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S1 Supplement. implementation details 
The act of labeling a 3D Cartesian (cuboid) structure is necessary prior to equation generation. 

One common problem with mesh instability at finer resolutions is created if the network edge 
lengths remain fixed as the mesh density increases (=edge length decreases in mesh). The best 
results for simulations occur when the characteristic edge length of the mesh and the vascular 
network are commensurate as previously noted (30,36). Here, we describe a new method for how 
to efficiently label an entire cuboid mesh using a dense vascular structure. To ensure numerical 
stability with increasing mesh density, vascular segment partitioning prior to labeling ensures the 
characteristic edge length of the vascular network compatible with that of the mesh. Once the 
vasculature is adequately refined, the efficient mesh labeling procedure cycles through all the 
vascular elements to track all connectivity between the mesh and the network. More details on 
vascular partitioning and mesh labeling are provided in the next sections. 

Vascular partitioning. In order to ensure similar characteristic length scales for the Cartesian 
mesh and vascular network, we propose a method for partitioning the vascular network 
dynamically (subdividing the segments). Each vessel in the vascular network must pass a criterion 
that ensures that no vessel spans more than 2 adjacent cells. In other words, the mesh cell indices 
(i, j, and k positions in the x, y, and z directions respectively) of the endpoints must not differ by 
more than 1. Segments that fail are cut in half. Note, after a segment is cut in half, both sub-
segments must be evaluated against the criteria test again.  

We verified the vascular connectivity was preserved during simulation by calculating the flux 
balance across each vascular node. We ensure these mass balances independent of the equation 
generation/solving stages by recalculating all fluxes between adjacent volumes in the system and 
then calculating mass balance error from the sum of fluxes. We then ensure that the divergence of 
all balances is less than the preset tolerance. In the event our method did not represent the vascular 
connectivity correctly, the mass balances would exceed the tolerance during this check phase. We 
also ensure that the segment-to-segment and segment-tissue connectivity is preserved during the 
oxygen simulation stage by performing another flux balance check at this stage again. 

Mesh labeling using vascular network. The next step entails labeling each cell into one of three 
categories: intravascular (blood, red), endothelial layer (grey), and extravascular space (blue). The 
method takes advantage of the Cartesian coordinate system to avoid having to search neighborhood 
connectivity that would be required in unstructured, tetrahedral meshes. In this way, the algorithm 
drastically reduces the number of floating point operations required for labeling. Specifically, the 
program cycles through all vessels in the vascular network. The bounding box of each vessel is 
computed and translated to dimensional indices (i, j, and k positions in the cuboid mesh). The 
maximum and minimum indices in each dimension characterize the new search domain for the 
cylinder. Each mesh cell within the subdomain is then compared to the cylinder and labeled as 
intravascular, endothelial, or extravascular. A pseudocode for these steps is offered in Table A in 
S1 Text. 

The radial distance (=perpendicular distance) between the center of each subdomain mesh 
element and the vascular segment is then computed. If the axial distance is determined to be 
between the first and second point, axially, then the radial distance between the cell and the 
segment characterizes whether or not the cell is within the cylinder (if distance < radius, the mesh 



cell is within the cylinder). Due to the gaps between adjacent segments modeled as perfect 
cylinders, the ends of the cylinder are considered spherical with equivalent radii to the parent 
cylinder.  

Identifying whether a cell center lies in a cylinder or not can be performed with vector 
operations. This efficient algorithm simply characterizes the vessel centerline as a vector and uses 
sine and cosine operations to evaluate the radial and axial distance, respectively.  

 
Table A. Pseudocode for labeling a mesh with a dense vascular structure 

1. FUNCTION Label3DMesh(mesh,nwk,w) 
2.   FOR iFace = 1 TO nwk.nFaces DO 
3.     getPointsForFace(iFace, p1Idx, p2Idx); 
4.     dia = nwk.dia[iFace]; 
5.     [minI,minJ,minK,maxI,maxJ,maxK]=findBoundingBoxOfFace(p1,p2, radius); 
6.     FOR i = minI TO maxI DO 
7.       FOR j = minJ TO maxJ DO 
8.          FOR k = minK TO maxK DO 
9.            cellIdx = mesh.getGlobalIdxFromIJK(i,j,k); 
10.            cellCenter = mesh.getCellCenter(cellIdx); 
11.            result[cellIdx]=… 

                  labelCellWithCylinder(p1,p2,cellCenter,dia/2,w); 
12.         ENDFOR 
13.       ENDFOR 
14.    ENDFOR 
15. ENDFOR 

 
The endothelial can be characterized by the radius of the vessel ± 𝑤𝑤/2, or half the wall 

thickness of the endothelial layer. The radial distance and subsequent labeling between a new point 
(cell center) for a segment centerline and cell center is given by the following pseudocode. In our 
actual implementation, we also expand each cylindrical segment with a hemisphere protruding 
outwards from each of the two terminal nodes, but this additional function is somewhat 
geometrically involved. We therefore chose to omit it from Table B in S1 Text for better clarity of 
the overall idea. 

 
Table B. Pseudocode for labeling a given cell in reference to a single vascular cylindrical segment 

1. FUNCTION labelCellWithCylinder (p1,p2,cellCenter,r,w):integer; 

2.   v1=getAsVector(p1,p2); v2=getAsVector(p1,cellCenter); 

3.   c=dot(v1,v2)/(norm(v1)*norm(v2)); H=norm(v2); 

4.   d=H*power(1-c*c,0.5); 

5.   IF (d < r – w/2)     THEN label=endothelium; 

6.   ELSEIF (d < r + w/2) THEN label=endothelium; 

7.   ELSEIF (d < r)       THEN label=interior; 

8.   ELSE                 THEN label=extravascular;  

9. RETURN label; 

 
The variable 𝑑𝑑 represents the perpendicular distance between the mesh cell center and the 

vascular centerline. This can be calculated with the help of defining the centerline and cell center 



in vector form. The scaled sine of the angle between these vectors is perpendicular distance from 
the centerline: 
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 (S1.1) 

 
Where 𝑣𝑣1 is the vector connecting the segment endpoints (=vessel centerline). The vector 𝑣𝑣2 

indicates the vector between the first endpoint and the mesh cell center.  
Hierarchy of labeling. At bifurcations and segments with extreme curvature, two or more 

subsequent segments may overlap. As a consequence, some mesh cells located in the overlapping 
domain may be subject to labeling from more than one vascular segments. In order to avoid 
ambiguous labeling, a hierarchical labeling logic has been implemented to determine a unique cell 
label. The logic has three rules: (i) An endothelial label always overrides an extravascular label. 
(ii) Intravascular label always overrides extravascular and endothelial labels. (iii) Finally, for cells 
with the same hierarchy, the upstream segment label has precedence. Examples of this labeling are 
given in the Fig in S1 Text, frame D. Examples of labeling without competition are shown in the 
Fig in S1 Text, frames A-C. 

 

 
S1. Fig1. Examples of mesh labeling for blood vessels of different length scales. A) A large vessel with 
large diameter (dia) compared to characteristic mesh edge length (dx) may label many interior mesh 
elements and a concise endothelial layer (note, this vessel does not reflect partitioning). Colors indicate 
interior (red), boundary (green) and extravascular (exterior-white). B) A vessel that has a similar width 
to a single mesh element will merely label the element as endothelial elements and exhibit mass transfer 



to it. C) Smaller vascular segments may be entirely contained within a single mesh element. D) The 
progression of labeling as two adjacent segments are labeled. The number inside each mesh cell indicates 
which vascular element the cell is connected with. 

 
In addition, for all edge and the interior cells, the index of the associated segment is stored in 

the connectivity incidence matrices, where each row of the cell_to_segment connectivity matrix 
stores which vascular segments connecting to the cell, and the segment_to_cell connectivity matrix 
stores the cell indices concerted to a vascular segment. 

Automatic equation generation. For tissue elements, numerical expressions for the face fluxes 
for each cuboid cell are built by one of three methods: (i) Diffusion flux equations are created 
between two cells belonging to the same group (extravascular elements, endothelial elements). 
Moreover, diffusion occurs from the endothelial surface to the extravascular tissue space(=entirs 
of 𝑀𝑀𝑑𝑑. (ii) Mass transfer flux equations are generated between an endothelial element and the 
corresponding vascular node (entries in 𝐶𝐶3). (iii) Flux equations are omitted between all 
intravascular elements. Instead, the equations to determine the concentration for intravascular 
mesh elements, 𝑐𝑐𝑡𝑡

𝑗𝑗 (=red cuboid), is obtained by equating it to the concentration of the 
corresponding network vascular node, 𝑐𝑐𝑣𝑣𝑖𝑖 , as indicated in (S1.2) 

 
𝑐𝑐𝑡𝑡
𝑗𝑗 = 𝑐𝑐𝑣𝑣𝑖𝑖  (S1.2) 

 
The mass transfer matrices 𝐶𝐶3 can be automatically populated with the help of the 

cell_to_segment and segment_to_cell data structures (=integer connectivity matrices). 
Specifically, each ith node in the vascular network generates a contribution to the jth element 
corresponding to the tissue node. These matrices can be filled by cycling through all nodes of the 
vascular structure.  

For clarity, we revisit the final master equation for coupled oxygen transport between the 
vasculature and the tissue mesh, system (3) in the main manuscript. Here, we expand the unknonw 
vectors of the tissue mesh in more detail to more clearly define the implementation of the flux 
equations with the help of the mesh masking labels (intravascular, endothelial, and extravascular 
volumes). The coupled equations can then be expressed in terms of four independent vascular 
network and tissue variable sets: The oxygen concentration on the vascular nodes, 𝑐𝑐𝑣𝑣, the tissue 
endothelial elements, 𝑐𝑐𝑡𝑡𝑒𝑒, the extravascular tissue elements, 𝑐𝑐𝑡𝑡, and the intravascular tissue 
elements, 𝑐𝑐𝑡𝑡𝑣𝑣. These endothelial and the tissue nodes inside the Cartesian mesh were lumped in the 
main manuscript in (3). Moreover, the intraluminal nodes were eliminated with the help of the 
equalities in (S1.2). Alternatively you could solve for these equations with the help of the fifth 
matrix in (S1.3). 
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Where oxygen tension in blood vessels, 𝑐𝑐𝑣𝑣, the extravascular mesh cells, 𝑐𝑐𝑡𝑡, the endothelial 

cells, 𝑐𝑐𝑡𝑡𝑒𝑒 and the intravascular cells, 𝑐𝑐𝑡𝑡𝑣𝑣 are solved for simultaneously.  



Description of submatrices. Here, 𝑀𝑀𝑐𝑐 ∈ ℜ
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a matrix of convection of oxygen through 

the vascular network. The rectangular matrix 𝐶𝐶3 ∈ ℜ𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑥𝑥 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛+𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 represents the connectivity 
between the vascular nodes and the corresponding endothelial mesh elements identified by the 
labeling algorithm.  The diagonal matrix of mass transfer conductivity 𝐺𝐺1 = 𝑈𝑈𝑈𝑈

𝑤𝑤
 is used to scale the 

coefficients of the mass transfer connectivity. The matrix 𝑀𝑀𝑑𝑑 ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  enforces the diffusion 
between  endothelial and extravascular tissue mesh elements. The diagonal matrix 𝑅𝑅2 ∈
ℜ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 contains the reaction rate constants, 𝑘𝑘𝑚𝑚𝑒𝑒𝑡𝑡, and the cuboid volume (𝑉𝑉𝑡𝑡). The equality 
constraints between vascular nodes and corresponding intravascular mesh cells in (S1.2) is 
enforced by the identity matrix and connectivity matrix 𝐶𝐶4 according to a one-to-many association.  

Right hand side (RHS). 𝑐𝑐𝑣𝑣�  represents the boundary conditions for the vasculature and 𝐷𝐷1 is the 
incidence matrix of the inlet boundary nodes in the vasculature. 𝑐𝑐𝑡𝑡�  represents the boundary 
conditions for the tissue which is similarly aided by the decision matrix 𝐷𝐷2. 

 


	S1 Supplement. implementation details

