
Titre:
Title:

Antimicrobial properties of the Ag, Cu Nanoparticle System

Auteurs:
Authors:

Xinzhen Fan, L'Hocine Yahia, & Edward Sacher 

Date: 2021

Type: Article de revue / Article

Référence:
Citation:

Fan, X., Yahia, L., & Sacher, E. (2021). Antimicrobial properties of the Ag, Cu 
Nanoparticle System. Biology, 10(2), 37 pages. 
https://doi.org/10.3390/biology10020137

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9366/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Biology (vol. 10, no. 2) 

Maison d’édition:
Publisher:

MDPI

URL officiel:
Official URL:

https://doi.org/10.3390/biology10020137

Mention légale:
Legal notice:

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (https://creativecommons.org/licenses/by/4.0/) 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.3390/biology10020137
https://publications.polymtl.ca/9366/
https://doi.org/10.3390/biology10020137


biology

Review

Antimicrobial Properties of the Ag, Cu Nanoparticle System

Xinzhen Fan 1, L’Hocine Yahia 1 and Edward Sacher 2,*,†

����������
�������

Citation: Fan, X.; Yahia, L.; Sacher, E.

Antimicrobial Properties of the Ag,

Cu Nanoparticle System. Biology 2021,

10, 137. https://doi.org/10.3390/

biology10020137

Academic Editors: Jack C. Leo and

Gill Diamond

Received: 17 January 2021

Accepted: 7 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique,
Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada;
Xinzhen.fan@polymtl.ca (X.F.); lhocine.yahia@polymt.ca (L.Y.)

2 Département de Génie Physique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal,
QC H3C 3A7, Canada

* Correspondence: edward.sacher@polymtl.ca
† Submitting author.

Simple Summary: The antimicrobial properties of Ag and Cu nanoparticles, their mixtures and their
alloys, are reviewed.

Abstract: Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such
biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The
antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible
mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the
immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs,
have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface
treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag
and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals.
Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which
impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically,
offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag–Cu NPs, the
antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we
discuss these results and the possible behavior mechanisms that underlie them.

Keywords: antibacterial; biofilm; metal nanoparticles

1. Introduction

As the antibiotic resistance of microbes to drugs grows, nanotechnology provides
us an opportunity to resolve this problem [1,2]. Metal NPs, referred to as nanobiotics,
have been proposed as novel antimicrobial agents. They have the potential to reduce or
eliminate the continuous emergence of bacterial resistance [3]. The metals used for these
NPs are almost exclusively heavy metals, such as Ag and Cu.

Ag has been utilized as an antimicrobial agent for several millennia, since Hippocrates
prescribed the use of Ag to treat ulcers [4,5]. As nanotechnology has developed [6], Ag NPs
have become widely used in antimicrobial applications, especially in combatting antibiotic-
resistant bacteria and nosocomial infections [5]. As for Cu, its antiseptic potential was
recorded four thousand years ago [7]. Indeed, the first report of Cu as an antimicrobial agent
predates that of Ag. Despite this, antimicrobial studies of Ag are more common than those
of Cu. What is noteworthy is that, compared to the large number of antimicrobial studies
of Ag or Cu, the number of the publications involved in the combination of antimicrobial
Ag and Cu nanomaterials is only approximately 300, so far (Figure 1).

Despite this, their exact antimicrobial mechanisms are still elusive. Currently pro-
posed theories all have limitation, and cannot explain the antimicrobial activities in all
situations. Recently, AgCu nanoalloys were reported to have antimicrobial properties far
greater than either Ag or Cu NPs [8,9]. As it is the NP surface that participates in all the
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proposed mechanisms, it is our position that the physicochemical surface characterization
of NPs, particularly their surfaces, will determine the actual reason(s) behind antimicrobial
behavior. It is our purpose to discuss and summarize the antimicrobial activities of Ag and
Cu NPs, their combinations and alloys.
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2. Biofilm Contamination
2.1. Bacteria and Fungi

The majority of bacteria can be classified into two types: Gram-positive and Gram-
negative. The main difference between such bacteria is their cell structures: Gram-positive
bacteria have a thick layer of peptidoglycan in the cell walls, while the peptidoglycan layer
of Gram-negative bacteria is thinner, and covered with another lipid membrane. Mostly,
Staphylococcus aureus is used to represent Gram-positive bacteria, and Escherichia coli, Gram-
negative bacteria, in antibacterial experiments. Some researchers have found Gram-positive
bacteria to be more sensitive to NPs, because they consider the cell wall structure of Gram-
negative bacteria to be more complex [10,11]. In contrast, other researchers believe that
Gram-negative bacteria are more susceptible to antibacterial Ag NPs, as it is easier for Ag
ions to penetrate the thinner cell walls of Gram-negative bacteria [12,13].

Contamination by fungi has also become a significant healthcare concern. Due to the
presence of fungal eukaryotic cells, infections caused by fungi are more difficult to diagnose
and treat than those caused by bacteria [14]. The most common fungus, Candida albicans [15],
can survive, proliferate and spread for several weeks, on either dry or wet surfaces, and
may cause bloodstream infections that have a high mortality rate. It has been reported that
Ag NPs can inhibit the growth of fungal strains, and further damage fungus cells [16–18].
By contrast, Cu NPs exhibit favorable antifungal efficiency mainly in the field of fungus-
induced plant diseases, rather than of human diseases [19–21]. However, Ag, Cu, and
AgCu nanoalloy NPs cannot inhibit and kill Candida albicans as efficiently as they can E. coli
and S. aureus [22].

2.2. Biofilm and Planktonic Microbes

Biofilms are clusters of microbes (bacteria, fungi) with an extracellular matrix made
up of polymeric substances, such as polysaccharides, proteins, lipids, nucleic acids, and
humic substances, which attach to inert or living surfaces [23–25]. Extracellular polymeric
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substances may play the role of a protective shelter, or a diffusion barrier. Therefore,
biofilms are stable enough to resist physical forces, pH changes, oxygen radicals, as well as
antibiotics and phagocytosis [26,27]. Although, in some cases, the strains are comprised
of different species of microbes, the biofilms produced are still stable, or often even more
stable [28]. In hospitals or clinics, biofilm formation on the surfaces of medical instruments
may cause nosocomial infections [29]. Similarly, such formation on the surfaces of implants
lead to orthopedic implant infections [30].

Planktonic microbes are free-living microbes, which may float or swim in a fluid
medium. Compared to biofilms, it is generally believed that planktonic microbes are
more susceptible to antimicrobial agents such as NPs [31,32], because NPs must aggregate
and interact with the extracellular polymetric substances produced in biofilms, thereby
decreasing their toxicity to microbial cells [33]. Thus, the antibiotic resistance of biofilms is
much greater than that of planktonic bacteria [34].

2.3. Biofilm Formation and Prevention

Nosocomial infections are a significant source of human morbidity and mortality,
which affects millions of patients annually [35]. It is generally believed that planktonic
bacteria attaching to the surfaces of medical devices, or public items in hospitals, may prolif-
erate to form the initial thin biofilm. When growing to mature biofilms, planktonic bacterial
cells may disperse, attacking new surfaces, and starting new life cycles (Figure 2) [24].
Ultimately, biofilm-caused contamination may spread to some key hospital areas, such as
intensive care units (ICUs) [36].
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Recently, another model was proposed to explain biofilm formation (Figure 3). This
model proposes that multicellular aggregates can form biofilms more easily than single
cells [37]. This model is more likely to correspond to biofilm formation in natural environ-
ments, in which the microbes form and disperse biofilms in the pattern of multicellular
aggregates, instead of single cells [37].
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Implants (e.g., mesh [38], dental [39], breast [40]), and other prostheses [30], also risk
biofilm contamination. A mechanism of bacterial attachment on implant surfaces was



Biology 2021, 10, 137 4 of 37

proposed, involving a two-phase attachment process: physical factors, including Brownian
motion, van der Waals attraction, and surface electrostatic forces, contribute to the initial
phase of the interaction, followed by molecular reactions between the implant surface
and the bacterial surface polymeric structure, which can result in stronger interfacial
adhesion [41–44].

Patients, following surgery, may have to face the serious consequences of nosocomial
and postoperative infections, and their associated high health costs [45]. Microbes, accu-
mulated on implant surfaces, can trigger tissue inflammation, which results in osteolysis,
and even bone loss [46]. Because biofilm-mediated infections on implants occur inside
human bodies, they are difficult to detect and treat, so that the best method to resolve
this problem is to prevent biofilm formation in the first place. Designing antimicrobial
implant surfaces, such as by coating them with NPs, is currently being studied [47,48].
Implant surfaces, functionalized in this manner, were found to have not only bactericidal
properties, but also resistance to bacteria adhesion [49]. There are various explanations for
why nanostructured surfaces are thought to prevent biofilm formation. The sharp edges
of nanostructures may destroy microbial membranes, and would also be toxic to human
cells [50]. Theoretically, the hydrophilicities of the substrate and different microbial cell
surfaces are related to microbial adhesion [46]. Surfaces coated with a high density of NPs
can limit the adhesion of Gram-positive bacteria, because of the rigid peptidoglycan mem-
brane, which is difficult to flex and adapt to the nanostructured surface [51]. Roughness
is also believed to be related to biofilm formation: surfaces with elevated rugosities favor
biofilm formation [46]. Apart from surface structure-based antimicrobial activity, NPs also
have intrinsic antimicrobial mechanisms.

3. Antimicrobial Mechanisms

Although the precise antimicrobial mechanisms of NPs are still not known, several
hypotheses have been proposed, such as the release of metal ions [12,52], antimicrobial
behavior mediated by reactive oxygen species [53], direct interaction between NPs and
microbes (i.e., contact killing) [54], a combined (comprehensive) mechanism [55], and
immunostimulatory effects [56]. The antiviral potential of NPs is discussed in this section,
as well.

3.1. Released Ions

Many research groups [57–60] believe that the main antimicrobial mechanism is the
release of ions from NPs. That is, Ag NPs only function as vehicles to transport and deliver
Ag ions for interaction with bacteria, in which the Ag ions exerted the main antimicrobial
effect (Figure 4) [61]. In order to clarify the antimicrobial mechanism, the antimicrobial
property of Ag nitrate solution was evaluated against E. coli [62], which found that Ag ions
interact with membrane proteins to change the membrane permeability. The mechanism
of protein deactivation is probably dependent on the reaction of Ag ions with cysteine
residues [63]. After the released ions enter bacterial cells, DNA and RNA, and their
transcriptional responses, are affected [57]. In other research, in order to eliminate the
influence of the NPs themselves, NPs were confined in a matrix, which only permitted
ion generation and release [64]; the results showed good antibacterial properties, which
demonstrated the key role of ions in antimicrobial activity.
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It was also shown that antimicrobial efficacy is based on the surface charge of Ag NPs,
in which positively charged Ag NPs exhibit higher antimicrobial effectiveness than those
negatively charged [65]. Generally, the surface charge can be altered through conjugating
different capping agents. The cell walls of both Gram-positive [66] and Gram-negative [67]
bacteria are negatively charged. Therefore, the greater the positive NP surface charge, the
lower the electrostatic barrier. As a result, positively charged Ag NPs interact more readily
with bacteria and exhibit greater antibacterial properties [68].

3.2. Reactive Oxygen Species

Reactive oxygen species (ROS) are short-lived, highly reactive molecules containing
oxygen. Typically, they consist of unstable oxygen free radicals, including hydroxyl rad-
ical (•OH), peroxide (O2•−2) and superoxide (O2•−) anions, and non-radicals, such as
hydrogen peroxide (H2O2) and hydroxyl ions (OH−) [69,70]. Normally, ROS are generated
and consumed by cells under dynamic balance. If the generation of ROS surpasses the
antioxidant capacity of microbial cells, oxidative stress may be induced [71]. Such oxidative
stress is liable to damage intracellular biomacromolecules, such as proteins, lipids, RNA
and DNA [72–76].

Different ROS exhibit different antimicrobial capacities. The commonly discussed ROS
in antimicrobial activity are OH−, H2O2, and O2•−. Some negative ROS, such as OH−,
are prone to interact with positively charged microbial cell membranes, although H2O2
is more efficient in penetrating cell membranes [77,78]. Interestingly, one report indicates
that ROS can maintain cell membranes intact and simultaneously destroy intracellular
biomolecules [79].

Ions released from NPs under humid circumstances can induce ROS generation. Elec-
trons released from Ag NPs have been found to lead to bursts of ROS in both extracellular
and intracellular environments (Figure 5) [80]. The oxidative stress induced by excess
ROS can destroy biomolecules; once a ROS scavenger, such as acetylcysteine, is added, the
antimicrobial activity of Ag NPs is noticeably restrained, confirming that bacteria can be
killed by NP-induced excess ROS production.
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3.3. Contact Killing

Some research has demonstrated that NPs possess antimicrobial properties under dry
conditions [81,82], indicating that direct contact appears to be a potential antimicrobial
mechanism. In a dry environment, no electrochemical reactions occur on the surface of NPs,
so ions and electrons are not released to interact with biomolecules, or induce ROS bursts.
It is posited that Cu NPs interact with membrane proteins [83], and penetrate into bacterial
cells [84], inducing an explosion of ROS in the intracellular environment (Figure 6) [85].
Experiments have shown that the production of ions cannot increase the antibacterial effect
of Cu NPs [81].
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In some studies, Ag NP were found to show good antimicrobial properties under
circumstances where no Ag ions could be detected [86]. Additionally, control experiments
were carried out to compare the antimicrobial efficiencies of Ag NPs and Ag ions, which
indicate that NPs were more effective against E. coli than ions [87]. It was reported that
the concentration of released ions from different sizes of Ag NPs was essentially identical,
while their antibacterial activities were different, implying that contact killing was the



Biology 2021, 10, 137 7 of 37

dominate antibacterial factor [88]. Another example, based on a comparison between im-
mobilized and colloidal Ag NPs [89], also implied that contact killing was the predominant
antimicrobial mechanism. As well, the formation of porous structures and holes on the
E. coli cell surface, when attaching to Ag NPs, is evidence of contact killing [90]. However,
most studies were not conducted under absolutely dry conditions, which would have
eliminated the possible effect of ions and ROS.

3.4. Combined Antimicrobial Mechanism

NP antimicrobial activity does not appear to be dependent on any one individual
hypothesis. Rather, the previously cited mechanisms (NPs, released ions, and ROS) should
all be considered, with several possibly operating synergistically in the antimicrobial
process.

In terms of this hypothesis, all may simultaneously exercise their own separate
roles [55,91,92]. As an example, Ag NPs may accumulate on the bacterial cell walls and
membranes, and regulate membrane proteins [93], changing the membrane permeability
to permit both Ag NP and ion transport into bacteria cells. Ag NPs that have penetrated
into cells, continue to release ions, which can attack proteins and DNA. Intracellular ROS
are produced by Ag ions, which may also affect proteins and DNA (Figure 7) [55].
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3.5. Immunostimulatory Effects

In addition to direct killing, NPs can also modulate immune responses, and enhance
innate antimicrobial immune defenses [56]. Reactive nitrogen species (RNS), like ROS,
are important in the antimicrobial process [94]. Ag and Cu NPs can cause an increase in
the concentration of nitric oxide, one kind of RNS, resulting in a synergistic host immune
defense against microbes [95,96]. Nitric oxide can also oxidize Cu, present in protective
proteins in microbes, to free Cu ions, which boosts toxicity to microbial cells [56].

In addition to RNS, antimicrobial peptides are abundant natural antibiotics, produced
by humans, which play a significant antibiotic role in the immune system [97,98]. Both
Ag and Cu NPs exhibit synergistic antimicrobial effects with polymyxin B, one type of
antimicrobial peptide [56,99].

Adjuvants are often used in vaccine production to improve the immune response [100].
Ag NPs, used as vaccine adjuvants, can dramatically induce the increase of the antigen-
specific IgG1/IgG2a ratio, as well as antigen-specific IgE. Local leukocytes, particularly
macrophages, are also activated by Ag NPs [101].
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Although the immunostimulatory effect of NPs has been proposed as a possible
antimicrobial mechanism, the relevant reports are still scarce.

3.6. Antiviral Mechanism

In the context of the COVID-19 pandemic and its ongoing vaccine development,
research on effective antiviral agents is urgent. It has been reported that the survival time
of the coronavirus on different materials, such as metal, paper, plastic, and glass, varies
from a few hours to days [102]. Because of their ability to interact with proteins, DNA and
RNA, metal NPs have the potential to destroy viruses.

One possible NP antiviral mechanism was proposed as occurring in three stages
(Figure 8): (1) interaction with the viral protein shell, to restrain its attachment to human
cells; (2) production of ions and ROS, which destroy the viral protein shell, and DNA or
RNA; (3) NP penetration into the cell, followed by interaction with enzymes, to prevent
viral replication and subsequent spread [103,104].

Biology 2021, 10, x FOR PEER REVIEW 8 of 37 
 

 

Both Ag and Cu NPs exhibit synergistic antimicrobial effects with polymyxin B, one type 
of antimicrobial peptide [56,99]. 

Adjuvants are often used in vaccine production to improve the immune response 
[100]. Ag NPs, used as vaccine adjuvants, can dramatically induce the increase of the an-
tigen-specific IgG1/IgG2a ratio, as well as antigen-specific IgE. Local leukocytes, particu-
larly macrophages, are also activated by Ag NPs [101]. 

Although the immunostimulatory effect of NPs has been proposed as a possible an-
timicrobial mechanism, the relevant reports are still scarce. 

3.6. Antiviral Mechanism 
In the context of the COVID-19 pandemic and its ongoing vaccine development, re-

search on effective antiviral agents is urgent. It has been reported that the survival time of 
the coronavirus on different materials, such as metal, paper, plastic, and glass, varies from 
a few hours to days [102]. Because of their ability to interact with proteins, DNA and RNA, 
metal NPs have the potential to destroy viruses. 

One possible NP antiviral mechanism was proposed as occurring in three stages (Fig-
ure 8): (1) interaction with the viral protein shell, to restrain its attachment to human cells; 
(2) production of ions and ROS, which destroy the viral protein shell, and DNA or RNA; (3) 
NP penetration into the cell, followed by interaction with enzymes, to prevent viral replica-
tion and subsequent spread [103,104]. 

Ag NPs have been shown to have a high antiviral capability toward the African swine 
fever virus, through interacting with its protein shell, and thereby preventing viral pene-
trating into the animal’s cell [105]. One study, involving Ag2S NPs, indicated that the an-
tiviral capacity predominantly influences the stages of viral RNA replication and budding 
[106]. Both naked Ag NPs and those coated with polysaccharide, poly N-vinyl-2-pyrroli-
done, and mercaptoethane sulfonate, exhibit activity toward HIV, TCRV, RSV, HBV, 
MPV, and HSV viruses [107]. Due to their broad-spectrum antiviral properties, Ag NPs 
have the potential to be used as antiviral drug. 

Cu NPs also display excellent antiviral behavior. Cu was found to inactivate no-
rovirus through inhibiting its RNA replication while its protein shell remained intact, 
which suggests that ions penetrated into the virus to act against the RNA [108]. CuO NPs, 
with an average size of 40 nm, exhibited effective inhibition of Herpes simplex virus type 1 
(HSV-1), although the antiviral effectiveness was not as good as that of the conventional 
antiviral medicine, acyclovir [109]. 

 
Figure 8. Possible antiviral mechanism of metal NPs. Reproduced with permission from Reference 
[103]. Copyright 2020, Springer Nature. 

Figure 8. Possible antiviral mechanism of metal NPs. Reproduced with permission from Refer-
ence [103]. Copyright 2020, Springer Nature.

Ag NPs have been shown to have a high antiviral capability toward the African
swine fever virus, through interacting with its protein shell, and thereby preventing viral
penetrating into the animal’s cell [105]. One study, involving Ag2S NPs, indicated that
the antiviral capacity predominantly influences the stages of viral RNA replication and
budding [106]. Both naked Ag NPs and those coated with polysaccharide, poly N-vinyl-2-
pyrrolidone, and mercaptoethane sulfonate, exhibit activity toward HIV, TCRV, RSV, HBV,
MPV, and HSV viruses [107]. Due to their broad-spectrum antiviral properties, Ag NPs
have the potential to be used as antiviral drug.

Cu NPs also display excellent antiviral behavior. Cu was found to inactivate norovirus
through inhibiting its RNA replication while its protein shell remained intact, which
suggests that ions penetrated into the virus to act against the RNA [108]. CuO NPs, with an
average size of 40 nm, exhibited effective inhibition of Herpes simplex virus type 1 (HSV-1),
although the antiviral effectiveness was not as good as that of the conventional antiviral
medicine, acyclovir [109].
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4. Ag and Cu NPs

The difference in antimicrobial ability between Ag and Cu NPs was initially thought
to depend on the different amounts of ions released [110]. The activity of Cu was found
to be greater than that of Ag, and, at the same NP concentration, ions released from Cu
NPs were found to be at a higher concentration [111]. However, the antimicrobial ability
of Ag NPs was found to be greater than that of Cu NPs, indicating that Ag ions are
more efficient in antimicrobial activity than Cu ions [111,112]. Ag NPs also show broader
antimicrobial effectiveness to various strains of E. coli and S. aureus, as well as to fungi [113],
which may be due to their stronger interaction with polysaccharides and proteins on cell
walls [114]. The existence of an oxide layer on Cu NPs was proposed to be the reason that
the antimicrobial capacity of Cu NPs is less than that of Ag NPs [115,116].

4.1. Influence of Size and Shape

Size has a considerable influence on antimicrobial properties. For a given mass, the
smaller the NP size, the higher the surface:volume ratio, which increases the antimicrobial
capacity, as ions can be more rapidly released [63,79,117]. Ag NPs synthesized from green
and black tea leaf extracts have shown superior antimicrobial properties than Cu NPs
produced by the same method, because the size of the Ag NPs produced is smaller [118].
However, others have suggested that size does not have much of an influence on the an-
timicrobial properties, rather that surface charge is the most significant influence factor [65].
Another study showed that larger sized Ag nanoclusters can release higher concentrations
of ions, although the antimicrobial effect was not influenced to a great extent [119]. How-
ever, size may not be the most significant antimicrobial factor, as another study revealed
that larger Ag NPs are more effective than smaller ones [65].

Nanocrystal shapes are produced by controlling growth speeds along different crys-
tallographic directions [120]. Antimicrobial properties are also impacted by different
NP shapes. Truncated triangular and spherical Ag NPs are more effective than Ag
nanorods [121]. Another study reached a similar conclusion: hexagonal Ag NPs, sim-
ilar to truncated triangular NPs, show better antimicrobial effects than spherical and
triangular shapes [122]. These results may indicate that antimicrobial effects are not related
to size, because the weakest triangular NPs have the largest surface areas at a given volume.
If the surface area determined antimicrobial properties, smaller sized NPs, with higher
surface areas, would have stronger antimicrobial activities. However, this is not what was
found. One study indicated that the (1, 1, 1) facet might be able to enhance antimicrobial
property because it can generate singlet oxygen (one type of ROS), under photo-irradiation,
while other facets do not have this function [120,123]. Anisotropic Ag NPs exhibit higher
antimicrobial effects than spherical ones, which is attributed to a greater number of crystal
(1, 1, 1) facets.

In addition to size and shape, the existence of corners, edges, defects and deformations
on the microstructure may also influence the antimicrobial effect [110].

4.2. Influence of Surface Treatment

Chemical agents or surface treatments may enhance the antimicrobial abilities of
NPs. In one study, Cu-loaded silica nanomaterial showed improved antimicrobial efficacy
over bare Cu NPs, while Ag-loaded silica did not show better antimicrobial ability, when
compared with plain Ag NPs [124]. Surfactants, including SDS, Tween 80, and PVP, can
stabilize NPs against aggregation, which can enhance their antimicrobial properties [125].
Cu NPs, coated with starch macromolecules, showed more efficient antimicrobial efficacy
than Ag NPs, the starch coating being capable of reducing oxidized Cu [126]; other coatings
did not influence their antimicrobial properties. Both Ag and Cu NPs were grafted onto the
surfaces of carbon nanotubes; the Ag-grafted carbon nanotubes were found to have greater
antimicrobial properties than the Cu-grafted ones, while the pure carbon nanotubes had
the poorest antimicrobial performance [127]. In the case of argon plasma surface treatment,
the antimicrobial effect of polymer surfaces coated with Cu NPs was greater than those
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coated with Ag NPs, perhaps because the surface roughness of the polymers coated with
Cu NPs was greater than that of the surfaces coated with Ag NPs, resulting in greater
exposure to microbes [60].

To overcome microbial resistance to either NPs or conventional antibiotics, the func-
tionalization of NPs with antibiotics appears to be promising. The synergistic antimicrobial
effect of the combination of Ag NPs and antibiotics was found to be much greater than
Ag NPs or antibiotics, alone [128,129]. Similar to Ag, Cu NPs, combined with various
antibiotics, particularly ampicillin, had increased antimicrobial properties [130]. The en-
hancement of microbial susceptibility to the combination of NPs and antibiotics may result
from the higher permeability of microbial cell walls, modulated by NPs, which can facilitate
the entry of antibiotics into cells; another reason may be that the enzymes, which play key
roles in the antibiotic resistance, are inactivated by NPs [131].

4.3. Oxide NPs

In general, both Ag oxide and Cu oxide NPs are considered to belong to the set of
Ag and Cu NPs, because Ag and Cu NPs oxidize when exposed to atmosphere. Theoreti-
cally, Cu NPs are easier to oxidize than Ag [111]. Despite the low number of articles on
antimicrobial Ag oxide (i.e., Ag2O and AgIAgIIIO2) NPs, they appear to show antimicrobial
properties [132–134]. It is believed that AgO is the most active against microbes [8]. In
contrast to Ag oxides NPs, there is a large number of reports on Cu oxide NPs, including
both Cu2O and CuO. For Cu NPs deposited onto the surface of TiO2, they were shown
to be covered with a thin mixed CuO, Cu2O layer [29]. The mechanism of contact killing,
described earlier, deals mostly with these NPs. It is supposed that the antimicrobial effect
of CuO NPs depends on the production of •O2

− ROS [135]. However, Cu2O is considered
to be the more effective agent, forming a copper(I)-peptide complex; the inactivation of
proteins caused by Cu2O NPs cannot be detected when using CuO NPs [136]. Although
CuO NPs can generate ROS while Cu2O cannot, the antimicrobial efficacy of Cu2O is,
nonetheless, greater [136]. This conclusion may be evidence for the contact kill mechanism,
as ROS do not work as efficiently as copper(I)-induced protein inactivation. Although
CuO NPs also have antimicrobial properties when compared with Ag and Cu NPs, higher
concentrations are required to attain the same antimicrobial efficacy [137,138]. In general,
preventing oxidation is an efficient way to enhance the antimicrobial properties of Cu NPs.

4.4. Other Derivative NPs

Apart from oxide NPs, the main Ag-derived NPs are AgX (X = Cl, Br, I). Many
studies posit that the antimicrobial mechanism of AgX NPs is related to their photocatalytic
activities [139–141]: it was reported that AgBr NPs can form electron/hole pairs when
irradiated with visible light at 400 nm, which may induce ROS production [142]. Another
study posited that the antimicrobial behavior of AgCl and AgI NPs is based on the release
of Ag ions, not noticeably different from antimicrobial Ag NPs [143]. However, because of
their photocatalytic properties, AgX NPs are unstable under visible light irradiation, which
results in the decline of their antimicrobial behavior over time [144]. Antimicrobial activities
have also been reported for other Ag-related NPs, such as Ag2S [145] and Ag2Se [146].

In addition to Cu oxide, CuS [147] is the main Cu-based NP; it, too, displays antimi-
crobial behavior. It was found that CuS NPs, at specific wavelengths (980 nm [148] and 808
nm [149]), have strong photothermal effects, which can be used to kill bacteria. However,
another study demonstrated that CuS NPs possess higher antimicrobial potency than
Cu ions in the absence of light irradiation [150]. CuS-damaged cell walls were detected,
because bacteria do not evolve to be resistant to membrane-disrupting antibiotics [151].

4.5. Bacterial Susceptibility

Different bacteria show different susceptibilities to Ag and Cu NPs. It was found
that these NPs have equal antibacterial behavior toward Gram-positive bacteria [152].
A similar conclusion was obtained in another study, where B. subtilis, a Gram-positive
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bacterium, had approximately equal sensitivity to both Ag and Cu NPs, although Cu NPs
demonstrated a higher antimicrobial efficacy to the Gram-negative E. coli [153]. However,
the opposite results were obtained in another report, which revealed that Ag NPs were
more effective toward E. coli and S. aureus, while Cu NPs showed better antimicrobial
action toward B. subtilis [115]. Similar results concluded that Cu NPs are more effective to
the Gram-positive B. subtilis, while Ag NPs have superior antimicrobial activity against
the Gram-negative E. coli [154]; thus, one cannot formulate an exact conclusion based on a
comparison between Ag and Cu NPs toward different bacteria.

Some types of bacteria are resistant to Ag and/or Cu [155–157]. Cu-resistant bacteria
exist extensively in Cu-contaminated soil [158,159]. One kind of Gram-positive bacterium,
Ent. faecium, showed strong resistance to both Ag and Cu ions, probably because bacterial
cellular Cu homeostasis resulted in Ag efflux [160]. However, the Gram-negative Cu-
resistant bacterium, E. coli, is sensitive to Ag, the mechanism of which may be different
from that of Ent. faecium [160]. Another study proposed nine genes in three transcription
units, which could cause Salmonella resistance to Ag compounds [161]. A similar viewpoint
proposed that Ag-resistant E. coli had a reduced outer membrane permeability, which was
presumably determined by a chromosomal gene [162].

4.6. Cytotoxicity to Human Cells

NPs can release ions, induce intracellular ROS generation, or directly interact with cells,
all of which are likely to cause cytotoxicity to human cells. In addition, the accumulation of
toxic NPs in the environment would increase the possible environmental risk. Thus, the
potential cytotoxicity of NPs to human must also be considered.

It is believed that Ag and Cu ions released into the environment are toxic to the human
liver, kidney, eye and skin [163,164]. Generally, the cytotoxicity of NPs to human cells is
also related to NP size, since NPs with large surface to volume ratios release more ions than
bulk metals [165]. Apart from ions, an increasing amount of intracellular ROS induced
by NPs may trigger cells death [166]. The ROS bursts and pro-inflammatory pathways
induced by Ag NPs may lead to DNA damage, protein misfolding, and lipid peroxidation,
all of which are possibly unrepairable, and potentially carcinogenic [167]. The effect of Ag
NPs on the immune system should be further studied, since one report suggested that Ag
NPs exerted cytotoxicity on macrophages, and resulted in an inflammatory response and
cellular apoptosis [168]. Unlike Ag, Cu is a necessary element for the human body, where
it must be retained in homeostasis. If the Cu content increases to break the equilibrium, it
becomes toxic [169].

However, a histological study indicated that Ag and Cu NP coatings on catheters do
not irritate the human skin [170]. It was also found that Ag-functionalized polyurethane is
toxic to bacteria, but not to cells, when the Ag NP content is optimized to 0.5 wt %, at which
cells vitality is near 100% [171]. This is attributed to the serum protein albumin in the cell
culture medium, which reduces the biological interaction of the NPs with the cells [171].
The restraint to NPs by the immune system can result in a greater resistance of human
cells, compared to microbes, to Ag NPs, which suggests that Ag NPs, at antibacterial
concentrations, may be nontoxic to human cells [172]. It was also reported that newly
produced Ag NPs are less toxic to human cells than older ones [173]. Immobilizing
NPs can reduce their toxicities, compared to free NPs [174]. Titanium substrates, coated
with chitosan, hydroxyapatite, and Ag NPs, revealed strong antimicrobial capacities and
weak cytotoxicity to humans, since chitosan immobilizes Ag NPs firmly, thereby reducing
cytotoxicity to human cells [175].

5. Coatings on Substrates

Besides being used as aqueous disinfectants [176,177], the main application of NPs is as
coatings on substrates, such as textiles (synthetic polymers and cotton) and implants (poly-
mers, ceramics and metals). Other products, including food packaging materials [178,179],
and water [180,181] and air [182,183] filters, can also be decorated with antimicrobial NPs.
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5.1. Coatings on Textiles

The COVID-19 pandemic has motivated work on antimicrobial NP-functionalized
textiles, especially for use as face masks and protective clothing. Although the antiviral
properties of Ag and Cu NPs are not clear, the NP decoration can improve the protective
function of these masks [184]. N95 masks, impregnated with Cu oxide NPs, were reported
to filter 99.85% of aerosolized viruses, such as human influenza A virus (H1N1) and avian
influenza virus (H9N2), without reducing physical filtration performance [185]. In addition
to viruses, textiles are common substrates for bacterial growth, under proper temperature
and humidity condition [186]. Those impregnated with Ag and Cu NPs had dramatically
enhanced antibacterial properties when compared to unimpregnated PET textile [187].
Similarly, studies on cotton textiles impregnated with Ag NPs, and those impregnated with
a mixture of Ag and Cu NPs, both exhibited excellent antibacterial and antifungal prop-
erties [188]. It was initially hypothesized that the antimicrobial properties are dependent
on both the textile and the NP [189], although it was subsequently demonstrated that the
antimicrobial efficacy has nothing to do with the textile type, but depended only on the
NPs [190].

Many methods of coating onto textiles have been reported. For instance, NP disper-
sions can be coated onto cotton fibers by means of pad dyeing [132], immersing [191], or
ironing [190], all of which are traditional coating methods in the textile industry. Chemical
reduction [192] is another commonly used treatment method: Ag and Cu NPs can be
deposited onto PDA/PET fabrics by the chemical reduction of aqueous Ag and Cu salt
solutions [187]. However, the problem for NPs loaded onto textiles is that they are poorly
bonded, and tend to fall off during washing, leading to the loss of antimicrobial properties.

5.2. Coatings on Implants

Compared to the research on textiles, NP-functionalized implants (polymers, ceramics
and metals) intended for the human body, must meet stricter standards of biocompatibility
and biotoxicity.

Polyurethane is one of the most frequently used polymers in the biomedical field. It
has been reported that polyurethane catheters can be Ag- and Cu-functionalized by sputter-
ing, boosting its antimicrobial properties [116]. In addition to polyurethane, polyethylene is
usually used in joint arthroplasty, owing to its remarkable mechanical properties, though it
is easily attacked by microbes. In a study on polyethylene surface modifications, polyethy-
lene coated with Ag NPs possessed greater antimicrobial properties than that coated with
Cu NPs [193], which corresponds to the antimicrobial comparisons between Ag and Cu
NPs discussed earlier. Other polymers, such as polytetrafluoroethylene (PTFE), used as an
implant due to its good chemical resistance and thermal stability, were also coated with Ag
and Cu NPs to improve their antimicrobial properties [194].

Bio-ceramics include bioinert, bioactive, and biodegradable ceramic materials. Bioinert
ceramics are nontoxic, and do not interact with human tissue. Bioactive ceramics, such
as bio-glass and hydroxyapatite, generate new bonds to human tissue. Biodegradable
ceramics, such as calcium phosphates, are resorbed by the human body [195]. Here, we
discuss bioinert ceramics, such as TaN, TiO2, etc. Tantalum nitride (TaN), modified with
both Ag and Cu NPs, displayed greater antimicrobial activity than either TaN-Ag or TaN-
Cu, because of the synergistic effect of Ag and Cu NPs [196]. Another study reported
that Cu NP-functionalized TiO2 substrates do not exhibit antimicrobial activity, whereas
both Ag NPs and AgCu alloy NPs show excellent antimicrobial properties, attributed to a
substantially lower release of Cu ions [197].

Titanium (Ti) metal is widely used for orthopedic and dental implants. It was hy-
pothesized that Ti substrates embedded with Ag NPs have enhanced electron transfer
between Ag and Ti, which generates ROS to kill microbes [80]. It was noticed that, in some
cases, Ti substrates were treated to form TiO2 [197], or coated with hydroxyapatite [175],
before further modification with NPs, in order to form porous surfaces that more firmly
immobilized NPs.
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Stainless steel is another metal used for medical applications, because of its distinct
mechanical and corrosion-free features. Functionalized with Ag NPs, stainless steel showed
stable antimicrobial activity, even over seven cycles of bacterial application [198]. Stainless
steel, functionalized in this manner, was found to have not only bactericidal properties, but
also resistance to bacteria adhesion [49].

Magnesium and its alloys are also potential implant materials. Magnesium may be
intrinsically weakly toxic to microbes, since its corrosion creates an alkaline product [199].
In order to improve the antimicrobial property of magnesium, Cu NPs were coated onto its
surface [200].

5.3. Surface Coating Methods on Implants

Various methods have been used to functionalize implants, including physical, chemi-
cal, and plasma depositions.

Magnetron sputtering is one of the widely used physical deposition methods, which
results in uniform thickness, as well as strong bonding to substrates [201]. This method
is generally used to produce thickness-controlled NP coatings [202]. An interesting study
indicated that longer sputtering times are associated with enhanced cytotoxicity [203].
Hence, the determination of an optimal sputtering time is indispensable.

Chemical reduction on the substrate surface is the simplest and most widely used
method. Ag NPs, depositing on the substrates, can be formed through the chemical reduc-
tion of metal salt solutions, which is similar to the functionalization of fabrics, described
above, although the bond strength between NPs and these substrates is not high [201].
Reduction can be triggered by chemical agents [204,205], UV irradiation [206], etc. The
antimicrobial properties of Ag NPs are enhanced with increased Ag salt solution concentra-
tions [207]. It was found that the sequence of adding Ag salt solution and reducing agent
influences the uniformity of surface modification [119], and may play a role here, too.

Plasma immersion ion implantation (PIII) is the most economical and effective, and
involves positive ions vertically incorporating into a negatively charged surface under an
electric field [208]. Thus, NPs can be impregnated into the near-surface of implants, includ-
ing polymers, ceramics and metals [201]. The average size of Ag NPs incorporated into
substrates increased with increased PIII time [198,209], because of aggregation. However,
PIII was found to reduce Ag NP cytotoxicity by constraining NP mobility on titanium
substrates [210].

Plasma electrolytic oxidation (PEO), also called micro-arc oxidation (MAO), is another
commonly used plasma deposition method. PEO developed from anodization, forms
ceramic-like coatings on substrates, which can tightly immobilize NPs onto surfaces [211].
PEO is often used to generate a porous titanium dioxide thin layer on titanium or titanium
alloys, for further surface modification with NPs [212,213]. Magnesium alloys, implanted
with Cu NPs through PEO, inhibited bacterial proliferation more efficiently than the alloy
treated by PEO without Cu NPs [200].

Table 1 summarizes methods of implant surface modification with Ag NPs, Cu NPs,
Ag–Cu NP mixtures, and AgCu nanoalloys. As can be seen, PIII is generally used to
functionalize NPs on metals and polymers, while magnetron sputtering is usually em-
ployed for the surface modification of ceramics and polymers. Compared to PIII and
magnetron sputtering, PEO can generate much thicker porous oxide layers, incorporated
with NPs, on metal substrate surfaces. Since polymeric materials may contain various
active functional groups, chemical reduction is not suggested for their modification. Apart
from these, other surface functionalization methods, such as heating organic solvents [194],
anodization [206], adding linkers on substrates [214], and electrodeposition [215], have
been reported.
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Table 1. Summary of implant surface modifications by Ag NPs, Cu NPs, Ag–Cu NPs mixture, and Ag–Cu nanoalloys.

Method Substrate NPs Size (nm)
Coating

Thickness
(nm)

Application Reference

Plasma
immersion ion
implantation

(PIII)

Stainless steel Ag NPs 5–16 Unknown Implants [198]

Titanium

Ag NPs Unknown 80 Implants [80]

Ag NPs 4–19 25 Implants [209]

Ag NPs 5–40 Unknown Dental
implants [210]

Ag NPs 5 50 Implants [216]

Polyethylene Ag NPs, Cu
NPs Unknown Unknown Joint implants [193]

Magnetron
sputtering

Titanium
dioxide

Ag NPs 14–42 Unknown Coating [90]

Ag NPs Unknown 24.6–73.8 Coating [203]

Tantalum
nitride

Ag NPs, Cu
NPs, Ag–Cu
NPs mixture

Unknown 100 Coating [196]

Ag NPs 10–200 700 Coating [217]

Tantalum
oxides Ag NPs <160 600–700 Coating [218]

Titanium-
aluminum-

nitride

AgCu
nanoalloys 20–1100 100 Coating [219]

Polyether-
ether-ketone Ag NPs Unknown 3–12 Implants [202]

Polyurethane

Ag–Cu NPs
mixture <5 Unknown Catheter [116]

Ag–Cu NPs
mixture Unknown 80 Catheter [170]

Ag–Cu NPs
mixture Unknown 22 Catheter [220]

Plasma
electrolytic
oxidation

(PEO)

Titanium alloy

Ag NPs
Cu NPs

Ag–Cu NPs
mixture

7–60 Unknown Implants [197]

Ag NPs 37 Unknown Implants [212]

Magnesium
alloy Cu NPs Unknown 8000–11,000 implants [200]

Titanium Cu NPs Unknown 5000–10,000 Implants [213]

Reducing
Agent

Chemical
reduction

Titanium
dioxide

Ag NPs 102 Unknown Coating NaOH [119]

Ag NPs 600–1000 Unknown Coating Dehydrated
ethanol [205]

Ag NPs 10–30 Unknown Coating Ammonia [206]

Ag NPs 20 Unknown Coating Glucose [221]

Titanium
Ag NPs 3–5 Unknown Implants UV&Methanol [207]

Ag NPs 30 Unknown Implants Ascorbic acid [222]

6. Mixed Ag–Cu NPs and AgCu Nanoalloys

Although both Ag NPs and Cu NPs exert significant antimicrobial properties, mixtures
of Ag and Cu NPs exhibit greater antimicrobial properties than either individual Ag or Cu
NPs [196], which indicates the existence of synergistic antimicrobial behavior [197,223]. The
mechanism of this synergy has been studied through a consideration of the nanocrystalline
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microstructures formed. In this section, the synthesis of AgCu nanoalloys, microstructure,
and physicochemical characterization, as well as the synergistic antimicrobial mechanism,
are discussed.

6.1. Synthesis of AgCu Nanoalloys

The most conventional AgCu nanoalloy synthesis method is through the chemical
reduction of a solution containing both Ag and Cu salts. Nanoalloys were synthesized
from a solution of AgNO3 and CuSO4, using natural reducing agents, such as fruit peel
extract [224], or Azadirachta indica leaf extract [225], as well as synthetic reducing agents,
such as polyvinylpyrrolidone [9], polyol [226,227], ascorbic acid [228], dextrose [229],
sodium borohydride [190], or tartaric acid [152]. Another study used oleyl amine as both
reducing agent and surfactant, to synthesize nanoalloys from a solution of Ag and Cu(I)
complexes, which gave a randomly distributed AgCu solid solution [230]. The chemical
reduction method is also used to synthesize AgCu nanoalloys with the microstructure of ei-
ther AgcoreCushell or CucoreAgshell, depending on the sequence of reduction reactions [231].

Dealloying is another widely used synthesis method. It was found that a AgCu core-
shell microstructure could be generated by dealloying a Zr-Cu-Ag-Al-O crystalline com-
posite: Zr, Al and their oxides were dissolved, leaving Ag on the Cu surface [232]. Besides
core-shell microstructures, single-phase supersaturated AgCu nanoalloys were synthesized
through the dealloying of Ma-(Ag, Cu)-Y metallic glass precursors in H2SO4 [233,234].

Laser ablation is also a commonly used synthesis method. Nanosecond laser pulses,
at specific wavelengths, were used to generate NPs [194]. It was reported that AgCu
nanoalloys could be synthesized by irradiating an unfocused laser (800 nm) on a Ag and
Cu colloidal solution for a period of time, while stirring [235]. Another study used a
1064 nm laser beam to irradiate pure Ag and Cu targets in an aqueous medium, adding
different concentrations of capping agent to synthesize AgCu nanoalloys having different
sizes [236]. AgCu nanoalloys having different compositions have also been synthesized by
laser ablation [237].

The use of galvanic displacement reactions is an effective method to synthesize AgCu
nanoalloys, especially for core-shell microstructures [238]. Galvanic displacement permits
Ag precursors to chemically decompose, transferring electrons from Ag ions to Cu0, replac-
ing crystalline Cu atoms [239], ultimately forming Ag-doped AgCu nanoalloys. Another
example, using a displacement reaction to synthesize AgCu nanoalloys, was based on the
metallic activity difference between Ag and Cu, the first step of which is Cu NP generation
from a Cu precursor, and the second step is Ag atom displacement of Cu atoms on the
surface of Cu NPs through electrons transfer [240]. CuO microparticles, decorated with Ag
NPs via galvanic displacement reactions, were also reported [241].

In addition to these methods, other synthesis approaches have been described, such
as the sol-gel reaction [242], carbothermal shock [243], inert gas condensation [244], the
electric explosion of twisted Ag and Cu wires [245], a core-shell structure produced by
sono- and electrodeposition [246,247], and magnetron sputtering [248].

6.2. Microstructures of Mixed Ag–Cu NPs and AgCu Nanoalloys

Mixtures of bimetallic nanoparticles may form different microstructures (Figure 9) [249,250].
Segregated microstructures, with two or more separated NP clusters sharing a limited interface,
include core-shell (Figure 9a), multi-shell (Figure 9b), and biphasic (Figure 9c) microstructures.
Core-shell microstructures commonly exist in bimetallic NPs. In addition to segregated mi-
crostructures, mixed microstructure may be divided into an intermetallic structure (Figure 9d)
with an ordered bimetallic atoms alignment, and a nanoalloy structure (Figure 9e) with randomly
distributed bimetallic atoms [250].
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ually separate phases (Figure 11b–d), as the temperature is increased [254]. In addition to 
the influence of temperature, the morphologies of the Cu-rich α phase and the Ag-rich β 
phase can change with an increase of Cu content, passing from separated phases to 
nanograins to core-shell microstructures (Figure 12a–d), since the microsystems tend to 
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crostructures described here belong to AgCu nanoalloys, while only the simply mixed 
Ag–Cu system, without any combination reaction, is not so regarded. 

Figure 9. Microstructures of bimetallic NPs. (a) core-shell structure; (b) multi-shell structure;
(c) biphase structure; (d) intermetallic structure; (e) nanoalloy. Reproduced with permission from
Reference [249]. Copyright 2008, American Chemical Society.

As the Ag–Cu phase diagram indicates (Figure 10) [251], the metals are mutually
immiscible at low temperature. Thus, mixed Ag and Cu bimetallic NPs generally form
distinct phases [227,252], rather than homogeneously dispersed microstructures, as does
the AuCu nanoalloy [253]. It has been reported that the Ag–Cu mixture tends to form core-
shell structures, in which Ag is the shell and Cu the core. This is because Ag, with a lower
surface energy (1.25 J/m2) segregates on the surface of Cu NPs, with their greater surface
energy (1.79 J/m2) [190]. In an approximate sense, a mixture of Ag and Cu bimetallic NPs,
with a nanograin microstructure, can be considered a single-phase nanoalloy (Figure 11a),
whereas, in other microstructures, such as in Figure 11b,c, the Ag and Cu atoms do
not distribute uniformly. It was found that homogenous AgCu nanoalloys (Figure 11a)
gradually separate phases (Figure 11b–d), as the temperature is increased [254]. In addition
to the influence of temperature, the morphologies of the Cu-rich α phase and the Ag-rich
β phase can change with an increase of Cu content, passing from separated phases to
nanograins to core-shell microstructures (Figure 12a–d), since the microsystems tend to
keep the α-β interphase surface energy minimum [237,255]. In a broad sense, all the
microstructures described here belong to AgCu nanoalloys, while only the simply mixed
Ag–Cu system, without any combination reaction, is not so regarded.
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For AgCu nanoalloys with nanograin microstructures, Ag atoms are doped into the
grain boundaries of the Cu matrix, and vice versa. In the case of a doped Cu matrix [256],
a hybrid Monte Carlo/molecular dynamics simulation showed that Ag atoms segregated
in the grain boundaries between Cu crystals. Ag atoms gradually aggregated along grain
boundaries as the Ag concentration was increased (Figure 13a,b). After exceeding the
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threshold (50 atoms/nm2), Ag atoms formed wetting nanolayers along the grain boundaries
(Figure 13c–e). The reason is that these wetting nanolayers have lower energies [256]. In
a similar fashion, when Cu atoms dope Ag, hybrid Monte Carlo/molecular dynamics
simulations indicated that they segregated in grain or twin boundaries (Figure 14) [257].
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increases in Ag concentration; (d,e) are the Cu/Ag interfaces. For (a–c), red denotes Cu and black
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marked 10, the black color. Reproduced with permission from Reference [256]. Copyright 2017,
Springer Nature.
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6.3. Physicochemical Characterizations

It is clear that the NP surface plays an important role in its antibacterial behavior. For
this reason, research on NP surface properties appears to be a key direction, particularly in
determining their compositions, and how they might contribute to the antimicrobial behav-
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ior. Hence, physicochemical characterization approaches are commonly used, including
TOF-SIMS, XPS, TEM, SEM, EDXS, XRD, nanoIR® (Bruker, Billerica, MA, USA), etc.

6.3.1. TOF-SIMS and XPS

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) [258,259] is an appro-
priate characterization method for NP surface analysis. It detects fragments sputtered
from the surface. It has a probe depth of ≤1 nm and can sensitively detect fractional
layers of surface components. Hence, it is possible to use TOF-SIMS to determine which
chemical groups exist on the surfaces of NPs, and which component is the most effective
antimicrobial agent.

Another surface characterization technique, X-ray photoelectron spectroscopy
(XPS) [260,261] can be used to determine chemical environments and oxidation states
of elements on the surfaces of NPs. While less surface-sensitive than TOF-SIMS (it has
a probe depth of 3–5 nm, depending on the kinetic energy of the emitted electron),
it can detect whether Ag and Cu NPs have been oxidized, and which oxides have
been produced.

Since XPS can detect element quantitatively, the surface composition of AgCu is
approximately equal to the area ratio of Ag3d5/2 to Cu2p3/2 spectra, which are the most
prominent spectral peaks of these elements [8]. XPS also indicated that, for both Ag and
Cu NPs deposited onto the surface of polyurethane, Cu0 was found only at the surface
of the AgCu nanofilm with an Ag:Cu ratio of 1:1, a ratio that exhibits the most efficient
antimicrobial activity [116]. For AgCu2O nanoalloys (Figure 15), the major Cu2p3/2 peak,
at ~934 eV, indicates the presence of Cu+, while the shake-up satellite indicates that some of
it has been partially oxidized to CuO. The Ag3d5/2 peak, at ~368 eV, indicates the presence
of Ag0 [242]. This indicates that Ag has formed a shell around partially oxidized Cu2O.
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Copyright 2015, Elsevier.

Changing the XPS probe depth, by sputtering away the outer surface, can be used to
identify the core-shell structures of nanoalloys. While the Cu shake-up satellite indicates
the presence of CuO (Figure 16a), sputtering to a depth of 10 nm causes the satellite region
to disappear (Figure 16b), which indicates the existence of CuO at the surface, rather than
in the core. By contrast, Ag is not easily oxidized (Figure 16c). Moreover, the relative
increase in the Cu:Ag ratio on sputtering reveals that, aside from CuO, Cu tends to occupy
the core of the structure (Figure 16b,d) [262], as expected for a AgshellCu2Ocore structure.
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Figure 16. XPS spectra of Cu2p (a) before and (b) after sputtering, and Ag3d (c) before and (d) after sputtering, in
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Generally, TOF-SIMS is combined with XPS to investigate the chemical components
more accurately, with one supporting the results of the other [81,263,264]. In one report, N
was detected by TOF-SIMS, but not by XPS, which means N-containing species, at very
low concentrations, are confined on the surface of Ag NPs [86]. Thus, TOF-SIMS can not
only confirm the XPS results, but often provide more detail.

6.3.2. TEM and EDXS

Transmission electron microscopy (TEM) [265] is frequently used to observe NP mor-
phologies and antimicrobial activities; high-resolution transmission electron microscopy
(HRTEM or HREM) is a particularly informative imaging mode. TEM offers images of
internal information such as crystal structure, morphology, and mechanical stress, with
resolutions down to 50 pm. It is generally used to evaluate morphological features, such as
NP sizes and shapes [112], or to observe the antimicrobial behavior of NPs penetrating into
bacterial cell [266]. NP surface modification [132], as well as substrate decoration [127,267],
can also be directly detected by TEM. It has been reported that both Ag and Cu NPs can
induce cell wall separation from cell membranes, leading to the further damage of cell
walls and membranes and, ultimately, cytoplasmic material release, all of which have been
observed by TEM [111]. HRTEM can even provide the details of the nanocrystalline struc-
ture (Figure 12). As another example, the core-shell microstructures of AgCu nanoalloys,
with different orientations of the crystal facets of Ag (2, 0, 0) and Cu (2, 0, 0), can be clearly
observed via HRTEM (Figure 17) [268].
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Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS or XEDS) [269] is a widely
employed characterization technique, often used for elemental and chemical analyses.
Commonly, EDXS is used with TEM, to obtain chemical proportions and distributions in
NPs. TEM-EDXS spectra of AgCu nanoalloys provided the ratio of Ag and Cu, which was
consistent with the initial ratio of Ag and Cu salt precursors [227]. Different microstructures,
such as homogeneous nanoalloy and core-shell AgCu microstructures, can be distinguished
by means of EDXS. EDXS chemical analysis indicated that Ag and Cu are well mixed in the
AgCu nanoalloy, although the Cu content is higher in the shell and the Ag content in the
core, of core-shell microstructure [190]. Another more comprehensive report of TEM-EDXS
spectra, in the HAADF (high-angle annular dark field) mode, distinguished four different
types of component distribution in AgCu nanoalloys (Figure 18) [237].
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direction of line scan. Reproduced with permission from Reference [237]. Copyright 2014, American
Chemical Society.
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EDXS can also be used in combination with XPS: for a mixture of Ag and Cu NPs, XPS
revealed that the Ag content was greater than that evaluated by EDXS. This was explained
as follows: the act of mixing the Ag and Cu NPs formed a core-shell microstructure, with
Ag at the surface [246].

6.3.3. XRD

X-ray diffraction (XRD) [270] is used to determine crystalline microstructure. When
studying AgCu nanoalloys, it was used to determine whether the microstructure is a single
phase or separated phases, through observing whether there is a shift of the diffraction
peaks [242]. One study deduced that the microstructure was actually phase-separated
instead of an alloy, because of the existence of distinct diffraction peaks of both Ag and
Cu in mixed Ag–Cu NPs (Figure 19) [246]. A second study, on Cu2O-Ag nanocomposites,
reached a similar conclusion [271]. If Ag and Cu formed a homogeneously distributed
nanoalloy microstructure, the diffraction peaks of Cu and Cu oxides would not appear in
the XRD (Figure 20a,b) [272]. On the contrary, the presence of the diffraction peaks of Cu
and Cu oxides in the spectrum indicated that the phases are separated (Figure 20c,d) [272].
The formation of oxide-free AgCu nanoalloys can also be determined by XRD, through the
absence of the CuO diffraction peak at 61.7◦ and the Cu2O diffraction peak at 37.5◦ [227].
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6.3.4. Other Characterization Techniques

NanoIR® [273,274] is a new technique, which has a great potential to analyze NPs.
Conventional IR technology provides information on functional groups, whereas atomic
force microscopy (AFM) offers information on surface morphology. It is common to use
both IR and AFM to evaluate NPs [29,117,132,154]. In contrast, nanoIR® possesses these
two functions simultaneously, although no research group appears to have yet used it to
analyze NPs.

In addition to the characterization methods above, thermal analyses (i.e., TGA and
DSC) [275], surface-enhanced Raman spectroscopy [276], and UV-vis spectroscopy [277]
have also been used to study the antimicrobial behavior of NPs.

6.4. Antimicrobial Potential of Mixed Ag–Cu NPs and AgCu Nanoalloys

AgCu alloys, clad as millimeter-thick coating layers on stainless steel substrates, were
found to exhibit high antimicrobial activity [278]. Unfortunately, the physicochemical
and biological properties of mixed Ag–Cu NPs and AgCu nanoalloys are presently not
clearly understood, even though their excellent antimicrobial activities are well known. A
comparison is found, in Table 2, among Ag, Cu, mixed Ag–Cu and AgCu nanoalloy NPs.
Because of different microstructures and Ag:Cu ratios, antimicrobial conclusions are not
always identical.

Table 2. Summary of microstructures and antimicrobial properties of Ag–Cu combinations.

Microstructure Size (nm) Ratio (Ag:Cu) Control NPs Strain Antimicrobial
Efficacy Reference

Unknown

200 1:1
Ag NPs
Cu NPs

Ag–Cu NPs

E. coli
B. subtilis

AgCu > Ag > (Ag–Cu)
> Cu [11]

30–55
3:1
1:1
1:3

Ag NPs
Cu NPs

E. coli
S. aureus

Cu > AgCu3 > AgCu
> Ag3Cu > Ag [126]

2–5
1:1
2:1
3:1

Ag NPs
Cu NPs E. coli AgCu > Ag2Cu >

Ag3Cu > Cu > Ag [116]

20–30 1:1 Ag NPs

E. coli
K. pneumoniae

E. aerogenes
P. mirabilis

P. aeruginosa
S. aureus

AgCu > Ag
[188]

E. faecalis Ag > AgCu

7–60 1:1
3:1

Ag NPs
Cu NPs S. aureus AgCu ≈ Ag3Cu > Ag

> Cu [197]

20 1:1
3:1

Ag NPs
Cu NPs

E. coli AgCu > Ag3Cu > Ag
≈ Cu [233]

S. aureus AgCu> Ag3Cu ≈ Ag
≈ Cu

215–788 1:1 Ag NPs
Cu NPs

S. aureus AgCu ≈ Cu > Ag
[279]

K. pneumoniae AgCu > Cu > Ag

Unknown
3:1
1:1
1:3

Ag NPs
Cu NPs S. aureus Ag3Cu > AgCu > Ag

> AgCu3 > Cu [282]

30–80 Unknown Ag NPs
Cu NPs

E. coli
AgCu > Ag or Cu [281]P. aeruginosa

S. typhi

20–180
0.1:3
0.2:2
0.3:1

Ag NPs
Cu NPs

E. coli Ag0.2Cu2 ≈ Ag0.3Cu >
Ag0.1Cu3 > Ag > Cu [283]

S. aureus Ag0.2Cu2 is the best
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Table 2. Cont.

Microstructure Size (nm) Ratio (Ag:Cu) Control NPs Strain Antimicrobial
Efficacy Reference

3 1:1 Ag NPs
Cu NPs E. coli AgCu > Ag > Cu [284]

500–600 Unknown Cu NPs
E. coli

AgCu > Cu [285]
S. aureus

Core-shell
(AgCoreCushell)

20–70 1:1

Ag NPs
Cu NPs

CuCoreAgshell
NPs

E. coli
AgcoreCushell >

CucoreAgshell > Ag >
Cu

[231]

K. pneumoniae
AgcoreCushell >

CucoreAgshell > Ag >
Cu

P. aeruginosa
AgcoreCushell >

CucoreAgshell ≈ Ag >
Cu

S. aureus
AgcoreCushell >

CucoreAgshell > Ag >
Cu

A. fumigatus CucoreAgshell > Ag >
AgcoreCushell

<100
22:78
65:35
94:6

Ag NPs
Cu NPs

E. coli
Ag65Cu35 ≈

Ag22Cu78 > Ag94Cu6
> Ag ≈ Cu

[245]

S. aureus
Ag65Cu35 ≈

Ag22Cu78 > Ag94Cu6
> Ag > Cu

Core-shell
(CuCoreAgshell)

1000–1500
1:10
1:5
3:10

Cu NPs

E. coli Ag3Cu10 > AgCu5 >
AgCu10 ≈ Cu

[152]
S. aureus Ag3Cu10 > AgCu5 >

AgCu10 > Cu

7

1:3
2:3
1:1
4:1

Cu NPs

E. coli
Ag4Cu > AgCu >

Ag2Cu3 ≈ AgCu3 ≈
Cu

[246]S. aureus
Ag4Cu ≈ AgCu ≈

Ag2Cu3 ≈ Cu >
AgCu3

B. subtilis AgCu > Ag > (Ag–Cu)
> Cu

150 Unknown Cu2O NPs E. coli Cu2OAg > Cu2O [242]

400–500 Unknown Cu2O NPs
S. aureus

Cu2OAg > Cu2O [271]
P. aeruginosa

3000 Unknown
µCuO

Ag NPs

E. coli µCuOAg > Ag >
µCuO

[241]
Salmonella µCuOAg > Ag >

µCuO

Listeria CuO > CuO > Ag

10–30
1:1
3:1
5:1

-

E. coli AgCu ≈ Ag3Cu ≈
Ag5Cu

[286]
S. aureus Ag5Cu > Ag3Cu >

AgCu

A. flavus Ag5Cu > Ag3Cu >
AgCu

C. albicans Ag5Cu > Ag3Cu >
AgCu
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Table 2. Cont.

Microstructure Size (nm) Ratio (Ag:Cu) Control NPs Strain Antimicrobial
Efficacy Reference

Nanoalloy

35–50 Unknown

Ag NPs
Cu NPs

AgCoreCushell NPs
CuCoreAgshell

NPs

C. albicans
Homogeneous AgCu
> AgcoreCushell > Ag>

CucoreAgshell > Cu
[22]

E. coli Homogeneous AgCu
> CucoreAgshell > Cu

S. aureus Homogeneous AgCu
> Cu > Cucore-Agshell

5–7 1:1 Ag NPs
Cu NPs

E. coli
S. aureus AgCu > Cu > Ag [224]

2.1 1:1
Ag NPs
Cu NPs

biphase AgCu

E. coli
Homogeneous AgCu

> phase-separated
AgCu ≈ Ag > Cu

[280]

S. aureus
Homogeneous AgCu
>Ag > biphase AgCu

> Cu

Polyester fabrics, coated by mixed Ag–Cu NPs without specific microstructures, have
shown significantly enhanced antimicrobial properties over Ag-treated fabrics [279]. An-
other example, which did not evaluate the AgCu microstructure, compared single Ag and
Cu NPs, mixed Ag–Cu NPs, and AgCu nanoalloys, and concluded that the antimicrobial
activity of AgCu nanoalloys is much greater than those of the other three [11]. Further,
porous AgCu nanoalloys revealed much stronger antimicrobial activities to both Gram-
positive and Gram-negative bacteria than either Ag or Cu NPs, when the Ag:Cu ratio
was 1:1 [233]; changing the ratio decreased the activity. Another study found that a AgCu
nanoalloy with the Ag:Cu ratio of 13:7 had the strongest antimicrobial activity, because it
released the greatest amount of ions [245].

In the case of AgCu nanoalloys with core-shell microstructures, it was found that
different Ag:Cu ratios demonstrated different antimicrobial efficacies, in which the mixture
with a higher ratio (0.3) showed better antimicrobial activity than lower ratios (0, 0.1,
0.2) [152]. Similar conclusions was obtained in another study, which indicated that Ag and
Cu NPs, in a core-shell microstructure, had excellent antimicrobial activities against both
Gram-positive and Gram-negative bacteria, especially when the Ag:Cu ratio was 0.4 [246].
However, in the case of antifungal properties, AgcoreCushell nanoalloys were found not
to demonstrate higher activity than single Ag NPs [231]. Another viewpoint holds that
AgshellAg–Cucore nanoalloys have long-term antimicrobial activity because the Ag shell has
excellent oxidative stability [232]. Additionally, CuO2 NPs, combined with Ag NPs to form
core-shell nanoalloys, exhibited higher antimicrobial action than did CuO2 NPs [241,242].
However, the antimicrobial properties of core-shell AgCu nanoalloys were still lower than
those of uniformly distributed AgCu nanoalloys, which may stem from weaker Ag–Cu
interactions in core-shell structures [22].

It was suggested that the much stronger antimicrobial activity of Ag–Cu nanoalloys
is due to the greater amount of released Ag ions [280]. According to this study, charge
transfer exists only at the interface of phase-separated Ag and Cu, thereby causing a weak
release of Ag ions, whereas Ag atoms, surrounded by Cu atoms, can be oxidized, releasing
more ions. In contrast, it was suggested that the higher antimicrobial properties of AgCu
nanoalloys were due to the much larger (28×) amount of Cu ions released from nanoalloys
than from single Cu NPs [271,281].

Another study proposed that the proteins and enzymes of microbes are susceptive
to either Ag or Cu, and that AgCu nanoalloys can provide both metals, which exhibit
synergistic antimicrobial activity [224]. However, as indicated in the probable antimicrobial
mechanisms discussed above, the release of ions may be neither the correct, nor the
only, reason. It appears necessary to determine the specific kinds of ROS generated: for



Biology 2021, 10, 137 26 of 37

example, titanate nanotubes, embedded with Ag and Cu NPs, showed much more effective
antimicrobial activity than either Ag or Cu NPs, when under visible light radiation (Ag–Cu
heterojunctions can reduce electron-hole recombination, and generate higher amounts of
ROS, such as •O2

− and H2O2) [282].

7. Conclusions and Perspectives

While the data reported are inconsistent, due, at least in part, to our ignorance in
framing the studies so as to take all the variables into consideration, two conclusions seem
obvious: first, the operative antimicrobial mechanism depends on the conditions under
which the study was carried out; second, the antimicrobial efficacy follows the order, Ag
NPs ≈ Cu NPs < mixed Ag–Cu NPs < AgCu nanoalloys.

The possible mechanisms discussed herein imply that dry NPs, their ions, and the ROS
produced, all exert some antimicrobial effect. It is, therefore, difficult to distinguish which is
the predominant mechanism under any given set of circumstances. It will be important for
future studies to concentrate on specifically controlled experiments, to determine explicit
details, such as which kinds of ROS are produced, and how NPs kill microbes under dry
conditions without releasing ions.

Further, there is a synergy in using mixed Ag–Cu NPs, indicating that the antimicrobial
modes of Ag and Cu NPs differ. In addition, the fact that antimicrobial properties of mixed
Ag–Cu NPs are weaker than those of AgCu nanoalloys tells us there is something present
in the AgCu nanoalloy that does not exist in the simple Ag–Cu mixture. Future work
should focus on this synergy, and the relationship between the surface structures of AgCu
nanoalloys and their antimicrobial action.
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Appendix A

Table A1. Data examined in the Polytechnique Montreal library Compendex database.

Objective Key Words

Cu (antimicrob* OR antibact* OR biocid* OR antibiof* OR antivir* OR antifung*) AND (copper* OR Cu OR CuO OR CuNP* OR
nanocopper OR nano-copper OR nanoCu OR Cu-*)

Ag (antimicrob* OR antibact* OR biocid* OR antibiof* OR antivir* OR antifung*) AND (silver OR Ag OR AgNP* OR nanosilver OR
nano-Ag OR nanoAg OR Ag-*)

Cu nano (antimicrob* OR antibact* OR biocid* OR antibiof* OR antivir* OR antifung*) AND (copper nano* OR Cu NP* OR CuNP* OR
Cu nano*)

Ag nano (antimicrob* OR antibact* OR biocid* OR antibiof* OR antivir* OR antifung*) AND (silver nano* OR Ag NP* OR AgNP* OR
Ag nano*)

Combination of Ag, Cu nano
(antimicrob* OR antibact* OR biocid* OR antibiof* OR antivir* OR antifung*) AND (silver-copper OR copper-silver OR Ag-Cu

OR Cu-Ag OR silver/copper OR copper/silver OR Ag/Cu OR Cu/Ag OR Ag@Cu OR Cu@Ag OR AgCu OR CuAg) AND
(nano* OR alloyed nano* OR nanoalloy* OR nano-alloy*)

* refers to the end of the syllables researched.



Biology 2021, 10, 137 27 of 37

References
1. Li, Y.; Xiao, P.; Wang, Y.; Hao, Y. Mechanisms and Control Measures of Mature Biofilm Resistance to Antimicrobial Agents in the

Clinical Context. ACS Omega 2020, 5, 22684–22690. [CrossRef]
2. Zhao, Y.; Jiang, X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 2013, 5, 8340–8350. [CrossRef]

[PubMed]
3. Lee, N.-Y.; Hsueh, P.-R.; Ko, W.-C. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front.

Pharmacol. 2019, 10, 1153. [CrossRef] [PubMed]
4. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013, 52,

1636–1653. [CrossRef]
5. Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends

Biotechnol. 2010, 28, 580–588. [CrossRef]
6. Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354.

[CrossRef]
7. Hostynek, J.J.; Maibach, H.I. Skin irritation potential of copper compounds. Toxicol. Mech. Methods 2004, 14, 205–213. [CrossRef]

[PubMed]
8. Taner, M.; Sayar, N.; Yulug, I.G.; Suzer, S. Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys.

J. Mater. Chem. 2011, 21, 13150–13154. [CrossRef]
9. Reyes-Blas, M.; Maldonado-Luna, N.M.; Rivera-Quiñones, C.M.; Vega-Avila, A.L.; Roman-Velázquez, F.R.; Perales-Perez, O.J.

Single Step Microwave Assisted Synthesis and Antimicrobial Activity of Silver, Copper and Silver-Copper Nanoparticles. J. Mater.
Sci. Chem. Eng. 2020, 8, 13–29. [CrossRef]

10. Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against
Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012, 7, 6003. [CrossRef]

11. Zain, N.M.; Stapley, A.; Shama, G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for
antimicrobial applications. Carbohydr. Polym. 2014, 112, 195–202. [CrossRef]

12. Feng, Q.L.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A mechanistic study of the antibacterial effect of silver ions on Escherichia
coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [CrossRef]

13. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y. Antimicrobial effects of
silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [CrossRef] [PubMed]

14. Ramage, G.; Mowat, E.; Jones, B.; Williams, C.; Lopez-Ribot, J. Our current understanding of fungal biofilms. Crit. Rev. Microbiol.
2009, 35, 340–355. [CrossRef]

15. Lara, H.H.; Ixtepan-Turrent, L.; Jose Yacaman, M.; Lopez-Ribot, J. Inhibition of Candida auris Biofilm Formation on Medical and
Environmental Surfaces by Silver Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 21183–21191. [CrossRef] [PubMed]

16. Xia, Z.K.; Ma, Q.H.; Li, S.Y.; Zhang, D.Q.; Cong, L.; Tian, Y.L.; Yang, R.Y. The antifungal effect of silver nanoparticles on
Trichosporon asahii. J. Microbiol. Immunol. Infect. 2016, 49, 182–188. [CrossRef] [PubMed]

17. Panacek, A.; Kolar, M.; Vecerova, R.; Prucek, R.; Soukupova, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvitek, L. Antifungal activity of
silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [CrossRef] [PubMed]

18. Elgorban, A.M.; El-Samawaty, A.E.-R.M.; Yassin, M.A.; Sayed, S.R.; Adil, S.F.; Elhindi, K.M.; Bakri, M.; Khan, M. Antifungal silver
nanoparticles: Synthesis, characterization and biological evaluation. Biotechnol. Biotechnol. Equip. 2015, 30, 56–62. [CrossRef]

19. Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper
nanoparticles against selected crop pathogenic fungi. Mater. Lett. 2014, 115, 13–17. [CrossRef]

20. Ponmurugan, P.; Manjukarunambika, K.; Elango, V.; Gnanamangai, B.M. Antifungal activity of biosynthesised copper nanoparti-
cles evaluated against red root-rot disease in tea plants. J. Exp. Nanosci. 2016, 11, 1019–1031. [CrossRef]

21. Pariona, N.; Mtz-Enriquez, A.I.; Sánchez-Rangel, D.; Carrión, G.; Paraguay-Delgado, F.; Rosas-Saito, G. Green-synthesized copper
nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 2019, 9, 18835–18843. [CrossRef]

22. Paszkiewicz-Gawron, M.; Golabiewska, A.; Kowal, E.; Sajdak, A.; Zaleska-Medynska, A. Synthesis and Characterization of
Monometallic (Ag, Cu) and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications. J. Nanomater. 2016, 2016,
1–11. [CrossRef]

23. Whitchurch, C.B.; Tolker-Nielsen, T.; Ragas, P.C.; Mattick, J.S. Extracellular DNA required for bacterial biofilm formation. Science
2002, 295, 1487. [CrossRef] [PubMed]

24. Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 2019, 27,
915–926. [CrossRef]

25. Vu, B.; Chen, M.; Crawford, R.J.; Ivanova, E.P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules
2009, 14, 2535–2554. [CrossRef] [PubMed]

26. Jefferson, K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 2004, 236, 163–173. [CrossRef] [PubMed]
27. Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob.

Resist. Infect. Control. 2019, 8, 1–10. [CrossRef] [PubMed]
28. Liu, W.; Roder, H.L.; Madsen, J.S.; Bjarnsholt, T.; Sorensen, S.J.; Burmolle, M. Interspecific Bacterial Interactions are Reflected in

Multispecies Biofilm Spatial Organization. Front. Microbiol. 2016, 7, 1366. [CrossRef] [PubMed]

http://doi.org/10.1021/acsomega.0c02294
http://doi.org/10.1039/c3nr01990j
http://www.ncbi.nlm.nih.gov/pubmed/23893008
http://doi.org/10.3389/fphar.2019.01153
http://www.ncbi.nlm.nih.gov/pubmed/31636564
http://doi.org/10.1002/anie.201205923
http://doi.org/10.1016/j.tibtech.2010.07.006
http://doi.org/10.1016/j.nantod.2015.04.002
http://doi.org/10.1080/15376520490446365
http://www.ncbi.nlm.nih.gov/pubmed/20021132
http://doi.org/10.1039/c1jm11718a
http://doi.org/10.4236/msce.2020.88002
http://doi.org/10.2147/IJN.S35347
http://doi.org/10.1016/j.carbpol.2014.05.081
http://doi.org/10.1002/1097-4636(20001215)52:4&lt;662::AID-JBM10&gt;3.0.CO;2-3
http://doi.org/10.1016/j.nano.2006.12.001
http://www.ncbi.nlm.nih.gov/pubmed/17379174
http://doi.org/10.3109/10408410903241436
http://doi.org/10.1021/acsami.9b20708
http://www.ncbi.nlm.nih.gov/pubmed/31944650
http://doi.org/10.1016/j.jmii.2014.04.013
http://www.ncbi.nlm.nih.gov/pubmed/24877597
http://doi.org/10.1016/j.biomaterials.2009.07.065
http://www.ncbi.nlm.nih.gov/pubmed/19698988
http://doi.org/10.1080/13102818.2015.1106339
http://doi.org/10.1016/j.matlet.2013.10.011
http://doi.org/10.1080/17458080.2016.1184766
http://doi.org/10.1039/C9RA03110C
http://doi.org/10.1155/2016/2187940
http://doi.org/10.1126/science.295.5559.1487
http://www.ncbi.nlm.nih.gov/pubmed/11859186
http://doi.org/10.1016/j.tim.2019.07.004
http://doi.org/10.3390/molecules14072535
http://www.ncbi.nlm.nih.gov/pubmed/19633622
http://doi.org/10.1111/j.1574-6968.2004.tb09643.x
http://www.ncbi.nlm.nih.gov/pubmed/15251193
http://doi.org/10.1186/s13756-019-0533-3
http://www.ncbi.nlm.nih.gov/pubmed/31131107
http://doi.org/10.3389/fmicb.2016.01366
http://www.ncbi.nlm.nih.gov/pubmed/27630624


Biology 2021, 10, 137 28 of 37

29. Rosenbaum, J.; Versace, D.L.; Abbad-Andallousi, S.; Pires, R.; Azevedo, C.; Cenedese, P.; Dubot, P. Antibacterial properties of
nanostructured Cu-TiO2 surfaces for dental implants. Biomater. Sci. 2017, 5, 455–462. [CrossRef]

30. McConoughey, S.J.; Howlin, R.; Granger, J.F.; Manring, M.M.; Calhoun, J.H.; Shirtliff, M.; Kathju, S.; Stoodley, P. Biofilms in
periprosthetic orthopedic infections. Future Microbiol. 2014, 9, 987–1007. [CrossRef]

31. Landini, P.; Antoniani, D.; Burgess, J.G.; Nijland, R. Molecular mechanisms of compounds affecting bacterial biofilm formation
and dispersal. Appl. Microbiol. Biotechnol. 2010, 86, 813–823. [CrossRef] [PubMed]

32. Vaidya, M.Y.; McBain, A.J.; Butler, J.A.; Banks, C.E.; Whitehead, K.A. Antimicrobial efficacy and synergy of metal ions against
Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in planktonic and biofilm phenotypes. Sci. Rep. 2017,
7, 1–9. [CrossRef] [PubMed]

33. Choi, O.; Yu, C.-P.; Fernández, G.E.; Hu, Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures.
Water Res. 2010, 44, 6095–6103. [CrossRef] [PubMed]

34. Anderl, J.N.; Franklin, M.J.; Stewart, P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to
ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 2000, 44, 1818–1824. [CrossRef]

35. Emori, T.G.; Gaynes, R.P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol.
Rev. 1993, 6, 428–442. [CrossRef] [PubMed]

36. Edwardson, S.; Cairns, C. Nosocomial infections in the ICU. Anaesth. Intensive Care Med. 2019, 20, 14–18. [CrossRef]
37. Kragh, K.N.; Hutchison, J.B.; Melaugh, G.; Rodesney, C.; Roberts, A.E.; Irie, Y.; Jensen, P.O.; Diggle, S.P.; Allen, R.J.; Gordon, V.;

et al. Role of Multicellular Aggregates in Biofilm Formation. mBio 2016, 7, e00237. [CrossRef]
38. Guillaume, O.; Perez-Tanoira, R.; Fortelny, R.; Redl, H.; Moriarty, T.F.; Richards, R.G.; Eglin, D.; Petter Puchner, A. Infections

associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution? Biomaterials
2018, 167, 15–31. [CrossRef]

39. Chevalier, M.; Ranque, S.; Precheur, I. Oral fungal-bacterial biofilm models in vitro: A review. Med. Mycol. 2018, 56, 653–667.
[CrossRef]

40. James, G.A.; Boegli, L.; Hancock, J.; Bowersock, L.; Parker, A.; Kinney, B.M. Bacterial Adhesion and Biofilm Formation on Textured
Breast Implant Shell Materials. Aesthetic Plast. Surg. 2019, 43, 490–497. [CrossRef]
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