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Abstract: The synthesis and assembly of nanoparticles using green technology has been an excellent
option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free,
and amenable to scaling up. They also do not require sophisticated equipment nor well-trained
professionals. Bionanotechnology involves various biological systems as suitable nanofactories,
including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrica-
tion approaches have shown great potential to interconnect microbial or plant extract biotechnology
and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid
nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorgan-
isms, such as bacteria and fungi, and plants’ extracts. It also discusses the methodologies followed
by materials scientists and highlights the impact of the experimental sets on the outcomes and
shed light on the underlying mechanisms. Moreover, it features the unique properties displayed
by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture,
bioengineering, and bioremediation.

Keywords: SeNPs; TeNPs; nanofactories; biosynthesis; biomass; mechanistic aspects; bioactivity;
bioapplications; sustainability

1. Introduction

Nanotechnology has become one of the most promising interdisciplinary technologies,
connecting physics, chemistry, biology, materials science, electronics, and medicine [1].
The quantity of engineered nanoparticles (NPs) is expected to increase significantly in the
years to come as they receive growing global attention due to their attractive properties,
multifunctionalities, unique characteristics, and innovative applications in different in-
dustrial and scientific domains [2–6]. Several physical and chemical methods have been
extensively explored to fabricate NPs, such as laser ablation [7,8], coprecipitation [9,10],
hydrothermal route [11,12], solvothermal route [13,14], sol-gel process [15,16], polyol pro-
cess [17,18], electrochemical methods [19,20], sonochemistry [21,22], and microwave-
assisted methods [23,24]. However, the use of toxic chemicals and/or the generation
of harmful byproducts limit their application in clinical fields. Thus, materials scientists
rely on a plethora of precursors and reducing/stabilizing agents from biological resources
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to produce environmentally friendly NPs to lower or eliminate the use and generation
of hazardous chemicals [25–27]. Such biosystems include natural biomolecules [28–31],
plants [32–34], algae [35–40], bacteria [41,42], yeast and fungi [43,44]; these biological en-
tities exhibit high reductive capacities due to the presence of enzymes, proteins, lipids,
sugars, and metabolites. Overall, the biological-mediated synthesis of metallic and metal-
loid nanoparticles is a single-step, bioreductive process that follows a bottom-up approach
and involves the reduction of metal ions dissolved usually in aqueous solutions at room or
mild temperature and atmospheric pressure [33,45,46].

Nanoparticles have remarkable advantages over bulk materials, such as a larger sur-
face area, higher surface energy, spatial confinement and reduced imperfections [47]. Their
features, such as the size, morphology, chemical composition, surface functionality, and
crystallinity, play an important role in determining their potential applications in numerous
fields, such as biomedicine, nanobiotechnology, agriculture, pharmacology, optoelectronics,
etc. [48–50]. Over the past few years, selenium and tellurium have become chalcogenides
of great interest owing to their unique photoconductive and thermoconductive proper-
ties [51]. They are known as “E-tech” elements with characteristics similar to that of sulfur
and are fundamental constituents of photovoltaic solar panels, electronic devices, and
alloys [51,52].

Selenium is an essential trace element for life [53,54]. It is an allotropic nonmetal
usually red and grey present in nature under three forms: amorphous, crystalline trigonal
with helical chains, and crystalline monoclinic (α, β, γ) with Se8 rings [6]. The synthesis
of selenium nanoparticles (SeNPs) by microorganisms and plants induces variations in
their crystallinity, morphology, and size due to the diversity of the followed biological
methodologies, reducing enzymes and biosurfactants [55]. Although some investigations
have reported the biosynthesis of SeNPs under aerobic and anaerobic conditions, aero-
bic microorganisms have generated the ideal outcomes [56]. The process typically reduces
selenite (Se(IV)) or selenate (Se(VI)) species into elemental selenium (Se(0)). Se-based nano-
materials exhibit chemotherapeutic and chemopreventive features, antioxidant properties,
low cytotoxicity, and anticancer efficacy, making them a useful tool in nanomedicine [57,58].
They also have a strong, dose-dependent antimicrobial effect on various microorganisms’
growth and propagation [56].

Tellurium is a metalloid present in nature as a soluble oxyanion under four oxidation
states: −2 (H2Te), +2 (TeO2

2−), +4 (TeO3
2−), and +6 (TeO4

2−). It can be toxic in very low
concentrations (1 µg mL−1) [59]. Recently, the conversion of tellurite to black elemental
tellurium including extra/intracellular accumulation, volatilization, and methylation,
has piqued the interest of researchers [60]. Tellurium nanoparticles (TeNPs) have become of
interest in research and industry due to their excellent biocompatibility [61], antimicrobial,
antioxidant and anticancer activity [62,63], and their ability to reduce cholesterol and
triglyceride levels [64]. The high efficiency of microorganisms to transform metalloid
oxyanions to less toxic elemental forms results in toxicity reduction and increased selenium
and tellurium bioavailability [65]. Moreover, the same microorganisms provide exceptional
bioremediation tools and technological applications due to their ability to biorecover
the cations of these metalloids and promote the subsequent production of Se and Te
nanomaterials [51,66–70]. The principal applications of biogenic SeNPs and TeNPs are
summarized in Figure 1.
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Figure 1. Applications of selenium nanoparticles (SeNPs) and tellurium nanoparticles (TeNPs).

The present review aims at providing a comprehensive insight upon the emerging
routes implemented for the biosynthesis of SeNPs and TeNPs using various microorgan-
isms and plants via different methodologies. It also elaborates on the underlying mecha-
nisms that govern these bioprocesses, describes the unique biological properties of these
metalloids’ nanomaterials, and discusses their diverse applications in the biomedical field.

2. Green Synthesis of Inorganic Nanoparticles Using Microorganisms

The holy grail in nanotechnology consists in elaborating cost-effective and environ-
mentally friendly approaches for the synthesis of nanomaterials that modulate their size,
morphology, assembly, and colloidal stability [71]. The biosynthesis of inorganic nanopar-
ticles is generally implemented in aqueous media at room temperature or mild heating
and atmospheric pressure [26]. Those are simple conditions that engage the production
of high-quality nanomaterials. In that sense, these NP biosynthetic methods that rely
on microorganisms, such as bacteria, fungi, microalgae, yeast and viruses, and plants
are fully eco-friendly approaches [42]. These microbial and plant-assisted methodologies
provide easy, inexpensive, and nontoxic routes to yield NPs that exhibit a diversity of sizes,
shapes, and composition along with unique physicochemical attributes and outstanding
biological properties.

Nature has devised several reliable, cost-effective, nontoxic, clean, and ecofriendly
biological techniques to produce SeNPs and TeNPs [72,73]. Green nanotechnology employs
natural biological resources, such as bacteria, fungi, yeast, algae, plants, and viruses, and,
most often, water as the solvent. To achieve the fabrication of monodispersed, highly
stable NPs with a desired size and controlled morphology, the biomolecular machinery
availability is needed [74]. The main benefit is that microorganisms are effective tools that
act as nanofactories avoiding thus the use of and/or generation of harsh, toxic chemicals.
They also have the ability to accumulate and detoxify heavy metals due to various reductase
enzymes that reduce metal salts to metallic nanoparticles with a narrow size distribution
and, therefore, less polydispersity [75,76]. Biological processes usually occur at mild
conditions, i.e., ambient temperature and atmospheric pressure, and do not require skilled
professionals nor sophisticated equipment making them amenable to controlled and scale-
up procedures [74]. However, they also present some limitations related to NP composition,
crystallinity, morphology, and size distribution.

Recently, the extra- and intra-cellular microbial production of metallic/metalloid NPs
have been studied [27,33,41,43–45,77–79]. In extracellular formation, the added metal salts
are transformed into NPs in the culture broth or attached to the cell membrane. Conversely,
the intracellular process first transports the metal ions through the cell membrane, i.e., in-
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ternalization, to the cell interior where the nanoparticles are formed. Then, these internally
formed NPs are released to the supernatant using several procedures, such as the cell lysis,
to be recovered and purified [72,74,80]. The following sections describe the outstanding
role played by different microorganisms, namely bacteria, fungi and yeast, and plants in
the biosynthesis of SeNPs and TeNPs.

3. Parameters Affecting the Green Synthesis of Metalloid Nanoparticles

Various factors, such as the precursor, biomass type, temperature, pH, and reaction
time, govern the production and stabilization of SeNPs and TeNPs by microorganisms.
The pH is an important factor that determines the shape, size, and composition of the
NPs [80,81]. For instance, Wu et al. reported the formation, at pH 8, of effectively dispersed
spherical SeNPs of 60 nm in diameter in epigallocatechin-3-gallate (EGCG). However, the
protonation of the EGCG in acidic conditions (pH 1.0) rapidly induced the aggregations of
these NPs as their dimensions reached 300 nm within the first 3 min resulting eventually
in the loss of their nanoscale features [82]. According to Akçay and Avcı, the maximum
yield occurred at pH 7 and 8 [83] while Kuroda et al. reported the optimum reduction rate
at pH values of 6–9 for selenite and 7–9 for selenate [84]. Wadhwani et al. demonstrated
the synthesis of SeNPs in a pH range of 4–10 [58]. No synthesis occurred at pH 2 and
1.5 mM of sodium selenite due to the presence of less functional groups that are required
for the reduction process. The precursor concentration can also control the NP shape and
size. For example, the same study by Wadhwani et al. proved that spherical and rod
morphologies of the SeNPs appear at 3.0 mM Na2SeO3 while only spheres are observed at
1.5 mM of the same precursor [58].

Green approaches for the synthesis of SeNPs and TeNPs are cost- and energy-efficient,
requiring lower temperatures compared to their chemical or physical counterparts [58].
The temperature is found to be a factor that leads to the formation and then aggregation of
SeNPs [85]. For instance, the reduction process occurs at temperatures up to 40 ◦C using
Acinetobacter sp. SW30 and higher temperatures (around 80 ◦C and 100 ◦C) may lead to the
aggregation of the SeNPs into nanorods [58]. It is relevant to indicate that, in the case of
bacteria, elevated temperatures (>45 ◦C) may block the normal biosynthesis of SeNPs [86].
Likewise, high temperatures (over 60 ◦C) and low temperatures (below 25 ◦C) reduce
the efficiency of inorganic NP production using fungi [87,88]. Moreover, the incubation
time plays a significant role in the quality and morphology of the NPs. In the case of
most bacteria, the average incubation time ranges from 24 to 72 h, but long incubation
periods may cause NPs to aggregate, grow, or shrink [89]. The properties of NPs may
have a lifetime, but extended exposure times can induce metastable changes to the surface
morphology, crystallinity, and optical absorption of nanostructures [90].

The concentration of precursors and reducing/surfactant agents are also critical to
control the growth and morphology of the nanoparticles [26,91–93]. The precursor concen-
tration can have a strong influence on the color intensity and rate of change during the
NP formation process [94,95]. Se (Na2SeO4, Na2SeO3, SeO2) and Te (Na2TeO3, K2TeO3)
precursors along with the pH and reaction time are tuned to produce metalloid nanostruc-
tures of different sizes [49,96] and shapes (e.g., SeNPs, Te nanorods (TeNRs), Te nanowires
(TeNWs), and Te nanotubes (TeNTs)) [97,98]. Additionally, the size of SeNPs is determined
by the initial precursor concentration [99]. The tolerance towards selenium oxyanions
can be evaluated by exposing the microorganisms to different precursor concentrations.
For example, Presentato et al. evaluated the bioconversion yield and rate of 0.5 and
2 mM of SeO3

2− into thermodynamically stable Se(0) nanostructures considering uncondi-
tioned and conditioned physiological states of the actinomycete Rhodococcus aetherivorans
BCP1 [99]. The results showed that the initial precursor concentration had a strong effect
on the size and size evolution of the obtained SeNPs. For instance, the smallest Se NPs
that are obtained at the lowest concentration evolve to form Se nanorods (SeNRs). On the
other hand, the longest SeNPs obtained at the highest concentration eventually form the
shortest SeNRs. The strain Phomopsis viticola has the same degree of inhibition, in terms of
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biomass production, when incubated in the presence of SeO3
2− or TeO3

2− [100] whereas
two strains of Aspergillus, A. flavus DSMZ 1959 and A. parasiticus DSMZ 1300, were less
inhibited by SeO3

2 compared to TeO3
2− [100]. However, Wang et al. found that different

sodium selenite concentrations did not affect the size and morphology of the produced
SeNPs using Bacillus subtilis [101].

To optimize SeNP bioproduction, the selenium precursor concentration (sodium selen-
ite) varied from 10 to 30 mM and the impact of the pH and reaction time was assessed [102].
Besides, statistical optimization techniques might be used for the design of the experiment,
such as the response surface methodology (RSM) [102,103]. Overall, the yield of NP synthe-
sis has a direct correlation with the precursor concentration: the higher the concentration,
the greater the production. Moreover, it can be suggested that the lower the precursor
concentration and temperature, the smaller the size of produced NPs (vide infra).

4. Techniques of Characterization

The characterization of metalloid NPs is needed to correlate their physicochemical
properties to their biological effects and toxicity [49,104–107]. The initial physicochemical
characterization of these NPs is carried out by using a myriad of routine lab techniques to
analyze their shape, size and size distribution, porosity, surface chemistry, crystallinity, and
dispersion pattern [108]. The most widely used techniques include UV-visible (UV-Vis)
spectroscopy, luminescence spectroscopy (LS), scanning electron microscopy–energy disper-
sive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), Fourier trans-
form infra-red spectroscopy (FT-IR), X-ray diffraction (XRD). XRD confirms the presence
of NPs and determines their lattice structure, crystallinity, and crystallite size using the
Debye–Scherrer equation [21]. Electron microscopy techniques, such as TEM and SEM,
enable the study of NP shape and size to deduce their size distribution along with ele-
mental composition (EDX) [21,109]. According to Kapur et al., magnified field emission
scanning electron microscopy (FESEM) images provide information about the nature and
composition of the NPs [108]. The FTIR is an efficient technique that provides reproducible
analyses used to reveal the presence of functional groups at the NP surface. These groups
may be involved in the reduction of the metal ions and/or the NP capping that ensures
the colloidal stability [58,95]. In addition to determining the surface charge (z-potential) of
the NPs, the dynamic light scattering (DLS) provides the NP hydrodynamic diameter and
good insight into their stability/aggregation by measuring their Brownian motion [108].
The atomic force microscopy (AFM) provides quantitative information about length, width,
height, morphology, and surface texture of NPs through a tridimensional visualization [56].

5. Microbial Biosynthesis of Selenium Nanoparticles
5.1. Using Bacteria

In recent years, the biosynthesis of Se-containing NPs using bacteria has been reported
as a new environmentally friendly route that offers tremendous advantages, such as easy
handling, short synthesis times, and simple genetic manipulation [101]. Various bacteria
reduce inorganic selenite (SeO3

2−) or selenate (SeO4
2−) to elemental red selenium Se(0)

nanoparticles of various morphologies including spherical, hexagonal, polygonal, and tri-
angular ones [109]. The academic community has extensively explored the aerobic and
anaerobic bacteria involved in the production of SeNPs (Table 1) through various reduction
pathways under both aerobic and anaerobic conditions [56,73,110–113]. However, further
investigations are required to fully determine the underlying biochemical pathways and
the biochemicals that govern these processes.
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Table 1. Biosynthesis of SeNPs using bacteria.

Species Localization Precursor Concentration
(mM)

Incubation
Temperature and

Time
Size (nm) * Color and

Shape
Z-Potential

(mV)
Sample

Quantification Activity/Application Ref.

Staphylococcus
carnosus Intracellular Na2SeO3 1−5 37 ◦C for 72 h 439–525 Red

Spherical
−26.13 and
−20.40

Cocktail of
proteins derived
from S. carnosus

Agriculture
Future medicine [109]

Bacillus mycoides
Stenotrophomonas

maltophilia

Cell free
extract Na2SeO3 2 27 ◦C for 6 h or 24 h 160–171 Spherical −70 and −80

C: 73–75%
O: 10–11%
Se: 9–11%
P: 3–5%
S: 1%

Antibacterial
Antibiofilm [114]

Acinetobacter
schindleri

Staphylococcus sci-
uriExiguobacterium

acetylicum
Enterobacter cloacae

Near the cell
membrane Na2SeO3 10–50 25 or 37 ◦C for 24 h ~100

Spherical
Transformation

to nanowires
N/A Se: 83.9% Antibacterial [115]

Stenotrophomonas
bentonitica

Intracellular
Extracellular Na2SeO3 2 28 ◦C for 48 h 30–400 (~34)

Orange-red
Spherical

Hexagonal
Polygonal
Nanowires

N/A
Extracellular
flagella-like

proteins

Bioremediation,
Safety of deep

geological repository
systems

[74]

Shewanella sp. N/A Na2SeO3 0.01–1.0 30 ◦C for 24 h 1–20 Spherical N/A N/A N/A [116]

Bacillus sp.
Intracellular.

Associated to
cell debris

SeO2 1.26 30 ◦C for 24 h 80–220 Red
Spherical –16.3 Se: 100%

Anticancer
Antibiofilm

Antiparasitic
Antioxidant

[117–120]

Azoarcus sp.
Extracellular
Associated to

cell debris
Na2SeO3 1–8 30 ◦C for 24 h 123 Orange

Spherical N/A N/A Agriculture
Bioremediation [121]

Acinetobacter sp. Intracellular Na2SeO3 0.1–4 30 ◦C for 24 h ~100

Red
Spherical

Rod shaped
polygonal

+10
Proteins
Amines
Amides

Anticancer [58]

Duganella sp.
Agrobacterium sp.

Cell surface
Extracellular

polymeric
substances

(EPS)Culture
medium

Na2SeO3
Na2SeO4

4 g L−1

2 g L−1 28 ± 2 ◦C 100–220 Red
Spherical N/A Proteins Agriculture [110]
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Table 1. Cont.

Species Localization Precursor Concentration
(mM)

Incubation
Temperature and

Time
Size (nm) * Color and

Shape
Z-Potential

(mV)
Sample

Quantification Activity/Application Ref.

Burkholderia
fungorum

Mostly
extracellular Na2SeO3 0.5–2 27 ◦C for 96 h 170–200 Red-orange

Spherical From −25 to +20 Proteins Bioremediation [122]

Comamonas
testosteroni

Intracellular:
cytoplasm or

periplasm

Se(IV) and
Se(VI) 5 28 ◦C for 48 h 100–200 Red fine-grained N/A Selenium

content 100% Bioremediation [123]

Bacillus subtilis Extracellular Selenite 4 48 ◦C for 48 h 50–400

Red
Spherical

monoclinic that
can transform to
anisotropic 1D

trigonal
structure

(nanowires)

N/A Proteins
Biopolymers Biosensing [101]

Alishewanella sp. Intracellular Na2SeO3 1 37 ◦C for 4 h 100–220 Spherical −28.7

Proteins
Lipids

Organic
substances

Inorganic ions

Bioremediation [75]

Azospirillum
brasilense

Intracellular
Extracellular Na2SeO3 10 31 ◦C for 24 h 50–100 Spherical −21 to −24

Proteins
Polysaccharides

Lipids
N/A [124]

Azospirillum
brasilense Extracellular Na2SeO3

Na2SeO4
1–5 30 ◦C 400 Red

Spherical −18
Proteins

Carbohydrates
EPS

Bioremediation
Biotechnological

applications
[125]

Pseudomonas
aeruginosa Cell surface Selenite 0.25–1.0 37 ◦C for 24–72 h 47–165 (~96) Red

Spherical 251.8 Proteins Bioremediation [126]

Stenotrophomonas
maltophilia

Intracellular
Released to
the medium

Na2SeO3 0.5–5.0 27 ◦C for 24 and 48 h 160–250 Spherical 140
Proteins

Carbohydrates
Lipids

Bioremediation [113]

Bacillus cereus Intracellular Na2SeO3 0.5–1200 30 ◦C for 24 h 170 Red
Spherical N/A N/A Medicine

Veterinary medicine [127]

Zooglea ramigera Extracellular Na2SeO3 3 30 ◦C for 48 h 30–150

Red
Spherical
Nanorods
(trigonal)

N/A

Enzymes
Proteins
Bacterial
material

N/A [128]
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Table 1. Cont.

Species Localization Precursor Concentration
(mM)

Incubation
Temperature and

Time
Size (nm) * Color and

Shape
Z-Potential

(mV)
Sample

Quantification Activity/Application Ref.

Pseudomonas sp.
Lysinibacillus

Thauera selenatis
N/A Na2SeO3 200 30 ◦C for 40 days N/A Red

Spherical N/A
Reduced in the

presence of
nitrate

Denitrification of mine
wastewater [129]

Escherichia coli Intracellular
Extracellular

Na2SeO3 1 N/A 50–100 Spherical N/A Quinone-
mediated N/A [97]

Acinetobacter sp. Intracellular Na2SeO3 1 37 ◦C for 24 h 100 ± 10
Orange

Spherical
amorphous

N/A Lignin
peroxidase N/A [130]

Enterococcus faecalis Extracellular Na2SeO3 0.19–2.97 37 and 42 ◦C for 24
and 48 h 29–195 Red/light red

Spherical N/A N/A Antibacterial [55]

Streptomyces
minutiscleroticus Extracellular Na2SeO3 1 48–72 h 100–250 Red

Spherical N/A Proteins

Wound ointment
Anticancer drug

Coating for medical
instruments

[131]

Streptomyces
griseobrunneus N/A N/A N/A 30 ◦C 48–136 Red

Trigonal N/A Proteins
Enzymes Photocatalytic [132]

Vibrio natriegens
Intracellular

Associated to
cell debris

Na2SeO4
Na2SeO3

1 30 ◦C for 24 h 136 ± 31 Red
Spherical N/A Proteins Bioremediation [133]

Staphylococcus aureus
Methicillin-resistant
Staphylococcus aureus

(MRSA)
Escherichia coli
Pseudomonas

aeruginosa

Intracellular
Associated to

cell debris
Na2SeO3 2 37 ◦C for 72 h 90–150 Orange-red N/A Lipids

Proteins Antimicrobial [61]

Rhodococcus
aetherivorans Extracellular Na2SeO3 0.5–2 40 ◦C for 40 min

then cooled to RT 53–97 Spherical
Nanorods −13 to −32 Organic

material N/A [99]

Pseudomonas stutzeri Intracellular Na2SeO3 2.5 28 ◦C 100–250 Reddish
Spherical −19.5

Proteins
Lipids

Other organic
substances

N/A [46]

Lactobacillus casei Intracellular Na2SeO3 1.2 37 ◦C for 24 h 50–80 Red
Spherical N/A Polysaccharides

Proteins
Antioxidant
Anticancer [134]
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Table 1. Cont.

Species Localization Precursor Concentration
(mM)

Incubation
Temperature and

Time
Size (nm) * Color and

Shape
Z-Potential

(mV)
Sample

Quantification Activity/Application Ref.

Streptomyces
enissocaesilis Extracellular SeO2 5 30 ◦C for 72 h 20–211

Brown, orange
and deep yellow

Spherical
−220 Proteins Antimicrobial [135]

Pseudomonas stutzeri N/A Na2SeO3 1–3 37 ◦C for 48 h 75–200 Bright red
Spherical −46.2

Proteins
Organic

molecules

Antiangiogenic
Antiproliferative [103]

Streptomyces sp. Extracellular Na2SeO3 1 28 ◦C for 72–96 h 20–150 Red
Spherical N/A

Free amines
Aromatic rings

Cysteine
residues
Amides

Antibacterial
Larvicidal

Anthelminthic
[136]

Lysinibacillus sp. Extracellular Na2SeO3 1 37 ◦C for 3 days 130 Red
Spherical −19.1 to −28.8

Proteins
Polysaccharides

Fatty acids

Antibiofilm
Antimicrobial [137]

Lactobacillus
acidophilus

L. plantarum
L. rhamnosus

Extracellular Na2SeO3 4 35◦ for 48 h 20–80 Red N/A Proteins N/A [76]

Idiomarina sp. Intracellular Na2SeO3 4 and 8 37 ◦C for 48 h 35 and 150–350 Brick red
Spherical/Hexagonal N/A N/A Antineoplastic

Anticancer [138]

Ralstonia eutropha Extracellular Na2SeO4 1.5 30 ◦C for 48 h 40–120 Red
Spherical/Nanorods −7.7 N/A Antibacterial [139]

Pseudomonas stutzeri Extracellular
Cell surface

Na2SeO4
Na2SeO3

5 and 11 mM
4 and 9 mM 34 ◦C for 7 days ≤200 Red

Spherical N/A N/A Bioremediation [84]

Enterobacter cloacae Intracellular
Extracellular Na2SeO3 0.5–15 37 ◦C for 8 h 100–300 Red

Rod-shaped N/A Organic
material N/A [140]

Bacillus cereus Intracellular
Extracellular Na2SeO3 0.5–10 37 ◦C for 48 h 150–200 Spherical −46.86 Proteins N/A [56]

Stenotrophomonas
maltophilia

Ochrobactrum sp.
N/A Na2SeO3 0.5 27 ◦C for 24 and 48 h 357 Spherical N/A Organic

compounds
Antimicrobial
Antibiofilm [71]

Shewanella oneidensis Cell surface
Extracellular Selenite 0.5 30 ◦C for 6–48 h 20 Red

Spherical N/A EPS N/A [141]
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Table 1. Cont.

Species Localization Precursor Concentration
(mM)

Incubation
Temperature and

Time
Size (nm) * Color and

Shape
Z-Potential

(mV)
Sample

Quantification Activity/Application Ref.

Synechococcus
leopoliensis

Intracellular
Extracellular Na2SeO3 5 35 ◦C 254 ± 52

200 ± 37

Red-brown
Fused spheres
Elongated rods

N/A N/A N/A [142]

Comamonas
testosteroni Extracellular Na2SeO3 0.2–50 28 ◦C for 24 h 100–200

Red
Round

Rod-shaped
N/A Proteins Bioremediation [143]

Azospirillum
brasilense Extracellular Na2SeO3 10–50 31–32 ◦C for 24 h 25–80 Red-orange

Spherical −21 to −24 N/A N/A [144]

Bacillus cereus Cell surface Na2SeO3 0.25–1.0 37 ◦C for 24–72 h 50–150 (~93) Red
Rod-shaped −31.1 ± 4.9 N/A Bioremediation [145]

Bacillus sp. Extracellular SeO2 6.4 33 ◦C for 72 h 31–335 (~126) Red-orange
Spherical N/A

Alcohols
Phenols
Amides
Amines

Amino acids

Antioxidant [83]

* An inorganic particle is considered as a nanomaterial if one of its dimensions ranges between 1 and 100 nm.
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The following species have been screened under aerobic conditions: Streptomyces
minutiscleroticus M10A62 [131], Comamonas testosteroni S44 [143], Lactobacillus sp., Bifidobac-
terium sp. and Streptococcus thermophilus [146], Enterobacter cloacae Z0206 [140], Azospirillum
brasilense [125] and the gram + bacteria Bacillus strains: Bacillus sp. MSh-1 [117,147], B. sub-
tilis [101], and B. cereus [127]. On the other hand, several species of anaerobic bacteria have
been screened for their ability to promote the production of SeNPs, such as Shewanella
sp. HN-41 [116], S. oneidensis MR-1 [141], Stenotrophomonas bentonitica [71], Alishewanella
sp. WH16-1 [75], Vibrio natriegens [133], and the facultative anaerobic bacteria L. casei
393 [134,148]. Moreover, anaerobic upflow sludge blanket reactors are used to fabricate
SeNPs [53,149–151]. Besides, some species are able to biosynthesize SeNPs under aerobic
and/or anaerobic conditions, such as Azoarcus sp. CIB [121].

The aerobic Se-reducing bacteria are simpler, faster, and more effective synthesizers
of SeNPs as they grow rapidly and produce more cells [123]. They also possess greater
advantages in agriculture and bioremediation over anaerobic bacteria since the soil and
water treatment occurs aerobically [152–154]. Other benefits lie in their ability to identify
the functional microbiota and the molecular homeostatic mechanisms responsible for Se
oxyanion reduction. For example, in the case of the aerobic strain C. testosteroni S44, which
can resist the toxicity of some heavy metal cations, such as Cu2+, Zn2+, As4+, and Se4+, the
reduction of Se(VI) to SeNPs is carried out by the sulfite reductase (CysIJ) enzyme in the
sulfate assimilation pathway [123]. This pathway has been suggested to be the general
mechanism of selenate (Se(VI)) reduction in aerobic organisms related to the selenium
biocycle. Moreover, the Cr(VI) reductase (known as CsrF) in the genome of Alishewanella
sp. WH16-1 has been reported as a novel bacterial aerobic selenite reductase [75]. Due to
its similarities with the structure and reduction activity of the flavoenzymes ChR, FerB and
ArsH, CsrF may also act as a Se(IV) reductase.

In anaerobic bacteria, Se(VI)/Se(IV) reduction can occur on the cell surface via a
two-step process; first, Se(VI) is reduced to Se(IV), then Se(IV) is reduced to subsequently
give rise to SeNPs [155]. Conversely, in aerobic bacteria, it is more challenging to reduce Se-
oxyanions on the surface of cells due to the tendency of oxygen to accept the electrons prior
to Se(IV) [123,156]. Therefore, the reduction occurs intracellularly and then Se(0)/SeNPs
are exported extracellularly by cell lysis [53,157], rapid expulsion pathway [158], efflux via
a vesicular secretion system [155], vesicular transport [159], and hyphal lysis or fragmenta-
tion [160]. Nevertheless, the specific efflux system is still unknown.

Estevam et al. produced SeNPs using Staphylococcus carnosus TM300 that were har-
vested by first sonicating the pellet and then separating the NPs by ulterior centrifuga-
tions [109]. Cocktails of proteins were attached to the SeNP surface to act as potential
natural stabilizers that prevent the formation of precipitates at the flask’s bottom. More-
over, these SeNPs exhibited nematicidal activity against the nonpathogenic nematode
Steinernema feltiae and biological activity against E. coli and S. cerevisiae, for bacterial and
yeast infections, respectively. Wadhwani et al. detailed the SeNP synthesis by challenging
the cell suspension and total cell proteins (TCP) of Acinetobacter sp. SW30 with sodium
selenate [58]. This cell suspension formed spherical SeNPs of 78 nm in diameter after 6 h
incubation and transformed into rod-like structures after 48 h. These selenium structures
were observed at different pH values ranging from 6 to 10 and two precursor concentrations
(1.5 and 3.0 mM) (Figure 2). On the other hand, polygonal-shaped SeNPs of 79 nm in size
were obtained in the supernatant at 4 mg mL−1 of TCP.
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Figure 2. Transmission Electron Microscopy images of biogenic SeNPs synthesized by incubating
the cell suspension of Acinetobacter sp. at 37 ◦C with 1.5 mM Na2SeO3 at: (A) pH 6, (B) pH 7 and
(C) pH 9. TEM micrographs of the same experiment when the Na2SeO3 concentration is brought
to 3.0 mM at (D) pH 6, (E) pH 7, and (F) pH 9. Reproduced from [58] with permission from Dove
Medical Press.

Moreover, Fernández-Llamosas et al. reported that the anaerobic beta-proteobacteria
Azoarcus sp. CIB is tolerant to selenite oxyanions and acts as a good biocatalyst synthe-
sizing electron-dense SeNPs in its stationary growth phase [121]. This study proposed
the existence of an energy-dependent selenite exporter to minimize the intracellular ac-
cumulation of the as-produced SeNPs by transporting them out of the cell. Tugarova
et al. suggested a general mechanism of SeNP biosynthesis by Aspergillus brasilense [144].
The process involves the transport of Se ions to the cell interior where they are reduced
into elemental Se(0) nuclei; these nuclei are then released to the supernatant where the
extracellular biosynthesis of SeNPs occurs. The synergistic inhibition effect of these SeNPs
in combination with six antibiotics was tested against pathogenic bacteria. Furthermore, the
rhizobacterium A. brasilense appears to biotransform selenite to mixed selenium-sulfur NPs
with a sulfate concentration of 800 mg L−1; this mechanism is suitable for bioremediation,
agriculture, nanobiotechnology, and medical applications [125].

Figueroa et al. reported the in vivo and in vitro synthesis of Se and Te nanostructures
using Acinetobacter schindleri and Staphylococcus sciuri from a total of 47 bacterial strains [115].
Triangular, spherical, and rod-like Se nanostructures were also efficiently fabricated in vitro
using E. cloacae glutathione reductase (GorA) in both crude extracts and purified protein.
Similar studies investigated biomolecules involved in mediating the reduction of selenium
oxyanions to elemental selenium or SeNPs, such as glutathione (GSH) [140,156,161], glu-
tathione reductase [162], proteins [75,163], thioredoxin reductase [162,164], SerABC reduc-
tase [165], fumarate reductase [140,141], NADH-dependent enzymes [166], NADH flavin
oxidoreductase [84,166], membrane-bound SrdBCA amino acid sequence [167], DMSO
reductase family of molybdoproteins [168], sulfite reductase [169], hydrogenase I [170],
nitrite reductase [171], chromate selenite reductase flavoenzyme (CsrF) [75], and other
enzymes and biosurfactants [172,173].

In addition, some biomolecules have been found to act as reducing, capping, and/or
stabilizing agents and play a fundamental role in altering the features of SeNPs and con-
trolling their size distribution [56,145]. For instance, Ruiz Fresneda et al. indicated that
extracellular flagella-like proteins can biotransform the amorphous Se(0) nanospheres to
crystalline and polycrystalline one dimensional (1D) trigonal Se(0) nanostructures with
distinct shapes, such as nanowires and polygons [74]. Moreover, Wang et al. used Bacil-
lus subtilis to obtain semiconducting spherical monoclinic SeNPs that could be transformed
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into 1-D trigonal nanowires with an actinomorphic nature [101]. This process might involve
an oriented attachment mechanism based on the Ostwald ripening mechanism. Moreover,
proteins present in the solution are thought to provide long-term stability to the SeNPs
and prevent their agglomeration. Another study using Burkholderia fungorum strain DBT1
determined aerobic selenite reduction can be attributed to cytoplasmic enzymatic activa-
tion mediated by electron donors [122]. The same study suggested that an organic layer
surrounding the SeNPs, composed of extracellular matrix (ECM) that includes carbohy-
drates, proteins, and humic-like substances, stabilizes the particles by modifying their
zeta potential.

Previous studies also highlighted the importance of the protein fraction released by
microorganisms to externally coat nanoparticles to increase electrostatic repulsions and,
consequently, increase their colloidal stability [174–176]. This characteristic is essential to
maintain the long-term stability, avoid the aggregation and prevent the transformation of
colloidal SeNPs into the black amorphous Se form [56]. This is evidenced in high negative
z-potential values that are indicative of particle repulsion. For example, carbonyl groups
of amino acid residues [142] and SH groups of L-cysteine [177] can strongly bind to metal
NPs and form a biomolecular, stabilizing, and protecting cap.

5.2. Using Fungi

The mycogenic biosynthesis of inorganic NPs has been extensively investigated due
to the advantages of fungi over bacteria and actinomycetes [178,179]. Fungi are easy to
culture and manipulate, and can grow in highly concentrated media with heavy metal
cations. They can also survive and reproduce in high selenium concentrations. The main
advantages of NP mycosynthesis are easy scaling-up, low-cost downstream processing and
easy manipulation, low-cost and viability of the fungal biomass [180]. Furthermore, fungi
release reductive proteins and enzymes into the extracellular medium; these biomolecules
reduce Se ions into harmless, precipitating SeNPs [181]. The general process of microbially
assisted synthesis of SeNPs and TeNPs is shown in Figure 3.
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Numerous fungal species reduce selenite/selenate to intra- or extracellular SeNPs
(Table 2). Under extracellular conditions, Diko et al. reported the synthesis of spherical
and pseudospherical SeNPs using the supernatant of Trichoderma sp. WL-Go in culture
broth [182]. Liang et al. used four fungal species: Aureobasidium pullulans, Mortierella humilis,
Trichoderma harzianum, and Phoma glomerata, to produce SeNPs and TeNPs and provide
nucleation sites with extracellular protein and polymeric substances [183]. Mosallam et al.
combined γ-rays and the supernatant of A. oryzae to produce SeNPs and found a strong
correlation between the antioxidant capacity and both the phenolic content and SeNP
yield [184]. Moreover, the biomimetic mycosynthesis of SeNPs with simple preparation
protocols from, for instance, Alternaria alternata yields uniform and stable SeNPs [180].

Table 2. Biosynthesis of SeNPs by fungi.

Species Location Size (nm) Shape Activity/Application Ref.

Trichoderma sp. Extracellular 20–220 Spherical
Pseudospherical N/A [182]

Pleurotus ostreatus Aqueous extract 7–28 Spherical
Antioxidant

Antimicrobial
Anticancer

[185]

Penicillium
chrysogenum

Cell-free
supernatant 48–50 Spherical Antimicrobial

Antibiofilm [186]

Phanerochaete
chrysosporium

Intracellular
Extracellular 50–600 Spherical Bioremediation [65]

Polyporus umbellatus N/A 212 ± 23
82 ± 1 Spherical Anticancer

Antiproliferative [187]

Auricularia
auricula-judae

Embedded in
triple helix

β-(1,3)-D-glucan
60 Hollow nanotubes

Acute myeloid
leukemia (AML)

therapy
[188]

Trichoderma atroviride

Culture filtrate
(CF)

Cell lysate (CL)
Cell wall debris

(CW)

60–123 Spherical

Production of crop
plants (tomatoes)

Management of plant
diseases

[181]

Aureobasidium
pullulans

Mortierella humilis
Trichoderma harzianum

Phoma glomerata

Extracellular 48–78 Spindle-shaped Bioremediation [51]

Dictyophora indusiata Intracellular 89 Spherical Anticancer [189]

Catathelasma
ventricosum N/A 50 Spherical Antidiabetic [190]

Aspergillus oryzae N/A 55 Spherical Antimicrobial [184]

Pyrenochaeta sp.
Acremonium strictum

Plectosphaerella
cucumerina

Stagonospora sp.
Alternaria alternata
Paraconiothyrium

sporulosum

Fungal hyphae
Intracellular
Extracellular

50–300 Spherical N/A [191]

Alternaria alternata Extracellular 30–150 Spherical N/A [180]
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Table 2. Cont.

Species Location Size (nm) Shape Activity/Application Ref.

Pleurotus ostreatus
Lentinus edodes

Ganoderma lucidum
Grifola frondosa

Intracellular
Extracellular 50–150 Spherical N/A [192]

Lentinula edodes Intracellular
(fungal hyphae) 180 ± 17 N/A N/A [193]

Pleurotus ostreatus
Ganoderma lucidum

Grifola frondosa

Intracellular
Cell-free filtrate 20–550 N/A N/A [194]

Cordyceps sinensis N/A 80–125 Spherical Antioxidant [195]

Mariannaea sp. Intracellular
Extracellular

45
213 Spherical N/A [196]

Gliocladium roseum Cell-free filtrate 20–80 Spherical N/A [197]

The medicinal basidiomycete Lentinus edodes F-249 can transform selenium within
organic and inorganic compounds into spherical SeNPs of ~180 nm [193]. Dictyophora indu-
siata is a saprophytic fungus able to form a hybrid Se nanostructure by exploiting its novel
polysaccharide (DP1) [189]. The DP1-functionalized SeNPs proved to have an antiprolif-
erative effect against HepG2 cancer cells via death receptor- and mitochondria-mediated
apoptotic mechanisms.

Some studies have also depicted both the intracellular and extracellular synthesis
of SeNPs using fungi [191,196]. For example, three fractions of the fungus Trichoderma
atroviride, namely the culture filtrate (CF), cell lysate (CL), and cell wall debris (CW), pro-
duced bioactive SeNPs that were able to form aggregate fungal spores, thus avoiding the
adhesion of the pathogen Phytophthora infestans to the host cell and blocking its infection
of tomato plants [181]. A similar mechanism has been reported for Lentinula edodes [193],
Mariannaea sp. [196], Fusarium sp., and T. reesei [198]. Other researchers exploited intra-
and extracellular extracts of the xylotrophic basidiomycetes Pleurotus ostreatus, L. edodes,
Ganoderma lucidum, and Grifola frondosa to produce SeNPs of various sizes and shapes [192].
Along with basidiomycetes, other fungal groups, such as Ascomycota and Zygomycota,
can also produce nanoparticles, but these mushrooms are known to be allergenic and/or
pathogenic to animals and plants [199–201]. Therefore, nontoxic, edible, and cultivated
basidiomycetes are a better alternative for biotechnological applications including nan-
otechnology as the NP synthesis can occur in their mycelia and culture media [192]. Under
both extra- and intracellular conditions, the toxicity effects and the removal mechanisms
vary according to the fungal species and Se precursors. Rosenfeld et al. demonstrated that
six fungal species (P. sporulosum, A. strictum, A. alternata, P. cucumerina, Pyrenochaeta sp.,
and Stagonospora sp.) constitute an excellent detoxification biosystem that tolerates high Se
concentrations and reduces selenite/selenate to Se(0) [191].

El-Sayyad et al. fabricated SeNPs by employing two different eco-friendly green syn-
thetic methodologies: either using Penicillium chrysogenum filtrate or combining P. chryso-
genum filtrate with gentamicin drug (CN) as the stabilizing agent after application of
γ-irradiation [186]. The second process resulted in the highest synthesis yield and en-
hanced antipathogenic and antibiofilm potential. It is also easy to produce Se-based
nanocomposites. For instance, Jin et al. prepared SeNPs embedded and homogeneously
dispersed in black fungus-extracted BFP nanotubes (triple helix β-(1,3)-D-glucan) that
possess hydrophilic hydroxyl groups. These nanocomposites showed interesting cytotoxic
and antitumor properties [188].
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5.3. Using Yeast

Yeast is a relevant model system to investigate the metabolic detoxification pathways
of selenite/selenate and their conversion to selenomethionine [202,203]. Thus, Se-rich
yeasts are used as a food supplement because they accumulate up to 3000 ppm of se-
lenium [203] and can be used as a cancer treatment at elevated doses (>200 µg Se per
day) [204]. However, further analyses are needed to identify and quantify the chem-
ical forms of selenium should these Se-rich yeasts be commercialized. For example,
Jiménez-Lamana et al. used single particle inductively coupled plasma mass spectrom-
etry (SP-ICPMS) to detect, characterize, and quantify putative nanoparticles in Se-rich
yeasts [205]. Bartosiak et al. calculated the accurate yield of SeNP synthesis mediated by
Saccharomyces boulardii using continuous photochemical vapor generation (PCVG) coupled
with microwave-induced plasma optical emission spectrometry (MIP-OES) and UV-Vis
spectrophotometry (PCVG-MIP-OES) [206]. This efficient method enabled the selective
identification and quantification of both the unreacted Se(IV) and the final water-soluble
SeNPs without the need to separate them. Lian et al. synthesized spherical and quasi-
spherical SeNPs of 70–90 nm in size utilizing the yeast cell-free extract of Magnusiomyces
ingens LH-F1; some surface proteins played a significant role during the synthesis, acting
as reducing or capping agents [207]. Nevertheless, the mechanisms of SeNP formation are
not fully understood.

S. cerevisiae primarily reduces selenium ions through metabolism [208,209]. Owing to
its high selenium tolerance, S. cerevisiae constitutes a promising and cost-effective alter-
native for the removal of selenium ions from aqueous solutions [210]. Additionally, it is
postulated that SeNPs are expelled from S. cerevisiae cells by vesicle-like structures under
microaerophilic conditions followed by the ulterior capping of these NPs with residual
organic components from the vesicle-like structures [211]. As the SeNPs are stabilized by
the natural organic molecules of yeast cultures, there is no need for additional stabilizing
agents [206].

The reduction of selenite/selenate to elemental selenium in yeasts forms SeNPs
either extra- or intracellularly. In intracellular routes, a genetically engineered, metal-
resistant Pichia pastoris clone carrying Cyb5R gene has been found to be a safe bioreactor to
produce homogeneous and stable selenium and silver NPs. This yeast used a versatile and
simple mechanism of biosorption and biotransformation of metals with less toxic waste
than physicochemical synthesis [50]. On the other hand, the extracellular processes have
the advantage of easy biogenic NP recovery over their intracellular counterparts [211].
According to Rassouli, the general procedure for the extraction and purification of yeast-
produced SeNPs consists of (i) applying some enzymatic, chemical, or mechanic method to
destroy the cell wall; (ii) collecting the biomass by centrifugation at 8000 rpm for 10 min;
(iii) crushing the cells using liquid nitrogen and ultrasounds; (iv) incubating the broken
cells with added buffer at 60 ◦C for 10 min; (v) mixing the pellet containing the cell
fragments and NPs with octanol and distilled water to give rise to two phases of which
(vi) the SeNP-containing top phase is recovered and further washed with ethanol and
chloroform [48].

6. Microbial Synthesis of Tellurium Nanoparticles

Tellurium is highly toxic to living beings and is not essential in biological metabolism.
This may explain why TeNP biosynthesis using microbes is more limited when com-
pared to SeNP [212]. Few articles have been published that detail the biosynthesis of
TeNPs using microorganisms (Figure 4) [51,97,213–219]. Generally, K2TeO3 or Na2TeO3
precursors are used to produce TeNPs since they are least toxic when compared to other
precursors [97,212,220–222]. Tellurium has different oxidation states: telluride (Te2−), tellu-
rite (TeO3

2−), tellurate (TeO4
2−). In general, the agglomeration of Te(0) is associated with

the respiration of the microorganisms, such as yeast (S. cerevisiae), where the fermentation
increases the production [223]. On the other hand, a decrease in NP production is observed
in bacteria when the oxygen is limited [213].
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Considering that tellurium is in the same group as selenium, Yang et al. studied
the antioxidant activity of TeNPs recovered from tellurium-enriched Spirulina platensis
cultures where tellurium interacts with two phycobiliproteins, the phycocyanin (Te-PC)
and allophycocyanin (Te-APC) (Figure 5) [224].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 17 of 35 
 

 

increases the production [223]. On the other hand, a decrease in NP production is ob-

served in bacteria when the oxygen is limited [213]. 

 

Figure 4. Tellurium nanoparticles (TeNPs) synthesis using microorganisms. 

Considering that tellurium is in the same group as selenium, Yang et al. studied the 

antioxidant activity of TeNPs recovered from tellurium-enriched Spirulina platensis cul-

tures where tellurium interacts with two phycobiliproteins, the phycocyanin (Te-PC) and 

allophycocyanin (Te-APC) (Figure 5) [224]. 

 

Figure 5. Purification of tellurium-containing phycocyanin (Te-PC) and allophycocyanin (Te-APC) 

from Te-enriched S. platensis using a chromatographic method. 

From a mechanistic point-of-view, a correlation has been established between the 

growth, size, and shape of TeNPs and the proteins and enzymes present in the media, in 

addition to other small molecules, such as pyruvate, lactate, and NADH [51,213,225]. Fur-

thermore, the formation of elemental tellurium can be inhibited by other molecules, such as 

nitrate, nitrite, and fumarate [226]. Since the conditions affecting the TeNP formation can 

Figure 5. Purification of tellurium-containing phycocyanin (Te-PC) and allophycocyanin (Te-APC)
from Te-enriched S. platensis using a chromatographic method.

From a mechanistic point-of-view, a correlation has been established between the
growth, size, and shape of TeNPs and the proteins and enzymes present in the media,
in addition to other small molecules, such as pyruvate, lactate, and NADH [51,213,225].
Furthermore, the formation of elemental tellurium can be inhibited by other molecules, such
as nitrate, nitrite, and fumarate [226]. Since the conditions affecting the TeNP formation can
vary as a function of the used organism, there are also great variations in microbe growth
time (1–9 days), precursor concentrations (12–600 mg L−1), and reaction time (1–8 days).
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7. Plant-Mediated Synthesis of Metalloid Nanoparticles

Phytonanotechnology is of special interest for synthesizing SeNPs since it is a simple,
eco-friendly, high-throughput, and inexpensive route [227–229]. The biofabrication of
NPs via plants involves proteins, amino acids, organic acids, vitamins, as well as sec-
ondary metabolites that act as reducers and stabilizers, such as polysaccharides, alkaloids,
flavonoids, phenols, saponins, quinine, steroids, and glycosides [230,231]. Plant-mediated
NP synthesis may be carried out through two ways. Via the in vivo route, the NP morphol-
ogy and size depend strongly on the biosynthesis location, e.g., roots, leaves, fruits, peels,
buds, etc., and the implicated metabolites [27]. A chelation-mediated detoxification faculty
may explain the mechanism of NP synthesis [232]. The enzymatic antioxidant system is
also activated to provide a reactive oxygen species (ROS) balance [233]. Generally, inorganic
Se salts (selenite and selenate) taken up by plants are biotransformed into organic Se forms,
such as SeCys2, SeMet, and MeSeCys bounded with proteins [234,235]. Hu et al. demon-
strated the bioavailability of SeNPs in roots and shoots where they could be biotransformed
into organic Se compounds, selenite and selenate to generate Se-biofortified plants [236].
However, the in vitro synthesis using plant extracts is better since it eliminates the lengthy
process of cultivation, but still allows for screening the experimental parameters, such as
the biomass choice, extraction process and amount, the pH, and temperature [237].

7.1. Plant-Based Synthesis of Selenium Nanoparticles

Several papers have reported the plant-derived biosynthesis of SeNPs with varying
sizes and morphologies (Table 3). For instance, Hibiscus sabdariffa fabricated spherical,
triangular, and hexagonal SeNPs with a size of 20–50 nm [238] whereas Azadirachta indica
has been used as a rapid and efficient biosystem to produce crystalline and spherical
SeNPs with a smooth surface [239]. Withania somnifera was the best adaptogen herb with
active withanolide and flavonoids, used as a bioreductant system to fabricate SeNPs of
40–90 nm [240]. Although plants offer the most suitable green synthesis protocols, the mode
of action of plant-produced SeNPs against bacteria remains unknown; it is suggested that
the nanoparticles interact with the peptidoglycan layer and break up the bacterial cell
wall [227]. Besides, SeNPs are able to induce apoptosis or programmed cell death [174].
Anu et al. reported spherical SeNPs produced by a cheap aqueous extract of garlic cloves,
Allium sativum, that acted as both the reducing and capping agent [241]. These biogenic
SeNPs showed lower cytotoxicity against the Vero cell line than those chemically synthe-
sized. The same group took advantage of the medicinal properties of Cassia auriculata to
synthesize functional SeNPs that displayed interesting anticancer and antiproliferative
characteristics [241]. Similar studies have reported the use of Vitis vinifera [32], broccoli
extract [108], and Capsicum annum [242] to fabricate Se nanorods and nanoballs. Impor-
tantly, Ramamurthy et al. presented a combination of SeNPs, made using fenugreek seed
extract, and doxorubicin to form a chemoprotective agent against cancer [243]; Vennila
et al. studied the antibacterial, anticancer, and anti-inflammatory activity of SeNPs bio-
fabricated by Spermacoce hispida and functionalized with apigenin, quinoline, quinazoline,
and synaptogenin B [244]; Kokila et al. reported on Se-NPs using the leaves of Diospyros
montana as a biocidal agent against both Gram+ S. aureus and Gram– E. coli and the fungus
A. niger [245].

Table 3. Different species of plants used for the biosynthesis of SeNPs.

Plant Species Part Metabolites Shape Size (nm) Activity/Application Ref.

Withania somnifera Leaves
Flavonoids
Phenolics
Tannins

Spherical 40–90
Antibacterial
Antioxidant
Anticancer

[240]

Psidium guajava Leaves N/A Spherical 8–20 Antibacterial [227]

Allium sativum Cloves N/A Spherical 40–100 Cytotoxicity [241]
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Table 3. Cont.

Plant Species Part Metabolites Shape Size (nm) Activity/Application Ref.

Cassia auriculata Leaves N/A Amorphous 10–20 Anti-leukemia [237]

Momordica charantia Roots and
shoots

Terpenoids
Phenolics Spherical 10–30 Toxicological

studies [246]

Hawthorn fruit Fruit N/A Spherical 113 Antitumor [247]

Hibiscus sabdariffa Leaves Phenols
Alcohols

Spherical
Triangular
Hexagonal

20–50 Antioxidant [238]

Pelargonium zonale Leaves N/A Spherical 40–60 Antibacterial
Antifungal [248]

Aloe vera Leaves Hydroxyls
Amides Spherical 121–3243 Antibacterial

Antifungal [249]

Emblica officinali Fruit
Phenolics

Flavonoids
Tannins

Spherical 20–60 Antimicrobial [228]

Moringa oleifera Leaves Phenolics
Flavones Spherical 23–35 Anticancer [250]

Triticum aestivum Roots N/A Spherical 140 ± 40 Biofertilizer [236]

Broccoli N/A
Carotenes

Glucosinolates
Polyphenols

Spherical 50–150 Antioxidant
Anticancer [108]

Diospyros montana Leaves Phenolics
Flavonoids Spherical 4–16 Antibacterial

Anticancer [245]

Ocimum tenuiflorum Leaves Polyphenols Spherical 15–20 Inhibition of
nephrolithiasis [183]

Theobroma cacao Shell
Polysaccharides

Proteins
Phenolics

Spherical
Trigonal 1–3 N/A [251]

Zingiber officinale Roots Flavonoids
Terpenoids Spherical 100–150 Antimicrobial

Antioxidant [252]

Mucuna pruriens Seed Phytochemicals Spherical
Nanorods 100–120 Antioxidant

Anticancer [102]

Azadirachta indica Leaves
Polyphenols
Flavonoids

Proteins
Spherical 142–168

221–328 Antibacterial [239]

Vitis vinifera N/A Lignin Spherical 3–18 N/A [32]

Clausena dentata Leaves
Flavonoids

Triterpenoids
Polyphenols

Spherical 46–79 Larvicidal [229]

Spermacoce hispida Leaves Polyols
Saponins Rod-shaped 120 ± 15

Anti-inflammatory
Antibacterial
Anticancer

[244]

Rosa roxburghii N/A Polysaccharide
(RTFP-3) Spherical 105 Antioxidant [253]

Lycium barbarum Berries Flavonols
(catechins)

Spherical
Triangular 83–160 Antioxidant [254]

Fenugreek Seeds Phenol
Flavonol Oval 50–150 Anticancer [243]

Allium sativum Bulbs Alcohols
Phenols Spherical 205 Antioxidant

Anticancer [255]
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The application of SeNPs in toxicological studies is relevant due to their association
with DNA cytosine methylation, chromatin structure, and transcription processes. It is
advantageous for the manipulation and study of cellular division, tissue differentiation,
metabolism, and transcription programs [246]. Cui et al. (2018) reported on the produc-
tion of monodispersed and stable SeNPs from hawthorn fruit extract (HE-SeNPs) whose
antitumor activity was evidenced by the apoptosis induced in HepG2 cells through the
overproduction of intracellular ROS and mitochondrial membrane potential (MMP) loss
or disruption [247]. Additionally, HE-SeNPs induced the upregulation of caspase-9 and
downregulation of Bcl-2. Fardsadegh et al. detailed the hydrothermal synthesis of SeNPs
using Aloe vera leaf extract and determined a prediction model and optimal conditions
using response surface methodology (RSM) [249].

7.2. Plant-Based Synthesis of Tellurium Nanoparticles

Tellurium is not essential for plant metabolism besides being toxic in most cases [256].
Despite this, it has been documented that some plants have the ability to metabolize Te and
transform it into telluroamino acids [257] and organotellurium [258]. A. sativum, commonly
known as garlic, can assimilate chalcogens to give rise to Te-methyltellurocysteine (MeTe-
Cys) and S-methyltellurosulfide metabolites [256]. The TeNP size is found to be 40–55 nm.
The majority of these metabolites were found highly concentrated at the tips of their gloves
and in the initial part of the roots. In some cases, TeNPs produced by plants may appear as
spheres, rod-shaped, and plates [259].

8. Biosynthesis of Bimetallic Se-Te Alloy Nanoparticles

Bimetallic Se-Te alloy NPs possess unique and enhanced properties including optical,
semiconductive electroresistance, and magnetoresistance [90,260,261]. A few studies have
reported the bacterial synthesis of Se-Te nanostructures by B. beveridgei [262] and soil
isolates of heterotrophic aerobic bacteria [263]. The simultaneous formation of trigonal-
hexagonal Se(0)–Te(0) nanostructures from the bioreduction of Se and Te oxyanions in a
lab-scale upflow anaerobic sludge blanket reactor (UASB) was also described [149]. A layer
of extracellular polymeric substances (EPS) capped the nanoparticles to immobilize them
in the granular sludge. Besides crystalline hexagonal TeNPs, the fungus Phanerochaete
chrysosporium biofabricated unique Se-Te nanospheres and needle-like nanoparticles of
500–600 nm (Figure 6) [65].
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Figure 6. (A) TEM image of the hyphae of Phanerochaete chrysosporium that depicts Se-Te alloy NPs. STEM-EDS elemental
mapping for Se (B) and Te (C) that confirms the alloy character of these Se-Te NPs. Adapted from [65] with permission
from Elsevier.

Additionally, Asghari-Paskiabi et al. reported the formation of stable Se-S NPs inside
S. cerevisiae [209]; Vogel et al. investigated the extracellular synthesis of Se-S NPs by
Azospirillum brasilense mainly attributable to the high negative surface charge due to the
covering organic layer made of proteins and carbohydrates [125].
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9. Bioapplications of SeNPs and TeNPs

In the field of nanobiotechnology, nanoparticles represent the core of a nano-biomaterial;
they can be functionalized with different moieties to reduce the toxicity and improve the
effects of the drugs [264–266]. Moreover, nanoparticles can be used for various medical,
industrial, or biological applications. For instance, in nanomedicine, a wide number
of surface structures to functionalize the NP surface have been developed for imaging,
sensing, and drug delivery applications [267]; the as-obtained NPs can be used for the
detection of pathogens and biomolecules or the hyperthermia treatment of cancer [268].

Nanoscale selenium has attracted the attention of scientists due to its bioavailability
and lower toxicity compared to the other forms of selenium [269]. Gao et al. studied the
antioxidant properties of SeNPs and demonstrated the reduced risk of selenium toxic-
ity [187]. Moreover, SeNPs can be used as an antioxidant in food additives due to their
lower risk of toxicity. Besides their antioxidant activity, SeNPs are also an excellent chemo-
preventive agent against cancer as well as a potential anticancer drug [270]. Specifically, the
efficacy and specificity of using nanoselenium at a concentration as low as 2 µg mL−1

against prostate cancer has been reported [174]. Other studies highlighted the antimicrobial
properties [114] and antifungal activity [271] of SeNPs.

The antimicrobial, antioxidant, antifungal, and anticancer properties of TeNPs have
been well documented. For instance, Shakibaie et al. described the antioxidant and
antimicrobial properties of biologically synthesized tellurium nanorods (TeNRs) [272].
Moreover, another study reveals the antimicrobial and anticancer properties of citrus
juice-mediated synthesized TeNPs [62] while the S. baltica-synthesized TeNRs exhibit an
excellent photocatalytic and anti-biofilm activity to counter potential human pathogens [59].
The next graphic summarizes the main applications of SeNPs and TeNPs (Figure 7).
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10. Human Cell-Cytotoxicity and Immune Response Induced by SeNPs and TeNPs

According to several studies, various nanoparticles may be cytotoxic and cause harm-
ful effects or even irreversible damage to human cells [264,265]. Therefore, it is nec-
essary to determine how synthesized nanoparticles affect the immune cells [273–275].
Selenium nanomaterials have attracted considerable attention as a novel anticancer and
chemopreventive agent due to their exceptional biocompatibility and low toxicity [276].
For instance, Cremonini et al. studied the effect of biogenic SeNPs synthesized using
Stenotrophomonas maltophilia (−) and B. mycoides (+) on the viability and function of the
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antigen-presenting cells, DCs, and cultured fibroblasts (nonimmune cells) [114]. As a result,
the as-produced SeNPs did not cause any damage to human cells since there was no stim-
ulation or increase in the release of proinflammatory and immunostimulatory cytokines
including IL-12, IL-6, IL-8, and TNF-α. Other studies indicate the SeNPs synthesized
by bacteria can induce apoptosis or inhibit both growth and proliferation of cancer cells
in culture [276–279]. SeNPs synthesized by Acinetobacter sp. SW30 seem to display a
greater anticancer activity when compared to their chemically synthesized counterparts;
in fact, they reveal a strong antiproliferative activity against 4T1 cells, MCF-7, NIH/3T3,
and HEK293 cell lines [58]. SeNPs synthesized by B. oryziterrae also showed potential
anticancer activity against H157 lung cancer cell lines [280].

An assay carried out using the SeNPs produced by Bacillus sp. MSh-1 against the
human fibrosarcoma cell line (HT-1080) demonstrated that the higher the concentration, the
higher the cytotoxicity [117]. Moreover, the same study showed the anti-invasive property
of HT-1080 cells and the moderate inhibition of MMP-2 expression, a good insight for the
treatment and prevention of tumor metastasis. The MTT assay has been used to assess the
cell viability, proliferation, and cytotoxicity of breast cancer cells.

One possible explanation for the anticancer activity of SeNPs was reported by Ahmed
et al. which encompasses the mobilization of endogenous copper, possibly chromatin-
bound copper, and the subsequent prooxidant action [276]. The authors suggested that
cancer cells are more subject to electron shuttling between copper ions and selenium
nanostructures which release reactive oxygen species (ROS) and thereby kill cancer cells
such as Hep-G2 and MCF-7 cell lines. The precise mechanism of anticarcinogenic actions
of SeNPs is not totally understood. Since it possesses a high bioactivity and represents the
major component of selenoproteins, selenium may increase the carcinogen detoxification,
inhibit tumor cell invasion and angiogenesis, enhance immune surveillance, and provide
antioxidant protection [281–283].

The cytotoxic effects of biosynthesized TeNPs have also been investigated due to their
ability to act as an anticancer and antiviral agent [283–285]. For instance, Forootanfar et al.
demonstrated the lower cytotoxic effect of biogenic TeNRs compared to potassium tellurite
on four cell lines of MCF-7, HT1080, HepG2, and A549 [286]. Overall, the toxicity of Te
nanostructures depends on the employed synthesis method and their size/morphology [287].

11. Conclusions and Perspectives

The present review extensively describes different green methodologies used for
the biofabrication of SeNPs and TeNPs. A variety of microorganisms, such as bacte-
ria, fungi and yeast, and plant extracts have become novel, sustainable, risk-free, and
cost-effective bionanofactories that reduce selenite/selenate and tellurite/tellurate into
their nanosized zero-valent counterparts. To achieve simple, fast, and efficient biolog-
ical syntheses, these eco-friendly procedures leverage the different organic molecules
and metabolites that act as reducing, chelating, and stabilizing agents, such as proteins,
EPS, lipids, flavonoids, phenols, and alcohols. The bioreduction and biotransformation
of different Se and/or Te species into elemental Se/Te have emerged as an important
pursuit in biomedicine, chemistry, nanotechnology, and engineering. Some experimental
parameters including the pH, temperature, reaction time, and precursor concentration,
along with biosurfactants, play an active role in determining the shape, size, crystallinity,
dispersion, and properties of the as-obtained metalloid NPs. This review found that most
of the biogenic SeNPs were spherical while their TeNP counterparts were rod-shaped;
this constitutes a remarkable outcome in bionanotechnology. However, it is necessary
to carry out deeper research on the specifically involved production and transformation
mechanisms. Although the toxicity effect of bioresources (i.e., plants) or the nanoparticles
synthesized have not been fully explored yet, green production opens up opportunities
to manufacture safer nanomaterials and foster better understanding of safety, health, and
environment issues.
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A myriad of literature shows research at the laboratory scale using living or dead
biomass. An important challenge lies in developing large-scale production processes,
where larger amounts of templates, surfactants, and other auxiliary substances are re-
quired. Then, the use of continuous-flow microreactors and other sources such as waste
materials and algae/microalgae may provide significant advantages for industrial level
and nanotechnology applications. The development of greener methods that enhance
the bioavailability, longevity, and composition-control of NPs could be carried out by
computational, synthetic biology and genetic engineering techniques. The employment of
natural “nanofactories” is still at an early stage; however, further research would enable the
development of straightforward approaches to create potential solutions in nanomedicine,
biomedical devices, energy crises, water pollution, and optoelectronics.
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