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Abstract: The continuous demand for fossil fuels has directed significant attention to developing
new fuel sources to replace nonrenewable fossil fuels. Biomass and waste are suitable resources to
produce proper alternative fuels instead of nonrenewable fuels. Upgrading bio-oil produced from
biomass and waste pyrolysis is essential to be used as an alternative to nonrenewable fuel. The high
oxygen content in the biomass and waste pyrolysis oil creates several undesirable properties in the
oil, such as low energy density, instability that leads to polymerization, high viscosity, and corrosion
on contact surfaces during storage and transportation. Therefore, various upgrading techniques
have been developed for bio-oil upgrading, and several are introduced herein, with a focus on the
hydrodeoxygenation (HDO) technique. Different oxygenated compounds were collected in this
review, and the main issue caused by the high oxygen contents is discussed. Different groups of
catalysts that have been applied in the literature for the HDO are presented. The HDO of various
lignin-derived oxygenates and carbohydrate-derived oxygenates from the literature is summarized,
and their mechanisms are presented. The catalyst’s deactivation and coke formation are discussed,
and the techno-economic analysis of HDO is summarized. A promising technique for the HDO
process using the microwave heating technique is proposed. A comparison between microwave
heating versus conventional heating shows the benefits of applying the microwave heating technique.
Finally, how the microwave can work to enhance the HDO process is presented.

Keywords: oil upgrading; biomass; waste; hydrodeoxygenation

1. Introduction

In light of the fast-growing global energy demand, depletion of fossil fuels, and associated
detrimental environmental issues, it is of the utmost significance to find alternative renewal energy
resources to meet the energy demand. The environmental challenge caused by global warming
has focused most of the research in recent years to convert biomass and waste into chemicals and
transportation fuels [1]. Although there are several forms of renewable energy, such as wind and solar
power, that contribute increasingly to the energy supply, liquid fuel remains the essential source of
energy for various sectors and, in particular, the transportation sector.

Biofuel can be produced from several feedstocks that are widely available in all countries, especially
industrialized ones, and the most important feedstocks are biomass and west. Biomass plants mainly
consist of cellulose, hemicellulose, and lignin [2–4]. Several factors affect the characteristics and the
percentage of the biomass components into the plants, such as the age of the plant, the place where the
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plant was growing, etc., [4]. It was demonstrated that cellulose exists in the biomass with 35–45 wt.%,
hemicellulose with 25–30 wt.%, and lignin with 20–35 wt.% [4–7]. Hemicellulose is the weakest
component if exposed to degradation because of the large numbers of branches compared to other
components. Cellulose is much stronger than hemicellulose because the long polymers in cellulose
with side changes enhance the bonds’ strength. The complex structure of lignin, which mainly consists
of a large number of aromatics with side chains, makes it the most substantial component and has a
high resistance to decomposition if compared with cellulose and hemicellulose [4,8–11]. Biomass can
produce first and second generations of biofuels. The first-generation biofuels or the original biofuels
are produced from palatable food crops (for example, sugarcane, wheat, grain, corn, potato, soybean,
sunflower, and coconut). The second-generation biofuels are produced from various agriculture and
forest feedstocks (mainly the lignocellulosic materials), building waste, industrial waste, and municipal
waste [12,13]. Third-generation biofuel is usually derived from alga. Indeed, biomass and waste pose a
significant danger to the environment, and their disposal creates a serious issue. Therefore, converting
them into a useful biofuel is a promising proposition to lessen their dangerous effect and help solve
their disposal problem [14].

Liquid fuels can be produced from biomass and waste through gasification to produce syngas,
pyrolysis to produce bio-oil, and hydrolysis to produce aqueous sugar [14], Figure 1. Owing to the
high bio-oil yield and economic efficiency, pyrolysis has been regarded as the most effective conversion
technology to produce liquid biofuel from biomass and waste. Pyrolysis-produced bio-oil usually
contains various chemical compounds, including carboxylic acids, aldehydes, ketones, furans, aliphatic
and aromatic hydrocarbons, phenolics, and sugars.
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Pyrolysis is the thermal cracking of carbonaceous material into lower density components in the
absence of oxygen. The thermal degradation of the biomass leads to the production of charcoal (solid),
bio-oil (liquid) and syngas (gaseous) energy products. Pyrolysis, based on the operating conditions,
can be classified under three main categories [16]:
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• Conventional Pyrolysis: Pyrolysis at the slow heating rate, which permits the formation of the
solid, liquid and gaseous products in significant portions.

• Fast Pyrolysis: If the procedure aims to produce a liquid or gaseous product, fast pyrolysis is
employed. In this case, the products are considered marginal with a low yield. The operating
conditions are declared: High operating temperature, short residence time and very fine particles.

• Flash Pyrolysis: In this method, the feedstock is directly fed into the high-temperature zone of the
reactor, which subsequently undergoes flash pyrolysis where the final products are in the gaseous
phase with a short contact time inside the reactor.

Pyrolysis in the forms of flash or fast pyrolysis is employed during the gasification process
correspondingly. Three methods are employed to raise the wanted products’ yield: Steam reforming
of the pyrolysis liquids, tar removal and maintaining the operating temperature around 700 ◦C and
using a catalyst at temperatures below 750 ◦C. Table 1 compares the operating conditions of different
pyrolysis methods.

Table 1. Operating Conditions of different pyrolysis processes [16].

Conventional Fast Flash

Pyrolysis Temperature (K) 550–950 850–1250 1050–1300
Heating Rate (K/s) 0.1–1 10–200 >1000
Particle Size (mm) 5–10 <1 <0.2

Solid Residence Time (s) 450–550 0.5–10 <0.5

It is worth mentioning that great attention is directed to the fast pyrolysis process for bio-oil
production from biomass. This aspect’s main reason is the high liquid yield produced with specific
characterizations that make it has unique advantages in transport, storage, combustion, retrofitting,
and flexibility in production and marketing [17].

Unfortunately, upgrading bio-oil produced from the pyrolysis process is essential due to the
high content of hazardous materials and bio-oil properties if compared with the fuel oil. Bio-oil has
a high water content (15–30 wt.%), a low corrosive pH (<3), a higher oxygen content (35–40 wt.%),
and a higher heating value (HHV) of 16–19 MJ/kg [18], and hazard materials such as S-compounds,
metals, N-compounds, and a high content of oxygenated compounds [19]. Sulfur is emitting to the
atmosphere in the form of SOx, causing acid rain formation through its reaction with water, oxygen,
and other chemicals in the atmosphere. The presence of sulfur in oil increases corrosion issues during
the refinery process but helps in the deactivation of the catalyst in minimal time. The removal of
dibenzothiophene and its alkyl derivatives is a big challenge, as the compounds cannot be transferred
into H2S due to the steric hindrance adsorption on the surface of the catalyst [20]. Also, NOx emits into
the atmosphere and poisons the catalyst during the refinery process. Metals in the oil enhance the
production of high volumes of coke and dry gases and decrease the liquid output [21]. In addition,
the metals enhance the fast catalyst deactivation [21,22], which is mainly due to the deposition of metal
oxides formed on the pore of the catalyst and blocking the active site. The presence of oxygenates in
the bio-oil results in several technical challenges when using bio-oil as the “drop-in fuel,” like low
energy density, instability, high viscosity, and corrosion post-processing to remove oxygen atoms from
bio-oil must be carried out [23]. Table 2 shows the elemental analysis of different biomass feedstocks.

Even though there is a wide range of upgrading techniques that have been investigated for the
fast pyrolysis-produced bio-oil, hydrotreatment (e.g., hydrodeoxygenation, hydrodesulfurization,
hydrodemetallization, and hydrodenitrogenation) has been employed in oil refineries for many
years, and the process is well-established [24]. Among the hydrotreatment techniques, catalytic
hydrodeoxygenation (HDO) is a compelling upgrading approach to produce petroleum-like
hydrocarbon fuels or chemical building blocks from fast pyrolysis-produced bio-oil, during which
oxygen present in the bio-oil is removed through water formation [25].
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In this review article, the different upgrading techniques of bio-oil were discussed, catalytic
hydrodeoxygenation of different compounds derived from the pyrolysis oil of biomass and waste,
the mechanism of the HDO, the various families of catalysts used for HDO, different catalysts that have
been applied for the HDO process, the issue of the deactivation of catalysts, and the techno-economic
aspects of the HDO process. Different deoxygenation approaches for bio-oil.

Table 2. Typical elemental analysis for different biomass materials (wt.%) [11,25,26].

Material C H O N S

Ash 49.7 6.9 3.0 - -
Beech 51.6 6.3 41.4 - -

Sawdust 48.3 6.22 45.2 0.22 0
Barley Straw 45.7 6.1 38.3 0.4 0.1

Bituminous Coal 73.1 5.5 8.7 1.4 1.7
Cypress 55.0 6.5 38.1 - -

Kraft lignin 63.3 5.8 29.2 0.1 1.6
Miscanthus 48.1 5.4 42.2 0.5 <0.1
Rice Straw 41.4 5 39.9 0.7 0.1

Wood 51.6 6.3 41.5 - 0.1
Wheat Straw 48.5 5.5 3.9 0.3 0.1

Material C H O N S

1.1. Oxygenated Compounds Exist in Biomass Pyrolysis Oil

The bio-oil compositions produced from the biomass pyrolysis are very complex and contain
predominantly water and hundreds of different chemical compounds, which include various aldehydic
compounds, esters, phenols, sugar, acids, ketones, lignin-derived compounds, alcohols, and more
compounds. Other compounds that have been detected in the rice husk-based biomass pyrolysis oil
can be seen in Table 3.

Table 3. Different oxygenated compounds exist in biomass pyrolysis oil [26].

Component Structure Area wt.%

Formaldehyde
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Table 3. Cont.

Component Structure Area wt.%

2,2-dimethoxy-ethanol

 

Hydroxypropanone 
 

2.70 

Butyric acid 
 

0.96 

Acetic acid 

 

29.76 

Glyceraldehyde 

 

3.54 

2,2-dimethoxy-ethanol 

 

6.83 

Furfural 
 

6.56 

2,5-dimethoxy-tetrahydrofuran 
 

3.47 

6.83

Furfural

 

 

Hydroxypropanone 
 

2.70 

Butyric acid 
 

0.96 

Acetic acid 

 

29.76 

Glyceraldehyde 

 

3.54 

2,2-dimethoxy-ethanol 

 

6.83 

Furfural 
 

6.56 

2,5-dimethoxy-tetrahydrofuran 
 

3.47 

6.56

2,5-dimethoxy-tetrahydrofuran

 

 

Hydroxypropanone 
 

2.70 

Butyric acid 
 

0.96 

Acetic acid 

 

29.76 

Glyceraldehyde 

 

3.54 

2,2-dimethoxy-ethanol 

 

6.83 

Furfural 
 

6.56 

2,5-dimethoxy-tetrahydrofuran 
 

3.47 3.47

4-hydroxy-butyric acid

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 
 

0.71 

Levoglucosan 9.95 

0.43

5H-furan-2-one

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 
 

0.71 

Levoglucosan 9.95

0.74

2-Furoic acid

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 
 

0.71 

Levoglucosan 

-

2,3-dimethyl-cyclohexanol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 
 

0.71 

1.31

3-methyl-5H-furan-2-one

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 
 

0.71 

0.38

Phenol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 
 

0.71 

1.57

o-cresol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 0.71 

1.12

m-cresol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 0.71 

1.46

2-methoxy-6-methyl-phenol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-catechol 0.71

1.78

3,4-dimethyl-phenol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

4-ethyl-cat hol 0.71

1.14

4-ethyl-phenol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

1.31

Catechol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 

 

0.24 

3.53

3-methyl-catechol

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 30 

 

4-hydroxy-butyric acid 
 

0.43 

5H-furan-2-one 
 

0.74 

2-Furoic acid 

 

- 

2,3-dimethyl-cyclohexanol 

 

1.31 

3-methyl-5H-furan-2-one 

 

0.38 

Phenol 
 

1.57 

o-cresol 

 

1.12 

m-cresol 

 

1.46 

2-methoxy-6-methyl-phenol 

 

1.78 

3,4-dimethyl-phenol 

 

1.14 

4-ethyl-phenol 

 

1.31 

Catechol 
 

3.53 

3-methyl-catechol 

 

1.36 

Vanillin 0.24 

1.36



Catalysts 2020, 10, 1381 6 of 28

Table 3. Cont.

Component Structure Area wt.%
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2. Different Deoxygenation Approaches for Bio-Oil

A wide range of upgrading methods has been developed for fast pyrolysis bio-oil. Such techniques
can be generally categorized into physical and chemical techniques, as depicted in Figure 2 [29].
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2.1. Physical Upgrading Technologies

2.1.1. Solvent Addition

Solvent extraction is a simple upgrading approach for fast pyrolysis bio-oil, in which polar
solvents (e.g., ethanol, methanol, ethyl acetate, and acetone) are added to crude bio-oil to reduce its
viscosity and improve the homogeneity and energy density. As indicated by Khosravanipour et al. [30],
the use of methanol is reported to lower the bio-oil’s viscosity by 20-fold. Liu et al. [31] explored
the effect of acetone addition on the physicochemical properties of bio-oil from the fast pyrolysis
of pinewood sawdust in a fluidized bed reactor, and it was found that the pH value of bio-oil
increased, and the water content and viscosity decreased. The authors also stated that acetone’s
presence showed an inhibiting impact on the aging reaction of bio-oil and introducing new chemical
compounds. However, this upgrading technique does not help eliminate undesirable compounds,
such as oxygenates, from the bio-oil.

2.1.2. Emulsion

Emulsion, as another easy-operation upgrading method, has been investigated for the bio-oil
obtained from fast pyrolysis. In the emulsion treatment, fast pyrolysis bio-oil is blended with
other diesel fuels or biodiesel with the addition of surfactant to enhance its ignition properties.
For instance, Jiang and Ellis [32] performed a parametric study for upgrading bio-oil from softwood
by biodiesel-assisted emulsion and the use of octanol as the surfactant, and the optimal reaction
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conditions were 4 vol.% of surfactant dosage, a bio-oil/biodiesel ratio of 4/6 vol.% a stirring speed of
1200 rpm, a processing time of 15 min, and a temperature of 30 ◦C. At these optimized conditions,
the viscosity, acidity, and water content of softwood-derived bio-oil were considerably reduced after
the emulsion treatment. Even though emulsion is a simple upgrading technique, the high-cost of
surfactant, high energy consumption, and the inability to remove unfavourable chemical substances of
bio-oil limit its large-scale application [33].

2.2. Chemical Upgrading Technologies

2.2.1. Esterification

Esterification is a relatively simple chemical method often carried out at moderate conditions to
upgrade bio-oil where the addition of alcohol is needed. Among all the investigated alcohols, methanol
is the most commonly used solvent. The main reactions occurring between bio-oil from fast pyrolysis
and alcohol are shown in Figure 3 [34].
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Previously, Weerachanchai et al. [35] investigated the upgrading of palm shell-derived bio-oil by
esterification under varying reaction conditions, and the authors reported that the use of Amberlyst
15 as the catalyst was helpful to promote the conversion of carboxylic acids in the bio-oil to their
corresponding alcohols and simultaneously reduce the concentration of aldehydes in the bio-oil.
However, the heating value of upgraded bio-oil ranged from 23 to 25 MJ/kg and thus, further
boosting treatment is still required. In summary, esterification offers several advantages of mild
reaction conditions, cheap alcohol price, and easy-operation; however, its ineffectiveness in removing
nitrogen-containing compounds makes it impractical to upgrade algae-derived bio-oil owing to the
presence of highly concentrated nitrogenates in the bio-oil [24].
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2.2.2. Supercritical Fluid

In recent years, supercritical fluid has been widely applied as an alternative upgrading approach
for fast pyrolysis bio-oil, which accounts for the inherent benefits of supercritical fluid, such as
liquid-like density, gas-like diffusivity and viscosity, and high mass and heat transfer rates [36].
For example, Lee et al. [37] catalytically upgrade the bio-oil obtained from the fast pyrolysis of woody
biomass by the supercritical catalytic fluid at 250–350 ◦C with the use of a Ni-based catalyst. It was
found that the highest upgraded bio-oil yield of 70.5 wt.% was obtained at 350 ◦C with MgNiMo/AC,
which was accompanied by the lowest O/C molar ratio of 0.19, total acid number (TAN) of 6.2 mg
KOH/g, and higher heating value (HHV) of 33.4 MJ/kg. According to the Gas chromatography
Mass Spectrometry GC-MS analysis results, the undesirable oxygen-containing compounds, such as
carboxylic acids, aldehydes, and levoglucosan, were largely removed from the bio-oil after upgrading.
Despite that, the acidity and viscosity can be reduced, and the supercritical fluid can improve the
energy content of bio-oil; a high-pressure resistant reactor is needed, and the corrosion of material at
supercritical conditions cannot be neglected.

2.2.3. Steam Reforming

Steam reforming of fast pyrolysis bio-oil is an effective way to produce H2-rich syngas [38].
This approach is usually used at high temperatures of 700–1000 ◦C with the use of a Ni-based catalyst.
Lan P et al. [39] catalytically upgraded the bio-oil obtained from the fast pyrolysis of a rice husk by
steam reforming, and it was reported that the highest H2 yield of 75.88 was achieved at 700–800 ◦C,
a steam/carbon molar ratio of 15–20, and a liquid hourly space velocity of 0.5–1.0 h−1. Although highly
energy-dense H2 can be generated from the steam reforming of bio-oil, there is a requirement for using
a high-temperature resistant reactor.

2.2.4. Hydrocracking

The hydrocracking process is one of the upgrading processes that involves cracking the heavy
molecular feeds into smaller valuable products. The process involves a two-step reaction: (1) the
first step is the catalytic cracking of the high molecular weight compounds, and (2) the second is the
hydrogenation reaction of the cracked molecules. A higher temperature of 300–500 ◦C and pressure of
10–20 MPa is often applied for hydrocracking over a heterogeneous catalyst, in which an organic liquid,
a water phase, gas, and coke are commonly generated as the main products. The general reaction
pathway for hydrocracking is shown in Figure 4 [40].
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Tanneru and Steele [41] have studied the influences of reaction temperature, H2 pressure, residence
time, and catalyst type on the hydrocracking of bio-oil obtained from the fast pyrolysis of pinewood
chips to produce hydrocarbons. The resulting hydrocarbon mixture contained an HHV of 43.6 MJ/kg,
the oxygen content of 0.5 wt.%, and TAN of 0.3 mg KOH/g, along with the density and viscosity of
0.9 g/mL and 1.8 cSt, respectively. Although the light components can be produced by hydrocracking,
the need for a high operating temperature and high-pressure H2 could significantly increase the entire
process’s cost.

In conclusion, due to the hydrotreatment upgrading approach’s maturity, the catalyst, technical
challenges, reactor configuration, and economics of HDO are discussed in the following sections.
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2.2.5. Hydrotreatment

Hydrotreatment is a well-established process in oil refineries that are often carried out at moderate
temperatures of 300–450 ◦C and H2 pressure up to 20 Mpa. The hydrotreating process includes
hydrodemetallization for metal removal, hydrodesulfurization for S removal, hydrodenitrogenation
for N removal, and hydrodeoxygenation for oxygen removal. Hydrotreating processes usually occur
in the presence of a catalyst, and the most traditional catalysts used for hydrotreatment are NiMo,
NiW, and CoMo [42]. Owing to the complexity of bio-oil’s chemical composition, a series of reactions
possibly occur in bio-oil upgrading, as depicted in Figure 5. The main advantages and disadvantages
of each upgrading method are summarized in Table 5.
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Table 5. An overview of the advantages and disadvantages of various upgrading methods [24,44,45].

Upgrading Approach Advantages Disadvantages

Emulsion Easy-operation
High-cost of surfactant; high energy
consumption; cannot remove
unfavourable substances

Solvent addition Easy-operation Cannot remove unfavourable substances

Hydrocracking The formation of light components
The requirement for a high-pressure
resistant reactor, coke formation; catalyst
deactivation; high-pressure H2 is needed

Hydrotreatment
Well-established treatment in oil

refineries; effectively removes
heteroatoms

The requirement for a high-pressure
resistant reactor; coke formation; catalyst
deactivation; high-pressure H2 is needed

Steam reforming
Highly energy-dense H2 as the main

product
The requirement for
high-temperature-resistant reactor

Supercritical fluids
Significantly lowers the viscosity

and increases HHV of bio-oil
High-cost of the solvent; requirement for
high-pressure resistant reactor

Esterification
Easy-operation; moderate reaction

conditions
Cannot remove nitrogenates and thus
cannot be used for algae-derived bio-oil

3. Hydrodeoxygenation

As one of the hydrotreatment approaches, HDO is highly effective in removing oxygen from
bio-oil through water formation. The yield and properties of upgraded bio-oil obtained from HDO
are dependent on the temperature, residence time, pressure, solvent, catalyst type, and reactor
configuration. The selection of a suitable catalyst is a critical aspect of the HDO process.

Catalytic Hydrodeoxygenation

Hydrodeoxygenation HDO is an upgrading process applied to produce a high-quality oil yield
with higher carbon content. The process involves removing oxygen from a hydrocarbon by applying
different catalytic reactions at pressures up to 200 bar and temperatures up to 400 ◦C [46]. The HDO
process occurs through different reactions, including the hydrogenation of C–O, C=O and C=C bonds,
the dehydration of the C–OH group, condensation and the decarbonylation of the C–C bond cleavage
using retro-aldol and the hydrogenolysis of C–O–C bonds [47,48]. Hydrodeoxygenation of biomass can
occur through different biomass conversion techniques, which include the hydrotreating of bio-oils [49],
hydropyrolysis [50], hydrogenolysis of biomass into oxygenated chemicals [51], aqueous-phase
reforming of carbohydrates into fuel [52] and hydrotreating of organics acids. The main reactions
that take place during the HDO involve the separation of water that exists with oil, then the oil being
exposed to a dehydration reaction as a result of a condensation-polymerization reaction, followed by a
decarboxylation reaction where oxygen is eliminated in the form of H2O, then the oil is exposed to a
hydrogenation reaction to transfer the unsaturated bonds formed during the reaction into saturated
bonds, and a hydrogenolysis reaction, which breaks down the C–O bond and liberates the oxygen in
the form of H2O. A hydrocracking reaction occurs to crack the high molecular weight compounds into
low molecular weight compounds in the last step.

Attributed to the series of reactions, like oligomerization and polymerization, occurring between
the different oxygenated functionalities [28].
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Elkasabi et al. [53] upgraded the various bio-oil samples obtained from the fast pyrolysis of
Switchgrass, Eucalyptus benthamii, and horse manure by HDO at 320 ◦C and 145 bar for 4 h over a Pt,
Ru, and Pd-based catalyst, and HDO using Pt/C as the catalyst of switchgrass-derived bio-oil, which
led to the highest oxygen reduction rate and carbon retention. The authors also reported that the
bio-oil containing high syringe content greatly influenced H2 consumption. However, there are two
main drawbacks to the HDO process, including the requirement for high-pressure H2 and a short
catalyst lifetime caused by the coke formation [54].

Elliott and his co-worker developed a two-stage hydrodeoxygenation process for pyrolysis
bio-oil [55,56]. The first step of the process is the catalytic hydrogenation of the thermally unstable
bio-oil at a temperature of 270 ◦C and pressure of 136 atm using Co-Mo/Al2O3 or Ni-Mo/Al2O3 catalysts
that were sulfides firstly in the reactor. The thermally unstable bio-oil compounds usually decompose,
forming cock that directly plugs the reactors. The main hydrodeoxygenation reaction primarily occurs
in the second step, which involves a catalytic hydrogenation reaction but at a higher temperature,
reaching up to 400 ◦C, and at the same pressure using the same catalyst. The main findings of the
process are the production of 0.4 L of treated oil for every 1 L of bio-oil and converting 20–30% of the C
existing in the bio-oil into gas-phase carbon, which decreased the oil yield.

The two-stage hydrodeoxygenation process was also performed by Furimsky, (2000) for the
conversion of biomass pyrolysis oil into high-quality oil [48]. The first stage involves removing the
unstable oxygenated compounds to produce a stable crude at a low temperature below 300 ◦C with
the sulfide NiMo or CoMo catalyst. The second stage of the process is mainly performed to convert
the low HDO reactivity compounds, such as furans and phenols, into deoxygenated compounds at
350 ◦C and 13.8 Mpa. The main disadvantage of the process is the short lifetime of the catalyst due to
the support breakdown. Ly et al., (2019) [57] hydrotreated bio-oil obtained from the fast pyrolysis of
Saccharina japonica in a fluidized bed reactor at 350 ◦C and 3–15 bar of H2 over HZSM-5, Co/γ-Al2O3,
CoP/γ-Al2O3, CoMoP/γ-Al2O3, Fe/γ-Al2O3, and Fe2P/γ-Al2O3. The oxygen content in the bio-oil was
removed through the formation of water, CO, and CO2.

Meanwhile, an increase in the kerosene-diesel fraction of bio-oil was found. Schmitt et al.,
(2018) [58] performed catalytic HDO experiments on beech wood-derived bio-oil at 175–325 ◦C and
80–100 bar of H2, and the results indicated that around 42% of oxygen content in the crude bio-oil
was eliminated at 325 ◦C and 80 bar and the ketones that cause the chemical instability of bio-oil were
observed to be removed entirely. Delmon and his co-workers have studied the hydrodeoxygenation of
a mixture of 4-methyl acetophenone, ethyl decanoate, and guaiacol as a model compound [59–63],
Figure 6. The ketone group is highly reactive toward the HDO process; therefore, it is easily
hydrogenated into a methylene group at a low temperature of 200 ◦C [61]. The hydrodeoxygenation of
the carboxylic and guaiacol groups requires a temperature higher than 300 ◦C to be converted into
deoxygenated compounds because of the lower reactivity of the two groups than the ketonic group.
It was noticed that there is a decarboxylation pathway parallel to the hydrogenation of the carboxylic
acid at comparable rates [61]. Guaiacol was converted into catechol then phenol, and the catalyst was
deactivated during the high-temperature reactions due to coke formation. Increasing the acidity of
the catalyst support does not affect the hydrogenation of 4-methyl acetophenone but raises the rate of
decarboxylation and coke formation from the guaiacol group. It was found that the presence of water
strongly affects the catalyst activity and decreases it by one-third of its initial activity.
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4. HDO Catalysts

Until this point, a great effort has been made to study the formation of different catalysts using
noble and non-noble metals for the HDO process. Recently, a novel, multifunctional red mud-supported
nickel (Ni/red mud) was synthesized for the hydrodeoxygenation of aqueous-phase, pinyon-juniper,
biomass chips. The process was performed using a 30 wt.% of the Ni/red mud catalyst at a temperature
of 350 ◦C. The process’s main findings are the production of 47.8 wt.% of the organic liquid yield with
an oxygen content of 1.14 wt.%. The organic liquid yield is mainly composed of aliphatics, aromatics,
and alkylated aromatic hydrocarbons with small oxygen content. In comparison, the commercial
Ni/SiO2−Al2O3 catalyst was used as well in the HDO process. The 65 wt.% of the catalyst was gasified
in the feed’s organic phase and did not produce liquid hydrocarbons [64].

Different groups of catalysts have been investigated for the HDO of fast pyrolysis bio-oil, which
can be classified into sulphides, transition metals, phosphides, and other catalysts (carbides and
nitrides) [43].

4.1. Sulphide Catalysts

CoMoS2 and NiMoS2 have been widely applied not only in conventional hydrotreatments but
also in HDO reactions. For CoMoS2 and NiMoS2, Co or Ni acts as the promoter and donates an
electron to the Mo atom, thereby weakening the bond between Mo and S and creating an S vacancy
site is reported to be an active site during the HDO process [40]. During the upgrading treatment of
petroleum crude oil, CoMoS2 and NiMoS2 can be maintained in the form of sulfide due to the presence
of H2 and H2S in the reactor. These components are generally directly produced from the thiols in
the petroleum oil. On the contrary, due to a limited or zero sulfur content in the biomass, the sulfide
in the form of CoMoS2 and NiMoS2 cannot be maintained, and they are often transformed into the
corresponding oxide forms if no sulfur source is added to the system. However, the addition of an
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extra sulfur source could result in the catalyst being poisoned in the post-processing and SOx emission
upon combustion [65]. Zhang et al. [66] reported that a 90% oxygen removal efficiency from the bio-oil
was achieved using a dispersed unsupported MoS2 catalyst, and the coke formation was in the range of
0.8/100 g of bio-oil to 1.8/100 g of bio-oil. Kanhoinnon et al. [33] high catalytic activity of molybdenum
sulphide in the catalytic HDO of furan and 2-methyl furan at 400 ◦C and 70 bar H2. The reaction
mechanism for the HDO of 4-methyl phenol over MoS2 was proposed by Wang et al. [67], as shown in
Figure 7. Table 6 presents the HDO of various feedstocks over sulphide catalysts.
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Table 6. HDO of different compounds over sulphied catalyst.

Catalyst Oxygenate Compound Deoxygenated Compound Ref.

NiMoS Phenol Cyclohexane, Benzene, Cyclohexene [68]
MoS2 Guaiacol Phenol, cyclohexane, benzene, methyl cyclopentane [69]
MoS Phenol Benzene, cyclohexene, cyclohexane [70]

NiMoS 2,3-dihudro benzofuran 2-Ethylphenol, ethyl cyclohexane [71]
NiMo, CoMo Waste cooking oils n-paraffins, isoparaffins, a small amount of olefins [72]

CoMoWS/SBA-15 Anisole Phenol, cresol, xylenol [73]
CoMoS/MgO Phenol 2-Cyclohexylphenol, cyclohexylbenzene, cyclohexanol [74]

CoMoS Phenol Benzene, cyclohexane, Cyclohexene [70]
Ni-Mo 2,3-dihydro benzofuran Ethyl benzene, ethyl-cyclohexane, ethylcyclohexene, methylcyclohexane, and cyclohexane [71]

ReS2/AC Guaiacol Phenol, catechol [75]

4.2. Oxide Catalysts

It had been reported previously in the literature that oxide catalysts, such as Mo, Ni, W, and V,
exhibit significant catalytic activity in the HDO reaction. Based on the basic mechanism of oxide
catalysts, a low H2 pressure is needed to limit the transformation of active species into inactive species;
however, a high pressure of H2 is a necessity to avoid coke formation during the HDO process.
Generally, the catalytic activity of oxides in the HDO mainly depends on the acidic sites. At the initial
chemisorption stage, the Lewis acidity is the key factor and the oxygen lone pair of the oxygenated
compounds can be chemisorbed, and the availability of acidic sites on the oxide catalyst is affected
by the Brønsted acidity [43]. Previously, Prasomsri et al. [76] found that the use of MoO3 effectively
deoxygenated the linear and cyclic ketones, phenolics, and cyclic ethers at low H2 pressure of ≤1 bar.

4.3. Transition Metal Catalysts

Transition metal catalysts, including Ni, Pt, Pd, Ru, and Rh, promote the HDO and hydrogenation
reactions, and their reaction rates are proportional to H2 pressure. Compared to sulfide catalysts, there
is no requirement for the additional sulfur source to maintain the active form. The main drawback
for the transition metal catalysts is related to their high sensitivity to sulfur; hence, it is necessary to
remove sulfur-containing compounds from bio-oil before HDO treatment [43]. In a previous study
conducted by [77], the catalytic activity in the HDO of guaiacol in hexadecane at 100 ◦C for 80 bar
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of H2 was as follows: Rh/ZrO2 > CoMoS2/Al2O3 > Pd/ZrO2 > Pt/ZrO2. Until now, though, the basic
mechanism for transition metal in the HDO reaction is still not clear. It is accepted that the metal plays
a role in the hydrogen donation; however, there is no conclusion on the mechanism for the activation
of oxygenates.

Phosphide, Carbide, and Nitride Catalysts

Phosphide catalysts have been broadly studied in hydrotreatment for the petroleum industry and
have thus drawn attention recently in the HDO reaction of bio-oil, which accounts for the presence
of acidic sites and H2-activating sites [78]. Moreover, phosphide catalysts are characterized by the
low activation energy required and highly active [66]. Mendes et al. [79] prepared a nickel-phosphide
supported on a carbon-covered alumina catalyst (Ni2P/CCA) to upgrade bio-oil by conducting the
HDO process at 250 ◦C and 75 bar of H2 in a batch reactor. The results indicated that similar catalytic
activity was provided by Ni2P/CCA when compared to a commercially-available catalyst (Ru/C).
Gutierrez-Rubio et al. [80] investigated the catalytic HDO reaction of the mixture of guaiacol and acetic
acid over Ni2P/ZSM-5 at 260–300 ◦C and 40–100 bar of H2. The results showed that low deoxygenation
efficiency resulted from the use of Ni2P/ZSM-5 as the catalyst since the presence of acetic acid could
partially block the active sites of the catalyst. Thus, it can be speculated that the removal of carboxylic
acid from bio-oil before the HDO reaction might be useful to ensure a high catalytic activity.

Except for phosphide catalysts, as discussed above, carbides and nitrides have recently attracted a
great deal of attention, owing to their low-cost and comparable properties to common HDO catalysts.
Previously, Lopez et al. [81] used a molybdenum carbide catalyst in the HDO process to upgrade acacia
wood or empty fruit bunches-derived bio-oil at 350 ◦C and 50 bar of H2 for 4 h, and it was observed
that the oxygen content of bio-oil was greatly reduced and thus improved the HHV of bio-oil from
29.1 MJ/kg to 36.9 MJ/kg due to the formation of the hexagonal β-Mo2C phase that demonstrates a
strong ability for the deoxygenation. In the catalyst recycling studies, the high catalytic activity of
NiMoS2 was maintained after being recycled 5 times. Vasilevich et al. [1]. carried out the catalytic
HDO experiments for guaiacol over Mo2C/SBA-15 at 320 ◦C and 40 bar of H2 for 180 min in a batch
reactor, and a 70–73% conversion of guaiacol was attained. Even though few studies so far have
investigated the influence of nitride catalysts on the HDO, it is obvious that they are more favorable
than water-sensitive carbide catalysts. The presence of water, however, is normal during the HDO
treatment [43]. Thus, future work must be focused on the effects of nitride catalysts on the bio-oil HDO
in terms of product properties, reaction mechanism, kinetics, and deactivation.

Despite the fact that phosphide, nitride, and carbide catalysts demonstrate effective HDO efficiency
for the bio-oil, they remain at the initial development stage and thus cannot be replaced with the
commercial sulfide catalysts in terms of industrial applications.

5. HDO of Different Biomass-Derived Oxygenates

5.1. HDO of Lignin-Derived Oxygenates

5.1.1. Phenol and Alkylated Phenol

Phenolic monomers mainly consisting of phenols, guaiacols, and syringols as the model
compounds are the simplest product obtained from lignin degradation. Phenol and alkylated phenols
(such as cresol and 2-ethylphenol) are the basic lignin-derived phenolic monomers. The cleavage of
the C–OH bond is the key element for the HDO process. As shown in Figure 8 there are two common
reaction routes to produce cycloalkanes and arenes: (i) hydrogenation of the aromatic ring and then
alcohols undergo deoxygenation to generate cycloalkanes; and (ii) the direct deoxygenation into arenes
through the C–OH bond breakage [82].
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5.1.2. Guaiacol

The conversion of guaiacol to phenol undergoes a series of reactions, such as deoxygenation,
demethoxylation, and demethylation as shown in Figure 9. During the process of demethylation and
demethoxylation, guaiacol is converted to form catechol and phenol, respectively. On the other hand,
catechol is further converted to phenol and its derivatives methylcatechol via hydrogenation. Following
this, these intermediates further deoxygenate to form benzene, cyclohexane, methylcyclohexane,
and other hydrocarbons [83].Catalysts 2020, 10, x FOR PEER REVIEW 17 of 30 
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5.1.3. Phenolic Dimers

Phenolic dimers share a similar chemical structure to that of lignin. The most important reaction
in the HDO of phenolic dimers, as presented in Figure 10, is the breakage of the ether linkage.
β–O–4, α–O–4 and 4–O–5 are the typical linkages in the lignin molecular, as presented in Figure 10.
After the cleavage of ether bonds, phenolic monomers are created, and they follow the same reaction
as discussed above.
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Figure 10. The reaction mechanism for the HDO of β–O–4 dimers. Reprinted from reference [84].

5.2. HDO of Carbohydrates-Derived Oxygenates

In general, lower deoxygenation temperatures are needed for the carbohydrates-derived
oxygenates, such as organic acid and ketone, compared to lignin-derived oxygenates, and the
same trend can be observed for the activation energy.

5.2.1. Levulinic Acid

Levulinic acid is one of the most reactive biomass compounds that can be produced from
lignocellulosic waste at a low cost [85]. Due to the high reactivity of the functional groups existing in the
composition of the Levulinic acid, the acid can be converted into an upgraded high-quality biofuel [86].

The main reaction pathways for the HDO of levulinic acid, as shown in Figure 11, include: (1) the
HDO of levulinic acid into α- or β-angelica lactone via dehydrative cyclization and then hydrogenated
into γ-valerolactone, (2) the hydrogenation of levulinic acid to form 4-hydroxypentanoic acid, followed
by the dehydrative cyclisation into γ-valerolactone, (3) the direct decarboxylation of levulinic acid to
produce 2-butanone and (4) the C–C coupling reaction by aldol addition [87].
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5.2.2. Acrylic Acid

As illustrated in Figure 12, initially, acrylic acid adsorbs parallel to the surface, followed by
deprotonation to form a propenoate species and dehydration to produce H2C=CH–CO on the
Mo2C/Al2O3 catalyst surface. Subsequently, hydrogen attacks the carboxylic group of H2C=CH–CO
and thus results in the formation of 2-propenal, which can be further converted into propane by
hydrogenation [88].Catalysts 2020, 10, x FOR PEER REVIEW 19 of 30 
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5.2.3. Furfurals

A new pathway for furfural HDO over a Cu-based catalyst was proposed by Zheng et al. [89],
Figure 13. In the proposed pathway, the furfural is first exposed to hydrogenation to produce furfuryl
alcohol and C–C cleavage yielding furan. With successive hydrogenations of furan, it has two pathways:
the first pathway produces n-butanal that can give n-butanol; the second pathway is the production
of tetrahydrofuran. There are three pathways for converting furfuryl alcohol: The first pathway can
occur through the C–C bond cleavage between the methyl alcohol side and the furan groups, which
gives rise to furan formation. The second pathway is the hydrogenation of furfuryl alcohol into
tetrahydrofurfuryl alcohol. Tetrahydrofurfuryl alcohol can produce δ-valerolactone. Through the C–O
bond cleavage or tetrahydrofuran through C–C cleavage, 2-methyl furan can be produced via the C–O



Catalysts 2020, 10, 1381 19 of 28

bond cleavage. Different products, such as 1-pentanol, 2-pentanone, and 2-methyl tetrahydrofuran,
can be produced from 3-methyl furan through the C–O bond cleavage [89].
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Other several feedstocks that were exposed to a treatment process for oxygen removal using the
HDO process are shown in Table 7.

Table 7. HDO of different feedstocks and model compounds, including the applied catalyst.

Feedstock Catalyst Conclusions Reference

Eugenol + Light fraction
of bio-oil

Ni-based

Highest product selectivity of propyl-cyclohexane was 67.9% and all
eugenol can be converted
Al-SBA-15 was mixed with ZSM-5 as the support to enhance the
catalytic activity
The presence of acetic acid and furfural affected the HDO of eugenol

[90]

Fast pyrolysis bio-oil MoS2
90% of O from the bio-oil was removed
The formation of coke was not obvious

[66]

Phenolics and bio-oil Ru-based

Guaiacol was converted into cycloalkanes
29.1% of hydrocarbons and 41.3% of alkylphenols were produced from
HDO of bio-oil
Dispersed Ru and moderate acid site improved the HDO reaction

[91]

Fast pyrolysis bio-oil β-Mo2C
The HHV of upgraded bio-oil was 41.1 MJ/kg; Catalyst was highly
stable upon recycling and it was easy to recycle

[81]

m-Cresol Ru-based
Ru/ZSM-5 was the best catalyst in terms of the 100% product yield,
240 h of lifetime, and was used for 4 cycles

[92]

Fast pyrolysis bio-oil NbMo/C
HDO at 300 ◦C for 60 min lower the O and moisture content to 19% and
0.1%, respectively; Coke formation was observed. The viscosity, density,
and stability of upgraded bio-oil were comparable to those of petroleum

[93]

Cyclohexanone Co-based

Catalyst had high catalytic activity and selectivity for cyclohexanone to
produce cyclohexane, cyclohexene, benzene, and cyclohexylbenzene
100% of hydrocarbon selectivity and 89% of cyclohexanone conversion
were obtained at 400 ◦C and 15 bar of H2

[94]

Cyclohexanone NiMo-based
C6, C7, C12 cyclic, aromatic, and bicyclics were the main products; 87%
of cyclohexanone conversion was obtained at 400 ◦C and 8 bar of H2

[95]

Fast pyrolysis bio-oil
Pt and MoO3-based

and Mo-based
industrial catalyst

All catalysts reduced O content of bio-oil to 7–12 wt.%; Pt catalyst
showed better performance to lower acidic value; more coke was
formed using Mo-based industrial catalyst

[96]

Phenol Rh, Pd, Ni-based
The order for the catalytic activity was: Pd > Rh > Ni when performing
reduction at 300 ◦C while no difference in the catalytic activity at
reduction of 500 ◦C

[97]

Although HDO is highly effective for removing oxygenates from bio-oil, one of the main challenges
regarding this technology is the demand for high-pressure H2. Hence, it poses safety concerns and
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involves high costs [25]. In addition, the formation of coke, which then leads to shortening the
lifetime of the catalyst, is another challenge facing the catalytic HDO that must be solved prior to its
industrial-scale application.

6. The Issue of Catalytic Deactivation in an Application and How It Can Be Solved

6.1. Coke Formation

One of the problems faced by the HDO reaction is the generally very low yield of upgraded bio-oil,
which is caused by the formation of char, coke, and tar. The occurrence of coke becomes severe in the
case of a fixed-bed reactor where coke formation can lead to the shut-down of the reactor. A possible
solution to avoid coke formation in the HDO process is to co-feed bio-oil with a hydrogen donor
solvent, like methanol, tetralin, and decalin. The hydrogen donor solvents can not only promote the
cracking and hydrogenation reaction but are also capable of diluting lignin and thus preventing the
polymerization that forms coke at a high reaction temperature [98]. Patil et al. [83] applied tetralin as
the hydrogen donor solvent in the HDO reaction of guaiacol (a model compound of lignin) and the
upgrading treatment was conducted at 330 ◦C for 15–600 min and 30 bar of H2. It was observed that a
100% conversion of guaiacol was achieved for 600 min, accompanied by a yield of 45.3% phenol and
11.1% cyclohexane.

Coke formation is dependent on the acidity of the catalyst and the type of feedstock. In general,
a higher acidic catalyst tends to promote coke formation; however, the acidity is a key element
ensuring the catalytic activity. In addition, the formation of coke often occurs when using unsaturated
hydrocarbons (e.g., alkenes and aromatics) as the feedstock, which could be resulting from the
interaction between C=C bonds/aromatic rings with the active sites of the catalyst. Oxygenates
containing >2 oxygen atoms are another feedstock that have a strong tendency towards coke formation,
due to the promoted polymerization reaction [99].

As suggested by Cheng et al. [99], there are several solutions to deter coke formation during HDO
treatment, including (i) the use of a low acidity but high stability catalyst support, such as activated
carbon and silica; (ii) carrying out HDO at moderate reaction conditions, like a relatively lower reaction
condition and a higher pressure of H2; (iii) a two-stage HDO process; and (iv) co-processing of bio-oil
and hydrogen donor solvent (e.g., methanol, ethanol, acetone, and tetralin) in the HDO reaction.

6.2. Catalyst Deactivation

Catalyst deactivation and its short lifetime are the bottleneck for the industrialization of the bio-oil
HDO process. The primary causes of the catalyst deactivation include the following: (i) the presence
of water; (ii) sintering of the active sites; (iii) poisoning by nitrogen, sulfur and chlorine; (iv) metal
deposition, and (v) coke formation. Among them, the formation of coke and water exposure are the
most significant factors causing the deactivation of the catalyst [100].

Cordero-Lanzac et al. [101] explored the underlying mechanism for the catalytic HDO of bio-oil
obtained from the fast pyrolysis of black poplar sawdust at 400–450 ◦C and 65 bar of H2 over Pt-Pd/C
and Pt-Pd/Al2O3. The authors stated that there were two main reaction pathways appearing in the coke
formation: (i) at 400 ◦C, the presence of unstable alkyl phenol and alkylmethoxy phenols resulted in the
decomposition of thermal lignin on the external surface and mesopores of the catalyst, thereby affecting
the catalytic activity and possibly causing reactor blockage; and (ii) as the temperature increased until
450 ◦C, alkyl phenol and alkylmethoxy phenols converted into aromatics and the deposition rate of
aromatic coke by condensation increased, which was further promoted by the acidic sites and high
reaction temperatures. Based on these results, a possible reaction scheme for coke formation during
the HDO of bio-oil was developed and illustrated in Figure 14.
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7. Techno-Economic Analysis of HDO

In recent years, several researchers have performed the techno-economic analysis for the bio-oil
upgrading by HDO reaction. Bagnato and Sanna [102] reported that the highest economic potential
was estimated to be $38,234 MM/yr based on the capacity for upgrading bio-oil of 10 Mt/yr, which was
accompanied by a return on investment and pay-off time of 69.18% and 2.48 years, respectively.
Carrasco et al. [103] obtained a minimum fuel selling price of $1.27 per liter from the pyrolysis of woody
biomass and HDO of bio-oil and the simultaneously produced H2 in a 2000 ton/day plant. They found
that the high CAPEX, feedstock cost and short catalyst lifetime were the major economic concerns.

8. Applying the Microwave in the Hydrodeoxygenation Process

8.1. Microwave Heating

Electromagnetic radiation behaves like photons carrying radiated energy and waves moving at
the speed of light. Electromagnetic waves are comprised of an alternating electric field orthogonal to
an alternating magnetic field.

Due to the conversion of electromagnetic energy to heat taking place within the entire volume of
the target material, respecting the penetration limits of the applied waves and the material, microwave
heating is defined as a volumetric energy conversion mechanism [10,11,104,105]. This mechanism is
fundamentally different from the superficial heat transfer of conventional heating. Therefore, noticeable
advantages of microwave heating have been highlighted during the last few years.
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8.2. Applying the Microwave in the Case of the HDO Processes

The unique advantages of MWH establish this heating mechanism as an alternative to conventional
heating [CH] in several applications. The mechanism of MWH relies on direct volumetric energy
conversion, i.e., direct conversion of electromagnetic energy to heat energy within the volume of the
heated material. This mechanism is fundamentally different from the superficial heat transfer of CH
and, thus, can avoid most of the issues and limitations associated with CH, which most importantly
include the temperature gradient inside and outside the heated material. The interaction between
microwaves and the heated material, mainly based on the material’s dielectric properties, leads to
selectively heating the target. This reduces the heat energy required to achieve a particular end,
which consequently results in decreasing the operating costs as well as the potential of thermal hazards.
In addition, it can restrict secondary reactions and might lead to (1) producing material with a novel
microstructure, (2) initiating reactions that cannot be initiated when CH is applied, and (3) achieving the
existing reactions under conditions that are different from those of traditional processing. Furthermore,
numerous investigations have reported that MWH can save more in energy consumption and enhance
product quantity and quality compared to the conventional processed materials [106–112].

Shekara C. et al. have documented that MWH achieves a better conversion compared to CH [106].
MWH modifies the porosity of the processed materials and leads to a faster reaction rate with less
energy consumption compared to CH, as claimed by Paixão and Monteiro et al. [107]. Patil, Gude et al.
agree with Paixão and Monteiro et al. on the impacts of microwaves on the reaction rate [113].
A higher product yield in less reaction time has been reported by Zhang and Zhao [108]. Budarin
and Clark et al. have investigated the influence of microwaves on product quality compared with
conventional processes, which led to documenting that the obtained oil contains few impurities
and is rich in aromatics [110]. Guiotoku and Rambo et al. tend to believe that MWH increases the
carbonization yield [114]. MWH decreases catalyst loading and liquefaction according to Krzan
and Zagar [115]. Dogan and Hilmioglu found that MWH significantly shortens the reaction time
compared to the traditional methods [116]. Increasing the conversion was reported by Sithambaram,
Nyutu et al. [117]. Orozco, Ahmad et al. are in agreement with the above-mentioned claims regarding
the higher product yields, shorter reaction time, and higher reaction rate at a moderate temperature [118].
The same conclusion was reached by Lucchesi and Chemat et al., and Menéndez and Domínguez et al.,
2004 [112,119]. Karthikeyan and Balasubramanian et al. believe that applying MWH leads to a
faster extraction rate and produces different chemical components than CH [111]. Zhu and Wu et al.
and Farag et al. have reported the noticeable impacts of MWH on enhancing product quality [104,120].
Further details about the nature of MWH are demonstrated in the references [11,121].

In summary, it is believed that applying MWH impacts reaction kinetics in addition to the
noticeable effects on the product yield, product quality, and energy consumption. It should be noted
that these key conclusions highly depend on the dielectric properties of each component of the target(s)
and other aspects.

In the oil industry, most common feedstocks—namely, crude oils and gaseous components—are
not active microwave receptors and, in turn, fail to establish substantial interaction with electromagnetic
microwaves. On the other hand, most metals, metal oxides and catalytic agents are highly efficient
microwave-to-heat converters. This aspect, which is a rather complicated matter in several applications,
could revolutionize the industry. Having a high local temperature on the active site promotes catalytic
and noncatalytic reactions while the undesirable secondary reactions was restricted due to the relatively
low temperature of the bulk material(s). As a result, it is believed that the applications of the outstanding
temperature gradient of microwave heating ameliorate not only the productivity but also the selectivity
of various reactions in oil processing.

Coupling microwave heating with HDO technology would take advantage of this heating
mechanism. Most importantly, it includes most of the catalysts that are usually applied in HDO
processes, such as the transition metal catalysts, phosphide, carbide, and nitride catalysts, oxide
catalysts, and sulphide catalysts, and the oxygenated compounds that exist in the oil are polar materials.
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This would act as a strong microwave-to-heat converter. On the other hand, petroleum oils have a
relatively low level of interaction with microwaves. In contrast, the polar site containing oxygen in the
oxygenated compounds inside the oil have a high level of interaction, which means the generation of
heat energy is performed locally where the C–O bond cleavage takes place. Polar compounds that
exist in pyrolysis oil are strong microwave receptors.
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