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Abstract: Manufacturing processes can be monitored for anomalies and failures just like machines, in
condition monitoring and prognostic and health management. This research takes inspiration from
condition monitoring and prognostic and health management techniques to develop a method for part
production process monitoring. The contribution brought by this paper is an automated technique
for process monitoring that works with low sampling rates of 1/3 Hz, a limitation that comes from
using data provided by an industrial partner and acquired from industrial manufacturing processes.
The technique uses kernel density estimation functions on machine tools spindle load historical
time signals for distribution estimation. It then uses this estimation to monitor the manufacturing
processes for anomalies in real time. A modified version was tested by our industrial partner on a
titanium part manufacturing line.

Keywords: condition monitoring; normal behavior; automation; industry 4.0; smart manufacturing;
prognostic and health management

1. Introduction

Condition-based monitoring (CBM) is defined as the act of monitoring the condition
of a machine or a process [1], while prognostics and health management (PHM) is de-
fined as an algorithmic way of detecting, predicting, monitoring and assessing operation
problems and health changes of systems [2] as well as taking decisions on them. Both are
used to monitor machinery, such as pumps [3], bearings and gears [4,5], electronics [6],
plane parts [6] and machine tools (Computer Numerical Control (CNC)) [2,7]. This field of
research is backed by a strong interest of the industry towards Smart Manufacturing, also
called Industry 4.0, which aims at the autonomous management of production through
virtualization of the production chain [8]. This is mainly achieved through the effective
leverage of advances in the Internet of Things (IoT) [9] and Big Data analytics [10] tech-
nologies. Moreover, when used for monitoring purposes, CBM and PHM can be used to
optimize the part production process, reduce costs and increase yields.

CBM and PHM research is split in two main research categories, namely model-based
approaches [1,11] and data-oriented approaches [1,12]. Model-based approaches need
expert knowledge of the system to be built and are dedicated to that system, as presented
in [11], where a finite element model of the system for prognostic and health management
is developed. Data-oriented approaches are more abstract. They use data acquired on the
system and knowledge of the outcome to build a model representing the phenomenon [12].
For example, Zhang et al. [13] show how a deep convolutional neural network trained on a
vibration temporal signal can predict bearing faults. They only use the input data, vibration
over time, and output information, and a vector of size 10 used as a voting method, to
classify the four bearings’ states. These methods are of great interest since they can be
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updated easily without expert knowledge of the machine and can be trained to work on
more than one system, as long as good quality contextual data are available.

Additionally, process monitoring research still focuses on design, as highlighted
by the review of Imad et al. [14], Hopkins and Hosseini [15]. Lu et al. [16] review the
deployment of the STEP-NC standard for a CNC system programming interface that
enables bi-directional communication between machine tool controllers, computer-aided
design (CAD)/Computer-Aided Manufacturing (CAM) software, monitoring software, etc.
Unfortunately, Lu et al. [16] reveal that most CNC controller vendors are not compliant with
the standard. The authors also state that STEP-NC could be used for cloud manufacturing
frameworks, such as the ones presented by Caggiano [17] or Siddhartha et al. [18], but
manufacturers seem reluctant to the use of this open standard citing legacy machine
compatibility problems for older machines and the high cost of early adoption, hindering
development in this field. CNC manufacturers, as well as the machining industry, are
slowly integrating more digital options in their systems, but it is not yet clear whether they
will transition to open technologies that will help research in the CBM and PHM fields
or to closed source solutions sold by the CNC manufacturers themselves when it comes
to machine condition and process monitoring. This makes building a decision making
system challenging since CNC manufacturers tend to use their own closed-source system
for accessing the CNC controller’s functionalities.

This paper proposes a data-driven automated system for normal behavior signal
determination applied to the manufacturing process of complex aerospace parts with a low
sampling rate, limited to 1/3 Hz by our industrial partner who could not change this setting.
The technology used in our approach is kernel density estimation functions [19]. The
advantages of solutions using a low sampling rate are the speed of numerical computations
and the small amount of data storage required to keep historical data for testing or even
further improvements of the algorithms. First, the paper discusses previous work in this
field. Then, the data used in this study for process monitoring research, which were
acquired by industry, are detailed. The data are complex and demonstrate the challenges
faced by companies transitioning towards Industry 4.0 for process monitoring. We then
present an explanation of the processing needed for normal behavior determination by
using kernel density estimation functions and the results. A discussion on how the method
can be used for monitoring and its limitations ensues. Finally, a practical implementation
of this technology is presented and discussed at the end of this paper.

2. Materials and Methods

In the field of CBM and PHM, research is performed on high frequency acquisition
rates. Jin et al. [20] proposed a method for bearing fault prognosis using a derivation of
wavelet transform as a health index and tested on a dataset acquired at 25.6 kHz. Rafiee
et al. [21] proposed a method based on neural networks for gearbox condition monitoring
and tested their approach on a dataset acquired at 16,384 Hz. Bhuiyan et al. [22] studied
acoustic emission, and the lowest acquisition rate studied was 50 kHz. Rivero et al. [23]
proposed a method based on time domain analysis of cutting power and axial cutting force.
The proposed approach was able to predict variability in the acquired signal corresponding
to tool wear. The frequency used for the signal acquisition was in the range of 500–
1500 Hz. Zhang et al. [24] used kernel density estimation (KDE) and and Kullback–Leibler
divergence to monitor rotating machinery. Their work was shown to outperform both
support-vector machine and neural network-based approaches on data sampled at 20 kHz.
Lee et al. [25] used KDE to monitor tool wear using by using T2-statistics and Q-statistics
with control charts. They used NASA’s milling dataset [26] for which data were acquired at
a minimum of 100 kHz. It is hard to find, in the scientific literature, methods of monitoring
CNC machine tools’ behaviors on low sampling rate data.

This is a problem, since our industrial partner acquires data from its machines at a
limited sampling rate of 1/3 Hz.
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KDE functions are used to approximate the probability density function of random
variables [27]. The function is very fast to compute and can reliably model multi-modal
distributions [27]. KDE was used by the authors in the data exploration phase and was
proven to reliably model the underlying dataset.

For all the abovementioned reasons, this paper focuses on a condition monitoring
method that can be used on low sampling rate data by using KDE functions.

2.1. Dataset

Our industrial partner acquires data on there shop floors from all machines that
produce data and from three main sources. First, the controller of the machines; second, a
spindle assisted program that monitors the use time of tools; and third, the advance spindle
technology software for their machines, which gives information about the spindle state,
such as spindle power, spindle torque, axial force min, axial force max, etc. They save all
of this information at a rate of 1/3 Hz, whether the machines are running or not. This is
a hard limitation of their system. This study focuses on our industrial partner’s titanium
production line. This choice was motivated by the fact that more data are available through
the controller of the machines used on these production lines and it was in the interest of
our industrial partner to make this research since their cost of operation is high and any
down time results in high loss in revenue.

Figure 1 shows that, for each part produced, there are multiple operations needed on
the raw material (pre-forged titanium). All of these operations are represented by programs.
Those programs can run multiple times on the machines each time the part needs to be
produced. Then all programs are divided into sub-programs that represent the geometrical
features of the part. Additionally, each sub-program, and by extension program, uses
different tools to produce the different features of the part. Finally, while in production,
sensors are used to monitor the whole process.

Figure 1. Diagram of data relationship at our industrial partner.

2.2. Sensors

The sensors used were installed on the machines by the CNC manufacturer. In terms of
sensors, Table 1 shows the different categories of data acquired by the machine’s controller.
This data contain all necessary information to identify the running CNC program, tools
and sub-programs. This information is saved in a database following the structure shown
by Figure 2. This is necessary for data analysis since different operations and different tools
result in very different signals acquired.



J. Manuf. Mater. Process. 2021, 5, 26 4 of 14

Figure 2. High level diagram of a machining program for complex parts manufacturing used by our
industrial partner.

Table 1. Parameters extracted from the Computer Numerical Control (CNC) machine tools’ controller.

Data Units

Date Y/M/D H:m:s:mill
Motor Coil Temperature ◦C
Front Bearing Temperature ◦C
Rear Bearing Temperature ◦C
Actual Spindle Speed RPM
Command Spindle Speed RPM
Spindle Override %
Spindle Direction CW, CCW, STOP, ORIENTATION
Instructed Feed [mm/min], [in./min]
Feed Override %
Cutting Signal ON / OFF
Jog Override %
Rapid Override %
Feed Signal axis %
Relative Position [mm], [in.], [◦]
Absolute Position [mm], [in.], [◦]
Machine Position [mm], [in.], [◦]
Distance to go [mm], [in.], [◦]
Feed Load %
NC MODE MEMORY, MIDI, REMOTE
Spindle FTN #
Spindle ITN #
Main Program #
Exec Program #
Seq Number #
Execution Block G-Code
Block Counter #
Vibration (x, y, z) g
Spindle Load %

One of the major challenges with the built data base is that the data are not synchro-
nized. As explained, a CNC machining program is comprised of multiple sub-programs
that can directly be associated with geometrical features of the part to be machined, see
Figure 2. These sub-programs are generated by computer-aided design (CAD) software
(CATIA, Solid Work, etc.). At the change of each sub-program, the machining process may
use a different tool, or the new sub-program may correspond to a new geometry. Moreover,
even if the same tool model is used between two sub-programs, G-Code programmers
may ask for a tool change, also called the use of a sister tool, to ensure the quality of
the cutting process. These must all be taken into account when building a model for
process monitoring using data acquired in production settings. Finally, for all changes
of sub-programs, there is a possibility of inducing a delay due to uncertainty between
the loading time of the next sub-program and the variability of tool change times. Those
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delays cause problems since the goal is to treat the data acquired as time series that can be
statistically compared with each other. Each delay must be removed and all time series
must be properly synchronized with each other. This means that the timestamp of the
acquisition cannot be used for accurate comparison.

2.3. Data Processing

As shown in Table 1, one of the signals acquired by the machine tools’ controllers is the
Spindle Load. The spindle load is given in % and represents the force needed to keep the tool
rotating at the desired speed with respect to the maximum amount of force the motor can
exert. On 28 February 2018, a catastrophic breakage occurred and a part was scrapped. The
spindle load signal acquired for this particular event compared with historical production
of the same part is shown in Figure 3. It is clear visually that the signal acquired was off
with respect to historical runs; see red circle and arrow. Other signals, such as the vibration
registered for the same event, were also off; however, this research will focus solely on the
spindle load.

Figure 3. Spindle load through time compared with historical data.

2.4. Data Synchronization

Figure 4 shows the raw spindle load data acquired for 18 runs of the same process. The
run number is a label that represents a CNC program, a tool and the time it was run. The
label number 127 represents a run made on 2018-10-13T21:08:57-04:00 while the program
number 356 was run on 2018-11-16T8:58:31-05:00. By analyzing this figure, where data
where synchronized using Algorithm 1 to reduce variations within all runs, it is still hard
to determine if all data points correspond perfectly to the position in time to which they
were attributed due to noise in the data acquisition. For comparison, Figure 5 shows a
single run of this program, the run labeled 127.

Nonetheless, the data in Figures 4 and 5 are concentrated in a band. There is a starting
upward phase where the spindle load is increasing rapidly while the CNC machine is
trying to keep the tool’s rotation at the desired speed while it starts cutting titanium. Then
there is a series of ups and downs until the end of the operation. Such a behavior can be
automatically extracted and quantified using the techniques presented in this paper.
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Algorithm 1: Program run synchronization
Input: unsynched_data i.e., array containing all the sensor readings for a sub

program and tool combination (including the program block and program
run identifier registered by the controller for each sensor value, see
Figure 1) in an unsynchronized fashion, i.e., raw data.

Result: synched_data i.e., hash map of synchronized data separated by position,
sub-program and program run (see Figure 1)

prog_set = set();
max_n_points = 0;
synched_data = positions = program_point_counter = dict();
for (program_block, program_id, sensor_value) in unsynched_data do

/* Make sure the structure holding the data exists */
if program_block not in synched_data then

synched_data[program_block] = dict();
end
/* Counts the number of values for one program */
if program_id not in prog_set then

prog_set.add(program_id);
program_point_counter[program_id] = 0;

end
pb_pid = (program_block, program_id);
if pb_pid not in positions then

synched_data[program_block][program_id] = list();
positions[pb_pid] = True;

end
program_point_counter[program_id] += 1;
if program_point_counter[program_id] > max_n_points then

max_n_points = program_point_counter[program_id];
end
synched_data[program_block][program_id].append(sensor_value);

end
return synched_data;

Figure 4. Raw data for the program 1543 and tool 6040 on the T5-1 machine.
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Figure 5. Raw data for the program 1543 and tool 6040 on the T5-1 machine for run 127.

2.5. Kernel Density Estimation

This section discusses how kernel density estimation (KDE) functions can be used
to automatically capture the pattern in historical runs, and exemplified by the runs in
Figure 4. Since CNC machine tools are highly repeatable machines [28], it is expected that
two runs of the same program should yield very similar results (i.e., be repeatable). For
such a repeatable processes, knowing the region in space where the data should be can be
used for monitoring purposes.

KDE is used to estimate the probability density of a dataset, in order to find where
most of the data is situated in a certain space. For this study, the “space” is the spindle load.

ρK(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(1)

Equation (1) [27] is the KDE function estimated by the points (x) in our dataset and
where ρ is the estimated probability density function, K is the kernel used for the estimation,
n is the number of points in the dataset and h is the bandwidth, which serves as a smoothing
parameter. To automate the bandwidth selection, the method proposed by Sheather and
Jones [29] was used.

Equation (2) represents a Gaussian kernel where u is the sample data for which it is
estimated.

K(u) =
1√
2π

e−
1
2 u2

(2)

Since the goal is to compare the current part production process with the known
normal behavior run of the same production program, we can use KDE on the measured
signals to estimate what values are the most probable. Computing an estimation of the
probability density function of spindle loads yields an idea regarding which values are
most commonly measured to test if the program run replicates the same behavior.

2.6. Normal Behavior Computation

To determine the normal behavior of a program, the KDE is computed on the spindle
load signal for bins of 3 s corresponding to the sampling rate of our data acquisition system
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(see Algorithm 2). This gives the region in space where the largest amount of data can be
found for each time bin, i.e., the density function of spindle load for each time bin. Figure 6
illustrates this density with a heat map where the color represents the density score for each
time bin (abscissa) and each spindle value (ordinate) computed on the 15 historical runs
shown in Figure 4. Figure 6’s color map goes from 0 to 1 because it was normalized with
respect to the maximum density score of each time bin (see Algorithm 3). In accordance
with Figure 4, the white region shows where the KDE computation estimates that the
density score is 0 and all of the colored region is where data were found. Furthermore,
the estimated density for each time bin and spindle load value gives an insight of what
represents a normal behavior of a machining program. The closer to 1 is the density score
for a spindle load value and time bin combination, the more it is considered normal.

Figure 6. Spindle load probability density estimation on time bins of 3 s for program 1543, tool 6040
and machine T5-1 represented as a heat map.

Algorithm 2: Computation of KDEs for each time bin
Input: data i.e., array containing all the synchronized historical sensor readings

for a sub program and tool combination
Result: kdes i.e., array of Kernel Density Estimation functions for each time bin of

the program
kdes = list;
for i, obj in enumerate(data) do

signals = list(obj.values());
kde = KernelDensity(k=“gaussian”).fit(signals);
kdes.append(kde);

end
return kdes;
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Algorithm 3: Heat map computation
Input: kdes i.e., Kernel Density Estimation functions computed for each time bin,

see Algorithm 2
Result: X i.e., matrix containing the normalized density estimation values for each

time bin of the program
X_estimation = np.linspace(0, 1, 1000)[:, np.newaxis ];
X = np.zeros((1000, max(len(data))));
for time in range(max(len(data))) do

X [:, time] = np.exp(kdes [time].score_samples(X_estimation));
/* Normalize time bin by the maximum value */
X [:, time] = X [:, time] / max(X [:, time]);

end
return X;

3. Results

With the visualization of Figure 6 extracted from Algorithm 2, monitoring of future
runs of the same sub-program and tool is possible. Indeed, KDEs enable us to compute
a score for a combination of time bin and spindle load value. If this score is near 1, that
means the probability of seeing this value is high, whereas if the score is near 0, then the
probability of seeing this value is low. A succession of unexpected values means there is a
problem with the machining program.

3.1. CNC Program Normal Behavior

The normal behavior computation of a part of a CNC program is given in Figure 7.
The light blue region shows the normal behavior area of the program and all the runs of
Figure 4 are shown on top. The more runs there are about the process, the more precise the
computation is, since the estimate of the underlying distribution given by the KDE will be
more accurate [27]. To extract the normal behavior, the data used to compute the model
must come from runs where the process was considered normal.

Figure 7. Program 1543 tool 6040 on machine T5-1 normal behavior extraction.

To extract the visualization presented in Figure 7, the result of Algorithm 3, a heat map
computation, was treated as probabilities and any value under 0.001 was removed to gen-



J. Manuf. Mater. Process. 2021, 5, 26 10 of 14

erate the blue region of Figure 7. This threshold was chosen based on the aforementioned
hypothesis that machine tools are highly repeatable. Thus, the score given by the kernel
density estimation and represented in Figure 6 by the density bar on the right represents
the normal state of the process and a threshold of 0.001 means 99.9% of the data is used to
construct the normal behavior region.

3.2. Scoring and Monitoring Machining Program Runs

The KDEs computed using Algorithm 2 can be used to give the average score of each
run of the machining program. To do this, Algorithm 4 was used on the spindle load
(signal) for each time bin (time), which gives the probability score of measuring a spindle
load for each time bin. The score is given by Table 2 and represents how far, on average, a
score is from the rest of the historical data for each bin. The score itself only gives an idea
of wether a run was close to the expected behavior. Examining this table shows that run
237 and 241, shown in bold, have the lowest score.

Algorithm 4: Average run score
Input: kdes i.e., Kernel Density Estimation functions computed for each time bin,

see Algorithm 2
Input: signal i.e., vector of signal measured in time
Result: average i.e., average of KDE score for this run (between 0 and 1)
average = 0 ;
for time in range(len(signal)) do

score = np.exp(kdes [time].score_samples(signal [time]));
score = score / normalization_factor [time] ;
average = average + score / len(data) ;

end
return average;

Table 2. Average scores for each run of the machining program.

Run Score (%)

69 68.37
73 74.47
89 51.89
93 73.47
127 63.26
131 59.03
135 80.28
186 77.47
190 80.13
194 56.44
233 80.00
237 47.52
241 45.34
320 63.22
324 63.93
328 73.30
354 68.85
356 77.91

As an experiment, run 237 and 241 where considered as anomalies and removed from
the computation of the normal behavior. A new model was computed and used to monitor
the machining process and found run 237 and 241 to be anomalous. To minimize the risk
of false positives, at least three consecutive values needed to be outside of the normal
behavior for the run to be detected as abnormal. Run 237 was found to be abnormal at
189 s of the run while run 241 was found to be abnormal at 303 s, see Figure 8. In fact,
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for run 237, five consecutive points were outside of the normal behavior range while six
consecutive points where outside of the normal behavior for run 241, which means that
our tolerance of three consecutive points could be augmented to five consecutive points if
those settings yield too many false positives in abnormal detection.

Figure 8. Normal behavior without run 237 and 241 and raw data on top.

4. Discussion

Using the probability distribution estimated with the KDE function, the probability of
a sensor’s data point acquired while in production being part of the estimated distribution
can be computed. To do this, we used the estimated probability density function to compute
the density score for the signal received and divided. If the score was above 0.001, the point
was deemed part of the normal behavior (99.9% of the historical runs of the machining
program). Graphically, this means that the data received will appear in the blue region
of Figure 7. The closer the score is to 1, the closer the point will appear near the colored
regions of Figure 6 and the more normal that point is for this point in time of this particular
machining program. If the series is outside of the blue region for an extended amount of
time, the probability of that machining process being abnormal is high. A variation of this
approach is being tested by our industrial partner and is described in Appendix A.

4.1. Limitations

To use KDE for monitoring, a historical database is needed. This is a limitation of this
method and a challenge for small- and medium-sized companies who may lack the means
to acquire and store such information about their production. For example, it is hard for
our industrial partner to store more than two months of data because of database storage
capacity.

Another limitation is that there is a minimum amount of data needed before this
method can be deemed accurate. The amount of historical run for accurate density es-
timation was not studied and may be discussed in another paper. Additionally, some
production processes are very noisy, and thus it is expected they would require more
historical data for accurate normal behavior computation.

4.2. Contributions

The main contributions of this research are two-fold.
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1. A methodology is presented to extract normal behavior from known good historical
runs of a CNC program that works for low sampling rate data; see Section 2.6.

2. The paper shows how the results can be used to monitor new runs of the same CNC
program and detect out-of-ordinary data points in real time; see Section 3.2.

In addition to the aforementioned contributions, the paper addresses the need for
synchronization of time-based data for accurate comparison and explains how it was
achieved in this study.

5. Conclusions

This research was carried out with the goal of monitoring the condition of machine
tools using spindle load signals acquired with low sampling rates. The chosen method
needed to be fast to compute, applicable on multimodal distributions and be able to reliably
model the underlying distribution of the dataset.

Kernel density estimation functions were used on historical data for signal distribution
estimation. A threshold for the normalized kernel density estimations was computed to
extract the region in space where the data are deemed normal.

For process monitoring on incoming data, kernel density estimation functions where
used to compute where in the density distribution are the data found, and using a defined
threshold of three data points outside of the normal region, the condition of the process
(normal or anomalous) was determined.

In the future, alternative approaches, such as unsupervised learning approaches,
principal component analysis, kernel principal component analysis or deep clustering
should be compared to this technique. This approach provides a new insight into what
is happening on the production floor, to detect abnormality and flag machined parts for
examination. Since most of this technique is automated, it relieves engineers of the burden
to choose threshold values for signals acquired on processes that may be too high or too
low since the normal behavior computed is automatic, dynamic and aims at representing
the data without human bias.
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Appendix A. Use Case

At our industrial partner we tested the normal behavior estimation to monitor the
manufacturing processes of titanium parts of their production line. Figure A1 shows the
graphical interface of the program developed for this purpose. The program monitors the
spindle load (blue line) as well as the maximum vibration of the machine (red dotted line).
The pale blue region of the upper part of Figure A1 is the region considered as normal
behavior while the blue line is the live spindle load of the current process. The red region
in the middle part of Figure A1 represents the maximum vibration. The green line, at
the bottom part of Figure A1 is a statistical z-test. The z-test was computed as a running
test over past and current data. The test was used to determine if the current spindle;
the blue line is part of the normal distribution (pale blue region). Since the z-test keeps
information from previously received data, it keeps a score near 1 as long as most of the
data are inside the blue region. One point out of the zone will not make it decrease instantly,
but if multiple points are outside the normal behavior region, then it will decrease. This
can be seen between sub-programs 3009 and 3011 in Figure A1. The spindle load fell below
the pale blue region and the green line started to decrease. This is an indicator that the
process might be faulty and that the part needs to be inspected. The goal of such a program
is to automatically detect whether the part production process is going as intended.

Figure A1. Testing the normal behavior monitoring of program behavior.
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