
Titre:
Title:

Automated identification of defect morphology and spatial 
distribution in woven composites

Auteurs:
Authors:

Anna Madra, Dan-Thuy Van-Pham, Minh-Tri Nguyen, Chanh-Nghiem 
Nguyen, Piotr Breitkopf, & François Trochu 

Date: 2020

Type: Article de revue / Article

Référence:
Citation:

Madra, A., Van-Pham, D.-T., Nguyen, M.-T., Nguyen, C.-N., Breitkopf, P., & Trochu, F.
(2020). Automated identification of defect morphology and spatial distribution in 
woven composites. Journal of Composites Science, 4(4), 178 (17 pages). 
https://doi.org/10.3390/jcs4040178

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9398/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Journal of Composites Science (vol. 4, no. 4) 

Maison d’édition:
Publisher:

MDPI

URL officiel:
Official URL:

https://doi.org/10.3390/jcs4040178

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.3390/jcs4040178
https://publications.polymtl.ca/9398/
https://doi.org/10.3390/jcs4040178


Article

Automated Identification of Defect Morphology and
Spatial Distribution in Woven Composites

Anna Madra 1 , Dan-Thuy Van-Pham 2 , Minh-Tri Nguyen 2, Chanh-Nghiem Nguyen 3 ,

Piotr Breitkopf 4 and François Trochu 5,*

1 Department of Civil and Environmental Engineering, The Pennsylvania State University,
212 Sackett Building, University Park, PA 16802, USA; annamadra@psu.edu

2 Department of Chemical Engineering, Can-Tho University, Campus II, 3/2 Street, Ninh Kieu District,
Can Tho City 900 000, Vietnam; vpdthuy@ctu.edu.vn (D.-T.V.-P.); nmtri@ctu.edu.vn (M.-T.N.)

3 Department of Automation Engineering, Can-Tho University, Campus II, 3/2 Street, Ninh Kieu District,
Can Tho City 900 000, Vietnam; ncnghiem@ctu.edu.vn

4 Laboratoire Roberval, FRE UTC-CNRS 2012, Université de Technologie de Compiègne,
Centre de Recherches de Royallieu, CEDEX 60203 Compiègne, France; piotr.breitkopf@utc.fr

5 Mechanical Engineering Department, Center of Research on Polymers and Composites (CREPEC),
École Polytechnique de Montréal, Montréal, QC H3C 3A7, Canada

* Correspondence: trochu@polymtl.ca

Received: 12 October 2020; Accepted: 20 November 2020; Published: 27 November 2020 ����������
�������

Abstract: The performance of heterogeneous materials, for example, woven composites, does not
always reach the predicted theoretical potential. This is caused by defects, such as residual voids
introduced during the manufacturing process. A machine learning-based methodology is proposed
to determine the morphology and spatial distribution of defects in composites based on X-ray
microtomographic scans of the microstructure. A concept of defect "genome" is introduced as an
indicator of the overall state of defects in the material, enabling a quick comparison of specimens
manufactured under different conditions. The approach is illustrated for thermoplastic composites
with unidirectional banana fiber reinforcement.

Keywords: polymer-matrix composites (PMCs); porosity/voids; X-ray microtomography

1. Introduction

Compared to conventional materials, composites often require complex processes to manufacture.
The multitude of parameters makes it harder to optimize manufacture and reach the theoretical
potential of material performance. In effect, the microstructure of composites consists not only of
the matrix and the reinforcement but also includes residual air, mainly in the form of voids and
delaminations. The presence of these defects can significantly influence mechanical performance and
failure behavior of materials. In [1], large voids were observed to be the origins of crack formation,
while smaller voids distributed through the laminate coalesced and caused the failure at lower applied
stress than the nominal strength. These two stages are summarized in [2] as the non-interactive and
interactive. The non-interactive stage consists of crack initiation at the largest defects, most favorable
in orientation and shape; i.e., is more dependent on the specific defect morphology. The interactive
stage, leading to ultimate failure, was more concerned with the distribution of voids rather than
their individual shapes and sizes. The Finite Element Method (FEM) study in [3] explored further
the influence of defect distribution, showing that distance between voids and the crack tip has a
significant influence on fracture toughness of the material, outweighing the impact of larger voids,
located further away from the crack. Similarly, [4] showed that both location—closer to the particulate
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reinforcement and aligned with loading direction—and shape of defects—elongated—negatively
influenced mechanical performance of Metal Matrix Composites. Experimental evidence relating
changes in mechanical performance to particular morphology and distribution of defects has been
provided by [5–7]. In [8], Teflon layers were used to force the creation of delaminations that lowered
compressive and tensile strength. The study included defects of varying width-to-length ratios and
showed changes in failure mode depending on this parameter.

The study in [8] is a good example of an attempt to establish a relationship between mechanical
performance, defect morphology, and specific manufacturing parameters. As described in [2],
defect—void—formation in Resin Transfer Molding can be controlled with vacuum pressure,
resin viscosity, cure temperature, and consolidation pressure. Depending on these parameters,
voids can appear between composite layers, inside the layers, or in both locations. However,
some aspects of the process, such as removing the air before consolidation, though effective at reducing
the air volume trapped inside the composite, are costly. The standard procedure for the analysis
of defects in ASTM D 3171 [9] measures bulk content of phases in composite materials but does
not provide data on morphology nor distribution of defects. As evidenced, rather than the bulk
volume, the voids’ spatio-morphological characteristics are crucial to failure behavior, especially for
the aerospace-grade high-performance composites.

Methods relying on 2D imaging, such as optical microscopy and Scanning Electron Microscopy
(SEM), lead to more insights into the morphology and distribution of defects. In [1], void content,
cross-section area, radius of curvature, and maximum dimensions were determined from optical
micrographs processed with image analysis software. The study showed lower shear strength for RTM
composites with voids of lower radii of curvature, which led to higher stress concentrations. In [10],
E-glass epoxy composite was also studied using optical microscopy, with measurements of the area,
largest length of voids, and derived features: equivalent diameter and shape ratio. Based on these
values, voids were classified into small, medium, and large, with either non-convex or regular shapes.
While accessible, the 2D imaging studies are destructive, limiting their applicability, especially when
establishing relationships between defects in the material prior to and after loading. Also, they are
time-consuming, difficult to process automatically due to intensity variations; and mostly restricted to
the planar characteristics of defects.

The alternative is 3D imaging, e.g., X-ray micro-CT that provides a non-destructive view of
the volume of material at resolutions reaching less than a micrometer, allowing detection of defects
as small as the preexisting cracks and microvoids. A study in [11] made use of X-ray micro-CT
measured defect volume to identify damage mechanisms in CFRP laminate after low-velocity impact.
The work [7] studied the void volume measured on X-ray microtomographic scans of glass fiber
reinforced polymer composite used for wind turbine blades. No connection was observed between the
global volume of voids and fatigue behavior, but a significant correlation was found between crack
formation and large volume voids. In [12], an approach was proposed to identify automatically and
classify defects in polymeric composites after water-jet cutting. The methodology relies on applying
the wavelet transform to extract information about the size, orientation, and location of defects,
followed by a classification based on geometric features. Despite the originality of this approach,
the information retrieved served mostly to identify pre-determined classes of defects rather than to
explore their morphological types. In [5] the complex geometry of individual pores retrieved from
X-ray microtomographic scans of carbon/carbon composites has been used to study their impact
on the elastic modulus. The authors of [13] went further by exploring the impact of selected pore
conglomerates on the mechanical properties of a unidirectional carbon fiber epoxy composite. In both
cases, the selection of pores and clusters was made manually based on an arbitrary choice of the
operator, hence limiting the scope of the analyzed geometry.

The introduction of arbitrary criteria is present in other aspects of tomographic analysis.
For example, in [13], the pores in a unidirectional carbon fiber reinforced polymer are divided into
three groups based on volume. The threshold values for each group are selected arbitrarily by the
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user. Another type of defects, microcracks, and delamination due to fatigue damage in carbon-epoxy
laminate were identified by setting arbitrary thresholds during the X-ray micro-CT scan segmentation.
Similarly, arbitrary criteria have been used in [14,15] to observe the distribution of defects by looking
at defect volume in layers of constant thickness. In both cases, the use of arbitrary criteria brings
two major drawbacks in the analysis. Firstly, it is less probable that such classification will comply
with the “natural” categories of a subdivision, as suggested by Friedman in [16] in his mathematical
analysis of clustering. Secondly, the use of arbitrary division may induce skew if new data is added to
the analysis.

In the present work, we propose a solution to this problem based on a range of clustering
algorithms. Various clustering methods have already found their place in data segmentation in the
medical field [17,18]. In composites, they are predominantly used to identify damage mechanisms
from the results of Acoustic Emission tests [19–21]. Their application to the study of microstructure
morphology is scarce. In a previous publication [22], we have proposed a clustering method to identify
morphological types of natural fibers and determine the extent of fiber damage introduced during
manufacture. The approach presented was general but limited to the morphological analysis of only
one specimen. Here, we would like to extend this methodology by developing features to describe the
spatial distribution of defects within a specimen. This approach simplifies the process of quantitative
analysis of defects by combining a reduced-order representation of defects, based on the classification
of morphological features and then using this representation to determine regions in the specimen
or entire specimens with similar spatio-morphological characteristics, characterized by the proposed
higher-order feature: “defect genome”.

The structure of the article stands as follows: we begin by describing the experimental procedure
of specimen manufacture and X-ray micro-CT scans, image processing, and mesh reconstruction.
From the 3D mesh, we extract geometric features and identify morphological types of defects. Then we
propose spatial descriptors and show how hierarchical clustering can be used to identify conglomerates
of defects within the specimen. Finally, based on this morphological and spatial classification, a defect
“genome” is proposed. To illustrate this methodology, we chose a unidirectional banana fiber-reinforced
thermoplastic composite, which is highly susceptible to manufacturing conditions. Thus, even with a
reduced sample size, it offers a wide range of observable defects.

2. Materials and Methods

2.1. Material

The material in this study is a thermoplastic composite reinforced with unidirectional banana
fibers. The fibers were extracted from the chopped stems of the banana that were subjected to retting
(Figure 1) at the Department of Chemical Engineering, Can-Tho University, Vietnam [23]. The fibers
were then dried and compacted with acrylonitrile butadiene styrene (ABS) thermoplastic films in a
column-type compression molding machine from Pan Stone Hydraulics Indus. Co. Ltd. (Taichung
Hsien, China). The intended weight fraction of fibers was 40%. Seven specimens were manufactured
for different compression time, temperature, and pressure (Table 1). Three of the specimens (a3, a4, a5)
were manufactured with the same parameters to determine the process variability. Other specimens
served for exploratory analysis. The samples for X-ray microtomography were cut out from the
central part of the specimens with nominal dimensions 8 × 12 × 30 mm3. These dimensions were
selected to measure the largest volume of material possible while maintaining a resolution of ∼20 µm,
permitting observation of defects in the material, including cracks.
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Figure 1. Extraction of fibers from the banana plant and the final composite laminate.

Table 1. Manufacturing conditions of the analyzed specimens.

Specimen Time [min] Temperature [◦C] Pressure [kg/cm2]

a1 10 150 100
a2 10 160 100
a3 15 170 100
a4 15 170 100
a5 15 170 100
a6 20 170 75
a7 20 170 125

2.2. X-ray Microtomography

The specimens were scanned at the Kyoto Institute of Technology, in Kyoto, Japan on a
FLEX-M863-CT laboratory-scale X-ray microtomograph from Beamsense Co. Ltd. (Osaka, Japan).
The acceleration voltage of 117 kV was used for the scans. A similar resolution was selected for
each specimen (Table 2) to provide consistent results during image processing. The reconstruction
of tomograms was done with the BeamsenseCT Ver. 1.5 software from Kyoto Institute of
Technology. The speckle artifacts and illumination fluctuations were removed by software correction.
The reconstructed tomograms were stored as stacks of 1500 two-dimensional images of 1000 × 1000
pixel in size. Each tomogram image represented the coefficient of X-ray attenuation µ using values
from the 16-bit grayscale spectrum (Figure 2a).

(a) Untreated tomogram (b) µ and convolution-based segmentation

Figure 2. X-ray tomogram (a) untreated; (b) after µ and convolution-based segmentation.
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Table 2. Scan resolution of imaged specimens.

Name a1 a2 a3 a4 a5 a6 a7

resolution [µm] 21.76 22.43 23.49 23.07 22.88 23.04 23.36

The rest of the image processing was performed with a custom Python 3.7 software following the
procedure developed by the authors in [22]. The tomograms were segmented automatically based on
criteria determined by a k-means algorithm with manually adjusted cluster origins. The segmentation
yielded a partition of voxels into three subsets corresponding to air, polymer matrix, and fibers
(Figure 2b). Note, that the air fully encompasses the specimen (Figure A1a). The cracks reaching
the specimen’s surface were thus merged with the geometry of the air surrounding the specimen.
To isolate these cracks, a masking algorithm was developed, further described in Appendix A.

2.3. Mesh Reconstruction

The 3D surface mesh of each phase in the material has been extracted from segmented tomograms
with the marching cubes algorithm described in [24,25]. A view of the reconstructed geometry of
fibers and polymer matrix is shown in Figure 3a. This study focuses on the mesh corresponding to
defects (Figure 3b).

(a) Fibers (green) and polymer (translucent blue) (b) Defects

Figure 3. 3D reconstruction of phase geometry for specimen a6: (a) fibers and polymer; (b) defect
phase only. A detail of the reconstructed 3D surface mesh is also shown here. (For references to color,
please refer to the on-line version of this paper.)

3. Characterization of Defects

The geometry and spatial distribution of defects can be characterized by extracting features
from the generated surface mesh. To achieve this, we propose a methodology divided into the
following three main parts: characterization of the morphology of defects, identification of spatial
clusters, and definition of higher-order features. While the extraction of lower-order features gives a
quantitative overview of the microstructure, their interpretation can be challenging, especially when the
number of features becomes large. By combining lower-order features into a higher-order one, a more
succinct characterization becomes possible, with one feature codifying an array of co-existing features.
The defect genome introduced in Section 3.4 is such a higher-order feature, enabling comparisons
between the type and distribution of combined defects in different parts of a particular specimen,
or between different specimens.

3.1. Geometric Features

Each phase object was characterized following the procedure described in [22]. The following
geometric features were measured:
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• surface S,
• volume V,
• sphericity S,
• box dimensions b1, b2, b3,
• aspect ratio AR = min(b1,b2,b3)

max(b1,b2,b3)
.

The box dimensions of a defect are the dimensions of the smallest rectangular box encompassing
its geometry (Figure 4), where the orientation of the box matches the principal axes of inertia of the
defect. The dimensions are ordered from the largest to the smallest and can be interpreted as length,
width, and thickness of the object, but to avoid confusion with the geometric descriptors defined
in [22], we will keep referring to them as box dimensions b1, b2, and b3. This geometric descriptor
replaces the diameter and length measured for fibers, as the geometry of observed defects was too
complex for these measurements to be unambiguous. The aspect ratio AR is the ratio of the first (b1) to
the average of the two other box dimensions. Sphericity is a geometric feature used to characterize the
complexity of an object independently of its size [7,26]. It is defined as

S =
6π

1
2 V

S
3
2

. (1)

The sphericity of a sphere is equal to 1 with decreasing values implying an elongation or flattening
of a geometry. Prior to classification, the features are centered and normalized in the 0–1 range. Each set
of measurements is labeled with a unique name to retain a connection to the original defect.

Figure 4. Definition of box dimensions.

3.2. Morphological Classes

The set of geometric features of a defect is a descriptor of its morphology. Based on the variability
of features for all defects, morphological classes can be automatically identified following [22].
A hierarchical agglomerative clustering algorithm is used to find clusters of objects that are close to each
other in the n-dimensional space of the n geometric features considered. The clusters are determined
hierarchically, i.e., the Euclidean n-dimensional distances between objects are measured in each step of
the algorithm, and then those objects and clusters closest to each other are grouped. The algorithm
continues until all objects form one single cluster. The information about cluster membership is
retained, and all intermediary steps can be explored on a dendrogram graph. The choice of a threshold
distance dt, which is the maximal distance between objects (or clusters) for a grouping to occur,
determines the final division into classes.

The selection of dt is an open problem in classification. It can be chosen manually or set to
an arbitrary value. The groups determined with the clustering algorithm correspond to the defects
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which have similar geometric parameters, i.e., a comparable morphology. The smaller the value of dt,
the more similar are the objects in a class. Here, we use Davies-Bouldin index [27]

DB =
1
k

k

∑
i=1

maxi 6=k

{

ei + eh

dih

}

, (2)

where ei is the average Euclidean feature distance of the objects in class i to the centroid of class i,
and dih is the distance between the clusters i and h. Smaller values of DB indicate compact clusters,
far from each other in the feature space, indicating significant differences in defect morphology.

3.3. Spatial Features and Conglomerates

The spatial distribution of defects can be analyzed qualitatively by plotting their positions as a
function of their distance from a selected point of reference. This could be a distance from the mold
inlet/outlet, or a position relative to the top surface of the manufactured part. We will characterize the
position of a defect by determining the coordinates of its centroid c = {xc, yc, zc} where

xc =
1
M

M

∑
i=1

xi, yc =
1
M

M

∑
i=1

yi, zc =
1
M

M

∑
i=1

zi, (3)

where xi, yi, zi are the coordinates of M nodes making up the surface mesh of a given defect. If we
consider the values of xc, yc and zc as spatial features, then a classification can be performed with
the same hierarchical clustering algorithm that was used to identify morphological types. While the
clustering of geometric features informs about the different morphologies of defects, the clustering of
spatial features identifies conglomerates of defects within the specimen. The threshold distance dt now
has a physical interpretation of the maximal distance between the centroids of defects for them to be
considered a part of the same spatial group. In other words, all defects whose centroids are within a dt

distance from each other belong to the same group, further referred to as the “conglomerate”.

3.4. Defect Genome

The preceding sections have provided methods to group the defects of similar morphology or
located in the same region of the specimen. These two types of information can be combined into a
higher-order feature to identify conglomerates with a similar morphological buildup. We propose
a defect “genome” which represents the relative volume percentage of each type of defect in a
conglomerate. The genome G is a tuple of length P, equal to the number of all identified morphological
classes mp, p = 1, . . . , P

G = [V∗
m1

, V∗
m2

, . . . , V∗
mp

, . . . , V∗
mP

] (4)

where V∗
mp

is a relative volume of all defects belonging to a class mp in reference to the total volume
of all defects. If we index the set of defects in a conglomerate h by I and the defects belonging to the
morphology class mp by J, then

V∗
mp

=

∑
k∈I∩J

vk

∑
k∈I

vk
=

volume of all defects of class mp in conglomerate h

volume of all defects in conglomerate h
(5)

where vk is the volume of a given defect. Vector G can be evaluated for the entire specimen, informing
us about the volume contribution of each type of defect and thus enabling fast comparisons of the state
of defects between specimens or between regions of interest in a single specimen. For example, if a
conglomerate contains a crack, its complexity can be evaluated by checking the volume fraction of
accompanying defects, usually the elements of a larger fracture that appear disconnected at higher
scan resolutions.
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4. Results and Discussion

The proposed methodology of defect characterization has been applied to specimens a1–a7
described in Section 2.1. The results of each step of the treatment are discussed in the sections below.

4.1. Phase Composition

The intended weight fraction of fibers was 40% for all specimens. The density of composite
constituents was measured giving 1.35 g

cm3 for banana fibers and 1.03 g
cm3 for ABS. Thus, the intended

fiber volume fraction was 33.7%. The phase volume fractions of fibers, polymer, and air for all
specimens obtained from the X-ray microtomographic study are shown in Figure 5. The average fiber
volume fraction was of 26.6 ± 3.0% relative to all phases in the material, and 27.4 ± 3.4% in relation to
the polymeric matrix only. The discrepancy between this average value and the intended one may be
explained by the small size of the examined specimens, where local variability could cause substantial
deviations. This is evident for specimen a2, which contains one ply of reinforcement less than the
other specimens.

Figure 5. Relative phase volume fractions determined from segmented tomograms of specimens
a1 to a7.

The volume percentage of defects has shown considerable variation. Specimen a1 processed
at the lowest temperature of 150 ◦C had as much as 7% residual air. A probable cause of bad
impregnation is the high viscosity at this temperature, that decreased polymer mobility, and thus
the fibrous reinforcement was not wholly impregnated. Specimens a6 and a7 were processed for the
longest time, namely 20 min, resulting in 4 and 3% of voids, respectively. It is possible that a high
temperature combined with a long compression time may have resulted in the expansion of volatiles
from degrading fibers. The rest of the specimens were fabricated in similar conditions, but with a
shorter time, so the variations in the measured void content were less pronounced, with an average
of 1%.

4.2. Defect Morphology

The reconstruction of the air phase yielded meshes with the parameters described in Table 3.
From the initial set of 75 thousand objects, 10 thousand were removed on account of noise and
reconstruction artifacts. The geometric features were extracted and analyzed from the remaining set of
65 thousand defects.
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Table 3. Comparison of memory requirements and parameters of the surface meshes of defects
identified in different specimens. The size of the voxel file was 3 GB for each specimen.

Specimen Mesh Size [MB] No. of Objects No. of Nodes No. of Triangles

a1 321 15,148 2.58·106 5.11·106

a2 156 21,779 2.16·106 4.25·106

a3 88 10,134 0.88·106 1.72·106

a4 43 6506 0.62·106 1.22·106

a5 30 2671 0.37·106 0.72·106

a6 126 4527 1.74·106 3.46·106

a7 163 13,873 2.23·106 4.41·106

Graphs in Figure 6 show mean values of the surface, volume, sphericity, and aspect ratio for all
the defects in the specimens, compared to the average values for all the characterized defects. On the
graphs showing the average surface (Figure 6a) and volume (Figure 6b), the values for specimen a6
are distinctly larger than for all the other studied materials. Such a difference indicates the domination
of a distinct type of defect. Low sphericity and high aspect ratio of defects in specimen a6 appear to
support this hypothesis.

(a) Surface S (b) Volume V

(c) Sphericity S (d) Aspect ratio AR

Figure 6. Comparison of the mean values of the geometric features of defects in specimens a1–a7:
(a) Surface S; (b) Volume V; (c) Sphericity S; (d) Aspect ratio AR. The mean values for all the
characterized defects are also included for reference.

The average size of defects is comparable in specimens a2, a3, and a4, occupying the lower
end of the spectrum. The average sphericity and aspect ratio of defects did not vary significantly,
which disqualifies them as descriptors of the manufacturing process.

The identification of morphological classes was performed on the geometric features of defects
from all specimens. This ensured consistency during the comparison of morphological types.
The dendrogram in Figure 7 shows seven clusters, determined at a threshold distance dt = 6.3.
An example of 3D visualization of defects in specimen a6 with their classes is shown in Figure 8.
Some defects in this specimen belong to class #5, i.e., represent cracks. Figure 9 shows an overview of
all the types of defect morphology. We see that the representative defect of class #5 is larger than those
of all the other classes. The characteristic morphology of the elongated voids of class #4 represents
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resin deficiency in the spaces between fibers. Classes #1 and #2 are microvoids, although the small
dimensions of class #2 may almost qualify as noise. Classes #3 and #7 have a very similar morphology
of slightly elongated air bubbles. Finally, the defects in class #6 exhibit a complex geometry, unlike that
of voids or air bubbles. Their proximity to cracks indicates that they may be part of the damage,
although scans at a higher resolution would be necessary to confirm this hypothesis.

Figure 7. Dendrogram of hierarchical clustering of the geometric features of defects. The threshold
distance dt is marked by a dotted line.

Figure 8. Three-dimensional visualization of defects in specimen a6 with the seven morphological
classes indicated.



J. Compos. Sci. 2020, 4, 178 11 of 17

(a) Class #2 (b) Class #1 (c) Class #3

(d) Class #7 (e) Class #6 (f) Class #4

(g) Class #5

Figure 9. Representative defect morphology from all classes ordered by size. Note that the scale differs
between classes.

4.3. Defect Conglomerates

The hierarchical clustering operation was performed for the unscaled centroid coordinates
of defects, separately for each specimen. The same threshold distance dt was used to identify
conglomerates of the same size. An example of the results for specimen a3 is shown in Figure 10,
where eight large conglomerates were identified. Conglomerate #1 (Figure 11a), in particular, contains a
large crack and the accompanying defects, mostly from classes #4 (elongated voids between fibers) and
#5 (voids with complex geometry) as observed in Figure 11b. Some defects in the conglomerate are
further away from the main crack due to a large value of dt, indicating a loose structure. Smaller values
of dt would cause the identification of a greater number of more compact conglomerates.
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Figure 10. Conglomerates identified in specimen a3.

(a) Conglomerate #1 (b) Conglomerate #1 with indicated morphological
types

Figure 11. Conglomerate #1 in specimen a3: (a) overall view of the conglomerate; (b) conglomerate
with the morphological types indicated.

4.4. Defect Genomes

The defect genome has been evaluated at two scales. Firstly, at the specimen’s scale this allows
comparing the overall morphological composition (Figure 12). All of the specimens contained cracks
that contributed to at least one third (specimen a5) up to over 90% (specimen a6) of the total volume of
the air phase. Apart from specimens a5 and a6, the other defect genomes were similar.

More variability was captured by exploring genomes of conglomerates identified in individual
specimens (Figure 13). In particular, conglomerates consisting of large cracks are automatically
discernible, such as clusters 7 and 8 in specimen a1 (Figure 13a), 7 in a2 (Figure 13b), 1 in a3 (Figure 13c),
3 in a6 (Figure 13f) and 7 in a7 (Figure 13g). The percentage of morphological classes #4 and #6 gives
a further indication if the crack is complex and discontinuous or consists largely of a single entity.
Particularly interesting is the case of specimen a1 (Figure 13a) that had the highest volume fraction of
the air phase at 7%. Multiple complex cracks with a large percentage of elongated voids between the
fibers (class #4) have been observed. This is the specimen treated at the lowest temperature of 150 ◦C.
We have speculated in Section 4.1 that the high volume fraction of air could be the result of the lack of
impregnation of the fibers. Specimen a2 shows a similar defect profile (Figure 13b) at a processing
temperature of 160 ◦C. The low percentage of residual air in this specimen is related to the very small
fraction of observed fibers. From all of the specimens, only a3 (Figure 13c), a4 (Figure 13d) and a5
(Figure 13e) manufactured under the same conditions showed a substantial percentage of microvoids.
Coupled with the low volume fraction of residual air, they seem to be manufactured with the best
choice of parameters, although further validation is needed to support this claim.
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Figure 12. Comparison of defect genomes of specimens a1 to a7. The relative volume fractions of
defects are calculated with respect to the volume of all defects in the specimen. The total volume
percentage of the defect phase in the specimen is shown on the right.

(a) a1 (b) a2

(c) a3 (d) a4

(e) a5 (f) a6

(g) a7

Figure 13. Genomes of defect conglomerates within individual specimens a1 to a7.
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5. Conclusions

We have presented an automated approach to identify the morphological types and spatial
conglomerates of defects from X-ray microtomographic scans of composites with fibrous reinforcement.
The use of hierarchical clustering algorithms enabled the comparison of multiple geometric parameters
of defects, which are otherwise difficult to ascertain, given the complexity of defect geometry.
By applying clustering to both geometric and spatial features of defects, the morphological type
and grouping of defects were determined. This information was then used to compute a defect
“genome”. This indicator was proposed to rapidly compare the morphological composition of
defect conglomerates. The defect genome can be computed for different regions of interest within a
specimen to assess the physical phenomena associated with given process parameters. Alternatively,
when computed for several specimens, it can help in identifying defects associated with different
manufacturing conditions. Note that the purpose of this work was to demonstrate the feasibility of the
methodology. Claims about the influence of manufacturing parameters require a further study that
can now be realized using the proposed automated characterization. In particular, the importance of
each feature as a morphological descriptor, as well as their cross-correlation will be a subject of a wider
study to establish weighing factors for specific materials and manufacturing methods. The presented
methodology is general and could also be employed to analyze X-ray microtomographic scans of
other materials, for example, of in situ scans of tensile testing to identify the origins and evolution of
damage mechanisms.

The major drawback of the presented approach lies in the performance of the hierarchical
clustering algorithm, which required 12 GB of random-access memory (RAM) for the processed dataset.
Although the time of execution was limited to 56 s on the 8 × 2.80 GH CPU Intel® Core™ i7-7700HQ
processors, the memory requirement increases quadratically (O(N2)), which poses problems for
non-sparse, complete-linkage datasets. Apart from program optimization, future work will include
developing new spatial descriptors, as the centroid feature tends to detect conglomerates only around
defects of larger volume. A careful study of the impact of the choice of distance threshold dt must also
be considered for more extensive analysis.
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Appendix A

The majority of currently available laboratory X-ray microtomographs require the specimen to
remain entirely within the field of view during the scan, i.e., for its maximal diameter to be smaller than
the width of the CCD camera (it can extend beyond its height though). The reason for this limitation is
to eliminate errors during the reconstruction. For this technical reason, the resulting scan contains the
air around the specimen (Figure A1a), which during mesh reconstruction remains connected with the
cracks reaching the surface. To analyze them as separate entities, we propose a masking algorithm
(Algorithm A1) that performs binary operations on the segmented scan to separate the defects inside
the specimen from the outside air.
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Algorithm A1: Processing of segmented tomograms to separate defects from the air
around the specimen.

Input : Segmented tomogram (air phase only)
Output: Two-dimensional image with defects and eliminated outside air

copy tomogram as mask;
fill holes in mask;
dilate mask;
fill holes in mask;
erode mask;
get tomogram XOR mask as de f ects;
median filter (2 px kernel) on de f ects;
return de f ects;

The algorithm creates a copy of the segmented tomogram, which is then subject to a sequence of
binary operations [28] of hole filling, dilation, and erosion. The result is a mask, which is a silhouette
of the specimen, including the cracks. By performing an XOR (“exclusive or” binary operation) on the
original segmented tomogram and the mask, a new image is created that contains only the defects
inside the silhouette (Figure A1b). This image is then used to calculate the volume fraction of the
residual voids and cracks, and reconstruct the surface mesh of individual defects.

(a) Air phase (b) Defects

Figure A1. Segmented X-ray tomogram showing (a) air phase; (b) isolated defects after masking.
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