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Simple Summary: Cancer drugs have the lowest success rate of approval in drug development
programs. In order to address this, predictive preclinical assays that correctly reflect the clinical
efficacy of a drug represent an urgent need in both clinical oncology and pharmaceutical research. To
address this need, multiple tumor models have been developed, including tumor explant culture
platforms, which are the only models that preserve the integrity of the tumor tissue. However,
these models have not been fully characterized and multiple variables exist between studies. We
investigated the effect of tissue size and culture vessel type on the survival of tumor explants by
comparing micro-dissected tumor tissue with corresponding tumor slices. Our results show that the
model geometry and culture vessel affect proliferation, apoptosis, and hypoxia in tissue cultures, and
must be considered in designing tumor explant culture platforms.

Abstract: Predicting patient responses to anticancer drugs is a major challenge both at the drug
development stage and during cancer treatment. Tumor explant culture platforms (TECPs) preserve
the native tissue architecture and are well-suited for drug response assays. However, tissue longevity
in these models is relatively low. Several methodologies have been developed to address this issue,
although no study has compared their efficacy in a controlled fashion. We investigated the effect of
two variables in TECPs, specifically, the tissue size and culture vessel on tissue survival using micro-
dissected tumor tissue (MDT) and tissue slices which were cultured in microfluidic chips and plastic
well plates. Tumor models were produced from ovarian and prostate cancer cell line xenografts and
were matched in terms of the specimen, total volume of tissue, and respective volume of medium in
each culture system. We examined morphology, viability, and hypoxia in the various tumor models.
Our observations suggest that the viability and proliferative capacity of MDTs were not affected
during the time course of the experiments. In contrast, tissue slices had reduced proliferation and
showed increased cell death and hypoxia under both culture conditions. Tissue slices cultured in
microfluidic devices had a lower degree of hypoxia compared to those in 96-well plates. Globally, our
results show that tissue slices have lower survival rates compared to MDTs due to inherent diffusion
limitations, and that microfluidic devices may decrease hypoxia in tumor models.

Keywords: cancer treatment; drug screening assays; tumor explant culture platform; hypoxia; ex
vivo model
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1. Introduction

A critical bottleneck in pharmaceutical and clinical oncology is predicting the response
of patients to anticancer drugs. Only 3.4% of new cancer drugs reach regulatory approval,
despite the fact that oncology accounts for more than 40% of all drug development pro-
grams [1]. Cancer progression is due to an accumulation of multiple genetic and epigenetic
alterations, creating intra- and inter-tumoral heterogeneity [2,3]. This complexity results
in the ability of cancer cells to acquire innate and adaptive responses to different drugs,
rendering the drug development and clinical decision-making uncertain even when pre-
dictive markers exist [4]. To address this variability, researchers have developed multiple
preclinical models to evaluate the chemosensitivity profile of patients. In vitro 2D models,
such as monolayer cultures of tumor-derived cell lines are simple and high-throughput,
but they do not include the tumor architecture or interactions between cancer cells and
the tumor microenvironment. This can result in discrepancies in treatment sensitivity
compared to the parental tumors. To circumvent these drawbacks, a growing number of
3D models have emerged to incorporate 3D cell interactions and mass transfer limitations,
which are more time- and cost-effective. The most commonly used 3D models are tumor
spheroids because they are easy to form and have very high viability [5–9]. However,
spheroids also lack the native tumor tissue arrangement and tumor-associated microenvi-
ronment. Patient-derived xenografts (PDX) are the current gold standard for in vivo tumor
models and incorporate many elements of the primary tumor. However, the engraftment
procedure can have an extremely low success rate (<10% for some cancers) and the long
time frame for tumor development exceeds a clinically relevant time frame requirement for
patient management [10,11]. A more recent group of 3D models are organotypic tumors,
such as patient-derived tumor organoids and ex vivo tumor explants, which offer the
possibility to preserve the tumor heterogeneity and the genomic and transcriptomic factors
of each tumor [12–14]. Patient-derived tumor organoids require tumor deconstruction, cell
purification, expansion, and tumor reconstruction steps, which destroy the original tumor
architecture, and are time-consuming and labour-intensive. In contrast, ex vivo tumor
explants do not require such processing and preserve the tumor integrity, including the
cell heterogeneity and the specific tumor microenvironment [15–17].

The use of tumor explants, also known as precision cut or organotypic tissue slices,
has steadily increased because they have been shown to replicate characteristics and
chemosensitivity profiles of in vivo patient tumors [18]. However, the main challenges
faced by tumor explant culture platforms (TECPs) are tissue viability in the absence of
an intact vasculature system and the low throughput of drug screening assays due to
limited tumor material. In response, several techniques and tools such as fortified culture
media [19], shaker incubators [20], porous tissue lifts [21], and perifusion-based culture
systems [22–25] have been evaluated to improve the short-term tissue viability. Moreover,
the integration of a microfluidic infrastructure in TECPs has shown great potential to
preserve tumor viability and increase the throughput via the reduced requirement of
samples and reagents as well as the parallelization of experiments [26–29]. Our group has
introduced a microfluidics-based TECP, known as the micro-dissected tissue (MDT) [30,31],
in which MDTs with sizes similar to large spheroids can be generated rapidly using
conventional tissue slicing and punching methods. Their small volume and roughly
spherical shape make them easy to manipulate and amenable to high-throughput methods
when originating from a primary tumor. This MDT methodology preserves the viability
(>70% proliferative and <10% cell death) of tumor fragments for up to 15 days [31].

Despite an increasing number of publications describing tumor explants and their
advantages over other 3D tumor models, there does not exist, to the best of our knowledge,
any study which compares tumor explant culture strategies with each other on objective,
experimental grounds. In this study, we compared the tissue viability of three TECP
systems: (1) conventional culture of tissue slices in plastic 96-well plates; (2) the culture
of tissue slices in oxygen-permeable microfluidic devices; and (3) the culture of MDTs in
microfluidic devices. We investigated the effect of tumor tissue size and culture vessel
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type on ex vivo tissue survival to identify the limitations of these model systems in a
non-perfused setting. Tissue slices (3 mm in diameter) and MDTs (500 µm in diameter)
of the same thickness were produced from the same tumor specimen, while keeping the
tissue volume and medium volume ratio constant. Samples were cultured for 15 days
and examined at various time points for oxygen and glucose consumption, morphology,
viability, proliferation, epithelial content, and hypoxia. Our results demonstrate that MDTs
preserve higher levels of viability and proliferation than tissue slices over the same culture
period. By comparing tissue slices in microfluidic devices and 96-well plates, we show
that the oxygen-permeability of the microfluidic devices reduces the extent of hypoxia but
does not prevent hypoxic cores from forming within the tissue. Our results identify the
strengths and weaknesses of studied models and provide insights to orient the choice of
tumor explant models for future studies.

2. Materials and Methods
2.1. Design and Fabrication of the Microfluidic Device

Microfluidic devices were composed of two polydimethylsiloxane (PDMS) layers
obtained by moulding on micromachined polymethylmethacrylate (PMMA) or 3D-printed
resin moulds. To form both layers, the elastomer base and the curing agent (Sylgard®

184 silicone elastomer kit, Dow Corning, Midland, MI, USA) were mixed at a weight ratio
of 10:1, degassed, and cured for 1 h at 80 ◦C. The MDT chip design has previously been
described [31] and is illustrated in Figure 1a. Briefly, the bottom layer contained four fluidic
channels of 0.9 × 1.1 mm rectangular cross-sections, each featuring an inlet and an outlet
of 3.2 mm and 1.5 mm, respectively. The bottom layer consisted of a 4 × 8 array of 0.7 mm
square cross-section wells that serve as traps for the MDT. The top layer of the tissue slice
chip contained two fluidic channels that were 23 mm long with a 0.9 × 1.1 mm rectangular
cross-section, each featuring an inlet of 3.2 mm in diameter. The bottom layer consisted of
an 18 mm long fluidic channel with a 1.1 mm square cross-section connected to a 7 mm
diameter cylinder, which served as the tissue slice chamber on one end and an outlet of
1.5 mm diameter on the other end. The top and bottom layers of both types of microfluidic
devices were rendered hydrophilic and bonded using atmospheric plasma treatment to
form enclosed channels. To seal the tissue slice chamber, a PDMS plug was designed from
a 3D-printed mould (Figure 1a). All microfluidic devices and well plates were sterilized
with ethanol and prepped with a triblock copolymer (Pluronic® F-108, Sigma-Aldrich, St.
Louis, MO, USA), as previously described [30].

2.2. Finite Element Methodology

We used COMSOL Multiphysics© software v.5.5 (COMSOL Inc, Burlington, ME, USA)
to simulate the passive diffusion of oxygen and glucose in the MDTs and tissue slices
in between the medium changes. The geometry of the model was drawn using built-in
COMSOL drawing tools. The dimensions of the devices can be found in the Supplementary
Material, Table S1. All simulations were conducted at a constant biological temperature
(37 ◦C). Fick’s second law of diffusion was applied using the transport of diluted species
physics in COMSOL to model the transport of oxygen and glucose in the culture medium
and tissue. We first simulated oxygen transfer through the PDMS layers. As previously
reported by Kim et al. [32], our simulations showed rapid oxygen exchange through the
thin layers of PDMS at the top and bottom of the device that were exposed to ambient air.
This can also be explained analytically. For instance, the effective diffusion time (t = x2/2D)
for oxygen transfer through the 2 mm thick PDMS slab at the bottom of the device was less
than 10 s, meaning that oxygen concentration through PDMS stabilizes after a few seconds.
For this, we considered a constant oxygen concentration of oxygen at the top and bottom
of the devices. However, oxygen transfer through other PDMS walls is not sufficient due to
larger PDMS thicknesses and being constrained to medium-filled channels or wells. Hence,
we imposed a no-flux (Neumann) boundary conditions at all other PDMS walls as well as
plastic walls. All interface boundaries (Air/PDMS, PDMS/Medium and Medium/Tissue)
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were set with a continuity condition. We used Michaelis–Menten (MM) kinetics to model
the glucose and oxygen consumption rates of the cells. The average Michaelis–Menten
uptake kinetics found in the literature [30,33,34] imply high consumption rates in the
abundance of nutrients and lower consumption rates when nutrients are depleted. The
Michaelis–Menten constants served as the concentration thresholds, below which the
normal cell metabolism is altered [35,36]. Furthermore, hypoxia is present in tumors when
oxygen partial pressure falls below 10 mmHg (i.e., 13 µM dissolved oxygen in the culture
medium) [37,38]. The design of the previously optimized MDT chip that ensures the
high viability of MDTs [31,39] was adapted for tissue slices. We simulated the worst-case
experimental scenario for glucose and oxygen consumption in tissue slices and MDTs:
tissue settling on the bottom surface of the well, far from the medium-filled channels for
glucose; and tissue floating in the middle of the well, far from the oxygen permeable PDMS
walls for oxygen Figure 1b. Oxygen in microfluidic devices is replenished continuously and
reaches steady state after a few seconds (30 s or less) in culture. In contrast, in plastic 96-well
plates, it is a finite source and is depleted at the tissue core within seconds. Glucose is a
finite source in all devices and is supplied through medium refreshment every 24 h. Tissue
uptake and diffusion parameters are provided in the Supplementary Material, Table S2.
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Figure 1. Design and operation of the microfluidic devices. (a) Schematic representation of the culture vessels. (b) Schematic
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simulation of the concentration distribution of glucose (at 24 h post-culture) and oxygen (at 30 s) in the midplanes of tumor
models. Simulated changes in the concentration of glucose (d) and oxygen (e) in culture.

2.3. Ovarian and Prostate Cancer Cell Lines for Xenograft Production

Human carcinoma cell lines derived from ovarian cancer tumors, TOV112D (RRID:
CVCL_3612) and TOV21G (RRID:CVCL_3613), and one metastatic prostate cancer tumor,
DU145 (RRID:CVCL_0105), were used to produce mouse xenografts. Ovarian cancer cells
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were grown as monolayers (2D culture) in OSE medium (316-030-CL, Wisent Inc., Saint-
Bruno-de-Montarville, Canada) supplemented with 10% fetal bovine serum (FBS; Gibco™,
Thermo Fisher Scientific, Waltham, MA, USA), 55 mg/L gentamicin (Gibco™, Thermo
Fisher Scientific) and 0.6 mg/L amphotericin B (Gibco™, Thermo Fisher Scientific). Prostate
cancer cells were grown in RPMI medium (Thermo Fisher Scientific) supplemented with
10% fetal bovine serum (FBS; Gibco™, Thermo Fisher Scientific), 55 mg/L gentamicin
(Gibco™, Thermo Fisher Scientific) and 0.6 mg/L amphotericin B (Gibco™, Thermo Fisher
Scientific). After reaching confluency, cell suspensions (1,000,000 cells) were mixed with
Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) at a 1:1 ratio and subcutaneously
injected into the flank of immunodeficient NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ female
or male mice (Charles River Development, Wilmington, MA, USA), depending on the
cancer type. Xenograft tumors were harvested once they reached a volume between 1500
and 2000 mm3. All animal procedures were performed in accordance with the Guidelines
for the Care and Use of Laboratory Animals of the CRCHUM and approved by the Animal
Ethics Committee (the Comité Institutionnel de Protection des Animaux).

2.4. MDT and Tissue Slice Production from Cell Line Xenograft Tumors

We adapted our previously published method [31] for the production of MDTs to
prepare tissue slices. Briefly, a tissue chopper (McIlwain, Ted Pella©, Redding, CA, USA)
was used to cut the xenograft into 350 µm thick tissue slices. Tissue slices were kept in
Hank’s Balanced Saline Solution (HBSS, 311-516-CL, Wisent Inc., Saint-Jean-Baptiste, QC,
Canada) supplemented with 10% FBS, 55 mg/L gentamicin and 0.6 mg L−1 amphotericin
B. Tissue slices were further punched into MDTs using a 500 µm diameter tissue punch,
and into standard tissue slices using a 3 mm diameter tissue punch (Zivic Instruments,
Pittsburgh, PA, USA) and kept with the antibiotic and antifungal.

2.5. Tissue Loading, Trapping, and Culture of Tissue

The loading, trapping, and culturing of MDTs was performed as previously de-
scribed [31]. For tissue slices, the device plug was removed, and one tissue slice was placed
in the HBSS-filled tissue chamber using tweezers under sterile conditions. The plug was
then put back in place to seal the device. One tissue slice per well was transferred to 96-well
plates. Culture media were changed right after tissue loading and every 24 h for tissue
slices and MDTs.

2.6. Formalin Fixation and Paraffin Embedding Protocol and Tissue Staining

We followed our previously published on-chip paraffin embedding lithography (PEL)
protocol to produce MDTMA blocks for MDTs and standard paraffin blocks for tissue
slices [31]. Each paraffin block was sliced into 4 µm thick sections using a microtome. Each
paraffin slice was placed on a TOMO® hydrophilic adhesion slide (Matsunami, Bellingham,
WA, USA). Paraffin sections underwent hematoxylin and eosin (H&E) staining as well as
immunofluorescence (IF) staining to assess the presence of tumoral cells (cytokeratin 8/18
(CK8/18) and human-specific mitochondria), proliferation (Ki-67), cellular death (cleaved
caspase-3, CC3), and the presence of hypoxia (carbonic anhydrase 9, CA-IX) in the tumor
models. IF staining was performed using the BenchMark XT automated stainer (Ventana
Medical System Inc., Tucson, AZ). Antigen retrieval was carried out with Cell Conditioning
1 (Ventana Medical System Inc; #950-123) for 90 min for all primary antibodies. Rabbit
anti-CA-IX (1:1000) antibody (ab15086, Abcam, Cambridge, United Kingdom), mouse
anti-CK8/18 (1:200) antibody (IR09461-2, Agilent, CA, USA), mouse anti-mitochondria
(1:2500) antibody (ab92824, Abcam), mouse anti-Ki67 (1:500) antibody (9449, Cell Signaling
Technology, Danvers, MA, USA), and rabbit anti-cleaved caspase-3 (1:200) antibody (9661,
Cell Signaling Technology) were automatically dispensed. The slides were incubated at
37 ◦C for 60 min and secondary antibodies were incubated at room temperature on the
bench. All sections were scanned with a 20 × 0.75 NA objective with a resolution of
0.3225 µm (bx61vs, Olympus, Toronto, ON, Canada).
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2.7. Quantification of Immunofluorescent Staining

To quantify protein expressions using IF, we used VisiomorphDP software (Visio-
Pharm, Hørsholm, Denmark) [40,41]. Briefly, the tissue core surface area was detected
through the Dapi channel. The surface area of CK8/18 and human mitochondria positive
cells was labeled and quantified in the tissue core to differentiate human epithelial tumor
cells from murine and stromal cells. Proliferation was quantified by dividing the surface
area of Ki67-positive tumor cell by the total surface area of the tumoral cells. CC3 staining
was observed both in the nuclei and in the cytoplasm. CC3 and CA-IX cytoplasmic staining
were quantified by dividing the surface area of positively stained cells by the surface area
of the epithelial cells.

2.8. Statistical Analysis

Statistical analyses were performed in GraphPad Prism© version 8.0 using the non-
parametric one-way ANOVA Kruskal–Wallis test and post hoc Dunn’s test, because the
data were not normally distributed according to the D’Agostino and Pearson omnibus
normality test, and the sample size for tissue slices was small. For each experiment, a
minimum of 15 MDTs or 3 tissue slices were analyzed at each time point for each condition.
All experiments were repeated at least three times (N = 3). All data are reported as the
mean ± SEM unless otherwise stated. The reported p-values were generated using a post
hoc test (Dunn’s test).

3. Results
3.1. Numerical Simulation Predicts Sufficient Oxygen and Glucose in MDTs and Deficiency in
Tissue Slices

Our group has previously designed a microfluidic platform that sustained the viability
of 32 MDTs over 15 days [31]. Similar to our MDT model system, a microfluidic device was
designed that holds a single tissue slice with a volume equivalent to 32 MDTs (Figure 1a).
Thus, a total tissue volume of 2.4 µL surrounded by 250 µL of medium volume was
considered for all three models for both simulations and experiments. Glucose uptake
simulations were then conducted to gain insight on glucose depletion in tissue models
during the 24 h medium change intervals. Simulations suggested that the concentration
of glucose available in tissue slices fell below the Michaelis–Menten threshold, indicating
glucose deprivation, regardless of the culture platform (Figure 1c,d). In contrast, MDTs had
sufficient glucose (Figure 1c,d) after 24 h of culture. Simulation results for oxygen depletion
in tissue models revealed that complete tissue anoxia (C = 0.5 µM) was present in the core of
tissue slices cultivated in 96-well plates (Figure 1c,e). In the oxygen-permeable microfluidic
devices, slices fared better but still suffered hypoxia in the core (C = 1.2 µM) (Figure 1c,e).
In MDTs, a mild oxygen depletion was calculated, resulting in a final concentration of
34.4 µM oxygen in the core, which was about eight times greater than the hypoxic threshold
(C = 4.6 µM) at its core (Figure 1c,e). Overall, our simulations predicted that MDTs had
sufficient glucose and oxygen availability, and that tissue slices would experience both
oxygen and glucose deficiencies.

3.2. Tumor Models Preserve the Characteristics of the Primary Xenograft Tumor

To verify whether specific features of the primary xenograft tumor were captured in
our tumor models, a fraction of the harvested specimen was instantly fixed in formalin
and the remaining tumor tissue was used to produce the MDT and tissue slice tumor
models. We performed histological and protein expression analyses to compare the primary
xenograft tumor with the two tissue sizes (i.e., MDTs and tissue slices) on the day of harvest
(day 0). H&E staining showed that the architecture of the primary xenograft tumor,
including the varying cell-packing densities, tumoral structures and their spatial relation
with stromal components, were preserved (Figure 2a). Furthermore, IF scoring of the tumor
cells (i.e., CK8/18 combined with human mitochondria), proliferation (Ki67), and cell death
(CC3) showed that the tumor models mirror the epithelial cellularity and viability of the
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corresponding primary xenograft tissue (Figure 2b–d). These results were consistent for
the three different cell lines and suggest that, despite their differences in size, our tumor
models represent the characteristics of the primary xenograft tumor, and that the tissue
dissection procedure did not significantly alter tissue viability.
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Figure 2. Characteristics of primary xenografts and tumor models of ovarian and prostate cancers. (a) Cross sections and
staining of the entire primary xenograft tissues of ovarian cancer cell line (TOV21G and TOV112D) and prostate cancer cell
line (DU145). Magnified tissue areas stained with H&E, tumor cell marker (CK8/18 + mito), proliferation marker (Ki67),
and apoptosis marker (CC3). (b–d) IF scoring of primary xenograft and tumor models of TOV112D (b), TOV21G (c) and
DU145 (d). All experiments were performed on the same xenograft as the starting material. Scale bars = 1 mm in whole
tissue images and 100 µm in magnified images. Error bars = ±SEM.

3.3. Viability and Proliferation Activity in MDTs Are Higher than Tissue Slices over the
Culture Period

Changes in cell viability or tissue structure that occur over time in tumor explants may
affect the interpretation of chemosensitivity analysis. Therefore, we examined the effect
of culture conditions within the tumor models, specifically, variations in the cancer cell
compartmentalization, and measured the fraction of intact nuclei (DAPI), apoptotic cells
(CC3), and proliferative cells (Ki67) within the tumoral component after 0, 2, 5, 10, and
15 days in culture. H&E staining and tumor-cell-specific biomarkers (i.e., CK8/18 and mito)
confirmed that the architecture of the primary tumor and the tumoral components were
preserved in the tumor models for up to 15 days in culture (Figure 3a,b and Supplementary
Figure S1a). Our observations suggest that MDTs and tissue slices have comparable
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proliferative activity in culture for a maximum of 5 days; however, tissue slices under
both culture conditions had significantly lower proliferation compared to MDTs later in
the culture period (Figure 3c). Moreover, we observed that a large number of nuclei were
lost in tissue slices that were in culture for 10 days or more, which was also a sign of
cellular death by various pathways [42,43]. We quantified the number of intact nuclei in the
tumoral compartment of the tissue. IF scoring suggested that the area of cells with intact
nuclei in the tumoral compartment in MDTs was significantly higher than tissue slices
after 10 days in culture (Figure 3d). Furthermore, tumor cell proliferation and viability
were generally lower in tissue slices cultured in 96-well plates compared to matched tissue
slices in microfluidic devices. Analysis of the apoptotic marker CC3 showed no significant
difference between the tumor models that had been in culture for 5 days or more (Figure 3e).
The loss of CC3 signal could be due a high level of necrosis in tissue slices. These results
are consistent for all the three cell lines used in this study (Figure S1). Taken together, our
findings suggest that MDTs maintained higher viability and proliferation activity compared
to the tissue slices over the culture period.
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Figure 3. Tumor model viability over a 15-day culture period represented by ovarian cancer cell line xenografts
(TOV21G). (a) Representative images of tumor models after 10 days in culture stained for nuclei (Dapi), human tumor
cells (CK8/18+mito), cell proliferation (Ki67), and cell apoptosis (CC3). (b) IF scoring of tumor models showing stable
expression of tumor-cell-specific marker (CK8/18+mito) over the 15-day period. (c–e) IF scoring of tumor models showing
higher proliferation (c), larger nucleated area (d), and lower apoptotic cell death (e) in MDTs compared to tissue slices. Scale
bars = 100 µm. Error bars = ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.0001; **** p < 0.00001.

3.4. Elevated Levels of Hypoxia Are Found in Tissue Slices but Not in MDTs under Normoxic
Culture Conditions

Ex vivo tissues develop hypoxic cores and subsequent necrosis in a non-perfused
TECP, which may alter the drug screening analyses [9]. To date, no study has compared
the extent of hypoxia and the hypoxia-associated cell death that occurs in different ex vivo
tissue-derived models. To address this, we examined the incidence of hypoxia through
carbonic anhydrase-IX (CA-IX) expression, a downstream target of the hypoxia-inducible
factor 1-alpha (HIF1A) known to be up-regulated under hypoxic conditions [44–46]. We
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observed that tissue slices and MDTs had a comparable fraction of hypoxic cells at day 0.
The expression level of CA-IX in MDTs was stable and generally lower than in tissue slices
at different time points (Figure 4b–d). However, tissue slices under both culture conditions
gained increasing and higher-than-MDT levels of hypoxia for up to 10 days in culture
compared to their baseline hypoxic fractions (Figure 4b–d). In particular, higher levels of
CA-IX expression were observed in tissue slices cultured in 96-well plates at all the time
points. The reduction in CA-IX signal after 10 days in culture may be due to increased cell
death at later time points (as shown in Figure 4e), resulting in the loss of signal. To further
validate the loss of CA-IX signal after 10 days in culture, the H&E and IF staining of CA-IX
(Figure 4a) were superimposed for pathological review and revealed that a large proportion
of tissue slices in culture for 10 days or more had undergone coagulative necrosis, a form of
necrosis mainly caused by hypoxia [43]. Furthermore, even though tissue slices produced
from all the three cell lines showed higher levels of hypoxia and necrosis compared to their
counterpart MDTs, the difference started earlier on and was more significant in ovarian
cancer cell lines (i.e., TOV112D and TOV21G) compared to the prostate cancer cell line
(DU145) (Figure 4b–d). This difference may be caused by the different metabolic profiles of
cancer cell lines [47]. Furthermore, even though CA IX has been shown to be an excellent
endogenous marker [48], it is reported to be less sensitive to prompt changes in the level of
oxygenation (i.e., acute hypoxia or reoxygenation) compared to exogenous markers such as
Pimonidazole [49,50]. Responses to exogeneous markers remain to be assessed. However,
our transport model seems to match the CA IX results in all circumstances.
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Figure 4. Incidence of hypoxia and necrosis in tumor models over a 15-day culture period using ovarian (TOV21G and
TOC112D) and prostate (DU145) cancer cell line xenografts. (a) Representative images of tumor models produced from
TOV21G after 10 days in culture stained with H&E or following IF with Dapi and CA-IX. H&E staining showed high levels
of necrosis in tissue slices. b, c, and d IF scoring of tumor models of showed higher CA-IX expression over the 15-day period
in tissue slices compared to MDTs. Results show increasing CA-IX expression until day 10 of culture in tissue slices for
TOV21G (b), TOV112D (c), and DU145 (d) xenograft tumor models. Scale bars = 100 µm. Error bars = ± SEM. * p < 0.05;
** p < 0.01; *** p < 0.0001; **** p < 0.00001.
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4. Discussion

The strong drive to improve the predictive power of model systems to maximize the
chances of success in the clinic has made TECPs, be they tissue chunks, precision-cut tissue
slices, or microdissected tissue, attractive in preclinical settings [19,29,30,51,52]. TECPs are
the only model which preserve the native cellular diversity, tumor-stroma compartmen-
talization, and immune components found in primary animal and human tumors [53]. In
addition to the biological aspects [54], there are time and cost gains in choosing TECPs
over in vivo animal models. The use of primary patient tissue requires informed consent
from patients, whereas patient tumor specimens are often readily available from surgery or
biopsies with minimal or no additional risk for the patient [55]. Moreover, TECPs require
fewer resources than in vivo models because many ex vivo tissue samples can be derived
from a single specimen to test many drug conditions [56,57]. Of the two tumor formats and
three culture conditions tested, microdissected tissue revealed themselves as the model of
choice to maximize viability, throughput, multiplexing of treatment conditions, and overall
process efficiency per unit tumor volume. Compared to tissue slices which showed clear
signs of necrosis after 3–5 days, MDTs preserved high viability for a period of 15 days,
which renders them useful for longer-term drug screening assays. We also found hypoxia,
and consequently, hypoxia-induced cell death, to be significantly lower in microdissected
tissue compared to tissue slices. Physically, this can be readily explained by the fact that
there is a much greater surface-to-volume ratio in a sphere of a certain diameter than in a
slice of the same diameter in thickness; thus, oxygen transport is enhanced in spheres [58].

Notably, however, tissue slices preserve larger tissue features in comparison to ran-
domly selected MDTs from a tumor. Cutting tissue to small dimensions limits the use
of tumor morphology and phenotypic evolution in treatment response prognoses. How-
ever, we have previously assessed the minimum number of MDTs that are required to
represent a primary xenografted tumor by a Monte-Carlo simulation, which demonstrated
that incorporating 15 or more MDTs in the study would address the question of hetero-
geneity [31]. Furthermore, randomly selected MDTs may even predict the heterogenous
chemotherapeutic responses better than single tissue slices. Regarding hypoxia and oxygen
gradients, one could argue that it plays a key role in tumor sensitivity and resistance
to treatments [59,60] and must be present in a preclinical model. In this scenario tissue
slice, being severely hypoxic and displaying sharp oxygen gradients may provide better
prediction provided they can be kept from dying early in culture. However, the survival
of tissues remains a problem which has not been resolved by device perfusion due to the
very low tissue porosity and permeability [61,62], and perfusion techniques only increase
the survival marginally [52,63]. Finally, microdissected tissue, although exhibiting little or
no oxygen depletion, could always be used inside hypoxic chambers to test the treatment
response as a function of oxygen availability. They form, as such, an interesting alternative
to tissue slices [9,64]. However, the varying and fluctuating levels of oxygenation seen
in vivo and the subsequent cell responses to such fluctuations cannot be modeled using
these in vitro assays.

5. Conclusions

In this study, we investigated the effect of the tumor tissue size and culture vessel
type on ex vivo survival by comparing micro-dissected tumor tissue with tissue slices
cultured in PDMS-based microfluidic or plastic vessels. We observed that the viability
and proliferative capacity of MDTs remained higher than those of tissue slices during the
time course of the experiments. Moreover, oxygen-permeable microfluidic devices may
improve the survival of tissue slices to some extent, but do not ultimately prevent the
nutrient deficiency and cell death commonly associated with tissues of this size. We have
shown that necrosis and hypoxia is preventable in MDTs but occurs in tissue slices under
both culture conditions. However, tissue slices cultured in oxygen-permeable microfluidic
devices have a lower degree of hypoxia compared to those in 96-well plates. Our results
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provide evidence that the model geometry and culture vessel play an important role in
tissue survival and must be carefully selected in designing chemosensitivity assays.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164208/s1, Figure S1: Tumor model viability over a 15-day culture period represented
by ovarian (TOV112D) and prostate (DU145) cancer cell line xenograft models. Table S1: Dimensions
of devices; Table S2: Tissue uptake parameters and diffusion properties.
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