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Abstract: One third of fatal car accidents and so many tragedies are due to alcohol abuse. These sad
numbers could be mitigated if everyone had access to a breathalyzer anytime and anywhere. Having
a breathalyzer built into a phone or wearable technology could be the way to get around reluctance
to carry a separate device. With this goal, we propose an inexpensive breathalyzer that could be
integrated in the screens of mobile devices. Our technology is based on the evaporation rate of the fog
produced by the breath on the phone screen, which increases with increasing breath alcohol content.
The device simply uses a photodiode placed on the side of the screen to measure the signature of the
scattered light intensity from the phone display that is guided through the stress layer of the Gorilla
glass screen. A part of the display light is coupled to the stress layer via the evanescent field induced
at the edge of the breath microdroplets. We demonstrate that the intensity signature measured at
the detector can be linked to blood alcohol content. We fabricated a prototype in a smartphone
case powered by the phone’s battery, controlled by an application installed on the smartphone, and
tested it in real-world environments. Limitations and future work toward a fully operational device
are discussed.

Keywords: breathalyzer; wearable; sensors; breath analysis device; health; mobile screen; alcohol;
ethanol; smartphone; multimedia screen

1. Introduction

Extensive research has been conducted on portable breathalyzers [1–8]. Thousands of
articles and patents have been published about the consumption of alcohol in recent years,
and the numbers are increasing exponentially. The scale of scientific investments is a
revealing response to the numerous tragic accidents linked to alcohol abuse. At least one
impaired driving incident per 500 people is reported annually, and about 1 in 3 fatally
injured drivers in North America was found to have a blood alcohol content (BAC) in
excess of 0.08% in recent decades [9,10]. This represents over 10,000 deaths per year linked
to impaired driving in the United States alone. Alcohol abuse is therefore understandably
an important social concern.

In order to know if they can drive, people mostly rely on how they feel or the number
of drinks they consumed. The problem with this method is that first, the BAC is influenced
by the amount of food, the gender and the body mass of a person [11], and second, the
intensity of the symptoms (nausea, slurred speech, lack of coordination) varies from person
to person, depending of their drinking habits [12]. Therefore, two individuals with the
same BAC can have a very different perception of their level of intoxication. Besides using
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a breathalyzer or blood sampling, there is no heuristic or approximation that can help a
person figure out by themselves whether they are legally allowed to drive or not.

As of now, two of the most effective measures that prevent drinking and driving-
related fatalities and injuries are roadblocks and ignition interlock devices [13]. One might
think that the surge of availability of portable breathalyzers would help improve the
situation. Unfortunately, this hypothesis has been proven wrong. Their use is not popular,
as people are simply not interested in carrying such a device [14]. On the other hand,
smartphones and wearables are widely used. Having a breathalyzer built into a phone or a
wearable could be the way to get around the reluctance to carry a separate device, and may
have a real impact on impaired driving or other alcohol related-incidents.

For these reasons, any milestone toward an inexpensive breathalyzer built into a
phone or any wearable is of great importance. In this article, we propose a technology that
could meet this demand. Our approach only requires a photodiode placed on the side of the
glass screen of any mobile device such as smartphones or smartwatches. The photodiode
measures the optical signature of the light from the display that varies according to the
evaporation rate of the water vapor when a user breathes on the screen. The evaporation
rate varies for different BACs. In this paper, the principle of our technology is first explained.
Then, results using our prototype in the laboratory and in real-world environments are
presented. Finally, the ambient and breathing conditions that affect the BAC measurements
are studied, and future work to increase the breathalyzer precision is discussed.

2. Breathalyzer Principle

Our optical breathalyzer is based on the evaporation rate of water vapor from the
breath. As shown in Figure 1a, when a person fogs a glass window (e.g., a smartphone
screen) with their breath, thousands of microdroplets are formed on the glass surface.
The evaporation rate of the microdroplets depends on the alcohol concentration in the
breath [15], which is linked to the BAC [1–8]. On a dry screen, light from the smartphone
display crosses the glass screen, and only a small part is reflected (Fresnel reflection) back
to the display; see Figure 1b. As shown in Figure 1c, when a droplet is formed on the glass
screen, part of the light is guided toward the edge of the glass screen (as in an optical fiber).
Indeed, the edge of the droplet allows a strong oblique reflection (total internal reflection)
which can be coupled into the planar waveguide formed by the dense antiscratch stress
layer. This stress layer is found in multimedia device screens made of toughened glass,
such as Corning Gorilla® and AGC Inc. (Tokyo, Japan) Dragontrail® glasses. Note that ray
optics is insufficient to treat this coupling behavior with the planar waveguide. Using wave
optics permits us to see that light sources near the waveguide interface can interact with
the evanescent field tails of the waveguide modes, and hence, can transfer some of their
power to them [16,17]. Therefore, only the light reflected from the very edge of the water
droplets can be efficiently coupled to the planar waveguide at the surface of the glass
screen. This is the key principle of our optical breathalyzer. Recent work has demonstrated
the integration of invisible photonic devices and sensors in smartphone screens using laser
writing of optical waveguides [18–21]. However, the complexity of laser writing added to
the use of an external light source increase the cost and the mass production complexity.
In our approach, the use of the display light already present and the stress layer planar
waveguide greatly simplify integration into smartphones.

Figure 1d is a photograph of the side edge of the glass screen when the phone displays
a white image at maximum brightness while the glass screen is fogged by the breath.
The illuminated line comes from the microdroplets, since the image is entirely dark when
there are no microdroplets (i.e., when the screen is dry). Using a photodiode placed at the
edge of the glass screen, the evolution of the light intensity curve over time can be linked
to the evaporation rate of the microdroplets. The aim of this article is to demonstrate that
this optical principle can be used to monitor BAC by breathing on a smartphone screen.
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tive case, which is also ubiquitous among smartphone users. It is fabricated using a Corn-
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the glass screen to optimize the collection of light from the microdroplets and minimize 
noise. 

Figure 1. The optical breathalyzer principle. (a) Evaporation of the microdroplets when a person
breathes on a glass screen. The inset is a zoom on the microdroplets. (b) The light from the smartphone
display is not coupled to the planar waveguide on the surface of the glass screen. (c) With water
droplets on the glass screen, the light from smartphone display is coupled to the planar waveguide,
due to the strong oblique reflections at the edge of the droplets, and is guided to the side of the screen.
(d) Photograph of the guided light in (c) using a CCD camera and a 10× objective lens.

3. Breathalyzer Prototype

At this stage, the technology is not fully integrated into the smartphone, for obvious
reasons. Nevertheless, since the only required component that is not already part of
a smartphone is the photodiode placed on the edge of the screen, we believe that the
technology could be easily integrated. As shown in Figure 2a, our prototype acts as a
protective case, which is also ubiquitous among smartphone users. It is fabricated using a
Corning Gorilla® glass screen, as found on most smartphones. A 7.5 cm × 13.5 cm piece
has been cut to fit over a standard smartphone. This glass screen is placed on the top of
the smartphone screen and does not affect its functions. The side edge of the Gorilla glass
screen was polished to optical quality (down to a 0.5 µm grid) prior to installation of the
photodiode. Figure 2b schematizes how the photodiode has been installed on the side of the
glass screen to optimize the collection of light from the microdroplets and minimize noise.
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Figure 2. The optical breathalyzer prototype. (a) Photograph of our prototype. (b) Scheme of the photodiode installation on
the side of the glass screen. (c) The electronics. (d) Screenshots of the application software steps before displaying the BAC
result shown in (a).

First, a UV curing glue (Norland Optical Adhesive NOA63) with a refractive index
that matches that of the glass to minimize the Fresnel reflection was used (1) to attach
the photodiode (2). The silicon photodiode used (Advanced Photonix PDB-C612-2) had a
thickness of 360 µm with an active area of 3.91 mm × 17.55 mm. Then, a thin layer of UV
curing glue with a low refractive index n = 1.4 was applied on the glass surface, as shown
in Figure 2b (3), to maintain the guiding property of the stress layer. A strong epoxy glue
was then applied (4), covering the entire photodiode to increase its shock resistance. Finally,
a very opaque black paint was applied (5) to minimize the noise from the ambient light.
To measure the voltage generated by the photodiode, a voltmeter chip (2 × 4.5 × 1.16 cm3)
from Yoctopuce (Yocto-milliVolt-Rx) was connected to the photodiode and the smartphone
USB port (see Figure 2c). Finally, as shown in Figure 2d, an application was programmed
to guide the user in running the breath test. In the first pane, the three dots at the top right
were used to enter the ambient temperature and humidity. When the user touches the
“Breath analyzer” rectangle, the next pane on the right is displayed and the user simply
needs to follow the steps until the result of his BAC is displayed, as shown in Figure 2a.
Of course, there is considerable room for improvement. The entire prototype uses the
phone’s battery to operate.

4. Results and Discussion
4.1. Laboratory Tests

Before testing our prototype in a real-world environment, tests were conducted in
the laboratory in a controlled environment (class 100,000 clean room). A volunteer was
asked to breathe several times on the prototype for about two seconds under the same
conditions to the best of their ability, before and after drinking alcohol. To compare our
prototype with an accurate BAC value of the volunteer, four breath tests (two just before
and two just after using our prototype) were carried out using a breathalyzer (model
APC-90 from Alco Prevention Canada Inc., Laval, Canada) approved by the U.S. Food and
Drug Administration (FDA). Figure 3a shows typical curves of the evolution of the light
intensity over time, as measured by our prototype, for different BACs. The light intensity
increased while the volunteer was breathing on the screen. When they stopped breathing,
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the light intensity decreased to zero (when the screen was completely dry). For each curve,
the time corresponding to the moment when the evaporation was complete, which is the
moment when the light intensity reached its lowest value for the first time, was set to
t = 0 s.
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Figure 3. (a) Light intensity curves measured at the photodiode for different BACs. (b) Good correlation
(R2 = 0.824) between the breath evaporation time and the BAC in laboratory environment.

A water droplet can evaporate twice as fast with 20% of alcohol compared to with-
out alcohol, depending on humidity and ambient temperature [15]. However, the rate
of evaporation is not linear based upon the alcohol concentration due to surface tension
effects. Note that breath vapor can contain an alcohol concentration of up to 14%, which is
equivalent to a BAC of 0.4 g/100 mL. At higher concentrations, coma or death is likely [22].
In addition, the proximity of the microdroplets when the screen is fogged further compli-
cates the dynamics of evaporation. Indeed, the more droplets that are present, the more the
humidity of the ambient environment increases, which decreases the rate of evaporation.
This is the reason why the middle of a surface remains fogged longer than the microdroplets
located at the edges, as shown in Figure 1a. It is therefore very difficult to analytically
study the evaporation, and thus the light intensity curve measured by the detector of our
breathalyzer presented in Figure 2. A very simple parameter to analyze is the time it takes
for the microdroplets to evaporate completely. The time taken for the light intensity to go
from 0.12 mV to 0 (the moment when the light intensity reaches its lowest value for the
first time) was used. Figure 3b shows the evaporation time according to BAC, as measured
with the APC-90 commercial breathalyzer.

The coefficient of determination obtained for the n = 57 measurements compared to
the best polynomial fit (dotted curve) is R2 = 0.824, which demonstrates a good correlation
between the measurements of our prototype and the actual BAC. The standard deviation of
the BAC measured with the prototype is σ = 0.037 g/100 mL, which is far from the precision
of the APC-90, i.e., 0.005 g/100 mL. A device with precision weaker than 0.02 g/100 mL
could probably only be useful as alcohol interlock, for detecting whether the user is under
the influence of alcohol or not. Note that this latter function is becoming commonplace
for access control to restricted areas, such as nuclear power plants, process industry, and
mining premises [6].
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4.2. Real-World Tests

The ultimate goal is to design an accurate breathalyzer which is functional in real-
world environments. To identify all the parameters that affect the measurement of our
optical breathalyzer, tests were carried out during festive events; 140 measurements were
carried out on 36 volunteers during three festive evenings, two in a house (Figure 4,
black markers) and the other in an indoor public place (Figure 4, blue markers). Figure 4
shows the evaporation time measured with our prototype compared to the BAC measured
with the APC-90. By analyzing the 140 evaporation curves over time (similar to those in
Figure 3), several parameters and conditions affecting the measurements were identified.
The following two sections (Sections 4.2.1 and 4.2.2.) describe the parameters that were
taken into account in our postprocessed results (Section 4.2.3). Other considerations and
interferences that were excluded from this work are also discussed in Section 4.3.
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Figure 4. Utilization of our breathalyzer in a real-world environment. The weak correlation between
the breath evaporation time and the BAC is greatly improved by considering a few measurable
parameters. Blue markers: humidity of 0.32. Black markers: humidity of 0.53. Empty markers:
detected anomalies.

4.2.1. Breathing Condition

The opening of the mouth, the distance to the screen, and the strength and duration of
the breath are parameters that can influence the number of microdroplets as well as their
combination to produce larger droplets, thus affecting the dynamics of evaporation. There-
fore, a mechanism capable of normalizing measurements, as implemented in commercially
available breathalyzers, could be used. However, the original goal of not having to carry
additional items would not be achieved.

The number of microdroplets directly affects the maximum measured light intensity
as well as the evaporation time. For example, one of the volunteers was not able to breathe
strongly and for long enough to fog an area large enough to obtain a maximum light
intensity comparable to a normal measurement. Note that the volunteer was also unable to
operate the APC-90 due to their shortness of breath. Under such circumstances, a message
on the screen would explain that a longer breath is required. Nevertheless, in addition to
the maximum light intensity, information from the signature of the curve during the breath
can be obtained. The duration of the breath can be measured between the point where
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the curve starts to increase and the point where the curve starts to decrease exponentially.
Moreover, the initial slope provides information on the strength of the breath. Considering
these data, atypical situations could be identified and compared. The situations where
the initial slope, the maximum intensity or the duration of the breath is the lowest are
denoted by black (house) and blue (public place) empty squares in Figure 4. Clearly, these
conditions have the effect of reducing the evaporation time.

When there is a large amount of water coming from the breath reaching the screen,
the microdroplets can combine. Since only the edges of the droplets allow light to reach
the detector, a large droplet produces a smaller light intensity than several small droplets
measured at the detector. This situation is easily detectable on the curve of light intensity
over time. When the light intensity decreases during evaporation, there is a moment when
the light intensity stops decreasing (and can even increase). By analyzing images taken
under a microscope over time, we confirmed that this moment corresponds to the separa-
tion of the microdroplets. Cases in which the microdroplets combined are represented by
empty black triangles (house) and empty blue circles (public place) in Figure 4. Clearly, the
combination of microdroplets has the effect of increasing the evaporation time.

4.2.2. Ambient Conditions

Humidity, temperature, wind and ambient light can affect the measurements. Wind
should be avoided, as it results in faster evaporation of the microdroplets. The breathalyzer
should therefore be used indoors or in windless conditions. To maximize the accuracy,
the ambient humidity and temperature should be known, which can be obtained with the
sensors in modern smartphones [23,24], or entered by the user. Note that the temperature
effect was not considered in this work. Although it was relatively similar for all our
results (room temperature), the temperature should be precisely measured to increase the
breathalyzer precision. Moreover, the screen should be properly cleaned before every test.
Dirt on the screen produces a constant light noise on the detector (due to the same principle
as with microdroplets). Other considerations regarding ambient conditions, which were
not taken into account in the results of this article, are discussed in Section 4.3.

4.2.3. Postprocessed Results

As shown in Figure 4, the breathalyzer is not accurate in real-world situations without
postprocessing the data (R2 = 0.170 for n = 140). In fact, an evaporation time of over 10 s
can be obtained from a BAC of 0.15, while an evaporation time of 5 s can be obtained from
a sober person. However, considering a few simple parameters, the correlation can be
greatly improved. By comparing the values in Figure 4 with the same ambient humidity,
the coefficient of determination increases to R2 = 0.617 in the public place (blue markers)
and R2 = 0.614 in the house (black markers). The humidity was 0.32 in the public place
and 0.53 in the house, measured with a household hygrometer (Bios Weather). In addition,
by simply discarding atypical data, as previously discussed (empty markers in Figure 4),
the coefficient of determination increases to R2 = 0.793 in the public place and R2 = 0.723
in the house, which is evidencing the room for improvement that could be provided by
appropriate postprocessing. We are currently investigating different approaches to address
this issue.

4.3. Discussion

Periodic peaks are sometimes present in the light intensity curve. The intensity of
these peaks is inversely proportional to the distance between the volunteer’s face and the
screen. Indeed, smartphones are equipped with a source and a detector to measure the
distance of objects in front of the screen [23,24]. It is this detector that turns off the display
and the touch-screen functions when the user holds the phone near to their ear while
engaging in a phone conversation. Since this source does not emit visible light, a simple
filter placed in front of the breathalyzer detector would remove these peaks. The duration
and intensity of these peaks provide information on the position of the volunteer’s face
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which could be used in the analysis of the evaporation curve. However, this information
can most likely be acquired directly from the phone’s sensor.

We observed that ambient light produced noise in the measurements. In fact, ambient
light can reach the detector due to the scattering in the glass screen. The breathalyzer
response can be analyzed considering the light noise measured and compared with a
reference with the same light noise. Restricting the use of the breathalyzer in the dark
could also solve the problem. Adding an electronic filter that only keeps the display refresh
rate frequency could discriminate it from other light sources such as sunlight. Adding
an optical filter in front of the detector, allowing only the highest intensity of the display
spectrum to pass, would also improve the results.

The accuracy of the breathalyzer could be improved in various ways. For example,
a line-by-line illumination of the display could be performed prior to the breath monitoring,
in order to identify defects like surface scratches and then subtract the corresponding
noise. Line-by-line scans could also be performed during the breath test to determine the
width of the area that is fogged by the person’s breath. The phone’s accelerometer data
could be recorded to estimate the orientation of the phone, since the gravity affects the
evaporation dynamics. Some phone’s sensors, such as the temperature sensor, might not
be a reliable source of information under certain conditions. For example, if the processor
was highly solicited or if the display was lit over a long period of time, its temperature
might be overestimated, while after carrying the phone close to the body with the display
facing away from the person, the temperature sensor is likely to be warmer than the
display. Therefore, the software application could ask the user to put the smartphone on a
horizontal surface for a few minutes prior to the breath test.

Under nonoptimal ambient conditions (judged by the user or detected by the smart-
phone), a measurement of the breathalyzer performed with the breath of a sober person
could serve as a reference to calibrate the device and improve the accuracy of the next test.

5. Conclusions and Future Work

Our next step is to acquire a large data set of BAC optical signatures (as in Figure 3a)
using our prototype in several festive events in order to train a DNN and use machine
learning to obtain accurate BAC measurements. The ambient and breathing conditions
discussed earlier will be used in a supervised training mode [25], in which the connection
weights of the DNN are adjusted by minimizing the training loss function (difference
between the actual DNN output and its desired output). Using this approach, we hope to
develop a robust, ecological (no disposable parts or replacements of degraded chemical
sensor elements), inexpensive and discreet wearable breathalyzer that can have a real
impact on our society. Finally, our contactless technology could be an interesting approach
for medical diagnoses and triage at emergency medical care facilities (or even in the street).
It is common that certain medical conditions (head injury, stroke, heart attack, diabetes,
or psychological illness) are mistaken for alcohol intoxication. Unfortunately, state-of-the-
art breathalyzers require the active involvement of the patient, and the required expiratory
volume and flow may be incompatible with the patient’s respiratory function [5,6].

Innovative applications using a smartphone as an operating medium are growing
rapidly, demonstrating the demand for portable sensors [18,19,26–32]. The combination of
these applications will hopefully someday make the smartphone a lab-in-a-pocket.
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