 

pit mines. Mine haul roads are generally constructed using local waste rocks available on site 

(Thompson et al. 2019), and their performance depends significantly on the geotechnical properties 

of waste rocks such as stiffness, California Bearing Ratio (CBR), shear strength, and permanent 

deformation (Tannant and Regensburg 2001; Thompson et al. 2019). The resilient modulus and 

permanent deformation characteristics of unbound aggregates under traffic loading are, for 

example, important factors for road design, because they are strongly related to the rutting, cracking 

and other road diseases (Erlingsson 2012; Thompson et al. 2019). CBR, meanwhile, is widely used 

to design mine haul roads in practice since this index is relatively easy and quick to measure 

(Tannant and Regensburg 2001; Thompson et al. 2019). 

Durability of soils induced by the change of climatic conditions should be assessed because of their 

major factor influence on the performance of earthwork projects (Maalouf et al. 2012). Climatic 

factors to be considered are primarily temperature and moisture changes, especially for pavement 

design (AASHTO 1993; Mechanistic-Empirical Design Guide (MEPDG; (NCHRP 2004)). 

Pavements in cold regions are exposed to at least one freeze-thaw cycle every year (Kalkan 2009), 

and wetting-drying cycles may result from rainfall, snow- and ice-melt, and variations of water 

table position on site. According to several guides and research studies (Gullà et al. 2006; Bilodeau 

et al. 2011; Razouki and Salem 2015; Zou et al. 2020), freeze-thaw and wetting-drying cycles may 

result in significant decrease of shear strength (Gullà et al. 2006; Solanki and Zaman 2014) and 

stiffness (Liu et al. 2018; Lin et al. 2019), and increase of permanent deformation (Bilodeau et al. 
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2011). The degradation of geotechnical properties caused by freeze-thaw and wetting-drying cycles 

could then result in the deterioration of pavements, for example, the decrease of fatigue life of 

pavement may reach up to 80% caused by freeze-thaw and wetting-drying cycles (Ishikawa et al. 

2019). Freeze-thaw cycles generally result in decrease of shear strength (Aldaood et al. 2016; Lu 

et al. 2019) and resilient modulus (Bozyurt et al. 2013), depending on climatic factors and material 

properties such as the availability of water (Aldaood et al. 2016), cooling rate (Broms and Yao 

1964), particle size distribution (Miao et al. 2016), and fines content (Liu et al. 2016). The effect 

of freeze-thaw cycles on resilient modulus is more significant when larger percentage of fine 

particles are in aggregates (Simonsen et al. 2002). Dense materials tend to dilate under freeze-thaw 

cycles, while loose materials are densified under freeze-thaw cycles and may show an increase in 

resilient modulus (Liu et al. 2018). Permanent deformation generally increases gradually with the 

number of freeze-thaw cycles, and the first several cycles have the greatest impact (Li et al. 2013; 

Lu et al. 2019). A high water content in unbound granular materials subjected to freeze-thaw cycles 

can cause significant increase of permanent deformation (Bilodeau et al. 2011). The frost expansion 

of pore water can also lead to a redistribution of particles and porosity, therefore altering the 

mechanical properties of the material (Aldaood et al. 2016; Ishikawa et al. 2019; Lu et al. 2019). 

Wetting-drying cycles also can result in the decrease of the mechanical properties of soils, and this 

effect depends on the material minerology (Aldaood et al. 2014; Chittoori et al. 2018). A high 

content of gypsum in soil subjected to wetting-drying cycles can lead to pronounced reduction of 

mechanical strength (Aldaood et al. 2014). The resilient modulus of aggregates generally decreases 

as wetting-drying cycles increases, but conversely, the stiffness of some materials (e.g., sandstone-

type aggregate with CKD stabilizing agents) may increase with wetting-drying cycles (Khoury et 

al. 2005; Khoury and Zaman 2007). 

Although many research studies investigated the effect of freeze-thaw and wetting-drying cycles 

on geotechnical characteristics, they focused mainly on fine-grained soils both regarding freeze-

thaw cycles (Othman and Benson 1993; Meiers et al. 2011; Tian et al. 2020; Kim et al. 2021), and 



 

 

238 

wetting-drying cycles (Khoury and Zaman 2007; Aldaood et al. 2014; ASTM D559/D559M 2015; 

Chittoori et al. 2018). Moreover, most of available research focused on the effect of freeze-thaw 

and wetting-drying cycles for civil engineering applications, such as for the construction of 

highways (Edil and Cetin 2018; Ishikawa et al. 2019). Studies for mine haul roads remain, however, 

relatively limited. One of the possible reasons is that the service life of haul roads are usually short, 

for example, their service life is generally 5-10 years which is significantly lower than highways 

(Tannant and Regensburg 2001). However, climate change and the increase of both the frequency 

and amplitude of extreme events (Dehn et al. 2000; Geertsema et al. 2006; Shou and Lin 2020), 

will expose mine haul roads to more frequent freeze-thaw and wetting-drying cycles (Hotton et al. 

2020), even over short periods of time several freeze-thaw cycles could experience. A special 

consideration should therefore be paid to the degradation of waste rocks geotechnical properties 

including stiffness, CBR, shear strength, and permanent deformation caused by freeze-thaw and 

wetting-drying cycles. 

In this study, a series of triaxial tests (both repeated load and monotonic tests) and CBR tests (both 

repeated load and standard tests) were carried out to evaluate the effect of freeze-thaw and wetting-

drying cycles on the geotechnical characteristics of crushed waste rocks (i.e., stiffness, shear 

strength, CBR, and permanent deformation). The objective was also to develop models to describe 

and predict the degradation of crushed waste rocks properties depending on the number of freeze-

thaw cycles. 

 

 

8.2 Experimental program 

8.2.1 Materials 

Tested crushed waste rocks were obtained from Canadian Malartic Mine (48.11°N, 78.13°W), an 
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open pit gold mine in Abitibi region, Quebec, Canada. The nearest meteorological station, VAL-

D'OR A (48.10°N, 77.80°W), indicates that the mean annual temperature in 2005 was 2.8 ℃, the 

total annual precipitation 719.0 mm, and the frost period around 5 months (from November to 

March) (data from Environment Canada). Crushed waste rocks were used for the construction of 

the entire mine haul road network on the site. The minerology of this material was mainly quartz 

(23-28%), albite (34-43%), muscovite (10-12%), and chlorite (6-8%) (Hao and Pabst 2021). The 

particles larger than 19 mm (around 5% by weight) were removed by sieving before the laboratory 

tests because of the limitation of the experimental setups (150 mm in diameter for triaxial tests, 

and 152 mm in diameter for CBR tests). The tested material contained around 4% of fines 

(< 0.075 mm), and the coefficient of uniformity CU and the coefficient of curvature CC were 27.6 

and 4.4, respectively (Figure 8.1(a)). The crushed waste rocks were classified as a poorly graded 

gravel (GP) according to the Unified Soil Classification System (ASTM D2487 2017). The 

optimum water content was 5.6% corresponding to a maximum dry density d = 2334 kg/m3 

(ASTM D1557 2012) (Figure 8.1(b)). 

 

 

Figure 8.1: (a) Particle size distribution curve of tested crushed waste rocks, and (b) Proctor 

compaction test results using modified effort (wopt = 5.6%). 
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8.2.2 Specimen preparation for triaxial tests 

Eight specimens (Table 8.1) were prepared to study the effect of freeze-thaw cycles on the resilient 

modulus and permanent deformation using repeated load triaxial tests (EN 13286 2004; AASHTO 

M-147 2008), and on shear strength using consolidated drained (CD) monotonic triaxial tests 

(ASTM D7181 2020) (see below for test details). All the specimens (150 mm in diameter and 

300 mm in height) were compacted in ten layers using modified effort 2700 kN-m/m3 (ASTM 

D1557 2012) and 56 blows per layer. Six specimens (FT1 to FT6; Table 1) were prepared with an 

initial gravimetric water content w0 = 4%, and were subjected to either 0, 2, 4, 7, 10, or 16 freeze-

thaw cycles. An additional specimen (FT7) was prepared using an initial gravimetric water content 

w0 = 2% and was subjected to 10 freeze-thaw cycles. Another specimen (FT8) was prepared using 

an initial gravimetric water content w0 = 2%, and additional water was then added to reach a final 

water content of 5%. The specimen was then subjected to 10 freeze-thaw cycles. 

One freeze-thaw cycle consisted in placing the specimen in an automatic temperature-controlled 

freezer with a constant temperature of -20 ℃ for 24 hours, and then moving it to a room with a 

temperature of 20 ℃ for 24 hours. A temperature of -20 ℃ is the common setting for freeze-thaw 

cycles in the literature (Tian et al. 2019; Zou et al. 2020) and was also considered representative of 

field conditions in Canada. 

The preparation process of triaxial testing specimen consisted of six steps: (1) compaction of the 

specimen using modified effort hammer and steel mold (150 mm in diameter and 300 mm in 

height); (2) dismantling the mold and extracting the specimen; (3) enclosing the specimen into two 

latex membranes (0.304 mm and 0.635 mm thickness); (4) fixing the specimen using PVC mold to 

constraint the lateral deformation, and placing the top cap and plastic wrap on the surface of the 

specimen to prevent disturbance and moisture loss during freeze-thaw cycles; (5) subjecting the 

specimen to freeze-thaw cycles; and (6) placing the specimen after freeze-thaw cycles on the 

pedestal of the triaxial cell to conduct the repeated load and monotonic triaxial test. 



 

 

241 

The physical properties of the specimens subjected to triaxial tests in this study are summarized in 

Table 8.1. The dry density of triaxial testing specimens ranged from 2215 kg/m3 to 2230 kg/m3, 

which was deemed similar for all tests. The final water content of specimens with 4% of initial 

water content decreased from to 2.5% to 3.3% during the first 10 freeze-thaw cycles, and then 

remained constant during the subsequent cycles (Table 8.1). 

 

Table 8.1: Physical properties of the specimens used for triaxial tests; w0: initial gravimetric water 

content, wf: final gravimetric water content after freeze-thaw (FT) cycles. 

Name No. of freeze-thaw cycles w0 (%) wf (%) Dry density (kg/m3) 

FT1 0 4 3.3 2217 

FT2 2 4 3.0 2220 

FT3 4 4 2.7 2225 

FT4 7 4 2.6 2226 

FT5 10 4 2.5 2230 

FT6 16 4 2.5 2226 

FT7 10 2 1.9 2226 

FT8 10 5 3.5 2223 

 

8.2.3 Specimen preparation for CBR tests 

A total of eight specimens (152.4 mm in diameter and 127 mm in height; Table 2) were prepared 

to evaluate the effect of wetting-drying cycles on equivalent modulus and permanent deformation 

using repeated load CBR tests (Molenaar 2008; Araya et al. 2012; Hao and Pabst 2021), and on 

CBR value using standard CBR tests (ASTM D1883 2016) (see details below). All the specimens 

were prepared with an initial gravimetric water content w0 = 4%, and using modified compaction 

effort according to ASTM D1883 standard (ASTM D1883 2016). Four of the specimens (WD1 to 

WD4; Table 8.2) were subjected to 0, 5, 10, and 15 wetting-drying cycles, respectively, before 

repeated load CBR tests were conducted to measure equivalent modulus and permanent 
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deformation (Molenaar 2008; Araya et al. 2012; Hao and Pabst 2021). Another four specimens 

(WD5 to WD8) were also subjected to 0, 5, 10, and 15 wetting-drying cycles, but then submitted 

to standard CBR tests to measure the CBR value (ASTM D1883 2016). One wetting-drying cycle 

consisted first of immerging the specimen in water (allowing the free access of water to the top and 

bottom) at room temperature (20 ℃ ) for 72 hours; after that, the specimen was dried at room 

temperature using a fan for 72 hours. The specimens were all subjected to the same surcharge load 

of 4.54 kg during wetting-drying cycles. The swelling of specimens during wetting-drying cycles 

was monitored. However, in this study, no notable swelling was observed during wetting-drying 

cycles, and there was no significant change observed on the specimen surface because of wetting-

drying cycles. However, it was observed that, during sample dismantling, the coarse-grained 

particles in the specimen (14-19 mm) tended to be bonded together after drying. 

The physical properties of the specimens prepared for the CBR tests are summarized in Table 8.2. 

The variation of dry density of CBR testing specimens was limited (2190-2235 kg/m3) and 

therefore considered constant for all specimens. The dried specimens had a final gravimetric water 

content of only 0.05%. 

 

Table 8.2: Physical properties of specimens for repeated load (RL) CBR tests, and standard (SD) 

CBR tests; all the specimens were prepared with 4% of initial gravimetric water content w0, wf: 

final gravimetric water content after wetting-drying (WD) cycles. 

Name Test No. of wetting-drying cycles wf (%) Dry density (kg/m3) 

WD1 RL CBR 0 3.3 2221 

WD2 RL CBR 5  0.05 2219 

WD3 RL CBR 10 0.05 2194 

WD4 RL CBR 15 0.05 2235 

WD5 SD CBR 0 3.3 2220 

WD6 SD CBR 5 0.05 2232 

WD7 SD CBR 10 0.05 2227 

WD8 SD CBR 15 0.05 2197 
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8.2.4 Repeated load and monotonic triaxial tests 

Repeated load triaxial tests were carried out to evaluate the resilient modulus and the accumulation 

of permanent strain of crushed waste rocks under traffic loading and subjected to freeze-thaw 

cycles (Figure 8.2(a)). Monotonic triaxial tests were conducted to measure the shear strength using 

the same triaxial test system. The triaxial tests were conducted on 300 mm high and 150 mm 

diameter specimens under drained conditions. 

 

 

Figure 8.2: Laboratory apparatus used in this study; (a) triaxial tests setup, including a loading 

frame (100 kN), linear variable differential transformer (LVDT; 75 mm), load cell (50 kN), triaxial 

cell, pressure controllers, a waste rock specimen, and a computer; (b) CBR test setup, including a 

loading frame (100 kN), LVDT (75 mm), load cell (50 kN), plunger (or piston; 49.63 mm in 

diameter), a stabilizing bar, and a waste rock specimen. 

 

Three successive stress sequences were applied for repeated load triaxial tests, and each sequences 

contained three stress paths (Table 8.3(a)). The confining stress was 45, 70, and 100 kPa for the 
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three sequences, respectively, and the deviator stress varied from 180 to 700 kPa. Each stress path 

was applied for 6000 cycles since mine haul roads are typical low-volume roads (Douglas 2016; 

Thompson et al. 2019). The haversine loading pulses with no rest period were applied to conduct 

the cyclic loading with 0.2 Hz of frequency. The tire (maximum payload rear tire) pressure of 

common-used mining trucks in the field generally varies from 400 to 600 kPa (data from 3D-Move 

Analysis_V2.1). Although the tire pressure of few extra-heavy mining trucks can exceed 1000 kPa 

(e.g., Belaz-7571 series), the applied stress level in this study is considered to cover the most stress 

conditions in mine haul roads. 

 

Table 8.3: Stress paths applied for cyclic tests in this study; (a) for repeated load triaxial tests, σ3: 

confining pressure, kPa, σd: deviator stress, kPa; (b) for repeated load CBR tests. 

(a) 

Sequence 1 Sequence 2 Sequence 3 

Stress path σ3 σd Stress path σ3 σd Stress path σ3 σd 

1-1 45 180 2-1 70 240 3-1 100 500 

1-2 45 300 2-2 70 400 3-2 100 700 

(b) 

Stress path 1 2 3 4 5 

Max. plunger stress (kPa) 100 300 500 800 1200 

 

The resilient modulus MR (MPa) of crushed waste rocks was defined as the ratio of the cyclic 

deviator stress σd (MPa) to the recoverable axial strain εr (-) (AASHTO T307 2017): 

MR=
σd

εr
            8.1 

Resilient modulus from the last five cycles of each stress path were averaged to obtain the resilient 

modulus for each stress path. A summary resilient modulus (SMR) was computed at a bulk stress of 
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208 kPa and an octahedral shear stress of 48.6 kPa, following the guidelines provided in NCHRP 

1-28A Section 10.3.3.9. The effect of freeze-thaw cycles on resilient modulus was evaluated by 

comparing the SMR of specimens subjected to a different number of freeze-thaw cycles. 

The permanent strain at each loading cycle was calculated as the ratio of permanent axial 

displacement to specimen height (EN 13286 2004): 

εp(N)=
Lp(N)

L0
           8.2 

Where εp(N) : permanent strain at loading cycle N; Lp(N) : permanent axial displacement at 

loading cycle N, defined as the displacement accumulated from the beginning of the first cycles to 

the end of cycle N; L0: the initial height of the tested specimen, i.e., 300 mm in this study. 

Consolidated drained (CD) monotonic triaxial tests were carried out following repeated load 

triaxial tests to measure the post-cyclic shear strength of crushed waste rocks (AASHTO T307 

2017; ASTM D7181 2020). The consolidation was conducted by decreasing the confining pressure 

from 100 kPa (applied during the last sequence of the repeated load triaxial tests) to 50 kPa. In 

monotonic triaxial tests, the specimens were sheared at a constant axial rate of 0.015 mm/sec. The 

axial stress-strain curve for each specimen was recorded, and the peak deviator stress of specimens 

was compared to study the effect of freeze-thaw cycles on shear strength. 

 

8.2.5 Repeated load and standard CBR tests 

Repeated load CBR tests were carried out to measure the stiffness and permanent strain of crushed 

waste rocks subjected to wetting-drying cycles using a 100 kN loading frame (Figure 8.2(b)). The 

vertical plunger load and deformation was recorded during the test to compute the stiffness and 

permanent strain. A standard CBR mold (152.4 mm in diameter, and 178 mm in height including a 

51 mm compaction collar) and a plunger with 49.63 mm in diameter were used to prepare and 

penetrate the specimen, respectively (Figure 8.2(b)). Five stress paths were used for repeated load 
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CBR tests, and the maximum axial stress of plunger increased from 100 to 1200 kPa (Table 8.3(b)). 

Each stress path was also applied for 6000 cycles. The haversine loading pulses with no rest period 

were applied to conduct the cyclic loading with 0.2 Hz of frequency. Equivalent modulus (Eequ.) 

was used to characterize the stiffness of specimens subjected to wetting-drying cycles measured by 

repeated load CBR tests, and it can be calculated using the following equation (Hao and Pabst 

2021): 

Eequ.=
2.432(1-v2.630)σp∙r

u0.766
          8.3 

Where Eequ.: equivalent modulus, kPa; v: Poisson’s ratio, v=0.35 for crushed waste rocks in this 

study (Thompson and Visser 1997b; Tannant and Regensburg 2001; Laverdière 2019); σp: plunger 

stress, equal to total plunger load/plunger area, kPa; u: vertical elastic (resilient) deformation of 

materials under plunger, mm; r: the radius of plunger, 24.815 mm. 

The axial deformation of plunger during cyclic loading was recorded, and the permanent strain 

(total strain minus recoverable strain) was then calculated to study the effect of wetting-drying 

cycles. 

Standard CBR tests were also conducted to assess the effect of wetting-drying cycles on CBR value 

of crushed waste rocks according to the ASTM D1883 standard (ASTM D1883 2016). Standard 

CBR tests were carried out using the same apparatus (including load frame, mold, and plunger) 

with the repeated load CBR tests (Figure 8.2(b)). 
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8.3 Experimental results and interpretation 

8.3.1 Effect of freeze-thaw cycles on resilient modulus, shear strength, and 

permanent deformation 

The influence of freeze-thaw cycles was evaluated by comparing the summary resilient modulus, 

shear strength, and permanent deformation of waste rocks specimens subjected to different 

numbers of freeze-thaw cycles (Figure 8.3). Summary resilient modulus decreased from around 

55 MPa to 50 MPa (-11%) after 4 freeze-thaw cycles (Figure 8.3(a)) and became relatively constant 

around 49 MPa for the subsequent freeze-thaw cycles. The freeze-thaw cycles therefore could 

result in 11% of reduction in resilient modulus in this case. The shear strength response, (i.e., the 

peak deviator stress under 50 kPa of confining pressure) to freeze-thaw cycles showed similar trend 

with stiffness (Figure 8.3(b)). The peak deviator stress decreased from around 1130 kPa to 

1050 kPa (-7%) when the number of freeze-thaw cycles increased from 0 to 10; this influence was 

therefore deemed negligible. The stress-strain curves for crushed waste rocks subjected to freeze-

thaw cycles can be found in APPENDIX C. The freeze-thaw cycles increased the permanent 

deformation of crushed waste rocks (Figure 8.3(c)). For the first two and last stress paths, the 

permanent strain generally increased rapidly during the first 500 loading cycles, and then reached 

an equilibrium state after post-compaction stabilization after around 2000 loading cycles, which 

was then followed by a very low rate of permanent strain. However, there was no rapid 

accumulation of permanent strain observed during the initial loading cycles for the other stress 

paths (12000-30000 loading cycles) because of the relatively low ratio of deviator stress to 

confining pressure. The accumulated permanent strain increased with freeze-thaw cycles and 

reached a stable state after 4 freeze-thaw cycles. The final accumulated permanent strain after 6 

stress paths (36000 loading cycles) without freeze-thaw cycles was 0.0075, and it increased to 

0.009 (+20%) when the specimen had been subjected to 4 freeze-thaw cycles. The accumulated 

permanent strains of the specimens subjected to 4 and 10 freeze-thaw cycles were close (0.009). 
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Experimental results indicated therefore that the first 4 freeze-thaw cycles had the greatest 

influence and could contribute to decrease the stiffness and shear strength, and to increase the 

permanent deformation of crushed waste rocks. Over 4 freeze-thaw cycles, the effect of more 

freeze-thaw cycles was insignificant. These results were similar to previous observations made for 

aggregate mixtures (Bozyurt et al. 2013; Miao et al. 2016; Domitrović et al. 2019). A similar effect 

of freeze-thaw cycles on permanent deformation for subgrade soil was also observed by Lu et al. 

(2019) which also showed that the accumulated permanent strain increases gradually with the 

number of freeze-thaw cycles, and that the first three cycles have the greatest impact. The variation 

of the geotechnical properties of crushed waste rocks could be attributed to some microstructural 

changes caused by freeze-thaw cycles (Gullà et al. 2006; Lu et al. 2019). The temperature gradient 

during freezing can, indeed, induce water movement from the inside of the sample to its surface, 

which would decrease the particle frictional coefficient (Ishikawa et al. 2019). In addition, the frost 

expansion of pore water could lead to an increase and redistribution of the porosity, and the samples 

can become less dense as soil particles get loose (Aldaood et al. 2016; Ishikawa et al. 2019; Lu et 

al. 2019). 
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Figure 8.3: Influence of freeze-thaw (FT) cycles (0, 2, 4, 7, 10, 16) on the geotechnical properties 

of crushed waste rocks; (a) summary resilient modulus SMR; (b) peak deviator stress under 50 kPa 

of confining pressure; (c) development of accumulated permanent strain with loading cycles. 
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8.3.2 Effect of water content during freeze-thaw cycles 

The influence of water content on the geotechnical properties of specimens subjected to freeze-

thaw cycles was investigated by comparing the summary resilient modulus, shear strength, and 

permanent deformation of crushed waste rocks specimens with various water contents and 

subjected to 10 freeze-thaw cycles (Figure 8.4). Three identical specimens were prepared, and 

water content was adjusted after compaction so that density was the same in all the samples and 

only water content changed (specimens FT5, FT7 and FT8 in Table 8.1). An increase of the water 

content contributed to decrease the summary resilient modulus and increased permanent 

deformation after 10 freeze-thaw cycles but had limited influence on the shear strength of crushed 

waste rocks (Figure 8.4). Summary resilient modulus decreased slightly from around 51 MPa to 

49 MPa (-4%) when the water content increased from 1.9% to 2.5%, but then tended to stabilize 

around 49.5 MPa when the water content increased to 3.5% (Figure 8.4(a)). The peak deviator 

stress under 50 kPa confining pressure was nearly constant (1050-1080 kPa) when the water 

content was between 1.9% and 3.5% (Figure 8.4(b)). Permanent deformation was more 

significantly affected by water content during freeze-thaw cycles (Figure 8.4(c)), and an increase 

of the water content resulted in a significant increase of permanent deformation: the final 

accumulated permanent strain after 36000 loading cycles increased from 0.005 to 0.009 (+80%) 

when the water content increased from 1.9% to 2.5%; and it increased to 0.01 (+100%) for a water 

content of 3.5%. The influence of water content during freeze-thaw cycles on permanent strain was 

more remarkable during the first two stress paths (i.e., the first 12 000 loading cycles). 

These observations could be explained by the changes in the microstructure caused by the freeze-

thaw cycles: higher water content increases the frost expansion of pore water, which in turns 

promotes the particle rearrangement (Ishikawa et al. 2019). The sensitivity of the permanent 

deformation to water content during freeze-thaw cycles, was consistent with the conclusions from 

previous studies where it was shown that unbound granular materials at high water content 



 

 

251 

subjected to freeze-thaw cycles could fail after thousands of loading cycles (Bilodeau et al. 2011). 

A greater water content in the waste rock layers at the beginning of the winter (in cold regions) 

may therefore increase the permanent deformation of mine haul roads, and lead to rutting and 

slipperiness, which causes poor quality of roads and an increase of maintenance requirements 

(Thompson et al. 2019). 
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Figure 8.4: Influence of water content (1.9%, 2.5%, and 3.5%) within specimens subjected to 10 

freeze-thaw (FT) cycles on the geotechnical properties of crushed waste rocks; (a) summary 
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resilient modulus SMR; (b) peak deviator stress under 50 kPa of confining pressure; (c) 

development of accumulated permanent strain with loading cycles. 

 

8.3.3 Effect of wetting-drying cycles on CBR, equivalent modulus, and 

permanent deformation 

The impact of wetting-drying cycles on the geotechnical properties of crushed waste rocks was 

studied by comparing the CBR, equivalent modulus, and permanent deformation of specimens 

subjected to 0, 5, 10, and 15 wetting-drying cycles (Figure 8.5). The CBR of crushed waste rocks 

increased from 125 to 165 (+32%) after 5 wetting-drying cycles (Figure 8.5(a)). The effect of 

wetting-drying cycles on equivalent modulus was, however, neglectable, for low axial stress. As 

the axial stress increased to 800 and 1200 kPa, wetting-drying cycles increased the equivalent 

modulus by 9% and 18%, respectively (Figure 8.5(b)). The wetting-drying cycles also resulted in 

an increase of the permanent strain, especially at high axial stress (1200 kPa) (Figure 8.5(c)). For 

example, the final accumulated permanent strain after five stress paths increased from around 

0.0035 to 0.007 (+100%) after 5 wetting-drying cycles. However, the final permanent strain 

remained relatively constant when the number of wetting-drying cycles exceeded 5. For example, 

the final permanent strain of the specimen subjected to 15 wetting-drying cycles 0.0075, i.e., very 

close to the 0.007 strain measured for 5 wetting-drying cycles. Overall, experimental results 

therefore indicated that wetting-drying cycles resulted in an increase in CBR, equivalent modulus, 

and permanent deformation, but that this effect was limited after 5 wetting-drying cycles. 

Similar findings were observed by Khoury and Zaman (2007) who showed that wetting-drying 

cycles could result in an increase of resileint modulus for Sawyer aggregates with an additive of 

cement kiln dust. Several explanations were proposed in the litterature to explain this phenomenon. 

For example, some say that the drying process can induce the precipitation and crystallization of 

salts which tend to accumulate at particle contacts where water menisci dry out, and can therefore 
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create bonds between coarse particles, which result in the increase of the strength and stiffness of 

the material (Valdes and Cortes 2014; He and Chu 2017). The wetting-drying cycles may increase 

the porosity of samples, and so the permanent deformation would increase. 

Drying process appears therefore beneficial to the CBR and stiffness of crushed waste rocks. 

However, low water content could also contribute to increase dust generation of mine haul roads 

which would reduce fleet productivity eventually (Thompson 2011c). 
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Figure 8.5: Influence of wetting-drying (WD) cycles (0, 5, 10, and 15) on the geotechnical 

properties of crushed waste rocks; (a) CBR; (b) equivalent modulus; (c) development of 

accumulated permanent strain with loading cycles. 



 

 

256 

8.4 Development of a model to predict resilient modulus and permanent 

deformation 

Repeated load triaxial test on specimen subjected to 16 freeze-thaw cycles took around 40 days, 

and repeated load CBR test on specimen subjected to 15 wetting-drying cycles took around 90 days 

(including the specimen preparation). Conducting these tests is therefore very complex and time-

consuming. Predictive models can therefore be an alternative tool to estimate the response of 

materials subjected to climatic factors when sufficient laboratory tests cannot be conducted or when 

such tests are not feasible for specific projects because of economic or time factors (Maalouf et al. 

2012). For these reasons, the development of predictive models is pertinent to many engineering 

applications. In this case also, predictive models were proposed, based on the resilient modulus 

and permanent strain measured in this research. Laboratory data presented above were fitted by 

using regression models based on various material properties and climatic conditions. The 

following section describes the approach used and proposed models to predict the resilient modulus 

and the permanent strain of crushed waste rocks subjected to freeze-thaw cycles. Note that a similar 

approach could also be used to develop predictive models for wetting-drying cycles. However, 

such models were not developed here because the effect of wetting-drying cycles was too limited. 

 

8.4.1 Resilient modulus 

In this study, the nonlinear behavior of crushed waste rocks was characterized using the MEPDG 

(Mechanistic-Empirical Design Guide) model designed in NCHRP (NCHRP 2004): 

MR=k1p
a

(
θ

p
a

)
k2

(
τoct

p
a

+1)
k3

         8.4 

Where θ: bulk stress, kPa; τoct: octahedral shear stress (Eq. 8.5), kPa; p
a
: atmospheric pressure 

(100 kPa); k1, k2, and k3: model regression coefficients. 
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τoct=
1

3
√(σ1-σ2)

2
+(σ3-σ2)

2
+(σ1-σ3)

2
        8.5 

Regression analysis was conducted to fit the MEPDG model to the measured resilient modulus of 

specimens with different (final) water contents (1.9%, 2.5%, and 3.5%) and exposed to different 

numbers of freeze-thaw cycles (0, 2, 4, 7, 10, and 16) (Figure 8.6). The coefficient of determination 

R2 for all cases was greater than 0.95, indicating that the MEPDG model was sufficiently reliable 

for fitting the measured resilient modulus. The regression coefficients k2 and k3 (Eq. 8.4) for the 

different specimens were close and seemed relatively independent of the number of freeze-thaw 

cycles. The values of k2 and k3 were therefore fixed to 1.038 and -0.312, respectively. Coefficient 

k1, however, varied significantly with the number of freeze-thaw cycles, decreasing from 0.573 to 

0.512 after 10 cycles (Figure 8.6(a)). Coefficient k1 appeared to be proportional to the resilient 

modulus, and a lower k1 values indicated a lower resilient modulus than a higher value of k1. As 

discussed previously, the specimens tended to be less affected by freeze-thaw actions after 10 

cycles and consequently, the k1 value after 16 freeze-thaw cycles was close to that of the specimen 

after 10 freeze-thaw cycles. For the specimens exposed to 10 freeze-thaw cycles, an increasing of 

water content from 1.9% to 2.5% resulted in a decrease of k1 value from 0.531 to 0.512 (Figure 

8.6(b)). The k1 values for the specimens with 2.5% to 3.5% of water content were close, and the 

influence of water content was considered negligible when water content was greater than 2.5%. 

Although the increase in water content resulted in a small decrease of resilient modulus, k1 values 

and fitting surfaces indicated that the influence of the water content was relatively limited (Figure 

8.6(b)). 
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Figure 8.6: Fitting surfaces of resilient modulus of crushed waste rocks using MEPDG model, the 

calibrated coefficient k1 and the corresponding coefficient of determination R2; (a) fitting results of 

specimens exposed to 0 and 10 freeze-thaw (FT) cycles with 2.5% of water content; (b) fitting 

results of specimens with 1.9% and 2.5% of water contents and exposed to 10 freeze-thaw (FT) 

cycles. 

 

The correlation between MEPDG model coefficient k1 and the number of freeze-thaw cycles was 

described using the following equation: 

k1-n=c1×k1-0
n
+c2          8.6 
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Where k1-n: the k1 value after n freeze-thaw cycles; k1-0: the k1 value without freeze-thaw cycles, 

it was 0.573 in this study; n: the number of freeze-thaw cycles; c1 and c2: regression coefficients. 

Regression coefficients c1 = 0.062 and c2 = 0.515 were calibrated by fitting k1 values (Figure 8.7). 

The coefficient of determination R2 was greater than 0.9, indicating that the calibrated equation 

was relatively reliable to estimate k1 value in MEPDG model and predict the resilient modulus of 

crushed waste rocks subjected to freeze-thaw cycles. 

 

 

Figure 8.7: Fitting curve of determined MEPDG model coefficient k1. 

 

8.4.2 Permanent deformation 

Previous studies have shown that Rahman and Erlingsson (2015) model performed well for fitting 

permanent strain of crushed waste rocks (Rahman and Erlingsson 2015a; Erlingsson et al. 2017). 

The same model (extended using time hardening approach) was therefore also used to fit the 

measured accumulated permanent strain after freeze-thaw cycles. The extended Rahman and 
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Erlingsson model can be written (Rahman and Erlingsson 2015a): 

εp
i
=a(N-Ni-1+Ni

eq)bSfSf         8.7 

Sf=
(q p

a
⁄ )

(p p
a

⁄ )
α           8.8 

Ni
eq

= (
εpi-1

aSf

)

1

bSf
         8.9 

Where εp
i
: the accumulated permanent strain in the ith stress path, -; N: number of loading cycles, 

-; q: deviator stress, kPa; p: mean bulk stress (one-third of the sum of the principal stresses), kPa; 

p
a
: the reference stress taken equal to the atmospheric pressure (100 kPa); a, b, and α: model 

coefficients obtained from regression analysis; Ni-1: the total number of loading cycles at the end 

of (i-1)th stress path, -; Ni
eq

: the equivalent number of loading cycles for ith stress path, -, which is 

required to develop the same amount of permanent strain that is accumulated from all the previous 

stress paths. Equivalent number of loading cycles Ni
eq

 can be calculated using Eq. 8.9 (Rahman 

and Erlingsson 2015a) based on the accumulated permanent strain at the end of (i-1)th stress path 

εp
i-1

. 

 

The measured accumulated permanent strains of crushed waste rocks subjected to different 

numbers of freeze-thaw cycles (0, 4, and 10 in this study) and with different water contents (1.9%, 

2.5%, and 3.5%) were fitted using extended Rahman and Erlingsson model. The model fitting was 

deemed acceptable with coefficient of determination R2 greater than 0.95 for all cases (Figure 8.8). 

Model coefficient α was relatively constant and close to 0.45 (±0.02) for all cases. It was therefore 

decided to fix α to 0.45 (also to minimize the number of model coefficients). Model coefficient a 

tended to increased slightly from 0.780×10-3 to 0.942×10-3 with the number of freeze-thaw cycles 

(with 2.5% of water content), while the variation of coefficient b was relatively limited (0.24 to 

0.28) (Figure 8.8(a)). A greater value of coefficient a indicated a greater accumulation of permanent 

strain than a lower value of a. The impact of water content on the model coefficients a and b was 

more significant than the number of freeze-thaw cycles (Figure 8.8(b)). Coefficient a increased 

from 0.415×10-3 to 1.234×10-3 as the water content increased from 1.9% to 3.5%, while coefficient 
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b decreased from 0.033 to 0.020. Considering this significant effect of water content, it was deemed 

necessary to determine the correlation between Rahman and Erlingsson model coefficients a and b 

and the water content during freeze-thaw cycles. 

 

 

Figure 8.8: Measured and fitted (Rahman and Erlingsson model) accumulated permanent stain of 

crushed waste rocks, the corresponding calibrated model coefficients a and b and the coefficient of 

determination R2; (a) fitting results for specimens with 2.5% of water content and subjected to 0, 

4, and 10 freeze-thaw cycles; (b) fitting results for specimens with 1.9%, 2.5%, and 3.55% of water 

contents and subjected to 10 freeze-thaw cycles. 
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The calibrated coefficients a and b (see Figure 8.8(b)) were corelated with the water content w 

(Figure 8.9). Results showed that coefficients a and b linearly varied with the water content w (at 

least within the range of w tested in this study): 

a=r1×w+r2           8.10 

b=r3×w+r4           8.11 

Where r1, r2, r3 and r4 were the regression coefficients depending on the water content. For a, 

r1  and r2  were 0.489 and -0.425, respectively; and for b, r3  and r4  were -0.008 and 0.047, 

respectively. 

The coefficient of determination R2 for the a and b functions was higher than 0.9, indicating these 

developed functions could be used to estimate the permanent deformation of crushed waste rocks 

with a certain water content and subjected to freeze-thaw cycles. The linear relation between 

coefficient a and water content w proposed in this study was similar with that developed by Rahman 

and Erlingsson (2015a), but with different values of regression coefficients r1 and r2. The value 

of r1 and r2 for the relation developed by Rahman and Erlingsson (2015a) varied from 0.1 to 4.7, 

and from -4 to 4.1, respectively, for different crushed rock aggregates. 

The applicability of the proposed models in this study to other materials from the literature 

(Rahman and Erlingsson 2015a) was also evaluated, but the prediction accuracy was relatively low. 

One of the possible reasons was that the gradation of the aggregates in the literature was different 

with that of crushed waste rocks in this study, for example, the maximum particle size from the 

literature was 32 mm that was significantly higher than 19 mm of crushed waste rocks. 

The highest gravimetric water content after freeze-thaw cycles in this study was 3.5%, which is 

relatively low compared to that of fine-grained pavement materials (Kalkan 2009; Han, Dong, et 

al. 2021). Waste rocks are, indeed, usually at their residual water content in the field, and as a matter 

of fact, the measured gravimetric water content on mine haul roads at the site was between 2% and 
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4% (Laverdière 2019). The water contents used in this study therefore covered typical ranges 

observed in the field. However, the validity of the proposed models to higher water contents was 

uncertain. 

 

 

Figure 8.9: Rahman and Erlingsson model coefficients a and b as a function of the water content 

w. 

 

8.5 Discussion and final remarks 

In this study, the effect of freeze-thaw and wetting-drying cycles on the geotechnical characteristics 

of crushed waste rocks was studied, and the experimental results showed that these climatic factors 

influenced, sometimes significantly, the stiffness, shear strength, CBR, and permanent deformation. 

Although this study showed acceptable experimental results and similar findings with the literature 

(even though the tested materials were very different), their reproducibility could not be verified 

since the tests were so time-consuming. Considering the repeatability of repeated load triaxial test 

is relatively low (Boudreau 2003). Further study would be required to generalize the effect of 
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freeze-thaw and wetting-drying cycles more accurately on such materials. 

The influence of freeze-thaw and wetting-drying cycles is also often affected by the particle size 

distribution. For example, Miao et al. (2016) reported that the stiffness and shear strength of gap 

and coarse graded unbound granular materials decreased with the freeze-thaw cycles, while a tiny 

increase in stiffness and a significant increase in shear strength were observer for continuous graded 

materials. Although the crushed waste rocks used in this study were representative of hard rock 

mines (Bussière 2007a; James et al. 2013), the observed results could not be extrapolated directly 

to other sites and materials. Additional tests and comparison are strongly recommended to validate 

the observed trends and the validity of the proposed model. 

In the wetting-drying tests, even though the specimens were soaked in water, the approach used in 

this study could not completely and realistically simulate field condition such as the rainfall splash 

and water flows which would cause particle migration and change the fabric of waste rocks (Cui 

et al. 2017; Cui et al. 2019). Results in this study are therefore expected to have underestimate the 

effect of wetting-drying cycles compared to what would happen in the field. Alternative 

experimental approaches such as Scanning Electron Microscope (SEM) test are more and more 

frequently to examinate the microstructure change of the specimens subjected freeze-thaw cycles 

(Gullà et al. 2006; Aldaood et al. 2016; Zou et al. 2020) and wetting-drying cycles (Aldaood et al. 

2014), and are therefore strongly recommended for further evaluating the effect of frost-thaw and 

wetting-drying on crushed waste rock. 

The proposed models for the coefficients k1, a, and b were deemed reliable to predict the resilient 

modulus and permanent deformation of crushed waste rocks after freeze-thaw cycles. These 

models can significantly decrease the laboratory work. However, the k1 value for 0 freeze-thaw 

cycle is needed when use the predictive model for coefficient k1, which means at least one repeated 

load triaxial test should be carried out. Also, the applicability of these models is relatively limited 

because these models take only one parameter (number of freeze-thaw cycles n or water content w) 
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into account. More physical properties of materials (e.g., gradation, mineralogy, and density) 

should be considered for the development of predictive models to improve their generalization. 

 

8.6 Conclusions 

The geotechnical characteristics of crushed waste rocks subjected to freeze-thaw and wetting-

drying cycles were investigated through a series of triaxial tests and CBR tests. The following 

conclusions were found after the analysis of the experimental results: 

1. The effect of freeze-thaw cycles on the geotechnical properties of crushed waste rocks was 

relatively significant during the first 4 cycles, and the material nearly reached an equilibrium state 

after 10 freeze-thaw cycles. The resilient modulus and shear strength of crushed waste rocks 

subjected to repeated freeze-thaw cycles were reduced by 11% and 7%, respectively, while the 

accumulated permanent strain increased by 20%. 

2. The effect of water content on the permanent strain of crushed waste rocks during freeze-thaw 

cycles was significant (over 80% increase for less than 1% increase of water content. However, the 

influence of water content on the resilient modulus and shear strength was limited and usually 

smaller than 5%. 

3. Wetting-drying cycles could result in a 32% increase of the CBR. The influence of wetting-

drying cycles on stiffness (equivalent modulus) was negligible at low axial stress (<800 kPa) but 

caused an 18% increase at high axial stress. The permanent deformation increased by 100% 

following repeated wetting-drying cycles. Similarly to the freeze-thaw cycles, the effect of wetting-

drying cycles on the geotechnical characteristics was limited after 5 cycles. 

4. The MEPDG model and Rahman and Erlingsson model (extended using time hardening 

approach) were able to fit relatively well (R2 > 0.95) the measured resilient modulus and 

accumulated permanent strain, respectively. Based on these results, coefficients (k1, a, and b) 
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predictive models were developed to estimate the variation of resilient modulus and permanent 

deformation of crushed waste rocks as a function of number of freeze-thaw cycles and water 

content. 

The results presented in this study should help to improve the design and evaluate the performance 

of mine haul roads affected by the climate change. The proposed coefficients predictive models 

also can decrease the laboratory work and increase the field work efficiency. 
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Abstract: California bearing ratio (CBR) and resilient modulus are critical factors for designing 

pavements. The optimal design of mine haul roads can significantly reduce the road maintenance 

costs and vehicle operating costs, but a lot of laboratory tests are needed to achieve it because of 

the large-scale network of haul roads at an open pit mine (10~40 km in length) and the 

heterogeneity of the used crushed waste rocks. However, the measurement of CBR and resilient 

modulus of crushed waste rocks can be costly and time-consuming which is often prohibitive, 

especially since service lifetime of haul roads is relatively short. Predictive models exist but 

typically are empirical regression-based models developed primarily for civil application and are 

not well adapted to mining applications. The recent development of artificial intelligence 

techniques makes it possible to develop more efficient models, but many approaches exist and it is 

not always clear to haul roads designers which to choose. The main objective of this study was 

therefore to develop, evaluate and compare the performance of multiple linear regression (MLR), 

k-nearest neighbors (KNN), decision tree (DT), random forest (RF), backpropagation neural 

network (BPNN), and neuroevolution of augmenting topologies (NEAT) for predicting CBR and 

resilient modulus of crushed waste rocks based on the experimental data. A series of CBR and 

repeated load triaxial tests were carried out to measure the CBR and resilient modulus of crushed 

waste rocks. Eight properties (dry density, compaction energy, fines content, maximum particle 
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size, CC, CU, D10, and D60) were selected as input variables for CBR models based on Pearson 

correlation analysis. Number of loading cycles, confining pressure, and deviator stress were chosen 

as the input variables for the resilient modulus models. The effect of model hyperparameters, 

including number of KNN neighbors, maximum DT depth, number of RF estimators, number of 

hidden neurons, and number of hidden layers, on prediction performance was also evaluated to 

determine the optimal architecture of artificial intelligence models. A comparison study showed 

that the DT and RF models provided better results with coefficient of determination R2 greater than 

0.91 and 0.99 for CBR and resilient modulus, respectively. The performance of MLR models was 

relatively low because of the limitation of simple linear relationship. The prediction accuracy of 

KNN and BPNN models for CBR was significantly influenced by the dataset size. The NEAT 

models showed good generalization and simple structure although their performance was lower 

than DT and RF models. 

Keywords: Crushed waste rocks, CBR, Resilient modulus, Artificial intelligence, Neural network, 

Multiple linear regression, Decision tree, Random forest, K-nearest neighbors, Model 

hyperparameter. 

 

 

9.1 Introduction 

Waste rocks, produced by mining operations, have been widely used for road constructions because 

of their hardness, durability, low-cost and availability (Thompson 2011c). Crushed waste rocks are 

widely used for the construction of the wearing course of haul roads (Thompson et al. 2019), and 

the base/subbase layers of highways (Rahman and Erlingsson 2015b). California bearing ratio 

(CBR) and resilient modulus are fundamental engineering material properties that are widely used 

for the pavement design (Lekarp et al. 2000a; Coronado et al. 2016; Thompson et al. 2019). A mine 
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haul road network typically constitutes a length of 10~40 km, and it generally comprises a number 

of road segments, each with variable traffic volumes and construction and material qualities 

(Thompson and Visser 2003). Mine haul roads are often designed using empirical CBR method 

relying heavily on local experience because of short-service-life and low volume of traffic (Tannant 

and Regensburg 2001; Thompson et al. 2019). However, mechanistic design using resilient 

modulus is becoming more popular as it contributes to improve the road performance and to 

significantly reduce road maintenance costs and vehicle operating costs (Thompson et al. 2019). 

The AASHTO 1993 pavement design procedure and the mechanistic empirical pavement design 

guide (MEPDG) (NCHRP 2004) have adopted the resilient modulus as the main material property 

to characterize pavements.  

CBR and resilient modulus of soils are generally measured using CBR test and repeated load 

triaxial (RLT) tests in the laboratory (ASTM D1883 2016; AASHTO T307 2017). However, 

laboratory experiments as direct approaches for measuring CBR and resilient modulus of waste 

rocks are costly, time-consuming and require specialized equipment (Seif El Dine et al. 2010; Yin 

et al. 2017; Ai et al. 2020; Gu, Zhan, et al. 2020; Qi, Cui, Dupla, et al. 2020; Hao and Pabst 2021). 

Therefore, predicting CBR and resilient modulus of crushed waste rocks accurately and efficiently 

can be useful to reduce costs and ensure optimal pavement performance. 

Artificial intelligence (or machine learning) techniques have shown great promise in geoscience 

and geoengineering as an analytical alternative to conventional statistical method (Alavi et al. 2016; 

Lary et al. 2016; Shahin 2016; Wang et al. 2020; Díaz and Tomás 2021; Shen et al. 2021; Zhang et 

al. 2021) and were therefore considered here to predict CBR and resilient modulus from crushed 

waste rocks physical properties and stress conditions. Artificial intelligence techniques require less 

formal statistical training, and multiple different algorithms are available (Ceylan et al. 2014; Alavi 

et al. 2016). They also frequently require fewer hypotheses and constraints than usually necessary 

for statistical models, especially when dealing with complex and highly nonlinear data (Karlaftis 
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and Vlahogianni 2011). In recent years, a number of geotechnical studies have obtained satisfactory 

results using artificial intelligence techniques for the prediction of CBR and resilient modulus (see 

Table 9.1). Artificial neural network (ANN) with backpropagation algorithm, i.e. BPNN, was the 

most widely used technique in these studies because of its simple structure and high fitting accuracy 

(Ferreira 2017). The prediction performance of these models in the literature was acceptable in 

terms of coefficient of determination R2 (> 0.85, Table 9.1). These models were developed for 

different materials such as cohesive subgrade soils, recycled aggregates, and sands. The input 

variables for these models are different, but mainly including dry density, water content, confining 

pressure, deviator stress, gradation parameters, liquid limit, and plastic index. 

However, the forecasting performance of BPNN highly depends on the initial connection weights 

and biases, but the network generates the weights and biases randomly, which may result in poor 

forecasting (Pan et al. 2019). The architecture of BPNN is an important factor that can influence 

its computational efficiency and prediction accuracy (Pan et al. 2019). Hecht-Nielsen method (1987) 

was proposed to confirm the network architecture: if the number of input neurons is m, then the 

number of hidden neurons should be 2m+1. However, the effect of number of hidden layers is not 

taken into account in this method, which limits the performance of the developed network. The 

determination of the BPNN architecture therefore mainly depends on trial and error methods based 

on the network performance, which is time-consuming and increases the workload. Although many 

studies have been conducted to predict CBR and resilient modulus using different artificial 

intelligence techniques (Table 9.1), some other techniques have not yet been used for this purpose 

or have rarely been used. It is not always clear which artificial intelligence technique to use and 

which one would give the best results. Therefore, the purpose of this paper was to propose a 

comparison of different techniques to make artificial intelligence techniques more accessible. 

In this study, the CBR and resilient modulus of crushed waste rocks were measured using CBR and 

RLT tests, respectively. Six types of artificial intelligence techniques, including multiple linear 
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regression (MLR), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), 

backpropagation neural network (BPNN), and neuroevolution of augmenting topologies (NEAT), 

were used to predict CBR and resilient modulus of crushed waste rocks. Pearson correlation 

analysis was used to select the suitable factors as the input variables of the artificial intelligence 

models for CBR. The effect of number of loading cycles and stress condition (i.e. confining 

pressure and deviator stress) on resilient modulus of crushed waste rocks was analyzed, and these 

factors were used as the input variables of the artificial intelligence models for resilient modulus. 

The prediction performance of the developed models for training and testing datasets was evaluated 

and compared using coefficient of determination R2 and mean squared error MSE. The more 

reliable and accurate artificial intelligence models for CBR and resilient modulus of crushed waste 

rocks was specified and suggested for future studies. 

 

Table 9.1: Some artificial intelligence models for predicting CBR and resilient modulus reported 

in the literature. 

References Technic Input Output 
No. of 

datasets 
Material R2 

Oskooei et al. (2020) BPNN 
BR, DR, SR, OMC, 

qu, σc, σd 

Resilient 

modulus 
645 

Recycled 

aggregates 
0.96 

Ghorbani et al. (2020b) BPNN γd, w, qc, fs 
Resilient 

modulus 
124 

Cohesive subgrade 

soils 
0.99 

Ghorbani et al. (2020a) ANN-GA 
LL, PI, P#200, wopt, 

w, Sr, qu, σ3, σd 

Resilient 

modulus 
283 

Cohesive subgrade 

soils 
0.97 

Tenpe and Patel (2020) BPNN G, S, PI, wopt, γdmax CBR 389 Subgrade soil 0.89 

Ghorbani et al. (2020b) 
BPNN, 

SVR 
NFT, σ3, σd, Mat 

Resilient 

modulus 
150 Demolition wastes 0.997 

de Souza et al (2020) BPNN G, S, silt, clay, color CBR 1790 Subgrade soil 0.997 

Kaloop et al. (2019) 
BPNN, 

LSSVM 
RCM, 𝜃 𝑝𝑎⁄ , 𝜏 𝑝𝑎⁄  

Resilient 

modulus 
128 

Construction and 

demolition waste 
0.887 

Ren et al. (2019) BPNN 
PI, γdmax, w, No., σc, 

σd 

Resilient 

modulus 
2120 Subgrade soil 0.90 
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Saha et al. (2018) BPNN 

P#3/8, P#200, PL, PI, 

wopt, γdmax, TMC, gs, 

Ψ 

Resilient 

modulus 
779 

Plastic and 

nonplastic base 

materials 

0.90 

Ghorbani and 

Hasanzadehshooiili 

(2018) 

BPNN 

lime, microsilica, 

curing days, curing 

conditions 

CBR 90 
lime and 

microsilica 
0.99 

Sadrossadat et al. (2016) ANFIS 
P#200, LL, PI, wopt, 

w, Sr, qu, σ3, σd 

Resilient 

modulus 
418 

Cohesive Ohio 

soils 
0.973 

Erzin and Turkoz (2016) BPNN 
Gs, CU, CC, d, w, Q, 

Fel, Ca, C, A 
CBR 61 Sands 0.939 

Kim et al. (2014) BPNN 

P#10, #40, #60, #200, 

Clay, Swell, Shrink, 

dmax, wopt, LL, PI, EI, 

σ1, σ3, θ 

Resilient 

modulus 
27 Subgrade soils 0.86 

Nazzal and Tatari (2013) ANN-GA 
P#4, P#40, w, P#200, 

wopt, d, LL, dmax 

Resilient 

modulus 
- Subgrade soils 0.92 

Varghese et al. (2013) BPNN dmax, wopt, PL, LL CBR 112 Fine-grained soils 0.93 

Taskiran (2010) 
BPNN, 

GEP 

LL, PI, d, wopt, 

P#200, S, G 
CBR 151 

Base and subbase 

material 
0.91 

Park HI et al. (2009b) BPNN 
dmax, CU, P#200, σ3, 

σd 

Resilient 

modulus 
272 

subgrade soils and 

subbase materials 
0.982 

Note: BPNN: backpropagation neural network; ANN: artificial neural network; GA: genetic algorithm; SVR: support vector 

regression; LSSVM: least square support vector machine; ANFIS: adaptive neuro-fuzzy inference system; GEP: gene expression 

programming; BR: binder ratio; qu: unconfined compression strength; σc: confining pressure; σd: deviatoric stress; d: dry density; 

w: gravimetric water content; qc: cone tip resistance; fs: sleeve friction resistance; LL: liquid limit; PI: plastic index; P#4, #10, #40, 

#60, #200, and #3/8: percentage of soil particles passing through #4, #10, #40, #60, #200, and #3/8 sieve, respectively; wopt: optimum 

water content; Sr: degree of saturation; G: gravel percentage; S: sand percentage; FC: fines content; γdmax: maximum dry density; 

RCM: recycled clay masonry; No.: number of F-T cycles; gs: gradation scale parameter: Ψ: shape parameter; Gs: specific gravity; 

CU: coefficient of uniformity; CC: coefficient of curvature; Q, Fel, Ca, C, and A: the proportions of quartz, feldspar, calcite, corund, 

and amorphous minerals, respectively; EI: erosion index; θ: bulk stress. 

 

 

9.2 Data preparation 

9.2.1 Study material 

The tested crushed waste rocks were obtained from Canadian Malartic Mine, an open pit gold mine 
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located in the Abitibi region, in Quebec province, Canada and were typical of most hard rock mines 

(Bussière 2007a; James et al. 2013). The maximum particle size was 25 mm, the material had 

around 65% of gravel (> 4.75 mm), 30% of sand (75 𝜇m~4.75 mm), and very small amount (< 5%) 

of fines (< 75 𝜇m), and was classified as a well-graded gravel corresponding to the dual symbols 

GW-GM (ASTM D2487 2017). Crushed waste rock particles were characterized by angular shape 

and rough surface texture. The elongation and flakiness index were 38.56±1.62% and 34.95±2.08%, 

respectively. Crushed waste rocks contained a small fraction of sulfides (<1% of pyrite) but was 

considered non-acid generating because of a significant buffering capacity (Tremblay and Hogan 

2001; Golder 2019). 

 

9.2.2 CBR database 

The database used to train and test artificial intelligence models for CBR comprised 39 results from 

a study conducted by Laverdière (2019), on crushed waste rocks from Canadian Malartic Mine 

(see Table 9.2). The database was composed of ten properties, namely the dry density d, coefficient 

of uniformity CU, coefficient of curvature CC, D10, D30, D60, compaction energy CE, fines content 

FC, maximum particle size Dmax, water content WC, and the measured CBR (Table 9.2). 

Correlation analysis was conducted between the ten specimen properties and CBR values of 

crushed waste rocks using Pearson correlation coefficient r analysis (Table 9.3). Pearson 

correlation coefficient r is a statistical metric that measures the strength and direction of a linear 

relationship between two variables, which is one of the most widely used measure of relationship 

for artificial intelligence models (Lee Rodgers and Nicewander 1988; Erzin and Turkoz 2016; Lee 

et al. 2021). Pearson correlation coefficient r ranges from +1 to -1. A value of +1 indicates that the 

two variables are completely linearly correlated. On the other hand, a value of 0 indicates not 

linearly correlated at all. A value of -1 implies that the two variables are completely negatively 

linearly correlated. The following criterion for values of |r| between 0 and 1 proposed by Smith 
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(1986) were used in this study: 

|r| ≥ 0.8: strong correlation exists between the two variables; 

0.2 < |r| < 0.8: correlation exists between the two variables; 

|r| ≤ 0.2: weak correlation exists between the two variables. 

The results showed that eight properties (d, CE, FC, CC, CU, D10, D60, and Dmax) had significant 

effects on CBR of crushed waste rocks. d had the highest r value (0.90), indicating there was a 

strong correlation between d and CBR. It was followed by CE (0.62), FC (0.49), CC (0.48), CU 

(0.44), D10 (-0.41), D60 (0.35), and Dmax (0.35), which indicated that these properties could affect 

the CBR value of crushed waste rocks (Table 9.3). However, water content WC and D30 had 

relatively weak correlations with CBR (|r| ≤ 0.2) indicating that the effect of these two properties 

on CBR was limited. Therefore, only the eight strongly correlated properties were selected as input 

variables of the CBR artificial intelligence models in this study. 

 

Table 9.2: Database for the training and testing of artificial intelligence models for CBR of crushed 

waste rocks; d: dry density, kg/m3; CU: coefficient of uniformity, -; CC: coefficient of curvature, -; 

D10, D30, D60: effective size of particles corresponding to 10%, 30%, 60% finer in the particle size 

distribution, mm; CE: compaction energy, kN-m/m3; FC: fines content, %; Dmax: maximum particle 

size, mm; WC: water content, %; CBR: California bearing ratio, %. 

ID d CE FC CC CU D10 D60 Dmax WC D30 CBR 

- kg/m3 kN-m/m3
 % - - mm mm mm % mm % 

1 2054 600 5.8 3.20 20.00 0.5 10 25 6 4 48 

2 2100 600 5.8 3.20 20.00 0.5 10 25 6 4 68 

3 2090 2700 5.8 3.20 20.00 0.5 10 25 3 4 67 

4 2119 2700 5.8 3.20 20.00 0.5 10 25 3 4 78 

5 2199 2700 5.8 3.20 20.00 0.5 10 25 5.5 4 104 

6 2231 2700 5.8 3.20 20.00 0.5 10 25 5.5 4 125 

7 2194 2700 5.8 3.20 20.00 0.5 10 25 7 4 89 
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8 2220 2700 5.8 3.20 20.00 0.5 10 25 7 4 128 

9 2195 2700 5.8 3.20 20.00 0.5 10 25 7 4 125 

10 2285 2700 5.8 3.20 20.00 0.5 10 25 7.3 4 119 

11 2232 2700 5.8 3.20 20.00 0.5 10 25 7.3 4 95 

12 2286 3900 5.8 3.20 20.00 0.5 10 25 6 4 205 

13 2271 3900 5.8 3.20 20.00 0.5 10 25 6 4 230 

14 2321 3900 5.8 3.20 20.00 0.5 10 25 6.3 4 159 

15 2300 3900 5.8 3.20 20.00 0.5 10 25 6.3 4 115 

16 2034 600 5.8 4.00 17.81 0.32 5.7 10 7 2.7 52 

17 2049 600 5.8 4.00 17.81 0.32 5.7 10 7 2.7 47 

18 2259 2700 5.8 4.00 17.81 0.32 5.7 10 8 2.7 122 

19 2213 2700 5.8 4.00 17.81 0.32 5.7 10 8 2.7 92 

20 2235 3900 5.8 4.00 17.81 0.32 5.7 10 6 2.7 132 

21 2228 3900 5.8 4.00 17.81 0.32 5.7 10 6 2.7 126 

22 2190 2700 2 1.95 12.20 0.82 10 25 6.5 4 142 

23 2205 2700 2 1.95 12.20 0.82 10 25 6.5 4 127 

24 2264 2700 4 2.29 14.29 0.7 10 25 6.5 4 138 

25 2234 2700 4 2.29 14.29 0.7 10 25 6.5 4 149 

26 2308 2700 6 3.40 21.28 0.47 10 25 6.5 4 170 

27 2316 2700 6 3.40 21.28  0.47 10 25 6.5 4 160 

28 2351 2700 8 5.48 40.00  0.25 10 25 6.5 3.7 197 

29 2380 2700 8 5.48 40.00  0.25 10 25 6.5 3.7 170 

30 2239 600 10 18.25 133.33  0.075 10 25 6.5 3.7 88 

31 2209 600 10 18.25 133.33  0.075 10 25 6.5 3.7 110 

32 2384 2700 10 18.25 133.33  0.075 10 25 6.5 3.7 197 

33 2394 2700 10 18.25 133.33  0.075 10 25 6.5 3.7 225 

34 2531 3900 10 18.25 133.33  0.075 10 25 6.5 3.7 267 

35 2541 3900 10 18.25 133.33  0.075 10 25 6.5 3.7 250 

36 2380 2700 12 36.30 333.33  0.03 10 25 6.5 3.3 174 

37 2395 2700 12 36.30 333.33  0.03 10 25 6.5 3.3 217 

38 2399 2700 14 39.20 500.00  0.02 10 25 6.5 2.8 180 

39 2399 2700 14 39.20 500.00  0.02 10 25 6.5 2.8 205 

 

Table 9.3: Pearson correlation coefficient between the specimen properties and CBR of crushed 

waste rocks. 

Material properties r 
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Dry density (d), kg/m3 0.90 

Compaction energy (CE), kN-m/m3 0.62 

Fines content (FC), % 0.49 

Coefficient of curvature (CC) 0.48 

Coefficient of uniformity (CU) 0.44 

10 % of the soil particles finer than this size (D10), mm -0.41 

60 % of the soil particles finer than this size (D60), mm 0.35 

Maximum particle size (Dmax), mm 0.35 

Water content (WC), % 0.13 

30 % of the soil particles finer than this size (D30), mm 0.04 

 

9.2.3 Resilient modulus database 

The resilient modulus of crushed waste rocks was measured using repeated load triaxial (RLT) tests. 

The tests followed the European Standard 13286-7 (2004) where two sets of stress levels (low 

stress level (LSL)) and high stress level (HSL)), are divided into five sequences, with each 

sequence containing 5 or 6 stress paths with a constant confining pressure and different deviator 

stresses. Each stress path was applied for 10000 cycles. Haversine loading pulses with a frequency 

of 0.3 Hz with no rest period were applied for RLT tests, and these tests were carried out under free 

drainage conditions. Specimens (300 mm in height and 150 mm in diameter) were prepared using 

modified compaction effort (i.e., 2700 kN-m/m3) and an initial gravimetric water content w = 4%. 

A total of 2320 data sets were selected from the RLT test results to train and test the artificial 

intelligence models for resilient modulus. For each stress path, the measured resilient modulus was 

selected at each 300 cycles from the 100th to 10000th loading cycles in this study. 

The effect of number of loading cycles and stress condition (confining pressure and deviator stress) 

on resilient modulus was studied to select the input variables of artificial intelligence models. 

For some stress paths, the influence of number of loading cycles on resilient modulus was 

noteworthy, while its influence was relatively limited for other stress paths (Figure 9.1). The 

variation of resilient modulus with number of loading cycles was relatively higher for the sequence 
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1 for LSL than for other sequences. For example, the resilient modulus increased from around 112 

to 135 MPa (+20%), from 100 to 138 MPa (+38%), from 133 to 165 MPa (+24%) when number 

of loading cycles increased from 100 to 10000 for stress path 1, 2, and 4 in sequence 1 for LSL, 

respectively. However, for stress path 3 in sequence 1, the resilient modulus decreased around 30% 

when the number of loading cycles increased from 100 to 10000. The variation of resilient modulus 

with number of loading cycles in sequence 1 for HSL was lower than 10%, which was relatively 

smaller than that for LSL. The high variation of resilient modulus with the number of loading cycles 

in sequence 1 in LSL could be attributed to the relatively high strain measurement errors under low 

amplitudes (Gu, Ye, et al. 2020), especially considering that only one LVDT was used to record 

vertical deformation. For some stress paths, such as stress path 6 in sequence 4 in LSL, the increase 

of the loading cycles led to a slight increase of the resilient modulus (+7%). 

The resilient modulus of crushed waste rocks showed an increasing trend with the increase of 

confining pressure (Figure 9.1). For example, the resilient modulus for sequence 5 (150 kPa 

confining pressure) was around 15% greater than that for sequence 4 (100 kPa confining pressure) 

for HSL and under the same deviator stress. This finding was consistent with the conclusions of 

other researches, which have shown that the resilient modulus increases with confining pressure 

(Park et al. 2009a; Liu et al. 2019). 
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Figure 9.1: The evolution of resilient modulus with number of loading cycles for each stress path 

(SP) of five sequences with different confining pressures C for (a) LSL and (b) HSL. 

 

An increase of deviator stress also resulted in the increase of the resilient modulus, for both low 

and high confining pressures (Figure 9.2). For example, the resilient modulus increased from 

around 130 to 250 MPa with the deviator stress increasing from 20 to 200 kPa when the confining 

pressure was 20 kPa (Figure 9.2(a)) and increased from around 300 to 520 MPa when the deviator 

stress increased from 100 to 600 kPa under 150 kPa confining pressure (Figure 9.2(e)). This also 

was observed by others, which showed an increase of resilient modulus of crushed limestone 

SP1 SP2 SP3 SP4 SP5 SP6

SP1 SP2 SP3 SP4 SP5 SP6
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aggregates with deviator stress (Khedr 1985). 

Therefore, number of loading cycles N, confining pressure C, and deviator stress D were selected 

as the input variables of artificial intelligence models for resilient modulus. Other properties of 

crushed waste rocks such as gradation parameters, water content, and compaction energy could 

also influence resilient modulus but were not selected as input variables because they were identical 

for the repeated load triaxial tests conducted in this study. 

 

 

Figure 9.2: Resilient modulus versus deviator stress D under different confining pressure C (a) 

20 kPa, (b) 45 kPa, (c) 70 kPa, (d) 100 kPa, and (e) 150 kPa; the resilient modulus point was the 

final value after 10000 loading cycles for each stress path. 

 

9.2.4 Data preprocessing 

The input variables were normalized to make learning easier for artificial intelligence models, 

especially for neural networks (BPNN and NEAT) (Sola and Sevilla 1997). The Z-Score 

normalization method was used in this study (Jain et al. 2005): 

Xi
*=

Xi-μ

σ
           9.1 

Where Xi
*  is the normalized input values; Xi  is the experimental input values; μ  is the mean 

value of the input feature and σ is the standard deviation of the input feature. 
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The experimental data were split into a training dataset and a testing dataset. The artificial 

intelligence models were trained on the training dataset and then tested on the testing dataset to 

verify its generalization capability. In this study, 70% of the total experimental data were selected 

randomly as the training dataset, while the remaining 30% data were used as the testing dataset. 

 

 

9.3 Artificial intelligence techniques 

Six different types of algorithms were used and compared to develop artificial intelligence models 

for predicting CBR and resilient modulus of crushed waste rocks, namely multiple linear regression 

(MLR), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), backpropagation 

neural network (BPNN), and neuroevolution of augmenting topologies (NEAT). All these models 

were developed using Python. 

 

9.3.1 Multiple linear regression (MLR) 

Multiple linear regression (MLR) is one of the most popular techniques for predictive modeling 

(Tso and Yau 2007; Yilmazkaya et al. 2018) and can be used to predict an output as a linear function 

of input variables (Tso and Yau 2007). A MLR model with more than one independent variable can 

be written as: 

y=a1x1+a2x2+⋯+anxn+b         9.2 

Where y: the output variable; a1~an:the regression parameters; x1~xn: the input variables; and b: 

the random error term. 

The MLR model was fitted using the least squares method. 
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9.3.2 K-nearest neighbors (KNN) 

K-nearest neighbors (KNN) is one of the most widely used machine learning techniques for 

classification and regression because of its simplicity, intuitiveness, and ease of implementation 

(Al-Qahtani and Crone 2013). KNN regression was used to predict CBR and resilient modulus of 

crushed waste rocks in this study. KNN regression is based on feature similarity, and new data 

points are assigned values according to how close it is to the training data (Mahmoodzadeh et al. 

2020). 

The Minkowski Distance Function was used for KNN regression model. The effect of the number 

of neighbors in KNN model was also investigated. 

 

9.3.3 Decision tree (DT) 

Decision tree (DT) is a technique that can stimulate trees for predicting both classification and 

regression targets (Pekel 2020). The objective of DT is to build the decision rules that can be used 

to predict the relations between the input variables and an objective variable. Generally, a DT 

structure is composed of a root node (containing all data), a set of internal nodes (splits) and a set 

of terminal nodes (leaves) (Xu et al. 2005). DT regression uses a fast divide and conquer greedy 

algorithm that recursively splits the data into smaller parts (Pekel 2020). The processing is carried 

out by moving down the tree until the terminal node is reached, which is known as top-down 

approach (Xu et al. 2005; Wang et al. 2016). The maximum DT depth determines how deep the 

tree can grow, which can influence the prediction performance significantly (Pekel 2020). 

 

9.3.4 Random forest (RF) 

Random forest (RF) has been successfully applied for both classification and regression in many 
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fields because of the ability of well approximating variables with nonlinear relationships (Li et al. 

2018). RF consists of an ensemble of individual decision trees, which act as regression functions 

on their own, and the final output of the RF regression is the average of the outputs of all decision 

trees (Breiman et al. 1984; Breiman 1999). RF regression is therefore an extension of the DT 

regression with usually a better prediction performance. 

 

9.3.5 Backpropagation neural network (BPNN) 

The feedforward backpropagation neural network (BPNN) is one of the most widely used types of 

neural network in engineering applications because of the characteristics of simple structure and 

high fitting accuracy (Ferreira 2017). BPNN typically consists of input, hidden, and output layers 

(Ferentinou and Fakir 2018; Mukherjee et al. 2020). The backpropagation algorithm operates by 

propagating the input signal from the input layer through the output layer, while the error is 

propagated from the output layer to the input layer to calculate the weight correction and maximize 

the accuracy of the neural network (Sakellariou and Ferentinou 2005; Su and Fu 2020). The number 

of neurons in the input layer is equal to the number of the input variables. The rectified linear unit 

activation function (ReLU(x)=max(x,0)) was adopted for hidden layers in this study because of its 

simplicity of implementation and typically good performance (LeCun et al. 2015; Lin et al. 2020). 

The architecture of BPNN (i.e. the number of hidden neurons and hidden layers) has significant 

influence on the network performance (Sinha et al. 2010), and was therefore also evaluated in this 

study. 

 

9.3.6 Neuroevolution of augmenting topologies (NEAT) 

Stanley and Miikkulainen (2002) proposed neuroevolution of augmenting topologies (NEAT) 

approach to evolve neural networks using genetic algorithm (i.e. selection, crossover, and mutation 
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of neural networks). NEAT method has the ability to evolve and optimize the network’s topology 

(i.e. architecture) and connection weights simultaneously and automatically (Stanley and 

Miikkulainen 2002). The topology of NEAT network can be mutated by either adding a new 

connection or adding a new neuron (Stanley and Miikkulainen 2002). 

Some studies have proved that NEAT is a powerful and efficient technique to make neural network 

evolve to solve difficult control and sequential decision tasks (e.g., pole balancing, video games, 

and muscular-skeletal arm) (Stanley and Miikkulainen 2002; Stanley et al. 2005; Hausknecht et al. 

2014; Poulsen et al. 2017; Wen et al. 2017; Yuksel 2018), but it has rarely been used in geotechnical 

engineering. In this study, NEAT initiated the topology only with input and output layers and 

complexified the network topology over 30000 generations. System configuration and parameters 

for the NEAT models are summarized in Appendix. 

 

9.3.7 Evaluation of models’ performance 

Coefficient of determination R2 (Eq. 9.3) and mean squared error MSE (Eq. 9.4) are widely used 

to assess the prediction accuracy of artificial intelligence models for regression tasks (Zhang and 

Goh 2013; Ghorbani, Arulrajah, Narsilio, and Horpibulsuk 2020a; Hanandeh et al. 2020; Lee et al. 

2021), and were also used to evaluate the performance of the developed models in this study: 

MSE=
1

n
∑ (y

expt
-y

pred
)
2n

i=1         9.3 

R2=1-
∑ (y

expt
-ypred)

2n
i=1

∑ (y
expt

-y
expt

̅̅ ̅̅ ̅̅ )
2n

i=1

         9.4 

Where y
expt

 : value of CBR and resilient modulus measured from experimental results; y
pred

 : 

predicted value of CBR and resilient modulus from artificial intelligence models; y
expt

̅̅ ̅̅ ̅: the mean 

value of experimental CBR and resilient modulus; n: the total number of data sets. 

MSE value is always positive and the closer it is to zero, the more accurate the prediction is (Chen 
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2010; Chollet 2018; Vidal and Kristjanpoller 2020). Coefficient of determination R2 is comprised 

between 0 and 1, and a value closer to 1 means that the prediction accuracy is higher. 

 

 

9.4 Results 

9.4.1 MLR model 

MLR models were developed to predict CBR, and resilient modulus of crushed waste rocks based 

on eight and three inputs variables, respectively (Eq. 9.5 and 9.6). The MLR models were explicit 

equations, which make them convenient to use for predicting CBR and resilient modulus. 

CBR=0.33 d+1.426 CC-26.198 FC+3.659 Dmax+1.049 D60-211.002 D10+0.116 CU+0.016 CE-

502.062                  9.5 

MR=-4.791×10-4 N+0.958 C+0.368 D+148.758           9.6 

Where CBR: California bearing ratio, %; d: dry density, kg/m3; CC: coefficient of curvature, -; FC: 

fines content, %; Dmax: maximum particle size, mm; D60: effective size of particles corresponding 

to 60% finer in the particle size distribution, mm; D10: effective size of particles corresponding to 

10% finer in the particle size distribution, mm; CU: coefficient of uniformity, -; CE: compaction 

energy, kN-m/m3; MR: resilient modulus, MPa; N: number of loading cycles, -; C: confining 

pressure, kPa ; D: deviator stress, kPa. 

These models were developed based on a training dataset (70% of all experimental data), and their 

generalization capacity was validated using a testing dataset (remaining 30% of experimental data). 

The coefficient of determination R2 of MLR model for CBR was 0.79 and 0.88 for training and 

testing datasets, respectively; and the MSE was lower than 600 for both training and testing datasets 

(Figure 9.3(a)). The prediction accuracy of MLR model for resilient modulus was higher than for 
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CBR, and the prediction performance for training and testing datasets was around 0.83 of 

coefficient of determination (Figure 9.3(b) and (c)). Relations between input and output variables 

are linear in MLR models, which is a limitation in this case (Yilmazkaya et al. 2018). Indeed, the 

relation between resilient modulus and stress variables is nonlinear (Lekarp et al. 2000a), which 

can explain the relatively low prediction performance (R2 < 0.85). 

 

 

Figure 9.3: Comparison between measured and predicted (a) CBR and (b, c) resilient modulus MR 

obtained using MLR model. Results for both training and testing are shown; R2 and MSE indicate 

the model prediction performance. 

 

9.4.2 KNN model 

Number of neighbors affected the KNN model performance significantly for both CBR and 

resilient modulus (Figure 9.4(a) and (b)). When the neighbors in CBR KNN model increased from 

1 to 4, the prediction error MSE increased from around 0 to 1100, and from around 450 to 1100 for 

training and testing datasets, respectively. When the neighbors increased to 5, MSE value decreased 

slightly (Figure 9.4(a)). For resilient modulus, MSE value increased with the number of KNN 

neighbors for training dataset, while the lowest MSE value was obtained when the number of 

neighbors was 2 (Figure 9.4(b)). In this study, the number of neighbors was therefore set as 1 and 

2 for CBR and resilient modulus KNN models, respectively. 
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Figure 9.4: Effect of number of KNN neighbors on KNN model for (a) CBR and (b) resilient 

modulus MR. 

 

The developed KNN model could predict CBR very satisfactorily for training dataset (R2 > 0.99, 

MSE < 25), but the accuracy for testing dataset was relatively lower (R2 = 0.86, MSE < 500) 

(Figure 9.5(a)). The KNN model for resilient modulus showed well adapted for prediction with 

coefficients of determination R2 greater than 0.95 for both training and testing datasets (Figure 

9.5(b) and (c)). The proposed KNN model was therefore very suitable to compute resilient modulus 

as a function of number of loading cycles N, confining pressure C, and deviator stress D. 
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Figure 9.5: Comparison between measured and predicted (a) CBR and (b, c) resilient modulus MR 

obtained using KNN model. Results for both training and testing are shown; R2 and MSE indicate 

the model prediction performance. 

 

9.4.3 DT model 

The performance of DT model increased significantly with the maximum depth but tended to an 

optimum when the maximum depth reached 7 and 8 for CBR and resilient modulus, respectively 

(Figure 9.6(a) and (b)). Therefore, the maximum depth was 7 and 8 for CBR and resilient modulus 

DT models, respectively. 

 

 

Figure 9.6: Effect of DT depth on DT model for (a) CBR and (b) resilient modulus MR. 

 

The developed DT model for CBR consisted of seven depths, including the root node (the topmost 

decision node), internal nodes (splits, i.e. middle decision nodes), and terminal nodes (leaves, i.e. 

the final decision node) (Figure 9.7). Density d was the most used criterion in the model, indicating 

that it was the most important factor influencing the CBR value of crushed waste rocks. The DT 
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model for resilient modulus, was characterized by a maximum depth of twelve. The deviator stress 

D and confining pressure C were the most important factors for predicting the resilient modulus. 

The DT model for resilient modulus is not presented in this paper because of its quite large size. 

 

 

Figure 9.7: Structure of the developed DT model to predict CBR. The model consists of seven 

depths. The information in each box includes criterion, prediction error (MSE), number of samples 

which satisfied the criterion, and the corresponding predicted CBR. The deepness of orange color 

for each box corresponds to the CBR value. 

 

The DT model showed good ability in CBR prediction for both training and testing datasets 

(R2 > 0.91, MSE < 400, Figure 9.8(a)). The DT model could predict the resilient modulus of 

crushed waste rocks satisfactorily with R2 > 0.99 and MSE < 35 (Figure 9.8(b) and (c)). The 

developed DT models for CBR and resilient modulus showed good generalization since the 

prediction accuracy for training and testing datasets were close. 
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Figure 9.8: Comparison between measured and predicted (a) CBR and (b, c) resilient modulus MR 

obtained using DT model. Results for both training and testing are shown; R2 and MSE indicate 

the model prediction performance. 

 

9.4.4 RF model 

The number of estimators in RF model for CBR significantly affected prediction performance, and 

the prediction MSE decreased from around 450 to 350, and from 300 to 200 with estimators 

increasing from 1 to 70 for training and testing datasets, respectively (Figure 9.9(a)). However, this 

influence became limited when the number of estimators was higher than 70. The effect of number 

of estimators in RF model for resilient modulus showed similar trend and became insignificant 

when the number of estimators was greater than 100 (Figure 9.9(b)). In this study, the RF models 

consisted of 70 and 100 estimators for CBR and resilient modulus, respectively. 
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Figure 9.9: Effect of number of estimators on RF model for (a) CBR and (b) resilient modulus MR. 

 

The developed RF model for CBR had relatively high performance with coefficient of 

determination R2 greater than 0.92 for both training and testing datasets (Figure 9.10(a)). The RF 

model for resilient modulus had superior performance with coefficient of determination R2 higher 

than 0.99, and MSE lower than 20 for both training and testing datasets (Figure 9.10(b) and (c)). 

Therefore, the developed RF models could predict CBR and resilient modulus of crushed waste 

rocks with a high degree of accuracy. In addition, the model performance for training and testing 

datasets was close, indicating these RF models had satisfactorily generalization capacity. 

 

 

Figure 9.10: Comparison between measured and predicted (a) CBR and (b, c) resilient modulus MR 

obtained using RF model. Results for both training and testing are shown; R2 and MSE indicate the 
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model prediction performance. 

 

9.4.5 BPNN model 

The performance of BPNN model for both CBR and resilient modulus was affected by the number 

of hidden neurons and layers (Figure 9.11). 

For CBR training dataset, the MSE fluctuated when the number of hidden neurons was smaller 

than 15 (one hidden layer), but MSE reached a relatively low and constant value (around 450) when 

the number of hidden neurons exceeded 15 (Figure 9.11(a)). For CBR testing dataset, the model 

performance showed similar trend, but the critical number of hidden neurons was 30. The MSE for 

training dataset decreased as the number of hidden layers increased until 6 (Figure 9.11(b)). 

However, the MSE for testing dataset variated significantly with the number of hidden layers, and 

it reached the lowest value of 700 when the model had 5 hidden layers. Therefore, the BPNN for 

CBR model was developed with 5 hidden layers and 30 hidden neurons per layer in this study. 

For resilient modulus, the MSE value decrease from 1480 to 1450 (-2%) when the number of 

hidden neurons was smaller than 40, and then increased for greater number of neurons for both 

training and testing datasets (Figure 9.11(c)). The MSE decreased from around 400 to 100 as the 

number of hidden layers increased from 2 to 5 for both training and testing datasets. However, the 

performance difference between models with 5 or more hidden layers was very limited (Figure 

9.11(d)), and the number of hidden neurons and hidden layers in resilient modulus model was 

therefore set as 40 and 5, respectively. 
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Figure 9.11: Effect of number of hidden neurons and hidden layers on BPNN model for (a, b) CBR 

and (c, d) resilient modulus MR. 

 

The developed BPNN model for CBR consisted of eight input neurons (d, CE, FC, CC, CU, D10, 

D60, and Dmax), five hidden layers (30 neurons per layer), and one output neuron for CBR (Figure 

9.12(a)). The architecture of BPNN model for resilient modulus MR contained three input neurons 

(number of loading cycles N, confining pressure C, and deviator stress D), five hidden layers (40 

neurons per layer), and one output neuron for resilient modulus MR (Figure 9.12(b)). 
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Figure 9.12: The architecture of the developed BPNN model for (a) CBR and (b) resilient modulus 

MR of crushed waste rocks. 

 

For CBR, the performance of BPNN model for testing dataset (R2 = 0.60) was significantly lower 

than training dataset (R2 = 0.84), indicating that the overfitting problem occurred in this model 

(Figure 9.13(a)). The measured and predicted resilient modulus from BPNN model exhibited strong 

correlation with R2 > 0.98 and MSE < 155 for both training and testing datasets, and this model 

showed good generalization. However, there were still few scatters away from the best prediction 

line for training and testing datasets (Figure 9.13(b) and (c)). 

 

 

Figure 9.13: Comparison between measured and predicted (a) CBR and (b, c) resilient modulus MR 

obtained using BPNN model. Results for both training and testing are shown; R2 and MSE indicate 
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the model prediction performance. 

 

9.4.6 NEAT model 

The evolved best network by NEAT after 30000 generations progress was the one with eight hidden 

neurons, and four hidden neurons for CBR and resilient modulus, respectively (Figure 9.14). There 

was no obvious layer boundary in the NEAT models, and the input variables could be connected 

linearly/directly to the output neuron. In contrast to the stiff connection mode between layers and 

between neurons in BPNN models (see Figure 9.12), these NEAT models showed flexible 

connections between neurons (Figure 9.14). This advantage in network connections over the BPNN 

increases the efficiency and utilization of each neuron, which reduces the complexity of NEAT 

network. Number of loading cycles N as one of the input variables was not connected to the rest of 

the network (Figure 9.14(b)), implying that it was not particularly important for predicting resilient 

modulus of crushed waste rocks. However, it was still possible that given more time generations to 

evolve, the best performing network may connect the input variable N to other neurons. 

 

 

Figure 9.14: The architecture of the NEAT model for (a) CBR and (b) resilient modulus MR of 

crushed waste rocks. Dark grey boxes represent input neurons; white circles represent hidden 
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neurons with the corresponding ID number; and the dark blue circle represents the output neuron 

(i.e. CBR and resilient modulus MR). The thickness of the connection corresponds to the magnitude 

of the weight. Blue connections are positive, and red connections are negative of weight. The dotted 

lines represent disabled connections. 

 

The NEAT model for CBR showed acceptable performance with coefficient of determination R2 

higher than 0.82 for both training and testing datasets (Figure 9.15(a)). The NEAT model also could 

predict resilient modulus with coefficient of determination R2 higher than 0.90 and MSE lower than 

850 for both training and testing datasets (Figure 9.15(b) and (c)). The close values of R2 and MSE 

for training and testing datasets indicated that the developed NEAT models had satisfactory 

generalization capability. 

 

 

Figure 9.15: Comparison between measured and predicted (a) CBR and (b, c) resilient modulus MR 

obtained using MLR model. Results for both training and testing are shown; R2 and MSE indicate 

the model prediction performance. 
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9.5 Results analysis and discussions 

9.5.1 Comparison of models’ performance 

The models’ performance for CBR was generally lower than that for resilient modulus in this study 

(Table 9.4). The primary cause for this lower performance was the relatively small CBR dataset 

(39 tests in total), as also observed in the literature. For example, the BPNN model developed by 

Kim et al. (2014) based on 27 datasets was reported to have a relatively lower accuracy than others 

with larger database. 

The results obtained using MLR exhibited relatively low performance for both CBR and resilient 

modulus in terms of coefficient of determination R2 and MSE (Table 4). The stress-strain response 

of unbound aggregates under traffic loading is indeed quite complex, and granular materials usually 

show a nonlinear elastoplastic behavior (Lekarp et al. 2000a). Therefore, the MLR models, which 

are based on simple linear relationship, cannot accurately predict the mechanical properties (here, 

CBR and resilient modulus) of crushed waste rocks. 

The KNN model performed satisfactorily for the CBR training dataset with R2 > 0.99, but the 

prediction accuracy decreased to R2 = 0.86 for testing dataset, indicating that this model was not 

reliable enough for broad applications. Similar limitations were observed with the BPNN model 

for CBR. DT and RF models for CBR showed better performance than other models, and the 

coefficient of determination R2 was higher than 0.9 for both training and testing datasets. 

For resilient modulus, KNN, DT, RF, BPNN, and NEAT models all showed good performance for 

both training and testing datasets (R2 > 0.9 and MSE < 1000). Compared to the model performance 

for CBR, the relatively high prediction accuracy for resilient modulus could be attributed to the 

large dataset (2320 data sets in total) in this study. The performance of KNN and BPNN models 

(R2 > 0.95) was almost equivalent with that from literature (Table 9.1). DT and RF models 

exhibited the highest performance for both training and testing datasets (R2 > 0.99 and MSE < 50), 
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indicating that the DT and RF models provided the most reliable prediction results for resilient 

modulus among the developed models in this study. The accuracy of these two models was slightly 

higher than most models from the literature (see Table 9.1). 

The performance of RF model was slightly higher than DT model for both CBR and resilient 

modulus in this study. A possible reason for this is that RF is an extension of DT, i.e., an ensemble 

of individual DTs (Breiman et al. 1984; Breiman 1999). A major advantage of DT over other 

modeling techniques is that it can represent interpretable rules or logic statements (Perner et al. 

2001). 

In general, BPNN model performs better for nonlinear data than DT and RF which are highly 

susceptible to noisy data (Curram and Mingers 1994; Tso and Yau 2007). Some researchers 

therefore recommend using BPNN to solve geotechnical problems (Adeli 2001; Shahin 2016). 

However, the model performance is also affected by the type and number of data, and the type and 

number of input variables (Mahmoodzadeh et al. 2020). Here, the small database for CBR was not 

sufficient to sufficiently train the BPNN model, which led to poorer model performance compared 

to recommendations from the literature. 

In addition to the accuracy, other issues should also be considered when developing artificial 

intelligence models, such as the simplicity, suitability, required time and effort, and transferability 

of the results (Kirby et al. 1997; Karlaftis and Vlahogianni 2011). Although the prediction accuracy 

of the NEAT model for CBR and resilient modulus was not the highest in this study, its 

generalization capacity was the best among all the models, i.e., the model performance for testing 

dataset was not lower than that for training dataset (Table 9.4). It also proves that NEAT is an 

effective method to automatically evolve the topology of neural networks which would be 

unrealistic to create manually (see Figure 9.14). This characteristic of NEAT algorithm can 

significantly save effort and reduce user error. NEAT is also able to automatically select input 

variables, and thus reduce the complexity and running time of neural networks (Sohangir et al. 
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2013). Therefore, NEAT algorithm is worth further exploring in solving geotechnical problems. 

Comparison results showed that the DT and RF models can be suggested for predicting CBR and 

resilient modulus of crushed waste rocks. This study provides similar results compared to other 

precious studies, in which the different parameters were considered to predict CBR and resilient 

modulus of different materials (see Table 9.1). 

 

Table 9.4: A summary of the prediction performance of the developed artificial intelligence models 

for (a) CBR and (b) resilient modulus MR. 

 MLR KNN DT RF BPNN NEAT 

(a) CBR 

R2 (training) 0.792 0.992 0.920 0.927 0.841 0.826 

R2 (testing) 0.876 0.860 0.911 0.921 0.597 0.858 

MSE (training) 571 23.1 220 200 436 478 

MSE (testing) 506 483 364 322 1646 581 

(b) Resilient modulus MR 

R2 (training) 0.830 0.981 1.000 1.000 0.984 0.903 

R2 (testing) 0.833 0.965 0.997 0.998 0.983 0.904 

MSE (training) 1477 169 3.4 2.5 143 837 

MSE (testing) 1449 307 30.1 15.3 151 842 

 

9.5.2 Discussion 

Twelve artificial intelligence models (six for CBR and six for resilient modulus MR) were 

developed and were compared in this study. As a result, it was confirmed that the DT and RF 

models exhibited better performance for predicting CBR and resilient modulus of crushed waste 

rocks than other models in terms of coefficient of determination R2 and mean squared error MSE. 

However, the applicability of these models is limited to the crushed waste rocks from Canadian 

Malartic Mine. Therefore, these models may not be suitable for predicting CBR and resilient 
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modulus of materials from other regions. In addition, in comparison with the artificial intelligence 

models from the literature (Table 9.1), only three input variables (i.e., number of loading cycles N, 

confining pressure C, and deviator stress D) were used for resilient modulus models because of the 

limited data, which also restricts the applicability of the developed models. However, the 

characteristics of machine learning-based models allow further improvement of these models. The 

current models can be generalized and have higher performance through continuous verifications 

and updates made with more data for different tested materials. 

For the BPNN models developed in this study, the number of neurons in each hidden layer was the 

same (i.e., 30 for CBR and 40 for resilient modulus) to simplify the process of model development. 

However, the number of neurons in the hidden layers could be different which could contribute to 

improve the neural network performance (Abdeen and Hodhod 2010; Vujicic et al. 2016). Further 

works could therefore contribute determine a better architecture of the BPNN model. 

In general, the artificial intelligence models are difficult to express as explicit formula, which 

makes its application more complex in practice. Some studies tried to quantify the neural network 

model through connection weight-bias analysis (Mozumder and Laskar 2015; Hanandeh et al. 

2020), but this method was unpractical when the size of the neural network model was relatively 

large. One possible solution would be to develop a user-friendly operation interface based on the 

proposed artificial intelligence models (Mata and Corchado 2009). 

 

 

9.6 Conclusions 

In recent years, artificial intelligence techniques have shown a significant degree of success in 

geotechnical engineering applications. In this study, six different types of artificial intelligence 

techniques including multiple linear regression (MLR), k-nearest neighbors (KNN), decision tree 
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(DT), random forest (RF), backpropagation neural network (BPNN), and neuroevolution of 

augmenting topologies (NEAT) were used to develop models for predicting CBR and resilient 

modulus of crushed waste rocks. The prediction performance of the developed models was 

compared in terms of coefficient of determination R2 and mean squared error MSE. Based on the 

results of this study it was concluded that: 

1. Dry density d, compaction energy CE, fines content FC, CC, CU, D10, D60, and maximum 

particle size Dmax were selected as the input variables for the CBR models based on Pearson 

correlation analysis. The parameters in repeated load triaxial test, i.e., number of loading cycles N 

in each stress path, confining pressure C, and deviator stress D could affect the resilient modulus 

of crushed waste rocks, and they were therefore selected as the input variables for resilient modulus 

models. 

2. The artificial intelligence models were trained on training dataset and verified on testing 

dataset. The performance of MLR models was relatively low because of the limitation of simple 

linear relationship. Other models showed good performance, particularly, the DT and RF models 

exhibited higher precision and satisfactory generalization capacity for both CBR (R2 > 0.91) and 

resilient modulus (R2 > 0.99) in this study. The prediction accuracy of KNN and BPNN models for 

CBR was influenced significantly by the dataset size. Although the NEAT models were not the best 

choice in terms of prediction accuracy, they are still worth to be considered in the following study 

because of their good generalization capacity and simple structure. 

3. The model hyperparameters, including number of KNN neighbors, maximum DT depth, 

number of RF estimators, number of hidden neurons and hidden layers in BPNN, could affect the 

prediction performance significantly for both CBR and resilient modulus. These parameters should 

be studied and analyzed during the development of artificial intelligence models. 

The limited data restricts the applicability of the developed artificial intelligence models. In order 

to generalize and update these models, additional RLT tests are ongoing to study the geomechanical 
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properties of waste rocks with more gradations, water contents, degree of compaction, and fines 

content. 
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9.8 Appendix 

System configuration and parameters in the NEAT models. 

Startup parameters Settings Definition 

Number of generations 30000 The number of generations to perform for a run. 

Population size 150 The number of individuals in each generation. 

Activation function ReLU The default activation function attribute assigned to hidden neurons. 

Activation mutation rate 0.0 
The probability that mutation will replace the neuron’s activation 

function 

Bias initial mean 0.0 The mean of the normal/gaussian distribution. 

Bias initial standard deviation 1.0 The standard deviation of the normal/gaussian distribution. 

Bias max. value 30.0 The maximum allowed bias value. 

Bias min. value -30.0 The minimum allowed bias value. 

Bias mutation power 0.5 
The standard deviation of the zero-centered normal/gaussian 

distribution from which a bias value mutation is drawn. 

Bias mutation rate 0.7 
The probability that mutation will change the bias of a neuron by 

adding a random value. 

Bias replace rate 0.1 
The probability that mutation will replace the bias of a neuron with 

a newly chosen random value. 

Compatibility disjoint 

coefficient 
1.0 

The coefficient for the disjoint and excess gene counts’ contribution 

to the network distance. 

Compatibility weight coefficient 0.5 

The coefficient for each weight, bias, or response multiplier 

difference’s contribution to the network distance (for homologous 

neurons or connections). 

Connection add probability 0.5 
The probability that mutation will add a connection between existing 

neurons. 
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Connection delete probability 0.2 The probability that mutation will delete an existing connection. 

Enabled default True The default enabled attribute of newly created connections. 

Enabled mutation rate 0.03 
The probability that mutation will replace the enabled status of a 

connection. 

Feed forward True 
Generated networks will not be allowed to have recurrent 

connections. 

Initial connection Full Each input neurons are connected to all output neurons. 

Node add probability 0.3 The probability that mutation will add a new neuron. 

Node delete probability 0.25 The probability that mutation will delete an existing neuron. 

Number of hidden neurons 0 
The number of hidden neurons to add to each genome in the initial 

population. 

Number of input neurons 8 and 3 
The number of input neurons, through which the network receives 

inputs. 

Number of output neurons 1 
The number of output neurons, to which the network delivers 

outputs. 

Weight initial mean 0.0 
The mean of the normal/gaussian distribution used to select weight 

attribute values for new connections. 

Weight initial standard deviation 1.0 
The standard deviation of the normal/gaussian distribution used to 

select weight values for new connections. 

Weight max. value 30.0 The maximum allowed weight value. 

Weight min. value -30.0 The minimum allowed weight value. 

Weight mutation power 0.5 
The standard deviation of the zero-centered normal/gaussian 

distribution from which a weight value mutation is drawn. 

Weight mutation rate 0.8 
The probability that mutation will change the weight of a connection 

by adding a random value. 

Weight replace rate 0.1 
The probability that mutation will replace the weight of a connection 

with a newly chosen random value. 
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 ARTICLE 6: EXPERIMENTAL INVESTIGATION AND 

PREDICTION OF THE PERMANENT DEFORMATION OF CRUSHED 

WASTE ROCKS USING ARTIFICIAL NEURAL NETWORK MODEL 

 

Shengpeng Hao and Thomas Pabst 

This article was submitted to ASCE - International Journal of Geomechanics in February 2021. 

 

Abstract: The gradual accumulation of permanent deformation in unbound granular material 

layers is one of the main reasons for flexible pavement rutting. The accurate determination of 

permanent deformation behavior of pavement materials is critical for the successful design of 

pavement systems. However, predicting the permanent deformation is complex and the available 

empirical regression models have limited accuracy and applicability. In this study, multi stage (MS) 

repeated load triaxial (RLT) tests were carried out under different stress levels to evaluate the 

permanent strain and shakedown ranges of crushed waste rocks. The plastic shakedown limit and 

plastic creep limit were determined to estimate the shakedown range of crushed waste rocks at 

certain stress conditions. Rahman and Erlingsson model (extended using time hardening approach) 

performed better than other models for fitting the accumulated permanent strains (R2 > 0.92), but 

the prediction accuracy of shakedown range was relatively low (< 85%). An artificial neural 

network (ANN) model was therefore developed based on the experimental results to predict the 

permanent strain of crushed waste rocks. The ANN model consisted of three hidden layers (50 

neurons per layer) with Tanh activation function and could predict the permanent strain (R2 > 0.97) 

and shakedown ranges (accuracy > 93%) satisfactorily. 

Keywords: Crushed waste rocks; Permanent deformation; Repeated load triaxial tests; Shakedown 

ranges; Rahman and Erlingsson model; Artificial neural network. 
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10.1 Introduction 

Mining operations produce a large amount of waste rocks, which are usually disposed of in piles 

on the surface close to the production sites. The large size and the geochemical and geotechnical 

instability of waste rock piles make their management and reclamation difficult (Blowes 1997; 

Aubertin 2013). Reusing waste rocks for roads and pavement construction can therefore be a more 

sustainable strategy in terms of economics and environmental impacts (Vieira and Pereira 2015). 

Their high strength and durability (Thompson 2011c) and their availability on site make them 

particularly suitable for such applications. 

Excess rutting can, however, decrease the quality and safety of ride because of hydroplaning and 

reduced skid resistance of the road surface (Rahman and Erlingsson 2015a; Salour and Erlingsson 

2017). The gradual accumulation of permanent deformation in waste rocks layers and subgrade 

soils is one of the main reasons for rutting (Erlingsson 2012). The permanent deformation of waste 

rocks layers is principally caused by the cyclic stresses of varying magnitudes induced by the 

moving traffic loads (Lekarp et al. 2000b). Generally, multistage (MS) repeated load triaxial (RLT) 

tests are conducted to evaluate the permanent deformation behavior of pavement materials (EN 

13286 2004). Pavement materials can be classified using shakedown concept based on the 

development of permanent deformation in MS RLT tests. 

The shakedown concept has been widely applied to describe the deformation behavior of pavement 

materials under repeated loading (Werkmeister et al. 2004). Based on the shakedown theory, the 

permanent deformation behavior with loading cycles can be divided into three categories based on 

the value of εp
5000-εp

3000: plastic shakedown, plastic creep, and incremental collapse as shown in 

Figure 10.1 (Werkmeister 2003; EN 13286 2004). The εp
5000  and εp

3000  are the accumulated 

permanent strains measured at the 5000th and 3000th loading cycles during the RLT tests. 

In range A (plastic shakedown), the accumulated permanent strain of materials increases 

significantly during initial load cycles until the material reaches a purely elastic behavior, after 
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which the permanent strain rate decreases rapidly; in range B (plastic creep), a large amount of 

permanent strain is accumulated during initial load cycles after which the strain continues to 

accumulate but at a slow rate; in range C (incremental collapse), the permanent strain rate decreases 

very slowly or not at all, accumulation of permanent strain continues with load applications, 

ultimately leading to failure (Werkmeister 2003; EN 13286 2004; Werkmeister et al. 2004). 

Similarly, in the Guide for Mechanistic-Empirical Design prepared by the Federal Highway 

Administration (FHWA), the permanent deformation behavior of pavement materials under a given 

load can be divided into three stages, i.e., primary stage (high initial level of rutting with a 

decreasing rate of plastic deformations), secondary stage (small rate of rutting associated with 

volumetric changes), and tertiary stage (high rate of rutting associated with shear deformations). 

 

 

Figure 10.1: Different categories of permanent deformation development (after EN 13286-7 

standard). 

 

The adequate understanding of permanent deformation characterization of materials is necessary 
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for proper pavement design (Werkmeister et al. 2001; Pérez-González et al. 2020). However, 

pavement materials often exhibit complicated permanent deformation behavior under different 

stress conditions. Conducting MS RLT tests in the laboratory appears therefore necessary for 

material assessment and road design, but such tests can be complex, time-consuming and require 

adapted equipment (Yang and Han 2013). Therefore, various regression-based models were 

proposed to describe and predict the permanent deformation characterization of pavement materials 

(Barksdale 1972; Sweere 1990; Wolff and Visser 1994; Gidel et al. 2001; Korkiala-Tanttu 2005; 

Rahman and Erlingsson 2015a) (Table 10.1). These empirical models are usually a function of 

number of loading cycles and/or stress conditions (e.g., shear strength, deviator stress, and 

confining pressure). However, there are limited regression models capable of predicting the 

permanent deformation under multi-stress conditions, and these models have regression limitations 

and generally fail to cover the complexity of soil behavior (Alnedawi et al. 2019). Moreover, these 

models were developed for specific datasets, and their applicability and accuracy for crushed waste 

rocks used in mine haul roads may be limited. 

 

Table 10.1: Commonly used empirical permanent deformation models. 

Reference Model 

Barksdale model (1972) εp=a+blog(N)  

Sweere model (1990) εp=aNb  

Wolff and Visser model (1994) εp=(cN+a)(1-e-bN)  

Gidel et al. model (2001) εp=ε0(1-(
N
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Rahman and Erlingsson model (2015a) εp=aNbSfSf , Sf=
(q p

a
⁄ )

(p p
a

⁄ )
α  

Where εp: permanent strain [-]; N: the number of loading cycles [-]; q: deviator stress [kPa]; p: mean bulk stress (one-third of the 
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sum of the principle stresses) [kPa]; pa: the reference stress taken equal to the atmospheric pressure (100 kPa); pmax: the maximum 

applied confining pressure [kPa]; qmax: the maximum deviator stress [kPa]; m and s: the slope and intercept of the Mohr-Coulomb 

failure line plotted in p-q space, respectively, m=2.02 and s=221.96 in this study; other variables in the equations are the model 

coefficients that should be calibrated by fitting experiment results. 

 

Artificial neural network (ANN) is more and more commonly used in geotechnical engineering 

applications such as rockburst prediction (Xue et al. 2020), tunnel convergence prediction 

(Mahdevari and Torabi 2012), structural health monitoring (Kang et al. 2019), slope stability 

analysis (Kang et al. 2017), and road layer modulus back calculation (Han, Ma, et al. 2021). The 

study and prediction of permanent deformation of unbound granular materials using ANN remains, 

however, relatively limited. Ghorbani et al. (2020a) developed an ANN model for predicting 

permanent strain of demolition wastes, but these materials are too different from crushed waste 

rocks to allow for a direct application of this model to mine sites. 

The primary objective of this study was therefore to investigate the permanent deformation 

behavior of crushed waste rocks and then develop an ANN model for predicting the permanent 

strain. The permanent deformation under different stress levels was measured using MS RLT tests 

and fitted using different empirical regression models. An ANN model was also developed based 

on the experimental data. The effects of hyperparameters including epochs, number of hidden 

neurons and hidden layers, activation function, and regularization on ANN performance were also 

studied to determine the optimal ANN architecture. 

 

 

10.2 Materials and methods 

10.2.1 Material properties 

The tested crushed waste rocks were obtained from Canadian Malartic Mine, an open pit gold mine 
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located in the Abitibi region, in Quebec province, Canada. This mine has been using crushed waste 

rocks for the construction of wearing course of mine haul roads. Sampled and tested crushed waste 

rocks were considered representative of the materials typically used for haul road wearing course 

construction at the mine. The particles larger than 19 mm were removed (sieved) because of the 

limitations of the equipment used (maximum specimen diameter = 150 mm). 

The particle size distribution (PSD) was measured in the laboratory using sieving (ASTM C136, 

2006) (Figure 10.2(a)). The material had very small amount (< 4%) of fines (< 75 m). It was a 

poorly graded gravel with 3.72% fines and was classified as GP (ASTM D2487 2017). Proctor 

compaction tests were carried out on crushed waste rocks using modified effort (ASTM D1557, 

2012) (Figure 10.2(b)). The optimum water content was 5.6% corresponding to a maximum dry 

density of 2334 kg/m3. Mineralogy, specific gravity, water absorption, optimum water content, 

maximum dry density, shape index, uniformity coefficient, and curve coefficient are summarized 

in Table 10.2 and 10.3, and standards used for each test are also indicated. 

 

 

Figure 10.2: The physical properties of crushed waste rocks; (a) particle size distribution; (b) the 

relationship between dry density and water content obtained from Proctor compaction test using 

modified effort. 
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Table 10.2: The mineralogy of crushed waste rocks. 

Mineralogy Proportion 

Quartz 26.08±2.46% 

Albite 38.74±4.30% 

Muscovite 10.87±1.42% 

Chlorite 7.12±0.97% 

Corundum 6.80±1.33% 

Diopside 6.50±1.34% 

Anhydrite 2.42±0.48% 

Pyrite 1.08±0.15% 

Rutile 1.18±0.79% 

 

Table 10.3: The basic physical properties of crushed waste rocks. 

Properties  Standard 

Specific gravity (< 4.75 mm) 2.75 ASTM D854-14 (2014) 

Specific gravity (>4.75 mm) 2.71 ASTM C127-15 (2015) 

Water absorption (>4.75 mm) 0.41% ASTM C127-15 (2015) 

Elongation index 38.56±1.62% IS 2386-1 (1963) 

Flakiness index 34.95±2.08% IS 2386-1 (1963) 

Optimum water content 5.6% ASTM D1557-12 (2012) 

Maximum dry density 2334.29 kg/m3 ASTM D1557-12 (2012) 

Uniformity coefficient 7.98 ASTM D2487-17e1 (2017) 

Curve coefficient 2.21 ASTM D2487-17e1 (2017) 

 

10.2.2 MS RLT tests 

The MS RLT tests were performed following the European standard EN-13286-7 (EN 13286 2004). 

This standard proposes two sets of stress levels, referred to as “low stress level” (LSL) and “high 

stress level” (HSL). Each set is divided into five sequences, and each of these sequences contains 

5 or 6 stress paths with a constant confining pressure and different deviator stresses (Table 10.4). 

The deviator stress in HSL is higher than that in LSL with the same confining pressure. Each stress 



 

 

327 

path was applied for 10000 cycles according to EN 13286-7 standard. 

LSL and HSL proposed in EN 13286-7 standard were initially developed for highways, and the 

stress levels were significantly lower than that observed on mine haul roads caused by extra heavy 

mining trucks. For example, the gross vehicle weight limit of three axles straight truck for highway 

in Canada is 24.25 mt, while the tire pressure of KOMATSU 960e-2k could exceed 1000 kPa. An 

additional high stress level for mining engineering applications (HSLM) was therefore defined in 

this study to simulate stress conditions more representatively in mine haul roads. HSLM was 

divided into four sequences, and each of these sequences contained 4 stress paths with a constant 

confining pressure and different deviator stresses (Table 10.4). The confining pressure and deviator 

stress in HSLM were significantly higher than that in LSL and HSL. The deviator stresses and 

confining pressures for HSLM were between 100 and 1500 kPa, and between 80 and 550 kPa, 

respectively, which covers the range of stress variations in the field, even for the heavier mining 

truck (e.g., BELAZ 75710 with 450 mt of payload capacity). Mine haul roads are typical low-

volume roads compared with highways, and each stress path in HSLM was therefore applied for 

6000 cycles. The number of loading cycles was also chosen to allow to calculate the shakedown 

range (i.e., the value of εp
5000-εp

3000). 

Haversine loading pulses with a frequency of 0.3 Hz with no rest period were applied for MS RLT 

tests. The applied cyclic loading frequency was lower than that typically observed in the field (3-

4 Hz) because of the limitation of the triaxial test equipment used in this study (Figure 10.3). 

However, Alnedawi et al. (2019) indicated that the influence of loading frequency on permanent 

deformation of unbound granular materials was negligible. All tests were carried out under free 

drainage conditions. Specimens were 300 mm high and 150 mm in diameter and were prepared 

using modified compaction effort (i.e., 2700 kN-m/m3) with an initial gravimetric water content 

w = 4%. Vertical axial deformations were monitored using a LVDT (Linear Variable Displacement 

Transducers) from which the permanent strain was calculated. The shakedown ranges at each stress 
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path were evaluated based on the measured permanent strain. 

MS RLT tests results were used to fit the empirical permanent deformation models, including Gidel 

et al. (2001) model, Korkiala-Tanttu (2005) model, and Rahman and Erlingsson (2015a) model 

because the stress condition is taken into account in these models (see Table 10.1), and to train and 

test the ANN model. Gidel et al. model, Korkiala-Tanttu model, and Rahman and Erlingsson model 

predict the permanent strain based on the applied stress and number of loading cycles, but these 

models were initially developed to fit permanent strain of a single stress path in RLT tests. These 

models were therefore extended using time hardening approach to fit the accumulated permanent 

strain measured by MS RLT tests in this study. In time hardening approach, the equivalent number 

of loading cycles Ni
eq

 (for the ith stress path) is introduced to take into account the effect of stress 

history, and the total number of loading cycles N from the beginning of the test is then modified as 

N-Ni-1+Ni
eq

 , where Ni-1  is the total number of loading cycles at the end of (i-1)th stress path 

(Lytton et al. 1993; Zhou et al. 2010). More details about the extended Gidel et al. model, Korkiala-

Tanttu model, and Rahman and Erlingsson model can be found in Erlingsson et al. (2017). 

 

Table 10.4: Stress levels with different confining pressure (C) and deviator stress (D) for MS RLT 

tests, LSL and HSL are prescribed by the EN-13286-7 standard, and HSLM was defined for mine 

haul roads (see text for details). 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 

C, kPa D, kPa C, kPa D, kPa C, kPa D, kPa C, kPa D, kPa C, kPa D, kPa 

LSL 

20 20 45 60 70 80 100 100 150 100 

20 40 45 90 70 120 100 150 150 200 

20 60 45 120 70 160 100 200 150 300 

20 80 45 150 70 200 100 250 150 400 

20 100 45 180 70 240 100 300 150 500 

20 120 45 210 70 280 100 350 150 600 
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HSL 

20 50 45 100 70 120 100 200 150 200 

20 80 45 180 70 240 100 300 150 300 

20 110 45 240 70 320 100 400 150 400 

20 140 45 300 70 400 100 500 150 500 

20 170 45 360 70 480 100 600 150 600 

20 200 45 420 70 560     

HSLM (defined for mining engineering) 

80 100 200 300 350 400 550 600   

80 200 200 500 350 700 550 900   

80 300 200 700 350 1000 550 1200   

80 400 200 900 350 1300 550 1500   

 

 

Figure 10.3: The triaxial test system used in this study. 

 

 



 

 

330 

10.3 Artificial neural network (ANN) 

10.3.1 ANN algorithm 

ANN typically consists of an input layer, an output layer and one or more hidden layers in between 

(Figure 10.4(a)). Each layer contains processing elements known as neurons (Tarawneh and Nazzal 

2014; Xu, Chen, et al. 2019). The number of neurons in the input layer corresponds to the input 

features (or variables), i.e. number of loading cycles (N, -), confining pressure (C, kPa) and deviator 

stress (D, kPa) in this study. The output layer consisted of one neuron because regression problems 

only have one output value, i.e. permanent strain (PS, -) in this study (Figure 10.4(a)). Each neuron 

in an ANN is an independent processing element, having its own inputs Xi and output Y (Figure 

10.4(b)). The inputs Xi are propagated to the output Y through an activation function by multiplying 

the value with an arbitrary weight and then adding a bias (Kim et al. 2014; Saha et al. 2018). The 

generated (output) permanent strain value is compared to the measured (target) permanent strain 

value by computing the error between the predicted output and the target value. The weight and 

bias values are modified iteratively (i.e. epochs) through the gradient descent method until the error 

is minimized. This iterative process is error backpropagation process that is widely used for training 

feedforward neural networks because of its significant efficiency in ANN training (Rumelhart et al. 

1986). The backpropagation algorithm was employed to train the ANN model in this study. The 

ANN model for prediction of permanent strain of crushed waste rocks was developed in Python. 
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Figure 10.4: A typical neural network architecture; (a) the optimal neural network for prediction of 

permanent strain developed in this study; (b) the principles of each hidden neuron. 

 

10.3.2 Data preprocessing and splitting 

A total of 7500 data sets were selected from the MS RLT tests results to train and test the neural 

network and to fit the empirical permanent deformation models. For each stress path, the measured 

permanent strains were selected at each 10 cycles from the 1st to 100th loading cycles, and each 100 

cycles from the 100th to 10000th (for LSL and HSL) and 6000th (for HSLM) loading cycles. 

Experimental data were preprocessed to remove the outliers that can strongly influence the output 

of a machine learning model. The difference of magnitude between the various experiment 

variables was significant which could reduce the training efficiency of neural networks (Chollet 

2018; Lee et al. 2021). For example, number of loading cycles could reach 10000 while values of 

confining pressure and deviator stress did not exceed 1500. Therefore, input variables were 

normalized using the Z-Score normalization method (Jain et al. 2005): 

Xi
*=

Xi-μ

σ
           10.1 
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Where Xi
*: the normalized input values; Xi: the experimental input values; μ: the mean value of 

the input variable; and σ: the standard deviation of the input variable. 

The normalized data were then split between a training dataset and a testing dataset (to verify the 

generalization capability of the trained ANN model). In this study, 80% of the total experimental 

data were selected randomly for the training dataset (for the training and validation of the ANN 

model), while the remaining 20% data were used as the testing dataset (to test the developed ANN 

model). 

 

10.3.3 Hyperparameters study 

The optimal ANN model, which can best predict permanent strain, is primarily dependent on the 

network hyperparameters which include epochs, number of hidden neurons, number of hidden 

layers, activation function, and regularization (Sinha et al. 2010). Literature does not provide 

specific guidelines in developing the hyperparameters, and their determination mainly depends on 

trial and error methods based on the neural network performance. In this study, the effect of 

hyperparameters was studied using 4-fold cross-validation technique (Chollet 2018), and then the 

optimal ANN model was selected based on the network performance. A 4-fold cross-validation 

technique was used in this study. This approach consists in dividing the training dataset was 

randomly divided into 4 partitions of equal size. The neural networks were trained on 3 partitions 

and evaluated on the remaining one. The training and validation process is repeated 4 times using 

different partitions, and the results are averaged to represent the global performance of the neural 

networks on the training dataset (Figure 10.5). 
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Figure 10.5: The sketch map of 4-fold cross-validation used for the study of ANN hyperparameters. 

 

Epoch is the number of times a learning algorithm iterates the entire training dataset and the 

calculation of new weights and biases, and it plays a significant role on a network performance 

(Sinha et al. 2010). Epoch should be optimized for better performance: if epoch is too small then it 

will not be able to train the network completely and if epoch is too large, then the network training 

will take more time and an overfitting problem might occur. The effect of epoch on the network 

performance was evaluated in this study and an optimal value was selected for the proposed model. 

Number of neurons (per hidden layer) and hidden layers significantly affect the neural network 

output and architecture (Panchal et al. 2011). In this study, number of neurons and hidden layers 

was varied between 2 and 300, and between 1 and 7, respectively, to study their effects on the 

performance of the neural network. 

Finally, activation functions, which are used to transform an input signal into an output signal 

which in turn is fed as input to the next layer have a direct effect on the network prediction accuracy 

(Sharma 2017). Activation functions were used in hidden layers only, while output layer was a 

linear layer without any activation function (the prediction of permanent deformation was indeed 

a scalar regression issue). In total, four non-linear activation functions (i.e., Sigmoid, Tanh, ReLU, 

and Softmax functions) were evaluated in this study (Table 10.5). 

Validation Training Training Training

ValidationTraining Training Training

ValidationTrainingTraining Training

ValidationTraining TrainingTraining

Fold 1

Fold 2

Fold 3

Fold 4

Training dataset split into 4 partitions

Final error: 

average

Training & Validation

error #1

Training & Validation

error #2

Training & Validation

error #3

Training & Validation

error #4
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Table 10.5: Activation functions used in hidden layers of the neural networks. 

Sigmoid 

(Saul et al. 1996) 

Tanh 

(Karlik and Olgac 2011) 

ReLU 

(Li and Yuan 2017) 

Softmax 

(Gold and Rangarajan 1996) 

1

1+e-x
 

ex-e-x

ex+e-x
 max(0,x) 

ezi

∑ eziK
i

 

Note: e: Euler’s number; x: the summed weighted input from the neuron; zi: the output of the ith element or neuron; K: total number 

of categories. 

 

The developed ANN model should have a good generalization potential to be able to accurately 

predict permanent deformation of crushed waste rocks. However, the complexity of the network 

and overfitting problems may reduce the generalization potential (Phaisangittisagul 2016). Two 

regularization techniques, i.e., L2 (also called weight decay) and dropout, were therefore evaluated 

to enhance the generalization capability. L2 regularization consists in adding a regularization term 

to an error function so that the total error function is minimized using following equation (Cortes 

et al. 2012):  

ℒT(w)=ℒD(w)+λℒw(w)        10.2 

Where w: neural network weights; ℒT(w): a total loss function; λ: a regularization parameter that 

controls the tradeoff between ℒD(w) and ℒw(w); ℒD(w): a sum-of-squares error function between 

the target output and network output; ℒw(w): a sum-of-squares of the weight parameters. 

The regularization term in L2 was the sum of square of all feature weights (Eq. (2)). This 

regularization technique was chosen here because it performs better when all the input features 

influence the output with weights roughly equal (Cortes et al. 2012). The regularization parameter 

λ was set as 0.01 for hidden layers. 

Dropout is another commonly used regularization approach which randomly drops out hidden 

neurons in the neural network during training (Hinton et al. 2012). The objective is to allow each 
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neuron to learn on its own without relying too much on other neurons and to reduce the risk of 

overfitting. Dropout regularization has proved to be an effective method to reduce overfitting and 

improve generalization for deep neural networks (Wager et al. 2013). In this study, the dropout rate 

was 0.5 for each hidden layer. 

 

10.3.4 Performance assessment 

Permanent strain was predicted using the ANN model and compared to the experimental permanent 

strain. Coefficient of determination (R2) is widely used to assess the prediction accuracy of neural 

networks for regression tasks (Zhang and Goh 2013; Kang et al. 2019; Lee et al. 2021), and it was 

also used to evaluate the developed ANN model in this study: 

R2=1-
∑ (y

i
*-y

i
)
2n

i=1

∑ (y
i
-y̅)

2n
i=1

           10.3 

Where n: number of data sets; 𝑦𝑖 and 𝑦𝑖
∗: the experimental and predicted values of the ith output, 

respectively; and �̅�: the mean of the experimental values. A value of R2 closer to 1 means a better 

performance (Fan et al. 2019). 

Mean squared error (MSE) is the average of the squared differences between prediction and 

experimental values. It was applied as the loss function to optimize connection weights and bias of 

the neural network during training: 

MSE=
1

n
[∑ (y

i
-y

i
*)

2n
i=1 ]         10.4 

MSE is widely used for loss function in regression problems (Zhang and Goh 2013; Lee et al. 2021). 

MSE value is always positive, and it is ideal to be close to zero (Chen 2010; Chollet 2018; Vidal 

and Kristjanpoller 2020). 

Mean absolute error (MAE) was employed as the metric function to evaluate the performance of 

the neural network. Metric function is similar to loss function, except that the metric values are 
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calculated and recorded at the end of each epoch of the training and validation dataset, while loss 

values are calculated and recorded during each epoch. 

MAE=
1

n
( ∑ |y

i
-y

i
*|n

i=1 )          10.5 

MAE is one of the most common regression metrics to measure accuracy for continuous variables 

(Kang et al. 2019). MAE value is always positive, and the smaller the value of MAE is, the better 

the model performs. MSE and MAE were used to evaluate the effects of the various 

hyperparameters on the neural network performance. 

Huber loss Lδ was also used to evaluate the model performance (Eq. 10.6). Huber loss has been 

widely used in regression tasks because of its robustness for the noisy datasets (Meyer 2019; Gupta 

et al. 2020; Zheng 2020). The given constant δ  in Huber loss controls the transitions from a 

quadratic function (for small values of |y
i
-y

i
*|) to an absolute value function (when the value of 

|y
i
-y

i
*| exceeds δ) (Huber 1973, 1992). This feature allows it to combine analytical tractability of 

MSE and outlier-robustness of MAE (Yi and Huang 2017; Sun et al. 2020). In this study, δ was 

set as 5×10-5 for Huber loss. 

Lδ= {

1

2
(y

i
-y

i
*)

2
,   if |y

i
-y

i
*|≤δ

δ|y
i
-y

i
*|-

1

2
δ

2
,   otherwise

        10.6 

 

 

10.4 Experimental results 

10.4.1 Measured permanent strain 

The accumulated permanent strain increased with number of loading cycles, and the final strain 

increased with the increasing of stress levels (Figure 10.6). The trends of accumulated permanent 
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strain for LSL and HSL were similar. LSL results showed the lowest final accumulated permanent 

strain (around 0.007) after 300000 loading cycles, but it was close to the strain measured with HSL 

after 280000 loading cycles. The accumulated permanent strain with HSLM, however, increased 

more sharply for some specific stress paths. For each stress path in LSL and HSL, permanent strain 

increased significantly during initial cycles, but then became almost constant for the rest of the 

cycles. Similar observations were also made for HSLM, except for the final stress path when the 

accumulated permanent strain continued to increase with loading cycles (Figure 10.6). 
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Figure 10.6: The accumulation of permanent strain with loading cycles for different stress levels; 

(a) low stress level LSL; (b) high stress level HSL; (c) high stress level for mining engineering 

HSLM. 

 

The shakedown range was calculated for each stress path of the MS RLT tests (Werkmeister 2003; 

EN 13286 2004) and plotted as a function of the confining pressure-deviator stress space (Figure 
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10.7). The shakedown range increased gradually from A to B and from B to C when the applied 

deviator stress in each sequence increased (confining pressure remained constant). Most stress 

paths in LSL and HSL were in range A, except that some stress paths with a higher deviator stress 

were categorized in range B (Figure 10.7(a) and (b)). Half of the stress paths in HSLM were in 

range A, and others were in range B and C (Figure 10.7(c)). The shakedown range of the last stress 

path (the 16th stress path) was in range C (incremental collapse), corresponding to the rapid increase 

of permanent strain observed with loading cycles (also see above). In other words, the stress levels 

of the 16th stress path could therefore lead to the failure of crushed waste rocks and result in rutting 

(Werkmeister et al. 2004). The specimen seemed therefore to exhibit a stable behavior (i.e., either 

plastic shakedown or plastic creep) under LSL and HSL conditions but might become unstable 

(incremental collapse) for higher stress levels. Although the measured shakedown ranges can be 

used as a reference for the engineering practice, the stress conditions within haul roads may be 

more complex than the applied stress paths for MS RLT tests in the laboratory. 

 

 

Figure 10.7: The measured shakedown range of each stress path in different stress levels, the red 

label of shakedown range represents an erroneous prediction; (a) shakedown range map in low 

stress level LSL; (b) shakedown range map in high stress level HSL; (c) shakedown range map in 

high stress level for mining engineering HSLM. 
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It can be seen that the shakedown range of crushed waste rocks changed accordingly with the 

variation of the stress state. Werkmeister (2004) found that certain limiting values exist to define 

the stress states at which the shakedown range changes. In general, the “plastic shakedown limit” 

is used to define the boundary of plastic shakedown A-plastic creep B, and the “plastic creep limit” 

is used to define the boundary of plastic creep B-incremental collapse C. The shakedown limit 

curves can be described by the following equation (Werkmeister 2004): 

σ1max=α (
σ1max

σ3
)

β

           10.7 

Where σ1max: the peak axial stress (kPa), σ1max was equal to the sum of confining pressure and 

deviator stress; σ3: the confining pressure (kPa); α (kPa) and β were coefficients that depend on 

the type of shakedown limit and tested materials. 

The shakedown limits for crushed waste rocks were approximated by fitting the shakedown range 

boundaries (Figure 10.8). For the plastic shakedown limit, the coefficients α and β were 9000 

and -1.9, respectively; for the plastic creep limit, the coefficients α and β were 11000 and -1.35, 

respectively. These proposed shakedown limits could be used to estimate the shakedown range of 

crushed waste rocks at a certain stress state. 
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Figure 10.8: The plastic shakedown limit and plastic creep limit for crushed waste rocks. 

 

10.4.2 Permanent strain modelling 

Experimental accumulated permanent strains (for LSL, HSL, and HSLM) were fitted using the 

Gidel et al. (2001) model, Korkiala-Tanttu (2005) model, and Rahman and Erlingsson (2015a) 

model (all these models were extended using time hardening approach). Rahman and Erlingsson 

model showed better fitting accuracy with a coefficient of determination R2 > 0.92 for all stress 

levels (Table 10.6). Korkiala-Tanttu model fitted the accumulated permanent strain relatively well 

with R2 > 0.84, but the fitting performance decreased with the increasing of stress levels. The fitting 

performance of Gidel et al. model was low for the three stress levels (R2 < 0). One possible reason 

for the lower prediction accuracy of Gidel et al. and Korkiala-Tanttu models was the lack of 

significant correlation between the permanent deformation behavior of crushed waste rocks and 

the shear strength properties, which was also pointed out by Lekarp et al. (1996) for unbound 

granular materials. 



 

 

342 

 

Table 10.6: The fitting performance of empirical permanent deformation models for different stress 

levels (LSL, HSL, and HSLM). 

 Gidel et al. model Korkiala-Tanttu model Rahman and Erlingsson model 

LSL -0.913 0.995 0.994 

HSL -1.054 0.952 0.994 

HSLM -3.372 0.847 0.921 

 

The calibrated Rahman and Erlingsson model coefficients a, b, and 𝛼 were 3.21×10-4, 0.07, and 

0.75, respectively (Figure 10.6). Rahman and Erlingsson model was able to describe the 

accumulated permanent strains satisfactorily for LSL and HSL with R2 > 0.99, although the model 

tended to slightly underestimate the strain for the last three stress paths in LSL (Figure 10.6(a) and 

(b)). The fitting performance for HSLM was relatively lower than that of LSL and HSL, especially 

in the sequence 4, but was still deemed acceptable with R2 = 0.92 (Figure 10.6(c)). 

The stress condition (mean bulk stress and deviator stress) is taken into account in Rahman and 

Erlingsson model, which makes it possible to describe the shakedown range of crushed waste rocks 

under different stress paths (Rahman and Erlingsson 2015a). The predicted shakedown range of 

each stress path was calculated based on the fitting curves and the shakedown criteria (Figure 10.9). 

The prediction accuracy of shakedown range was relatively low (< 85%). The shakedown range 

was tended underestimated from B to A for LSL (Figure 10.9(a)), while it was overestimated from 

A to B in the sequence 1 for HSL (Figure 10.9(b)). For HSLM, the shakedown range was also 

tended underestimated in sequence 3 and 4 (Figure 10.9(c)). 

Rahman and Erlingsson model (extended using time hardening approach) seemed could describe 

the entire trend of accumulated permanent strains caused by numerous stress paths, but the fitting 

performance for the individual stress path was relatively poor, which resulted in the low prediction 

accuracy of shakedown ranges. Rahman and Erlingsson model showed satisfactory performance in 
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previous studies (Rahman and Erlingsson 2015a; Erlingsson et al. 2017). One of the possible 

reasons for the relatively low accuracy of shakedown range in this study was that multiple applied 

stress levels increased the fitting difficulty of permanent strain. 

 

 

Figure 10.9: The predicted shakedown range of each stress path in different stress levels using 

Rahman and Erlingsson model, the red label of shakedown range represents an erroneous 

prediction; (a) shakedown range map in low stress level LSL; (b) shakedown range map in high 

stress level HSL; (c) shakedown range map in high stress level for mining engineering HSLM. 

 

 

10.5 Development of ANN model 

10.5.1 Determination of the optimal ANN architecture 

The effect of hyperparameters on ANN performance was studied to determine the optimal ANN 

architecture using 4-fold cross-validation method on the training dataset. The influence of 

hyperparameters on the ANN performance was significant in this study. 

The network performance was improved significantly with the number of epochs, and the 

prediction errors (MAE and MSE) for training and validation were close (Figure 10.10). MAE and 
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MSE decreased significantly from 25×10-5 to 1.5×10-5, and from 20×10-12 to 0.1×10-12, respectively, 

during the first 2000 epochs. The decrease rate of MAE and MSE became significantly slower after 

2000 epochs, indicating the effect of epochs became limited in this case. In addition, the errors 

difference between training and validation tended to increase with the number of epochs since the 

excessive epochs would result in network overfitting on training but poor generalization on 

validation. The number of epochs for the ANN training was therefore set to 2000 in this study. 

 

 

Figure 10.10: The development of ANN training and validation errors (MAE and MSE) with the 

number of epochs. 

 

The effect of number of neurons per hidden layer on the neural network performance was 

investigated by varying number of the hidden neurons from 2 to 300 and fixing one hidden layer. 

The effect of number of hidden neurons on the neural network performance was significant in this 

study (Figure 10.11(a) and (b)). The errors MAE and MSE for training and validation were close 

independently of number of hidden neurons, while the Huber value for validation was lower than 
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that of training, which indicated that the generalization of the neural networks was acceptable. The 

increase of hidden neurons decreased MAE, MSE, and Huber significantly, especially when the 

number increased from 2 to 50: in this case, the error decreased from 16×10-5 to 6×10-5, and from 

600×10-10 to 80×10-10 for MAE and MSE, respectively; the Huber error decreased from 36×10-6 to 

5×10-6, and from 9×10-6 to 3×10-6 for training and validation, respectively. In other words, the 

network may not be powerful enough to accurately predict the permanent strain if the number of 

neurons was too small. However, the effect of increasing hidden neurons became insignificant 

when the number of hidden neurons was higher than 50. Similar observations were also reported 

in precious studies (Lee et al. 2021). In addition, large number of hidden neurons could increase 

the training and recalling time (Panchal et al. 2011; Vujicic et al. 2016). Hence, 50 neurons were 

applied in per hidden layer for the neural network in this study. 

The effect of number of hidden layers on the neural network performance was studied by varying 

the number of the hidden layers from 1 to 7 and maintaining 50 neurons in each hidden layer. The 

effect of number of hidden layers on the neural network performance was significant, especially 

when the hidden layer increased from 1 to 3: the MAE and MSE decreased rapidly from 7×10-5 to 

1×10-5, and from 110×10-10 to 5×10-10, respectively (Figure 10.11(c)); Huber decreased from 

14×10-6 to 1.5×10-6, and from 3.5×10-6 to 0.3×10-6 for training and validation, respectively (Figure 

10.11(d)). However, the decreasing in errors was limited when the number of hidden layers was 

higher than 3. The errors (MAE and MSE) for training and validation were close when the number 

of hidden layers was lower than 3, and then it increased gradually, indicating overfitting occurred 

with the number of hidden layers higher than 3. Panchal et al. (2011) also reported that the 

overfitting problem may occur when unnecessary neurons are present in a neural network. 

Although some researchers suggest that a network with a single hidden layer is usually sufficient 

for solving complex problems (Mozumder and Laskar 2015; Hanandeh et al. 2020), the neural 

network with three hidden layers (50 neurons) was performing better in this study. One of the 

possible reasons was the relatively few input features (i.e. only three in this study) increasing the 
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complexity of the model learning process and architecture. Lee et al. (2021) also found that neural 

network with multiple hidden layers had higher accuracy than single hidden layer network in 

geotechnical engineering. 

 

 

Figure 10.11: The effect of hyperparameters on the ANN prediction performance; (a) development 

of MAE and MSE for training and validation with the number of neurons in one hidden layer; (b) 

development of Huber error for training and validation with the number of neurons in one hidden 

layer; (c) development of MAE and MSE for training and validation with the number of hidden 

layers; (d) development of Huber error for training and validation with the number of hidden layers. 

 

The influence of activation function (used in hidden layers) on the neural network performance 
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(with three hidden layers and 50 neurons per hidden layer) was studied by comparing the prediction 

errors of networks with different activation functions (i.e. Sigmoid, Tanh, ReLu, and Softmax). In 

this study, Tanh and ReLu functions performed better with relatively low MAE, MSE and Huber 

values compared to Sigmoid and Softmax functions. Particularly, the value of MAE, MSE, and 

Huber for Tanh were lower than 1.5×10-5, 7×10-10, and 1×10-6, respectively, for both training and 

validation (Figure 10.12(a)-(c)). Tanh function therefore exhibited higher prediction accuracy (i.e. 

lower errors) than other activation functions, and it was therefore applied to the hidden layers for 

the ANN model in this study. The neural network with Softmax function showed relatively high 

errors, and one of the possible reasons was that this activation function is more suitable for 

classification issues rather than scalar regression (Gopalakrishnan et al. 2017). 

Finally, the effect of regularization techniques on the neural network performance (with three 

hidden layers and 50 neurons per hidden layer) was studied by comparing the prediction errors of 

neural networks with none, one, and both two regularization techniques in this study (Figure 

10.12(d)-(f)). The overfitting of neural networks with dropout and both dropout and L2 

regularization was avoided adequately as the prediction error for the validation was significantly 

lower than that for training. However, the overall prediction performance in this case was poorer 

than for other networks. L2 could not completely avoid the overfitting problem as the MAE and 

MSE for validation was still higher than that for training but the neural network prediction accuracy 

was relatively high (MAE < 2×10-5 and MSE < 15×10-10). The network without regularization 

techniques occurred slight overfitting regarding to MAE and MSE errors, but the prediction 

accuracy was the highest in this case. The Huber error also showed that the network without 

regularization techniques had good prediction accuracy and generalization capacity, which could 

be attributed to the reasonable selection of the number of epochs, hidden neurons, and hidden layers. 

Dropout regularization could prevent overfitting efficiently for deep (or large) neural networks 

(Srivastava et al. 2014), but the size of the developed network in this study was relatively small, 

and the random dropout of hidden neurons therefore significantly decreased the prediction accuracy. 
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Therefore, the optimal ANN architecture for predicting permanent deformation consisted of three 

input features (number of loading cycles N, confining pressure C, and deviator stress D), one output 

neuron (permanent strain), and three hidden layers with 50 neurons per layer. Tanh activation 

function was used for the hidden neurons without regularization techniques. 

 

 

Figure 10.12: The effect of activation function and regularization technique on the ANN prediction 

performance; (a) MAE (b) MSE and (c) Huber for training and validation with different activation 

functions; (d) MAE (e) MSE and (f) Huber for training and validation with different regularization 

techniques. 

 

10.5.2 Prediction of permanent strain 

Here, 80% of the total experimental data were selected as the training dataset to generate the ANN 

model, while the remaining 20% data were used as the testing dataset to verify the developed model. 

The prediction errors (using MAE, MSE, and Huber) were close to or slightly lower than that of 

training, indicating the ANN model had a good generalization capacity (Table 10.7). 
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Table 10.7: The prediction errors (MAE, MSE, and Huber) of the developed ANN model for 

training and testing. 

 MAE (10-6) MSE (10-10) Huber (10-7) 

ANN training 9.76 4.67 8.26 

ANN testing 10.92 4.79 2.43 

 

The ANN model was used to predict the permanent strain of each stress path in the three stress 

levels, and the results showed the ANN model had a satisfactory prediction capacity (Figure 10.13). 

There was a strong correlation between the experimental and predicted permanent strain for both 

training and testing datasets (R2 > 0.97), especially for HSLM where the predicted and measured 

permanent strains were quite close (R2 = 1.00). However, there were still a few (less than 1% of 

total) scattered points that deviated from the best fit line for LSL and HSL (orange triangle in Figure 

10.13(a) and (b)). The maximum difference between predicted and measured permanent strain was 

3×10-4, 2.5×10-4, and 2×10-4 for LSL, HSL, and HSLM, respectively. The mean difference between 

predicted and measured permanent strain was 1.05×10-5 (10%), 1.25×10-5 (18%), and 0.85×10-5 

(6%) for LSL, HSL, and HSLM, respectively. The prediction accuracy for the low permanent 

strains seemed relatively low for LSL and HSL. 

The developed ANN model could predict the permanent strain accurately for both training and 

testing datasets since neural network can deal with nonlinearity and handle noisy data (Sinha et al. 

2010). The relatively low prediction accuracy (scatter points in Figure 10.13(a) and (b)) could be 

attributed to the relatively large errors of strain measurement under low amplitudes (Gu, Ye, et al. 

2020). Boudreau (2003) also reported that the repeatability of RLT tests is relatively low. In 

addition, only one LVDT was used to record the axial deformation, which could have decreased 

the precision of the measurements. In comparison, two LVDTs were used for RLT tests in other 

studies to minimize the deformation deviations (Erlingsson and Rahman 2013; AASHTO T307 
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2017). Considering these limitations, the accuracy of the ANN model is deemed very good. 

 

 

Figure 10.13: Comparison of experimental and predicted permanent strain using the ANN model 

for different stress levels; (a) ANN prediction performance for low stress level LSL; (b) ANN 

prediction performance for high stress level HSL; (c) ANN prediction performance for high stress 

level for mining engineering HSLM. 

 

The shakedown ranges of each stress paths for LSL, HSL, and HSLM tests were calculated based 

on the predicted permanent strain values using the ANN model (Figure 10.14). There were only 

two erroneous predicted shakedown ranges for LSL and HSL, and one erroneous predicted 

shakedown range for HSLM. These errors could be explained by the fact that the measured values 

of εp
5000-εp

3000 for these stress paths were close to 0.045×10-3 (i.e. the boundary between A and B 

ranges), and therefore more sensitive to the prediction accuracy of the permanent strain. The 

prediction accuracy of shakedown range for LSL, HSL, and HSLM was higher than 93% which 

was significantly higher than the accuracy of Rahman and Erlingsson model (65-85%; Table 10.8). 

The influence of the few scattered predicted points on the prediction of shakedown range was 

therefore limited, indicating the ANN model was reliable to predict the trend of permanent strain 

versus number of loading cycles for each stress path. 

A Sobol (1990) sensitivity analysis was also conducted to determine the contribution and relative 
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importance of the input features (i.e., number of loading cycles N, confining pressure C, and 

deviator stress D) on the ANN model output (i.e. permanent strain). The sensitivity analysis was 

performed by assessing the response of the output permanent strain to the variation of N, C, and D. 

The deviator stress D showed the highest sensitivity value (0.92), indicating that deviator stress 

was the most significant variable affecting the permanent deformation of crushed waste rocks. The 

effect of confining pressure C and number of loading cycles N were also significant (Table 10.9). 

The results of sensitivity analysis indicated that all the input features were important and necessary 

for characterizing the permanent strain. 

 

 

Figure 10.14: The predicted shakedown range of each stress path in different stress levels using 

ANN model, the red label of shakedown range represents an erroneous prediction; (a) shakedown 

range map in low stress level LSL; (b) shakedown range map in high stress level HSL; (c) 

shakedown range map in high stress level for mining engineering HSLM. 

 

Table 10.8: Comparison of prediction accuracy of shakedown ranges between ANN model and 

Rahman and Erlingsson model for different stress levels (LSL, HSL, and HSLM). 

 LSL HSL HSLM 

ANN model 93% 93% 94% 

Rahman and Erlingsson model 83% 82% 69% 
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Table 10.9: Sensitivity analysis of input features (number of loading cycles N, confining pressure 

C, and deviator stress D). 

Input features N C D 

Sensitivity (-) 0.17±0.02 0.49±0.04 0.92±0.08 

 

 

10.6 Discussion 

ANN model was efficient to predict the permanent deformation of crushed waste rocks in this study. 

Some other widely used machine learning algorithms were also introduced, including k-nearest 

neighbors regression (KNN), decision tree regression (DT), random forest regression (RF), and 

support vector machine (SVM). All these machine learning models were trained on the same 

training dataset as the ANN (80% of total experimental data) and verified on the remaining testing 

dataset. Their prediction performance was assessed using MSE, MAE, and Huber (Table 10.10). 

Comparison results showed that ANN had the highest accuracy among all models. KNN also 

provided relatively good results, with prediction errors only slightly higher than ANN. Although 

the MSE and MAE of DT and RF models were slightly lower than that of ANN, the Huber error of 

DT and RF was significantly higher. Some researchers also recommend using ANN to solve 

geotechnical problems since it generally performs better for nonlinear data than DT and RF 

(Curram and Mingers 1994; Tso and Yau 2007). SVM had relatively poor performance predicting 

permanent deformation of crushed waste rocks compared with other models in this study. 

 

Table 10.10: Comparison of prediction errors (MSE, MAE, and Huber) of permanent strain among 

different machine learning techniques including ANN, KNN, DT, RF, and SVM. 
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 ANN KNN DT RF SVM 

MSE (training, 10-10) 4.67 8.02 0.26 2.24 994 

MSE (testing, 10-10) 4.79 13.43 4.64 6.89 1182 

MAE (training, 10-6) 9.76 11.60 2.78 3.21 125 

MAE (testing, 10-6) 10.92 16.47 9.97 7.95 132 

Huber (training, 10-7) 8.76 15.41 3.81×106 3.80×106 2.75×106 

Huber (testing, 10-7) 2.43 5.82 0.25×106 0.25×106 0.18×106 

 

The developed ANN model showed very high accuracy and generalization capacity (R2 > 0.97) for 

predicting permanent deformation of the tested crushed wase rocks. The model was also tested to 

predict the permanent deformation of unbound granular materials from other studies (Rahman and 

Erlingsson 2015a), but the accuracy was not as good (R2 ≈ 0.3; detailed results not shown in this 

paper). The main reason for this lower performance was that only number of loading cycles N, 

confining pressure C, and deviator stress D were chosen as the independent input features, which 

limiting the model generalization to different materials. Other variables, such as gradation, 

mineralogy, water content and degree of compaction, which all affect the permanent deformation 

of unbound granular materials (Lekarp et al. 2000b), should therefore be taken into account to 

improve the ANN model generalization capacity. More MS RLT tests could be carried out on a 

wider range of materials and variables to develop a generalized prediction model. 

Rahman and Erlingsson model (extended using time hardening approach) was able to fit relatively 

well the accumulated permanent strain caused by numerous stress paths, but the fitting accuracy 

for individual stress paths was limited, resulting in a relatively low prediction accuracy of 

shakedown ranges. Also, the fitting performance of the extended model largely relies on the initial 

values of the model coefficients (i.e. a, b, and 𝛼), which are generally determined through trial and 

error method, which can be time-consuming and complex. Although Rahman and Erlingsson 

(2015a) provided a detailed fitting procedure using Microsoft Excel, the engineer experience and 

judgement has a significant impact on the model fitting performance. This is one of the main 
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limitations of conventional regression models when dealing with complex and highly nonlinear 

data (Karlaftis and Vlahogianni 2011). 

The number of neurons in the three hidden layers was the same (i.e. 50) to simplify the process of 

ANN development. However, the number of neurons in the hidden layers could be different which 

could contribute to improve the performance of the neural network (Abdeen and Hodhod 2010; 

Vujicic et al. 2016). Further works and a new algorithm (e.g., NeuroEvolution of Augmenting 

Topologies, (Stanley and Miikkulainen 2002)) would need to be conducted or applied to determine 

a better architecture of neural networks. 

In general, the ANN model is difficult to be expressed as explicit formula, which makes its 

application by engineers more complex. Some studies tried to make the ANN model quantified 

through connection weight-bias analysis (Mozumder and Laskar 2015; Hanandeh et al. 2020), but 

this method was unpractical in this study because there were hundreds of neurons in the ANN 

model. One of the possible solutions would be to develop a user-friendly operation interface based 

on the proposed neural networks (Mata and Corchado 2009). 

 

 

10.7 Conclusions 

In this research, the permanent deformation of crushed waste rocks under three different stress 

levels was investigated using MS RLT tests. The empirical models extended using time hardening 

approach were used to fit the measured accumulated permanent strains. In addition, an ANN model 

was developed for the prediction of permanent strain and a sensitivity analysis was conducted to 

examine the influence of each input feature on the permanent strain. Based on the results of this 

study the following conclusions can be drawn: 

1. The accumulated permanent strain increased from around 0.007 to 0.012 when the stress levels 
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increased from LSL to HSLM, and the slope of the accumulated permanent strain curve became 

steeper. Incremental collapse was observed at a high deviator stress in HSLM RLT test. The plastic 

shakedown limit and plastic creep limit were determined to estimate the shakedown range of 

crushed waste rocks at a certain stress condition. 

2. Rahman and Erlingsson model (extended using time hardening approach) performed better 

than other empirical models for fitting the accumulated permanent strains caused by numerous 

stress paths (R2 > 0.92), but the prediction accuracy of shakedown ranges was relatively low 

(< 85%) because of the relatively poor fitting for the individual stress path. 

3. The optimal ANN architecture consisted of three input features (number of loading cycles N, 

confining pressure C, and deviator stress D), three hidden layers (50 neurons per layer) with Tanh 

activation function, and one output neuron for permanent strain. The ANN model was highly 

capable of predicting permanent strain of crushed waste rocks under different stress levels 

(R2 > 0.97), and the prediction accuracy of shakedown ranges was higher than 93%. The ANN 

model appeared therefore reliable and efficient to predict the permanent strain of crushed waste 

rocks, but the ANN’s generalization capacity for different materials should be enhanced in the 

future study. 

4. The sensitivity analysis of input features showed that deviator stress was the most significant 

variable influencing the permanent strain of crushed waste rocks. The results also indicated that all 

the input features (N, C, and D) selected for ANN model were important and necessary for 

characterizing the permanent strain. 

This study was part of a more comprehensive research program which aimed at optimizing mine 

haul road design using waste rocks. Additional laboratory tests are planned to study the effect of 

gradation and climatic conditions (freeze-thaw cycles and wet-dry cycles) on mechanical properties 

of waste rocks. These results will hopefully contribute to develop more generalized neural networks 

to predict the mechanical properties of waste rocks. 
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 GENERAL DISCUSSION 

11.1 Summary 

11.1.1 Valorization of waste rocks 

Literature review (Chapter 2) has shown that mining operations can generate large quantities of 

waste rocks, and that their management after their usual deposition in piles, can be a great challenge. 

The valorization of waste rocks in mining facilities such as waste rock inclusions, cover systems, 

backfills, and mine haul roads is therefore an attractive alternative to surface disposal, both 

economically and environmentally. This project research focused on the reuse of waste rocks in 

mine haul roads. The design of mine haul roads consists of geometric, structural, functional, and 

maintenance design, and the structural and functional design is the emphasis in this project. The 

mechanical properties of waste rocks, including CBR, shear strength, resilient modulus, and 

permanent deformation, are critical parameters for the design of mine haul roads. However, the 

literature review has shown that relevant research on the mechanical properties of waste rocks from 

hard rock mine were relatively limited, especially for mine haul roads that are subjected to 

significantly different traffic loading compared to highways. The applicability of laboratory test 

procedures and standards developed for highways to waste rocks should be assessed. Factors 

impacting the mechanical properties of waste rocks need to be quantified. The fitting performance 

of mathematical regression models to waste rock mechanical properties need to be evaluated. 

Machine learning, as an analytical alternative to conventional statistical method, is more and more 

commonly used in geotechnical engineering applications, and may also bring useful information 

to predicting waste rock mechanical properties. 
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11.1.2 Studied materials and laboratory tests 

The studied waste rocks (including crushed and uncrushed materials) in this project were obtained 

from Canadian Malartic Mine. A thorough laboratory characterization program was conducted in 

Polytechnique Montreal laboratories to determine the physical properties of the waste rocks, 

including particle size distribution, particle shape, mineralogy, specific gravity, and compaction 

properties (Chapter 3). The maximum particle size of crushed and uncrushed waste rocks was 25 

and 60 mm, respectively. The waste rocks contained more than 65% of gravel, and around 5% of 

fines, and were classified as poorly graded gravel. The elongation index and flakiness index of the 

studied crushed waste rocks were 38.56±1.62% and 34.95±2.08%, respectively. Waste rocks were 

mainly composed of quartz, albite, muscovite, and chlorite, corundum, and diopside, and they were 

considered non-acid generating materials. The specific gravity was 2.71 and 2.75 for particles 

larger and smaller than 4.75 mm, respectively. Following modified Proctor tests, the optimum 

water content of crushed waste rocks was 5.6%, for a corresponding maximum dry density of 

2334 kg/m3. 

A total of 112 laboratory tests, including CBR and triaxial tests (both monotonic and cyclic load) 

were carried out to measure the CBR, shear strength, stiffness, and permanent deformation of 

crushed (19 mm of maximum particle size) and uncrushed (60 mm of maximum particle size) 

waste rocks in this study. 

 

11.1.3 Applicability of the existing laboratory test standards 

The existing laboratory test standards such as standard Proctor test (ASTM D698 2012), modified 

Proctor test (ASTM D1557 2012), AASHTO T307 standard (AASHTO T307 2017), and EN 13286 

standard (EN 13286 2004) were initially proposed for usual soils or highways. These standards 

were therefore modified for waste rocks and mine haul roads in this project 
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Different compaction energies were used to prepare crushed waste rock specimens, i.e., standard 

effort (STD), 600 kN-m/m3 (ASTM D698 2012) and modified effort (MOD), 2700 kN-m/m3 

(ASTM D1557 2012). An alternative compaction method (MOD 81) was also used in this study. 

MOD 81 compaction used a modified effort hammer (44.48 N), but with 81 blows per layer 

(instead of 56 blows; the rest of the test being identical to ASTM D1557). The objective was to 

simulate a higher compaction energy (3905 kN-m/m3) which was more representative of field 

conditions where compaction is achieved using heavy mining trucks (Chapter 4). The dry density 

increased about 9% (i.e., from 2039 to 2227 kg/m3) when the compaction energy increased from 

STD (600 kN-m/m3) to MOD (2700 kN-m/m3). The increase of dry density was, however, 

relatively limited when the compaction energy increased from MOD to MOD 81 (3905 kN-m/m3; 

2250 kg/m3). The different compaction effort also changed the final particle size distribution after 

repeated load CBR tests. The proportion of coarse particles (14-19 mm) decreased between 3 and 

8%, depending on compaction energy. The decrease was more pronounced for higher compaction 

energies (-8% for MOD 81 compaction) than for small energies (-4% for STD compaction). On the 

other hand, the fine content (< 0.075 mm) increased, by up to 7% for MOD 81. The in-situ dry 

density of surface layer of haul roads comprises between 2250 and 2375 kg/m3 (Laverdière 2019). 

The dry density of crushed waste rocks compacted using MOD and MOD 81 was therefore closer 

to the density measured in the field and, to a certain extent, increasing the hammer blows could 

better simulate the in-situ compaction of haul roads. 

The compaction standards, i.e., ASTM D698 (2012) and ASTM D1557 (2012), could not be used 

for uncrushed waste rocks since the hammers in these standards were too small to compaction the 

coarse-grained waste rocks (60 mm of maximum particle size). A hammer was therefore especially 

designed for compacting the large waste rock samples in this study (Chapter 7). The hammer was 

made of a 5 kg rammer dropped from a height of 1 m on a base plate with 160 mm diameter, and 

the compaction effort caused by one below of this hammer was 6.7 times the standard Proctor test 

hammer (ASTM D698 2012). There were three compaction efforts applied on uncrushed waste 
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rocks, i.e., 31, 62, and 93 blows on each of the five layers of the samples, corresponding to 180, 

360, and 540 kJ/m3, respectively. The dry density increased from 1872 to 2004 and 2014 kg/m3 

when the compaction effort increased from 180 to 360 and 540 kJ/m3. The designed hammer in 

this study was therefore able to compact the coarse-grained waste rocks for laboratory tests, and it 

could be used in the future project. 

AASHTO T307 (2017) standard is generally used to evaluate the resilient modulus of pavement 

materials, but it was initially proposed for highway design, with a maximum axial stress varying 

from 20.7 to 275.8 kPa and confining pressure from 20.7 to 137.9 kPa (for base/subbase materials). 

However, this stress level was significantly lower than the tire pressure of mining trucks, e.g., 

around 1000 kPa ("Electric drive mining truck 960e-2k"). High stress combinations of axial and 

confining stresses (HSL) were therefore proposed to evaluate the resilient behavior of crushed 

waste rocks under heavy mining trucks (Chapter 4). The maximum axial stress and confining 

pressure were between 80 and 2000 kPa, and between 100 and 1000 kPa, respectively, which could 

cover the range of stress variation in the field, even for the heavier mining truck (e.g., BELAZ 

75710 with 450 mt of payload capacity). The resilient modulus of crushed waste rocks under high 

stress condition was significantly higher than for low stress conditions. The resilient modulus 

prediction model (MR-θ model) calibrated from repeated load triaxial test results under low stress 

level (AASHTO T307 2017) tended to underestimate the resilient modulus of crushed waste rocks 

used in mine haul roads, as crushed waste rocks exhibited some “stiffening” with increasing stress 

levels. The experimental results indicated that the proposing high stress level (HSL) for measuring 

resilient modulus was necessary, and it was able to estimate the resilient behavior of waste rocks 

in haul roads more accurately. 

EN 13286 standard (2004) is often used to evaluate the permanent deformation of pavement 

materials, and it proposed two sets of stress levels for highways with a deviator stress varying from 

20 to 600 kPa and confining pressure from 20 to 150 kPa. The stress levels in European Standard 
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13286 (2004) were therefore significantly lower than the stress conditions in haul roads caused by 

mining trucks. Therefore, another high stress level (HSLM) was specifically defined in this study 

to represent typical stress conditions within mine haul roads. The confining pressure and deviator 

stress in the new stress level ranged from 80 to 550 kPa, and from 100 to 1500 kPa, respectively. 

The accumulated permanent strain for HSLM increased with the stress paths, but the curve was 

steeper than for the stress levels in EN 13286 standard (2004) because of the significantly greater 

deviator stress. The different stress levels resulted in the variation of permanent deformation 

behavior, indicating that the proposed HSLM was necessary and more accurate to estimate the 

permanent deformation behavior of waste rocks under heavy mining trucks. 

The dry density of crushed waste rocks compacted using MOD and MOD 81 was similar and close 

to the in-situ density, indicating that modified Proctor (MOD) compaction effort or higher effort 

should be used for sample preparation to match the density in the field. The special designed big 

hammer could compact coarse-grained waste rocks sufficiently to simulate the field condition, and 

this hammer was therefore necessary for large-scale triaxial test. The proposed stress levels (HSL 

and HSLM) could better represent the stress states within haul roads, and therefore the existing 

laboratory standards for repeated load triaxial tests (i.e., AASHTO T307 and EN 13286) should be 

modified to estimate the resilient and permanent behavior of waste rocks under mining trucks. 

 

11.1.4 Suitability of repeated load CBR test to characterize waste rocks 

Repeated load CBR tests were setup to estimate the stiffness (equivalent modulus) and permanent 

deformation of crushed waste rocks under different stress levels in Chapter 4 and 5. The principle 

of repeated load CBR test is similar to the standard CBR test, except that cyclic loads are applied 

(Molenaar 2008; ASTM D1883 2016). The applicability of existing calculation equations of 

equivalent modulus to crushed waste rocks was evaluated. Experimental results showed that the 

impact of loading frequency and waveform was limited, while the measured equivalent modulus 
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increased significantly with contact stress. The effect of dry density and soaking on equivalent 

modulus was negligible, but specimen drying resulted in a marked increase of the equivalent 

modulus. An equation and a model were proposed for repeated load CBR tests to calculate the 

equivalent modulus and evaluate the permanent deformation of crushed waste rocks under different 

stress conditions, respectively. The stiffness and permanent deformation measured from repeated 

load CBR tests and repeated load triaxial tests were comparable, indicating that repeated load CBR 

tests could be used as an effective alternative to repeated load triaxial tests. 

 

11.1.5 Effect of gravel-to-sand ratio and fines content 

Gradation of aggregates is a key factor that affects the mechanical properties including resilient 

modulus (Duong et al. 2016; Hatipoglu et al. 2020), permanent deformation (Wang et al. 2018), 

and shear strength (Xiao et al. 2012; Yang and Luo 2018; Qi, Cui, Chen, et al. 2020), which can be 

attributed to the change of waste rocks fabric (Thom and Brown 1988; Kolisoja 1997). A series of 

repeated load and monotonic triaxial tests (150 mm and 300 mm of specimen diameter) were 

therefore carried out on crushed and uncrushed waste rocks to study the gradation effect by 

modifying the gravel-to-sand ratio and fines content (Chapter 6 and 7). 

An increasing in gravel-to-sand ratio increased the resilient modulus and shear strength of crushed 

waste rocks until the optimum gravel-to-sand ratio, and the optimum gravel-to-sand ratio was 1.5 

and 1 for stiffness and shear strength, respectively, exceeded, resilient modulus and shear strength 

decreased. The permanent strain decreased slowly as gravel-to-sand ratio increased from 0.5 to 1.5, 

but it increased very sharply when gravel-to-sand ratio increased to 3. The optimum gravel-to-sand 

ratio for crushed waste rocks was therefore 1 to 1.5. The optimum fines content for resilient 

modulus and shear strength of crushed waste rocks was around 5% and 8%, respectively, while the 

permanent strain tended to decrease when fines content increased from 3.75% to 12%. However, 

the selection of fines content for haul roads would require considering other specifications in 
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practice (e.g., AASHTO M-147 specifications for highway base layers and Guidelines for mine 

haul road design). 

For uncrushed (coarse-grained) waste rocks, the optimal gravel-to-sand ratio regarding to the 

resilient modulus and shear strength was around 5. Permanent strain was close when the gravel-to-

sand ratio ranged between 1 and 5, but it decreased significantly when the ratio increased to 8. The 

influence of fines content (0-10%) on the mechanical properties of uncrushed waste rocks was 

insignificant because the variation of fines content and dry density was limited. 

Gravel-to-sand ratio was therefore a practical grading parameter to optimize the mechanical 

properties of both crushed and uncrushed waste rocks for haul roads in the field. The original 

gravel-to-sand ratio of crushed waste rocks was 2.3, and so the original materials should be crushed 

more to improve the mechanical characterization in the field. The original gravel-to-sand ratio of 

uncrushed waste rocks was 5 that was the optimum. Fines content was not recommended as a 

grading parameter for optimizing the mechanical properties of waste rocks considering the relevant 

specifications on fines content, the insignificant effect, and the limited amount in the field (< 10%; 

(Gamache-Rochette 2004; Bussière 2007b)). 

 

11.1.6 Effect of other basic physical properties 

The effect of other basic physical properties including maximum particle size, compaction effort, 

and water content on the mechanical properties of uncrushed waste rocks was studied using large-

scale triaxial tests (Chapter 7). 

An increasing in maximum particle size (25, 40, and 60 mm) resulted in growth of resilient 

modulus. The resilient modulus increased 25-45% when maximum particle size increased from 

25 mm to 40 mm. The effect of maximum particle size was relatively low as it increased to 60 mm, 

i.e., around 5% increasing compared to 40 mm. The shear strength (peak deviator stress) increased 
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gradually with the maximum particle size, and it was around 500, 600, and 700 kPa under 50 kPa 

of confining pressure for maximum particle size 25 mm, 40 mm, and 60 mm, respectively. The 

permanent deformation of waste rocks with 60 mm maximum particle size was slightly lower than 

that of 25 mm and 40 mm maximum particle size. 

The effect of compaction effort on the mechanical properties of coarse-grained waste rocks was 

significant. An increasing of compaction effort from 180 to 360 kJ/m3 resulted in significant 

increase of resilient modulus and shear strength and decrease of permanent deformation because 

of the increase of dry density. However, the impact of more compaction effort (540 kJ/m3) on the 

density and mechanical properties was limited. 

The influence of water content (final value 0.9-2.3%) on the resilient modulus, shear strength, and 

permanent deformation of uncrushed waste rocks was insignificant because the variation of water 

content and dry density was limited. 

Increasing the maximum particle size would be beneficial to the mechanical properties of waste 

rocks in the field. The maximum particle size for haul roads in practice actually can be higher than 

100 mm (Tannant and Regensburg 2001), which is significantly higher than 60 mm tested in this 

study. However, the maximum particle size should be smaller than the 2/3 of the layer thickness, 

and larger particles should be removed or crushed (Tannant and Regensburg 2001). An increasing 

of compaction effort could increase the dry density and mechanical properties of waste rocks, but 

the effect of excessive compaction effort higher than a certain value (i.e., 360 kJ/m3 in this study) 

would be limited. Considering the extreme heavy weight of mining trucks, it is considered 

sufficient to compact haul roads using mining trucks in the field. The influence of water content on 

the mechanical properties was insignificant (specially for uncrushed waste rocks), the rainy 

weather therefore has limited influence on the construction of base/subbase layers of haul roads. 
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11.1.7 Impact of freeze-thaw and wetting-drying cycles 

Environmental conditions have a major factor influence on the performance of mine haul roads 

(Maalouf et al. 2012). A series of triaxial tests (monotonic and repeated load) and CBR tests 

(standard and repeated load) were therefore carried out to evaluate the impact of freeze-thaw cycles 

and wetting-drying cycles on the mechanical properties of crushed waste rocks (Chapter 8). 

The effect of freeze-thaw cycles on the mechanical properties of crushed waste rocks was relatively 

significant during the first 4 cycles, and the material nearly reached an equilibrium state after 10 

freeze-thaw cycles. The resilient modulus and shear strength of crushed waste rocks subjected to 

repeated freeze-thaw cycles were reduced by 11% and 7%, respectively, while the accumulated 

permanent strain increased by 20%. 

In this study, the water content varied from 1.9% to 3.5% for the freeze-thaw tests, and the 

corresponding degree of saturation increased from around 5% to 10% which was considered 

relatively low. The impact of this limited increase of saturation on the resilient modulus and shear 

strength was insignificant (<5%). However, the increase of saturation resulted in a significant 

increase of permanent deformation (over 80% increase for less than 5% increase of water 

saturation). 

Wetting-drying cycles could result in a 32% increase of the CBR. The influence of wetting-drying 

cycles on stiffness (equivalent modulus) was negligible at low axial stress (<800 kPa), but caused 

an 18% increase at high axial stress. The permanent deformation increased by 100% following 

repeated wetting-drying cycles. Similarly to the freeze-thaw cycles, the effect of wetting-drying 

cycles on the geotechnical characteristics was limited after 5 cycles. 

Freeze-thaw cycles could reduce the mechanical performance of waste rocks and higher water 

content would increase this effect, which may increase the maintenance frequency of haul roads. 

For the haul roads in cold climate, the effect of freeze-thaw cycles should be considered during the 

haul road design. Although the impact of wetting-drying cycles on the mechanical properties of 

waste rocks was limited, it may decrease the road trafficability because of muddy surface (caused 
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by wetting such as rainfall) and dust (caused by drying in hot weather). 

 

11.1.8 Existing mathematical models fitting 

Several mathematical models were proposed in the literature to describe the resilient modulus of 

pavement materials. MR-θ model and MEPDG model appeared to be more suitable to describe 

the stress dependency of waste rock resilient modulus (coefficient of determination R2 higher than 

0.9). The MR-θ model coefficient k1 was affected significantly by the physical properties of waste 

rocks and tended to increase with resilient modulus. Model coefficient k2 tended to decrease with 

resilient modulus, and its variation was relatively small (Chapter 6 and 7). MEPDG model 

coefficient k1 tended to decrease with the number of freeze-thaw cycles, while coefficients k2 and 

k3 for the different specimens were close for the different specimens (Chapter 8). 

Several permanent deformation models were proposed to describe the permanent deformation with 

number of loading cycles. Rahman and Erlingsson model (extended using time hardening approach) 

was the most suitable model to fit the accumulated permanent strains of both crushed and 

uncrushed waste rocks in this project (coefficient of determination R2 higher than 0.9). The Rahman 

and Erlingsson model coefficient α was usually relatively constant, and it was therefore fixed to 

0.75 (Chapter 5), 0.45 (Chapter 6 and 8), and 0.3 (Chapter 7) to minimize the number of model 

coefficients. The model coefficient a was affected significantly by physical properties of waste 

rocks, and tended to increase with the accumulated permanent strain, while the variation of 

coefficient b was relatively limited. 

Coefficient prediction models (k1, k2, a, and b), expressed as a function of gradation properties 

(Chapter 6) and climatic factors (Chapter 8), were also developed to evaluate the effect of gradation 

on resilient modulus and permanent deformation of waste rocks. 
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11.1.9 Development of machine learning models 

Predicting CBR, resilient modulus, and permanent deformation of waste rocks accurately and 

efficiently can be useful to reduce costs and ensure optimal pavement performance. Although the 

fitting performance of conventional regression models was acceptable (section 11.1.8), the 

extrapolation performance of the calibrated models on new cases such as new stress states in the 

field was not certain. Also, the fitting process of permanent deformation model was complex and 

time-consuming. Different machine learning algorithms, including multiple linear regression 

(MLR), support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), random 

forest (RF), backpropagation neural network (BPNN), and neuroevolution of augmenting 

topologies (NEAT), were therefore used to develop prediction models for CBR, resilient modulus, 

and permanent deformation of crushed waste rocks based on experimental data (Chapter 9 and 10). 

Dry density, compaction energy, fines content, CC, CU, D10, D60, and maximum particle size were 

selected as the input variables for the CBR models based on Pearson correlation analysis. The 

parameters in repeated load triaxial test, i.e., number of loading cycles in each stress path, confining 

pressure, and deviator stress could affect the resilient modulus of crushed waste rocks, and they 

were therefore selected as the input variables for resilient modulus models and permanent strain. 

The machine learning models were trained on training dataset and verified on testing dataset. 

For CBR and resilient modulus, the performance of MLR models was relatively low because of 

the limitation of simple linear relationship. Other models showed good performance, particularly, 

the DT and RF models exhibited higher precision and satisfactory generalization capacity for both 

CBR (R2 > 0.91) and resilient modulus (R2 > 0.99) (Chapter 9). The prediction accuracy of KNN 

and BPNN models for CBR was influenced significantly by the dataset size. Although the NEAT 

models were not the best choice in terms of prediction accuracy, they are still worth to be 

considered in the following study because of their good generalization capacity and simple 

structure. The model hyperparameters, including number of KNN neighbors, maximum DT depth, 
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number of RF estimators, number of hidden neurons and hidden layers in BPNN, could affect the 

prediction performance significantly for both CBR and resilient modulus. These parameters should 

be studied and analyzed during the development of artificial intelligence models. 

For permanent deformation, BPNN model showed higher prediction accuracy than other machine 

learning models (Chapter 10). The optimal BPNN architecture consisted of three input features 

(number of loading cycles, confining pressure, and deviator stress), three hidden layers (50 neurons 

per layer) with Tanh activation function, and one output neuron for permanent strain. The BPNN 

model was highly capable of predicting permanent strain of crushed waste rocks under different 

stress levels (R2 > 0.97), and the prediction accuracy of shakedown ranges was higher than 93%. 

The BPNN model appeared therefore reliable and efficient to predict the permanent strain of 

crushed waste rocks, but the model generalization capacity for different materials should be 

enhanced in the future study. The sensitivity analysis of input features showed that deviator stress 

was the most significant variable influencing the permanent strain of crushed waste rocks. The 

results also indicated that all the input features selected for BPNN model were important and 

necessary for characterizing the permanent strain. 

The research results indicate that machine learning was a good alternative to regression method to 

predict the mechanical properties of waste rocks. The developed models can be extended via taking 

more physical properties into account (i.e., as the input features) in the future studies. However, 

machine learning model is difficult to be expressed as explicit formula, which makes its application 

by engineers more complex than other analytical models. 

 

11.2 Discussion 

This project presents an experimental study that evaluate the mechanical properties of waste rocks 

from hard rock mine used for haul roads. It also presents the mathematical description and machine 

learning prediction of the mechanical properties of waste rocks. The research results can help 
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improve the design of mine haul roads using waste rocks. However, it should be recalled here that 

the analyses in this project were based on some simplifying assumptions. The specific limitations 

associated with each sub-objective have been addressed in the “Discussion” of each chapter 

(Chapter 4-10). The main limitations of this project are summarized below. 

 

Limited tested materials: Although the waste rocks used in this project were representative of 

hard rock mines (Bussière 2007a; James et al. 2013), they were obtained from one mine site 

(Canadian Malartic Mine), and the impact of mineralogy on the experimental results could not be 

studied. The applicability of obtained conclusions from the experimental results to other materials 

is therefore uncertain. The generalization of proposed descriptive and predictive models is 

therefore also limited to other materials. 

 

Low cyclic loading frequency: The cyclic loading frequency applied in repeated load laboratory 

tests was lower than 1 Hz because of the limitation of the laboratory apparatus. However, it was 

significantly lower than the loading frequencies caused by mining trucks (CAT 793F) on haul roads 

which typically are around 3 to 4 Hz (assuming a driving speed of 12 to 15 km/h and a payload 

rear tire contact radius of around 0.55 m). This low loading frequency can limit the study of realistic 

mechanical response of waste rocks under mining trucks in the field. 

 

Constant Poisson’s ratio: Poisson’s ratio of waste rocks was not measured in this research, and 

was assumed to be constant and equal to 0.35. In practice, Poisson’s ratio is not a constant and it 

may increase with a decrease in confining pressure and an increase in deviator stress (Hicks and 

Monismith 1971). The density, fines content, water content, aggregate type, and particle shape also 

affect the Poisson’s ratio (Lekarp et al. 2000a). An accurate Poisson’s ratio of waste rocks is needed 
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for the mechanistic design of mine haul roads. 

 

Effect of principal stress reorientation: The effect of principal stress reorientation on permanent 

deformation behavior of waste rocks was not considered in this study. In practice however, a 

reorientation of the principal stress can occur in real pavement structures under moving traffic load 

(Qian et al. 2016), which could result in large permanent strain, exceeding the deformation 

measured using repeated load triaxial tests in the laboratory (Lekarp et al. 2000b; Qian et al. 2016). 

The measured permanent deformation in this project therefore tends to underestimate the 

deformation occurred in the field. 

 

Sample preparation of wetting-drying tests: In the wetting-drying study, even though the 

specimens were soaked in water in the wetting-drying tests, the approach used in this study could 

not completely and realistically simulate field condition such as the rainfall splash and water flows 

which would cause particle migration and change the fabric of waste rocks (Cui et al. 2017; Cui et 

al. 2019). Results in this study are therefore expected to have underestimated the effect of wetting-

drying cycles compared to what would happen in the field. 

 

Limited stress paths in large-scale triaxial tests: Only four stress paths and 3000 cycles per stress 

path were applied for the large-scale repeated load triaxial tests since the triaxial apparatus is only 

able to run at a low loading frequency (0.025 Hz). However, AASHTO T307 standard (2017), 

recommends 15 stress paths to evaluate the resilient behavior, and EN 13286 standard (2004) 

suggests at least 10000 loading cycles for each stress path to evaluate the long-term permanent 

deformation of unbound mixtures. More stress paths and loading cycles can help to better 

understand the resilient and permanent behavior of coarse-grained waste rocks in mine haul roads. 
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Reproducibility of laboratory tests: Although this study showed acceptable experimental results 

and similar findings with the literature (even though the tested materials were very different), their 

reproducibility could not always be verified since some tests were so time-consuming. Considering 

the repeatability of repeated load triaxial test is relatively low (Boudreau 2003), further study would 

be required to more accurately generalize the effect of material properties. 

 

Mathematical model fitting: Rahman and Erlingsson model (extended using time hardening 

approach) was able to accurately describe the measured accumulated permanent strain of waste 

rocks. However, fitting performance of the extended model heavily relies on the initial values of 

the model coefficients (i.e. a, b, and 𝛼), and these are generally determined through trial and error 

method, which is time-consuming and complex especially when a large number of stress paths are 

applied in one multistage repeated load triaxial test. Although Rahman and Erlingsson (2015a) 

provided a detailed fitting process using Microsoft Excel, the engineer experience and judgement 

has a significant impact on the model fitting performance. 

 

Limited input features of machine learning models: Although the developed machine learning 

predictive models showed satisfactory accuracy to the crushed waste rocks from Canadian Malartic 

Mine, only three input variables/features (i.e., number of loading cycles, confining pressure, and 

deviator stress) were used for the models because of the limited available data, which restricts the 

applicability of these models to other materials. 

 

Some recommendations are presented below (Section 11.3) to answer some of the limitations or 

uncertainties raised during this research. 
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 CONCLUSION AND RECOMMENDATIONS 

12.1 Conclusion 

The primary objective of this project was to assess the mechanical properties of waste rocks under 

mining truck loading, and to improve the design of mine haul roads. Secondary objectives were to 

evaluate the applicability/suitability of laboratory test standards, repeated load CBR test and 

existing mathematical regression models to waste rocks, assess the impact of gravel-to-sand ratio 

and fines content, study the effect of basic properties and climatic factors, and develop machine 

learning models for predicting the mechanical properties. The main conclusions and contributions 

of this research can be summarized as follows: 

⚫ High stress levels for haul roads were proposed and used in repeated load triaxial tests, which 

were able to give more representative resilient and permanent behavior of waste rocks under mining 

truck loading. 

⚫ Repeated load CBR tests could be an effective alternative to repeated load triaxial tests to 

estimate resilient and permanent deformation behavior of waste rocks. Results showed that the 

impact of loading frequency and waveform in repeated load CBR tests was limited, while the 

measured equivalent modulus increased significantly with contact stress. The developed equation 

and model for repeated load CBR tests were reliable to describe the stiffness and permanent 

deformation of waste rocks, respectively. 

⚫ Gravel-to-sand ratio could be a practical grading parameter for optimizing the mechanical 

properties of waste rocks. The optimum gravel-to-sand ratio of crushed waste rocks was between 

1 and 1.5 and contributed to provide higher resilient modulus and shear strength, and lower 

permanent strain. An increase in fines content could, to the contrary, result in the decrease of 

resilient modulus and permanent strain but also to significant increase of shear strength. The 

optimal gravel-to-sand ratio of uncrushed waste rocks regarding to the resilient modulus and shear 
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strength was around 5. Permanent strain was close when the gravel-to-sand ratio ranged between 

1 and 5, but it decreased significantly when the ratio increased to 8. The influence of fines content 

(0-10%) on the resilient modulus, shear strength, and permanent deformation of uncrushed waste 

rocks was insignificant. 

⚫ Increasing maximum particle size and compaction effort would improve the mechanical 

response of haul roads. An increasing in maximum particle size (25, 40, and 60 mm) resulted in 

growth of resilient modulus and shear strength and decrease of permanent deformation. The effect 

of compaction effort on the mechanical properties of uncrushed waste rocks was significant, 

exceeded 360 kJ/m3, this effect was limited. The influence of water content (final value 0.9-2.3%) 

on the resilient modulus, shear strength, and permanent deformation of uncrushed waste rocks was 

limited. 

⚫ Freeze-thaw cycles should be considered during the haul road design in cold regions. Freeze-

thaw cycles resulted in a reduction of the resilient modulus and shear strength, and an increase of 

the permanent deformation. A greater water content during freeze-thaw cycles also resulted in a 

significant increase of the permanent deformation. Results also showed that wetting-drying cycles 

could contribute to increase the stiffness, CBR, and permanent deformation of crushed waste rocks, 

but further study should be conducted to evaluate the effect. 

⚫ MR-θ model and MEPDG model were reliable to describe the resilient modulus behavior of 

waste rocks under different stress conditions. Rahman and Erlingsson model (extended using time 

hardening approach) was well adapted to fit the accumulation of permanent strain with number of 

loading cycles caused by numerous stress paths. The proposed models could be used to predict the 

mechanical properties of waste rocks in the field, but would need to be improved using more test 

results to extend their generalization capacity. 

⚫ A comparison study showed that the decision tree DT, random forest RF, and backpropagation 

neural network BPNN models provided better results for CBR, resilient modulus, and permanent 
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deformation, respectively. The NEAT models showed good generalization and simple structure 

although their performance was lower than DT and RF models. The developed models should be 

extended using more data to increase the generalization capability. 

 

 

12.2 Recommendations 

Following the limitations raised by this project, several recommendations are given below to better 

understand the mechanical properties of waste rocks and optimize mine haul road design: 

⚫ More laboratory tests with higher loading frequency, and more stress paths and loading cycles 

should be carried out in the future research to better understand the mechanical behavior of waste 

rocks in haul roads. The proposed descriptive and predictive models in this project should be 

validated using more experimental data and different materials. Also, more experimental data need 

to be used to train and test the machine learning models to extend the generalization capacity. It 

means more input variables/features should be used for the predictive models, such as gradation, 

density, and degree of compaction. 

⚫ The influence of particle size distribution on the environmental effect (freeze-thaw and 

wetting-drying cycles) needs further study, which will be helpful for the management and 

reclamation of waste rocks. A new wetting-drying process on specimen should be designed to 

simulate the realistic field condition such as the rainfall splash and water flows, which will be 

helpful to study the mechanical behavior of waste rocks under severe condition. Alternative 

experimental approaches such as Scanning Electron Microscope (SEM) test are more and more 

frequently to examinate the microstructure change of the specimens subjected freeze-thaw cycles 

(Gullà et al. 2006; Aldaood et al. 2016; Zou et al. 2020) and wetting-drying cycles (Aldaood et al. 

2014), and are therefore strongly recommended for further evaluating the effect of freeze-thaw and 
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wetting-drying on waste rocks. 

⚫ Numerical simulations should be conducted to study the stress distribution in haul roads under 

mining trucks. Although high stress levels were proposed for haul roads based on the tire pressures 

of mining trucks in this study, more representative stress combinations of confining pressure and 

deviator stress should be proposed based on the numerical simulation results. The constitutive 

model for waste rocks, taking the resilient and permanent behavior into account, needs to be 

developed to simulate the response of haul roads subjected to mining trucks more accurately since 

the existing constitutive models for soils cannot match the mechanical behavior of waste rocks 

under traffic loading, for example, the most used Mohr-Coulomb model generally simulates soils 

at a constant elastic modulus for different stress conditions. Numerical simulation therefore would 

be beneficial to the laboratory test and haul road design. 

⚫ Field work, as an important part of road studies, are recommended in the future research. 

Although the density of surface layer of haul roads was measured by Laverdière (2019), the density 

of base/subbase layers also need to be measured in the field to help prepare the uncrushed waste 

rock samples that can match the in-situ density. However, the measurement of field density of 

base/subbase layers is difficult because it may need to excavate the haul roads, which would disrupt 

the transport of mining trucks. One of the possible solutions is to measure the field density of 

base/subbase layers during the road construction. Also, the field resilient modulus of haul roads 

should be measured using light falling weight deflectometer (LFWD), which can be used to verify 

the laboratory test results. 
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APPENDIX A  X-RAY DIFFRACTION TESTS RESULTS 

 

 

Figure A.1: X-ray diffraction test results for three samples of crushed waste rocks. 
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APPENDIX B  STRESS-STRAIN CURVES FOR CRUSHED WASTE 

ROCKS WITH DIFFERENT GRADATIONS 

 

 

Figure B.1: The stress-strain curves from monotonic triaxial tests on crushed waste rocks with (a) 

different gravel-to-sand ratios GS and (b) fines contents FC. 
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APPENDIX C  STRESS-STRAIN CURVES FOR CRUSHED WASTE 

ROCKS SUBJECTED TO FREEZE-THAW CYCLES 

 

 

Figure C.1: The stress-strain curves from monotonic triaxial tests on crushed waste rocks (a) 

subjected to different freeze-thaw cycles FT and (b) with different final water content w after 10 

freeze-thaw cycles. 
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APPENDIX D  QUANTIFICATION OF GRADATION EFFECT USING 

THE CONCEPT OF STRUCTURAL MODEL 

This section presents the quantification of the gradation effect on the mechanical properties (i.e., 

resilient modulus and shear strength) of crushed waste rocks using the concept of structural model. 

The gravel particles have a high stiffness and serve as a structural framework of crushed waste 

rocks when they have a high-volume fraction. Sand and fines contents are relatively compressible 

and occupy the voids among gravel particles, and they serve as an in-fill matrix. There is a transition 

in the structural state from the state of framework supported (dominated by gravel particles) to the 

state of matrix supported (dominated by sand and fines) with the increase of sand and fines contents. 

In this study, cm model proposed by Li and Wong (2016) was applied to quantify the structural 

states. However, cm model was developed for soft mdudrocks (a mixture of nonclay minerals and 

clay-water composites) that were significantly different to crushed waste rocks in terms of 

mineralogy and mechanical characteristics. The volume fraction of clay-water composites f
cw

 in 

cm model was therefore replaced by the volume fraction of sand and fines contents f
s+f

 : 

cm=
tanh(

fs+f-A

B
)+1

2
           D.1 

Where A and B are two parameters of the cm model, which values are affected by particle size and 

which can therefore change to accommodate for different geomaterials (Li and Wong 2016). Value 

of cm tends to zero for low values of f
s+f

 for the state of framework supported, and cm tends to 

one for high values of f
s+f

 for the state of matrix supported. The volume of sand and fines contents 

f
s+f

 is given by: 

f
s+f

=
Vs+f

V
           D.2 

Where Vs+f: the volume of sand and fines composites, -; and V: the total volume of a sample, -. 
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The cm model indicates how actively sand and fines serve as the supporting matrix in crushed 

waste rocks. By considering the structural state, a geomechanical or physical property of crushed 

waste rocks M can be estimated by applying the mixture theory as follows (Li and Wong 2016): 

M=Ms+fcm+Mg(1-cm)         D.3 

Where Ms+f: the property when sand and fines are dominant; and Mg: the property when gravel 

contents are dominant. 

A summary resilient modulus (SMR) was computed at a bulk stress of 208 kPa (103 kPa of deviator 

stress and 35 kPa of confining pressure) based on test results, and following the guidelines provided 

in NCHRP 1-28A Section 10.3.3.9. The gradation effect on resilient modulus was evaluated by 

comparing the SMR of samples with different sand and fines content. The summary resilient 

modulus and shear strength (i.e., peak deviator stress at 50 kPa of confining pressure) were fitted 

using equation D.1 and D.3 (Figure D.1). The cm  model parameters A and B were calibrated 

(A = 0.712 and B = 0.018). Model showed similar trend between resilient modulus and shear 

strength and the volume of sand and fines f
s+f

 that they decreased nonlinear with the increase of 

f
s+f

. An increase or decrease of f
s+f

 showed very limited impact on the mechanical properties of 

crushed waste rocks when f
s+f

 was higher than 0.8 or lower than 0.6. Therefore, the mechanical 

properties of crushed waste rocks were dominated by sand and fines when f
s+f

>0.8, while it was 

dominated by gravel particles when f
s+f

<0.6 . The fitting performance of cm  model for shear 

strength was, however, relatively low (R2 < 0.5), indicating that the shear strength of crushed waste 

rocks showed no significant transition of structural states, which could result from the angular 

particles and the wide range of particle size distribution. In contrast, the soft mudrocks used for cm 

model in previous study (Li and Wong 2016) showed a very large difference of particle size 

between nonclay mineral particles and clay particles. The structural states of crushed waste rocks 
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should be evaluated more accurately based on additional laboratory test results in the future study. 

 

 

Figure D.1: Measured and modeled (cm model) results of (a) summary resilient modulus SMR and 

(b) shear strength (peak deviator stress at 50 kPa of confining pressure) of crushed waste rocks 

with different volumes fraction of sand and fines composites f
s+f

. The model results and calibrated 

parameters Ms+f, Mg, A, and B are also shown in the figure. 
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