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Abstract: The continuous demand for fossil fuels has directed significant attention to developing
new fuel sources to replace nonrenewable fossil fuels. Biomass and waste are suitable resources to
produce proper alternative fuels instead of nonrenewable fuels. Upgrading bio-oil produced from
biomass and waste pyrolysis is essential to be used as an alternative to nonrenewable fuel. The high
oxygen content in the biomass and waste pyrolysis oil creates several undesirable properties in the
oil, such as low energy density, instability that leads to polymerization, high viscosity, and corrosion
on contact surfaces during storage and transportation. Therefore, various upgrading techniques
have been developed for bio-oil upgrading, and several are introduced herein, with a focus on the
hydrodeoxygenation (HDO) technique. Different oxygenated compounds were collected in this
review, and the main issue caused by the high oxygen contents is discussed. Different groups of
catalysts that have been applied in the literature for the HDO are presented. The HDO of various
lignin-derived oxygenates and carbohydrate-derived oxygenates from the literature is summarized,
and their mechanisms are presented. The catalyst’s deactivation and coke formation are discussed,
and the techno-economic analysis of HDO is summarized. A promising technique for the HDO
process using the microwave heating technique is proposed. A comparison between microwave
heating versus conventional heating shows the benefits of applying the microwave heating technique.
Finally, how the microwave can work to enhance the HDO process is presented.

Keywords: oil upgrading; biomass; waste; hydrodeoxygenation

1. Introduction

In light of the fast-growing global energy demand, depletion of fossil fuels, and associated
detrimental environmental issues, it is of the utmost significance to find alternative renewal energy
resources to meet the energy demand. The environmental challenge caused by global warming
has focused most of the research in recent years to convert biomass and waste into chemicals and
transportation fuels [1]. Although there are several forms of renewable energy, such as wind and solar
power, that contribute increasingly to the energy supply, liquid fuel remains the essential source of
energy for various sectors and, in particular, the transportation sector.

Biofuel can be produced from several feedstocks that are widely available in all countries, especially
industrialized ones, and the most important feedstocks are biomass and west. Biomass plants mainly
consist of cellulose, hemicellulose, and lignin [2-4]. Several factors affect the characteristics and the
percentage of the biomass components into the plants, such as the age of the plant, the place where the
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solid, liquid and gaseous products in significant portions.



Catalysts 2020, 10, 1381 3 of 28

e  Conventional Pyrolysis: Pyrolysis at the slow heating rate, which permits the formation of the
solid, liquid and gaseous products in significant portions.

e  Fast Pyrolysis: If the procedure aims to produce a liquid or gaseous product, fast pyrolysis is
employed. In this case, the products are considered marginal with a low yield. The operating
conditions are declared: High operating temperature, short residence time and very fine particles.

e  Flash Pyrolysis: In this method, the feedstock is directly fed into the high-temperature zone of the
reactor, which subsequently undergoes flash pyrolysis where the final products are in the gaseous
phase with a short contact time inside the reactor.

Pyrolysis in the forms of flash or fast pyrolysis is employed during the gasification process
correspondingly. Three methods are employed to raise the wanted products’ yield: Steam reforming
of the pyrolysis liquids, tar removal and maintaining the operating temperature around 700 °C and
using a catalyst at temperatures below 750 °C. Table 1 compares the operating conditions of different
pyrolysis methods.

Table 1. Operating Conditions of different pyrolysis processes [16].

Conventional Fast Flash
Pyrolysis Temperature (K) 550-950 850-1250 1050-1300
Heating Rate (K/s) 0.1-1 10-200 >1000
Particle Size (mm) 5-10 <1 <0.2
Solid Residence Time (s) 450-550 0.5-10 <0.5

It is worth mentioning that great attention is directed to the fast pyrolysis process for bio-oil
production from biomass. This aspect’s main reason is the high liquid yield produced with specific
characterizations that make it has unique advantages in transport, storage, combustion, retrofitting,
and flexibility in production and marketing [17].

Unfortunately, upgrading bio-oil produced from the pyrolysis process is essential due to the
high content of hazardous materials and bio-oil properties if compared with the fuel oil. Bio-oil has
a high water content (15-30 wt.%), a low corrosive pH (<3), a higher oxygen content (35-40 wt.%),
and a higher heating value (HHV) of 16-19 MJ/kg [18], and hazard materials such as S-compounds,
metals, N-compounds, and a high content of oxygenated compounds [19]. Sulfur is emitting to the
atmosphere in the form of SOy, causing acid rain formation through its reaction with water, oxygen,
and other chemicals in the atmosphere. The presence of sulfur in oil increases corrosion issues during
the refinery process but helps in the deactivation of the catalyst in minimal time. The removal of
dibenzothiophene and its alkyl derivatives is a big challenge, as the compounds cannot be transferred
into H,S due to the steric hindrance adsorption on the surface of the catalyst [20]. Also, NOy emits into
the atmosphere and poisons the catalyst during the refinery process. Metals in the oil enhance the
production of high volumes of coke and dry gases and decrease the liquid output [21]. In addition,
the metals enhance the fast catalyst deactivation [21,22], which is mainly due to the deposition of metal
oxides formed on the pore of the catalyst and blocking the active site. The presence of oxygenates in
the bio-oil results in several technical challenges when using bio-oil as the “drop-in fuel,” like low
energy density, instability, high viscosity, and corrosion post-processing to remove oxygen atoms from
bio-oil must be carried out [23]. Table 2 shows the elemental analysis of different biomass feedstocks.

Even though there is a wide range of upgrading techniques that have been investigated for the
fast pyrolysis-produced bio-oil, hydrotreatment (e.g., hydrodeoxygenation, hydrodesulfurization,
hydrodemetallization, and hydrodenitrogenation) has been employed in oil refineries for many
years, and the process is well-established [24]. Among the hydrotreatment techniques, catalytic
hydrodeoxygenation (HDO) is a compelling upgrading approach to produce petroleum-like
hydrocarbon fuels or chemical building blocks from fast pyrolysis-produced bio-oil, during which
oxygen present in the bio-oil is removed through water formation [25].



Catalysts 2020, 10, 1381 4 of 28

t{ﬁ é’ig ] the different upgrading techniques of bio-oil were discussed
X A
ferent compounds derjved from the pyrolysis oil of bi
gﬁﬂe ; rOCess, 1ssue o eactivatio a , an
S e e
e, . 1cal elemental analysis for rent biomass materia : it
able'® 1 : IpE15645,26]-
S
&6 9% S -
3% 5 \ -
. 482273452 4 2 0
i ; 6.1 3 0.1
55384 8% ‘ 1.7
1 oa D6 5854 38IH iy -
5.8985 2 < 1.6
5.4%g # 4 < <0.1
§ 5 3 0.1
W : 863800 4113 j 0.1
5.5 %7 4 0.1
XX’ . K H ¢ 3] S
. )
T, S ol Th B T U
14 i hsomase R e R ajontain
-1 / L i SMASs. DT 1S, ALe VETY C X and, contamn
re ydic
ore
r . .
is oil
7 7 ] = f
OURYS ave PeEen ge n Fleg hiisk=bBase Omass
ounds that have been detected in the rice husk-based biomass

€

TS5 Sit &8 ﬁ;ﬁ% 2 nated, Qﬁqgg) istin hio wiolysisgil [26].
PLE 2 ALY rent oxveena compou. ex1S ln 10Mass TOLVSIS Ol

_’]‘ = < /0

[

Butyricacid RS

Q\.C}_u_ cu_lg LY

o
Han m.:)

Le QXA/=tetra JLromiran
A2~ CHLNCTNOXYV-TeTI ALY

HRethox eltra roluran 3.47

- Z Z H,CO™ "O" "OCH,3




b2
%

o5
5

B

&@Wt.o/o

£
6.83’33

2R
6.5690

atalysts 2021

34547

atalysts 202

Cutal%sts 2020,

Catalysts 2026,36;
Catalijsts 2026,

alaists 205

N _AD 40

[«

N _AnTI

Ty ITCacr

N AN

cy i ot

N A

o40

dC1GL

i

TV

A an)

[aile]

(1A

X

o

%‘Oo bbbbloPkle
o

I_

o
e}

exXano

eXano.

exano
et

ANAA.

=~
\ o]

imm N mmim

— ahgo

M

Q Q
& X

NP}
DO
ol

o
I

an--one

- -2-0ne

iy
Z
o

“ r—r7'

a1z

O
o)
T

CHj,

[C1TIU

IC1 IV

isie

CI110.
yavas

CIH

=y

M

i

.
'S
~C7-\‘:

TCITO

O

TOXY TICHTY

YO

;
»

AT=1ara)

CH3

1 lql

101

me ano

|6 e
(@]
\

=A1MEeTNVvI-HAENO

o
I

OH

-

Ol

ol

(@]
ju
&

T GITO
Ci

CHs

[N IRV Y18 (RO U W I I [ P PN g

¢

mefthizl-caftecho

OH

Q
= o
o

o
I

i

cat o
SRV catache

b
L

I
o
8
= o
o
L

TRNTOC: |

50f28

W
SBESS

CIGIUUIG 00101
9222299002928

a1
Qo

=N
@
S



3, A-dnnetvy [Hpltenol % 114

1.31
Clltlllyafo 2026 6 of 28
3.53
TR
1.36wt.%
"4
0.24
(.71
9.955
ime alc , ~nn
-—g GliiTt R A T, fie (OMO
Catalysts 2020, 10, x FOR PEER REVIEW OCHs 6 of 30
OCH;
/O
=
3-(4-hysrexyZravpthmehpheplibhpiiqpepahal e 0.16.15
//]\0
OH tl:H3

1.2. TspyesrRefated 10 e {578t i YR e R 9B Bt i O B S tucts

The big-oflpropertics. OPE%%‘ thirer fast P Bsis serrepies i da bie e %ﬂ%vsval%%lv%%lv [27].
As indicatg ca?et GoiaRls tabofe ! é‘fpo%?en&aegﬁt%{%l%%%%%efﬂ;sfo of oxyBeng therepy e gl?e%amg toa
SIgmélfarﬁ%lza ighsnbratRe e AN RS o M wgpggﬁré taoretha[ %h?aﬁég%ly(%ue%lfb@u/kg>
Another probl emﬁ? aling tq;the gb &%O’ﬁ’%%“ Contee%t in big-o1l fsithe s ¢ oM PH.YAE (sey Vﬁl& hichs g),
makgsbigroll an yind S%tfr?l&ne@egﬁ%’a § RIOBSKE pRssides: kgl 1L 15, 5I8R1Y MiSERy s dndd andn%s not
Chemlﬁaha‘{-stﬁb S nustgaaé% Vavghel,ch s akTibyle %P &%8%3%&1@%3&&%%%%% %WEf&%%a%a%on and
polyms }lz%ﬁ‘&?%‘a%%%%? PetvsS wteeendeﬁee%9exl¥t%)e>?ya§%nafwa%>&%g%saﬁ¥84 [28].

Tableﬁ&ih%mfﬁorrﬁa]%sw hemisR I%E’ﬁeﬁ%ﬁe‘% Rio; lobs%f %f%afﬁ%af nP;as%lg@Ir%Ple [27].

Den%r{éig/@gmﬁ 1209200 940 949
Elememtahconapeasitienitioh. fot.%)
c C 48-68-65 83-88-86
H 1; 5.5—575_;75 11—1]41;114
O N 30-H03 <103
N g 0-0.05 <0330
HHV (MJ/kg) <0.0B-19 <3.0 40
HI\Sq@effykgF, 50 °C) 16-48-100 40 180
Viscosityf(%'ﬂi( BpHee ) 40-160P-2 180 01
%) 0 0% 1 0.1
DfA‘hﬁ:ilo ei1due (wt.%) <50 )
Solidg dedssion 0.2-1o7 1 14
Distillation S@}dﬁﬁs@mh%) <50 0 1 0.28
NOx emission <0.7 14
SOx emission 0 0.28

2. Different Deoxygenation Approaches for Bio-Oil

A wide range of upgrading methods has been developed for fast pyrolysis bio-oil. Such
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2. Different Deoxygenation Approaches for Bio-Oil

A wide range of upgrading methods has been developed for fast pyrolysis bio-oil. Such techniques

can be generally categorized mto hysical and chemical techniques, as depicted in Figure 2 [29
Catulysts%OZU 10, xyFOR I‘%ER REVIEW phy q p & [ ] of 30
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Physical
methods - )
Solvent addition
“Upgrading of Hydrocracking
bio-oil from
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Hydrotreatment
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Figure 2. The meijr vpgiading appioaches applied for the bio-oil obtained from fast pyrelysis [29]:
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4 vol.% of surfactant dosage, a bio-oil/biodiesel ratio of 4/6 vol.% a stirring speed of 1200 rpm, a
processing time of 15 min, and a temperature of 30 °C. At these optimized conditions, the viscosity,
acidity, and water content of softwood-derived bio-oil were considerably reduced after the emulsion
treatment. Even though emulsion is a simple upgrading technique, the high-cost of surfactant, high
enerev consumbption, and the inabilitv to remove unfavourable chemical substances of bio-oil limit
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conditions were 4 vol.% of surfactant dosage, a bio-oil/biodiesel ratio of 4/6 vol.% a stirring speed of
1200 rpm, a processing time of 15 min, and a temperature of 30 °C. At these optimized conditions,
the viscosity, acidity, and water content of softwood-derived bio-oil were considerably reduced after
the emulsion treatment. Even though emulsion is a simple upgrading technique, the high-cost of
surfactant, high energy consumption, and the inability to remove unfavourable chemical substances of

bioHeik hopdt fitsd BCFePSER ® BEication [33]. 8 of 30
2.2, Chieriical Upgrading Technologies

33.1. Esterification
Esteritication is 2 relatively simple chemical methed often carried st at moderate conditions te
HB rade Higsodhhstertherd difighiohelsphal steedededpanaiishe innesHsatdaisohnls mething!

moptcermentrasad srlyenk hs vaain Terckions psstibhe Rt eRTLIeRILPBRAsH Riolysis
@5}9&1&&9@%@1@1@3}1&1&1@ L fl Fikure 3 [34].
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OH
Levoglucosan Alcohol R

Alkyl D-glycopyranoside

Figure 3. The main reactions occurring between bio-oill amd| alcolwoll during esterification treatrenit.
Reprinted from reference [34].

Previously, Weesnshianehiad et ahl[{35investigaterd dhihupgpasiagef papal shelkdprived &iobebl biy
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slowivwevidie theaiaginalvgleé opgprdadelidiotbilangacbdremn?d3ac225MIKkg andl tivas, further
boosting treatment is still required. I summagy, esterification offers several advantages of mild
reaction eonditions, cheap aleohol price, and easy-operation; howevet, its ineffectiveness in removing
nitrogen-containing compounds makes it impractical to upgrade algae-derived bio-oil owing to the
presence of highly concentrated nitrogenates in the bio-oil [24].

2.2.2. Supercritical Fluid

In recent years, supercritical fluid has been widely applied as an alternative upgrading approach
for fast pyrolysis bio-oil, which accounts for the inherent benefits of supercritical fluid, such as liquid-
like density, gas-like diffusivity and viscosity, and high mass and heat transfer rates [36]. For
example, Lee et al.[37] catalytically upgrade the bio-oil obtained from the fast pyrolysis of woody
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2.2.2. Supercritical Fluid

In recent years, supercritical fluid has been widely applied as an alternative upgrading approach
for fast pyrolysis bio-oil, which accounts for the inherent benefits of supercritical fluid, such as
liquid-like density, gas-like diffusivity and viscosity, and high mass and heat transfer rates [36].
For example, Lee et al. [37] catalytically upgrade the bio-oil obtained from the fast pyrolysis of woody
biomass by the supercritical catalytic fluid at 250-350 °C with the use of a Ni-based catalyst. It was
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In eonclusion, due to the hydrotreatment upgrading approach’s maturity, the catalyst, technical
challenges, reactor configuirattion, and econmiis of HIDO ane difcussed ih the flllowing seatiivis.

2.2.5. Hydrotreatment

Hydrotreatment is a well-established process in oil refineries that are often carried out at
moderate temperatures of 300-450 °C and H: pressure up to 20 Mpa. The hydrotreating process
includes hydrodemetallization for metal removal, hydrodesulfurization for S removal,
hydrodenitrogenation for N removal, and hydrodeoxygenation for oxygen removal. Hydrotreating
processes usually occur in the presence of a catalyst, and the most traditional catalysts used for
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2.2.5. Hydrotreatment

Hydrotreatment is a well-established process in oil refineries that are often carried out at moderate
temperatures of 300450 °C and H, pressure up to 20 Mpa. The hydrotreating process includes
hydrodemetallization for metal removal, hydrodesulfurization for S removal, hydrodenitrogenation
for N removal, and hydrodeoxygenation for oxygen removal. Hydrotreating processes usually occur
in the presence of a catalyst, and the most traditional catalysts used for hydrotreatment are NiMo,
NiW, and CoMo [42]. Owing to the complexity of bio-0il’s chemical composition, a series of reactions
possibly occur in bio-oil upgrading, as depicted in Figure 5. The main advantages and disadvantages

of each upgrading method are summarized in Table 5.
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Table 5. An overview of the advantages and disadvantages of various upgrading methods [24,44,45].

Upgrading Approach Advantages Disadvantages

High-cost of surfactant; high energy
Emulsion Easy-operation consumption; cannot remove
unfavourable substances

Solvent addition Easy-operation Cannot remove unfavourable substances

The requirement for a high-pressure
Hydrocracking The formation of light components  resistant reactor, coke formation; catalyst
deactivation; high-pressure H; is needed

Well-established treatment in oil The requirement for a high-pressure
Hydrotreatment refineries; effectively removes resistant reactor; coke formation; catalyst
heteroatoms deactivation; high-pressure H; is needed

Highly energy-dense Hj as the main  The requirement for

St formi . .
cam reformmng product high-temperature-resistant reactor

Significantly lowers the viscosity =~ High-cost of the solvent; requirement for

upercritical fluid . o . .
Supercritical fluids and increases HHV of bio-oil high-pressure resistant reactor

Easy-operation; moderate reaction =~ Cannot remove nitrogenates and thus

sterification conditions cannot be used for algae-derived bio-oil

3. Hydrodeoxygenation

As one of the hydrotreatment approaches, HDO is highly effective in removing oxygen from
bio-oil through water formation. The yield and properties of upgraded bio-oil obtained from HDO
are dependent on the temperature, residence time, pressure, solvent, catalyst type, and reactor
configuration. The selection of a suitable catalyst is a critical aspect of the HDO process.

Catalytic Hydrodeoxygenation

Hydrodeoxygenation HDO is an upgrading process applied to produce a high-quality oil yield
with higher carbon content. The process involves removing oxygen from a hydrocarbon by applying
different catalytic reactions at pressures up to 200 bar and temperatures up to 400 °C [46]. The HDO
process occurs through different reactions, including the hydrogenation of C-O, C=0 and C=C bonds,
the dehydration of the C-OH group, condensation and the decarbonylation of the C-C bond cleavage
using retro-aldol and the hydrogenolysis of C-O-C bonds [47,48]. Hydrodeoxygenation of biomass can
occur through different biomass conversion techniques, which include the hydrotreating of bio-oils [49],
hydropyrolysis [50], hydrogenolysis of biomass into oxygenated chemicals [51], aqueous-phase
reforming of carbohydrates into fuel [52] and hydrotreating of organics acids. The main reactions
that take place during the HDO involve the separation of water that exists with oil, then the oil being
exposed to a dehydration reaction as a result of a condensation-polymerization reaction, followed by a
decarboxylation reaction where oxygen is eliminated in the form of H,O, then the oil is exposed to a
hydrogenation reaction to transfer the unsaturated bonds formed during the reaction into saturated
bonds, and a hydrogenolysis reaction, which breaks down the C-O bond and liberates the oxygen in
the form of HyO. A hydrocracking reaction occurs to crack the high molecular weight compounds into
low molecular weight compounds in the last step.

Attributed to the series of reactions, like oligomerization and polymerization, occurring between
the different oxygenated functionalities [28].
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Elkasabi et al. [53] upgraded the various bio-oil samples obtained from the fast pyrolysis of
Switchgrass, Eucalyptus benthamii, and horse manure by HDO at 320 °C and 145 bar for 4 h over a Pt,
Ru, and Pd-based catalyst, and HDO using Pt/C as the catalyst of switchgrass-derived bio-oil, which
led to the highest oxygen reduction rate and carbon retention. The authors also reported that the
bio-oil containing high syringe content greatly influenced H; consumption. However, there are two
main drawbacks to the HDO process, including the requirement for high-pressure H, and a short
catalyst lifetime caused by the coke formation [54].

Elliott and his co-worker developed a two-stage hydrodeoxygenation process for pyrolysis
bio-oil [55,56]. The first step of the process is the catalytic hydrogenation of the thermally unstable
bio-oil at a temperature of 270 °C and pressure of 136 atm using Co-Mo/Al,O3 or Ni-Mo/Al, O3 catalysts
that were sulfides firstly in the reactor. The thermally unstable bio-o0il compounds usually decompose,
forming cock that directly plugs the reactors. The main hydrodeoxygenation reaction primarily occurs
in the second step, which involves a catalytic hydrogenation reaction but at a higher temperature,
reaching up to 400 °C, and at the same pressure using the same catalyst. The main findings of the
process are the production of 0.4 L of treated oil for every 1 L of bio-oil and converting 20-30% of the C
existing in the bio-oil into gas-phase carbon, which decreased the oil yield.

The two-stage hydrodeoxygenation process was also performed by Furimsky, (2000) for the
conversion of biomass pyrolysis oil into high-quality oil [48]. The first stage involves removing the
unstable oxygenated compounds to produce a stable crude at a low temperature below 300 °C with
the sulfide NiMo or CoMo catalyst. The second stage of the process is mainly performed to convert
the low HDO reactivity compounds, such as furans and phenols, into deoxygenated compounds at
350 °C and 13.8 Mpa. The main disadvantage of the process is the short lifetime of the catalyst due to
the support breakdown. Ly et al., (2019) [57] hydrotreated bio-o0il obtained from the fast pyrolysis of
Saccharina japonica in a fluidized bed reactor at 350 °C and 3-15 bar of H; over HZSM-5, Co/y-Al, O3,
CoP/y-Al,O3, CoMoP/y-Al, O3, Fe/y-Al,O3, and FepP/y-Al,Os. The oxygen content in the bio-oil was
removed through the formation of water, CO, and CO,.

Meanwhile, an increase in the kerosene-diesel fraction of bio-oil was found. Schmitt et al.,
(2018) [58] performed catalytic HDO experiments on beech wood-derived bio-oil at 175-325 °C and
80-100 bar of Hj, and the results indicated that around 42% of oxygen content in the crude bio-oil
was eliminated at 325 °C and 80 bar and the ketones that cause the chemical instability of bio-oil were
observed to be removed entirely. Delmon and his co-workers have studied the hydrodeoxygenation of
a mixture of 4-methyl acetophenone, ethyl decanoate, and guaiacol as a model compound [59-63],
Figure 6. The ketone group is highly reactive toward the HDO process; therefore, it is easily
hydrogenated into a methylene group at a low temperature of 200 °C [61]. The hydrodeoxygenation of
the carboxylic and guaiacol groups requires a temperature higher than 300 °C to be converted into
deoxygenated compounds because of the lower reactivity of the two groups than the ketonic group.
It was noticed that there is a decarboxylation pathway parallel to the hydrogenation of the carboxylic
acid at comparable rates [61]. Guaiacol was converted into catechol then phenol, and the catalyst was
deactivated during the high-temperature reactions due to coke formation. Increasing the acidity of
the catalyst support does not affect the hydrogenation of 4-methyl acetophenone but raises the rate of
decarboxylation and coke formation from the guaiacol group. It was found that the presence of water
strongly affects the catalyst activity and decreases it by one-third of its initial activity.
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corresponding oxide forms if no sulfur source is added to the system. However, the addition of an
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extra sulfr@;,gg;gr@@ocgu]@mggﬂtqmme catalyst being poisoned in the post-processing ang, $G) emission
upon combustion [65]. Zhan et al. [66] reported that a 90% oxygen removal efficiency from the bio-oil
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process. Generally, the catalytic activity of oxides in the HDO mainly depends on the acidic sites. At
4.3. Transition Metal Catalysts

Transition metal catalysts, including Ni, Pt, Pd, Ru, and Rh, promote the HDO and hydrogenation
reactions, and their reaction rates are proportional to H, pressure. Compared to sulfide catalysts, there
is no requirement for the additional sulfur source to maintain the active form. The main drawback
for the transition metal catalysts is related to their high sensitivity to sulfur; hence, it is necessary to
remove sulfur-containing compounds from bio-oil before HDO treatment [43]. In a previous study
conducted by [77], the catalytic activity in the HDO of guaiacol in hexadecane at 100 °C for 80 bar
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of H, was as follows: Rh/ZrO, > CoMoS,/Al,O3 > Pd/ZrO, > Pt/ZrO,. Until now, though, the basic
mechanism for transition metal in the HDO reaction is still not clear. It is accepted that the metal plays
a role in the hydrogen donation; however, there is no conclusion on the mechanism for the activation
of oxygenates.

Phosphide, Carbide, and Nitride Catalysts

Phosphide catalysts have been broadly studied in hydrotreatment for the petroleum industry and
have thus drawn attention recently in the HDO reaction of bio-oil, which accounts for the presence
of acidic sites and Hj-activating sites [78]. Moreover, phosphide catalysts are characterized by the
low activation energy required and highly active [66]. Mendes et al. [79] prepared a nickel-phosphide
supported on a carbon-covered alumina catalyst (Ni;P/CCA) to upgrade bio-oil by conducting the
HDO process at 250 °C and 75 bar of Hj in a batch reactor. The results indicated that similar catalytic
activity was provided by Ni,P/CCA when compared to a commercially-available catalyst (Ru/C).
Gutierrez-Rubio et al. [80] investigated the catalytic HDO reaction of the mixture of guaiacol and acetic
acid over NipP/ZSM-5 at 260-300 °C and 40-100 bar of Hj. The results showed that low deoxygenation
efficiency resulted from the use of Ni;P/ZSM-5 as the catalyst since the presence of acetic acid could
partially block the active sites of the catalyst. Thus, it can be speculated that the removal of carboxylic
acid from bio-oil before the HDO reaction might be useful to ensure a high catalytic activity.

Except for phosphide catalysts, as discussed above, carbides and nitrides have recently attracted a
great deal of attention, owing to their low-cost and comparable properties to common HDO catalysts.
Previously, Lopez et al. [81] used a molybdenum carbide catalyst in the HDO process to upgrade acacia
wood or empty fruit bunches-derived bio-oil at 350 °C and 50 bar of H; for 4 h, and it was observed
that the oxygen content of bio-oil was greatly reduced and thus improved the HHV of bio-oil from
29.1 MJ/kg to 36.9 MJ/kg due to the formation of the hexagonal 3-Mo,C phase that demonstrates a
strong ability for the deoxygenation. In the catalyst recycling studies, the high catalytic activity of
NiMoS; was maintained after being recycled 5 times. Vasilevich et al. [1]. carried out the catalytic
HDO experiments for guaiacol over Mo,C/SBA-15 at 320 °C and 40 bar of H; for 180 min in a batch
reactor, and a 70-73% conversion of guaiacol was attained. Even though few studies so far have
investigated the influence of nitride catalysts on the HDO, it is obvious that they are more favorable
than water-sensitive carbide catalysts. The presence of water, however, is normal during the HDO
treatment [43]. Thus, future work must be focused on the effects of nitride catalysts on the bio-oil HDO
in terms of product properties, reaction mechanism, kinetics, and deactivation.

Despite the fact that phosphide, nitride, and carbide catalysts demonstrate effective HDO efficiency
for the bio-oil, they remain at the initial development stage and thus cannot be replaced with the
commercial sulfide catalysts in terms of industrial applications.

5. HDO of Different Biomass-Derived Oxygenates
5.1. HDO of Lignin-Derived Oxygenates

5.1.1. Phenol and Alkylated Phenol

Phenolic monomers mainly consisting of phenols, guaiacols, and syringols as the model
compounds are the simplest product obtained from lignin degradation. Phenol and alkylated phenols
(such as cresol and 2-ethylphenol) are the basic lignin-derived phenolic monomers. The cleavage of
the C-OH bond is the key element for the HDO process. As shown in Figure 8 there are two common
reaction routes to produce cycloalkanes and arenes: (i) hydrogenation of the aromatic ring and then
alcohols undergo deoxygenation to generate cycloalkanes; and (ii) the direct deoxygenation into arenes
through the C-OH bond breakage [82].
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5.1.3. Phenolic Dimers

Phenolic dimers share a similar chemical structure to that of lignin. The most important reaction
in the HDO of phenolic dimers, as presented in Figure 10, is the breakage of the ether linkage. 3-O-
4, 0—=0—4 and 4-O-5 are the typical linkages in the lignin molecular, as presented in Figure 10. After
the cleavage of ether bonds, phenolic monomers are created, and they follow the same reaction as
discussed above.
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5.1.3. Phenolic Dikigerg9. The reaction mechanism for the HDO of guaiacol. Reproduced from reference [83].
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5.2.2. Acrylic Acid

As illustrated in Figure 12, initially, acrylic acid adsorbs parallel to the surface, followed by
deprotonation to form a propenoate species and dehydration to produce H2.C=CH-CO on the
Mo2C/ALOs catalyst surface. Subsequently, hydrogen attacks the carboxylic group of H.C=CH-CO
and thus results in the formation of 2-propenal, which can be further converted into propane by
hydrogenation [88].
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5.2.2. Acrylic Acid

As illustrated in Figure 12, initially, acrylic acid adsorbs parallel to the surface, followed by
deprotonation to form a propenoate species and dehydration to produce HyC=CH-CO on the
Mo,C/Al, O3 catalyst surface. Subsequently, hydrogen attacks the carboxylic group of H,C=CH-CO
and thus results in the formation of 2-propenal, which can be further converted into propane by
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Although HDO is highly effective for removing oxygenates from bio-oil, one of the main challenges
regarding this technology is the demand for high-pressure H,. Hence, it poses safety concerns and
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involves high costs [25]. In addition, the formation of coke, which then leads to shortening the
lifetime of the catalyst, is another challenge facing the catalytic HDO that must be solved prior to its
industrial-scale application.

6. The Issue of Catalytic Deactivation in an Application and How It Can Be Solved

6.1. Coke Formation

One of the problems faced by the HDO reaction is the generally very low yield of upgraded bio-oil,
which is caused by the formation of char, coke, and tar. The occurrence of coke becomes severe in the
case of a fixed-bed reactor where coke formation can lead to the shut-down of the reactor. A possible
solution to avoid coke formation in the HDO process is to co-feed bio-oil with a hydrogen donor
solvent, like methanol, tetralin, and decalin. The hydrogen donor solvents can not only promote the
cracking and hydrogenation reaction but are also capable of diluting lignin and thus preventing the
polymerization that forms coke at a high reaction temperature [98]. Patil et al. [83] applied tetralin as
the hydrogen donor solvent in the HDO reaction of guaiacol (a model compound of lignin) and the
upgrading treatment was conducted at 330 °C for 15-600 min and 30 bar of H,. It was observed that a
100% conversion of guaiacol was achieved for 600 min, accompanied by a yield of 45.3% phenol and
11.1% cyclohexane.

Coke formation is dependent on the acidity of the catalyst and the type of feedstock. In general,
a higher acidic catalyst tends to promote coke formation; however, the acidity is a key element
ensuring the catalytic activity. In addition, the formation of coke often occurs when using unsaturated
hydrocarbons (e.g., alkenes and aromatics) as the feedstock, which could be resulting from the
interaction between C=C bonds/aromatic rings with the active sites of the catalyst. Oxygenates
containing >2 oxygen atoms are another feedstock that have a strong tendency towards coke formation,
due to the promoted polymerization reaction [99].

As suggested by Cheng et al. [99], there are several solutions to deter coke formation during HDO
treatment, including (i) the use of a low acidity but high stability catalyst support, such as activated
carbon and silica; (ii) carrying out HDO at moderate reaction conditions, like a relatively lower reaction
condition and a higher pressure of Hy; (iii) a two-stage HDO process; and (iv) co-processing of bio-oil
and hydrogen donor solvent (e.g., methanol, ethanol, acetone, and tetralin) in the HDO reaction.

6.2. Catalyst Deactivation

Catalyst deactivation and its short lifetime are the bottleneck for the industrialization of the bio-oil
HDO process. The primary causes of the catalyst deactivation include the following: (i) the presence
of water; (ii) sintering of the active sites; (iii) poisoning by nitrogen, sulfur and chlorine; (iv) metal
deposition, and (v) coke formation. Among them, the formation of coke and water exposure are the
most significant factors causing the deactivation of the catalyst [100].

Cordero-Lanzac et al. [101] explored the underlying mechanism for the catalytic HDO of bio-oil
obtained from the fast pyrolysis of black poplar sawdust at 400450 °C and 65 bar of H, over Pt-Pd/C
and Pt-Pd/Al;O3. The authors stated that there were two main reaction pathways appearing in the coke
formation: (i) at 400 °C, the presence of unstable alkyl phenol and alkylmethoxy phenols resulted in the
decomposition of thermal lignin on the external surface and mesopores of the catalyst, thereby affecting
the catalytic activity and possibly causing reactor blockage; and (ii) as the temperature increased until
450 °C, alkyl phenol and alkylmethoxy phenols converted into aromatics and the deposition rate of
aromatic coke by condensation increased, which was further promoted by the acidic sites and high
reaction temperatures. Based on these results, a possible reaction scheme for coke formation during
the HDO of bio-oil was developed and illustrated in Figure 14.
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accompanied by a return on investment and pay-off tlme of 69.18% and 2.48 years, respectlvely
Carrasco et al. [103] obtained a minimum fuel selling price of $1.27 per liter from the pyrolysis of woody
biomass and HDO of bio-oil and the simultaneously produced Hj in a 2000 ton/day plant. They found
that the high CAPEX, feedstock cost and short catalyst lifetime were the major economic concerns.

8. Applying the Microwave in the Hydrodeoxygenation Process

8.1. Microwave Heating

Electromagnetic radiation behaves like photons carrying radiated energy and waves moving at
the speed of light. Electromagnetic waves are comprised of an alternating electric field orthogonal to
an alternating magnetic field.

Due to the conversion of electromagnetic energy to heat taking place within the entire volume of
the target material, respecting the penetration limits of the applied waves and the material, microwave
heating is defined as a volumetric energy conversion mechanism [10,11,104,105]. This mechanism is
fundamentally different from the superficial heat transfer of conventional heating. Therefore, noticeable
advantages of microwave heating have been highlighted during the last few years.
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8.2. Applying the Microwave in the Case of the HDO Processes

The unique advantages of MWH establish this heating mechanism as an alternative to conventional
heating [CH] in several applications. The mechanism of MWH relies on direct volumetric energy
conversion, i.e., direct conversion of electromagnetic energy to heat energy within the volume of the
heated material. This mechanism is fundamentally different from the superficial heat transfer of CH
and, thus, can avoid most of the issues and limitations associated with CH, which most importantly
include the temperature gradient inside and outside the heated material. The interaction between
microwaves and the heated material, mainly based on the material’s dielectric properties, leads to
selectively heating the target. This reduces the heat energy required to achieve a particular end,
which consequently results in decreasing the operating costs as well as the potential of thermal hazards.
In addition, it can restrict secondary reactions and might lead to (1) producing material with a novel
microstructure, (2) initiating reactions that cannot be initiated when CH is applied, and (3) achieving the
existing reactions under conditions that are different from those of traditional processing. Furthermore,
numerous investigations have reported that MWH can save more in energy consumption and enhance
product quantity and quality compared to the conventional processed materials [106-112].

Shekara C. et al. have documented that MWH achieves a better conversion compared to CH [106].
MWH modifies the porosity of the processed materials and leads to a faster reaction rate with less
energy consumption compared to CH, as claimed by Paixao and Monteiro et al. [107]. Patil, Gude et al.
agree with Paixao and Monteiro et al. on the impacts of microwaves on the reaction rate [113].
A higher product yield in less reaction time has been reported by Zhang and Zhao [108]. Budarin
and Clark et al. have investigated the influence of microwaves on product quality compared with
conventional processes, which led to documenting that the obtained oil contains few impurities
and is rich in aromatics [110]. Guiotoku and Rambo et al. tend to believe that MWH increases the
carbonization yield [114]. MWH decreases catalyst loading and liquefaction according to Krzan
and Zagar [115]. Dogan and Hilmioglu found that MWH significantly shortens the reaction time
compared to the traditional methods [116]. Increasing the conversion was reported by Sithambaram,
Nyutu et al. [117]. Orozco, Ahmad et al. are in agreement with the above-mentioned claims regarding
the higher product yields, shorter reaction time, and higher reaction rate at a moderate temperature [118].
The same conclusion was reached by Lucchesi and Chemat et al., and Menéndez and Dominguez et al.,
2004 [112,119]. Karthikeyan and Balasubramanian et al. believe that applying MWH leads to a
faster extraction rate and produces different chemical components than CH [111]. Zhu and Wu et al.
and Farag et al. have reported the noticeable impacts of MWH on enhancing product quality [104,120].
Further details about the nature of MWH are demonstrated in the references [11,121].

In summary, it is believed that applying MWH impacts reaction kinetics in addition to the
noticeable effects on the product yield, product quality, and energy consumption. It should be noted
that these key conclusions highly depend on the dielectric properties of each component of the target(s)
and other aspects.

In the oil industry, most common feedstocks—namely, crude oils and gaseous components—are
not active microwave receptors and, in turn, fail to establish substantial interaction with electromagnetic
microwaves. On the other hand, most metals, metal oxides and catalytic agents are highly efficient
microwave-to-heat converters. This aspect, which is a rather complicated matter in several applications,
could revolutionize the industry. Having a high local temperature on the active site promotes catalytic
and noncatalytic reactions while the undesirable secondary reactions was restricted due to the relatively
low temperature of the bulk material(s). As aresult, itis believed that the applications of the outstanding
temperature gradient of microwave heating ameliorate not only the productivity but also the selectivity
of various reactions in o0il processing.

Coupling microwave heating with HDO technology would take advantage of this heating
mechanism. Most importantly, it includes most of the catalysts that are usually applied in HDO
processes, such as the transition metal catalysts, phosphide, carbide, and nitride catalysts, oxide
catalysts, and sulphide catalysts, and the oxygenated compounds that exist in the oil are polar materials.
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This would act as a strong microwave-to-heat converter. On the other hand, petroleum oils have a
relatively low level of interaction with microwaves. In contrast, the polar site containing oxygen in the
oxygenated compounds inside the oil have a high level of interaction, which means the generation of
heat energy is performed locally where the C-O bond cleavage takes place. Polar compounds that
exist in pyrolysis oil are strong microwave receptors.
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