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RESUME

De nombreux problemes industiels possedent des propriétés particulieres nécessitant
le recours aux méthodes d’optimisation sans dérivées qui ont connu un accroissement
d’intérét au cours des dernieres années. C’est notamment le cas lorsque les fonctions et
les contraintes définissant le probleme d’optimisation sont non linéaires, non différen-
tiables, bruitées ou non définies pour certains points du domaine. Les méthodes de re-
cherche directes tel que GPS et MADS sont des méthodes sans dérivées qui s’intéressent a
résoudre, sous contraintes, des problemes d’optimisation de boites noires a simple objec-
tif ou biobjectif, ou les fonctions correspondent le plus souvent au résultat d’un code in-
formatique. Les sorties des boites noires sont parfois tres coliteuses a évaluer et peuvent
échouer a retourner une valeur pour des raisons inconnues. C’est la principale motivation
qui nous incite a restreindre le nombre d’appels a la boite noire en utilisant une stratégie
de fixation de variables qui nous ramenera a optimiser dans des sous-espaces. Nous pro-
posons une méthode qu’on appellera STATS-MADS fondée sur I’analyse de sensibilité
afin de classer les variables d’entrée selon leur impact sur la sortie. L’ optimisation se
fera en alternance entre 1’espace des variables d’entrée et les sous-espaces obtenus en
fixant les variables jugées moins influentes. La méme technique est utilisée pour s’atta-
quer aux problemes de grande dimension qui constituent une des limites des méthodes
sans dérivées.

Nous utilisons la plus récente version (3.5.2) du logiciel NOMAD qui est une implémen-
tation en C++ des algorithmes MADS, principalement 1’instanciation ORTHOMADS. A
la lumiere des probleémes tests ayant jusqu’a 500 variables, nous comparons les résultats

de notre méthode avec MADS et GPS afin de pouvoir conclure a son efficacité.



ABSTRACT

Many industial problems have particular features requiring the recourse to derivative-
free optimization methods which have shown increasing interest in recent years. This
is particularly the case when the functions and the constraints defining the optimiza-
tion problem are nonlinear, nondifferentiable, noisy or not defined for some points of
the domain. Direct search methods such as GPS and MADS are derivative-free methods
interested in solving, under constraints, simple or biojectif blackbox problems where
functions are usually the result of a computer code. The outputs of blackboxes may be
very costly to evaluate and may fail to return a value for unknown reasons. This is the
main motivation that drives us to reduce the number of calls to the blackbox by using
a strategy of setting variables leading to optimize in subspaces. We propose a method
which will be called STATS-MADS based on sensitivity analyses to rank the input va-
riables according to their impact on the output. The optimization occurs by alternating
between the whole space of input variables and the subspaces obtained by setting the less
important variables. The same technique is used to tackle large-sized problems which is
one of the limitations of derivative-free methods.

We use the most recent version (3.5.2) of the software NOMAD which is a C ++ im-
plementation of MADS algorithms, mainly the instance ORTHOMADS. We compare the
results of our method with MADS and GPS in order to conclude its effectiveness, based

on test problems with up to 500 variables.
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CHAPITRE 1

INTRODUCTION

L’ optimisation est I’ art consistant a maximiser ou minimiser des fonctions mathématiques
souvent sujettes a des conditions particulieres. Au 18%™ siecle, le mathématicien suisse
Leonhard Euler a proclamé que : <...il n’arrive rien dans le monde qui ne présente
quelque propriété de maximum ou de minimum.>"' De nos jours, I’optimisation envahit
quasiment tous les domaines et son usage s’avere indispensable dans les sciences ap-
pliquées, I’ingénierie, la médecine, I’économie, etc.

Lorsque les fonctions régissant un systeme donné présentent des irrégularités, 1’optimi-
sation devient problématique. L’aspect non lisse en mathématiques et en optimisation est
de plus en plus fréquent et dépeint un grand nombre de phénomenes naturels auxquels
on fait face. Plusieurs problemes de grande ampleur, dont nous en présenterons un, sont
touchés par cet aspect aussi bien que par d’autres.

Ces problemes s’écrivent sous la forme :

i gggﬁnf (7)

ou: f: X — RU{oo} est la fonction mathématique & minimiser ou fonction objectif,
2 = {z € X:g(x) <0} est le domaine réalisable, g : X — (R U {cc0})™ sont les

conditions a respecter ou fonctions de contraintes.

1. Les mathématiques, les idées et le réel physique (2006) par Lautman, p. 211 (Google-Livres)



1.1 Mise en contexte

Ce mémoire s’inscrit dans le cadre d’optimisation non lisse de boites noires. Ces dispo-
sitifs sont caractérisés par un fonctionnement interne dissimulé qui correspond, dans la
plupart des cas, a un code informatique. Une boite noire recoit une ou plusieurs entrées
et retourne une ou plusieurs sorties et peut étre représentée shématiquement par la figure

1.1.

Entrées ; . Sorties
—> Boite noire >

Figure 1.1 Schéma simplifié d’une boite noire

Les sorties sont les fonctions objectif ou de contraintes qu’on désigne par fonctions de

la boite noire. On s’intéresse au cas mono-objectif (contraint ou non) pour lequel on

cherche a minimiser une seule fonction. En effet, maximiser f revient a minimiser — f.

Mise a part leur caractere dissimulé, les boites noires peuvent se caractériser par :

— Des fonctions dont I’expression analytique n’est pas fournie et pouvant étre disconti-
nues, non différentiables et non convexes ;

— La présence possible de bruit qui ajoute de I’incertitude et de la rugosité ce qui per-
turbe les sorties ;

— Des échecs d’évaluation de fonctions sans motif (corruption diie au bruit ou pour des
raisons inconnues) dont le cofit est souvent égal au colit de 1’évaluation ;

— La multi-modalité : 1a présence de plusieurs optima locaux ;

— Un temps d’évaluation lourd qui peut varier de quelques minutes a quelques semaines ;

— Un espace mémoire important pour stocker les informations transmises (les sorties).

L’ optimisation de boites noires est la tiche consistant a manipuler les entrées et lire les



sorties successivement jusqu’a I’obtention éventuelle d’une bonne solution et ce, sans
aucune connaissance de I'intérieur de la boite.

Un algorithme d’optimisation, par exemple MADS (Audet et Dennis, Jr., 2006) ou GPS
(Torczon, 1997), est une automatisation de cette tache. A partir d’un point initial z( € X,
on tente de trouver un nouveau candidat réduisant la fonction objectif f et respectant la
contrainte g(z) < 0 (fig.1.2). Si c’est le cas, alors ce point devient le nouveau point a
améliorer et les nouvelles valeurs de sortie sont retournées a 1’ algorithme d’optimisation,
afin qu’il décide de retenir ou non un nouveau candidat. Les entrées envoyées a la boite

noire sont produites suivant une stratégie de recherche spécifique a chaque algorithme.

Algorithme
d’optimisation

f (%1, X2y oeep X}

X1; X2p oeep Xi
rea [:4 (xl.! X2y voey xk)

Boite noire

Figure 1.2 Principe d’un algorithme d’optimisation de boites noires pour un probléme

de dimension k a une seule contrainte

1.2 Motivations et spécifications

La modélisation de problemes peut aboutir a des modeles de grande dimension pour les-
quels les algorithmes d’optimisation deviennent impuissants, voire inopérants. En effet,
I’explosion dimensionnelle est étroitement liée a I’inefficacité algorithmique : plus le vo-
lume de I’espace de recherche est grand, plus I’exploration de celui-ci devient difficile.

Certains logiciels d’optimisation sont explicitement déconseillés au dela d’un certain



nombre de variables d’entrée. Il est donc crucial de trouver une maniere pour manier
cette situation.

Une stratégie de fixation de variables s’est révélée prometteuse en mode parallele (Audet
et al., 2008c) et une autre en mode séquentiel (Booker et al., 1998), en utilisant respecti-
vement une méthode aléatoire et une méthode statistique afin de déterminer les variables
a fixer. Cette approche a permis, dans les deux cas, une descente locale plus rapide (étant
donné que I’exploration de I’espace de recherche est meilleure) et par conséquent une
réduction du nombre d’appels a la boite noire. Dans le présent document, on s’intéresse,
d’une part, a la réduction du nombre d’évaluations des boites noires, indépendemment
de la dimension de I’espace et d’autre part, a gérer le probleme de la grande dimension-
nalité. Nous nous inspirons de I’idée de la technique présentée dans (Booker ez al., 1998)
qui repose sur une approche statistique qui a permis de filtrer 11 variables prépondérantes
parmi 31 afin de développer une méthode faisant recours aux outils de la statistique pour
I’identification de variables importantes. Nous nous sommes alors confrontés a deux dif-
ficultés majeures, a savoir : comment identifier les variables influentes (ce qui revient a
identifier celles qui ne le sont pas) et quelle proportion fixer ?

La principale particularité de la technique que nous évoquons par rapport a celle men-
tionnée est qu’on fait appel a la méthode statistique d’'une maniere itérative, ce qui per-
met d’appliquer I’algorithme d’optimisation sur des sous-espaces de variables d’entrée
différents.

Le principe de la technique est le suivant : on part d’un ensemble de variables d’entrée
(espace complet), on lance I’algorithme d’optimisation sur cet ensemble. Par la suite, on
cherche un sous-ensemble de variables importantes a I’aide de la méthode statistique sur
lequel on relance I’algorithme et ainsi de suite.

Les données a partir desquelles on effectuera une analyse statistique sont regroupées
dans un fichier historique qui recense toutes les solutions visitées par I’algorithme d’op-
timisation ainsi que les sorties de la boite noire correspondantes. Dans le cadre de ce

travail nous avons choisi d’implémenter la méthode statistique en C++ sur le logiciel



NOMAD (Le Digabel, 2011), pour laquelle I'identification de variables prépondérantes
se fait en un temps de calcul raisonnable tout en tenant compte des caractéristiques des

fonctions de la boite noire.

1.3 Plan du mémoire

Les propos de ce mémoire sont €talés sur sept chapitres organisés de la maniere sui-
vante. Les deux premiers chapitres comportent deux revues de la littérature. L une porte
sur les méthodes d’analyse de sensibilité. Nous tenterons a travers celle-ci de trouver une
méthode statistique adéquate permettant de classer les variables d’entrée, afin d’identi-
fier les variables importantes. L’autre revue concerne les méthodes directes pour 1’ op-
timisation non lisse. On y retrouve le cadre théorique des algorithmes de recherche di-
recte qui nous intéressent. Ainsi, nous serons en mesure d’intégrer I’aspect statistique a
I’optimisation. Par la suite, nous présenterons une méthode statistique, conforme a nos
spécifications, dont nous décrirons les différents ingrédients. Le chapitre cinq présente
la structure algorithmique de notre méthode ainsi que les extensions qui en dérivent.
Le chapitre six est consacré aux tests des boites noires et aux résultats numériques des
différentes stratégies qui sont présentées plus tot. Des profils de performance nous seront
utiles pour apporter un jugement sur 1’efficacité de chacune des stratégies. Le mémoire
se conclut au septieme chapitre dans lequel nous récapitulerons toutes les démarches et

résultats importants.



CHAPITRE 2

REVUE DE LA LITTERATURE : METHODES DIRECTES ET
OPTIMISATION NON LISSE

Nous présentons d’abord le cadre général de notre projet en abordant le theme de 1’opti-
misation non lisse et les méthodes qui y sont dédiées. Apres avoir situé les méthodes de
recherche directe dans leur contexte historique, nous en exposons quelques notions fon-
damentales. Finalement, nous détaillons les algorithmes de recherche directe qui nous

intéressent pour la suite de ce mémoire, principalement pour des fins de comparaison.

2.1 Optimisation sans dérivées

L’ optimisation sans dérivées (OSD) regroupe I’ensemble des méthodes typiquement dé-
signées pour résoudre des problemes d’optimisation, ou 1’estimation des dérivées (par
exemple par différences finies (Dennis et Schnabel, 1996) ou par les techniques de diffé-
rentiation automatique (Gilbert, 1992) est soit tres coliteuse, soit imprécise ou méme
impossible, étant donné les caractéristiques des fonctions de la boite noire.

Les techniques d’OSD sont divisées en plusieurs catégories. On peut en citer les mé-
taheuristiques (le recuit simulé (Kirkpatrick et al., 1983), les algorithmes reposant sur
une stratégie évolutionnnaire (Jebalia, 2008), les méthodes basées sur des opérations sur
un simplexe (Nelder et Mead, 1965), les méthodes directes directionnelles (par motifs
(Torczon, 1997), par treillis adaptifs (Audet et Dennis, Jr., 2006), multidirectionnelles
(Dennis, Jr. et Torczon, 1991), utilisant les directions conjuguées (Rosenbrock, 1960)
ainsi que les méthodes modélisant la fonction objectif (fonctions de substitution) soit

par construction de surface de réponse (Jones et al., 1998), soit en utilisant les fonctions



de base radiale (Bjorkman et Holmstrom, 2000) ou par interpolation dans une région
de confiance (Powell, 2004), (Berghen, 2004), (Conn et al., 1998), (Conn et al., 2006),
(Conn et Toint, 1996).

EnI’occurence, nous nous intéressons particuliecrement aux méthodes directes auxquelles

nous consacrons la section suivante.

2.2 Méthodes de recherche directe

Les méthodes de recherche directe, connues aussi sous le nom de <« méthodes d’ordre
z€ro > (vu qu’elles ne font pas de calcul de dérivées) (Lewis et al., 2000), constituent une
classe de I’OSD pour laquelle la retenue ou le rejet d’une solution courante repose uni-
quement sur des comparaisons algorithmiques des valeurs de la fonction objectif. Une
caractérisation détaillée de ces méthodes est donnée dans (Trosset, 1997). Les méthodes
directes ont surgi vers les années 1950 comme étant des heuristiques (dont les plus po-
pulaires sont : (Hooke et Jeeves, 1961) et (Nelder et Mead, 1965)) et ont été écartées
vers le début des années 1970 en faveur de recherches fertiles sur les méthodes newto-
niennes (Dennis, Jr. et Schnabel, 1983) . Elles ont connu un regain d’intérét au début des
années 1990 avec I’apparition des premiers résultats de convergence dans un contexte de
programmation parallele (Torczon, 1991). Des lors, leur utilisation s’est avérée efficace
a résoudre des problemes d’optimisation complexes avec des propriétés de convergence

rigoureuses.

2.3 Ensembles générateurs et bases positives

Les ensembles générateurs et les bases positives sont des notions importantes pour les

algorithmes de recherche directe. Un ensemble générateur [d; . .. d;] est un ensemble de



vecteurs engendrant positivement 1’espace R" :
{veR":v=adi +...+qd,; >0:i=1,..., 1} =R".

La théorie des bases positives a été initialement introduite dans (Davis, 1954). Une base
positive de R™ est un ensemble de vecteurs non-nuls indépendant (c-a-d de rang maxi-
mal pour lequel aucun vecteur ne peut s’écrire sous forme de combinaison linéaire des
autres vecteurs) qui engendre R™ par des combinaisons linéraires positives (Conn et al.,
2009). La cardinalité d’une base positive varie entre n + 1 (dans ce cas elle est appelée
base positive minimale) et 2n (base positive maximale). Le lecteur intéressé pourra se
référer a (Audet, 2011) pour une preuve sur la cardinalité maximale d’une base positive.
Sous forme matricielle, une base positive maximale de R" correspond a :

Do =11, —IL)=le1...ep, —e€1...—¢,)],0u{ey,eq,...,6,} estlabase canonique
de R™.

La principale motivation sur laquelle repose 1’utilisation des ensembles générateurs po-
sitifs pour certains algorithmes directionnels (Lewis et Torczon, 1996) est basée sur un
théoreme qui stipule qu’un ensemble générateur [d; . .. d;] engendre R™ positivement si
et seulement si pour tout vecteur v € R™ non-nul, il existe un indice dans {1, ... 1}, tel
que v'd; > 0. En choisissant v = —V f(x) (lorsque V f(x) existe et est non-nul), alors
Vf (LE)Tdi < 0. Par conséquent, il existe au moins un indice i € {1,...,1} tel que d; est

une direction de descente (formant un angle aigu avec v tel que le montre la figure 2.1).



|)€1 fjg dl

Figure 2.1 (1) est une base positive minimale de R? , (2) est un ensemble générateur
positif mais pas une base positive, (3) est une base positive maximale. d; et d sont des

directions de descente pour (1) et (3), ds et d4 le sont pour (2), lorsque v = —V f(x).

Dans les trois sections qui suivent, nous allons exposer les algorithmes CS, GPS et
MADS. Cs est I’ancétre de GPS et en est un cas particulier. De méme, 1’algorithme
MADS est une généralisation de GPS. Il est donc inévitable de passer au travers de 1’un
des deux, d’autant plus que nous souhaiterons comparer notre méthode a GPS et MADS

a la suite de ce mémoire.

2.4 Algorithme de recherche par coordonnées (Cs : Coordinate Search ou Com-

pass Search )

La recherche par coordonnées (Fermi et Metropolis, 1952) est la méthode directe direc-
tionnelle la plus simple utilisant la base D@ pour la génération de directions d’explora-
tion.

On considere le cas non contraint pour lequel on s’intéresse a minimiser une fonction
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objectif f sur R™ sans aucune contrainte :

min f(z)

ou: f:R" — RU{oco}. On assigne la valeur infinie a f lorsque 1’évaluation échoue.
Cs est une méthode itérative, on dénote par k le compteur du nombre d’itérations. On
émet I’hypothése qu’on peut fournir un point initial z, tel que f(xg) < oo et on définit

I’ensemble des points de la sonde (le cadre) par :

x, : est I'itéré courant qui représente le meilleur point a date et est aussi appelé centre
de sonde.
Ay : est le pas considéré a I’itération k qui sera désigné plus tard par parametre de taille

du treillis.

Algorithme 1 : L’algorithme de recherche par coordonnées

1 : Inmitialisation : k£ < 0, 2y € R" tel que f(z¢) < coet Ay >0

2 : Sonde locale ou POLL : Evaluer la fonction objectif aux points ¢ de la sonde P, Si
on trouve un point tel que f(t) < f(xzx), alors : x4 < t et I’étape de sonde est
déclarée comme réussie. Sinon, zy. 1 < Ty.

3 : Mise a jour des parametres :

e SiI’étape de sonde est réussie, Ay 1 < Ag, sinon Apyq < Ap/2 et xpq < Tg.

e k < k+ 1 etretourner a 2 si aucune condition de terminaison n’est satisfaite.

Les conditions de terminaison sont le plus souvent une tolérance sur la taille du treillis
(c-a-d qu’on doit vérifier que A, < Ay,) ou un nombre maximum d’évaluations de la
fonction objectif.

Un algorithme CS de base consiste a évaluer 2n directions autour du centre de sonde
courant (7). Si un point ¢ appartenant a Py est une amélioration de la solution courante,
alors celui-ci devient le centre du cadre et le pas A; demeure inchangé, sinon ce pa-

rameétre est réduit a la moitié.
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D’autres stratégies pourront €tre utilisées pour optimiser CS dont une évaluation dyna-
mique du voisinage de z; commengant par une direction jugée prometteuse pour laquelle
il y a eu un succes a une itération ultérieure ainsi que I’évaluation opportuniste des points
d’essais qui arréter la recherche locale lorsqu’un meilleur point est trouvé (on passe ainsi

directement a 1’étape 3 de 1’algorithme 1).

Limites de CS :

Des exemples de la littérature ((Abramson, 2002), (Kolda et al., 2003)) ont montré I’in-
efficacité de cette méthode. D’une part, elle considere un nombre limité de directions
(toujours les mémes 2n directions) ce qui limite considérablement 1’espace de recherche,

d’autre part elle est tres sensible aux fonctions non lisses.

2.5 Algorithme de recherche par motifs (GPS : Generalized Pattern Search)

Les méthodes directes de recherche par motif ont ét€ introduites par (Torczon, 1997)
pour la résolution de problemes de programmation non linéaire sans contraintes et éten-
dues dans le cas des problemes a contraintes de bornes (Lewis et Torczon, 1999), a
contraintes générales linéaires (Lewis et Torczon, 2000) et non linéaires (Lewis et Torc-
zon, 2002). La méthode généralisée de recherche par motif telle que décrite dans (Lewis
et Torczon, 1996) génere, a chaque itération, une séquence finie d’itérés sur un maillage
avoisinant la solution courante, construite a partir d’'une combinaison linéaire positive
de vecteurs d’un ensemble générateur positif. La fonction objectif est alors évaluée aux
différents points de la séquence dans le but de trouver un itéré améliorant la solution ac-
tuelle. Si c’est le cas, alors le maillage est agrandi et I’itéré est retenu sinon le maillage

est contracté et une nouvelle séquence est générée.
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Nous présentons 1’algorithme GPS de (Torczon, 1997) tel qu’il a été évoqué dans (Audet
et Dennis, Jr., 2003). La gestion des contraintes sera abordée a la suite de ce chapitre.

Le parametre de la taille du treillis doit respecter la régle suivante :

Apyr = T%A, (2.1)

ou T € Qetwy € Z compris entre wt > 0etw™ < —1 tel que :

{0,1,...,w"} si I’itération est réussie
Wi € 2.2)
{w™,14+w™,...,—1} sinon.
Dans NOMAD, les valeurs par défaut sont : 7 = 2, wt = 0etw™ = —1.

D représente 1’ensemble des directions et doit étre de la forme D = GZ avec G € R"*"
une matrice non singuliere et Z € Z™*"P, selon (Audet, 2004).

Dy, C D : représente un ensemble générateur positif de directions a I’itération k. Le
treillis (ou le maillage) est une discrétisation spaciale de R" incluant tous les points

d’essais possibles et est défini par :
My ={z+ADz:zeNPLzeV,}.

Vi est ’ensemble des points ou la fonction objectif a été évaluée au début de I’itération
k.
Pk:{$k+Aded€Dk} C M,.

GPs introduit une étape de recherche qui n’apparait pas dans CsS : c’est la recherche
globale ou SEARCH. La recherche globale est optionnelle et flexible et peut €tre op-
portuniste (un succes termine immédiatement cette étape) ou exhausive (I’ensemble des
points de Sy, est évalué). Elle permet d’exploiter les connaissances du probleme en visant
un nombre fini de points d’essai prometteurs. Elle consent a I’utilisation de différentes

stratégies de recherche tels que les métaheuristiques de recherche a voisinage variable
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(Audet et al., 2008a), les modeles de substitution ((Booker et al., 1999), (Conn et Le Di-
gabel, 2011)) et I’échantillonnage par hypercube latin (Tang, 1993), afin de mieux explo-
rer I’espace de recherche. L’incorporation de cette étape qualifie les méthodes directes
directionnelles tels que MADS et GPS de méthodes hybrides qui associent des techniques

autre que directionnelles afin de guider I’optimisation.

Algorithme 2 : L’algorithme de recherche par motif GPS
1 : Initialisation : k& < 0, xo € Q tel que f (o) < 00, Ag > 0, 7, w™ etw™.

2 : Recherche globale ou SEARCH : Evaluer f sur S), un sous ensemble fini de A/, en

utilisant une stratégie prédéterminée afin de trouver ¢t € Sy tel que f(t) < f(xg).

3 : Sonde locale ou POLL : Si la recherche globale n’est pas un succes, considérer

Dy, C D et évaluer f aux points de P, C M.

4 : Mise a jour des parametres :

o Silexistet € T}, = Si|J Px tel que f(t) < f(xy) (itération réussie) alors xy,1 < t,
sinon xy1 <— xj (itération échouée).

e Mettre a jour wy, selon (2.2) et Agyq selon (2.1).

e k < Lk + 1 etretourner a 2 si aucune condition de terminaison n’est satisfaite.

A T'itération k, I’ensemble des points d’essai définit T}. Si f(t) < f(xx), pour tout
t € Ty, alors y est un point améliorant du treillis. Si f(x;) < f(y), pour tous les y € Py,
alors xy, est un optimum local du treillis.

On peut remarquer que 1’algorithme CS est bel et bien un cas particulier de GPS, si on
prend D = D®,w' = 0,w™ = —1etT = 2 pour I’algorithme 2 en excluant la recherche

globale (T}, = FPy).
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Limites de GPS :

On retrouve des exemples pathologiques pour GPS dans la littérature qui sont diis a un
nombre fini de directions de sonde qui mene soit a de faibles résultats de convergence

(Audet, 2004), soit a la non-optimalité des résultats (Kolda et al., 2003).

2.6 Algorithme de recherche par treillis adaptifs (MADS : Mesh Adaptive Direct
Search)

L’algorithme MADS constitue une généralisation de GPS dont une premiere implémenta-
tion est proposée dans (Audet et Dennis, Jr., 2006) avec différentes possibilités de choix
de directions. Il est destiné a améliorer GPS en offrant une exploration plus efficace
de I’espace et des résultats de convergence robustes. Ainsi, il permet d’en combler les
lacunes observées dans (Audet, 2004). Nous nous situons désormais dans le cadre des
probleémes contraints (ou les contraintes peuvent étre non linéaires). Plus précisément,
nous nous intéressons a ceux de la forme :

min f(x)

e

ot ={reX: gjx)<0,5eJ={12,....,m}},f,9; - X - RU{oo}, X etQ
étant des sous-ensembles de R".

() est le domaine réalisable pour lequel on ne pose aucune hypothese de linéarité, de
convexité, etc. Il est défini a travers X qui représente 1’ensemble des contraintes non
relaxables ou inviolables. f et g; sont des fonctions de boites noires qui portent les
caractéristiques mentionnées en introduction. Les g; sont des contraintes relaxables ou

violables qui procurent une mesure de la violation subie. D autres contraintes qualifiées
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de cachées font en sorte que la boite noire peut échouer a retourner une valeur (par
exemple dans le cas ou la résolution d’un systeme d’équations différentielles n’a aucune
solution ou simplement pour des raisons inconnues propres a la boite noire) ce qui se

traduit formellement par une valeur de retour infinie.

A la différence de GPS qui ne considére qu’un seul parameétre A, du treillis, 1’algorithme
MADS apporte une 1égere modification a celui-ci, il devient alors A} afin de le distinguer

du parametre de taille de cadre AY.

AP

AT

pt P

Figure 2.2 Les cadres de GPS (gauche) et MADS (droite) en gras, P, = {p1, p2, P3, P41}
figure tirée de (Abramson et Audet, 2006)

La figure 2.2 illustre la distinction entre GPS et MADS ainsi que le role de A} et A?.
Dans la partie gauche de la figure, la taille du cadre A% est la méme pour GPS et MADS.
Pour MADS, la taille du treillis A}* est beaucoup plus faible que la taille du cadre AJ.
Par conséquent, il présente plusieurs possibilités de constructions de points de sonde, ce

qui constitue sa contribution majeure a générer un ensemble de directions dense.

Compte tenu du parametre A}, les expressions de M, et P, deviennent :

M, = {$k+A?Dz:z€N‘D|,x€Vk},
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La distinction entre GPS et MADS est que dans MADS, Dy n’est pas contraint a €tre un

sous-ensemble de D.

Pour tout d € Dy, (d # 0), une direction de sonde :

— Tl existe u € NIP#l tel que d = Du;

— La distance entre le centre du cadre xj, et un point du cadre ¢ € P est bornée par un
multiple de A} : A7 ||d|| < A} max {||d’|| : ' € D};

— Les limites des ensembles D;, normalisés (D, = {ﬁ :d e Dk}), tels que définis
dans (Price et Coope, 2003), sont des ensembles générateurs positifs.

Les parametres A} et A? doivent vérifier les conditions suivantes :

AP < A?, pour tout k, (2.3)

et

%ir}r% A'=0%& %IIII% A? = 0, pour tout ensemble fini d’indices K. 2.4)
(S S

Mise a part les différences mentionnées, un algorithme MADS correspond a 1’algorithme

2 de la section précédente.

Gestion des contraintes :

Chaque contrainte est gérée en utilisant I’une des trois approches suivantes : la barricre
extréeme (EB pour Extreme Barrier), la barriere progressive (PB pour Progressive Bar-

rier) et la barriere progressive a extréme (PEB pour Progressive to Extreme Barrier) qui
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est une combinaison des deux approches précédentes .

La barriere extréme (appliquée sur MADS dans (Audet et Dennis, Jr., 2006)) consiste a
considérer la fonction fq suivante qui rejéte automatiquement tous les points d’essai ¢
qui ne font pas partie du domaine réalisable ce qui revient a considérer le probleme sans

contraintes (€2 = R") :

falt) = ft) siteq,

00 sinon.

Cette approche peut permettre de réduire le nombre d’évaluations de la fonction objectif
(qui est coliteuse) en excluant I’ensemble des solutions non réalisables.

La barriere progressive est issue de la méthode du filtre (Fletcher et Leyffer, 2002) qui
a été utilisée avec GPS (Audet et Dennis, Jr., 2004) pour les problemes a contraintes
générales et adaptée pour MADS dans (Audet et Dennis, Jr., 2009). Elle consiste a intro-

duire une fonction non négative h qui mesure la violation des contraintes :

h:R" — RU{co}.

00 sit¢g X,
ht) = Z(max(gj (t),0))* sinon.
jeJ

Il résulte de la définition de h que :

-teQ < h(t)=0;

— Si0 < h(t) <occalorst € X\

Cette approche tolere les points d’essais qui violent les contraintes relaxables. Plus
précisément, a chaque itération k, les points d’essai dont la mesure de la violation
n’excede pas un certain seuil 7 (qui décroit tout au long de I’itération) sont évalués.
Les autres points sont simplement écartés. Le probleme d’optimisation contraint est ainsi

percu comme un probleme biobjectif minimisant a la fois f et h avec une priorité ac-
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cordée a la réduction de h, afin d’obtenir des solutions réalisables.

La barriere progressive a extréme (Audet et al., 2010b) traite initialement les contraintes
relaxables par la barriere progressive et passe a la barriere extréme des que ces contraintes
deviennent satisfaites. En effet, si le sondage autour d’un centre de cadre non réalisable
génere un point vérifiant une contrainte violée par le centre de sonde locale, alors celle-ci
est désormais traitée avec la barriere extréme.

Un avantage important de PB et PEB est qu’ils ne requierent pas de point initial réalisable,
ce qui est intéressant de point de vue pratique pour les problemes industriels, ou il n’est

pas toujours faisable d’en fournir un.

Convergence de MADS :

L’analyse convergence de MADS ainsi que toutes ses instanciations repose sur le calcul
non lisse de Clarke (Clarke, 1983) et est présentée de maniere hiérarchique, dépendam-
ment des hypotheses posées sur f et {2 et la facon avec laquelle on gere les contraintes.
Ainsi, pour chaque stratégie EB, PB et PEB, on retrouve une analyse de convergence
respectivement dans (Audet et Dennis, Jr., 2006), (Audet et Dennis, Jr., 2009) et (Audet
et al., 2010b). Les définitions sur lesquelles les résultats suivants reposent sont en an-
nexe.

On se place dans le cas général d’un probleme contraint. On suppose que 1’on peut
fournir un point initial dans X mais pas nécessairement dans {2 et que tous les itérés
appartiennent a un ensemble compact.

Les conditions (2.3) et (2.4) impliquent le résulat suivant et assurent la convergence de
MADS :

lim inf A = lim inf A}’ = 0.
k—4o0 k—4o00

(Audet et Dennis, Jr., 2003) ont prouvé I’existence d’une sous-suite raffinante (définition

1.2) d’optima locaux {x}, ., qui converge. Notons & le point limite de cette sous-suite.
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Compte tenu de la gestion des contraintes, Z peut €tre la limite d’une sous-suite de

centres de cadres réalisables ou non.

Dans le premier cas, il a été montré dans les articles cités que :

— Siaucune hypothese n’est émise sur f, alors 2 est le point limite d’une sous-suite d’op-
tima locaux devenant infiniment fins. De plus, si f est semi-continue inférieurement
prés de z, alors f(z) < lilgn f(zr);

— Si f est Lipschitz prés de & (définition 1.1) alors les dérivées généralisées de Clarke
(définition 1.3) f° (2,d) > 0,Vd € TE (%) (définition 1.4). Si TL (&) est non vide, alors
f(2,d) > 0,Vd € TS'(2) (définition 1.5), c-a-d 2 est un point Clarke-stationnaire ;

— Si f et Q sont réguliers pres de @ (définition 1.7), alors f*(2,d) > 0,Vd € TZ(%)
(définition 1.6), c’est a dire, & est Bouligand-stationnaire ;

— Si f est strictement différenciable pres de & et 2 régulier, alors 2 est Bouligand-KKT-
stationnaire.

Sous de plus amples hypotheses, (Abramson et Audet, 2006) ont établi des résultats

de convergence de deuxieme ordre : si f est deux fois strictement différentiable, ) est

convexe et V2f(Z) est non singulier, alors 7 est un minimum local strict.

Dans le deuxiéme cas (le cas ou les itérés sont non réalisables), les résultats de conver-

gence tiennent pour le probleme suivant :

mip h()

Dans le cas ou z € €2, sous I’hypothese supplémentaire suivante selon laquelle on peut

garantir qu’il n’y a pas de direction de descente dans le cone hypertangent :

Vd € T (%) # 0, il existe € > 0 pour lequel A’ (z;d) < 0 pour tout z € X N B.(Z) qui

vérifie h(x) > 0, oit B.(Z) est la boule de centre Z et de rayon e.
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2.7 De LTMADS a ORTHOMADS

LTMADS est la premiere instance de MADS proposée dans (Audet et Dennis, Jr., 2006)
et en est une implémentation stochastique. L’appellation LTMADS dérive de lower tri-
angular matrix ou le choix des directions se fait a partir d’'une matrice triangulaire
inférieure dont on permute aléatoirement les lignes et les colonnes afin de diversifier
les résultats.

Les parametres de cette premiere implémentation correspondent a :

D=2Z=[, —L]r=4uw"=1w =-1,A7"=AF =1

Deux possibilités de complétion d’une base positive sont proposées : n + 1 et 2n direc-
tions de sonde.

L’ensemble des directions de sonde normalisées générées par LTMADS est dense dans
la boule unité avec une probabilité 1. Cela garantit sous certaines hypotheses la conver-
gence de cette instance de MADS (Audet et al., 2008b) ce qui implique sa validité.
ORTHOMADS est une instance de MADS introduite dans (Abramson et al., 2009) dont
I’émergence repose sur deux principaux motifs : le premier étant la possibilité de re-
produire les résultats d’une expérience, étant donné que I’algorithme utilise la suite
quasi-aléatoire de Halton (Halton, 1960) pour générer des directions déterministes or-
thogonales, le deuxieme est 1i€ au fait que ORTHOMADS permet d’éviter les angles
assez grands entre les directions de sonde a une itération donnée (donc les régions
non explorées), ce qui constitue un inconvénient de LTMADS. Des tests provenant de
problemes tirés de la littérature ont montré la dominance de cette instance sur la précé-
dente pour une seule utilisation (ce qui correspond au cas des boites noires ot 1’on réduit
le nombre d’appels). ORTHOMADS est déterministe, cependant un parametre de la suite
de Halton permet de varier les résultats a chaque utilisation. Ce parametre correspond au

n®m nombre premier pour le logiciel NOMAD, ou n est la dimension du probléme.
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Nous gardons un intérét particulier pour cette instance et nous y serons de retour dans un
chapitre prochain, étant donné que c’est I’instance par défaut de NOMAD qu’on utili-
sera pour développer notre algorithme. Notons que le méme résultat de convergence que

LTMADS est assuré, sans terme de probabilité, puisque ORTHOMADS est déterministe.
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CHAPITRE 3

REVUE DE LA LITTERATURE : METHODES D’ANALYSE DE SENSIBILITE

Dans le présent chapitre, nous donnons un apercu sur les méthodes d’analyse de sen-
sibilité (AS) dont I’objectif principal concorde avec le notre. Nous tachons de trouver,
parmi celles-ci, une méthode conforme aux spécifications mentionnées au chapitre 1.
Nous introduisons aussi les concepts statistiques en analyse de la variance (ANOVA) qui

nous seront utiles au chapitre suivant.

3.1 Introduction a I’analyse de sensibilité

L’étude de I'incidence des variables d’entrée sur la variable de sortie pour I’identification
des variables influentes nous amene a1’ AS de la sortie par rapport a chacune des entrées.
L’ AS peut étre définie comme étant I’étude de 1I’impact de la variation des entrées sur la
variation de la sortie.

On considere un modele mathématique de simulation ou de prédiction décrivant un pro-
cessus donné (chimique, physique, biologique, financier, etc.) et retournant une sortie Y

qu’on supposera unidimensionnelle :

Y = f(X1, Xov .o, Xp). (3.1)

Sauf indication contraire, pour la suite de ce chapitre, X7, X5, .. X sont des variables
indépendantes et k est le nombre de variables d’entrée.

La fonction f peut étre trés complexe, lorsque par exemple, son évaluation requiert la
résolution d’un systeme d’équations différentielles. En pratique, f est calculée par un

code informatique.
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Selon (Saltelli et al., 2000) I’ AS permet de :

— Déterminer si le modele décrit bien le processus qu’il représente ;

— Identifier les facteurs qui contribuent a la variabilité de la sortie et qui requierent plus
d’intérét afin d’améliorer le modele ;

— Déterminer les parametres non significatifs qui peuvent étre éliminés du modele ;

— Détecter s’il y a des interactions entre certaines variables d’entrée ou un groupe de
variables ;

Dans le cas ou on ne peut pas émettre d’hypotheses sur le modele et ot la modélisation

du processus n’est pas I’objectif visé de I’ AS, (Saltelli et al., 2004) rapportent d’autres

éléments qui correspondent mieux a ce contexte :

— Hiérarchisation des facteurs (Factors Prioritisation) : identification du facteur le plus
influent qui prend la grande part de variance de la sortie ainsi que ceux qui en prennent
de moins en moins, ce qui permet de classer les facteurs ;

— Fixation de facteurs (Factors Fixing) : identification du facteur ou du groupe de fac-
teurs qu’on peut fixer, car ils n’influencent pas la variance de la sortie ;

— Réduction de la variance (Variance Cutting) : réduction de la variance au dessous
d’un seuil donné en fixant simultanément le moins de facteurs possible. Ceci est utile
surtout en analyse de risque ;

— Cartographie de la sortie (Factors Mapping) : lorsque la sortie Y est répartie selon
des régions de différentes caractéristiques (par exemple acceptable ou non), alors on
détermine le facteur qui est a 1’origine de cette répartition.

On s’intéresse, dans cette revue de la littérature, aux méthodes qualitatives et quantita-

tives d’AS qui tentent de déterminer les variables influentes ou de hiérarchiser les va-

riables d’entrée en fonction de leur importance sur la sortie. Par conséquent, les mesures
de sensibilité qui permettent d’étudier la relation entre 1’entrée et la sortie (linéarité, mo-
notonie, etc.) tel que le coefficient de détermination ou de corrélation (de Pearson) ne
feront pas 1’objet de notre étude. Pour cela, on se limitera aux méthodes locales, aux

méthodes de criblage et aux méthodes globales basé€es sur la décomposition de la va-
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riance et la régression linéaire.

3.2 Méthodes locales

Les méthodes locales donnent, tel que leur nom I’indique, une information sur I’impact
de la variation d’une variable d’entrée a un niveau local, c’est a dire, lorsque celle-ci
prend une valeur nominale donnée x,. Cela revient a évaluer les k dérivées partielles
f—;(:| X=z, du modele (3.1) ou a les estimer en utilisant, par exemple, la dérivation au-
tomatique de codes. Ces quantitées sont des coefficients de sensibilité (Saltelli et al.,
2000) représentant une estimation linéaire du nombre d’unités de variation de Y suite a
une variation d’une unité de X;.

Afin d’€tre indépendant de I’unité de grandeur, ces coefficients peuvent étre normalisés

en considérant la variance des X; et celle de Y :

A X;) oY

V(YY) 0X; |X=ao-

Le classement des variables se fait alors en fonction des coefficients normalisés. Les fac-
teurs les plus influents ont un coefficient plus élevé. La principale limite de ces méthodes
est le caractere local de 1’étude. Le classement de variables obtenu est convenable seule-

ment si le modele est lin€aire ou quasi-linéaire.

3.3 Méthodes de criblage

Les méthodes de criblage (screening) sont des méthodes économiques en temps de cal-
cul qui visent a identifier qualitativement les variables d’entrées importantes pour les
modeles de grande dimension (des centaines d’entrées) difficiles a explorer. Dans la

suite de cette section, on se limitera aux méthodes de criblage permettant 1’identification
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d’un petit nombre de variables d’entrée d’un modele. On y retrouve les designs OAT
(One At a Time), la méthode de Morris (Morris, 1991), les designs de (Cotter, 1979) et
de (Andres et Hajas, 1993) et bien d’autres.

Les designs OAT sont des méthodes de criblage typiques et simples qui consistent a
étudier I'influence de la variation d’une variable d’entrée donnée a la fois. Chaque va-
riable prend deux ou trois modalités. A deux modalités, k + 1 évaluations sont requises
(Iooss, 2011). Quoique les méthodes OAT soient locales et ne tiennent pas compte des
interactions, (Morris, 1991) a proposé une méthode globale, couvrant tout I’espace des
variables d’entrées, qui repose sur un design OAT permettant de déterminer les facteurs
non influents ou les facteurs ayant un effet linéaire ou additif ou bien ceux dont I’effet
est non linéaire ou avec interactions. L’idée de base de cette méthode est une analyse sta-
tistique d’un échantillon d’effets élémentaires (dérivées partielles) des variables afin de
mesurer I’importance relative des entrées. Cela consiste a calculer plusieurs réalisations

d; d’un facteur a la fois :

1
di - Z(f('rla"'7$i—17$i+A7Ii+17"'7I/€) - f(fL’l,...,Ik)),

ou A #0eR.

Une moyenne élevée des d; indique que le facteur x; a une grande influence sur la varia-
bilité de la sortie, tandis qu’une variance élevée renseigne sur une non-linéarité ou une
corrélation avec les autres facteurs, sans pour autant pouvoir le trancher.

(Cotter, 1979) a présenté un design systématique factoriel répliqué nécessitant 2k + 2
évaluations. Cependant, celui-ci n’est pas assez précis et ne détecte pas les facteurs im-
portants dont les effets s’annulent mutuellement. (Andres et Hajas, 1993) ont développé
un design factoriel fractionnaire itératif permettant d’estimer les effets principaux et les
effets quadratiques avec un nombre faible d’évaluations (par rapport au nombre de fac-
teurs), en faisant des regroupements de facteurs. Une autre technique de criblage par

groupe a été proposée par (Bettonvil et Kleijnen, 1997). Enfin, (Saltelli et al., 2008) ont
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décrit une méthode de criblage (Elementary Effets method) ayant la flexibilité d’un de-
sign OAT qui permet de surmonter quelques limites mentionnées et peut étre étendue

dans le cas de groupement de facteurs, lorsque cela est nécessaire.

3.4 Méthodes globales

Les méthodes globales tiennent compte de tout 1I’espace de variation de la sortie afin de
quantifier la part de la variance relative a chacune des entrées. Deux propriétés per-
mettent de caractériser les méthodes globales selon (Saltelli ef al., 2000) : la forme
et le domaine de la densité de probabilité de la fonction de sortie ainsi que 1’étude
de la sensibilité d’une variable X, en faisant varier toutes les autres variables. Nous
décrivons ici quelques méthodes basées sur la décompostion de la variance de la sortie
et la régression linéaire. D’ autres méthodes basées, entres autres, sur les tests statistiques

et les métamodeles sont exposées dans (Iooss, 2011).

3.4.1 Méthodes basées sur la variance

L’intérét des méthodes d’AS basées sur la variance réside dans leur indépendance du
modele et leur capacité de capturer la variance des facteurs d’entrée ainsi que les effets
d’interactions. Le seul inconvénient est le colit de 1’estimation. Parmi les méthodes d’ AS

basées sur la variance, les méthodes de Sobol et FAST sont les plus connues.

Méthode de Sobol

(Sobol, 2001) a établi, sous certaines hypotheses, a partir d’une décomposition connue

sous le nom de HDMR (pour High Dimensional Model Representation), les mesures de
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sensibilité suivantes :

Dil...’is

Sil...is - D )

1< <... <1y <k, (3.2)

k k
D=3 > Di.i, (3.3)

s=1 11<...<ig

D et D;, ;, sontdes constantes appelées variances.

Les .S; sont appelés indices de sensibilité d’ordre un de Sobol correspondant au facteur
X, et permettant de quantifier son effet (effet principal) sur la sortie.

De méme, I’indice de sensibilité d’ordre deux S;; permet de quantifier I’effet de I’inter-
action entre les facteurs X; et X; et ainsi de suite. A partir de (3.3), on peut déduire que

la somme de tous les indices de tous les ordres est égale a 1 :

k
> Sy = 1.

k
s=1 i1<...

<is

On définit également I’indice de sensibilité total du facteur X; par :

S, =1-95_,, (3.4)
ou S_; est la somme de tous les termes .S;, ;. n’incluant pas I'indice :.

Théoréme de la variance conditionnelle :

La variance de la sortie V(Y') peut étre aussi décomposée en utilisant les variances

conditionnelles a X; et X_; (X_; désigne tous facteurs sauf celui d’indice j). Cette
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décomposition est valable dans tous les cas, indépendemment de 1I’orthogonalité des

entrées (Saltelli er al., 2004) :
V({Y) =V(EY|X))) + E(V(Y]X))),

et

V({Y) = V(EY[X ) + E(V(Y]X)),

ou V(E(Y|Xj;)) estla variance de I’espérance de Y conditionnellement a X;, et E(V (Y| X))
est I’espérance de la variance Y conditionnellement a X ;.

En normalisant les deux décompositions, on obtient :

VIEY X)) | E(VYIX))

Tvm V)

et
VIEY|X)  EWVY[X)

v V()

Il est alors démontré dans (Saltelli ez al., 2000) que I’indice de sensibilité du premier
ordre de Sobol, ainsi que celui d’ordre total, traduisant tous les deux I’influence de X;

sur Y, peuvent s’écrire sous la forme :

_V(E(Y]X:) _ D;
Si = W =7 (3.5)
CV(EYIX.) D
St, = % =75 (3.6)

Il est également démontré dans (Saltelli et al., 2000) que I'indice de sensibilité d’ordre
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deux traduisant I’influence de deux variables X; et X; sur Y peut s’€crire sous la forme :

_VENIX, X)) - V(EY]X) - V(EY]X)) _ Dy
Sy = VS == 3.7)

Les indices d’ordre supérieur sont définis de facon similaire.

Estimation des indices de Sobol :

Nous présentons une méthode d’estimation des indices de sensibilité de Sobol attribuable
a (Saltelli, 2002) qui constitue une amélioration de la méthode originale de (Sobol, 1990)
qui requiert N x 2¥ évaluations, étant donné le modele (3.1) et un échantillon de taille
N.

L’indice de sensibilité d’ordre un est estimé par :

L’ évaluation de cette quantité nécessite la génération de deux échantillons de matrice de

méme taille :

=
I



et
x(11 ) xél )
2 (2
x x
M, = 1 2
ng') ng’)
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La moyenne des observations F(Y') est calculée a partir de M; ou M, (ou les deux),

tandis que, pour estimer U;, on définit une troisieme matrice /N; obtenue a partir de M,

ou toutes les colonnes sauf celle de la variable X; sont ré-échantillonnées.

U SR

(2" 2" (2)

x €T e €T

Nj _ 1 2 ]
N’ N’ N
A S ol

Les estimations de £(Y) et U; sont données par :

- 1 r r
BY) =52 f@ 2,

1

= Sl e o

N -1

r=1

Le cofit associé permettant I’estimation des indices de sensibilité de premier ordre est de

N x (k + 1) évaluations de f.

Enfin, I'indice de sensibilité total est estimé par :

5 U_; — EX(Y)

Sre=1—
" V(Y)
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N
2 1 r r r r r r r/ r r
U—j:mg f(xg),xé),...,w,(c))f(xg),xé),...,xgj)_l),xg. ),xE.) ...,x,(f)).

r=1

Un cofit supplémentaire de Nk est di a I’estimation des indices totaux. Une extension
de cette méthode permet d’obtenir tous les indices d’ordre un, d’ordre deux et totaux au

coltde N x (k + 2) évaluations.

Méthode de FAST

FAST, I’acronyme de Fourier Amplitude Sensitivity Test, est une méthode qui a été
développée par (Cukier et al., 1973), (Cukier et al., 1978), (Cukier et al., 1975) et (Schai-
bly et Shuler, 1973) dans un contexte d’ AS et d’incertitude.

Définissons d’abord le moment d’ordre r de Y du modele (3.1) (Chan et al., 1997) :

EY") = . fr(z1, 22, ..., zp)p(21, Tay . . ., Tk )dx. (3.8)

olt ) est I’espace de variation des k variables d’entrée et p est la densité de probabilité
de X = (Xy,..., Xp).

La méthode de FAST repose principalement sur la conversion de I’intégrale k-dimension-
nelle en x (3.8) en une intégrale unidimensionnelle en s en utilisant la transformation
suivante : x; = G;(sin(w;)), pouri =1,2,... k.

En utilisant les propriétés des séries de Fourier, la variance de la sortie peut étre ap-

prochée par :

V) =5 [ Pl — WP



ou: f(s) = f(Gi(sin(wys)),. .., Gr(sin(wgs))) et E(Y) = o= [T f(s)ds
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Un bon choix de G; serait, par exemple : x; = % + % arcsin(sin w;s)(Saltelli ef al., 2000).

Rappelons que les coefficients de Fourier sont définis par :

A; = % /_: f(s)cos(js)ds
B; = % /_7r f(s)sin(js)ds

Une approximation de V' (Y) serait :

k
V(Y)~ Y (A?+B}) — (A + Bj) ~ ZA2+B2

j=—o0

Alors, la contribution du facteur X; a la sortie Y peut étre approchée par :
M
Vo (Y) =2) (A3, + B},,),
j=1

ot M est I’harmonique maximal, en général 4 ou 6.

Les indices de sensibilité de FAST sont donc estimés par :

M

(YY) =
(Y)

~ (Aiwl _I_ B_]zwl)
Si= .
A

> (4 +B))

J=1

Afin de pouvoir classer les variables d’entrée en utilisant la méthode de FAST, il faut

définir w; et G; et calculer A; et B; en évaluant la fonction modeéle en un nombre suffisant

de points.
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3.4.2 Méthodes basées sur la régression linéaire multiple

Si le modele est linéaire, les coefficients de régression peuvent servir d’estimateurs quan-

titatifs de sensibilité. Un modele de régression linéaire est donné par :

k

J=1

X; représente I’observation ¢ de la variable X;.

Les X;; sont des données obtenues a I’aide d’une stratégie d’échantillonnage (échantillon
de dimension N).

Les Y; représentent les sorties correspondantes aux échantillons (X1, ..., X;j, . ..

s Xir)s
i € {1,...,N}. Les j; sont les coefficients de régression, des constantes a déterminer
par la méthode des moindres carrés et les ¢; sont des termes d’erreur.

Sous I’hypothese d’indépendance des variables d’entrées X et en supposant aussi que
celles-ci sont indépendantes des ¢;, la variance du modele (3.9) peut étre décomposée

comme suit :
k
V=Y
j=1
Vj la part de la variance expliquée par la variable X et la variance totale V' sont estimées

dans (Xu et Gertner, 2008) par :

N
N A 1 A _
Vi = BV(X) = 587D (X — X))

=1
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La sensibilité relative a la variable X est alors donnée par :

Cet indice de sensibilité est connu sous le nom de SRC pour (Standardized Regression
Coefficient). 1l est compris entre 0 et 1 et permet le classement de variables.

Si le modele n’est pas linéaire mais monotone, alors un autre indicateur peut €tre utilisé.
Il s’agit de I’indicateur SRRC pour Standardized Rank Regression Coefficient, basé sur
la transformation des rangs. Cette derniere consiste a attribuer la valeur 1 a la plus pe-
tite valeur de sortie, 2 a celle qui lui est directement supérieure et ainsi de suite jusqu’a
attribuer /V a la plus grande valeur. On applique le méme principe avec les k variables
d’entrée. Le SRRC se calcule, alors, de la méme facon que SRC, en considérant les vec-
teurs rangs. Notons que les 3; correspondent dans ce cas a 5]3 : coefficients de régression
associés aux rangs.

Le SRRC a été utilisé, en guise d’exemple, dans (Allard et al., 2011), avec deux autres
méthodes (FAST et polyndmes locaux (Da-Veiga, 2005)) pour I’identification des gran-
deurs qui influencent les parametres d’un modele de simulation incendie. Le classement
des variables importantes trouvé est le méme pour ces trois méthodes. D’autres indica-
teurs de sensibilité sont employés avec différentes techniques d’échantillonnage sur des

problemes tests linéaires, monotones et non monotones dans (Helton et Davis, 2002).

Nous n’allons pas utiliser directement une des méthodes d’ As évoquées dans le cadre de
cette revue de la littérature pour des raisons que nous expliquerons au chapitre 4. Celui-
ci présentera une méthode basée sur la décomposition de I’ANOVA qui sera en mesure

d’estimer les indices d’ordre un et d’ordre supérieur que nous avons définis plus tot.
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CHAPITRE 4

METHODOLOGIE STATISTIQUE

Ce chapitre est consacré a I’'introduction d’une méthode statistique susceptible d’établir
une certaine hiérarchie des variables d’entrée. Nous présentons une méthodologie basée
sur I’ANOVA généralisée au cas de plusieurs facteurs qui donnera une mesure de sen-
sibilité a chacune des variables d’entrée relativement a la sortie. Nous nous servons
également de I’ANOVA factorielle afin de détecter les interactions, pour le calcul des
indices d’ordre supérieur. Finalement, 1’estimation des quantités D, D; et D;; définies

au chapitre précédent permettra d’approximer les indices de sensibilité totaux.

4.1 Choix de la méthode statistique

Au chapitre précédent, nous avons observé un certain nombre de méthodes d’ AS pour la

classification de variables. Le choix de la méthode adéquate repose essentiellement sur

les spécifications du projet rencontrés en introduction. (De Rocquigny et al., 2008) ont

abordé les criteres d’un bon choix de méthode. Ceux-ci peuvent se résumer ainsi :

— Les propriétés du modele : linéaire ou non linéaire, monotone ou non monotone (ce
qui pourrait étre inconnu a priori), le temps CPU ;

— Les caractéristiques des variables d’entrée du modele : nombre, indépendance ou
corrélation, présence de variables discretes ;

— L’objectif de I’étude et les particulatités de la méthode potentielle : qualitative ou

quantitative, locale ou globale, etc.



36

——  Hypothéses sur le modéle? Non
Qui
N Non linéaire et non monotone
— - | 0U pasdhypothése a priori.
Non linéaire mais monotone Faible (<20) Nombre d’entrées?
Régression/Corrélation des rangs ‘
Elevé (>20)
Linéaire ou quasi-linéaire R 5 N 5
Temps CPU élevé et/ou beaucoup d’entrées Colit CPU: Colt CPU:
| | . .
oui Elevé Faible (<1min/ Blevi
l l calcul)
) e |Non Faible
Méthode différentielle Criblage Criblage par groupes

l

Méthode basée sur

la variance
A |

Régression/Corrélation
Criblage ou méthode hasée

sur la variance par groupes

Figure 4.1 Arbre de décision pour le choix de la méthode d’AsS appropriée, figure tirée

de (De Rocquigny et al., 2008)

La figure 4.1 illustre les criteres mentionnés et permet de nous orienter vers les méthodes
de criblage ou les méthodes basées sur I’ ANOVA par groupes (puisqu’on ne peut émettre
d’hypothese sur le modele et que le colit CPU de la méthode que nous utiliserons doit
étre faible). Cependant, compte tenu des spécifications du projet, ceci n’est pas pos-
sible soit parce qu’on ne peut pas vérifier certaines hypotheses, par exemple les entrées
indépendantes (FAST et Sobol), soit parce que la taille de I’échantillon requise est consi-
dérablement grande (d’apres (Jacques, 2005), un échantillon de taille 10000 est suffisant
pour une bonne estimation des indices de sensibilité de Sobol), ou encore parce que la
technique de calcul ne peut étre appliquée dans le cadre de I’optimisation des boites
noires : on parle surtout des échantillons générés en fixant les valeurs d’une entrée tout
en variant les autres. Rappelons qu’un échantillon correspond dans notre cas a 1’en-
semble des solutions visitées par I’algorithme MADS ainsi que les valeurs de retour
correspondantes (les sorties de la boite noire) recensés dans un fichier historique, si on
lance celui-ci sur un nombre d’évalutions donné (qui doit étre le plus petit possible, car

le colit des évaluations est important). C’est a partir de cet échantillon déterministe que



37

nous sommes censés effectuer une AS.
Compte tenu de ce qui précede, il apparait que les méthodes d’ AS rencontrées aupara-

vant ne sont pas directement applicables dans notre contexte.

4.2 Calcul des indices de sensibilité d’ordre un

Le calcul des indices de sensibilité des variables d’entrée permet d’étudier I’'impact de
celles-ci sur Y = f(Xj, Xy, ..., X;). Dans notre cas, Y est la sortie d’une boite noire, le
résultat d’un code informatique. Rappelons la définition de 1’indice de sensibilité .S; de
la variable X; quantifiant I’effet de cette derniere sur Y (formule (3.5)) :

VIEY]X)))

TV

=5
Nous présenterons, un peu plus loin dans cette section, une facon d’estimer cette quantité

en ayant recours a I’ANOVA.

4.2.1 Analyse de la variance a un facteur

Le principal objectif de I’ ANOVA a un facteur X (one-way ANOVA) sur une variable Y
est d’évaluer I’effet du facteur en comparant les moyennes de Y obtenues selon les mo-
dalités de X. La comparaison se fait en examinant la variance des dites moyennes. Cette
variance que 1’on qualifie de « variabilité inter traitements >, constitue une estimation
plausible du numérateur D; de (3.4). On peut donc envisager d’estimer les indices de
sensibilité en utilisant la décomposition de la variance donnée par 1’égalité fondamen-
tale des modeles de I’ ANOVA. Afin d’illustrer la méthode, considérons dans un premier
temps le modele de I’ANOVA a un facteur. Les données a exploiter proviennent d’une

étude expérimentale généralement planifiée (exemple : un plan d’expérience). Celles-ci
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peuvent €tre regroupées comme suit :

Tableau 4.1 Données relatives a I’ ANOVA a un facteur

Facteur X
modalité 1 | .. | .. | modalité ¢z | .. | .. | modalité p
Y11 Yi1 Yp1
Y1 Yij Ypj
Ying Yin, ypnp
ﬂ1 gz gp

Le facteur X est le seul facteur contr6lé. Il présente p modalités telles que la i°me,
1 = 1,...,p, comporte n; répétitions. Ce nombre de répétitions peut donc varier d’une
modalité a une autre. Les valeurs de la sortie correspondantes sont présentées dans le
tableau 4.1, ou y;; est la j°™ valeur de Y obtenue selon la modalité et y; est la moyenne
des valeurs de Y selon la modalité 7.

D’apres le tableau 4.1, on considere :

n; P n; p
U = %Zyij, ety = %ZZ%]-, avec N = an
=1 i=1

i=1 j=1
Equation fondamentale de I’ ANOVA :

L’ ANOVA permet d’expliquer la variance totale d’un échantillon en fonction de la va-

riance due aux facteurs et celle due a I’interaction. L’équation fondamentale de I’ ANOVA
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(EFAV) décompose la variation totale en plusieurs sources de variation.

Dans le cas du modele a un seul facteur, I’ EFAV est :

ZZ(%J -7’ = an(?jz — )+ ZZ(yw — ;)2 4.1)

i=1 j=1 i=1j=1
NS

/ D e e J/

Vv Vv
SStotale SSinter SSintra

ou:

SStotale €St la somme des carrés des écarts totaux ou variation totale. En la divisant par
N, on obtient une estimation de la variance V' (Y) de Y,

S'Sinter €8t la somme des carrés des écarts li€s aux effets du facteur A ou variation inter-
modalités. Cette somme, divisée par /N, constitue une estimation de la variance condi-
tionnelle V (E (Y] X)), X étant le facteur (ou la variable) présentée au tableau 4.1,

S Sinira €St la somme des carrés des écarts résiduels ou variation intra-modalités.

Preuve :

Ona

Yij =Y+ W — 9) + (Yij — i),
et

(i —9) = Wi — ) + (Yij — ¥i)-

En élevant les écarts au carré :
(i —9)* = (G — 9)* + (yij — 5:)* + 2(5: — 9)(yi; — i)

En faisant la somme sur tous les j :

Z(yij — ) =i —9)* + Z(yij — )%+ 2(5i — ﬂ)Z(yij — i)

J=1 J=1 Jj=1
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g

Or 2(y; — @)Z(yij —9;) =0, car Z(yi]’ — i) = 0.
j=1

j=1
En faisant la somme des p modalités, on obtient I’égalité (4.1). L]
L’EFAV est vraie des qu’on dispose de données sous la forme du tableau 4.1, indépen-
damment des conditions usuelles exigées dans un modele d” ANOVA (normalité, etc). Des
indicateurs d’importance pourront étre issus de cette égalité, comme on peut le voir a la

suite de cette section.

Rapport de corrélation

Le rapport de corrélation 1)? est une mesure du lien entre deux variables X et Y. X peut
étre qualitative ou quantitative.

Pour un facteur X, selon (McKay, 1997), I’expression théorique de 1? est sous la forme :

. _ V(E(Y]X))
V()

Ce qui correspond a I’indice de sensibilité d’ordre un (équation (3.4)) pour le facteur X.
(McKay, 1997) a donné une estimation empirique de 7? basée sur I’ ANOVA, en fonction

des composantes de I’EFAV.

772 _ SSinter
SStotale

Compte tenu de I'EFAV, 7% varie entre 0 et 1. Plus il est proche de 1, plus I’influence de
X sur Y est importante.

Nous obtenons ainsi une mesure d’importance qui nous permettra de classer les variables
en fonction de leur impact. Cependant, comme nous traitons des problemes a plusieurs

entrées, une généralisation est nécessaire.
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4.2.2 Généralisation de PANOVA a un facteur

On se place dans le cas général de plusieurs facteurs, c’estadire Y = f( Xy, Xo, ..., Xi).

Aucune hypothese sur les entrées n’est soumise (indépendance, loi de probabilité, etc).

Alors, on définit ’indice de sensibilité S; de la variable X;, i € {1, .., k} par:

VIEY|Xi) _

S; = Vi) =;. 4.2)

Le tableau 4.1 est simplement étendu au cas de £ facteurs a différentes modalités dont
on manipule uniquement les valeurs de retour. En effet, on peut remarquer que dans le
cas des boites noires, pour chaque facteur X;, I’ensemble des données peut €tre mis sous
la forme du tableau 4.1. L’ensemble des indices du premier ordre définis par (4.2) peut

alors €tre estimé par :

Pour les indices d’ordre supérieur, on considere les interactions d’un modele d” ANOVA

factoriel.

4.3 Calcul des indices de sensibilité d’ordre deux

Rappelons que I'indice S;; d’ordre deux représente la contribution due a I’interaction

entre les variables X; et X; (formule (3.7)) :

o _ VIBWIX, X)) — V(B(YIX) — V(E(YIX,) _ Dy
g V() D’

A la section suivante, on se propose d’estimer ces indices en se basant sur I’ANOVA

factorielle.
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4.3.1 Analyse de variance factorielle

On parle de I’ANOVA factorielle lorsque deux facteurs ou plus sont impliqués et que
toutes les modalités de tous les facteurs sont utilisés (c-a-d les mesures de Y sont obte-
nues pour toutes les combinaisons des modalités des facteurs). Le but est d’étudier 1’ef-
fet des interactions, en plus des effets principaux. A titre d’illustration, nous prsentons
le principe du calcul des interactions et des effets principaux dans le cas simple d’un
modele d’ANOVA a deux facteurs A et B, avec le méme nombre d’observations pour
chaque combinaison de modalités. Le facteur A apparait sous p modalités et B apparait

sous ¢ modalités, comme le montre le tableau ci-dessous.

Tableau 4.2 Arrangement des données pour un design factoriel a deux facteurs

Facteur B
1 2 q
Facteur A

1 Y111, Y112 | Y121, Y122 | - - - | Yiq1> Y142
wesY11n wees Y120 s Ylgn

2 Y2115 Y212 | Y2215 Y222 | - - - | Y2415 Y242
e Y21n wees Y29n cees Y2gn

p UYp11> Yp12 | Yp21s Yp22 | - - - | Ypqls Ypg2
cesUpln cees Yp2n eoes Upgn

I1 est démontré que I’EFAV dans le cas de deux facteurs A et B (Montgomery, 2001)

est:

SSiotate = SSa+ SSp + SSap + SSk. 4.3)
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ou:
S5 4 est la somme des carrés dus au facteur A. Cette somme équivaut a S.S;,e, de (4.1),
avec A comme seul facteur,

SSp estla somme des carrés dus au facteur B. Cette somme équivaut a S.S;,., de (4.1),

avec B comme seul facteur,
SS 4p est la somme des carrés des écarts li€s a 1’interaction entre A et B,

S SE est la somme des carrés résiduelle. Cette somme est similaire a SS;,,.., de (4.1).

SSap et SSiotaie sONt données respectivement par :

p q n
Sstotale = ZZZ(%;k - g-..)Qa

i=1 j=1 k=1

p q n
Y. = Zzzyz‘jk, y. ==,

i=1 j=1 k=1
q n
_ 7. — Yi..
Yi.. = g g Yijhs Yi.. = 45
j=1k=1
P n
_ § : = Y.
Y. = E Yijks Y5, = pn»
i=1 k=1

n

— Yij.

Yij. = E Yijk L Yij. = ==
k=1

On peut donc envisager d’estimer I’indice de sensibilité d’ordre 2, S;; par :

. SSas
SZ] B SStotale‘
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4.3.2 Généralisation de ’ANOVA factorielle

Dans le contexte des boites noires ou I’expérience n’est pas planifiée, n n’est pas néces-
sairement partout le méme. On définit alors 7y, pour [ € {1,..,p} et m € {1,..,q},
comme le nombre de valeurs Y obtenues pour la cellule correspondant a la modalité [
du facteur A et la modalité m du facteur B. Dans ce contexte, les modalités des facteurs
sont les différentes valeurs observées de ceux-ci et les valeurs de Y dans la cellule sont
celles observées lorsque le premier facteur (A) vaut [ et le deuxieme (B) vaut m. Ce
nombre de valeurs, noté n;,,, n’est donc pas identique pour toutes les combinaisons de
modalités des facteurs.

On peut montrer, dans ce cas, que la somme des carrés due a I’interaction (Montgomery,

2001) est :
p q
Sap = ZZ"U(@Z] — Ui — ¥ +7.)%

i=1 j=1

L’indice de sensibilité S5 peut donc étre estimé dans ce contexte par :

p q
SO i, — i — 9.+ 7..)°

A SS =1 7=
Sap =gt = . (4.4)
totale
> D> D (k=)
=1 j=1k=1

La formule (4.4) et le fait que Sap = Spa seront employés afin d’approximer les in-
dices de sensibilité d’ordre 2 définis plus haut ainsi que les indices totaux de la section
suivante.

Remarque : Il est possible d’écrire 1’équation (4.1) pour un nombre quelconque de fac-
teurs et d’obtenir ainsi les sommes de carrés des interactions de tout ordre. Ce qui permet

d’estimer les indices de sensibilité de différents ordres et les indices totaux.
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4.4 Indices de sensibilité totaux

Par définition, I’indice de sensibilité total d’une variable X; est la somme de son indice
de premier ordre et de tous les indices d’ordre supérieur ou figure cette variable. C’est
une autre fagon de calculer cet indice dont la logique differe de 1’équation (3.4) du

chapitre précédent, ou on procede par soustraction.

Par exemple, si le probleme est de dimension k£ = 3, I’indice total de la variable X est :

Sty = 51+ Si2 + Sis + Shas.

Etant donné le temps de calcul important au dela des indices d’ordre deux, on approxime
les indices totaux en faisant la somme de 1’indice d’ordre un de la variable X; en utili-
sant I’équation (4.2) et tous les indices d’ordre deux contenant 1’indice ¢ en utilisant
I’équation (4.4).

L’indice total pour cet exemple se réduit a :

S, = 51+ S12 + Sis.

Exemple :

On considere le probleme-test BROWNAL (Gould et al., 2003), pour k£ = 3 variables et

5 évaluations de la sortie, alors on obtient de fichier historique suivant :
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x| o | xg | f(x1, 20, x3)
05]05] 05 | 8765625
1.5]05|-1.5| 17.515625
1.5/05] 05 1.360625
35105 ] 05 | 17.015625
45105 05 | 40.015625

Le calcul des indices d’ordre un et d’ordre supérieur donne les valeurs suivantes :
Indices de premier ordre :

S; = 0.8454909083,

So =0,

Ss = 0.0004911682562.

Le calcul des indices d’ordre un montre que la variable X est prépondérante.

Indices de deuxiéme ordre :

Si2 =0,
Sis = 0.141226193,
§23 = O

Le calcul des indices d’ordre deux montre que les interactions entre les variables X7, Xo
et X,, X3 est nulle.

Indices totaux :

Sr1 = 0.986717101,

Sta =0,

Srs = 0.141717361.

Le classement des variables selon les indices totaux approximés est le méme que celui

d’ordre un. On peut donc prévoir des résultats similaires de ces deux méthodes.
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4.5 Application

On considere maintenant un exemple académique. Celui-ci est extrait du guide d’utili-
sateur de NOMAD (Le Digabel, 2009) afin de calculer les indices de sensibilité d’ordre
un selon la formule (4.2). La taille de I’échantillon est 100 (nombre d’évaluations) et

k = 5.

e (@) = s

sujet a

\ <
Il est trivial que x5 est la variable la plus importante, de méme pour tout z;, tel que
f(z) = x;. Le tableau 4.5 montre que I’indice relatif a cette variable est égal a 1. Le
classement des autres variables ne peut pas étre jugé pour I’instant. Nous ne calculons
pas les indices de sensibilité d’ordre deux pour cet exemple, puisque nous ne pouvons

pas vérifier I’exactitude de nos résultats.
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Tableau 4.3 Indices de sensibilité d’ordre un pour f(x) = z; i € {1,2,3,4,5}

f(x) T To T3 Ty x5
Sh 1 0.067 | 0.234 | 0.202 | 0.186
Sy | 0.1726 1 0.166 | 0.214 | 0.223
Formule (4.2) | S5 | 0.2529 | 0.209 1 0.133 | 0.2104
Sy | 0.2312 | 0.1126 | 0.2540 1 0.2880
S5 | 0.2918 | 0.1805 | 0.2830 | 0.3625 1

Les mémes formules seront utilisées aux chapitres 5 et 6 pour le classement des variables
en fonction de leur influence sur la sortie. Plusieurs stratégies seront présentées au cours
du chapitre 5 et testées au chapitre 6, ou le classement des variables se fait en fonction

des indices d’ordre un ou des indices totaux.
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CHAPITRE 5

IMPLEMENTATION CONCEPTUELLE DE STATS-MADS

STATS-MADS est le nom que nous avons donné a I’algorithme qui applique la méthode
statistique vue au chapitre précédent sur les données de I’algorithme MADS (dont on
évalue les sorties) évoqué au chapitre 2, permettant ainsi 1’optimisation alternée entre
des sous-espaces de variables et I’espace complet. Dans ce chapitre, nous présentons
une maniere de concevoir cet algorithme. Dans un premier lieu, nous introduisons une
instantiation STATS-MADS basique dont la structure générale est construite en fonction
des problemes tests. Celui-ci ne fait intervenir que les indices de sensibilité d’ordre un
pour le classement de variables. Dans un deuxieme lieu, nous tentons d’incorporer les
indices d’ordre deux pour en évaluer la portée sur la précision du classement de variables.
Nous présentons également différentes variantes du STATS-MADS basique.

Note : Afin de ne pas confondre le compteur d’itérations k avec le nombre de variables

du probleme d’optimisation, ce dernier sera noté n.

5.1 Lelogiciel NOMAD

NOMAD (pour Nonlinear Optimization with the MADS Algorithm) ((Le Digabel, 2011),
(Le Digabel, 2009), (Abramson et al., 2012)) est une implémentation C++ de I’ensemble
des algorithmes MADS (Audet et Dennis, Jr., 2006). Il est concu idéalement pour la
résolution de problemes d’optimisation sous contraintes de boites noires sous la forme

suivante rencontrée auparavant :

min f(z)

e
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ou:Q={reX:¢(x)<0,jeJ} CR" f¢;: X - RU{oo}, pourtout j € J =
{1,2,...,m} et X est un sous-ensemble de R".

GPS ((Torczon, 1997), (Audet et Dennis, Jr., 2003)) fut la premiere implémentation dans
NOMAD. Il en constitue maintenant une option. ((Le Digabel, 2011), (Le Digabel,
2009)) décrivent toutes les fonctionnalités de NOMAD, les extensions de MADS ainsi
que la procédure d’installation et les différents modes. Il existe aussi deux implémenta-
tions MATLAB de MADS, I'une est appelée NOMADm (Abramson, 2004), I’autre est
disponible dans les outils GADS de MATLAB (MathWorks, 2005).

Parametres par défaut de NOMAD

Nous nous intéressons aux parametres les plus importants de NOMAD dans les condi-
tions standards. Comme nous comptons traiter nos problemes avec la barriere progres-
sive PB ((Audet et Dennis, Jr., 2009)), nous exposons les parametres qui lui sont reliés.
— L’instance ORTHOMADS : tel que mentionné au chapitre 2, ORTHOMADS (Abramson
et al., 2009) est I’algorithme par défaut de NOMAD. ORTHOMADS génere au plus
2n+ 2 directions d’exploration a chaque itération, utilisant une approche opportuniste
selon laquelle la sonde s’acheve des qu’un point d’essai améliorant est trouvé.
— PB : trois parametres intercedent dans le cas de PB :
e H MAX 0 : c’est la valeur initiale de h_max telle que si pour un point d’essai ¢
h(t) > h_max, alors t est rejeté. Sa valeur est fixée a 1E+20.
e H_MIN : ¢’est la valeur de ~_min pour laquelle ¢ est considéré réalisable si h(t) <
h_min = 0.
e H NORM : elle permet de calculer h(x) et correspond a la norme 2.
— Le parameétre de taille initiale du treillis A’ : c’est un vecteur de n éléments. Pour des
raisons de mise a I’échelle, les différentes variables n’ont pas nécessairement la méme

taille. Si cette quantité n’est pas introduite par 1’utilisateur, alors la valeur par défaut
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est utilisée et est relative aux bornes selon 5.1.

Gl silb<z<UbzeX
AL = (5.1
max {|zg|, 1}, sinon.

— La recherche spéculative : dans le but de promouvoir une direction de succes d d’une
itération antérieure k — 1, MADS évalue un point ¢, du treillis (¢, = x,_1 + 4A}'d)
au cours de I’étape de recherche. Si A}* < 1, alors le point évalué est : ¢, = x;_; +
AJ'd. Cette condition garantit I’appartenance de ¢; au treillis courant d’aprés (Audet

et Dennis, Jr., 2006).

5.2 Principe de STATS-MADS

L’idée de base de STATS-MADS est d’amorcer des processus d’optimisation dans des
sous-espaces différents, a partir de I’espace plénier de variables. Cette technique est
décrite de facon tres générale par 1’algorithme 3, ou Jj représente le sous-ensemble
d’indices de variables libres a I’itération k. Cependant, la méthode adoptée au chapitre 4
permettant le classement des variables exige qu’on alterne entre I’espace de n variables
et celui de dimension |J;|. En effet, si a I’itération k on fixe |.J;| variables (J; et .J,
forment une partition de = {1, 2,..,n}), alors les indices de sensibilité relatifs a ceux-
ci sont nuls, étant donné que V (E(Y|X,)) = 0, pour tout s € Jj.

Par conséquent, selon la logique de 1’algorithme 3, on fixera toujours les mémes variables
(d’indice de sensibilité nul), ce qui correspond a une des variantes de STATS-MADS dont

on discutera plus loin.
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Algorithme 3 : Principe global de STATS-MADS

: Initialisation : I = {1,2,..,n}, n variables d’entrée, k < 0;
: Lancer MADS sur les variables de I ;

: Trouver Jj, C I par une analyse statistique ;

: Lancer MADS sur J} ;

: Retourner a 3 avec k < k + 1.

R N O R S

5.3 Les ingrédients de STATS-MADS

Nous allons maintenant détailler les composants de STATS-MADS. Nous considérons les

notations supplémentaires ci-dessous qui y sont spécifiques.

Terminologie spécifique a STATS-MADS

Par souci de simplification, les appellations MADS et ORTHOMADS seront désormais
confondues. Afin d’alléger I’écriture, un MADS-RUN désigne un appel a NOMAD pour
I’exécution de I’algorithme MADS. On considere les parametres par défaut de NOMAD
(version de développement 3.5.2), a I’exception des modeles quadratiques (étape de re-
cherche) qui sont rendus inactifs (notons qu’ils le sont déja pour les problemes de dimen-
sion supérieure a 50) et de la génération de points a I’extérieur des bornes inférieures et
supérieures (parametre : SNAP_TO_BOUNDS) qui devient permise. Ces exceptions sont
justifiées par une meilleure optimisation percue a la phase des tests qui affecte la gestion
de la taille du cadre et du treillis.

Un MADS-RESCUE désigne un recours a MADS-RUN, dans le cas ou la stratégie de
fixation de variables aboutit a un état de stagnation. Par stagnation, on entend que le
programme est coincé a un minimum local. Dans MADS-RESCUE, toutes les variables
sont relachées et MADS-RUN est lancé avec un nombre d’évaluations égal a un entier
M, founi par ’utilisateur. Ce nombre doit étre suffisamment grand afin de permettre,

le cas échéant, de franchir un minimum local. A chaque recours a MADS-RESCUE, le
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nombre d’évaluations est multiplié par une constante 7 (M <« 7M, 7 > 1). En effet,
chaque recours signifie que, s’embarquer dans un sous espace, n’est pas un processus
optimisant. Il est plus intéressant, dans ce cas-ci, d’augmenter le nombre d’évaluations
dans I’espace de I’ensemble des variables. La figure 5.1 illustre la descente locale du
probleme BROWNAL (Gould et al., 2003), pour un nombre de variables égal a 20 et un
pourcentage de fixation égal a 80%. La figure montre un comportement similaire sur les
774 premieres évaluations. Pour les évaluations suivantes, le MADS-RESCUE fuit 1I’état
de stagnation en lancant un grand nombre d’évaluations (M) sur I’espace complet, d’ou

I’intérét de cette approche de secours.

100
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Figure 5.1 Utilité du processus MADS-RESCUE

On définit alors trois processus pour STATS-MADS :
e P : MADS-RUN avec variables relachées : espace complet.
e P, : MADS-RUN avec variables fixes : sous-espace.

e 3 : MADS-RESCUE : espace complet.
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Lors de I’exécution de STATS-MADS, on est forcément impliqué dans un des trois pro-
cessus mentionnés, commencant toujours par P; ensuite P, sans étre deux fois de suite

impliqué dans un espace ou dans un sous-espace (voir 1’algorithme 4).

Algorithme STATS-MADS basique

Rendu ici, on est en mesure de présenter les principales étapes de STATS-MADS. Celui-
ci optimise en alternance dans des espaces et des sous-espaces. Le passage d’un espace
a un sous-espace se fait au moyen d’une procédure de fixation de variables basée sur
le calcul des indices de sensibilité d’ordre un (algorithme 5). Le passage inverse est
conditionné par le succes ou I’échec du processus P». Dans I’affirmative, on retourne au

processus P, sinon on fait recours a Ps.

Algorithme 4 : Algorithme STATS-MADS de haut niveau

: Effectuer un MADS-RUN sur I’espace complet ;

: Fixer un pourcentage de variables les moins influentes (voir algorithme 5) ;

: Effectuer un MADS-RUN sur le sous-espace de variables importantes ;

: Tester si le processus en sous-espace est un succes. Si oui, aller a 5, sinon allera 6

: Relacher les variables fixes et refaire un MADS-RUN sur I’espace complet, retourner
al’étape 2;

6 : Lancer un MADS-RESCUE et retourner a I’étape 2.

AV, TN SN OO I O R

L’algorithme 4 peut étre représenté par la figure 5.2 faisant intervenir les criteres d’arrét
de chacun des processus. En effet, les étapes 5 et 6 de cet algorithme sont des proces-
sus travaillant dans des espaces complets (P; et P; respectivement). La seule différence
figure au niveau des criteres de terminaison que nous détaillerons plus loin dans ce cha-

pitre.
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Algorithme 5 : Fixation des variables les moins influentes
1 : Charger la cache et récupérer les données ;

2 : Calculer les indices de sensibilité de premier ordre de toutes les variables ;
3 : Trier les indices par ordre croissant ;

4 : Fixer le pourcentage de variables spécifié en considérant la partie entiere <plafonds.

A Tétape 4 de I’algorithme 5, le nombre de variables a fixer est calculé a partir d’un
pourcentage identifié par I’utilisateur et est arrondi a I’entier qui lui est immédiatement
supérieur ou égal. Les variables les moins infuentes sont fixées, tout au long de P, a la

valeur de la derniere solution obtenue et sont relachées au début du processus suivant.

Notations supplémentaires

Passons maintenant aux détails plus techniques. Définissons alors les parametres sui-

vants :

p .

— Ny, - €St le nombre d’évaluations < prévu > de f (identifié par I’utilisateur) pour un

MADS-RUN (les processus P et P%);

max

— n'%% : est le nombre maximum d’évaluations de f pour un processus P, i € {1, 2, 3}.

Il vérifie les inégalités suivantes qui seront expliquées a la sous-section Pseudo-code ;

noel <nP . pour P et Ps. (5.2)
nmw < M x 74,5 €{0,1,2...}, pour Ps. (5.3)

Le compteur j est égal a zéro la premiere fois qu’on fonce vers P; et s’incrémente a
chaque retour.

— A" : est la taille du treillis courante obtenue au bout d’au plus n.}%7 évaluations.

max

oher €valuations.

— AP : est la taille de cadre courante obtenue au bout d’au plus n

tot .

— n.o., . est le nombre d’évalutions global qui constitue le budget des évaluations dont
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on dispose ;

cumul

— nS* est le nombre d’évaluations de tous les processus calculé d’une maniere cumu-

tot

lative. nyo

en est une borne supérieure.

— o : est la solution initiale du probleme. Pour des exemples académiques, celle-ci est
choisie arbitrairement et est fixée afin de faciliter la comparaison des algorithmes. En
industrie, elle est souvent produite par les ingénieurs travaillant sur ces problemes ;

— Z. : est la meilleure solution réalisable courante ;

— &, : est la meilleure solution réalisable du processus précédent ;

— Le pourcentage de fixation sera simplement appelé pourcentage.

Nous utilisons ces notations afin de décrire le fonctionnement des processus a 1’algo-

rithme 6, qui représente une implémentation non formelle de STATS-MADS. Certaines

conditions gerent le passage d’un processus a un autre. Elles sont listées au paragraphe

suivant.

Criteres d’arrét

Trois criteres de terminaison interviennent dans le cas de STATS-MADS :

maxr

— Critere 1 : Une limite sur le nombre total d’évaluations de f (locale : nl'%]

et glo-

tot

bale : n.0 ;) ;

— Critere 2 : Une tolérance sur la taille du treillis : au bout d’un certain nombre
d’évaluations, la taille du treillis devient plus petite que la précision de NOMAD ;
— Critere 3 : Un nombre maximum n, d’itérations échouées (fixé par I’utilisateur).
Tous les processus peuvent étre interrompus par les deux premiers criteres. Cependant,
seulement les processus P et P5 le sont pour le troisieme, tel que le montre la figure 5.2.

Le processus P est qualifié de succes (voir figure 5.2), s’il n’a pas été suspendu par un

max

des criteres 2 ou 3, autrement dit, si exactement n.,%;

évaluations sont accomplies, ou si

la meilleure solution réalisable courante z. obtenue est différente de celle du processus
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précédent z,,.

MADS-RUN (P)
Criteres d’arrét : 1 et 2

Fixation de variables ()
Criteres d’arrét : 1, 2 et 3

Retour

Succes

Retour

Oui

Non

MADS-RESCUE (P)
Criteres d’arrét : 1, 2 et 3

Figure 5.2 Organigramme représentant le fonctionnement général de STATS-MADS

5.3.1 Pseudo-code

L’algorithme 6 suivant décrit le pseudo-code de STATS-MADS.
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Algorithme 6 : Pseudo-code du programme principal
Entrées : cache initiale obtenue a partir d’un MADS-RUN sur le probleme entré par I’ utilisateur, A7, AP,

Sorties : selon les spécifications de I’utilisateur.
Initialisation : xg < Z;

m m . AP .
AF — AT A — AP

cumul

cum™t < taille_courante_de_la_cache; fization < vrai;

n
rescue < faux ;i< 0;
Début d’un processus;

cumul tot :
tant que (nSim"" < nlo ) faire

si rescue=faux alors

tot _ . cumul ,,P }
9

max _ 3
n min {neval Neval » Teval

eval
si fization = vrai alors
Appeler la fonction qui fixe le pourcentage précisé de variables ;

sinon
Relacher toutes les variables ;

fin

Fixer le nombre d’échecs consécutifs ;

sinon

maxr __ : tot cumul - .
Nepgr = MIN {neval — Neval 7M X TZ} ’

Fixer le nombre d’échecs consécutifs;
1+—1+1;
rescue < faux;

fin

MADS-RUN ;

si fizxation = faux alors
m m.
AP — AT
P )
Af — AP;
fin

max

si ((fization = vrai) et (taille_courante_de_la_cache < n'%

rescue < vrai;

fin

ou i, = &,)) alors

fization <! fization
Mise a jour du nombre d’évaluations total et du point initial;

s . ycumul cumul - .
2o < Ty negm™ = nium™ + taille_courante_de_la_cache;

fin
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Explication du pseudo-code

L’utilisateur doit au préalable définir sa boite noire avant que 1’algorithme 6 ne soit
exécuté. On entend par définition de la boite noire la déclaration de la fonction objec-
tif, des contraintes, du point initial, etc. La procédure détaillée est décrite dans le guide
d’utilisateur de NOMAD (Le Digabel, 2009) a sa quatrieme section.

Tous les parametres de la boite noire sont ressaisis par la suite d’'une maniere indirecte,
étant donné la non accessibilité, au niveau du code source, a celle-ci. Par la suite, un
MADS-RUN permettra d’obtenir la premicre cache a partir de laquelle une analyse de

sensibilité sera effectuée (la fonction qui fixe les variables est ainsi appelée).

cumul
eval

La variable n est mise a jour a chaque fois qu’un processus est exécuté. Pour ce
faire, on lui assigne la taille de la cache courante (taille_courante_de_la_cache) al’étape
de I’initialisation ainsi qu’a la fin de chaque processus. Les variables fization et rescue
sont booléennes. La valeur logique < vrai > est affectée a fixation a I’initialisation
afin d’activer le processus P,. Cependant P; n’est déclenché que lorsque rescue regoit
< vrai > (c’est I’état de stagnation dont les conditions ont été expliquées plus tot). La res-
saisie de z. est nécessaire a la fin de chacun des processus, car c’est le centre du cadre
du processus suivant (le nouveau z). Par contre, celle de la taille du cadre et du treillis
n’est faite que pour les espaces complets (a la fin de P, et P;), comme suit :

A T’étape 1 de I’algorithme 4, les paramétres Ap"et Af sont les valeurs par défaut de NO-
MAD. Ensuite, aux étapes 3, 5 et 6, les valeurs initiales de ces parametres sont choisies
comme étant égales a leurs valeurs finales obtenues a la conclusion du dernier processus

ayant travaillé sur I’espace complet.

Avant de lancer NOMAD avec un processus donné, il est crucial de vérifier si on ne

tot
eva

p
eval

cumul
eval

max

eval etn

dépasse n 2., évaluations. Pour cela n;%/ est ajusté en fonction de n pour

Py et Py et n¢“m et M x 77 pour Py (voir algorithme 6). C’est ce qui explique les condi-

tions (5.2) et (5.3).

Ayant défini sa boite noire, I’ utilisateur peut appeler 1’algorithme STATS-MADS directe-
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ment en spécifiant les parametres ci-dessous :

STATS-MADS (n? ., pourcentage, nt°t ,, M, 7, n,).

eval? eval?

Note : Pour des fins de simplification, n’, , est le méme pour les processus P et P, (P;

est caractérisé par M et 7).

5.4 Analyse de la convergence de STATS-MADS

Tout comme dans les analyses de convergence de MADS, on examine le comportement

lorsque le compteur d’itérations & tend vers I’infini. On suppose qu’il n’y ait pas de

tot
eval

critere d’arrét global (n!% /) et que STATS-MADS est lancé sur un ensemble fini de sous-

espaces de dimensions |J,|,q € {1,2,...,p},ou J, C I = {1,2,..,n}, alors si P, est

un succes, I’optimisation se fait dans un sous-espace jusqu’a ce qu’elle soit interrompue

p
eval

mazx
eval

par le critere 1 (n = n,, ). Dans le cas contraire, elle le sera par les criteres 2 ou
3 (n.). La gestion de la taille du treillis assure que le programme ne s’acheve pas dans
un sous-espace (ou il peut exister une direction au point limite pour laquelle la dérivée
de Clarke est négative). L’optimisation dans I’espace de n variables (P, et Ps) est alors
incontournable. Par conséquent, on est ramené a 1’algorithme MADS (Audet et Dennis,

Jr., 2006) classique duquel on hérite les principaux résultats de convergence.

5.5 Extensions de STATS-MADS

Nous proposons des variantes du STATS-MADS basique (algorithme 4) dont le but est

de diversifier les techniques et d’identifier, plus tard, la meilleure stratégie.
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Un STATS-MADS non itératif

STATS-MADS est un algorithme itératif qui passe d’un espace a un sous-espace. Dans le
cas d’un STATS-MADS non itératif, la fixation de variables ne se fait qu’une seule fois
(un seul ). Le processus P est alors absent. L’algorithme passe de P, a P, et revient a

P, jusqu’a ce qu’un critere de terminaison soit déclenché.

Un STATS-MADS homogene

Dans le cas d’un STATS-MADS homogene, les sous-espaces de variables sont identiques.
Tous les processus sont présents. L’algorithme 5 n’est appelé qu’une seule fois dans
I’algorithme 4. On suppose, pour cette stratégie, qu’il existe un seul groupe de variables

importantes a travers lequel on lance plusieurs processus P, optimisants.

Méthode des indices totaux

Cette méthode consiste a effectuer une modification au calcul des indices de sensibilité.
Nous utilisons les indices de sensibilité totaux afin de trier les variables. Ceux-ci sont
approximés en faisant la somme de 1’indice d’ordre un et tous les indices d’ordre deux
relatifs a la variable concernée (chapitre 4). L’algorithme 4 demeure intact . Le seul
changement se situe au niveau de I’étape 2 de 1’algorithme 5, puisque la formule du

calcul des indices englobe dorénavant les indices d’ordre supérieur.
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Méthode de la frontiere

Il s’agit d’un STATS-MADS basique avec une stratégie de fixation de variables différente.
En effet, nous ne nous contentons pas du tri croissant des indices de sensibilité d’ordre
un. Nous procédons par une vérification qui concerne les variables qui se situent de part
et d’autre de la frontiere entre les variables a fixer et les variables qui ne le seront pas.
Le nombre de celles-ci n’est pas constant, vu que le pourcentage de fixation est a présent
variable.

Lalgorithme 5 devient :

Algorithme 7 : Fixation des variables selon la méthode de la frontiere
1 : Charger la cache et récupérer les données ;

2 : Calculer les indices de sensibilité de premier ordre de toutes les variables ;
3 : Trier les indices par ordre croissant ;

4 : Déterminer le nombre 2« de variables pour lesquels on calculera les indices totaux :

min{ni,na}

1 |, ot nq est le nombre de variables a fixer et ng = n — n; ;

a=]
5 : Fixer les n; — « variables correspondant aux plus faibles valeurs du tri de I’étape 4 ;

6 : Trier de nouveau les indices calculés a 1’étape 4 et en fixer la moitié.

Exemple : Sin = 10 et pourcentage = 30, alors ny = 3eta = 1.
A I’étape 5, on fixe n; — o = 2 variables. A I’étape 6, on trie deux variables et on fixe la

plus petite.

Pour clore ce chapitre, notons que nous testons 1’ensemble des stratégies présentées au
cours du chapitre suivant. Les résultats des tests pourront trancher quant a I’efficacité du

STATS-MADS basique ainsi que ses extensions.
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CHAPITRE 6

TESTS ET RESULTATS NUMERIQUES

Ce chapitre vise a présenter I’ensemble des résultats de notre recherche. D’abord, nous
appliquons notre algorithme sur un ensemble de problemes tests issus de la littérature
afin de pouvoir tirer des recommandations. Ensuite, nous exposons les résultats des
différentes extensions de STATS-MADS rencontrées au chapitre 5. Enfin, nous testons
notre méthode sur un probleme test réputé difficile, ayant les caractéristiques d’une boite
noire. Nous adoptons toutes les notations du chapitre précédent. L’algorithme STATS-

MADS basique sera désigné par STATS-MADS.

6.1 Profils de performance

Afin de comparer les différents algorithmes (MADS, GPS et STATS-MADS), nous nous
servons de I'outil présenté dans (Dolan et Moré, 2002). Un profil de performance y
est défini comme étant une fonction cumulative d’une performance métrique permettant
d’évaluer le record d’un algorithme.

On considere un ensemble de problémes tests P de cardinal n, et un ensemble d’algo-

rithmes .A. La performance de I’algorithme a € A est évaluée, dans notre cas, en fonc-

tot

o évaluations.

tion de la valeur de la fonction objectif f; obtenue au bout d’un total de n
Cette valeur est considérée comme la valeur optimale produite par 1’algorithme a.
Pour p € P donné, on pose f;a, la meilleure des valeurs de la fonction objectif des

algorithmes comparés.

* 3 *
fpa =min fg.



64

La valeur f; , peut étre positive ou négative dépendamment du probleme en question.

On caractérise le succes ou I’échec de a € A par la fonction de score 7, , ci-dessous :

L osifo<fr, +0z|f;‘7a|,

0 sinon.

Tpa =

ou « est un scalaire positif.

La performance p d’un algorithme a est alors définie par :

1
pa(a) = _Z/Iﬂp7a"
Tp
peP
pa : RT +—— [0,100] est une fonction non décroissante dont la valeur a 1’origine
représente le pourcentage qu’un algorithme a I’emporte sur tous les autres algorithmes
pour I’ensemble des problemes testés et dont la valeur en o > 0 permet de quantifier

Iécart relatif a la valeur optimale f; ,.

6.2 Tests exploratoires

Nous procédons par des tests exploratoires, étant donné que nous ne disposons d’aucune
information, a priori, sur ’efficacité de I’approche statistique. Aucun plan de tests n’est
donc établi.

Dans cette section, nous nous intéressons a un ensemble diversifié de problemes (lisses
ou non, contraints ou non, bornés ou non) dont la taille varie entre 10 et 500. Ces
problemes proviennent de (LukSan et VI¢ek, 2000), (Gould et al., 2003), (Audet et al.,
2008¢) et (Audet et Dennis, Jr., 2009). Leurs caractéristiques sont recensées dans (Conn
et Le Digabel, 2011). Tous les points de départ sont donnés. Notons que certains proble-
mes sont de taille ajustable.

La premiere gamme de tests comporte un total de 76 problemes répartis comme suit :
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13 de dimension n = 10 ;

11 de dimension n = 20 ;

14 de dimension n = 50 ;
14 de dimension n = 100;

24 de dimension n = 250 et n = 500.

Sauf indication contraire, tous les tests ont été lancés avec les parametres suivants :
ntet, =100n, n? , = 10n, n, = 3, M = 1000 et T = 4.

Nous accordons plus de flexibilité au parametre pourcentage en faisant varier celui-
ci entre 10 et 90, avec un écart de 10. Par souci de clarté, nous ne présentons que les
pourcentages 10, 50 et 90. De ce fait, il nous sera possible de visualiser le comportement
de STATS-MADS losqu’on fixe les valeurs extrémes des pourcentages ainsi que leur

médiane . Les profils de performance obtenus sont donnés par les figures 6.1, 6.2, 6.3,

6.4 et 6.5.
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- R R W ot
a0 - T STATS-MAaDS{10%) a
+ST."—‘\TS—M.‘?‘.DS(5D%)
7o e = STATS-MMADS{O0%) _
rAA DS
(= k)
2 B0 GPS i
[as]
£
£ ]
S so0f e
o
A0 1
S0 #‘ =
=23
=0 - 1
1D 1 1 1 1 1
a Z £ |5} [=} 10 12

Figure 6.1 Profils de performance dans le cas ou n = 10 (basés sur 13 problémes)



100
a0
— e S TATS-MMADS(1 0%
—#— STATS-MAaDS(S0%) |
— B STATS-MAaDS(a0%)
- MaDs il
GPS i
(= k)
(]
=
[
£ i
=
f= k)
(=i -
D 1 1 1 1 1
i} z 4 4] 5] 10 1z

100

T STATS-MAaDS(10%:)

— 3 ETATS-PADS(S0)

— B STATS-kADS(90%) 1

T RADS
GRS

Ferformance

alphia

Figure 6.3 Profils de performance dans le cas ou n = 50 (basés sur 14 problemes)
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Figure 6.4 Profils de performance dans le cas ou n = 100 (basés sur 14 problemes)
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Figure 6.5 Profils de performance dans le cas o n = 250 et n = 500 (basés sur 24

problemes)

A la figure 6.1, I’algorithme GPS surpasse légérements les autres algorithmes. 38.46%

des problemes ont une valeur égale a f; ,. STATS-MADS(10%) et STATS-MADS(90%)



68

viennent en deuxiéme et troisieéme position respectivement avec 30.77% et 23.08%.
Une différence plus marquée apparait en augmentant la taille n des problemes. En effet,
a la figure 6.2, c’est STATSMADS (50%) qui détient le meilleur pourcentage (63.64%)
suivi par GPS (27.27%) et MADS.

Ala figure 6.3, les trois algorithmes STATSMADS (50%), STATSMADS (10%) et STATS-
MADS (90%) occupent les trois premiers rangs. MADS donne le méme résultat que
STATSMADS (90%) .

Les figures 6.3 et 6.5 décrivent une meilleure performance de STATSMADS (90%) avec
un taux de succes respectivement de 50% et 83.33% et un plafonnement a une valeur

A< 2.

Afin de diversifier les résultats, nous reprenons 1I’ensemble des tests avec une stratégie
de recherche par hypercube latin (Tang, 1993) non opportuniste avec les parametres
p1 = 100n et p; = 0, ou p; est le nombre initial de points d’essai générés a la premiere
itération et p; est le nombre de points générés pour les itérations 7 > 2. Nous obtenons
des résultats similaires a ceux de MADS par défaut dont ceux de dimension n > 100

sont illustrés par les figures 6.6 et 6.7.
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Figure 6.6 Profils de performance dans le cas ou n = 100 (basés sur 13 problemes), en

utilisant une stratégie de recherche par hypercube latin
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Figure 6.7 Profils de performance dans le cas ou

12

n = 250 et n = 500 (basés sur 24

problemes), en utilisant une stratégie de recherche par hypercube latin
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Premieres observations

Les premiers tests montrent une prépondérance des résultats des problemes de grande
dimension, en particulier ceux de dimension n > 250 avec un pourcentage élevé de va-
riables fixes (90%). La figure 6.8 met en comparaison tous les pourcentages de fixation.

Elle justifie bien le choix du pourcentage le plus grand (90%) pour les prochains tests.

Ferformance

alpha

Figure 6.8 Profils de performance illustrants 1I’importance du choix du pourcentage de

fixation pour les problemes de dimension n > 250 (24 problemes)

L’approche parait donc prometteuse pour les problemes de grande taille pour lesquels
on fixe 90% des variables. Par conséquent, il serait avantageux de focaliser notre intérét

futur sur ce genre de problemes.
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6.3 Cas de probléemes de dimension n > 250

Nous exécutons 1’algorithme STATSMADS sur un ensemble de 12 problemes tests, en fai-
sant varier le nombre de variables entre 250 et 500 avec un pas de 50 et un pourcentage
de fixation de 90, pour chaque probléme. Nous obtenons ainsi 72 instances.

Par la suite, nous comparons, pour chaque instance, les valeurs optimales des fonc-
tions objectifs f* obtenues, au bout de 100n évaluations, de MADS, GPS et STATS-
MADS, afin que nous puissions évaluer la performance de ce dernier. Les tableaux 6.1
et 6.2 contiennent les valeurs de f* de ces trois algorithmes. La figure 6.9 illustre une

prédominance de STATS-MADS avec un taux de succes supérieur a 80%.
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Figure 6.9 Profils de performance dans le cas ot 250 < n < 500 pour un ensemble de

72 problemes
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Tableau 6.1 Valeurs de f* des trois algorithmes pour 250 < n < 500

Instances fsrars_wmaps fyaps faps
250 | -0.19936809634 -0.25493364 -0.0902993563
300 | -0.2307452576 | -0.1446767202 | -0.03622130354
BROWNAL (Gould et al., 2003) 350 | -0.1103741744 | -0.1713176654 | -0.08238105208
400 | -0.1162654853 | -0.06964743625 | -0.03207357373
450 | -0.201875977 -0.1848964899 | -0.07618140015
500 | -0.2213701537 | -0.2112503316 | -0.0734738041
250 -40.60107422 -25 -15.46875
300 -41.44921875 -23 -15.46875
DISK (Audet et Dennis, Jr., 2009) | 350 | -45.23608398 -24.75 -15.46875
400 | -46.59765625 -22.25 -15.46875
450 -47.71875 -25 -15.46875
500 -48.3125 -22.5 -15.46875
250 3.267577877 35.40279223 179.9226579
300 14.5199942 26.35565427 291.5228721
LIHILB (LukS$an et Vi¢ek, 2000) | 350 8.385443251 42.09084886 280.2502033
400 4.801882716 9.129353313 292.3849055
450 4.922063162 31.44026852 398.9932892
500 19.19563522 51.65515457 406.6776583
250 | 0.3916285213 0.6677316341 1.049903488
300 | 0.02628767687 0.3269626037 1.049542869
MXHILB (Luksan et Vicek, 2000) | 350 | 0.1609717999 0.1104218969 1.045602413
400 | 0.1442806643 0.4665952251 1.045602413
450 | 0.05815580861 0.3369307988 1.044279711
500 | 0.6171264908 0.7641535173 1.044279711
250 20036.82686 27020 27020
300 28753.31755 40090 40090
TRIDIA (Gould et al., 2003) 350 39713.16614 55245 55490
400 53334.99353 73107.5 73390
450 68659.40625 93470 93790
500 86456.10938 116690 116690
250 | -0.1993680963 -0.25493364 -0.0902993563
300 | -0.2307452576 | -0.2308798643 | -0.08608107767
G2 (Audet et al., 2008c) 350 | -0.1103741744 | -0.1713176654 | -0.08238105208
400 | -0.1162654853 | -0.1861061239 | -0.07887860951
450 | -0.201875977 -0.1848964899 | -0.07618140015
500 | -0.2213701537 | -0.2112503316 | -0.0734738041
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Tableau 6.2 Valeurs de f* des trois algorithmes pour 250 < n < 500

Instances fg'tats—lbfads f;\}ads féps
250 | 4.473253553e+12 | 2.710362038e+13 | 2.710362038e+13
300 | 1.412192327e+13 | 8.116802254e+13 | 8.116802254e+13
350 | 2.60770444e+13 | 2.049837836e+14 | 2.049837836e+14
PENALTY1 (Gould et al., 2003) | 400 | 4.541033039e+13 | 4.569066885e+14 | 4.569066885e+14
450 | 1.053690702e+14 | 9.264901525e+14 | 9.264901525¢e+14
500 | 1.761233361e+14 | 1.743373614e+15 | 1.743373614e+15
250 | 6.901666504e+17 | 9.446161685e+17 | 7.364529608e+17
300 | 9.6129904e+21 1.043471597e+22 | 2.281953086e+22
PENALTY?2 (Gould et al.,2003) | 350 | 3.488646225e+26 | 4.582948854e+26 | 5.035068934e+26
400 | 4.101084456e+30 | 1.10904776e+31 1.10904776e+31
450 | 1.962295841e+35 | 2.442840255e+35 | 2.442840255e+35
500 | 5.380713729e+39 | 5.380713732e+39 | 5.380713732e+39
250 4709.022736 8671 8671
300 5795.649361 11226 11346
POWELLSG (Gould et al., 2003) | 350 6732.021459 13686 13806
400 7815.960503 16361 16481
450 8679.669678 18821 18941
500 11763.25 21616 21616
250 68.71318309 1627 1627
300 212.3480566 2093 2093
SROSENBER (Gould et al., 2003) | 350 895.3375 2559 2559
400 554.6213281 3044 3044
450 681.3408203 3510 3510
500 1536.1425 3995 3995
250 279349251 271826933.6 416172313.7
300 262187878 268078344.3 875516350.3
VARDIM (Gould et al., 2003) 350 4538393945 4528031116 1587463555
400 4216304234 4206089786 2805595827
450 4481006087 4488557510 4510159695
500 4168725343 4023653988 6801558858
250 875267.9686 994535 978611.8
300 825991.7653 1228107.8 1223013.4
WOODS (Gould et al., 2003) 350 1342458.848 1469240.6 1443128.6
400 1520770 1706763 1692624.6
450 1720014.8 1943946.2 1917834.2
500 1944169.8 2162820.2 2162235.8
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6.4 Extensions de STATS-MADS : résultats

Dans cette section, nous exposons les résultats des variantes de STATS-MADS que nous

avons rencontré au chapitre 5.

STATS-MADS non itératif et STATS-MADS homogene

Les résultats de STATS-MADS non itératif et de STATS-MADS homogene sont fondés

sur I’ensemble des 72 problémes (tableaux 6.1 et 6.2).
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Figure 6.10 Comparaison de STATS-MADS non itératif et STATS-MADS basique, basée

sur 72 problemes
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Figure 6.11 Comparaison de STATS-MADS homogene et STATS-MADS basique, basée

sur 72 problemes

Les profils de performance représentés par les figures 6.10 et 6.11 montrent que 1’algo-
rithme STATS-MADS est beaucoup plus performant que STATS-MADS homogene (ou on
fixe toujours les mémes variables) et STATS-MADS non itératif (ou on passe une seule
fois a un sous-espace). Dans 90% des cas, il réussit a atteindre la valeur optimale f*.
Ces approches ne semblent donc pas étre rentables en termes d’optimisation du nombre

d’évaluations.

Méthodes de la frontiére et des indices totaux

Nous testons les méthodes de la frontiere et des indices totaux pour les problemes de
petite dimension : n = 10 et n = 20, car ces deux approches sont trés gourmandes
en temps de calcul pour n > 20. Nous obtenons les figures 6.12, 6.13, 6.14 et 6.15.

Nous souhaitons comparer la figure 6.1 aux figures 6.12 et 6.14 et la figure 6.2 a 6.13
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et 6.15 (ayant les mémes dimensions et basés sur le méme nombre de problemes). Pour
n = 10, la méthode des indices totaux favorise la fixation de 50% de variables et met
GPS en deuxiéme rang, alors qu’elle garde STATS-MADS (90%) en troisieéme rang. Il
est clair que le classement des variables n’est pas le méme que STATS-MADS, mais le
pourcentage de succes n’est toujours pas satisfaisant (inférieur a 50%). Pour n = 20, on
obtient exactement le méme classement d’algorithmes. Cependant, STATS-MADS (50%)

obtient un taux de succes inférieur a 63.64% de la figure 6.2.

100 T T T T T

——e— STATS-MADS(10%) |
—— STATS-MADS(S0%)
— B 5TATS-MADS(90%)
rMADS
GPS

Ferformance

Figure 6.12 Profils de performance pour n = 10 en utilisant la méthode des indices

totaux
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Figure 6.13 Profils de performance pour n = 20 en utilisant la méthode des indices

totaux

Pour n = 10 (figure 6.14), la méthode de la frontiere met en premier rang 1’algorithme
STATS-MADS (50%) avec un pourcentage de succes faible (38.46%), a égalité avec GPS
et permute le classement de STATS-MADS (10%) et STATS-MADS (50%). Pour n = 20
(figure 6.15), le classement est le méme pour les deux premieres positions. Tout comme
la méthode des indices totaux, nous percevons que STATS-MADS (50%) obtient un pour-

centage inférieur (45.45%) a celui obtenu avec STATS-MADS basique (63.64%).



78

100

a0

=1u]

7o

(a7n]

Performance

A0

S0 .

518 T/.:r -l =
—— STATS-MADS1 0% | o

— ¥ — STATS-MAaDS(50%)
—B— sTaTs-MaDS90%) |

- rAADS
GPS 7
1 1 1 1

z 4 & & 10 1z

100

a0

=]

70

[a1u]

=11

Ferformance

40

30

205

e STATS-MADS(109%)
—— STATS-MADS(S0%)
—E— STATS-MaDSE0w) | |
rAADS
GPS .

10

Figure 6.15 Profils de performance pour n = 20 en utilisant la méthode de la fronticre

Il convient de ce qui préceéde qu’on ne peut rien conclure par rapport aux deux méthodes

précédentes (une amélioration pour n = 10 en contre partie d’une détérioration pour

n = 20). Le gain est a peine perceptible en petite dimension. Le temps de calcul devient
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énorme si on passe a des dimensions plus importantes. Notons qu’une légere préférence
est accordée a la méthode de la fronticre, étant donné que le calcul des indices totaux est

limité a un certain nombre de variables.

6.5 Autres résultats

Nous effectuons d’autres tests sur I’ensemble des 72 problemes de dimension 250 <

n < 500 avec STATS-MADS. Nous rapportons les observations suivantes.

Comparaison avec une méthode aléatoire

Nous comparons STATS-MADS avec une méthode pour laquelle on fixe aléatoirement
les variables dans les sous-espaces, comme dans PSD-MADS (Audet et al., 2008c). Mise
a part la technique de fixation, cette méthode est identique a STATS-MADS. Afin de ne
pas fixer les mémes variables, une graine aléatoire initialisant un générateur de nombres
pseudo-aléatoires est utilisée. La figure 6.16 révele 1'utilité de 1’approche statistique a

déterminer les variables susceptibles d’accélérer le processus d’optimisation.
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Figure 6.16 Profils de performance dans le cas ou 250 < n < 500 pour un ensemble de

72 problemes avec la méthode aléatoire

Retour sur MADS-RESCUE

Nous avons remarqué, en phase de tests, que le recours au processus de secours MADS-
RESCUE est beaucoup moins fréquent en grande dimension. Nous avons alors relancé
les tests en exculant le MADS-RESCUE. Rappelons qu’il s’agit du processus noté Ps.
L’alternance est alors limitée a P, et P,. La figure 6.17 illustre ce comportement. Les
résultats montrent que 66.67% de problemes passent sans MADS-RESCUE en compa-
raison avec 61.11% . Les valeurs sont assez proches. 22.22% des problemes donnent
exactement le méme résultat avec les deux stratégies. Il pourrait étre alors judicieux de
préconiser I’élimination de ce processus en grande dimension (n > 250). Cela peut étre
aussi intéressant du point de vue optimisation de parametres, ou il y aura deux parametres

de moins (M et 7) a définir.
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6.6 MOPTAO08

Le probleme test MOPTAOS ((Jones, 2008), (Anjos, 2009)) est un probleme d’optimisa-
tion tres complexe construit a partir d’un probleme réel de General Motors qui consiste
a la minimisation de la masse d’un véhicule motorisé sujette a des contraintes de perfor-
mance. Il comporte n = 124 variables et 68 contraintes d’inégalité et a comme principal
but la réduction de la fonction objectif en dessous de 228, a partir d’une valeur initiale
égale a environ 251 en un nombre d’évaluations inférieur a 1800 ce qui correspond a peu
pres a 15 fois le nombre de variables. Cette réduction permettra d’optimiser le temps des
simulations (une simulation prend approximativement 20 minutes). Afin d’atteindre cet
objectif, plusieurs méthodes ont été utilisées. Celles-ci sont recensées et comparées dans
(Langouét, 2011) et (Regis, 2011). Une recherche plus récente sur ce sujet est évoquée
dans (Regis et Shoemaker, 2012).

L’algorithme MADS est loin d’aboutir a cet objectif. En effet, au bout de 1860 évaluations,
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on obtient une valeur de fonction objectif aux alentours de 242 (dans les conditions stan-
dards). Le but de notre travail n’est pas de s’acharner a résoudre ce probleme particulier,
mais de mesurer I’impact de STATS-MADS par rapport a MADS.

Bien qu’il ne soit pas pertinent d’étudier ce probleme de point de vue industriel, nous
en exploitons les caractéristiques (complexité, nombre de variables, etc.) afin de tester
I’algorithme STATS-MADS, congu pour ce genre de problemes. Nous nous limitons a
la comparaison de ce dernier avec MADS et GPS, tel était le cas des problemes tests
précédents. Les parametres de STATS-MADS ci-dessous ont été déterminés en fonction

des tests :

p
eva

tot __ .
Mooy = 10015

M = 1000;

p
eva,

Nepa = 20n pour P, n,, ., = 10n pour Ps ;

- 7=4;

- ne=1;

pourcentage = 90 : le choix de ce parametre est basé sur les recommandations
précédentes.

Les profils de performance obtenus sont donnés par les figures 6.18 et 6.19. Pour la
premicere, le critere d’arrét est un budget sur le nombre d’évaluations égal a 100n. Pour
la deuxieme, on lance chaque algorithme sur un nombre indéterminé d’évaluations, alors
celui-ci s’arréte lorsque la taille du treillis devient plus petite que la précision de NO-
MAD. C’est ce qui explique que les trois algorithmes ne s’achevent pas au bout du
méme nombre d’évaluations.

Les deux figures montrent, qu’avec les parametres choisis, la descente locale est 1ége-
rement plus rapide dans le cas de STATS-MADS que MADS et GPS. Le gain en nombre
d’évaluations, aussi petit soit-il, se traduit dans le milieu industriel par des gains de temps

importants, étant donné le colt des simulations.
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Figure 6.19 Profils de performance pour MOPTAOS : aucun critere d’arrét n’est donné

Le chapitre suivant sera synthétique. Nous y discuterons les résultats obtenus. Nous y
décriverons également les limites et les perspectives de recherche possibles de notre

algorithme.
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CHAPITRE 7

CONCLUSION

7.1 Synthese des travaux

Un algorithme appelé STATS-MADS a été développé et implémenté en C++ sous NO-
MAD dont les principales finalités sont la réduction du nombre d’appels aux boites
noires, des dispositifs a évaluations coliteuses et la gestion des problemes de grande
dimension. Afin d’accomplir cette tache, plusieurs étapes ont été effectuées. D’abord,
une méthode qui dérive de I’AS a été adoptée en fonction des spécifications du pro-
jet, permettant 1’estimation des indices de sensibilité d’ordre un basé sur une égalité de
I’ANOVA a un facteur et ceux d’ordre deux basé sur I’ANOVA factorielle. L’ approxi-
mation des indices totaux a été alors possible en fonction des estimations précédentes.
Ensuite, la structure générale de 1’algorithme a été établie et ses différents ingrédients
ont été définis. L algorithme STATS-MADS résultant est une technique optimisant en al-
ternance dans des sous-espaces distincts de variables et ’espace complet. Le passage
d’un espace a un sous espace se fait au moyen d’une stratégie de fixation de variables les
moins influentes identifiées par 1I’AS. STATS-MADS est guidé par trois processus dont
deux correspondent a 1’algorithme MADS classique duquel il hérite les propriétés de
convergence. Des variantes de STATS-MADS ont également été proposées. Enfin, 1’algo-
rithme ainsi que ses extensions ont €té testés sur un ensemble de problemes numériques

issus de la littérature et comparés a MADS et GPS.
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7.2 Discussion générale

Nous avons propos€ une maniere de concevoir STATS-MADS et nous en avons testé di-
verses extensions. Nous sommes arrivés a la conclusion que STATS-MADS basique n’in-
flue pas le temps de calcul et est le plus performant et le plus apte a atteindre notre ob-
jectif principal. En outre, I’accomplissement de celui-ci est mieux distingué de celui de
MADS au fur et a mesure que la taille du probleme augmente. Notre méthode s’est avérée
plus efficace pour traiter les problemes de grande dimension, plus précisément ceux dont
la dimension est supérieure ou égale a 250. Ceci est favorable pour les problemes indus-
triels pour lesquels I’explosion dimensionnelle empéche 1’ utilisation de certains logiciels
d’optimisation.

Nous ne pouvons trancher sur I’efficacité de notre méthode pour les plus faibles dimen-
sions, étant donné que nous avons porté nos jugements sur la base d’'un nombre insuffi-
sant de problemes testés.

La limitation principale de STATS-MADS est sa sensibilit¢ au choix des parametres.
Nous recommandons au lecteur intéressé 1’usage des parametres définis a la phase des

tests.

7.3 Perspectives de recherche

Deux perspectives de recherche peuvent €tre envisagées. D une part, d’apres (Audet et
Orban, 2006) et (Audet et al., 2010a) et (Dang, 2012), il est possible d’optimiser les
parametres d’un algorithme congu a résoudre des problemes d’optimisation. En effet,
le choix de nos parametres n’a été fondé que sur les problemes tests. Il est certain que
I’utilisation d’une stratégie algorithmique serait plus prometteuse.

D’autre part, il serait avantageux d’intéger notre méthode statistique dans PSD-MADS

(Audet et al., 2008c), ou on cherche a résoudre des problemes de grande dimension en
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lancant des processus paralleles contenant des sous-ensembles de variables. Pour chaque
processus, le choix des variables a fixer est aléatoire. Nous avons pu constater, lors des

tests, I’intérét de 1’approche statistique par rapport a 1’approche aléatoire.
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ANNEXE I

COMPLEMENTS AU CHAPITRE 2

Définition 1.1. Une fonction f est dite Lipschitz en un point t s’il existe un scalaire K tel que

pour tout y suffisamment proche de t :

[f(t) = fy)l < Kt =yl

3 oy . 5 . 17 . . p
Définition L.2. Une sous-suite d’optima locaux {x}, }}, i du treillis est dite raffinante si {A A } weK

tend vers (.
Définition 1.3. Si f est Lipschitz prés de & € R™, alors la dérivée généralisée de Clarke en &

dans la direction d € R" est :
o fly +td) — f(y)

z,d) = lim su
f( ) y—2,t10 P t

Définition L.4. Un vecteur v € R"™ est dit hypertangeant au domaine 2 C R"™ au point x© € (),
s’il existe un scalaire € > 0 tel que : y + tw € Q, Yy € QU B (v), Vw € Be(v) et VO < t < ¢,
oit : Be() est la boule de rayon e centrée en x. L'ensemble TE () des vecteurs tangents est

appelé cone hypertangent en z.

Définition 1.5. Un vecteur v € R" est dit Clarke-tangeant au domaine fermé 2 C R™ au
point x € ), si pour toute séquence {yr} € S convergeant vers x et si pour toute séquence
{tx} > 0 € R convergeant vers 0, il existe une séquence de vecteurs {wy} convergeant vers v
telle que yy, + tpwy € . L’ensemble Tg l(x) des vecteurs Clarke-tangeants est appelé cone de

Clarke en z.

Définition 1.6. Un vecteur v € R"™ est dit contigent au domaine fermé 2 C R™ au point x € (),
5’1l existe une séquence {yi} € §) convergeant vers x et s’il existe une séquence {\r,} > 0 € R
telle que v = liin Me(yr — x). L’ensemble Tg (x) des vecteurs contingents est appelé cone de

Bouligand en x.



Définition L7. Un ensemble est dit régulier en x lorsque TS (x) = TS ().
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