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IMEN BEN YAHIA
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MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
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RÉSUMÉ

De nombreux problèmes industiels possèdent des propriétés particulières nécessitant

le recours aux méthodes d’optimisation sans dérivées qui ont connu un accroissement

d’intérêt au cours des dernières années. C’est notamment le cas lorsque les fonctions et

les contraintes définissant le problème d’optimisation sont non linéaires, non différen-

tiables, bruitées ou non définies pour certains points du domaine. Les méthodes de re-

cherche directes tel que GPS et MADS sont des méthodes sans dérivées qui s’intéressent à

résoudre, sous contraintes, des problèmes d’optimisation de boı̂tes noires à simple objec-

tif ou biobjectif, où les fonctions correspondent le plus souvent au résultat d’un code in-

formatique. Les sorties des boı̂tes noires sont parfois très coûteuses à évaluer et peuvent

échouer à retourner une valeur pour des raisons inconnues. C’est la principale motivation

qui nous incite à restreindre le nombre d’appels à la boı̂te noire en utilisant une stratégie

de fixation de variables qui nous ramènera à optimiser dans des sous-espaces. Nous pro-

posons une méthode qu’on appellera STATS-MADS fondée sur l’analyse de sensibilité

afin de classer les variables d’entrée selon leur impact sur la sortie. L’optimisation se

fera en alternance entre l’espace des variables d’entrée et les sous-espaces obtenus en

fixant les variables jugées moins influentes. La même technique est utilisée pour s’atta-

quer aux problèmes de grande dimension qui constituent une des limites des méthodes

sans dérivées.

Nous utilisons la plus récente version (3.5.2) du logiciel NOMAD qui est une implémen-

tation en C++ des algorithmes MADS, principalement l’instanciation ORTHOMADS. À

la lumière des problèmes tests ayant jusqu’à 500 variables, nous comparons les résultats

de notre méthode avec MADS et GPS afin de pouvoir conclure à son efficacité.
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ABSTRACT

Many industial problems have particular features requiring the recourse to derivative-

free optimization methods which have shown increasing interest in recent years. This

is particularly the case when the functions and the constraints defining the optimiza-

tion problem are nonlinear, nondifferentiable, noisy or not defined for some points of

the domain. Direct search methods such as GPS and MADS are derivative-free methods

interested in solving, under constraints, simple or biojectif blackbox problems where

functions are usually the result of a computer code. The outputs of blackboxes may be

very costly to evaluate and may fail to return a value for unknown reasons. This is the

main motivation that drives us to reduce the number of calls to the blackbox by using

a strategy of setting variables leading to optimize in subspaces. We propose a method

which will be called STATS-MADS based on sensitivity analyses to rank the input va-

riables according to their impact on the output. The optimization occurs by alternating

between the whole space of input variables and the subspaces obtained by setting the less

important variables. The same technique is used to tackle large-sized problems which is

one of the limitations of derivative-free methods.

We use the most recent version (3.5.2) of the software NOMAD which is a C ++ im-

plementation of MADS algorithms, mainly the instance ORTHOMADS. We compare the

results of our method with MADS and GPS in order to conclude its effectiveness, based

on test problems with up to 500 variables.
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Tableau 4.2 Arrangement des données pour un design factoriel à deux facteurs 42
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CHAPITRE 1

INTRODUCTION

L’optimisation est l’art consistant à maximiser ou minimiser des fonctions mathématiques

souvent sujettes à des conditions particulières. Au 18ème siècle, le mathématicien suisse

Leonhard Euler a proclamé que : �...il n’arrive rien dans le monde qui ne présente

quelque propriété de maximum ou de minimum.� 1 De nos jours, l’optimisation envahit

quasiment tous les domaines et son usage s’avère indispensable dans les sciences ap-

pliquées, l’ingénierie, la médecine, l’économie, etc.

Lorsque les fonctions régissant un système donné présentent des irrégularités, l’optimi-

sation devient problématique. L’aspect non lisse en mathématiques et en optimisation est

de plus en plus fréquent et dépeint un grand nombre de phénomènes naturels auxquels

on fait face. Plusieurs problèmes de grande ampleur, dont nous en présenterons un, sont

touchés par cet aspect aussi bien que par d’autres.

Ces problèmes s’écrivent sous la forme :

min
x∈Ω⊆Rn

f(x)

où : f : X → R ∪ {∞} est la fonction mathématique à minimiser ou fonction objectif,

Ω = {x ∈ X : g(x) ≤ 0} est le domaine réalisable, g : X → (R ∪ {∞})m sont les

conditions à respecter ou fonctions de contraintes.

1. Les mathématiques, les idées et le réel physique (2006) par Lautman, p. 211 (Google-Livres)
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1.1 Mise en contexte

Ce mémoire s’inscrit dans le cadre d’optimisation non lisse de boı̂tes noires. Ces dispo-

sitifs sont caractérisés par un fonctionnement interne dissimulé qui correspond, dans la

plupart des cas, à un code informatique. Une boı̂te noire reçoit une ou plusieurs entrées

et retourne une ou plusieurs sorties et peut être représentée shématiquement par la figure

1.1.

Figure 1.1 Schéma simplifié d’une boı̂te noire

Les sorties sont les fonctions objectif ou de contraintes qu’on désigne par fonctions de

la boı̂te noire. On s’intéresse au cas mono-objectif (contraint ou non) pour lequel on

cherche à minimiser une seule fonction. En effet, maximiser f revient à minimiser −f .

Mise à part leur caractère dissimulé, les boı̂tes noires peuvent se caractériser par :

– Des fonctions dont l’expression analytique n’est pas fournie et pouvant être disconti-

nues, non différentiables et non convexes ;

– La présence possible de bruit qui ajoute de l’incertitude et de la rugosité ce qui per-

turbe les sorties ;

– Des échecs d’évaluation de fonctions sans motif (corruption dûe au bruit ou pour des

raisons inconnues) dont le coût est souvent égal au coût de l’évaluation ;

– La multi-modalité : la présence de plusieurs optima locaux ;

– Un temps d’évaluation lourd qui peut varier de quelques minutes à quelques semaines ;

– Un espace mémoire important pour stocker les informations transmises (les sorties).

L’optimisation de boı̂tes noires est la tâche consistant à manipuler les entrées et lire les
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sorties successivement jusqu’à l’obtention éventuelle d’une bonne solution et ce, sans

aucune connaissance de l’intérieur de la boı̂te.

Un algorithme d’optimisation, par exemple MADS (Audet et Dennis, Jr., 2006) ou GPS

(Torczon, 1997), est une automatisation de cette tâche. À partir d’un point initial x0 ∈ X ,

on tente de trouver un nouveau candidat réduisant la fonction objectif f et respectant la

contrainte g(x) ≤ 0 (fig.1.2). Si c’est le cas, alors ce point devient le nouveau point à

améliorer et les nouvelles valeurs de sortie sont retournées à l’algorithme d’optimisation,

afin qu’il décide de retenir ou non un nouveau candidat. Les entrées envoyées à la boı̂te

noire sont produites suivant une stratégie de recherche spécifique à chaque algorithme.

Figure 1.2 Principe d’un algorithme d’optimisation de boı̂tes noires pour un problème

de dimension k à une seule contrainte

1.2 Motivations et spécifications

La modélisation de problèmes peut aboutir à des modèles de grande dimension pour les-

quels les algorithmes d’optimisation deviennent impuissants, voire inopérants. En effet,

l’explosion dimensionnelle est étroitement liée à l’inefficacité algorithmique : plus le vo-

lume de l’espace de recherche est grand, plus l’exploration de celui-ci devient difficile.

Certains logiciels d’optimisation sont explicitement déconseillés au delà d’un certain
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nombre de variables d’entrée. Il est donc crucial de trouver une manière pour manier

cette situation.

Une stratégie de fixation de variables s’est révélée prometteuse en mode parallèle (Audet

et al., 2008c) et une autre en mode séquentiel (Booker et al., 1998), en utilisant respecti-

vement une méthode aléatoire et une méthode statistique afin de déterminer les variables

à fixer. Cette approche a permis, dans les deux cas, une descente locale plus rapide (étant

donné que l’exploration de l’espace de recherche est meilleure) et par conséquent une

réduction du nombre d’appels à la boı̂te noire. Dans le présent document, on s’intéresse,

d’une part, à la réduction du nombre d’évaluations des boı̂tes noires, indépendemment

de la dimension de l’espace et d’autre part, à gérer le problème de la grande dimension-

nalité. Nous nous inspirons de l’idée de la technique présentée dans (Booker et al., 1998)

qui repose sur une approche statistique qui a permis de filtrer 11 variables prépondérantes

parmi 31 afin de développer une méthode faisant recours aux outils de la statistique pour

l’identification de variables importantes. Nous nous sommes alors confrontés à deux dif-

ficultés majeures, à savoir : comment identifier les variables influentes (ce qui revient à

identifier celles qui ne le sont pas) et quelle proportion fixer ?

La principale particularité de la technique que nous évoquons par rapport à celle men-

tionnée est qu’on fait appel à la méthode statistique d’une manière itérative, ce qui per-

met d’appliquer l’algorithme d’optimisation sur des sous-espaces de variables d’entrée

différents.

Le principe de la technique est le suivant : on part d’un ensemble de variables d’entrée

(espace complet), on lance l’algorithme d’optimisation sur cet ensemble. Par la suite, on

cherche un sous-ensemble de variables importantes à l’aide de la méthode statistique sur

lequel on relance l’algorithme et ainsi de suite.

Les données à partir desquelles on effectuera une analyse statistique sont regroupées

dans un fichier historique qui recense toutes les solutions visitées par l’algorithme d’op-

timisation ainsi que les sorties de la boı̂te noire correspondantes. Dans le cadre de ce

travail nous avons choisi d’implémenter la méthode statistique en C++ sur le logiciel
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NOMAD (Le Digabel, 2011), pour laquelle l’identification de variables prépondérantes

se fait en un temps de calcul raisonnable tout en tenant compte des caractéristiques des

fonctions de la boı̂te noire.

1.3 Plan du mémoire

Les propos de ce mémoire sont étalés sur sept chapitres organisés de la manière sui-

vante. Les deux premiers chapitres comportent deux revues de la littérature. L’une porte

sur les méthodes d’analyse de sensibilité. Nous tenterons à travers celle-ci de trouver une

méthode statistique adéquate permettant de classer les variables d’entrée, afin d’identi-

fier les variables importantes. L’autre revue concerne les méthodes directes pour l’op-

timisation non lisse. On y retrouve le cadre théorique des algorithmes de recherche di-

recte qui nous intéressent. Ainsi, nous serons en mesure d’intégrer l’aspect statistique à

l’optimisation. Par la suite, nous présenterons une méthode statistique, conforme à nos

spécifications, dont nous décrirons les différents ingrédients. Le chapitre cinq présente

la structure algorithmique de notre méthode ainsi que les extensions qui en dérivent.

Le chapitre six est consacré aux tests des boı̂tes noires et aux résultats numériques des

différentes stratégies qui sont présentées plus tôt. Des profils de performance nous seront

utiles pour apporter un jugement sur l’efficacité de chacune des stratégies. Le mémoire

se conclut au septième chapitre dans lequel nous récapitulerons toutes les démarches et

résultats importants.
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CHAPITRE 2

REVUE DE LA LITTÉRATURE : MÉTHODES DIRECTES ET

OPTIMISATION NON LISSE

Nous présentons d’abord le cadre général de notre projet en abordant le thème de l’opti-

misation non lisse et les méthodes qui y sont dédiées. Après avoir situé les méthodes de

recherche directe dans leur contexte historique, nous en exposons quelques notions fon-

damentales. Finalement, nous détaillons les algorithmes de recherche directe qui nous

intéressent pour la suite de ce mémoire, principalement pour des fins de comparaison.

2.1 Optimisation sans dérivées

L’optimisation sans dérivées (OSD) regroupe l’ensemble des méthodes typiquement dé-

signées pour résoudre des problèmes d’optimisation, où l’estimation des dérivées (par

exemple par différences finies (Dennis et Schnabel, 1996) ou par les techniques de diffé-

rentiation automatique (Gilbert, 1992) est soit très coûteuse, soit imprécise ou même

impossible, étant donné les caractéristiques des fonctions de la boı̂te noire.

Les techniques d’OSD sont divisées en plusieurs catégories. On peut en citer les mé-

taheuristiques (le recuit simulé (Kirkpatrick et al., 1983), les algorithmes reposant sur

une stratégie évolutionnnaire (Jebalia, 2008), les méthodes basées sur des opérations sur

un simplexe (Nelder et Mead, 1965), les méthodes directes directionnelles (par motifs

(Torczon, 1997), par treillis adaptifs (Audet et Dennis, Jr., 2006), multidirectionnelles

(Dennis, Jr. et Torczon, 1991), utilisant les directions conjuguées (Rosenbrock, 1960)

ainsi que les méthodes modélisant la fonction objectif (fonctions de substitution) soit

par construction de surface de réponse (Jones et al., 1998), soit en utilisant les fonctions



7

de base radiale (Björkman et Holmström, 2000) ou par interpolation dans une région

de confiance (Powell, 2004), (Berghen, 2004), (Conn et al., 1998), (Conn et al., 2006),

(Conn et Toint, 1996).

En l’occurence, nous nous intéressons particulièrement aux méthodes directes auxquelles

nous consacrons la section suivante.

2.2 Méthodes de recherche directe

Les méthodes de recherche directe, connues aussi sous le nom de � méthodes d’ordre

zéro � (vu qu’elles ne font pas de calcul de dérivées) (Lewis et al., 2000), constituent une

classe de l’OSD pour laquelle la retenue ou le rejet d’une solution courante repose uni-

quement sur des comparaisons algorithmiques des valeurs de la fonction objectif. Une

caractérisation détaillée de ces méthodes est donnée dans (Trosset, 1997). Les méthodes

directes ont surgi vers les années 1950 comme étant des heuristiques (dont les plus po-

pulaires sont : (Hooke et Jeeves, 1961) et (Nelder et Mead, 1965)) et ont été écartées

vers le début des années 1970 en faveur de recherches fertiles sur les méthodes newto-

niennes (Dennis, Jr. et Schnabel, 1983) . Elles ont connu un regain d’intérêt au début des

années 1990 avec l’apparition des premiers résultats de convergence dans un contexte de

programmation parallèle (Torczon, 1991). Dès lors, leur utilisation s’est avérée efficace

à résoudre des problèmes d’optimisation complexes avec des propriétés de convergence

rigoureuses.

2.3 Ensembles générateurs et bases positives

Les ensembles générateurs et les bases positives sont des notions importantes pour les

algorithmes de recherche directe. Un ensemble générateur [d1 . . . dl] est un ensemble de
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vecteurs engendrant positivement l’espace Rn :

{v ∈ Rn : v = α1d1 + . . .+ αldl, αi ≥ 0 : i = 1, . . . , l} = Rn.

La théorie des bases positives a été initialement introduite dans (Davis, 1954). Une base

positive de Rn est un ensemble de vecteurs non-nuls indépendant (c-à-d de rang maxi-

mal pour lequel aucun vecteur ne peut s’écrire sous forme de combinaison linéaire des

autres vecteurs) qui engendre Rn par des combinaisons linéraires positives (Conn et al.,

2009). La cardinalité d’une base positive varie entre n + 1 (dans ce cas elle est appelée

base positive minimale) et 2n (base positive maximale). Le lecteur intéressé pourra se

référer à (Audet, 2011) pour une preuve sur la cardinalité maximale d’une base positive.

Sous forme matricielle, une base positive maximale de Rn correspond à :

D⊕ = [In − In] = [e1 . . . en − e1 . . . − en], où {e1, e2, . . . , en} est la base canonique

de Rn.

La principale motivation sur laquelle repose l’utilisation des ensembles générateurs po-

sitifs pour certains algorithmes directionnels (Lewis et Torczon, 1996) est basée sur un

théorème qui stipule qu’un ensemble générateur [d1 . . . dl] engendre Rn positivement si

et seulement si pour tout vecteur v ∈ Rn non-nul, il existe un indice dans {1, . . . , l}, tel

que v>di > 0. En choisissant v = −∇f(x) (lorsque ∇f(x) existe et est non-nul), alors

∇f(x)>di < 0. Par conséquent, il existe au moins un indice i ∈ {1, . . . , l} tel que di est

une direction de descente (formant un angle aigu avec v tel que le montre la figure 2.1).
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Figure 2.1 (1) est une base positive minimale de R2 , (2) est un ensemble générateur

positif mais pas une base positive, (3) est une base positive maximale. d1 et d2 sont des

directions de descente pour (1) et (3), d3 et d4 le sont pour (2), lorsque v = −∇f(x).

Dans les trois sections qui suivent, nous allons exposer les algorithmes CS, GPS et

MADS. CS est l’ancêtre de GPS et en est un cas particulier. De même, l’algorithme

MADS est une généralisation de GPS. Il est donc inévitable de passer au travers de l’un

des deux, d’autant plus que nous souhaiterons comparer notre méthode à GPS et MADS

à la suite de ce mémoire.

2.4 Algorithme de recherche par coordonnées (CS : Coordinate Search ou Com-

pass Search )

La recherche par coordonnées (Fermi et Metropolis, 1952) est la méthode directe direc-

tionnelle la plus simple utilisant la base D⊕ pour la génération de directions d’explora-

tion.

On considère le cas non contraint pour lequel on s’intéresse à minimiser une fonction
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objectif f sur Rn sans aucune contrainte :

min
x∈Rn

f(x)

où : f : Rn → R ∪ {∞}. On assigne la valeur infinie à f lorsque l’évaluation échoue.

CS est une méthode itérative, on dénote par k le compteur du nombre d’itérations. On

émet l’hypothèse qu’on peut fournir un point initial x0 tel que f(x0) < ∞ et on définit

l’ensemble des points de la sonde (le cadre) par :

Pk = {xk + ∆kd : d ∈ D⊕}.

xk : est l’itéré courant qui représente le meilleur point à date et est aussi appelé centre

de sonde.

∆k : est le pas considéré à l’itération k qui sera désigné plus tard par paramètre de taille

du treillis.

Algorithme 1 : L’algorithme de recherche par coordonnées
1 : Initialisation : k ← 0, x0 ∈ Rn tel que f(x0) <∞ et ∆0 > 0
2 : Sonde locale ou POLL : Évaluer la fonction objectif aux points t de la sonde Pk. Si
on trouve un point tel que f(t) < f(xk), alors : xk+1 ← t et l’étape de sonde est
déclarée comme réussie. Sinon, xk+1 ← xk.
3 : Mise à jour des paramètres :
• Si l’étape de sonde est réussie, ∆k+1 ← ∆k, sinon ∆k+1 ← ∆k/2 et xk+1 ← xk.
• k ← k + 1 et retourner à 2 si aucune condition de terminaison n’est satisfaite.

Les conditions de terminaison sont le plus souvent une tolérance sur la taille du treillis

(c-à-d qu’on doit vérifier que ∆k < ∆tol) ou un nombre maximum d’évaluations de la

fonction objectif.

Un algorithme CS de base consiste à évaluer 2n directions autour du centre de sonde

courant (xk). Si un point t appartenant à Pk est une amélioration de la solution courante,

alors celui-ci devient le centre du cadre et le pas ∆k demeure inchangé, sinon ce pa-

ramètre est réduit à la moitié.
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D’autres stratégies pourront être utilisées pour optimiser CS dont une évaluation dyna-

mique du voisinage de xk commençant par une direction jugée prometteuse pour laquelle

il y a eu un succès à une itération ultérieure ainsi que l’évaluation opportuniste des points

d’essais qui arrêter la recherche locale lorsqu’un meilleur point est trouvé (on passe ainsi

directement à l’étape 3 de l’algorithme 1).

Limites de CS :

Des exemples de la littérature ((Abramson, 2002), (Kolda et al., 2003)) ont montré l’in-

efficacité de cette méthode. D’une part, elle considère un nombre limité de directions

(toujours les mêmes 2n directions) ce qui limite considérablement l’espace de recherche,

d’autre part elle est très sensible aux fonctions non lisses.

2.5 Algorithme de recherche par motifs (GPS : Generalized Pattern Search)

Les méthodes directes de recherche par motif ont été introduites par (Torczon, 1997)

pour la résolution de problèmes de programmation non linéaire sans contraintes et éten-

dues dans le cas des problèmes à contraintes de bornes (Lewis et Torczon, 1999), à

contraintes générales linéaires (Lewis et Torczon, 2000) et non linéaires (Lewis et Torc-

zon, 2002). La méthode généralisée de recherche par motif telle que décrite dans (Lewis

et Torczon, 1996) génère, à chaque itération, une séquence finie d’itérés sur un maillage

avoisinant la solution courante, construite à partir d’une combinaison linéaire positive

de vecteurs d’un ensemble générateur positif. La fonction objectif est alors évaluée aux

différents points de la séquence dans le but de trouver un itéré améliorant la solution ac-

tuelle. Si c’est le cas, alors le maillage est agrandi et l’itéré est retenu sinon le maillage

est contracté et une nouvelle séquence est générée.
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Nous présentons l’algorithme GPS de (Torczon, 1997) tel qu’il a été évoqué dans (Audet

et Dennis, Jr., 2003). La gestion des contraintes sera abordée à la suite de ce chapitre.

Le paramètre de la taille du treillis doit respecter la règle suivante :

∆k+1 = τωk∆k, (2.1)

où τ ∈ Q et ωk ∈ Z compris entre ω+ ≥ 0 et ω− ≤ −1 tel que :

ωk ∈

 {0, 1, . . . , ω+} si l’itération est réussie

{ω−, 1 + ω−, . . . ,−1} sinon.
(2.2)

Dans NOMAD, les valeurs par défaut sont : τ = 2, ω+ = 0 et ω− = −1.

D représente l’ensemble des directions et doit être de la forme D = GZ avec G ∈ Rn×n

une matrice non singulière et Z ∈ Zn×nD , selon (Audet, 2004).

Dk ⊆ D : représente un ensemble générateur positif de directions à l’itération k. Le

treillis (ou le maillage) est une discrétisation spaciale de Rn incluant tous les points

d’essais possibles et est défini par :

Mk =
{
x+ ∆kDz : z ∈ N|D|, x ∈ Vk

}
.

Vk est l’ensemble des points où la fonction objectif a été évaluée au début de l’itération

k.

Pk = {xk + ∆kd : d ∈ Dk} ⊆Mk.

GPS introduit une étape de recherche qui n’apparaı̂t pas dans CS : c’est la recherche

globale ou SEARCH. La recherche globale est optionnelle et flexible et peut être op-

portuniste (un succès termine immédiatement cette étape) ou exhausive (l’ensemble des

points de Sk est évalué). Elle permet d’exploiter les connaissances du problème en visant

un nombre fini de points d’essai prometteurs. Elle consent à l’utilisation de différentes

stratégies de recherche tels que les métaheuristiques de recherche à voisinage variable
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(Audet et al., 2008a), les modèles de substitution ((Booker et al., 1999), (Conn et Le Di-

gabel, 2011)) et l’échantillonnage par hypercube latin (Tang, 1993), afin de mieux explo-

rer l’espace de recherche. L’incorporation de cette étape qualifie les méthodes directes

directionnelles tels que MADS et GPS de méthodes hybrides qui associent des techniques

autre que directionnelles afin de guider l’optimisation.

Algorithme 2 : L’algorithme de recherche par motif GPS

1 : Initialisation : k ← 0, x0 ∈ Ω tel que f(x0) <∞, ∆0 > 0, τ , ω− et ω+.

2 : Recherche globale ou SEARCH : Évaluer f sur Sk un sous ensemble fini de Mk en

utilisant une stratégie prédéterminée afin de trouver t ∈ Sk tel que f(t) < f(xk).

3 : Sonde locale ou POLL : Si la recherche globale n’est pas un succès, considérer

Dk ⊆ D et évaluer f aux points de Pk ⊂Mk.

4 : Mise à jour des paramètres :

• S’il existe t ∈ Tk = Sk
⋃
Pk tel que f(t) < f(xk) (itération réussie) alors xk+1 ← t,

sinon xk+1 ← xk (itération échouée).

• Mettre à jour ωk selon (2.2) et ∆k+1 selon (2.1).

• k ← k + 1 et retourner à 2 si aucune condition de terminaison n’est satisfaite.

À l’itération k, l’ensemble des points d’essai définit Tk. Si f(t) < f(xk), pour tout

t ∈ Tk, alors y est un point améliorant du treillis. Si f(xk) ≤ f(y), pour tous les y ∈ Pk,

alors xk est un optimum local du treillis.

On peut remarquer que l’algorithme CS est bel et bien un cas particulier de GPS, si on

prendD = D⊕, ω+ = 0, ω− = −1 et τ = 2 pour l’algorithme 2 en excluant la recherche

globale (Tk = Pk).
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Limites de GPS :

On retrouve des exemples pathologiques pour GPS dans la littérature qui sont dûs à un

nombre fini de directions de sonde qui mène soit à de faibles résultats de convergence

(Audet, 2004), soit à la non-optimalité des résultats (Kolda et al., 2003).

2.6 Algorithme de recherche par treillis adaptifs (MADS : Mesh Adaptive Direct

Search)

L’algorithme MADS constitue une généralisation de GPS dont une première implémenta-

tion est proposée dans (Audet et Dennis, Jr., 2006) avec différentes possibilités de choix

de directions. Il est destiné à améliorer GPS en offrant une exploration plus efficace

de l’espace et des résultats de convergence robustes. Ainsi, il permet d’en combler les

lacunes observées dans (Audet, 2004). Nous nous situons désormais dans le cadre des

problèmes contraints (où les contraintes peuvent être non linéaires). Plus précisément,

nous nous intéressons à ceux de la forme :

min
x∈Ω

f(x)

où Ω = {x ∈ X : gj(x) ≤ 0, j ∈ J = {1, 2, . . . ,m}} , f, gj : X → R ∪ {∞}, X et Ω

étant des sous-ensembles de Rn.

Ω est le domaine réalisable pour lequel on ne pose aucune hypothèse de linéarité, de

convexité, etc. Il est défini à travers X qui représente l’ensemble des contraintes non

relaxables ou inviolables. f et gj sont des fonctions de boı̂tes noires qui portent les

caractéristiques mentionnées en introduction. Les gj sont des contraintes relaxables ou

violables qui procurent une mesure de la violation subie. D’autres contraintes qualifiées
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de cachées font en sorte que la boı̂te noire peut échouer à retourner une valeur (par

exemple dans le cas où la résolution d’un système d’équations différentielles n’a aucune

solution ou simplement pour des raisons inconnues propres à la boı̂te noire) ce qui se

traduit formellement par une valeur de retour infinie.

À la différence de GPS qui ne considère qu’un seul paramètre ∆k du treillis, l’algorithme

MADS apporte une légère modification à celui-ci, il devient alors ∆m
k afin de le distinguer

du paramètre de taille de cadre ∆p
k.

Figure 2.2 Les cadres de GPS (gauche) et MADS (droite) en gras, Pk = {p1, p2, p3, p4},

figure tirée de (Abramson et Audet, 2006)

La figure 2.2 illustre la distinction entre GPS et MADS ainsi que le rôle de ∆m
k et ∆p

k.

Dans la partie gauche de la figure, la taille du cadre ∆p
k est la même pour GPS et MADS.

Pour MADS, la taille du treillis ∆m
k est beaucoup plus faible que la taille du cadre ∆p

k.

Par conséquent, il présente plusieurs possibilités de constructions de points de sonde, ce

qui constitue sa contribution majeure à générer un ensemble de directions dense.

Compte tenu du paramètre ∆m
k , les expressions de Mk et Pk deviennent :

Mk =
{
xk + ∆m

k Dz : z ∈ N|D|, x ∈ Vk
}
,
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Pk = {xk + ∆m
k d : d ∈ Dk} ⊆Mk.

La distinction entre GPS et MADS est que dans MADS, Dk n’est pas contraint à être un

sous-ensemble de D.

Pour tout d ∈ Dk (d 6= 0), une direction de sonde :

– Il existe u ∈ N|Dk| tel que d = Du ;

– La distance entre le centre du cadre xk et un point du cadre t ∈ Pk est bornée par un

multiple de ∆p
k : ∆m

k ‖d‖ ≤ ∆p
k max {‖d′‖ : d′ ∈ D} ;

– Les limites des ensembles Dk normalisés (Dk =
{

d
‖d‖ : d ∈ Dk

}
), tels que définis

dans (Price et Coope, 2003), sont des ensembles générateurs positifs.

Les paramètres ∆m
k et ∆p

k doivent vérifier les conditions suivantes :

∆m
k ≤ ∆p

k, pour tout k, (2.3)

et

lim
k∈K

∆m
k = 0⇔ lim

k∈K
∆p
k = 0, pour tout ensemble fini d’indices K. (2.4)

Mise à part les différences mentionnées, un algorithme MADS correspond à l’algorithme

2 de la section précédente.

Gestion des contraintes :

Chaque contrainte est gérée en utilisant l’une des trois approches suivantes : la barrière

extrême (EB pour Extreme Barrier), la barrière progressive (PB pour Progressive Bar-

rier) et la barrière progressive à extrême (PEB pour Progressive to Extreme Barrier) qui
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est une combinaison des deux approches précédentes .

La barrière extrême (appliquée sur MADS dans (Audet et Dennis, Jr., 2006)) consiste à

considérer la fonction fΩ suivante qui rejète automatiquement tous les points d’essai t

qui ne font pas partie du domaine réalisable ce qui revient à considérer le problème sans

contraintes (Ω = Rn) :

fΩ(t) =

 f(t) si t ∈ Ω,

∞ sinon.

Cette approche peut permettre de réduire le nombre d’évaluations de la fonction objectif

(qui est coûteuse) en excluant l’ensemble des solutions non réalisables.

La barrière progressive est issue de la méthode du filtre (Fletcher et Leyffer, 2002) qui

a été utilisée avec GPS (Audet et Dennis, Jr., 2004) pour les problèmes à contraintes

générales et adaptée pour MADS dans (Audet et Dennis, Jr., 2009). Elle consiste à intro-

duire une fonction non négative h qui mesure la violation des contraintes :

h : Rn → R ∪ {∞} .

h(t) :=


∞ si t 6∈ X ,∑
j∈J

(max(gj(t), 0))2 sinon.

Il résulte de la définition de h que :

– t ∈ Ω⇔ h(t) = 0 ;

– Si 0 < h(t) <∞ alors t ∈ X\Ω.

Cette approche tolère les points d’essais qui violent les contraintes relaxables. Plus

précisément, à chaque itération k, les points d’essai dont la mesure de la violation

n’excède pas un certain seuil hmax
k (qui décroı̂t tout au long de l’itération) sont évalués.

Les autres points sont simplement écartés. Le problème d’optimisation contraint est ainsi

perçu comme un problème biobjectif minimisant à la fois f et h avec une priorité ac-
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cordée à la réduction de h, afin d’obtenir des solutions réalisables.

La barrière progressive à extrême (Audet et al., 2010b) traite initialement les contraintes

relaxables par la barrière progressive et passe à la barrière extrême dès que ces contraintes

deviennent satisfaites. En effet, si le sondage autour d’un centre de cadre non réalisable

génère un point vérifiant une contrainte violée par le centre de sonde locale, alors celle-ci

est désormais traitée avec la barrière extrême.

Un avantage important de PB et PEB est qu’ils ne requièrent pas de point initial réalisable,

ce qui est intéressant de point de vue pratique pour les problèmes industriels, où il n’est

pas toujours faisable d’en fournir un.

Convergence de MADS :

L’analyse convergence de MADS ainsi que toutes ses instanciations repose sur le calcul

non lisse de Clarke (Clarke, 1983) et est présentée de manière hiérarchique, dépendam-

ment des hypothèses posées sur f et Ω et la façon avec laquelle on gère les contraintes.

Ainsi, pour chaque stratégie EB, PB et PEB, on retrouve une analyse de convergence

respectivement dans (Audet et Dennis, Jr., 2006), (Audet et Dennis, Jr., 2009) et (Audet

et al., 2010b). Les définitions sur lesquelles les résultats suivants reposent sont en an-

nexe.

On se place dans le cas général d’un problème contraint. On suppose que l’on peut

fournir un point initial dans X mais pas nécessairement dans Ω et que tous les itérés

appartiennent à un ensemble compact.

Les conditions (2.3) et (2.4) impliquent le résulat suivant et assurent la convergence de

MADS :

lim
k→+∞

inf ∆p
k = lim

k→+∞
inf ∆m

k = 0.

(Audet et Dennis, Jr., 2003) ont prouvé l’existence d’une sous-suite raffinante (définition

I.2) d’optima locaux {xk}k∈K qui converge. Notons x̂ le point limite de cette sous-suite.
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Compte tenu de la gestion des contraintes, x̂ peut être la limite d’une sous-suite de

centres de cadres réalisables ou non.

Dans le premier cas, il a été montré dans les articles cités que :

– Si aucune hypothèse n’est émise sur f , alors x̂ est le point limite d’une sous-suite d’op-

tima locaux devenant infiniment fins. De plus, si f est semi-continue inférieurement

près de x̂, alors f(x̂) ≤ lim
k
f(xk) ;

– Si f est Lipschitz près de x̂ (définition I.1) alors les dérivées généralisées de Clarke

(définition I.3) f ◦(x̂, d) ≥ 0,∀d ∈ THΩ (x̂) (définition I.4). Si THΩ (x̂) est non vide, alors

f
◦
(x̂, d) ≥ 0,∀d ∈ TClΩ (x̂) (définition I.5), c-à-d x̂ est un point Clarke-stationnaire ;

– Si f et Ω sont réguliers près de x̂ (définition I.7), alors f ◦(x̂, d) ≥ 0,∀d ∈ TBΩ (x̂)

(définition I.6), c’est à dire, x̂ est Bouligand-stationnaire ;

– Si f est strictement différenciable près de x̂ et Ω régulier, alors x̂ est Bouligand-KKT-

stationnaire.

Sous de plus amples hypothèses, (Abramson et Audet, 2006) ont établi des résultats

de convergence de deuxième ordre : si f est deux fois strictement différentiable, Ω est

convexe et∇2f(x̂) est non singulier, alors x̂ est un minimum local strict.

Dans le deuxième cas (le cas où les itérés sont non réalisables), les résultats de conver-

gence tiennent pour le problème suivant :

min
x∈X

h(x)

Dans le cas où x̂ ∈ Ω , sous l’hypothèse supplémentaire suivante selon laquelle on peut

garantir qu’il n’y a pas de direction de descente dans le cône hypertangent :

∀d ∈ THΩ (x̂) 6= ∅, il existe ε > 0 pour lequel h◦(x; d) < 0 pour tout x ∈ X ∩ Bε(x̂) qui

vérifie h(x) > 0, où Bε(x̂) est la boule de centre x̂ et de rayon ε.
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2.7 De LTMADS à ORTHOMADS

LTMADS est la première instance de MADS proposée dans (Audet et Dennis, Jr., 2006)

et en est une implémentation stochastique. L’appellation LTMADS dérive de lower tri-

angular matrix où le choix des directions se fait à partir d’une matrice triangulaire

inférieure dont on permute aléatoirement les lignes et les colonnes afin de diversifier

les résultats.

Les paramètres de cette première implémentation correspondent à :

D = Z = [In − In], τ = 4, ω+ = 1, ω− = −1,∆m
0 = ∆p

0 = 1.

Deux possibilités de complétion d’une base positive sont proposées : n + 1 et 2n direc-

tions de sonde.

L’ensemble des directions de sonde normalisées générées par LTMADS est dense dans

la boule unité avec une probabilité 1. Cela garantit sous certaines hypothèses la conver-

gence de cette instance de MADS (Audet et al., 2008b) ce qui implique sa validité.

ORTHOMADS est une instance de MADS introduite dans (Abramson et al., 2009) dont

l’émergence repose sur deux principaux motifs : le premier étant la possibilité de re-

produire les résultats d’une expérience, étant donné que l’algorithme utilise la suite

quasi-aléatoire de Halton (Halton, 1960) pour générer des directions déterministes or-

thogonales, le deuxième est lié au fait que ORTHOMADS permet d’éviter les angles

assez grands entre les directions de sonde à une itération donnée (donc les régions

non explorées), ce qui constitue un inconvénient de LTMADS. Des tests provenant de

problèmes tirés de la littérature ont montré la dominance de cette instance sur la précé-

dente pour une seule utilisation (ce qui correspond au cas des boı̂tes noires où l’on réduit

le nombre d’appels). ORTHOMADS est déterministe, cependant un paramètre de la suite

de Halton permet de varier les résultats à chaque utilisation. Ce paramètre correspond au

nème nombre premier pour le logiciel NOMAD, où n est la dimension du problème.
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Nous gardons un intérêt particulier pour cette instance et nous y serons de retour dans un

chapitre prochain, étant donné que c’est l’instance par défaut de NOMAD qu’on utili-

sera pour développer notre algorithme. Notons que le même résultat de convergence que

LTMADS est assuré, sans terme de probabilité, puisque ORTHOMADS est déterministe.
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CHAPITRE 3

REVUE DE LA LITTÉRATURE : MÉTHODES D’ANALYSE DE SENSIBILITÉ

Dans le présent chapitre, nous donnons un aperçu sur les méthodes d’analyse de sen-

sibilité (AS) dont l’objectif principal concorde avec le nôtre. Nous tâchons de trouver,

parmi celles-ci, une méthode conforme aux spécifications mentionnées au chapitre 1.

Nous introduisons aussi les concepts statistiques en analyse de la variance (ANOVA) qui

nous seront utiles au chapitre suivant.

3.1 Introduction à l’analyse de sensibilité

L’étude de l’incidence des variables d’entrée sur la variable de sortie pour l’identification

des variables influentes nous amène à l’AS de la sortie par rapport à chacune des entrées.

L’AS peut être définie comme étant l’étude de l’impact de la variation des entrées sur la

variation de la sortie.

On considère un modèle mathématique de simulation ou de prédiction décrivant un pro-

cessus donné (chimique, physique, biologique, financier, etc.) et retournant une sortie Y

qu’on supposera unidimensionnelle :

Y = f(X1, X2, . . . , Xk). (3.1)

Sauf indication contraire, pour la suite de ce chapitre, X1, X2, ..Xk sont des variables

indépendantes et k est le nombre de variables d’entrée.

La fonction f peut être très complexe, lorsque par exemple, son évaluation requiert la

résolution d’un système d’équations différentielles. En pratique, f est calculée par un

code informatique.
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Selon (Saltelli et al., 2000) l’AS permet de :

→ Déterminer si le modèle décrit bien le processus qu’il représente ;

→ Identifier les facteurs qui contribuent à la variabilité de la sortie et qui requièrent plus

d’intérêt afin d’améliorer le modèle ;

→ Déterminer les paramètres non significatifs qui peuvent être éliminés du modèle ;

→ Détecter s’il y a des interactions entre certaines variables d’entrée ou un groupe de

variables ;

Dans le cas où on ne peut pas émettre d’hypothèses sur le modèle et où la modélisation

du processus n’est pas l’objectif visé de l’AS, (Saltelli et al., 2004) rapportent d’autres

éléments qui correspondent mieux à ce contexte :

→ Hiérarchisation des facteurs (Factors Prioritisation) : identification du facteur le plus

influent qui prend la grande part de variance de la sortie ainsi que ceux qui en prennent

de moins en moins, ce qui permet de classer les facteurs ;

→ Fixation de facteurs (Factors Fixing) : identification du facteur ou du groupe de fac-

teurs qu’on peut fixer, car ils n’influencent pas la variance de la sortie ;

→ Réduction de la variance (Variance Cutting) : réduction de la variance au dessous

d’un seuil donné en fixant simultanément le moins de facteurs possible. Ceci est utile

surtout en analyse de risque ;

→ Cartographie de la sortie (Factors Mapping) : lorsque la sortie Y est répartie selon

des régions de différentes caractéristiques (par exemple acceptable ou non), alors on

détermine le facteur qui est à l’origine de cette répartition.

On s’intéresse, dans cette revue de la littérature, aux méthodes qualitatives et quantita-

tives d’AS qui tentent de déterminer les variables influentes ou de hiérarchiser les va-

riables d’entrée en fonction de leur importance sur la sortie. Par conséquent, les mesures

de sensibilité qui permettent d’étudier la relation entre l’entrée et la sortie (linéarité, mo-

notonie, etc.) tel que le coefficient de détermination ou de corrélation (de Pearson) ne

feront pas l’objet de notre étude. Pour cela, on se limitera aux méthodes locales, aux

méthodes de criblage et aux méthodes globales basées sur la décomposition de la va-
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riance et la régression linéaire.

3.2 Méthodes locales

Les méthodes locales donnent, tel que leur nom l’indique, une information sur l’impact

de la variation d’une variable d’entrée à un niveau local, c’est à dire, lorsque celle-ci

prend une valeur nominale donnée x0. Cela revient à évaluer les k dérivées partielles
δY
δXi
|X=x0 du modèle (3.1) ou à les estimer en utilisant, par exemple, la dérivation au-

tomatique de codes. Ces quantitées sont des coefficients de sensibilité (Saltelli et al.,

2000) représentant une estimation linéaire du nombre d’unités de variation de Y suite à

une variation d’une unité de Xi.

Afin d’être indépendant de l’unité de grandeur, ces coefficients peuvent être normalisés

en considérant la variance des Xi et celle de Y :

Ŝi =
V (Xi)

V (Y )

δY

δXi

|X=x0 .

Le classement des variables se fait alors en fonction des coefficients normalisés. Les fac-

teurs les plus influents ont un coefficient plus élevé. La principale limite de ces méthodes

est le caractère local de l’étude. Le classement de variables obtenu est convenable seule-

ment si le modèle est linéaire ou quasi-linéaire.

3.3 Méthodes de criblage

Les méthodes de criblage (screening) sont des méthodes économiques en temps de cal-

cul qui visent à identifier qualitativement les variables d’entrées importantes pour les

modèles de grande dimension (des centaines d’entrées) difficiles à explorer. Dans la

suite de cette section, on se limitera aux méthodes de criblage permettant l’identification
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d’un petit nombre de variables d’entrée d’un modèle. On y retrouve les designs OAT

(One At a Time), la méthode de Morris (Morris, 1991), les designs de (Cotter, 1979) et

de (Andres et Hajas, 1993) et bien d’autres.

Les designs OAT sont des méthodes de criblage typiques et simples qui consistent à

étudier l’influence de la variation d’une variable d’entrée donnée à la fois. Chaque va-

riable prend deux ou trois modalités. À deux modalités, k + 1 évaluations sont requises

(Iooss, 2011). Quoique les méthodes OAT soient locales et ne tiennent pas compte des

interactions, (Morris, 1991) a proposé une méthode globale, couvrant tout l’espace des

variables d’entrées, qui repose sur un design OAT permettant de déterminer les facteurs

non influents ou les facteurs ayant un effet linéaire ou additif ou bien ceux dont l’effet

est non linéaire ou avec interactions. L’idée de base de cette méthode est une analyse sta-

tistique d’un échantillon d’effets élémentaires (dérivées partielles) des variables afin de

mesurer l’importance relative des entrées. Cela consiste à calculer plusieurs réalisations

di d’un facteur à la fois :

di =
1

∆
(f(x1, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− f(x1, . . . , xk)),

où ∆ 6= 0 ∈ R.

Une moyenne élevée des di indique que le facteur xi a une grande influence sur la varia-

bilité de la sortie, tandis qu’une variance élevée renseigne sur une non-linéarité ou une

corrélation avec les autres facteurs, sans pour autant pouvoir le trancher.

(Cotter, 1979) a présenté un design systématique factoriel répliqué nécessitant 2k + 2

évaluations. Cependant, celui-ci n’est pas assez précis et ne détecte pas les facteurs im-

portants dont les effets s’annulent mutuellement. (Andres et Hajas, 1993) ont développé

un design factoriel fractionnaire itératif permettant d’estimer les effets principaux et les

effets quadratiques avec un nombre faible d’évaluations (par rapport au nombre de fac-

teurs), en faisant des regroupements de facteurs. Une autre technique de criblage par

groupe a été proposée par (Bettonvil et Kleijnen, 1997). Enfin, (Saltelli et al., 2008) ont
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décrit une méthode de criblage (Elementary Effets method) ayant la flexibilité d’un de-

sign OAT qui permet de surmonter quelques limites mentionnées et peut être étendue

dans le cas de groupement de facteurs, lorsque cela est nécessaire.

3.4 Méthodes globales

Les méthodes globales tiennent compte de tout l’espace de variation de la sortie afin de

quantifier la part de la variance relative à chacune des entrées. Deux propriétés per-

mettent de caractériser les méthodes globales selon (Saltelli et al., 2000) : la forme

et le domaine de la densité de probabilité de la fonction de sortie ainsi que l’étude

de la sensibilité d’une variable Xi en faisant varier toutes les autres variables. Nous

décrivons ici quelques méthodes basées sur la décompostion de la variance de la sortie

et la régression linéaire. D’autres méthodes basées, entres autres, sur les tests statistiques

et les métamodèles sont exposées dans (Iooss, 2011).

3.4.1 Méthodes basées sur la variance

L’intérêt des méthodes d’AS basées sur la variance réside dans leur indépendance du

modèle et leur capacité de capturer la variance des facteurs d’entrée ainsi que les effets

d’interactions. Le seul inconvénient est le coût de l’estimation. Parmi les méthodes d’AS

basées sur la variance, les méthodes de Sobol et FAST sont les plus connues.

Méthode de Sobol

(Sobol, 2001) a établi, sous certaines hypothèses, à partir d’une décomposition connue

sous le nom de HDMR (pour High Dimensional Model Representation), les mesures de
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sensibilité suivantes :

Si1...is =
Di1...is

D
, 1 ≤ i1 < . . . < is ≤ k, (3.2)

où

D =
k∑
s=1

k∑
i1<...<is

Di1...is , (3.3)

D et Di1...is sont des constantes appelées variances.

Les Si sont appelés indices de sensibilité d’ordre un de Sobol correspondant au facteur

Xi et permettant de quantifier son effet (effet principal) sur la sortie.

De même, l’indice de sensibilité d’ordre deux Sij permet de quantifier l’effet de l’inter-

action entre les facteurs Xi et Xj et ainsi de suite. À partir de (3.3), on peut déduire que

la somme de tous les indices de tous les ordres est égale à 1 :

k∑
s=1

k∑
i1<...<is

Si1...is = 1.

On définit également l’indice de sensibilité total du facteur Xi par :

STi = 1− S−i, (3.4)

où S−i est la somme de tous les termes Si1...is n’incluant pas l’indice i.

Théorème de la variance conditionnelle :

La variance de la sortie V (Y ) peut être aussi décomposée en utilisant les variances

conditionnelles à Xj et X−j (X−j désigne tous facteurs sauf celui d’indice j). Cette
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décomposition est valable dans tous les cas, indépendemment de l’orthogonalité des

entrées (Saltelli et al., 2004) :

V (Y ) = V (E(Y |Xj)) + E(V (Y |Xj)),

et

V (Y ) = V (E(Y |X−j)) + E(V (Y |X−j)),

où V (E(Y |Xj)) est la variance de l’espérance de Y conditionnellement àXj , etE(V (Y |Xj))

est l’espérance de la variance Y conditionnellement à Xj .

En normalisant les deux décompositions, on obtient :

1 =
V (E(Y |Xj))

V (Y )
+
E(V (Y |Xj))

V (Y )
,

et

1 =
V (E(Y |X−j))

V (Y )
+
E(V (Y |X−j))

V (Y )
.

Il est alors démontré dans (Saltelli et al., 2000) que l’indice de sensibilité du premier

ordre de Sobol, ainsi que celui d’ordre total, traduisant tous les deux l’influence de Xi

sur Y , peuvent s’écrire sous la forme :

Si =
V (E(Y |Xi))

V (Y )
=
Di

D
, (3.5)

STi =
V (E(Y |X−i))

V (Y )
=
D−i
D

. (3.6)

Il est également démontré dans (Saltelli et al., 2000) que l’indice de sensibilité d’ordre
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deux traduisant l’influence de deux variables Xi et Xj sur Y peut s’écrire sous la forme :

Sij =
V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj))

V (Y )
=
Dij

D
. (3.7)

Les indices d’ordre supérieur sont définis de façon similaire.

Estimation des indices de Sobol :

Nous présentons une méthode d’estimation des indices de sensibilité de Sobol attribuable

à (Saltelli, 2002) qui constitue une amélioration de la méthode originale de (Sobol, 1990)

qui requiert N × 2k évaluations, étant donné le modèle (3.1) et un échantillon de taille

N .

L’indice de sensibilité d’ordre un est estimé par :

Ŝj =
Ûj − Ê2(Y )

V (Y )
.

L’évaluation de cette quantité nécessite la génération de deux échantillons de matrice de

même taille :

M1 =


x

(1)
1 x

(1)
2 · · · x

(1)
k

x
(2)
1 x

(2)
2 · · · x

(2)
k

...
...

...

x
(N)
1 x

(N)
2 · · · x

(N)
k

 ,
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et

M2 =


x

(1′)
1 x

(1′)
2 · · · x

(1′)
k

x
(2′)
1 x

(2′)
2 · · · x

(2′)
k

...
...

...

x
(N ′)
1 x

(N ′)
2 · · · x

(N ′)
k

 .

La moyenne des observations E(Y ) est calculée à partir de M1 ou M2 (ou les deux),

tandis que, pour estimer Uj , on définit une troisième matrice Nj obtenue à partir de M1,

où toutes les colonnes sauf celle de la variable Xj sont ré-échantillonnées.

Nj =


x

(1′)
1 x

(1′)
2 · · · x

(1)
j · · · x

(1′)
k

x
(2′)
1 x

(2′)
2 · · · x

(2)
j · · · x

(2′)
k

...
...

...
...

x
(N ′)
1 x

(N ′)
21 · · · x

(N)
j · · · x

(N ′)
k

 .

Les estimations de E(Y ) et Uj sont données par :

Ê(Y ) =
1

N

N∑
r=1

f(x
(r)
1 , x

(r)
2 , . . . , x

(r)
k ),

Ûj =
1

N − 1

N∑
r=1

f(x
(r)
1 , x

(r)
2 , . . . , x

(r)
k )f(x

(r′)
1 , x

(r′)
2 , . . . , x

(r′)
(j−1), x

(r)
j , x

(r′)
(j+1), . . . , x

(r′)
k ).

Le coût associé permettant l’estimation des indices de sensibilité de premier ordre est de

N × (k + 1) évaluations de f .

Enfin, l’indice de sensibilité total est estimé par :

ŜTj = 1− Û−j − Ê2(Y )

V̂ (Y )
,

où :
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Û−j =
1

N − 1

N∑
r=1

f(x
(r)
1 , x

(r)
2 , . . . , x

(r)
k )f(x

(r)
1 , x

(r)
2 , . . . , x

(r)
(j−1), x

(r′)
j , x

(r)
(j+1), . . . , x

(r)
k ).

Un coût supplémentaire de Nk est dû à l’estimation des indices totaux. Une extension

de cette méthode permet d’obtenir tous les indices d’ordre un, d’ordre deux et totaux au

coût de N × (k + 2) évaluations.

Méthode de FAST

FAST, l’acronyme de Fourier Amplitude Sensitivity Test, est une méthode qui a été

développée par (Cukier et al., 1973), (Cukier et al., 1978), (Cukier et al., 1975) et (Schai-

bly et Shuler, 1973) dans un contexte d’AS et d’incertitude.

Définissons d’abord le moment d’ordre r de Y du modèle (3.1) (Chan et al., 1997) :

E(Y r) =

∫
Ωk

f r(x1, x2, . . . , xk)p(x1, x2, . . . , xk)dx. (3.8)

où Ωk est l’espace de variation des k variables d’entrée et p est la densité de probabilité

de X = (X1, . . . , Xk).

La méthode de FAST repose principalement sur la conversion de l’intégrale k-dimension-

nelle en x (3.8) en une intégrale unidimensionnelle en s en utilisant la transformation

suivante : xi = Gi(sin(ωi)), pour i = 1, 2, . . . , k.

En utilisant les propriétés des séries de Fourier, la variance de la sortie peut être ap-

prochée par :

V̂ (Y ) =
1

2π

∫ π

−π
f 2(s)ds− [E(Y )]2.
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où : f(s) = f(G1(sin(ω1s)), . . . , Gk(sin(ωks))) et E(Y ) = 1
2π

∫ π
−π f(s)ds.

Un bon choix deGi serait, par exemple : xi = 1
2

+ 1
π

arcsin(sinωis)(Saltelli et al., 2000).

Rappelons que les coefficients de Fourier sont définis par :

Aj =
1

2π

∫ π

−π
f(s) cos(js)ds,

Bj =
1

2π

∫ π

−π
f(s) sin(js)ds.

Une approximation de V (Y ) serait :

V̂ (Y ) '
∞∑

j=−∞

(A2
j +B2

j )− (A2
0 +B2

0) ' 2
k∑
j=1

(A2
j +B2

j ).

Alors, la contribution du facteur Xi à la sortie Y peut être approchée par :

V̂ωi
(Y ) = 2

M∑
j=1

(A2
jωi

+B2
jωi

),

où M est l’harmonique maximal, en général 4 ou 6.

Les indices de sensibilité de FAST sont donc estimés par :

Ŝi =
V̂ωi

(Y )

V̂ (Y )
=

M∑
j=1

(A2
jωi

+B2
jωi

)

k∑
j=1

(A2
j +B2

j )

.

Afin de pouvoir classer les variables d’entrée en utilisant la méthode de FAST, il faut

définir ωi etGi et calculerAj etBj en évaluant la fonction modèle en un nombre suffisant

de points.
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3.4.2 Méthodes basées sur la régression linéaire multiple

Si le modèle est linéaire, les coefficients de régression peuvent servir d’estimateurs quan-

titatifs de sensibilité. Un modèle de régression linéaire est donné par :

Yi = β0 +
k∑
j=1

βjXij + εi, i = 1, 2, . . . , N. (3.9)

Xij représente l’observation i de la variable Xj .

LesXij sont des données obtenues à l’aide d’une stratégie d’échantillonnage (échantillon

de dimension N ).

Les Yi représentent les sorties correspondantes aux échantillons (Xi1, . . . , Xij, . . . , Xik),

i ∈ {1, . . . , N}. Les βj sont les coefficients de régression, des constantes à déterminer

par la méthode des moindres carrés et les εi sont des termes d’erreur.

Sous l’hypothèse d’indépendance des variables d’entrées Xj et en supposant aussi que

celles-ci sont indépendantes des εi, la variance du modèle (3.9) peut être décomposée

comme suit :

V =
k∑
j=1

Vj + Ve.

Vj la part de la variance expliquée par la variableXj et la variance totale V sont estimées

dans (Xu et Gertner, 2008) par :

V̂j = β̂2
jV (Xj) =

1

N − 1
β̂2
j

N∑
i=1

(Xij − X̄j)
2

V̂ = V (Y ) =
1

N − 1

N∑
i=1

(Yi − Ȳ )2.
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La sensibilité relative à la variable Xj est alors donnée par :

Sj =
V̂j

V̂
.

Cet indice de sensibilité est connu sous le nom de SRC pour (Standardized Regression

Coefficient). Il est compris entre 0 et 1 et permet le classement de variables.

Si le modèle n’est pas linéaire mais monotone, alors un autre indicateur peut être utilisé.

Il s’agit de l’indicateur SRRC pour Standardized Rank Regression Coefficient, basé sur

la transformation des rangs. Cette dernière consiste à attribuer la valeur 1 à la plus pe-

tite valeur de sortie, 2 à celle qui lui est directement supérieure et ainsi de suite jusqu’à

attribuer N à la plus grande valeur. On applique le même principe avec les k variables

d’entrée. Le SRRC se calcule, alors, de la même façon que SRC, en considérant les vec-

teurs rangs. Notons que les βj correspondent dans ce cas à βRj : coefficients de régression

associés aux rangs.

Le SRRC a été utilisé, en guise d’exemple, dans (Allard et al., 2011), avec deux autres

méthodes (FAST et polynômes locaux (Da-Veiga, 2005)) pour l’identification des gran-

deurs qui influencent les paramètres d’un modèle de simulation incendie. Le classement

des variables importantes trouvé est le même pour ces trois méthodes. D’autres indica-

teurs de sensibilité sont employés avec différentes techniques d’échantillonnage sur des

problèmes tests linéaires, monotones et non monotones dans (Helton et Davis, 2002).

Nous n’allons pas utiliser directement une des méthodes d’AS évoquées dans le cadre de

cette revue de la littérature pour des raisons que nous expliquerons au chapitre 4. Celui-

ci présentera une méthode basée sur la décomposition de l’ANOVA qui sera en mesure

d’estimer les indices d’ordre un et d’ordre supérieur que nous avons définis plus tôt.
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CHAPITRE 4

MÉTHODOLOGIE STATISTIQUE

Ce chapitre est consacré à l’introduction d’une méthode statistique susceptible d’établir

une certaine hiérarchie des variables d’entrée. Nous présentons une méthodologie basée

sur l’ANOVA généralisée au cas de plusieurs facteurs qui donnera une mesure de sen-

sibilité à chacune des variables d’entrée relativement à la sortie. Nous nous servons

également de l’ANOVA factorielle afin de détecter les interactions, pour le calcul des

indices d’ordre supérieur. Finalement, l’estimation des quantités D, Di et Dij définies

au chapitre précédent permettra d’approximer les indices de sensibilité totaux.

4.1 Choix de la méthode statistique

Au chapitre précédent, nous avons observé un certain nombre de méthodes d’AS pour la

classification de variables. Le choix de la méthode adéquate repose essentiellement sur

les spécifications du projet rencontrés en introduction. (De Rocquigny et al., 2008) ont

abordé les critères d’un bon choix de méthode. Ceux-ci peuvent se résumer ainsi :

– Les propriétés du modèle : linéaire ou non linéaire, monotone ou non monotone (ce

qui pourrait être inconnu a priori), le temps CPU ;

– Les caractéristiques des variables d’entrée du modèle : nombre, indépendance ou

corrélation, présence de variables discrètes ;

– L’objectif de l’étude et les particulatités de la méthode potentielle : qualitative ou

quantitative, locale ou globale, etc.
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Figure 4.1 Arbre de décision pour le choix de la méthode d’AS appropriée, figure tirée

de (De Rocquigny et al., 2008)

La figure 4.1 illustre les critères mentionnés et permet de nous orienter vers les méthodes

de criblage ou les méthodes basées sur l’ANOVA par groupes (puisqu’on ne peut émettre

d’hypothèse sur le modèle et que le coût CPU de la méthode que nous utiliserons doit

être faible). Cependant, compte tenu des spécifications du projet, ceci n’est pas pos-

sible soit parce qu’on ne peut pas vérifier certaines hypothèses, par exemple les entrées

indépendantes (FAST et Sobol), soit parce que la taille de l’échantillon requise est consi-

dérablement grande (d’après (Jacques, 2005), un échantillon de taille 10000 est suffisant

pour une bonne estimation des indices de sensibilité de Sobol), ou encore parce que la

technique de calcul ne peut être appliquée dans le cadre de l’optimisation des boı̂tes

noires : on parle surtout des échantillons générés en fixant les valeurs d’une entrée tout

en variant les autres. Rappelons qu’un échantillon correspond dans notre cas à l’en-

semble des solutions visitées par l’algorithme MADS ainsi que les valeurs de retour

correspondantes (les sorties de la boı̂te noire) recensés dans un fichier historique, si on

lance celui-ci sur un nombre d’évalutions donné (qui doit être le plus petit possible, car

le coût des évaluations est important). C’est à partir de cet échantillon déterministe que
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nous sommes censés effectuer une AS.

Compte tenu de ce qui précède, il apparaı̂t que les méthodes d’AS rencontrées aupara-

vant ne sont pas directement applicables dans notre contexte.

4.2 Calcul des indices de sensibilité d’ordre un

Le calcul des indices de sensibilité des variables d’entrée permet d’étudier l’impact de

celles-ci sur Y = f(X1, X2, ..., Xk). Dans notre cas, Y est la sortie d’une boı̂te noire, le

résultat d’un code informatique. Rappelons la définition de l’indice de sensibilité Si de

la variable Xi quantifiant l’effet de cette dernière sur Y (formule (3.5)) :

Si =
V (E(Y |Xi))

V (Y )
=
Di

D
.

Nous présenterons, un peu plus loin dans cette section, une façon d’estimer cette quantité

en ayant recours à l’ANOVA.

4.2.1 Analyse de la variance à un facteur

Le principal objectif de l’ANOVA à un facteur X (one-way ANOVA) sur une variable Y

est d’évaluer l’effet du facteur en comparant les moyennes de Y obtenues selon les mo-

dalités de X . La comparaison se fait en examinant la variance des dites moyennes. Cette

variance que l’on qualifie de � variabilité inter traitements �, constitue une estimation

plausible du numérateur Di de (3.4). On peut donc envisager d’estimer les indices de

sensibilité en utilisant la décomposition de la variance donnée par l’égalité fondamen-

tale des modèles de l’ANOVA. Afin d’illustrer la méthode, considérons dans un premier

temps le modèle de l’ANOVA à un facteur. Les données à exploiter proviennent d’une

étude expérimentale généralement planifiée (exemple : un plan d’expérience). Celles-ci
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peuvent être regroupées comme suit :

Tableau 4.1 Données relatives à l’ANOVA à un facteur

Facteur X

modalité 1 .. .. modalité i .. .. modalité p

y11 yi1 yp1

. .

. .

y1j yij ypj

. .

. .

y1n1 yini
ypnp

ȳ1 .. .. ȳi .. .. ȳp

Le facteur X est le seul facteur contrôlé. Il présente p modalités telles que la ième,

i = 1, . . . , p, comporte ni répétitions. Ce nombre de répétitions peut donc varier d’une

modalité à une autre. Les valeurs de la sortie correspondantes sont présentées dans le

tableau 4.1, où yij est la j ème valeur de Y obtenue selon la modalité i et ȳi est la moyenne

des valeurs de Y selon la modalité i.

D’après le tableau 4.1, on considère :

ȳi = 1
ni

ni∑
j=1

yij, et ȳ = 1
N

p∑
i=1

ni∑
j=1

yij , avec N =

p∑
i=1

ni.

Équation fondamentale de l’ANOVA :

L’ANOVA permet d’expliquer la variance totale d’un échantillon en fonction de la va-

riance due aux facteurs et celle due à l’interaction. L’équation fondamentale de l’ANOVA
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(EFAV) décompose la variation totale en plusieurs sources de variation.

Dans le cas du modèle à un seul facteur, l’EFAV est :

p∑
i=1

ni∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SStotale

=

p∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SSinter

+

p∑
i=1

ni∑
j=1

(yij − ȳi)2

︸ ︷︷ ︸
SSintra

(4.1)

où :

SStotale est la somme des carrés des écarts totaux ou variation totale. En la divisant par

N , on obtient une estimation de la variance V (Y ) de Y ,

SSinter est la somme des carrés des écarts liés aux effets du facteur A ou variation inter-

modalités. Cette somme, divisée par N , constitue une estimation de la variance condi-

tionnelle V (E(Y |X)), X étant le facteur (ou la variable) présentée au tableau 4.1,

SSintra est la somme des carrés des écarts résiduels ou variation intra-modalités.

Preuve :

On a

yij = ȳ + (ȳi − ȳ) + (yij − ȳi),

et

(yij − ȳ) = (ȳi − ȳ) + (yij − ȳi).

En élevant les écarts au carré :

(yij − ȳ)2 = (ȳi − ȳ)2 + (yij − ȳi)2 + 2(ȳi − ȳ)(yij − ȳi).

En faisant la somme sur tous les j :

ni∑
j=1

(yij − ȳ)2 = ni(ȳi − ȳ)2 +

ni∑
j=1

(yij − ȳi)2 + 2(ȳi − ȳ)

ni∑
j=1

(yij − ȳi).
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Or 2(ȳi − ȳ)

ni∑
j=1

(yij − ȳi) = 0, car
ni∑
j=1

(yij − ȳi) = 0.

En faisant la somme des p modalités, on obtient l’égalité (4.1).

L’EFAV est vraie dès qu’on dispose de données sous la forme du tableau 4.1, indépen-

damment des conditions usuelles exigées dans un modèle d’ANOVA (normalité, etc). Des

indicateurs d’importance pourront être issus de cette égalité, comme on peut le voir à la

suite de cette section.

Rapport de corrélation

Le rapport de corrélation η2 est une mesure du lien entre deux variables X et Y . X peut

être qualitative ou quantitative.

Pour un facteurX , selon (McKay, 1997), l’expression théorique de η2 est sous la forme :

η2 =
V (E(Y |X))

V (Y )
.

Ce qui correspond à l’indice de sensibilité d’ordre un (équation (3.4)) pour le facteur X .

(McKay, 1997) a donné une estimation empirique de η2 basée sur l’ANOVA, en fonction

des composantes de l’EFAV.

η̂2 =
SSinter
SStotale

.

Compte tenu de l’EFAV, η̂2 varie entre 0 et 1. Plus il est proche de 1, plus l’influence de

X sur Y est importante.

Nous obtenons ainsi une mesure d’importance qui nous permettra de classer les variables

en fonction de leur impact. Cependant, comme nous traitons des problèmes à plusieurs

entrées, une généralisation est nécessaire.



41

4.2.2 Généralisation de l’ANOVA à un facteur

On se place dans le cas général de plusieurs facteurs, c’est à dire Y = f(X1, X2, ..., Xk).

Aucune hypothèse sur les entrées n’est soumise (indépendance, loi de probabilité, etc).

Alors, on définit l’indice de sensibilité Si de la variable Xi, i ∈ {1, .., k} par :

Si =
V (E(Y |Xi))

V (Y )
= η2

i . (4.2)

Le tableau 4.1 est simplement étendu au cas de k facteurs à différentes modalités dont

on manipule uniquement les valeurs de retour. En effet, on peut remarquer que dans le

cas des boı̂tes noires, pour chaque facteur Xi, l’ensemble des données peut être mis sous

la forme du tableau 4.1. L’ensemble des indices du premier ordre définis par (4.2) peut

alors être estimé par :

Ŝi = η̂2
i , i = 1, . . . , k.

Pour les indices d’ordre supérieur, on considère les interactions d’un modèle d’ANOVA

factoriel.

4.3 Calcul des indices de sensibilité d’ordre deux

Rappelons que l’indice Sij d’ordre deux représente la contribution due à l’interaction

entre les variables Xi et Xj (formule (3.7)) :

Sij =
V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj))

V (Y )
=
Dij

D
.

À la section suivante, on se propose d’estimer ces indices en se basant sur l’ANOVA

factorielle.
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4.3.1 Analyse de variance factorielle

On parle de l’ANOVA factorielle lorsque deux facteurs ou plus sont impliqués et que

toutes les modalités de tous les facteurs sont utilisés (c-à-d les mesures de Y sont obte-

nues pour toutes les combinaisons des modalités des facteurs). Le but est d’étudier l’ef-

fet des interactions, en plus des effets principaux. À titre d’illustration, nous prśentons

le principe du calcul des interactions et des effets principaux dans le cas simple d’un

modèle d’ANOVA à deux facteurs A et B, avec le même nombre d’observations pour

chaque combinaison de modalités. Le facteur A apparaı̂t sous p modalités et B apparaı̂t

sous q modalités, comme le montre le tableau ci-dessous.

Tableau 4.2 Arrangement des données pour un design factoriel à deux facteurs
PPPPPPPPPPPPPP

Facteur A

Facteur B
1 2 . . . q

1 y111, y112 y121, y122 . . . y1q1, y1q2

...,y11n ..., y12n ..., y1qn

2 y211, y212 y221, y222 . . . y2q1, y2q2

...,y21n ..., y22n ..., y2qn

. . . .

. . . .

. . . .

p yp11, yp12 yp21, yp22 . . . ypq1, ypq2

...,yp1n ..., yp2n ..., ypqn

Il est démontré que l’EFAV dans le cas de deux facteurs A et B (Montgomery, 2001)

est :

SStotale = SSA + SSB + SSAB + SSE. (4.3)
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où :

SSA est la somme des carrés dus au facteur A. Cette somme équivaut à SSinter de (4.1),

avec A comme seul facteur,

SSB est la somme des carrés dus au facteur B. Cette somme équivaut à SSinter de (4.1),

avec B comme seul facteur,

SSAB est la somme des carrés des écarts liés à l’interaction entre A et B,

SSE est la somme des carrés résiduelle. Cette somme est similaire à SSintra de (4.1).

SSAB et SStotale sont données respectivement par :

SSAB = n

p∑
i=1

q∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2,

SStotale =

p∑
i=1

q∑
j=1

n∑
k=1

(yijk − ȳ...)2,

où :

y... =

p∑
i=1

q∑
j=1

n∑
k=1

yijk, ȳ... = y...
n
,

yi.. =

q∑
j=1

n∑
k=1

yijk, ȳi.. = yi..
qn
,

y.j. =

p∑
i=1

n∑
k=1

yijk, ȳ.j. =
y.j.
pn
,

yij. =
n∑
k=1

yijk et ȳij. =
yij.
n

.

On peut donc envisager d’estimer l’indice de sensibilité d’ordre 2, Sij par :

Ŝij =
SSAB
SStotale

.
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4.3.2 Généralisation de l’ANOVA factorielle

Dans le contexte des boı̂tes noires où l’expérience n’est pas planifiée, n n’est pas néces-

sairement partout le même. On définit alors nlm, pour l ∈ {1, .., p} et m ∈ {1, .., q},

comme le nombre de valeurs Y obtenues pour la cellule correspondant à la modalité l

du facteur A et la modalité m du facteur B. Dans ce contexte, les modalités des facteurs

sont les différentes valeurs observées de ceux-ci et les valeurs de Y dans la cellule sont

celles observées lorsque le premier facteur (A) vaut l et le deuxième (B) vaut m. Ce

nombre de valeurs, noté nlm, n’est donc pas identique pour toutes les combinaisons de

modalités des facteurs.

On peut montrer, dans ce cas, que la somme des carrés due à l’interaction (Montgomery,

2001) est :

SAB =

p∑
i=1

q∑
j=1

nij(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2.

L’indice de sensibilité SAB peut donc être estimé dans ce contexte par :

ŜAB =
SSAB
SStotale

=

p∑
i=1

q∑
j=1

nij(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2

p∑
i=1

q∑
j=1

nij∑
k=1

(yijk − ȳ...)2

. (4.4)

La formule (4.4) et le fait que ŜAB = ŜBA seront employés afin d’approximer les in-

dices de sensibilité d’ordre 2 définis plus haut ainsi que les indices totaux de la section

suivante.

Remarque : Il est possible d’écrire l’équation (4.1) pour un nombre quelconque de fac-

teurs et d’obtenir ainsi les sommes de carrés des interactions de tout ordre. Ce qui permet

d’estimer les indices de sensibilité de différents ordres et les indices totaux.
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4.4 Indices de sensibilité totaux

Par définition, l’indice de sensibilité total d’une variable Xi est la somme de son indice

de premier ordre et de tous les indices d’ordre supérieur où figure cette variable. C’est

une autre façon de calculer cet indice dont la logique diffère de l’équation (3.4) du

chapitre précédent, où on procède par soustraction.

Par exemple, si le problème est de dimension k = 3, l’indice total de la variable X1 est :

ST1 = S1 + S12 + S13 + S123.

Étant donné le temps de calcul important au delà des indices d’ordre deux, on approxime

les indices totaux en faisant la somme de l’indice d’ordre un de la variable Xi en utili-

sant l’équation (4.2) et tous les indices d’ordre deux contenant l’indice i en utilisant

l’équation (4.4).

L’indice total pour cet exemple se réduit à :

ST1 = S1 + S12 + S13.

Exemple :

On considère le problème-test BROWNAL (Gould et al., 2003), pour k = 3 variables et

5 évaluations de la sortie, alors on obtient de fichier historique suivant :
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x1 x2 x3 f(x1, x2, x3)

0.5 0.5 0.5 8.765625

1.5 0.5 -1.5 17.515625

1.5 0.5 0.5 1.360625

3.5 0.5 0.5 17.015625

4.5 0.5 0.5 40.015625

Le calcul des indices d’ordre un et d’ordre supérieur donne les valeurs suivantes :

Indices de premier ordre :

Ŝ1 = 0.8454909083,

Ŝ2 = 0,

Ŝ3 = 0.0004911682562.

Le calcul des indices d’ordre un montre que la variable X1 est prépondérante.

Indices de deuxième ordre :

Ŝ12 = 0,

Ŝ13 = 0.141226193,

Ŝ23 = 0.

Le calcul des indices d’ordre deux montre que les interactions entre les variables X1, X2

et X2, X3 est nulle.

Indices totaux :

ŜT1 = 0.986717101,

ŜT2 = 0,

ŜT3 = 0.141717361.

Le classement des variables selon les indices totaux approximés est le même que celui

d’ordre un. On peut donc prévoir des résultats similaires de ces deux méthodes.
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4.5 Application

On considère maintenant un exemple académique. Celui-ci est extrait du guide d’utili-

sateur de NOMAD (Le Digabel, 2009) afin de calculer les indices de sensibilité d’ordre

un selon la formule (4.2). La taille de l’échantillon est 100 (nombre d’évaluations) et

k = 5.

min
x∈R5

f(x) = x5

sujet à 

c1(x) =
5∑
i=1

(xi − 1)2 − 25 ≤ 0

c2(x) = 25−
5∑
i=1

(xi + 1)2 ≤ 0

xi ≥ −6 i = 1, 2, ..., 5

x1 ≤ 5

x2 ≤ 6

x3 ≤ 7.

Il est trivial que x5 est la variable la plus importante, de même pour tout xi, tel que

f(x) = xi. Le tableau 4.5 montre que l’indice relatif à cette variable est égal à 1. Le

classement des autres variables ne peut pas être jugé pour l’instant. Nous ne calculons

pas les indices de sensibilité d’ordre deux pour cet exemple, puisque nous ne pouvons

pas vérifier l’exactitude de nos résultats.
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Tableau 4.3 Indices de sensibilité d’ordre un pour f(x) = xi ,i ∈ {1, 2, 3, 4, 5}

f(x) x1 x2 x3 x4 x5

S1 1 0.067 0.234 0.202 0.186

S2 0.1726 1 0.166 0.214 0.223

Formule (4.2) S3 0.2529 0.209 1 0.133 0.2104

S4 0.2312 0.1126 0.2540 1 0.2880

S5 0.2918 0.1805 0.2830 0.3625 1

Les mêmes formules seront utilisées aux chapitres 5 et 6 pour le classement des variables

en fonction de leur influence sur la sortie. Plusieurs stratégies seront présentées au cours

du chapitre 5 et testées au chapitre 6, où le classement des variables se fait en fonction

des indices d’ordre un ou des indices totaux.
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CHAPITRE 5

IMPLÉMENTATION CONCEPTUELLE DE STATS-MADS

STATS-MADS est le nom que nous avons donné à l’algorithme qui applique la méthode

statistique vue au chapitre précédent sur les données de l’algorithme MADS (dont on

évalue les sorties) évoqué au chapitre 2, permettant ainsi l’optimisation alternée entre

des sous-espaces de variables et l’espace complet. Dans ce chapitre, nous présentons

une manière de concevoir cet algorithme. Dans un premier lieu, nous introduisons une

instantiation STATS-MADS basique dont la structure générale est construite en fonction

des problèmes tests. Celui-ci ne fait intervenir que les indices de sensibilité d’ordre un

pour le classement de variables. Dans un deuxième lieu, nous tentons d’incorporer les

indices d’ordre deux pour en évaluer la portée sur la précision du classement de variables.

Nous présentons également différentes variantes du STATS-MADS basique.

Note : Afin de ne pas confondre le compteur d’itérations k avec le nombre de variables

du problème d’optimisation, ce dernier sera noté n.

5.1 Le logiciel NOMAD

NOMAD (pour Nonlinear Optimization with the MADS Algorithm) ((Le Digabel, 2011),

(Le Digabel, 2009), (Abramson et al., 2012)) est une implémentation C++ de l’ensemble

des algorithmes MADS (Audet et Dennis, Jr., 2006). Il est conçu idéalement pour la

résolution de problèmes d’optimisation sous contraintes de boı̂tes noires sous la forme

suivante rencontrée auparavant :

min
x∈Ω

f(x)
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où : Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn, f, cj : X → R ∪ {∞}, pour tout j ∈ J =

{1, 2, . . . ,m} et X est un sous-ensemble de Rn.

GPS ((Torczon, 1997), (Audet et Dennis, Jr., 2003)) fut la première implémentation dans

NOMAD. Il en constitue maintenant une option. ((Le Digabel, 2011), (Le Digabel,

2009)) décrivent toutes les fonctionnalités de NOMAD, les extensions de MADS ainsi

que la procédure d’installation et les différents modes. Il existe aussi deux implémenta-

tions MATLAB de MADS, l’une est appelée NOMADm (Abramson, 2004), l’autre est

disponible dans les outils GADS de MATLAB (MathWorks, 2005).

Paramètres par défaut de NOMAD

Nous nous intéressons aux paramètres les plus importants de NOMAD dans les condi-

tions standards. Comme nous comptons traiter nos problèmes avec la barrière progres-

sive PB ((Audet et Dennis, Jr., 2009)), nous exposons les paramètres qui lui sont reliés.

– L’instance ORTHOMADS : tel que mentionné au chapitre 2, ORTHOMADS (Abramson

et al., 2009) est l’algorithme par défaut de NOMAD. ORTHOMADS génère au plus

2n+2 directions d’exploration à chaque itération, utilisant une approche opportuniste

selon laquelle la sonde s’achève dès qu’un point d’essai améliorant est trouvé.

– PB : trois paramètres intercèdent dans le cas de PB :

• H MAX 0 : c’est la valeur initiale de h max telle que si pour un point d’essai t

h(t) > h max, alors t est rejeté. Sa valeur est fixée à 1E+20.

•H MIN : c’est la valeur de h min pour laquelle t est considéré réalisable si h(t) ≤

h min = 0.

• H NORM : elle permet de calculer h(x) et correspond à la norme 2.

– Le paramètre de taille initiale du treillis ∆m
0 : c’est un vecteur de n éléments. Pour des

raisons de mise à l’échelle, les différentes variables n’ont pas nécessairement la même

taille. Si cette quantité n’est pas introduite par l’utilisateur, alors la valeur par défaut
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est utilisée et est relative aux bornes selon 5.1.

∆m
0 =


(Ub−Lb)

10
si Lb ≤ x ≤ Ub, x ∈ X

max {|x0|, 1} , sinon.
(5.1)

– La recherche spéculative : dans le but de promouvoir une direction de succès d d’une

itération antérieure k − 1, MADS évalue un point tk du treillis (tk = xk−1 + 4∆m
k d)

au cours de l’étape de recherche. Si ∆m
k < 1, alors le point évalué est : tk = xk−1 +

∆m
k d. Cette condition garantit l’appartenance de tk au treillis courant d’après (Audet

et Dennis, Jr., 2006).

5.2 Principe de STATS-MADS

L’idée de base de STATS-MADS est d’amorcer des processus d’optimisation dans des

sous-espaces différents, à partir de l’espace plénier de variables. Cette technique est

décrite de façon très générale par l’algorithme 3, où Jk représente le sous-ensemble

d’indices de variables libres à l’itération k. Cependant, la méthode adoptée au chapitre 4

permettant le classement des variables exige qu’on alterne entre l’espace de n variables

et celui de dimension |Jk|. En effet, si à l’itération k on fixe |J̄k| variables (Jk et J̄k

forment une partition de I = {1, 2, .., n}), alors les indices de sensibilité relatifs à ceux-

ci sont nuls, étant donné que V (E(Y |Xs)) = 0, pour tout s ∈ J̄k.

Par conséquent, selon la logique de l’algorithme 3, on fixera toujours les mêmes variables

(d’indice de sensibilité nul), ce qui correspond à une des variantes de STATS-MADS dont

on discutera plus loin.
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Algorithme 3 : Principe global de STATS-MADS

1 : Initialisation : I = {1, 2, .., n}, n variables d’entrée, k ← 0 ;
2 : Lancer MADS sur les variables de I ;
3 : Trouver Jk ⊂ I par une analyse statistique ;
4 : Lancer MADS sur Jk ;
5 : Retourner à 3 avec k ← k + 1.

5.3 Les ingrédients de STATS-MADS

Nous allons maintenant détailler les composants de STATS-MADS. Nous considérons les

notations supplémentaires ci-dessous qui y sont spécifiques.

Terminologie spécifique à STATS-MADS

Par souci de simplification, les appellations MADS et ORTHOMADS seront désormais

confondues. Afin d’alléger l’écriture, un MADS-RUN désigne un appel à NOMAD pour

l’exécution de l’algorithme MADS. On considère les paramètres par défaut de NOMAD

(version de développement 3.5.2), à l’exception des modèles quadratiques (étape de re-

cherche) qui sont rendus inactifs (notons qu’ils le sont déjà pour les problèmes de dimen-

sion supérieure à 50) et de la génération de points à l’extérieur des bornes inférieures et

supérieures (paramètre : SNAP TO BOUNDS) qui devient permise. Ces exceptions sont

justifiées par une meilleure optimisation perçue à la phase des tests qui affecte la gestion

de la taille du cadre et du treillis.

Un MADS-RESCUE désigne un recours à MADS-RUN, dans le cas où la stratégie de

fixation de variables aboutit à un état de stagnation. Par stagnation, on entend que le

programme est coı̈ncé à un minimum local. Dans MADS-RESCUE, toutes les variables

sont relâchées et MADS-RUN est lancé avec un nombre d’évaluations égal à un entier

M , founi par l’utilisateur. Ce nombre doit être suffisamment grand afin de permettre,

le cas échéant, de franchir un minimum local. À chaque recours à MADS-RESCUE, le
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nombre d’évaluations est multiplié par une constante τ (M ← τM , τ > 1). En effet,

chaque recours signifie que, s’embarquer dans un sous espace, n’est pas un processus

optimisant. Il est plus intéressant, dans ce cas-ci, d’augmenter le nombre d’évaluations

dans l’espace de l’ensemble des variables. La figure 5.1 illustre la descente locale du

problème BROWNAL (Gould et al., 2003), pour un nombre de variables égal à 20 et un

pourcentage de fixation égal à 80%. La figure montre un comportement similaire sur les

774 premières évaluations. Pour les évaluations suivantes, le MADS-RESCUE fuit l’état

de stagnation en lançant un grand nombre d’évaluations (M ) sur l’espace complet, d’où

l’intérêt de cette approche de secours.

Figure 5.1 Utilité du processus MADS-RESCUE

On définit alors trois processus pour STATS-MADS :

• P1 : MADS-RUN avec variables relâchées : espace complet.

• P2 : MADS-RUN avec variables fixes : sous-espace.

• P3 : MADS-RESCUE : espace complet.
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Lors de l’exécution de STATS-MADS, on est forcément impliqué dans un des trois pro-

cessus mentionnés, commençant toujours par P1 ensuite P2 sans être deux fois de suite

impliqué dans un espace ou dans un sous-espace (voir l’algorithme 4).

Algorithme STATS-MADS basique

Rendu ici, on est en mesure de présenter les principales étapes de STATS-MADS. Celui-

ci optimise en alternance dans des espaces et des sous-espaces. Le passage d’un espace

à un sous-espace se fait au moyen d’une procédure de fixation de variables basée sur

le calcul des indices de sensibilité d’ordre un (algorithme 5). Le passage inverse est

conditionné par le succès ou l’échec du processus P2. Dans l’affirmative, on retourne au

processus P1, sinon on fait recours à P3.

Algorithme 4 : Algorithme STATS-MADS de haut niveau
1 : Effectuer un MADS-RUN sur l’espace complet ;
2 : Fixer un pourcentage de variables les moins influentes (voir algorithme 5) ;
3 : Effectuer un MADS-RUN sur le sous-espace de variables importantes ;
4 : Tester si le processus en sous-espace est un succès. Si oui, aller à 5, sinon aller à 6 ;
5 : Relâcher les variables fixes et refaire un MADS-RUN sur l’espace complet, retourner
à l’étape 2 ;
6 : Lancer un MADS-RESCUE et retourner à l’étape 2.

L’algorithme 4 peut être représenté par la figure 5.2 faisant intervenir les critères d’arrêt

de chacun des processus. En effet, les étapes 5 et 6 de cet algorithme sont des proces-

sus travaillant dans des espaces complets (P1 et P3 respectivement). La seule différence

figure au niveau des critères de terminaison que nous détaillerons plus loin dans ce cha-

pitre.
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Algorithme 5 : Fixation des variables les moins influentes
1 : Charger la cache et récupérer les données ;

2 : Calculer les indices de sensibilité de premier ordre de toutes les variables ;

3 : Trier les indices par ordre croissant ;

4 : Fixer le pourcentage de variables spécifié en considérant la partie entière �plafond�.

À l’étape 4 de l’algorithme 5, le nombre de variables à fixer est calculé à partir d’un

pourcentage identifié par l’utilisateur et est arrondi à l’entier qui lui est immédiatement

supérieur ou égal. Les variables les moins infuentes sont fixées, tout au long de P2, à la

valeur de la dernière solution obtenue et sont relâchées au début du processus suivant.

Notations supplémentaires

Passons maintenant aux détails plus techniques. Définissons alors les paramètres sui-

vants :

– npeval : est le nombre d’évaluations � prévu � de f (identifié par l’utilisateur) pour un

MADS-RUN (les processus P1 et P2) ;

– nmaxeval : est le nombre maximum d’évaluations de f pour un processus Pi, i ∈ {1, 2, 3}.

Il vérifie les inégalités suivantes qui seront expliquées à la sous-section Pseudo-code ;

nmaxeval ≤ npeval, pour P1 et P2. (5.2)

nmaxeval ≤M × τ j, j ∈ {0, 1, 2 . . .} , pour P3. (5.3)

Le compteur j est égal à zéro la première fois qu’on fonce vers P3 et s’incrémente à

chaque retour.

– ∆m
c : est la taille du treillis courante obtenue au bout d’au plus nmaxeval évaluations.

– ∆p
c : est la taille de cadre courante obtenue au bout d’au plus nmaxeval évaluations.

– ntoteval : est le nombre d’évalutions global qui constitue le budget des évaluations dont
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on dispose ;

– ncumuleval est le nombre d’évaluations de tous les processus calculé d’une manière cumu-

lative. ntoteval en est une borne supérieure.

– x0 : est la solution initiale du problème. Pour des exemples académiques, celle-ci est

choisie arbitrairement et est fixée afin de faciliter la comparaison des algorithmes. En

industrie, elle est souvent produite par les ingénieurs travaillant sur ces problèmes ;

– x̂c : est la meilleure solution réalisable courante ;

– x̂p : est la meilleure solution réalisable du processus précédent ;

– Le pourcentage de fixation sera simplement appelé pourcentage.

Nous utilisons ces notations afin de décrire le fonctionnement des processus à l’algo-

rithme 6, qui représente une implémentation non formelle de STATS-MADS. Certaines

conditions gèrent le passage d’un processus à un autre. Elles sont listées au paragraphe

suivant.

Critères d’arrêt

Trois critères de terminaison interviennent dans le cas de STATS-MADS :

→ Critère 1 : Une limite sur le nombre total d’évaluations de f (locale : nmaxeval et glo-

bale : ntoteval) ;

→ Critère 2 : Une tolérance sur la taille du treillis : au bout d’un certain nombre

d’évaluations, la taille du treillis devient plus petite que la précision de NOMAD ;

→ Critère 3 : Un nombre maximum ne d’itérations échouées (fixé par l’utilisateur).

Tous les processus peuvent être interrompus par les deux premiers critères. Cependant,

seulement les processus P2 et P3 le sont pour le troisième, tel que le montre la figure 5.2.

Le processus P2 est qualifié de succès (voir figure 5.2), s’il n’a pas été suspendu par un

des critères 2 ou 3, autrement dit, si exactement nmaxeval évaluations sont accomplies, ou si

la meilleure solution réalisable courante x̂c obtenue est différente de celle du processus
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précédent x̂p.

MADS-RUN (P1)
Critères d’arrêt : 1 et 2

R
et

ou
r

Fixation de variables (P2)
Critères d’arrêt : 1, 2 et 3

Succès
R

et
ou

r

MADS-RESCUE (P3)
Critères d’arrêt : 1, 2 et 3

Non

Oui

1

Figure 5.2 Organigramme représentant le fonctionnement général de STATS-MADS

5.3.1 Pseudo-code

L’algorithme 6 suivant décrit le pseudo-code de STATS-MADS.
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Algorithme 6 : Pseudo-code du programme principal
Entrées : cache initiale obtenue à partir d’un MADS-RUN sur le problème entré par l’utilisateur, ∆m

c ,∆
p
c .

Sorties : selon les spécifications de l’utilisateur.

Initialisation : x0 ← x̂c;

∆m
0 ← ∆m

c ; ∆p
0 ← ∆p

c ;

ncumul
eval ← taille courante de la cache ; fixation← vrai;

rescue← faux ; i← 0;

Début d’un processus;

tant que (ncumul
eval < ntoteval) faire

si rescue=faux alors
nmax
eval = min

{
ntoteval − ncumul

eval , npeval
}

;

si fixation = vrai alors
Appeler la fonction qui fixe le pourcentage précisé de variables ;

sinon
Relâcher toutes les variables ;

fin

Fixer le nombre d’échecs consécutifs ;
sinon

nmax
eval = min

{
ntoteval − ncumul

eval ,M × τi
}

;

Fixer le nombre d’échecs consécutifs;

i← i+ 1 ;

rescue← faux ;

fin

MADS-RUN ;

si fixation = faux alors
∆m

0 ← ∆m
c ;

∆p
0 ← ∆p

c ;

fin

si ((fixation = vrai) et (taille courante de la cache < nmax
eval ou x̂c = x̂p)) alors

rescue← vrai ;

fin

fixation←!fixation

Mise à jour du nombre d’évaluations total et du point initial;

x0 ← x̂c ; ncumul
eval ← ncumul

eval + taille courante de la cache;

fin



59

Explication du pseudo-code

L’utilisateur doit au préalable définir sa boı̂te noire avant que l’algorithme 6 ne soit

exécuté. On entend par définition de la boı̂te noire la déclaration de la fonction objec-

tif, des contraintes, du point initial, etc. La procédure détaillée est décrite dans le guide

d’utilisateur de NOMAD (Le Digabel, 2009) à sa quatrième section.

Tous les paramètres de la boı̂te noire sont ressaisis par la suite d’une manière indirecte,

étant donné la non accessibilité, au niveau du code source, à celle-ci. Par la suite, un

MADS-RUN permettra d’obtenir la première cache à partir de laquelle une analyse de

sensibilité sera effectuée (la fonction qui fixe les variables est ainsi appelée).

La variable ncumuleval est mise à jour à chaque fois qu’un processus est exécuté. Pour ce

faire, on lui assigne la taille de la cache courante (taille courante de la cache) à l’étape

de l’initialisation ainsi qu’à la fin de chaque processus. Les variables fixation et rescue

sont booléennes. La valeur logique � vrai � est affectée à fixation à l’initialisation

afin d’activer le processus P2. Cependant P3 n’est déclenché que lorsque rescue reçoit

� vrai� (c’est l’état de stagnation dont les conditions ont été expliquées plus tôt). La res-

saisie de x̂c est nécessaire à la fin de chacun des processus, car c’est le centre du cadre

du processus suivant (le nouveau x0). Par contre, celle de la taille du cadre et du treillis

n’est faite que pour les espaces complets (à la fin de P1 et P3), comme suit :

À l’étape 1 de l’algorithme 4, les paramètres ∆m
0 et ∆p

0 sont les valeurs par défaut de NO-

MAD. Ensuite, aux étapes 3, 5 et 6, les valeurs initiales de ces paramètres sont choisies

comme étant égales à leurs valeurs finales obtenues à la conclusion du dernier processus

ayant travaillé sur l’espace complet.

Avant de lancer NOMAD avec un processus donné, il est crucial de vérifier si on ne

dépasse ntoteval évaluations. Pour cela nmaxeval est ajusté en fonction de ncumuleval et npeval pour

P1 et P2 et ncumuleval etM×τ j pour P3 (voir algorithme 6). C’est ce qui explique les condi-

tions (5.2) et (5.3).

Ayant défini sa boı̂te noire, l’utilisateur peut appeler l’algorithme STATS-MADS directe-
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ment en spécifiant les paramètres ci-dessous :

STATS-MADS (npeval, pourcentage, n
tot
eval, M , τ , ne).

Note : Pour des fins de simplification, npeval est le même pour les processus P1 et P2 (P3

est caractérisé par M et τ ).

5.4 Analyse de la convergence de STATS-MADS

Tout comme dans les analyses de convergence de MADS, on examine le comportement

lorsque le compteur d’itérations k tend vers l’infini. On suppose qu’il n’y ait pas de

critère d’arrêt global (ntoteval) et que STATS-MADS est lancé sur un ensemble fini de sous-

espaces de dimensions |Jq|, q ∈ {1, 2, . . . , p}, où Jq ⊂ I = {1, 2, .., n}, alors si P2 est

un succès, l’optimisation se fait dans un sous-espace jusqu’à ce qu’elle soit interrompue

par le critère 1 (nmaxeval = npeval). Dans le cas contraire, elle le sera par les critères 2 ou

3 (ne). La gestion de la taille du treillis assure que le programme ne s’achève pas dans

un sous-espace (où il peut exister une direction au point limite pour laquelle la dérivée

de Clarke est négative). L’optimisation dans l’espace de n variables (P1 et P3) est alors

incontournable. Par conséquent, on est ramené à l’algorithme MADS (Audet et Dennis,

Jr., 2006) classique duquel on hérite les principaux résultats de convergence.

5.5 Extensions de STATS-MADS

Nous proposons des variantes du STATS-MADS basique (algorithme 4) dont le but est

de diversifier les techniques et d’identifier, plus tard, la meilleure stratégie.
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Un STATS-MADS non itératif

STATS-MADS est un algorithme itératif qui passe d’un espace à un sous-espace. Dans le

cas d’un STATS-MADS non itératif, la fixation de variables ne se fait qu’une seule fois

(un seul P2). Le processus P3 est alors absent. L’algorithme passe de P1 à P2 et revient à

P1 jusqu’à ce qu’un critère de terminaison soit déclenché.

Un STATS-MADS homogène

Dans le cas d’un STATS-MADS homogène, les sous-espaces de variables sont identiques.

Tous les processus sont présents. L’algorithme 5 n’est appelé qu’une seule fois dans

l’algorithme 4. On suppose, pour cette stratégie, qu’il existe un seul groupe de variables

importantes à travers lequel on lance plusieurs processus P2 optimisants.

Méthode des indices totaux

Cette méthode consiste à effectuer une modification au calcul des indices de sensibilité.

Nous utilisons les indices de sensibilité totaux afin de trier les variables. Ceux-ci sont

approximés en faisant la somme de l’indice d’ordre un et tous les indices d’ordre deux

relatifs à la variable concernée (chapitre 4). L’algorithme 4 demeure intact . Le seul

changement se situe au niveau de l’étape 2 de l’algorithme 5, puisque la formule du

calcul des indices englobe dorénavant les indices d’ordre supérieur.
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Méthode de la frontière

Il s’agit d’un STATS-MADS basique avec une stratégie de fixation de variables différente.

En effet, nous ne nous contentons pas du tri croissant des indices de sensibilité d’ordre

un. Nous procédons par une vérification qui concerne les variables qui se situent de part

et d’autre de la frontière entre les variables à fixer et les variables qui ne le seront pas.

Le nombre de celles-ci n’est pas constant, vu que le pourcentage de fixation est à présent

variable.

L’algorithme 5 devient :

Algorithme 7 : Fixation des variables selon la méthode de la frontière
1 : Charger la cache et récupérer les données ;

2 : Calculer les indices de sensibilité de premier ordre de toutes les variables ;

3 : Trier les indices par ordre croissant ;

4 : Déterminer le nombre 2α de variables pour lesquels on calculera les indices totaux :

α = dmin{n1,n2}
4

e, où n1 est le nombre de variables à fixer et n2 = n− n1 ;

5 : Fixer les n1 − α variables correspondant aux plus faibles valeurs du tri de l’étape 4 ;

6 : Trier de nouveau les indices calculés à l’étape 4 et en fixer la moitié.

Exemple : Si n = 10 et pourcentage = 30, alors n1 = 3 et α = 1.

À l’étape 5, on fixe n1−α = 2 variables. À l’étape 6, on trie deux variables et on fixe la

plus petite.

Pour clore ce chapitre, notons que nous testons l’ensemble des stratégies présentées au

cours du chapitre suivant. Les résultats des tests pourront trancher quant à l’efficacité du

STATS-MADS basique ainsi que ses extensions.
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CHAPITRE 6

TESTS ET RÉSULTATS NUMÉRIQUES

Ce chapitre vise à présenter l’ensemble des résultats de notre recherche. D’abord, nous

appliquons notre algorithme sur un ensemble de problèmes tests issus de la littérature

afin de pouvoir tirer des recommandations. Ensuite, nous exposons les résultats des

différentes extensions de STATS-MADS rencontrées au chapitre 5. Enfin, nous testons

notre méthode sur un problème test réputé difficile, ayant les caractéristiques d’une boı̂te

noire. Nous adoptons toutes les notations du chapitre précédent. L’algorithme STATS-

MADS basique sera désigné par STATS-MADS.

6.1 Profils de performance

Afin de comparer les différents algorithmes (MADS, GPS et STATS-MADS), nous nous

servons de l’outil présenté dans (Dolan et Moré, 2002). Un profil de performance y

est défini comme étant une fonction cumulative d’une performance métrique permettant

d’évaluer le record d’un algorithme.

On considère un ensemble de problèmes tests P de cardinal np et un ensemble d’algo-

rithmes A. La performance de l’algorithme a ∈ A est évaluée, dans notre cas, en fonc-

tion de la valeur de la fonction objectif f ∗a obtenue au bout d’un total de ntoteval évaluations.

Cette valeur est considérée comme la valeur optimale produite par l’algorithme a.

Pour p ∈ P donné, on pose f ∗p,a, la meilleure des valeurs de la fonction objectif des

algorithmes comparés.

f ∗p,a = min
a∈A

f ∗a .
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La valeur f ∗p,a peut être positive ou négative dépendamment du problème en question.

On caractérise le succès ou l’échec de a ∈ A par la fonction de score rp,a ci-dessous :

rp,a =

 1 si f ∗a ≤ f ∗p,a + α|f ∗p,a|,

0 sinon.

où α est un scalaire positif.

La performance ρ d’un algorithme a est alors définie par :

ρa(α) =
1

np

∑
p∈P

rp,a.

ρa : R+ 7−→ [0, 100] est une fonction non décroissante dont la valeur à l’origine

représente le pourcentage qu’un algorithme a l’emporte sur tous les autres algorithmes

pour l’ensemble des problèmes testés et dont la valeur en α > 0 permet de quantifier

l’écart relatif à la valeur optimale f ∗p,a.

6.2 Tests exploratoires

Nous procédons par des tests exploratoires, étant donné que nous ne disposons d’aucune

information, a priori, sur l’efficacité de l’approche statistique. Aucun plan de tests n’est

donc établi.

Dans cette section, nous nous intéressons à un ensemble diversifié de problèmes (lisses

ou non, contraints ou non, bornés ou non) dont la taille varie entre 10 et 500. Ces

problèmes proviennent de (Lukšan et Vlček, 2000), (Gould et al., 2003), (Audet et al.,

2008c) et (Audet et Dennis, Jr., 2009). Leurs caractéristiques sont recensées dans (Conn

et Le Digabel, 2011). Tous les points de départ sont donnés. Notons que certains problè-

mes sont de taille ajustable.

La première gamme de tests comporte un total de 76 problèmes répartis comme suit :
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– 13 de dimension n = 10 ;

– 11 de dimension n = 20 ;

– 14 de dimension n = 50 ;

– 14 de dimension n = 100 ;

– 24 de dimension n = 250 et n = 500.

Sauf indication contraire, tous les tests ont été lancés avec les paramètres suivants :

ntoteval = 100n, npeval = 10n, ne = 3, M = 1000 et τ = 4.

Nous accordons plus de flexibilité au paramètre pourcentage en faisant varier celui-

ci entre 10 et 90, avec un écart de 10. Par souci de clarté, nous ne présentons que les

pourcentages 10, 50 et 90. De ce fait, il nous sera possible de visualiser le comportement

de STATS-MADS losqu’on fixe les valeurs extrêmes des pourcentages ainsi que leur

médiane . Les profils de performance obtenus sont donnés par les figures 6.1, 6.2, 6.3,

6.4 et 6.5.

Figure 6.1 Profils de performance dans le cas où n = 10 (basés sur 13 problèmes)
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Figure 6.2 Profils de performance dans le cas où n = 20 (basés sur 11 problèmes)

Figure 6.3 Profils de performance dans le cas où n = 50 (basés sur 14 problèmes)
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Figure 6.4 Profils de performance dans le cas où n = 100 (basés sur 14 problèmes)

Figure 6.5 Profils de performance dans le cas où n = 250 et n = 500 (basés sur 24

problèmes)

À la figure 6.1, l’algorithme GPS surpasse légèrements les autres algorithmes. 38.46%

des problèmes ont une valeur égale à f ∗p,a. STATS-MADS(10%) et STATS-MADS(90%)
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viennent en deuxième et troisième position respectivement avec 30.77% et 23.08%.

Une différence plus marquée apparaı̂t en augmentant la taille n des problèmes. En effet,

à la figure 6.2, c’est STATSMADS (50%) qui détient le meilleur pourcentage (63.64%)

suivi par GPS (27.27%) et MADS.

À la figure 6.3, les trois algorithmes STATSMADS (50%), STATSMADS (10%) et STATS-

MADS (90%) occupent les trois premiers rangs. MADS donne le même résultat que

STATSMADS (90%) .

Les figures 6.3 et 6.5 décrivent une meilleure performance de STATSMADS (90%) avec

un taux de succès respectivement de 50% et 83.33% et un plafonnement à une valeur

λ < 2.

Afin de diversifier les résultats, nous reprenons l’ensemble des tests avec une stratégie

de recherche par hypercube latin (Tang, 1993) non opportuniste avec les paramètres

p1 = 100n et pi = 0, où p1 est le nombre initial de points d’essai générés à la première

itération et pi est le nombre de points générés pour les itérations i ≥ 2. Nous obtenons

des résultats similaires à ceux de MADS par défaut dont ceux de dimension n ≥ 100

sont illustrés par les figures 6.6 et 6.7.
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Figure 6.6 Profils de performance dans le cas où n = 100 (basés sur 13 problèmes), en

utilisant une stratégie de recherche par hypercube latin

Figure 6.7 Profils de performance dans le cas où n = 250 et n = 500 (basés sur 24

problèmes), en utilisant une stratégie de recherche par hypercube latin
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Premières observations

Les premiers tests montrent une prépondérance des résultats des problèmes de grande

dimension, en particulier ceux de dimension n ≥ 250 avec un pourcentage élevé de va-

riables fixes (90%). La figure 6.8 met en comparaison tous les pourcentages de fixation.

Elle justifie bien le choix du pourcentage le plus grand (90%) pour les prochains tests.

Figure 6.8 Profils de performance illustrants l’importance du choix du pourcentage de

fixation pour les problèmes de dimension n ≥ 250 (24 problèmes)

L’approche paraı̂t donc prometteuse pour les problèmes de grande taille pour lesquels

on fixe 90% des variables. Par conséquent, il serait avantageux de focaliser notre intérêt

futur sur ce genre de problèmes.
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6.3 Cas de problèmes de dimension n ≥ 250

Nous exécutons l’algorithme STATSMADS sur un ensemble de 12 problèmes tests, en fai-

sant varier le nombre de variables entre 250 et 500 avec un pas de 50 et un pourcentage

de fixation de 90, pour chaque problème. Nous obtenons ainsi 72 instances.

Par la suite, nous comparons, pour chaque instance, les valeurs optimales des fonc-

tions objectifs f ∗ obtenues, au bout de 100n évaluations, de MADS, GPS et STATS-

MADS, afin que nous puissions évaluer la performance de ce dernier. Les tableaux 6.1

et 6.2 contiennent les valeurs de f ∗ de ces trois algorithmes. La figure 6.9 illustre une

prédominance de STATS-MADS avec un taux de succès supérieur à 80%.

Figure 6.9 Profils de performance dans le cas où 250 ≤ n ≤ 500 pour un ensemble de

72 problèmes
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Tableau 6.1 Valeurs de f ∗ des trois algorithmes pour 250 ≤ n ≤ 500

Instances f∗STATS−MADS f∗MADS f∗GPS

250 -0.19936809634 -0.25493364 -0.0902993563
300 -0.2307452576 -0.1446767202 -0.03622130354

BROWNAL (Gould et al., 2003) 350 -0.1103741744 -0.1713176654 -0.08238105208
400 -0.1162654853 -0.06964743625 -0.03207357373
450 -0.201875977 -0.1848964899 -0.07618140015
500 -0.2213701537 -0.2112503316 -0.0734738041
250 -40.60107422 -25 -15.46875
300 -41.44921875 -23 -15.46875

DISK (Audet et Dennis, Jr., 2009) 350 -45.23608398 -24.75 -15.46875
400 -46.59765625 -22.25 -15.46875
450 -47.71875 -25 -15.46875
500 -48.3125 -22.5 -15.46875
250 3.267577877 35.40279223 179.9226579
300 14.5199942 26.35565427 291.5228721

L1HILB (Lukšan et Vlček, 2000) 350 8.385443251 42.09084886 280.2502033
400 4.801882716 9.129353313 292.3849055
450 4.922063162 31.44026852 398.9932892
500 19.19563522 51.65515457 406.6776583
250 0.3916285213 0.6677316341 1.049903488
300 0.02628767687 0.3269626037 1.049542869

MXHILB (Lukšan et Vlček, 2000) 350 0.1609717999 0.1104218969 1.045602413
400 0.1442806643 0.4665952251 1.045602413
450 0.05815580861 0.3369307988 1.044279711
500 0.6171264908 0.7641535173 1.044279711
250 20036.82686 27020 27020
300 28753.31755 40090 40090

TRIDIA (Gould et al., 2003) 350 39713.16614 55245 55490
400 53334.99353 73107.5 73390
450 68659.40625 93470 93790
500 86456.10938 116690 116690
250 -0.1993680963 -0.25493364 -0.0902993563
300 -0.2307452576 -0.2308798643 -0.08608107767

G2 (Audet et al., 2008c) 350 -0.1103741744 -0.1713176654 -0.08238105208
400 -0.1162654853 -0.1861061239 -0.07887860951
450 -0.201875977 -0.1848964899 -0.07618140015
500 -0.2213701537 -0.2112503316 -0.0734738041
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Tableau 6.2 Valeurs de f ∗ des trois algorithmes pour 250 ≤ n ≤ 500

Instances f∗Stats−Mads f∗Mads f∗Gps

250 4.473253553e+12 2.710362038e+13 2.710362038e+13
300 1.412192327e+13 8.116802254e+13 8.116802254e+13
350 2.60770444e+13 2.049837836e+14 2.049837836e+14

PENALTY1 (Gould et al., 2003) 400 4.541033039e+13 4.569066885e+14 4.569066885e+14
450 1.053690702e+14 9.264901525e+14 9.264901525e+14
500 1.761233361e+14 1.743373614e+15 1.743373614e+15
250 6.901666504e+17 9.446161685e+17 7.364529608e+17
300 9.6129904e+21 1.043471597e+22 2.281953086e+22

PENALTY2 (Gould et al., 2003) 350 3.488646225e+26 4.582948854e+26 5.035068934e+26
400 4.101084456e+30 1.10904776e+31 1.10904776e+31
450 1.962295841e+35 2.442840255e+35 2.442840255e+35
500 5.380713729e+39 5.380713732e+39 5.380713732e+39
250 4709.022736 8671 8671
300 5795.649361 11226 11346

POWELLSG (Gould et al., 2003) 350 6732.021459 13686 13806
400 7815.960503 16361 16481
450 8679.669678 18821 18941
500 11763.25 21616 21616
250 68.71318309 1627 1627
300 212.3480566 2093 2093

SROSENBER (Gould et al., 2003) 350 895.3375 2559 2559
400 554.6213281 3044 3044
450 681.3408203 3510 3510
500 1536.1425 3995 3995
250 279349251 271826933.6 416172313.7
300 262187878 268078344.3 875516350.3

VARDIM (Gould et al., 2003) 350 4538393945 4528031116 1587463555
400 4216304234 4206089786 2805595827
450 4481006087 4488557510 4510159695
500 4168725343 4023653988 6801558858
250 875267.9686 994535 978611.8
300 825991.7653 1228107.8 1223013.4

WOODS (Gould et al., 2003) 350 1342458.848 1469240.6 1443128.6
400 1520770 1706763 1692624.6
450 1720014.8 1943946.2 1917834.2
500 1944169.8 2162820.2 2162235.8
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6.4 Extensions de STATS-MADS : résultats

Dans cette section, nous exposons les résultats des variantes de STATS-MADS que nous

avons rencontré au chapitre 5.

STATS-MADS non itératif et STATS-MADS homogène

Les résultats de STATS-MADS non itératif et de STATS-MADS homogène sont fondés

sur l’ensemble des 72 problèmes (tableaux 6.1 et 6.2).

Figure 6.10 Comparaison de STATS-MADS non itératif et STATS-MADS basique, basée

sur 72 problèmes
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Figure 6.11 Comparaison de STATS-MADS homogène et STATS-MADS basique, basée

sur 72 problèmes

Les profils de performance représentés par les figures 6.10 et 6.11 montrent que l’algo-

rithme STATS-MADS est beaucoup plus performant que STATS-MADS homogène (où on

fixe toujours les mêmes variables) et STATS-MADS non itératif (où on passe une seule

fois à un sous-espace). Dans 90% des cas, il réussit à atteindre la valeur optimale f ∗.

Ces approches ne semblent donc pas être rentables en termes d’optimisation du nombre

d’évaluations.

Méthodes de la frontière et des indices totaux

Nous testons les méthodes de la frontière et des indices totaux pour les problèmes de

petite dimension : n = 10 et n = 20, car ces deux approches sont très gourmandes

en temps de calcul pour n > 20. Nous obtenons les figures 6.12, 6.13, 6.14 et 6.15.

Nous souhaitons comparer la figure 6.1 aux figures 6.12 et 6.14 et la figure 6.2 à 6.13
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et 6.15 (ayant les mêmes dimensions et basés sur le même nombre de problèmes). Pour

n = 10, la méthode des indices totaux favorise la fixation de 50% de variables et met

GPS en deuxième rang, alors qu’elle garde STATS-MADS (90%) en troisième rang. Il

est clair que le classement des variables n’est pas le même que STATS-MADS, mais le

pourcentage de succès n’est toujours pas satisfaisant (inférieur à 50%). Pour n = 20, on

obtient exactement le même classement d’algorithmes. Cependant, STATS-MADS (50%)

obtient un taux de succès inférieur à 63.64% de la figure 6.2.

Figure 6.12 Profils de performance pour n = 10 en utilisant la méthode des indices

totaux
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Figure 6.13 Profils de performance pour n = 20 en utilisant la méthode des indices

totaux

Pour n = 10 (figure 6.14), la méthode de la frontière met en premier rang l’algorithme

STATS-MADS (50%) avec un pourcentage de succès faible (38.46%), à égalité avec GPS

et permute le classement de STATS-MADS (10%) et STATS-MADS (50%). Pour n = 20

(figure 6.15), le classement est le même pour les deux premières positions. Tout comme

la méthode des indices totaux, nous percevons que STATS-MADS (50%) obtient un pour-

centage inférieur (45.45%) à celui obtenu avec STATS-MADS basique (63.64%).
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Figure 6.14 Profils de performance pour n = 10 en utilisant la méthode de la frontière

Figure 6.15 Profils de performance pour n = 20 en utilisant la méthode de la frontière

Il convient de ce qui précède qu’on ne peut rien conclure par rapport aux deux méthodes

précédentes (une amélioration pour n = 10 en contre partie d’une détérioration pour

n = 20). Le gain est à peine perceptible en petite dimension. Le temps de calcul devient
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énorme si on passe à des dimensions plus importantes. Notons qu’une légère préférence

est accordée à la méthode de la frontière, étant donné que le calcul des indices totaux est

limité à un certain nombre de variables.

6.5 Autres résultats

Nous effectuons d’autres tests sur l’ensemble des 72 problèmes de dimension 250 ≤

n ≤ 500 avec STATS-MADS. Nous rapportons les observations suivantes.

Comparaison avec une méthode aléatoire

Nous comparons STATS-MADS avec une méthode pour laquelle on fixe aléatoirement

les variables dans les sous-espaces, comme dans PSD-MADS (Audet et al., 2008c). Mise

à part la technique de fixation, cette méthode est identique à STATS-MADS. Afin de ne

pas fixer les mêmes variables, une graine aléatoire initialisant un générateur de nombres

pseudo-aléatoires est utilisée. La figure 6.16 révèle l’utilité de l’approche statistique à

déterminer les variables susceptibles d’accélérer le processus d’optimisation.
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Figure 6.16 Profils de performance dans le cas où 250 ≤ n ≤ 500 pour un ensemble de

72 problèmes avec la méthode aléatoire

Retour sur MADS-RESCUE

Nous avons remarqué, en phase de tests, que le recours au processus de secours MADS-

RESCUE est beaucoup moins fréquent en grande dimension. Nous avons alors relancé

les tests en exculant le MADS-RESCUE. Rappelons qu’il s’agit du processus noté P3.

L’alternance est alors limitée à P1 et P2. La figure 6.17 illustre ce comportement. Les

résultats montrent que 66.67% de problèmes passent sans MADS-RESCUE en compa-

raison avec 61.11% . Les valeurs sont assez proches. 22.22% des problèmes donnent

exactement le même résultat avec les deux stratégies. Il pourrait être alors judicieux de

préconiser l’élimination de ce processus en grande dimension (n ≥ 250). Cela peut être

aussi intéressant du point de vue optimisation de paramètres, où il y aura deux paramètres

de moins (M et τ ) à définir.
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Figure 6.17 Comparaison entre STATS-MADS basique et STATS-MADS sans MADS-

RESCUE

6.6 MOPTA08

Le problème test MOPTA08 ((Jones, 2008), (Anjos, 2009)) est un problème d’optimisa-

tion très complexe construit à partir d’un problème réel de General Motors qui consiste

à la minimisation de la masse d’un véhicule motorisé sujette à des contraintes de perfor-

mance. Il comporte n = 124 variables et 68 contraintes d’inégalité et a comme principal

but la réduction de la fonction objectif en dessous de 228, à partir d’une valeur initiale

égale à environ 251 en un nombre d’évaluations inférieur à 1800 ce qui correspond à peu

près à 15 fois le nombre de variables. Cette réduction permettra d’optimiser le temps des

simulations (une simulation prend approximativement 20 minutes). Afin d’atteindre cet

objectif, plusieurs méthodes ont été utilisées. Celles-ci sont recensées et comparées dans

(Langouët, 2011) et (Regis, 2011). Une recherche plus récente sur ce sujet est évoquée

dans (Regis et Shoemaker, 2012).

L’algorithme MADS est loin d’aboutir à cet objectif. En effet, au bout de 1860 évaluations,
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on obtient une valeur de fonction objectif aux alentours de 242 (dans les conditions stan-

dards). Le but de notre travail n’est pas de s’acharner à résoudre ce problème particulier,

mais de mesurer l’impact de STATS-MADS par rapport à MADS.

Bien qu’il ne soit pas pertinent d’étudier ce problème de point de vue industriel, nous

en exploitons les caractéristiques (complexité, nombre de variables, etc.) afin de tester

l’algorithme STATS-MADS, conçu pour ce genre de problèmes. Nous nous limitons à

la comparaison de ce dernier avec MADS et GPS, tel était le cas des problèmes tests

précédents. Les paramètres de STATS-MADS ci-dessous ont été déterminés en fonction

des tests :

– npeval = 20n pour P1, npeval = 10n pour P2 ;

– ntoteval = 100n ;

– M = 1000 ;

– τ = 4 ;

– ne = 1 ;

– pourcentage = 90 : le choix de ce paramètre est basé sur les recommandations

précédentes.

Les profils de performance obtenus sont donnés par les figures 6.18 et 6.19. Pour la

première, le critère d’arrêt est un budget sur le nombre d’évaluations égal à 100n. Pour

la deuxième, on lance chaque algorithme sur un nombre indéterminé d’évaluations, alors

celui-ci s’arrête lorsque la taille du treillis devient plus petite que la précision de NO-

MAD. C’est ce qui explique que les trois algorithmes ne s’achèvent pas au bout du

même nombre d’évaluations.

Les deux figures montrent, qu’avec les paramètres choisis, la descente locale est légè-

rement plus rapide dans le cas de STATS-MADS que MADS et GPS. Le gain en nombre

d’évaluations, aussi petit soit-il, se traduit dans le milieu industriel par des gains de temps

importants, étant donné le coût des simulations.
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Figure 6.18 Profils de performance pour MOPTA08 : le critère d’arrêt est 100n

évaluations

Figure 6.19 Profils de performance pour MOPTA08 : aucun critère d’arrêt n’est donné

Le chapitre suivant sera synthétique. Nous y discuterons les résultats obtenus. Nous y

décriverons également les limites et les perspectives de recherche possibles de notre

algorithme.
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CHAPITRE 7

CONCLUSION

7.1 Synthèse des travaux

Un algorithme appelé STATS-MADS a été développé et implémenté en C++ sous NO-

MAD dont les principales finalités sont la réduction du nombre d’appels aux boı̂tes

noires, des dispositifs à évaluations coûteuses et la gestion des problèmes de grande

dimension. Afin d’accomplir cette tâche, plusieurs étapes ont été effectuées. D’abord,

une méthode qui dérive de l’AS a été adoptée en fonction des spécifications du pro-

jet, permettant l’estimation des indices de sensibilité d’ordre un basé sur une égalité de

l’ANOVA à un facteur et ceux d’ordre deux basé sur l’ANOVA factorielle. L’approxi-

mation des indices totaux a été alors possible en fonction des estimations précédentes.

Ensuite, la structure générale de l’algorithme a été établie et ses différents ingrédients

ont été définis. L’algorithme STATS-MADS résultant est une technique optimisant en al-

ternance dans des sous-espaces distincts de variables et l’espace complet. Le passage

d’un espace à un sous espace se fait au moyen d’une stratégie de fixation de variables les

moins influentes identifiées par l’AS. STATS-MADS est guidé par trois processus dont

deux correspondent à l’algorithme MADS classique duquel il hérite les propriétés de

convergence. Des variantes de STATS-MADS ont également été proposées. Enfin, l’algo-

rithme ainsi que ses extensions ont été testés sur un ensemble de problèmes numériques

issus de la littérature et comparés à MADS et GPS.
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7.2 Discussion générale

Nous avons proposé une manière de concevoir STATS-MADS et nous en avons testé di-

verses extensions. Nous sommes arrivés à la conclusion que STATS-MADS basique n’in-

flue pas le temps de calcul et est le plus performant et le plus apte à atteindre notre ob-

jectif principal. En outre, l’accomplissement de celui-ci est mieux distingué de celui de

MADS au fur et à mesure que la taille du problème augmente. Notre méthode s’est avérée

plus efficace pour traiter les problèmes de grande dimension, plus précisément ceux dont

la dimension est supérieure ou égale à 250. Ceci est favorable pour les problèmes indus-

triels pour lesquels l’explosion dimensionnelle empêche l’utilisation de certains logiciels

d’optimisation.

Nous ne pouvons trancher sur l’efficacité de notre méthode pour les plus faibles dimen-

sions, étant donné que nous avons porté nos jugements sur la base d’un nombre insuffi-

sant de problèmes testés.

La limitation principale de STATS-MADS est sa sensibilité au choix des paramètres.

Nous recommandons au lecteur intéressé l’usage des paramètres définis à la phase des

tests.

7.3 Perspectives de recherche

Deux perspectives de recherche peuvent être envisagées. D’une part, d’après (Audet et

Orban, 2006) et (Audet et al., 2010a) et (Dang, 2012), il est possible d’optimiser les

paramètres d’un algorithme conçu à résoudre des problèmes d’optimisation. En effet,

le choix de nos paramètres n’a été fondé que sur les problèmes tests. Il est certain que

l’utilisation d’une stratégie algorithmique serait plus prometteuse.

D’autre part, il serait avantageux d’intéger notre méthode statistique dans PSD-MADS

(Audet et al., 2008c), où on cherche à résoudre des problèmes de grande dimension en
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lançant des processus parallèles contenant des sous-ensembles de variables. Pour chaque

processus, le choix des variables à fixer est aléatoire. Nous avons pu constater, lors des

tests, l’intérêt de l’approche statistique par rapport à l’approche aléatoire.
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Université Libre de Bruxelles, Belgium.



89

BETTONVIL, B. et KLEIJNEN, J. P. C. (1997). Searching for important factors in simulation

models with many factors : sequential bifurcation. European Journal of operational research,

96:180–194.
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MORRIS, M. D. (1991). Factorial sampling plans for preliminary computational experiments.

Technometrics, 33:161–174.

NELDER, J. A. et MEAD, R. (1965). A simplex method for function minimization. Comput. J.,

7:308–313.

POWELL, M. J. D. (2004). The NEWUOA software for unconstrained optimization without

derivatives. Rapport technique DAMTP 2004/NA08, Department of Applied Mathematics and

Theoretical Physics, University of Cambridge.

PRICE, C. et COOPE, I. (2003). Frame based ray search algorithms in unconstrained optimiza-

tion. Journal of Optimization Theory and Applications, 116:259–377.

REGIS, R. G. (2011). Stochastic radial basis function algorithms for large-scale optimization

involving expensive black-box objective and constraint functions. Computers & Operations

Research, 38:837–853.
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ANNEXE I

COMPLÉMENTS AU CHAPITRE 2

Définition I.1. Une fonction f est dite Lipschitz en un point t s’il existe un scalaire K tel que

pour tout y suffisamment proche de t :

|f(t)− f(y)| ≤ K‖t− y‖.

Définition I.2. Une sous-suite d’optima locaux {xk}k∈K du treillis est dite raffinante si
{

∆p
k

}
k∈K

tend vers 0.

Définition I.3. Si f est Lipschitz près de x̂ ∈ Rn, alors la dérivée généralisée de Clarke en x̂

dans la direction d ∈ Rn est :

f
◦
(x̂, d) = lim

y→x̂,t↓0
sup

f(y + td)− f(y)

t
.

Définition I.4. Un vecteur v ∈ Rn est dit hypertangeant au domaine Ω ⊂ Rn au point x ∈ Ω,

s’il existe un scalaire ε > 0 tel que : y + tw ∈ Ω, ∀y ∈ Ω ∪ Bε(v), ∀w ∈ Bε(v) et ∀0 < t < ε,

où : Bε(x) est la boule de rayon ε centrée en x. L’ensemble THΩ (x) des vecteurs tangents est

appelé cône hypertangent en x.

Définition I.5. Un vecteur v ∈ Rn est dit Clarke-tangeant au domaine fermé Ω ⊂ Rn au

point x ∈ Ω, si pour toute séquence {yk} ∈ Ω convergeant vers x et si pour toute séquence

{tk} > 0 ∈ R convergeant vers 0, il existe une séquence de vecteurs {wk} convergeant vers v

telle que yk + tkwk ∈ Ω. L’ensemble TClΩ (x) des vecteurs Clarke-tangeants est appelé cône de

Clarke en x.

Définition I.6. Un vecteur v ∈ Rn est dit contigent au domaine fermé Ω ⊂ Rn au point x ∈ Ω,

s’il existe une séquence {yk} ∈ Ω convergeant vers x et s’il existe une séquence {λk} > 0 ∈ R

telle que v = lim
k
λk(yk − x). L’ensemble TBΩ (x) des vecteurs contingents est appelé cône de

Bouligand en x.
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Définition I.7. Un ensemble est dit régulier en x lorsque TClΩ (x) = TBΩ (x).


