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Abstract: Chronic obstructive pulmonary disease (COPD) is one of the most severe public health
problems worldwide. Pervasive computing technology creates a new opportunity to redesign the
traditional pattern of medical system. While many pervasive healthcare systems are currently found
in the literature, there is little published research on the effectiveness of these paradigms in the
medical context. This paper designs and validates a rule-based ontology framework for COPD
patients. Unlike conventional systems, this work presents a new vision of telemedicine and remote
care solutions that will promote individual self-management and autonomy for COPD patients
through an advanced decision-making technique. Rules accuracy estimates were 89% for monitoring
vital signs, and environmental factors, and 87% for nutrition facts, and physical activities.

Keywords: context-aware system; COPD; ontology; semantic web rule language (SWRL);
healthcare systems

1. Introduction

COPD has a significant impact on individuals and society. Moreover, COPD represents an
economic burden on the healthcare system. Statistics Canada [1], ranked COPD as the fifth leading
cause of death in the country. Studies show that people with COPD are vulnerable to many natural
events, environmental factors, and sudden worsening of any of the symptoms associated with
this disease. Recent years have witnessed a widespread increase in the number of telemedicine
projects. This kind of intervention can open a window onto the COPD patient’s life to assist with
self-management and prevent declines. Telehealth refers to the remote monitoring and care of patients
outside of the hospital setting. Typically, these systems are used with certain chronic diseases that
are associated with frequent relapses. The early detection of worsening symptoms will help patients
avoid severe problems and lengthy hospital stays [2]. The role of telemedicine in COPD is still being
discussed. In 2018, Dr. Jean Bourbeau, a senior scientist at the research institute of McGill University
Health Center, said that “telemedicine, both its application and results, is still controversial in COPD
and the monitoring of physiological parameters does not solve the problem of predicting exacerbations
that could lead to early therapy and prevention of hospital admissions” [3]. Recent studies cast serious
doubts on the research findings in this domain [4–6].

However, pulmonologists still believe that telemonitoring can play an extremely important role
if used properly. Brian Carlin, a pulmonary specialist and former chairman of the COPD Alliance,
confirms that recognizing the main triggers in each patient is the best health protection plan to
prevent flare-ups and thereby slow the progression of the disease; this is through maintaining an
active lifestyle in a controlled environment without being exposed to such triggers. Specialists in this
field suggested that “it may be more valuable to build the telemonitoring and telecommunication

Diagnostics 2019, 9, 135; doi:10.3390/diagnostics9040135 www.mdpi.com/journal/diagnostics

http://www.mdpi.com/journal/diagnostics
http://www.mdpi.com
https://orcid.org/0000-0002-2589-8609
http://dx.doi.org/10.3390/diagnostics9040135
http://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/2075-4418/9/4/135?type=check_update&version=3


Diagnostics 2019, 9, 135 2 of 35

technology in the management of COPD on what we already know” [3]. This requires working on
three different levels: first, find the safe range of environmental factors; second, adjust the normal limits
of relevant biomarkers; and third, determine the external influences (e.g., food, excessive physical
effort, climatic factors) on the patient’s body. The main contribution of this approach resides in the
intelligent monitoring and control of persistent changes in the physiological parameters and the
ambient environment. This work was part of a concentrated effort to create adaptive safe ranges
for personalized biomarkers, where the normal values of these vital signs are often affected by the
medical profile, the type of current exercise, the place, and the weather. Environmental factors are
also one of the COPD irritants, where cumulative exposure to a multitude of climate hazards such as
improper humidity levels or extreme weather temperatures, both indoor and outdoor air pollution,
in addition to the abnormal concentrations of oxygen in the atmosphere, may threaten a patient’s
lung health. Developing dynamic alarm thresholds is an important contribution because that would
promote the services provided and increase the value of telemonitoring in self-management. Moreover,
a customized threshold will help decrease the proportion of false alarms and differentiate between true
exacerbation and normal variation. To achieve these goals, there is a need to develop a comprehensive
representation of knowledge to capture the real context of the patient in order to avoid misdiagnosis
and allow the dynamic reconfiguration of the health disorders threshold.

Rule-based ontology to support context-aware systems offers potential solutions to the multiscale
nature of COPD. Many context-aware architectures have been proposed, but there is no published
and validated research on the effectiveness of these computing paradigms within the context of
COPD. In a previous work [7], we designed an ontological reasoning framework that provides a
rules-driven, context-aware system for COPD patients. In this article, we will present the validation of
that proposition, and demonstrating its efficiency through simulated examples of real-life scenarios and
empirical data about the environment, activities, symptoms, and physiological parameters. For this
purpose, we explain in detail the methods for extracting the medical rules of different contextual events.
The paper examines the normal ranges of vital parameters during different activities of daily living,
and sets a threshold limit for the environmental conditions, whether indoors or outdoors, which is
adapted to suit each patient’s medical profile.

The rest of the paper is organized as follows. In Section 2, we review the existing telemonitoring
platforms and ontology-based models, especially those designed for chronic pulmonary disease, and
show the weaknesses that make them non-viable. In Section 3, we review the steps involved in this
research and highlight our vision to deal with COPD. This hypothesis is based on comprehensive
ontology and medical rules. In Section 4, we explain how we extract the SWRL rules using data
analysis. In Section 5, we discuss the data collection process, then describe our implementation in
detail and provide a performance analysis and results in Section 6, Section 7, and Section 8. Finally, the
work is concluded in Section 9.

2. Related Works

For almost two decades now, the use of medical ontologies has no longer been limited to defining
medical terminologies such as the systematized nomenclature of medicine—clinical terms (SNOMED
CT) or the unified medical language system (UMLS), but has also become one of the most powerful
solutions for tackling serious health problems and supporting the management of large amounts of
complex data. Ontologies have also been used in hundreds of research projects concerned with medical
issues such as diagnosis, self-management, and treatment [8–12].The ontological approach proved
its effectiveness in the remote healthcare arena; for instance, Lasierra [13] and Rubio et al. [14] have
presented robust examples of ontology usage in the telemonitoring domain for generic and specific
chronic diseases. Lasierra proposed an autonomic computing ontology for integrated management at
home using medical sensors. Rubio provides a formal representation of knowledge to describe the
effect of technological context variations on clinical data quality and its impact on a patient’s treatment.
Another example can be found in [15]: Benyahia et al. developed a generic ontology for monitoring
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patients diagnosed with chronic diseases. The proposed architecture aims to detect any anomalies or
dangerous situations by collecting physiological and lifestyle data. Hristoskova et al. [16] presented
an ontology-based ambient intelligence framework that supports real-time physiological monitoring
of patients suffering from congestive heart failure. Ryu et al. [17] proposed a ubiquitous healthcare
context model using an ontology; the model extracts the contextual information for implementing the
healthcare service, taking into consideration the medical references and environments. Jong et al. [18]
has designed an interactive healthcare system with wearable sensors that provides personalized services
with formal ontology-driven specifications. In the same setting, an ontology-based context-aware
framework for customized care has been presented by Ko et al. [19] as a form of wearable biomedical
technology. An interesting projection of ontology in this domain can be found in [20], in which the
authors built a context-aware mobile service aiming at supporting mobile caregivers and sharing
information to improve the quality of life of people living with chronic diseases.

In addition to this obvious interest in ontology, most healthcare projects related to
computer-assisted medical decision-making are often modeled using rule-based approaches. Semantic
web rule language (SWRL) has emerged over existing W3C web ontology language (OWL) axioms to
promote the expressiveness of the semantic web. The combination of OWL and SWRL specifications
provides further inference capabilities beyond the inductive classification of description logics, with
78 built-in functions categorized across the comparisons, mathematics, Boolean values, strings, date,
time and duration, URIs, and lists [21]. In the medical environment, there are several uses of rules;
for example, if-then rules can be used for chaining or mapping ontologies properties to achieve
knowledge integration. By applying rules, the pattern of behaviors of all entities can be expressed,
which would produce new facts and tailored services. Some examples of the incorporation of rules
in healthcare ontologies as an essential component of decision support applications can be found
in [22–25]. These rules are written in specific terms to infer useful information and then provide
personalized care services to chronic patients according to their situations. For example, [22] established
a set of predefined rules to trigger alarms when critical threshold levels are exceeded, while [23–25]
used ontology-based rules for ubiquitous computing that allow for monitoring health anytime and
anywhere. Furthermore, a few research projects have studied the use of SWRL to aid in diagnosis.
These include [26] and [27], which provided rule-based ontologies to diagnose heart diseases and
diabetes, respectively.

The use of ontology in COPD is only restricted to certain aspects of patients’ lives [8,11].
For example, the authors of [12] developed an ontology inspired by the autonomic computing
paradigm that provides configurable services to support home-based care. The authors of [14] proposed
a predictive model to extract relevant attributes and enable the early detection of deteriorations, but
the proposed ontology aims at describing the basic structure of the application. Although a significant
amount of research has been done to assess the importance of telehealth in COPD, the concept of
integrated care services is still in its infancy. The use of semantic mapping between the physiological
parameters, environmental factors, symptoms, physical activity, and patient-specific data to construct
a telemonitoring system for COPD using ontologies was not found in the literature. This work will be
the first building block for creating a comprehensive primary e-healthcare delivery system, capable of
organizing various daily life scenarios for COPD patients in a healthy and safe environment.

3. Context-Aware System

Pervasive computing is considered one of the most impactful scientific achievements of the last
decade. This conception created a revolution in end-user interactions through the concept of context
awareness. Pervasive computing offers a new opportunity to redesign the pattern of conventional
solutions as it can easily tailor its processes based on existing contextual situations. Many theoretical
architectures have been proposed to enable context-aware computing in pervasive settings, especially
in the healthcare domain. The overall architecture of context-aware systems and development process
can be found in [7,28]. In this work, we distinguish four main components: context acquisition,
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representation, reasoning, and application. Context acquisition functions allow for querying physical
devices to obtain contextual data. Given the various characteristics of contextual information such
as heterogeneity, dynamicity, and imperfection, it is essential to define a model to describe these
data. There are three main types of approaches to represent the context: the key-value approach,
the object-oriented approach, and the ontology-based approach. On top of the context information,
reasoning schemes are implemented to develop applications and services for particular needs.

In this work, an ontology-driven rules base for an expert medical system is described and applied.
The proposed system provides an intelligent monitoring infrastructure to keep track of the physical
status of patients, suggest recommendations, and deliver interventions in a timely manner.

This process involves observing and controlling the behavior of physiological parameters and
the surrounding environment. Consequently, the system adapts the safe ranges for the vital signs
in proportion to demographic factors, medical profile, physical activity, and external ambiance.
The presented project demonstrated its benefits not only in terms of real-time responses, but also
in predicting the body’s changes in advance based on the effects of potential triggers. Due to the
complexity of this domain of knowledge, we established a scenario-based approach to coordinate the
evolution of such a decision-making system. The construction of scenarios is governed by executing a
sequential modular strategy and evidence-based rules. This architecture is designed and implemented
in four distinct layers: the acquisition layer is dedicated to collecting and properly transmitting
different sorts of data, such as the medical profile of the COPD patient, biomarkers, and environmental
information, whether gathered from wearable or fixed monitoring sensors. The semantic layer or
the ontological schema has been used to interpret complex information and translate the real context
of the patient into machine-understandable and accessible language. The generic representation
of the semantic layer consists of a set of interdependent ontologies and many concepts related to
the pulmonary disease, environment, devices, personal and medical information of the patient [3].
At the macro level, the telemonitoring system aims to detect all the possible hazardous events that
could influence COPD patient. Since OWL has expressivity limitations on representing many types
of contextual information, especially if-then statements, our ontologies have been extended with
forward-chaining rules. These rules were expressed in the semantic web rule language (SWRL) to
describe all implications and consequences. The proposed rules are extracted from data analysis,
existing medical guidelines, and the opinions of pneumologists. Practically, these rules are used by an
inference engine to derive new facts, detect events, and predict potential risks. The novelty of these
rules lies in the dynamic structure, which has the capacity to configure and reconfigure the secure
boundaries according to the current circumstances and contexts. Figure 1 provides an explanation of
the relationships between the constituent entities of the system in a simplified manner. The operational
environment of this system is divided into four main parts. The first part is the collection of data.
These data are distributed between the patient’s medical profile, obtained at the diagnostic stage, and
the contextual information that we can obtain from virtual and real sensors. All this information
must be kept in customized databases and kept consistent with the purpose, whether in the form of
electronic medical records or conventional databases to manage the real-time context. The second part
is the leading core of this system, where all the interpretation processes are carried out. This part is
an ontology knowledge base, backed by complex medical rules that aim to draw a semi-complete
representation of the patient’s life scenarios in a semantic programming language. In practice, the first
and second parts are highly intertwined, so the collected data serve as input to the ontology, which in
turn extracts the existing scenario and applies the rules of protection to ensure that patients are notified
early on of any potential risk-related events.
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The third part is related to system functions; the services offered by the system are divided into
two main categories: (1) patient services, which include assessment of the vital signs, evaluation of
the external risk factors, and estimation of the overall effects of activities. (2) caregivers’ services,
which are supposed to provide multi-task interfaces for real-time monitoring, decision-making, and
treatment evaluation. The last part controls all background processes. Dynamicity is one of the main
features of this system. It develops its facts continuously since it sends raw and derived information
periodically to the data warehouses for further analysis. This cycle allows the system to update its
rules and promote personalized health services. In the next section, we will learn about the methods of
extracting the medical rules of COPD.

4. Rules Extraction

In preparation for rule extraction, we performed a data analysis, reviewed the medical guidelines,
interviewed experts, and examined published sources to map biomarkers of COPD patient to various
real-life patterns. A rule is a description of how a patient is affected by internal bodily characteristics and
external environmental factors. Obtaining medical rules from existing resources involves information
extraction, analysis, filtering unwanted data, and refining ranges of values.

4.1. Vital Signs Rules

In clinical therapy, each patient must be recognized as an individual with a unique health state.
However, grouping patients with a similar medical profile is an excellent solution to treat diseases.
Unlike previous works and based on this scientific principle, we studied all relevant factors according
to the personal medical profile, which includes the demographic information and the clinical chart
of patients.

Hurst et al. [29] and Rajeh et al. [30] identified the main physiological parameters and symptoms
to be monitored. Understanding the maximum possible extent of change for each variable in different
scenarios is crucial for the early detection of pulmonary exacerbations. In the next section, we will
try to find out how these parameters change with COPD patients in different medical profiles and
during common daily life activities. Profile differences help to explain the discrepancies in medical care
received by COPD patients. Having considered the guidelines, it is recommended that we divide the
population of patients into groups or quartiles according to age, gender, stage, Body Mass Index (BMI),
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smoker, medication, and comorbidity. Identifying factors that may indicate if something is wrong with
COPD patient is about to happen was a daunting task and took a long time. This study establishes 11
physical parameters that must be monitored namely, body temperature, blood pressure, heart rate,
partial pressure oxygen (PaO2), oxygen saturation (SpO2), partial pressure carbon dioxide (PaCO2),
oxygen consumption (VO2), respiration rate, blood pH, bicarbonate HCO3, and FEV1. Understanding
the role of these biomarkers and their normal ranges in stable COPD patients in all potential scenarios
grants us the ability to sense imminent danger. Patients were separated horizontally by gender, age,
and stage; these groups have then been reclassified vertically according to the effects of BMI, smoking,
medication, and comorbidities on the vital signs. To illustrate this point, we will provide an example
to explain changes in heart rate with different profiles.

Heart Rate

Analysis of data obtained from medical records [31–33] finds that heart rate in women can
be slightly different than in men. Figure 2 shows that females have a higher heart rate compared
with males at all ages; this difference increases in early middle age and decreases in late adulthood.
In contrast, the overall analysis shows a remarkable decline in the normal resting heart rate (Figure 3).
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In the same context and in order to assess whether the expected effect of age truly has a powerful
influence on changing heart rate variability, we designed the following controlling analysis paradigm.
We sampled 1370 male patients aged 40 to 90 and assessed all the main characteristics such as COPD
stage, gender, BMI, and comorbidities. For male patients in stage I, the results were as follows:
72.6 ± 12 beats/min for those aged 40-50 years; 69.2 ± 11 beats/min for those aged between 50-60 years;
68.70 ± 9 beats/min and 69.0 ± 10 beats/min for patients aged between 60-70 and 70-80, respectively;
and 67.20 ± 9 beats/min for patients who were over the age of 80 (see Table 1).
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Table 1. Heart rate variation.

Male Patients, n =
1370 Stage Age 40-50

n = 223
Age 50-60

n = 295
Age 60-70

n = 307
Age 70-80

n = 280
Age 80-90

n = 265 p-Value

Principal
Classification

Stage I 72.6 ± 12 69.2 ± 11 70.1 ± 8 68.70 ± 7 67.20 ± 9 <0.005
Stage II 74.6 ± 13 72.3 ± 12 71.3 ± 11 70.3 ± 10 69.3 ± 12 <0.005
Stage III 77.5 ± 13 75.2 ± 12 74.2 ± 11 73.6 ± 11 72.6 ± 10 <0.005
Stage IV 84.9 ± 14 82.2 ± 13 81.2 ± 12 80.2 ± 10 79.2 ± 11 <0.005

Changes in principal classification, Standard Variation, Odds Ratio, Confidence Interval and p-Value
Influencing factors Subfactors Mean Change (SD) OR CI 95% p-Value

Smoker 80.1 6.6 ± 10 0.573 0.43-0.76 <0.001

BMI

Underweight - - - - NS
Normal - - - - NS

Overweight - - - - NS
Obese 82.6 9 ± 4 0.673 0.51-0.88 0.004

Inhaler Medication 80.7 7 ± 3 1.512 1.15-1.98 0.003

Comorbidities

CHF 83.8 9.6 ± 10 0.43 0.28-0.65 <0.001
HBP - - - - NS

Anemia 79.5 7 ± 10 0.954 0.89-0.97 <0.001
IHD - - - - NS
pH 84.3 10 ± 13 0.776 0.58-0.98 0.0037

GERD - - - - NS
Asthma 78.8 8 ± 10 0.46 0.30-0.71 <0.005

Exercise

Sedentary 76.3 3 ± 10 1.22 0.75-1.9 NS
Light 85.5 9 ± 15 0.931 0.87-0.99 0.0035

Moderate 125.6 29 ± 18 1.007 0.99-1.006 <0.001
Vigorous 145.3 43 ± 25 0.895 0.87-0.91 <0.001

In contrast, resting heart rate increased with the severity of COPD (p < 0.005), and we can easily
notice that the resting heart rate of people aged 40 to 50 rose from 72.6 ± 12 in stage I to 84.9 ± 14 in
stage IV. The analysis demonstrated that smoking increases the baseline heartbeat at a rate ranging
from 6 to 10 beats/min. The values provided for smokers represent the mean heart rate at rest and the
differences between sample proportions in the same conditions for male patients without specifications
of age, BMI, etc. Resting heart rate was also associated with both obesity and the use of inhaler
medication across all stages of COPD (p < 0.004 and p < 0.003). COPD patients tend to have more health
problems, and COPD is frequently associated with a range of diseases such as congestive heart failure
(CHF), coronary artery disease (CAD) or ischemic heart disease (IHD), pulmonary hypertension (PH),
gastroesophageal reflux disease (GERD), high blood pressure (HBP), asthma, and anemia. The change
in heart rate was only associated with four comorbidities, CHF, anemia, PH, and asthma, while HBP,
IHD, and GERD were not statistically significant. One of the key factors that changes heart rate is
activity. Heart rate differs from person to person during exercise or when doing any physical effort;
this variation is determined by mathematical equations with an acceptable degree of accuracy. Activity
would be classified into four categories: the first is sedentary, which requires the least amount of effort,
or in other words, the minimal rate of oxygen consumption (e.g., sleeping, sitting, or lying down),
the second category is called light-intensity activities (e.g., walking slowly, eating, preparing food,
showering); the third category is defined as moderate physical activity (e.g., walking briskly, gardening,
household cleaning); and the fourth category is the vigorous intensity level (e.g., jogging/running,
swimming, walking upstairs, sports, carrying a heavy load).

In summary, this evidence-based analysis proves that heart rate varies depending on the medical
profile of the patient, which in turn will affect the stable ranges of this vital sign during physical
activities. The same analytical methodology has been used on the other physiological parameters
mentioned above.

4.2. Indoor Rules

According to the Healthy Environments and Consumer Safety Branch (HECSB), Canadians spend
approximately 90% of their life indoors [34], often due to the extreme nature of the climate. Therefore, it
is very important to pay attention to the quality of that indoor air, temperature, humidity, and pressure,
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especially as COPD patients must live in a safe environment, away from any kind of irritants. Based on
the outcomes of a wide range of studies [35–47] that addressed internal environmental conditions, we
were able to draw up safe limits for all indoor climate factors. The foundations of internal protection
have been translated into a hierarchical tree, as shown in Figure 4. In some cases, the indoor thresholds
defined as comfortable have no significant correlation with the medical profile of the patient, while in
other cases these thresholds were highly correlated with the severity of the patient profile. Reviewing
all these factors in detail requires a lot of space, so we will simply list some of the existing findings.
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Osman et al. [35] conducted an experiment on a sample of 254 participants; the mean age of
patients was 69 years, with SD = 8.2; 45% of them were male. The sample included mild, moderate,
and severe stages; smokers and non-smokers. Osman aimed at exploring whether the health status of
COPD patients was associated with the recommended standards of indoor temperatures. This study
demonstrated that the optimal respiratory recordings were obtained at and above 21 ◦C in the living
room and at least 9 h at 18 ◦C in the bedroom during the night. Mu et al. [36] found that indoor
temperature should be kept to an average of 18.2 ◦C. The WHO’s annual world health statistics
report recommends that for certain groups such as people over the age of 65, the minimum indoor
warmth threshold is 20 ◦C, but there is no evidence that these findings are applicable to chronic
pulmonary diseases [37,38]. The COPD Foundation’s Slim Skinny Reference Guide (SSRG) [39] and
Excellus BlueCross BlueShield [40] suggested keeping the indoor humidity below 40% and above
30%, respectively, to avoid harmful influences. Indoor pressure has a significant effect on breathing; it
has been shown that negative pressure indoors may introduce harmful pollutants [41,42]. Generally,
positive air pressure means that the indoor space is supplemented with 5 Pa/0.02 WC of filtered air with
respect to the outside atmospheric pressure [43]. In multiple rooms, the most sensitive areas or places
where the patient stays for a long time during the day should be the most highly pressurized. However,
Ansley [44] indicated in an indirect manner that air pressure inside the chamber could be maintained
at sea level. The standard sea-level pressure, by definition, equals 101.3 kPa = 760 mmHg [45].

Air pollution is considered to be one of the common triggers of exacerbations. Sometimes,
pollutant levels in houses may be tens of times higher than the guidelines for outdoor air quality.
Therefore, indoor air quality is a concern and must be monitored around the clock. Wang et al. [46]
developed an indoor air quality index (IAQI) system based on the health risk assessment. The proposed
IAQI is similar to the air quality index (AQI) developed by the U.S. Environmental Protection Agency
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(EPA). In this research, Wang suggested setting the health protection threshold of indoor air quality to
150 points for people with respiratory illnesses. In the same context, Saad et al. [47] presented another
indoor environmental index. The IAQI value and status are divided into four categories: good (100-76),
normal (75-51), unhealthy (50-26), and hazardous (25-0). Saad mentioned in his project that only good
and moderate levels are appropriate for sensitive groups of people. The regulations for safe indoor
air quality in these two indicators are almost identical, and we will adopt the most stringent index in
case of different values. Indoor air quality is generally assessed by separately measuring major air
pollutants such as PM10, PM2.5, O3, CO, CO2, HCHO, TVOC, bacteria, fungi, NO2, and SO2.

4.3. Outdoor Rules

There are several reasons why healthy outdoor environments are important for COPD patients.
Unlike the internal environment, we cannot control the external environmental factors. There are
six main factors that affect the patient: outdoor temperature, humidity, wind speed, precipitation,
atmospheric pressure, and air quality. As with physiological parameters and internal environmental
conditions, and considering space constraints, we will try to give a clear picture of how to select safe
external environmental ranges.

In research and clinical trials provided by [35,48–54], respiratory problems and exacerbations
was highly correlated to the outdoor temperature. For example, Madaniyazi et al. [52] investigated
the relationship between variations in heart rate (HR) and blood pressure (BP), including systolic
blood pressure and diastolic blood pressure, and seasonal changes in ambient temperature. This work
classified participants based on a set of physical and social characteristics such as age, sex, BMI, habits,
physical activity, dietary habits, income, education level, work type, and medical history. The analysis
concluded that cold and hot weather had an evident impact on HR and BP, but in different proportions
according to the individual information of each patient. In general, for prolonged exposure to cold
weather in the total population, a 1 ◦C decrease of mean temperature below the threshold temperature
(which was estimated to be 22 and 27 ◦C for HR and BP, respectively) was linked to a 0.063 beats/min
increase in HR, a 0.129 mmHg increase in SBP, and a 0.065 mmHg increase in DBP. On the other
hand, hot weather was positively correlated with heart rate and blood pressure, a 1 ◦C increase in
mean temperature above the threshold (previously mentioned) was associated with a 0.133 beats/min
increase in HR, a 0.605 mmHg increase in SBP, and a 0.128 mmHg increase in DBP [52]. In the same
context, Donaldson et al. [53] studied the effect of temperature on lung function and symptoms in
COPD. The authors found that forced expiratory volume in one second (FEV1) and forced vital capacity
(FVC) fell remarkably by a median of 44.9 mL (at 2.20 mL·◦C−1 outdoors and range: -113,-229 mL) and
74.2 mL (at 3.64 mL·◦C−1 outdoors and range -454,-991 mL), respectively, between the warmest weeks,
with a mean temperature of 21.1 ◦C and coldest weeks with a mean temperature of 0.78 ◦C. The size of
the effect was somewhat similar in the research done by [54], with a 0.71% and 0.59% decrease of FEV1
for every 10 ◦F increase in mean annual ambient temperature, which is estimated to be around 57 ◦F in
two cohort studies. The flowchart in Figure 5 gives a summary of these extended reflections related to
the outdoor temperature.

The environmental air consists of approximately 78% nitrogen (N2), 21% oxygen (O2), and 1% other
gases, 0.038% of them for carbon dioxide (CO2) [55–57]. At sea level, where the standard barometric
pressure is 760 mmHg, the estimated partial pressures of these three gases can be 593 mmHg for
N2, 160 mmHg for O2, and 0.02 mmHg for CO2 [55]. At high altitude, the atmospheric pressure that
is acting on the air gases is significantly less than the ordinary pressure at sea level. Therefore, the
oxygen molecules in the air are spread further apart, reducing the oxygen concentration in the air and
thus reducing the oxygen saturation in the blood [58], which can pose risks to people with COPD.
There are several references describing the ratios of both oxygen and carbon dioxide with the change
in altitude, temperature, and pressure [59]. These reference charts help us to develop the first layer of
protection rules.
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The barometric and hypsometric formula for altitudes between 0 km and 11 km is depicted
in the next equation: P = 760 × (1 − Hb/4430.76923)5.255876 provided by [60], where the pressure
P and the altitude Hb are expressed in mmHg and m, respectively. The analysis of physiological
responses to extreme atmospheric pressure revealed the presence of a significant direct relationship.
In a meta-regression study, Mingi et al. [61] have shown an incremental increase in the prevalence of
hypertension by 2% with every 100 m rise in altitude. This higher pressure means that the heart must
work harder to pump blood through the arteries [62]. At the same time, exposure to low barometric
pressure must result in a decrease in the PaO2 in alveoli, leading to reduced oxygen blood saturation
(SpO2) [55,63]. Given the varying severity of COPD, Dillard et al. [64], developed equations to estimate
PaO2 at high altitude, incorporating PaO2 on the ground and FEV1% predicted. The partial pressure
of oxygen in the COPD patient’s arterial blood (PaO2) with baseline FEV1 below 1.5 L should be
evaluated prior to high-altitude travel to determine whether the lung conditions require supplemental
oxygen based on the regression equation provided by Dillard [64]: PaO2 altitude = (0.5196 × PaO2 sea level)
+ (11.856 × FEV1) – 1.76. Netzer et al. [65] verified the findings related to fluctuations of SpO2 and heart
rate during a mountain hike; the authors found that SpO2 values are significantly lower and heart
rate values are significantly higher in a high-altitude environment. In the same context, Maldonado
et al. [66] assessed the risks in the highlands through comparing the effects of the lower barometric
pressure on COPD patients at rest and during exercise. The study provided a detailed description of
endurance time, inspiratory capacity, arterial blood gases, and lactate. Rules of barometric pressure
at high altitude help patients to tell if it is safe for them to travel to intermediate altitude. Briefly,
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altitude exposure is not recommended for patients with severe COPD; however, these rules could
minimize the risk of adverse effects, and determine the level of physical activity to ensure optimal
health and prevent exacerbations. Based on this information, we developed an algorithm that evaluate
the effect of low barometric pressure on air compounds (O2 and CO2) and air temperature, which
are reflected in the vital signs of the body such as SpO2, heart rate, respiration rate, and PaCO2 (see
Figure 6). The proposed rules check the altitude periodically or when needed to calculate the change
in the biological parameters, as shown in Figure 7.
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Research in the medical domain in recent years has confirmed that short- and long-term exposure
to air pollutants increases the risk of COPD exacerbations [67,68]. Compliance with environmental
regulations and standards decreases the levels of air pollution and reduces the exacerbation burden of
COPD. Many countries and organizations are using the air quality index in assessing the concentrations
of air pollutants. However, there is a lack of studies about the clinical adverse effects of outdoor air
pollution on COPD patients. The pollutants in the surrounding air can be classified into primary and
secondary types depending on the compounds and formation process. Several evidence-based policies
and recommendations for air quality have been developed to reduce the impacts of pollution on human
health and safety. In this work we adopted the various Canadian air quality objectives and standards:
the Canadian National Ambient Air Quality Objectives [69], the standards for the atmospheric quality
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throughout the territory of Québec [70], the Ambient Air Quality Criteria (AAQCs) [71] developed
by the Ontario Ministry of the Environment and Climate Change, and the British Columbia Ambient
Air Quality Objective [72]. These standards helped us to create four levels of protection based on the
profile of the patient.

Traditional information indicates that optimum humidity levels range from 30% to 60%, but
Tseng [49] found that a lower humidity level, starting at around 34%, was positively associated with
parameters related to an increase in COPD exacerbation and hospital admissions with more sunshine
hours. A study in Hong Kong [73] supported this contention that dry air may aggravate symptoms,
noting that the respiratory system of COPD patients seems to be protected by humidity contained in
the air. Conversely, Freitas et al. [74] and Hayes et al. [75] demonstrated the indirect effects of high
humidity and warm climate on respiratory and circulatory diseases. In this paper we developed a
humidity-temperature reference to control outdoor activities and set the maximum exposure time per
24 h.

4.4. Adaptation to Dynamic Context

With the growing need to adapt services to the patient’s context, we have added some vitality
to the structure of the proposed rules. In this project, we used rules with dynamic threshold instead
of predefined and static values. Many safe constants will not stay safe all the time. Prolonged and
persistently high levels of biometrics are undesirable even if the captured values are normal to some
extent. In contrast, some environmental variables may also have a negative effect if the exposure
time exceeds the allowable limits or coincides with another influential factors (e.g., temperature, wind
speed, and humidity). The boundaries of the safe zone are often spaced out, i.e., there is a wide margin
between the high and low limits. The rules expand and minimize the safe area of humidity, heat, and
air quality index automatically according to the exposure time and other related factors. For example,
the safety threshold for PM10 is 0.150 mg/m3, but if a patient from the low-severity group stays in this
room for more than 8 h, the safe zone limits will change to 0.020 mg/m3 (see Figure 8). This process has
been accomplished with the help of pulmonary specialists.
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This information aims at building a safe environment for COPD patients by converting this
contextual schema into the SWRL rules base. These rules focus on evaluating body functions,
environment information, calculating the severity profile, and outputting the right decisions.

5. Dataset

Gathering such different kinds of data from real sensors is subject to some practical limitations
such as ethical approval, financial costs, and deployment time. Hence, researchers suggest an
alternative experimental method using intelligent simulation. Based on this solution, each project can
be proved operationally efficient before proceeding to the later stages of implementation. In this context,
many simulation scenarios need to be performed to prove the feasibility of the proposed approach.
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These trials include placing COPD patients in different environmental conditions with multiple shapes
of everyday life activities. Human health is a very sensitive topic and must be treated with high accuracy;
this means that all created scenarios should provide a representation close to everyday-life experiences in
a realistic environment in terms of the weather, pollution, and other surrounding factors. The second
point we need to take into consideration when we generate data is the time scale of monitoring, where
long-term scenarios allow the evaluation of the dynamicity and computing paradigms of the system.
The third requirement in this operational context is to consider abnormal situations or irregular events
that may occur during the monitoring of COPD patients. To create realistic and effective scenarios, it
is necessary to carry out a simulation over a long period of time that involves the expected activities of
patients and the environmental conditions that influence the health of people suffering from COPD. There
are three basic data sources to build such scenarios: (1) medical information, (2) daily life activities, and (3)
the environmental conditions, as shown in Figure 9.
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5.1. Real-Life Activities

There are relatively many published studies about the simulation of activities; for instance,
Elbayoudi et al. [76] have simulated human behavior in intelligent domestic space. Limousine et
al. [77] proposed a grammatical approach to facilitate the representation of complex indoor human
activities scenarios and consider the abnormal activities using a hierarchical hidden Markov model.
In a similar work, Aritoni et al. [78] presented a generative model able to define the vast majority of
daily routine events that would be of interest in a real-time monitoring system. Mshali et al. [79] used
a novel strategy for generating long-term realistic scenarios. The suggested approach considers the
person’s profile, the activities, and the logical relationships between these activities. Unfortunately, the
publicly available datasets that simulate patients’ activities did not consider outdoor scenarios such as
driving, walking outside, running, etc. They involve only a subset of the most common indoor actions.
Based on these findings, we attempted to extend the existing indoor scenarios proposed by Mshali [79]
using the same approach built upon Markovian models. Many other scenarios have been built upon
Markovian models; we created new sequences of expected activities, including outdoor actions that
can be performed by COPD patients. These scenarios took into consideration the levels of severity and
disabilities, as provided for in the international classification of functioning (ICF). This is a classification
of health domain and its main related aspects; it is intended to describe how patients live with their
physical or mental illness [80,81]. According to the ICF model, COPD can influence the participation
of patients in practical life, or daily living activities, depending on their health conditions. Figure 10
shows the ICF model, which could be adapted for each COPD patient. As depicted in Figure 10, the ICF
framework presents the functioning and disability of a patient with COPD as mutualistic interactions
among five different entities: body functions and structures, activities, participation, environmental,
and personal factors.

Based on this framework, Bui [82] discussed the physical capacity for various body structures and
functions of COPD patients, while Alda [83] studied the association between activities and participation
components and the grades of patients’ airflow limitation. In the same context, Marilyn [84] showed
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the types of physical activities performed by COPD patients. All these facts were combined in one
algorithm to extract a series of daily activities in accordance with the medical and personal profile of
the patient in terms of demographic characteristics and physical ability.

These daily life activities of COPD patients have been divided into six successive sequences
associated with six time periods from sunrise to sunset. Each of these sequences consists of a set
of coordinated activities, with a random duration created through transition probabilities matrices.
The matrix was filled in a systematic and deliberate manner, where high probability values were given
to all the possible events that might occur during a specified period of the daytime, such as driving to
work between 8:00 a.m. and 9:00 a.m. or having lunch between 2:00 p.m. and 4:00 p.m. The generated
dataset comprises most of the main activities and their related actions that are deduced according to
the patient’s ability to perform activities of daily living either with or without the help of others.Diagnostics 2019, 9, 135 32 of 35 
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In this project, 18 typical activities, describing the behaviors of COPD patients in public life, have
been considered. Some of the indoor activities were taken from the proposed list in [85], while a range
of activities was added based on the patient’s needs outside of the home setting. The activities selected
are: eating, dressing, driving, walking, jogging, running, traveling, washing, toileting, housekeeping,
laundry, cooking, telephone use, taking medication, watching TV, reading, and sleeping. Figure 11
provides a graphical interpretation of the probabilities of transitions followed to generate a random
activities sequence within the given interval of time between 4:00 and 6:00 p.m. Moreover, for greater
accuracy in the generation of the realistic scenarios, Mshali [79] added additional constraints that
bound the frequency [fmin, fmax] of each activity and the total duration [Dmin, Dmax] of the sequence; for
more details, see [85]. In addition to the previous restrictions, the process of building the data must
consider the types of activities that the COPD patient can do, as stated in the ICT framework. In other
words, adhering to a realistic representation requires respect for the constraints of the physical capacity
profile of patients of whatever age or stage.

A small sample of the data is presented in Table 2.



Diagnostics 2019, 9, 135 15 of 35

Table 2. Dataset: examples of activities.

Date Start Time End Time Activity Activity

Day 1 12:00 12:14 Sitting
Day 1 12:15 12:30 Walking
Day 1 12:31 12:34 Standing
Day 1 12:35 13:15 Driving
Day 1 13:16 13:40 Sitting
. . . . . . . . . . . . . . . . . . . . . . . . . .
Day 2 08:00 08:20 Running
Day 2 08:21 08:30 WalkingDiagnostics 2019, 9, 135 33 of 35 

 

 

Figure 11. The matrix of transition probabilities. 

A small sample of the data is presented in Table 4. 

Table 4. Dataset: examples of activities. 

Date Start Time End Time Activity Activity 
Day 1 12:00 12:14 Sitting 
Day 1 12:15 12:30 Walking 
Day 1 12:31 12:34 Standing 
Day 1 12:35 13:15 Driving 
Day 1 13:16 13:40 Sitting 
…… ……. …… ……. 

Day 2 08:00 08:20 Running 
Day 2 08:21 08:30 Walking 

5.2. Environmental Conditions 

Assembling environmental data was easier, in that we found many open sources that describe 
the environmental conditions of indoor and outdoor spaces over long intervals. One of the most 
interesting outdoor datasets for environmental information was published by the Ministry of 
Environment and Climate Change Strategy in British Columbia, Canada [86]. These datasets contain 
continuous readings of meteorological and pollutant indexes from air quality monitoring stations 
across the province from 1980 until the end of 2017. 

The Canadian environment has extreme climatic conditions that include unusual and 
unpredictable weather. The published dataset contains meteorological time series encompassing 
temperature in degrees Celsius, relative humidity in percent, wind speed in meters per second, wind 
direction in degrees from true north/azimuth, precipitation in millimeters, and barometric pressure 
in kilopascals. In addition to the meteorological data, the monitoring stations in British Columbia 
recorded the air quality health index, the level of carbon monoxide in parts per million, hydrogen 
sulfide and total reduced sulfur in ppb, nitric oxide in parts per billion, nitrogen dioxide in ppb, sulfur 
dioxide (SO2) in ppb, ground-level ozone in ppb, particulate matter with a diameter of 2.5 μm or less 
in micrograms per cubic metre (μg/m3), and particulate matter with a diameter of 10 μm or less in 
μg/m3. The dataset pertaining to environmental elements follows the form date, time, longitude, 
latitude, altitude, temperature, humidity, wind speed, wind direction, precipitation, barometric 

Figure 11. The matrix of transition probabilities.

5.2. Environmental Conditions

Assembling environmental data was easier, in that we found many open sources that describe the
environmental conditions of indoor and outdoor spaces over long intervals. One of the most interesting
outdoor datasets for environmental information was published by the Ministry of Environment and
Climate Change Strategy in British Columbia, Canada [86]. These datasets contain continuous readings
of meteorological and pollutant indexes from air quality monitoring stations across the province from
1980 until the end of 2017.

The Canadian environment has extreme climatic conditions that include unusual and unpredictable
weather. The published dataset contains meteorological time series encompassing temperature in
degrees Celsius, relative humidity in percent, wind speed in meters per second, wind direction in
degrees from true north/azimuth, precipitation in millimeters, and barometric pressure in kilopascals.
In addition to the meteorological data, the monitoring stations in British Columbia recorded the
air quality health index, the level of carbon monoxide in parts per million, hydrogen sulfide and
total reduced sulfur in ppb, nitric oxide in parts per billion, nitrogen dioxide in ppb, sulfur dioxide
(SO2) in ppb, ground-level ozone in ppb, particulate matter with a diameter of 2.5 µm or less in
micrograms per cubic metre (µg/m3), and particulate matter with a diameter of 10 µm or less in µg/m3.
The dataset pertaining to environmental elements follows the form date, time, longitude, latitude,
altitude, temperature, humidity, wind speed, wind direction, precipitation, barometric pressure, carbon
monoxide, hydrogen sulfide, sulfur, nitric oxide, nitrogen dioxide, sulfur dioxide, ozone, PM 2.5, and
PM 10. Some of the data is provided in Tables 3 and 4.
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Simulation of the internal environment is also important when the patient spends most of his/her
time at home. The indoor data are tracked via GAMS environmental monitoring company, Shanghai [87].
The indoor air quality dataset contains temperature, humidity, carbon dioxide (CO2), volatile organic
compounds (VOC), particulate matter with a diameter of 2.5 µm (PM2.5), and particulate matter with
a diameter of 10 µm (PM10). The structure of the indoor environment dataset consists of date, time,
indoor temperature, indoor humidity, CO2, VOC, PM 2.5, and PM10 (see Table 5).

Table 3. Examples from the dataset that describes the outdoor environment.

Date Time Humidity Temperature WD_V WD_UV WSP_VE WSPD_SC Precipitation Pressure

Day 1 12:00 83.5 −14.56 134.2 113.2 0.153 0.381 0.3 102.069

Day 1 12:01 83.9 −14.56 214.5 211.2 0.467 0.791 0.3 102.041

Day 1 12:02 82.8 −14.56 6.775 8.09 0.442 0.587 0.3 101.928

Day 1 12:03 80.1 −14.56 149.1 162.5 0.363 0.536 0.3 101.812

Day 1 12:04 80.6 −14.56 158 142.8 0.633 0.91 0.3 101.808

Day 1 12:05 83.8 −14.56 119.7 115.5 0.653 0.762 0.3 101.842

Day 1 12:06 88.1 −14.56 106.9 105 0.991 1.037 1.2 101.84

Day 1 12:07 89.7 −14.56 127.5 127.5 0.903 0.959 1.2 101.759

Day 1 12:08 88.4 −14.56 120.7 114.2 0.768 0.865 1.2 101.833

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Day 2 1:01 73.9 −14.56 125.3 124.6 0.555 0.595 0 101.806

Day 2 1:02 78 −14.56 112.8 112 0.929 1.008 0 101.806

Table 4. Examples from the dataset that describes the outdoor environment.

Date Time AQHI CO H2S NO NO2 NOx O3 PM10 PM2.5 SO2 TRS

Day 1 12:00 2.02 0.145315 0.24452 1.099305 2.848887 3.9425 32.393 23.61 0 0.2 2.1

Day 1 12:01 2.16 0.140258 0.47763 0.779582 1.397222 2.18083 34.953 17.4 0 0.1469 0.2

Day 1 12:02 2.24 0.140848 0.1424 0.403194 0.7675 1.170415 35.640 15.15 0 0.1283 0.2

Day 1 12:03 2.27 0.145591 0.10238 0.436111 1.249305 1.68387 35.233 19.2 0 0.1 0.2

Day 1 12:04 2.26 0.147459 0.10465 0.345694 1.589721 1.93777 34.836 30.5 3 0.1008 0.2

Day 1 12:05 2.27 0.153385 0.12705 0.575833 1.819721 2.39319 34.301 36.03 3 0.1057 0.2

Day 1 12:06 2.32 0.139437 0.19324 0.334583 1.494027 1.826805 34.689 26.33 5 0.1015 0.2

Day 1 12:07 2.45 0.137271 0.28494 0.207083 0.60736 0.821666 35.934 29.55 2 0.1 0.3

Day 1 12:08 2.59 0.122216 0.33706 0.25361 0.415555 0.6723 36.363 35.34 2 0.1 0.4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Day 2 1:01 2.78 0.119727 0.21297 0.143194 0.334443 0.4740 35.956 38.83 0 0.1 0.4

Day 2 1:02 2.92 0.116305 0.22772 0.276526 0.430415 0.711804 36.267 33.28 3 0.053 0.6

Table 5. Examples of data that describes the environmental conditions at home.

Date Time Indoor Temperature (◦C) Indoor Humidity (%) CO2 VOC PM2.5 PM10

Day 1 12:00 20.83 72.09 708 0.062 9 10.2

Day 1 12:01 21.01 70.95 694 0.062 10.1 10.9

Day 1 12:02 21.20 69.12 693 0.062 9.9 10.2

Day 1 12:03 21.37 68.83 692 0.062 9.6 9.6

Day 1 12:04 21.49 68.6 690 0.062 8.4 9.4

Day 1 12:05 21.66 68.31 690 0.062 6.8 6.8

Day 1 12:06 21.79 68.11 690 0.062 6.9 6.9

Day 1 12:08 22.90 67.79 691 0.062 7.3 8.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Day 2 15:01 23.24 66.98 695 0.062 6.5 7.2

Day 2 15:02 23.36 66.63 695 0.062 7.2 7.6
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5.3. Medical Profile

Medical profiles are vital in ensuring the validation process. In this context, we have collected
thousands of electronic medical records, hospital admission data, and measures of outcome in clinical
studies from different medical sources (MIR Clinic [32] and Al-Sahel Hospital [31]). As we can see
in the Table 6, these datasets contain specific information about age, gender, weight, height, BMI,
smoking, comorbidities, medications, the mMRC dyspnea scale, the stage of COPD, normal baseline
vital signs such as body temperature, diastolic blood pressure, systolic blood pressure, heart rate,
partial pressure oxygen (PaO2), oxygen saturation (SpO2), partial pressure carbon dioxide (PaCO2),
oxygen consumption (VO2), respiration rate, pH, HCO3, and a spirometry test that includes FEV1, VC,
FVC, FEV1/VC, FEV1/FVC, PEF, PEF2575, ELA, FET, FEF25%, FEF50%, FEF75%, EVol, MVVcalc, FIVC,
FIV1 FIV1/FIVC, and PEF. These datasets contain an incremental cycle test (ICT) and a six-minute
walking test (6MWT), which would give us a clear understanding of the upper and lower limits of the
physiological parameters of patients during sedentary, light, moderate, and vigorous activity.
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Table 6. An example of a medical record.

ID Gender Age Height Weight BMI Smoker Comorbidities Medication

## Male 77 184 99 29.33 Yes Anemia Short-acting

Dyspnea
(mMRC) Gold stage FVC (L) FEV1 FEV1/FVC FEV1/SVC FEF

25-75% FEF50% PEF FET100%

Mmrc2 2 2.33 1.01 43 40 0.40 0.46 3.86 9.61

FET100% FIF50% FEF/FIF50 TLC VC IC FRC PL ERV RV RV/TLC DLCO

9.61 2.14 0.22 5.99 2.55 1.87 4.12 0.62 3.43 57 16.4

Baseline Heart rate H Reserve Heart rate Max HR (light exercise) HR (moderate exercise) HR (vigorous exercise)

60 beats/min 93 beats/min 153 beats/min 60-97 beats/min 98-120 beats/min 121-130 beats/min

Baseline temperature (T) T (light exercise) T (moderate exercise) T (vigorous exercise)

36.39 ◦C 36.95 ◦C 37.26 ◦C 37.79 ◦C

Baseline SpO2 SpO2 (light exercise) SpO2 (moderate exercise) SpO2 (vigorous exercise)

96.01% 95.21-96.01% 93.10-95% 91.30-92.6%

Baseline PaO2 PaO2 (light exercise) PaO2 (moderate exercise) PaO2 (vigorous exercise)

78 mmHg 75-82 mmHg 83-88 mmHg 89-95 mmHg

Baseline PaCO2 PaCO2 (light exercise) PaCO2 (moderate exercise) PaCO2 (vigorous exercise)

39 mmHg 38-41 mmHg 34-39 mmHg 32-39 mmHg

Baseline DBP DBP (light exercise) DBP (moderate exercise) DBP (vigorous exercise)

75.9 mmHg 75-78 mmHg 79-82 mmHg 83-90 mmHg

Baseline SBP SBP (light exercise) SBP (moderate exercise) SBP (vigorous exercise)

120 mmHg 121-140 mmHg 141-145 mmHg 146-155 mmHg

Baseline Respiration rate (RR) RR (light exercise) RR (moderate exercise) RR (vigorous exercise)

14 R/min 14-19 R/min 20-30 R/min 31-50 R/min

Baseline
VO2

VO2 Reserve VO2 Max HR (light exercise) HR (moderate exercise) HR (vigorous exercise)

2.53 14.129 16.59 2.5-6.34 mL/kg/min 6.4-9.36 mL/kg/min 9.5-11.79 mL/kg/min
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6. Implementation

As seen in the previous section, the experimental available datasets consist of values collected at
different observational units. So, we synchronized the time scale between these data without affecting
the accuracy, and mapped the simulated representation of the real-life activity with corresponding
vital signs, according to the medical file. Therefore, the new dataset consists of three fully connected
observations, the activities that have been generated using the MATLAB, the environmental conditions
that are captured by real sensors, and the biomarkers that are obtained from medical sources.
The simulated scenarios revolve around creating sequential records over a 12-month period for COPD
patients with different levels of disease severity and autonomy. Each record is a description of the
activities performed, the environmental factors, and the vital signs at a certain time. The objective of
this process was to create a dataset of the COPD parameters associated with variation in the bodily
activity and surrounding factors. The obtained databases consist of a total of 104 parameters, giving
distinct advantages over previous studies even though the accuracy is unknown. For example, this
dataset utilizes the best available environmental characteristics dataset for weather conditions and
outdoor pollutants in Canada; it also uses real-indoor observations taken from a credible research
project. The sequences of daily living activities were generated through Markov models and algorithms
for probabilistic logic, while the medical profile has been issued by reliable medical sources. To prove
the advantages of this work, we conducted many experimental simulations for the whole scenario
of biological reactions to physical activities and external influences over 12 months in 100 virtual
patients. First, we considered the scenarios of COPD patients having the same level of dependency
but in different stages of the disease. Secondly, we simulated COPD in elderly patients who have lost
some of their physical ability by excluding some kinds of autonomous activities of daily living tasks.
Thirdly, for accuracy reasons, we created our simulations to compare the efficiency of this system
during the winter, spring, summer, and autumn. We evaluated the performance of the proposed
system for the identification of abnormal situations or patterns that may pose serious health risks for
COPD patients. This evaluation consists of quantifying the level of computing or compliance with the
expected time and the capacities of rules repository. COPD patients’ needs change according to their
medical profiles and the type of hazards. The adaptation services with these changes are an essential
point to test in such a remote healthcare system; therefore, it is of paramount importance to deliver a
quick and accurate response to a sudden decline in vital parameters and general health status. Using a
specific amount of data, the system categorizes the monitored conditions as either normal or abnormal.
In the next section, we briefly describe the implementation steps of this project using Protégé that
was developed by the Stanford Center for biomedical informatics research at the Stanford University
School of Medicine.

The initial implementation presented in the Figure 12 is carried out in the following manner: (1)
the simulated data, stored in Excel spreadsheet files, will be uploaded directly to Ontology-based
knowledge using Cellfie plugin. (2) The SPARQL query engine accesses the Knowledge Base to retrieve
information from a patient’s profile regarding current location and activity, etc. (3) The SWRL rule
reasoner adds additional information such as normal ranges, and appropriate environment, to the
Knowledge Base. Moreover, the SWRL rule reasoner performs reasoning on the updated Knowledge
Base of COPD domain and newly inferred facts are added to the Knowledge Base. (4) The SPARQL
query engine accesses the Knowledge Base to retrieve notifications and recommendations according to
the patient’s context.
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We constructed eight ontologies for monitoring COPD patient and representing
machine-understandable Knowledge Base. As shown in Figure 13, the developed ontologies consist of
concepts related to the personal and medical profile, physical examinations, laboratory test, location,
activity, environment, time, recommendations, and diseases.
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In OWL, properties are used to describe relationships between individuals (instances) or to
attribute an XML data type (such as string, integer, etc.) to individuals. There are two main types of
properties, object properties that relate individuals from two classes, and datatype properties that are
used to save real data values for the individuals of classes in a specific data format. Data type and
object properties play a fundamental role in the ontology. Our COPDology consists of hundreds of
object and data properties.

These properties are used to define the profile of patient (e.g., hasAge, hasBMI, hasGender),
to recognize location and activity (e.g., LocatedAt, EngagedIn), to characterize environment (e.g.,
hasIndoorTemperature, hasOutdoorPressure), or to trigger alarms and provide suggestions (e.g.,
hasAlarm, hasSuggestion). Figure 14 shows an example of the properties defined in our ontology.
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The instances were instantiated automatically in Protégé from the gathered dataset. As mentioned
before, the data simulates patient conditions and environment characteristics. These individuals
can provide a list of medical records, profiles, physiological signs, safe thresholds, potential risks,
recommendations, and explanations to the user when running the system. Figure 15 shows an example
of instances created in the ontology. This example, from left to right, illustrates symptoms, answered
questions, alarms, suggestions, patient identifier, and treatment.

Thousands of SWRL rules were used to manage the status of almost 600 COPD medical profiles
in various circumstances. Both chronic and multichronic patient profiles were configured by using the
proposed rules. These configured profiles could be used to monitor the safe conditions of patients
with chronic or multi chronic illnesses. Based on the medical information found in the guidelines and
other information provided by physicians, we created 20,328 rules using forward chaining of inference.
These rules use concepts/axioms defined in our COPDology. The rules are set to achieve different
goals such as (i) verifying the profile of patients; (ii) detecting the location; (iii) evaluating the patient’s
status and surrounding conditions; and (iv) providing the corresponding service for patients. For more
details, please refer to the reasoning section of our previous work [7]. Figure 16 shows the list of SWRL
rules that we created in the SWRL tab to monitor the patient.
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The use of SWRL rules in combination with COPDology instances has been studied in this article
to provide personalized care services. Having reasoning techniques of ontologies and rules that contain
the asserted and inferred statements, we used SPARQL to retrieve and derive contextual information
from the knowledge base. Although SPARQL is classified as a query language, it can be considered
more than this since it provides different query forms that allow its functionalities to be extended.
For example, SPARQL can provide functions to verify whether certain constraints currently hold in an
RDF triple store (ASK), or to specify inference rules using (CONSTRUCT), not only, but SPARQL can
also be used to perform DELETE or INSERT operations. In contrast, the simplest form of a basic graph
pattern (WHERE) can establish complex patterns by using UNION, OPTIONAL, and FILTER clauses.
Therefore, the same SPARQL rule engine can be a used to execute functions and clinical monitoring
rules, providing great flexibility in the definition of both types of data. Furthermore, SPARQL has
also been studied to complement OWL expressiveness for arithmetic functions that will be included
in the COPDology. This functionality indicates how information can be mathematically processed.
A total of 11 arithmetic functions (ABS, AVG, division, multiplication, cell, floor, count, min, max,
round, and sum) have been used to compensate for the OWL limitations. The aim of these queries is to
retrieve any information relating to an identified instance, such as a sign, symptom, treatment, alarm,
recommendation, decision, etc. In this section, we will present some queries that could be used to
display important information and illustrate the implementation of the main functions.
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Query 1: How to Show Patient, Age, Gender, Stage, Location, Activity, Vital Signs, Alarm, and Time
In the query presented in the Figure 17, we display the identifier of all patients and their

corresponding information. We use the triple pattern of Patient hasAge Age, Patient hasGender Gender,
and Patient hasStage GoldStage. We use the SELECT query to get the information of the patient
identifier, age, gender, and stage. In a similar way, we used the triple pattern of Patient LocatedIn
Location, Patient hasAlarm Alarm, Patient EngagedIn ActivityLabel, Patient hasVitalSign VitalSign,
HasValue Value, VitalSign hasTime Date, and Date hasTime Time. We use the SELECT query to get the
information of location, activity, vital, signs, value, alarm, and time.

Diagnostics 2019, 9, 135 27 of 35 

 

The use of SWRL rules in combination with COPDology instances has been studied in this article 
to provide personalized care services. Having reasoning techniques of ontologies and rules that 
contain the asserted and inferred statements, we used SPARQL to retrieve and derive contextual 
information from the knowledge base. Although SPARQL is classified as a query language, it can be 
considered more than this since it provides different query forms that allow its functionalities to be 
extended. For example, SPARQL can provide functions to verify whether certain constraints 
currently hold in an RDF triple store (ASK), or to specify inference rules using (CONSTRUCT), not 
only, but SPARQL can also be used to perform DELETE or INSERT operations. In contrast, the 
simplest form of a basic graph pattern (WHERE) can establish complex patterns by using UNION, 
OPTIONAL, and FILTER clauses. Therefore, the same SPARQL rule engine can be a used to execute 
functions and clinical monitoring rules, providing great flexibility in the definition of both types of 
data. Furthermore, SPARQL has also been studied to complement OWL expressiveness for arithmetic 
functions that will be included in the COPDology. This functionality indicates how information can 
be mathematically processed. A total of 11 arithmetic functions (ABS, AVG, division, multiplication, 
cell, floor, count, min, max, round, and sum) have been used to compensate for the OWL limitations. 
The aim of these queries is to retrieve any information relating to an identified instance, such as a 
sign, symptom, treatment, alarm, recommendation, decision, etc. In this section, we will present some 
queries that could be used to display important information and illustrate the implementation of the 
main functions. 

Query 1: How to Show Patient, Age, Gender, Stage, Location, Activity, Vital Signs, Alarm, and Time 

In the query presented in the Figure 17, we display the identifier of all patients and their 
corresponding information. We use the triple pattern of Patient hasAge Age, Patient hasGender 
Gender, and Patient hasStage GoldStage. We use the SELECT query to get the information of the 
patient identifier, age, gender, and stage. In a similar way, we used the triple pattern of Patient 
LocatedIn Location, Patient hasAlarm Alarm, Patient EngagedIn ActivityLabel, Patient hasVitalSign 
VitalSign, HasValue Value, VitalSign hasTime Date, and Date hasTime Time. We use the SELECT 
query to get the information of location, activity, vital, signs, value, alarm, and time. 

 
Figure 17. Query 1 and result. 

Query 2: Show the Suggestions of All Calculated Levels of IAQI 

Based on the indoor air quality index, we could query for the suggestions of all the IAQI levels. 
This query could show an aspect of the system in monitoring the environmental conditions. Figure 
18 shows the calculated levels of IAQI and their corresponding suggestions. 

Figure 17. Query 1 and result.

Query 2: Show the Suggestions of All Calculated Levels of IAQI
Based on the indoor air quality index, we could query for the suggestions of all the IAQI levels.

This query could show an aspect of the system in monitoring the environmental conditions. Figure 18
shows the calculated levels of IAQI and their corresponding suggestions.
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7. Results

The proposed ontology is suitable for two main scenarios. First, a typical home-based
telemonitoring scenario that can provide self-management service by observing physiological data
regarding the general health of individuals, as well as better information about the indoor air parameters
such as temperature, humidity, pollutant gases, dust, and vapor, which are considered triggering
factors for COPD. The second scenario is designed for tracking patients outside the home. In the
outdoor monitoring area, the system gathers contextual information or environmental stimulus that
could influence the biomedical parameters.

To illustrate the use of the model, we will perform some experiments. Let us consider the scenario
of a COPD patient being remotely monitored after diagnosis. The patient’s vital signs, activity, and
environmental parameters are continuously monitored. The patient’s profile is shown in Table 7.

Table 7. Profile of the patient.

Patient Profile

Age: 51 Baseline PaO2: 78 Baseline DBP: 75
Gender: Male Baseline PaCO2: 39 Baseline FEV1: 1.73 L

BMI: 23 Baseline SpO2: 96 Baseline VO2: 2.53
GOLD Stage: I Baseline Heart rate Baseline pH: 7.3

Comorbidities: GERD Baseline Temperature: 36.95 Baseline HCO3: 25
Baseline Dyspnea (MMRC): MMRC2 Baseline Respiration rate: 15

Smoker: No Baseline SBP: 115
Medication: short-acting beta-agonist (SABA) and long-acting beta-agonist (LABA)

The requirements for the supervision configured by the medical rules are depicted in each
experiment. The parameters to be monitored correspond to specific limits. All these settings are
described as parameters, constraints, and alarms. The defined alarms are associated with constraints
configured for each profile. The activation of any of the alarms would alert both the patient and the
physician; an earlier alert should be sent to the patient and pneumologist, with a visible notification
and audible warning. These experiments allow for analyzing the fulfillment of the medical rules and
services provided by varying both the vital signs and the activities of the patient. These experiments
are classified as follows.

Experiment 1—The Main Objective of This Experiment Is to Examine the Ability of the Ontology to Detect
Abnormal Changes in Physiological Parameters.

The alarms and constraints that control these changes are listed in the Table 8.

Table 8. Biomarker alarms and constraints for a specific profile.

Parameter Constraint Alarm

Blood Pressure: Diastolic Pressure
(DBP) Systolic Pressure (SBP)

Light activity 110 < SBP > 130 AND 70 < DBP > 78 mmHg
Moderate activity: 20 min 110 < SBP > 146 AND 70 < DBP > 78 mmHg
Vigorous activity: 15 min 110 < SBP > 168 AND 70 < DBP > 78 mmHg

Heart Rate (HR)
Light activity 77 bpm < HR > 113 bpm

Moderate activity: 1 h 80 bpm < HR > 144 bpm
Vigorous activity: 15 min 85 bpm < HR > 160 bpm

SpO2

Light activity 95% > SpO2 > 97%
Moderate activity: 30 min 94% > SpO2 > 96%
Vigorous activity: 15 min 91% > SpO2 > 96%

Temperature
Light activity 37 ◦C > Temp > 38.1 ◦C

Moderate activity 37.8 ◦C > Temp > 38.4 ◦C
Vigorous activity: 20 min 38 ◦C >Temp > 38.8 ◦C

PaO2

Light activity 75 mmHg > PaO2 > 80 mmHg
Moderate activity: 1 h 78 mmHg > PaO2 > 85 mmHg

Vigorous activity: 15 min 80 mmHg > PaO2 > 98 mmHg

PaCO2

Light activity 36 mmHg > PaCO2 > 42 mmHg
Moderate activity: 1 h 35 mmHg > PaCO2 > 40 mmHg

Vigorous activity: 15 min 30 mmHg > PaCO2 > 36 mmHg
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Table 8. Cont.

Parameter Constraint Alarm

Respiration Rate (RR)
Light activity 14 br/min > RR > 20 br/min

Moderate activity: 1 h 15 br/min > RR > 35 br/min
Vigorous activity: 15 min 20 br/min > RR > 50 br/min

FEV1
Light activity 2.5 L > FEV1 > 2.7 L

Moderate activity: 30 min 2.4 L > FEV1 > 2.7 L
Vigorous activity: 10 min 2.2 L > FEV1 > 2.7 L

VO2

Light activity 2.5 mL/kg/min > VO2 > 6.5 mL/kg/min
Moderate activity: 20 min 3.09 mL/kg/min > VO2 > 9.7 mL/kg/min
Vigorous activity: 10 min 4.3 mL/kg/min > VO2 > 11.8 mL/kg/min

pH Level
Light activity 7.18 > pH > 7.34

Moderate activity: 1 h 7.05 > pH > 7.24
Vigorous activity: 1 h 6.93 > pH > 7.12

HCO3

Light activity 20 > HCO3 > 30
Moderate activity: 1 h 16 > HCO3 > 26
Vigorous activity: 1 h 15 > HCO3 > 24

The number of biometric alerts in Figure 21 is illustrated on a monthly basis. The experiment
reveals that there were hundreds of changes in vital signs detected by our system during this year.
We observe that the highest rates occurred during the months of July, August, and December, when
the system detected about 1300 cases of abnormal conditions.
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Experiment 2—The Aim of This Experiment Is to Determine the Protective Capacity against Indoor and
Outdoor Pollutants and Guarantee the Fulfillment of the Pollution Rules Related to the Patient Profile.

As demonstrated in the Table 9 below.

Table 9. Pollutants alarms and constraints for a specific profile.

Parameter Constraints Alarm

Carbon monoxide (CO) Exposure Limit: 1 h CO > 2 ppm
Formaldehyde (HCHO) Exposure Limit: 1 h HCHO > 0.04 ppm

Volatile organic compounds (TVOC) Exposure Limit: 1 h TVOC > 0.9 ppm
Carbon dioxide (CO2) Exposure Limit: 8 h CO2 > 600 ppm

Particulate matter PM10 Exposure Limit: 24 h PM10 > 60 µg/m3

Particulate matter PM2.5 Exposure Limit: 24 h PM2.5 > 45 µg/m3

Ozone (O3) Exposure Limit: 8 h O3 > 0.03 ppm
Bacteria No tolerance Bacteria > 600 CFU/m3

Nitrogen dioxide (NO2) Exposure Limit: 8 h NO2 > 5 ppm
Sulfur dioxide (SO2) Exposure Limit: 8 h SO2 > 0.06 ppm

Hydrogen Sulfide (H2S) Exposure Limit: 8 h H2s > 1 ppm
Nitric oxide (NO) Exposure Limit: 8 h NO > 25 ppm

Nitrogen oxides (NOx) Exposure Limit: 8 h NOX > 10 ppm
Total reduced sulfur (TRS) Exposure Limit: 4 h TRS > 10 ppm
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As shown in Figure 22 below, pollution hazards in both internal and external spaces were also
numerous. According to the conducted experimentation, the patient received between two and eight
notification alerts per day, which would reduce the incidence of exacerbations significantly.
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Experiment 3—The Main Objective of This Experiment Is to Show the Importance of the Recommendations
when Patients Are Not Protected by Weather Rules.

Table 8 provides some of the alarms and constraints for climatic conditions that suit a specific
profile of copd patients.

Table 10. Weather alarms and constraints for a specific profile.

Data Constraint Alarm

Indoor temperature 9 h in the bedroom 18 ◦C > Temperature > 18.5 ◦C
Living room Temperature > 21 ◦C

Indoor humidity No additional condition 30% > Humidity > 50%

Indoor pressure No additional condition 1013 kpa > Pressure > 1018 kpa

Outdoor humidity Temperature < 30 ◦C Humidity > 75%

Outdoor temperature
Hot weather: 30 min Temperature > 27 ◦C
Cold weather: 30 min Temperature < 14 ◦C

Very cold weather: 15 min Temperature < 5 ◦C

Outdoor pressure 15 ◦C < Outdoor Temperature < 25 ◦C Pressure < 89.325 kpa

Windspeed Exposure limit: 15 min WS > 12 mph
Exposure limit: 1 h WS > 7 mph

Precipitation Rainfall PRF > 0.2 cm
Snowfall PSF > 5 cm

Daily weather alerts were distributed between alarms related to temperature, humidity,
atmospheric pressure, wind, and precipitation. Figure 23 shows the number of climatic notifications
received by the patient during the different months of the year.
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Experiment 4—The Purpose of This Experiment Is to Evaluate the Role of Activities Rules.
Table 9 provides some of the alarms and constraints for everyday activities that suit a specific

profile of copd patients.

Table 11. Activities alarms and constraints for a specific profile.

Data Constraint Alarm

Aerobic Training (AT) Endurance time: 30 min If AT > 30 min

Travel by airplane Hypoxia altitude simulation test (HAST)
SpO2 < 92%

SpO2 < 84% with 6MWT
PaO2 < 50 mmHg

Mountain trip - Altitude > 1050 m

Food

Sodium: 24 h Sodium > 180 mg
Fructose: 24 h Fructose > 25 g
Glucose: 24 h Glucose > 20 mg
Calcium: 24 h CA < 1200 mg

Vitamin D: 24 h 800 IU > Vitamin D > 2000 IU
Vitamin C: 24 h Vitamin C > 1000 mg
Vitamin A: 24 h Vitamin A > 850 mcg
Vitamin E: 24 h Vitamin E > 900 IU

Vitamin B12: 24 h Vitamin B12 > 2.2 mcg
Iron: 24 h Iron > 35 mg
Zinc: 24 h Zinc > 40 mg

Magnesium: 24 h Magnesium > 435 mg
Carbohydrate: 24 h Carbohydrate > 380 g

Protein: 24 h Protein > 80 g
Fat: 24 h Fat > 75 g

Fiber: 24 h 15 g > Fiber > 30 g

In Figure 24, we can see the number of risks that the patient may experience because of his
involvement in some unsafe activities or nonadherence to proper nutrient intake.
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The presented simulations have handled a great amount of data (525,600 records) of possible
situations. The generated alarms have been classified into four main categories: vital signs, activity,
pollution, and weather. The system applies continuous monitoring and detects a total of 3962
abnormal situations. Table 12 provides detailed information about the number of alarms during the
different seasons.
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Table 12. Total number of alarms.

Factor Winter Exceeded
Thresholds

Spring Exceeded
Thresholds

SummerExceeded
Thresholds

AutumnExceeded
Thresholds

Vital signs 114 98 188 166
Weather 356 340 437 480

Pollution 298 200 391 377
Activity 160 84 196 41

Total 928 722 1212 1064

8. Evaluation and Validation

The existing systems sought to promote their products without giving much attention to context
design and performance; instead, their research focused on technology as a practice sustained by
patients. It is important that the systems being used are supported by clinical practice guidelines and
protocols to maintain consistency and minimize medical errors. Without a well-validated framework,
the healthcare system will fail to provide any kind of protection or self-management services. Accuracy
remains an important challenge for the alerts generated by the decision support systems. Practically, it
is not known exactly how changes in physical parameters would affect the accuracy of the predefined
alerts and their impact on patient outcomes. Improving the accuracy would enhance the overall
performance of the telemonitoring systems and thus substantially reduce the disease burden.

As previously mentioned, the problem of telemonitoring systems was the impact of commercial
and industrial aspects on research, which pushed hard towards blind adoption without a rigorous
evaluation of the proposed designs. This lack of credible evaluation raises many questions about the
feasibility and efficacy of this technology. This section will explore the performance of our ontology
using a confusion matrix. Performance measurement quantifies accuracy, sensitivity, specificity, and
the probability of predicting a dangerous change in physiological parameters in COPD patients.
The purpose of this evaluation is to measure the accuracy of the alarms at the technical and clinical
levels. A master file was created in MS Excel®that contains 1200 patient records, biometric readings
for each patient (body temperature, diastolic blood pressure (DBP), systolic blood pressure (SBP),
heart rate, partial pressure oxygen (PaO2), oxygen saturation (SpO2), partial pressure carbon dioxide
(PaCO2), oxygen consumption (VO2), respiration rate, pH levels, concentration of hydrogen carbonate
in the blood (HCO3), and FEV1 have been extracted from the results inferred from ontology in different
scenarios. This information was presented to physicians in the following format (see Table 13):

Table 13. Patient evaluation form.

Profile Current Activity Vital signs

Age Sex BMI Stage Comorbidity Temp DBP SBP HR

Vital signs

PaO2 PaCO2 SpO2 RR PH HCO3 FEV1 FVC VO2

Physician’s Report

The data are used to calculate the confusion matrices for the physician’s report outcomes. There
are four possible outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). The confusion matrix contains information about the predicted classifications identified by our
ontology and the opinions of medical experts. The designation of the categories is as follows: (1) the
alarm that is generated is based on a threshold set into the SWRL rules for each biometric parameter,
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(2) the values are interpreted within the ontology to identify when intervention is needed, (3) once a
risk level is established the classifier is designated into one of four categories (TP, TN, FP, FN) based on
physician’s report outcomes. Categories in this research are defined as follows:

1. TP is an alarm with a hospitalization.
2. FN has no alarm with a hospitalization.
3. TN has no alarm and no hospitalization.
4. FP has an alarm with no hospitalization.

The confusion matrices in Table 14 illustrated the results of the issued alarms based on the
physician’s report outcomes. The next Table 15 summarizes the performance of our ontology include
accuracy, sensitivity, specificity, the FPF, representing 1-specificity, FNF, PPV, and NPV.

Table 14. The confusion matrix.

Ontology
Recommendation

Physician’s
Recommendation TP FP TN FN

Hospitalization alarm Hospitalization 1
Hospitalization alarm No hospitalization 1

No hospitalization alarm No hospitalization 1
No hospitalization alarm Hospitalization 1

Table 15. Standard reference and results for the clinical decision support model.

Index Intervention Present Intervention Absent Total

Index test positive True positive (TP) = 512 False positive (FP) = 88 TP + FP = 600
Index test negative False negative (FN) = 56 True negative (TN) = 544 TN + FN = 600

Total TP + FN = 568 TN + FP = 632
1. Accuracy (AC) = (TP + TN)/(TN + FN + FP + TP) = 88%
2. Sensitivity = (TP)/(TP + FN) = 91.14%
3. False Negative Fraction (1-Sensitivity) = (FNF) = FN/(TP + FN) = 9.85%
4. Specificity = (TN)/(TN + FP) = 86.07%
5. False Positive Fraction (1-specificity) = (FPF) = FP/(TN + FP) = 13.92%
6. Positive predictive value (PPV) = (TP)/(TP + FP) = 85.33%
7. Negative predictive value (NPV) = (TN)/(FN + TN) = 90.66%

8. F1 =
(

Recall−1+ Precision−1

2

)−1
= 88.13%

The results indicate that our model reaches an accuracy of 88% in a set of 1200 clinical cases.
Sensitivity and specificity have high values, denoting the ability of the ontology to detect warning
signs. The positive predictive value (PPV) is defined as the probability of intervention for positive test
results, while the negative predictive value (NPV) describes the probability of being healthy despite
negative test results.

9. Conclusions and Limitations

The proposed approach will provide significant potential to address some of the current COPD
challenges because it establishes new obligations that will limit many potential hazards at different levels,
both physiological and environmental. The presented model provides automated alarm generation
algorithms for the telemonitoring of COPD patients. The ontology can recognize any important changes
in biometrics and environment based on a personalized threshold. The protection process aims to
adjust the thresholds around the normal state to avoid exacerbation triggers. Our findings proved that
dynamic thresholds can enhance existing telemonitoring systems and make a valuable contribution
to identifying the health status of COPD patients. Three main conclusions can be drawn from this
work. Firstly, an ontology-based system can provide a more efficient way to deal with medical data.
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Secondly, adding an SWRL layer of experts’ rules on top of OWL can handle various types of context
and suggest reliable recommendations. Thirdly, the results support the importance of context where it
demonstrates that context variables have a strong influence on the accuracy of decisions. This work
has some limitations at the decision-making and implementation levels. The central reasoning engine
is based on rules defined by experts, thus in a case where pneumologists fail to mention some risk
scenarios, the system is unable to detect abnormal conditions directly. Moreover, the proposed system
is considered relatively more complex than the traditional system because it must deal with large
ontologies and relational databases simultaneously, which may reduce the computing performance in
terms of response time. Further research is needed before the practical application of this approach.
This study will have to be evaluated through real implementation and a crossover trial to assess its
success and effectiveness.
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