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ABSTRACT In time-domain simulations of power system transients, trapezoidal integration with fixed
step-size is the most common method due to its accuracy and ease of implementation. Discontinuities
occurringwithin fixed time-stepwhen simulating power electronics circuits, may cause numerical oscillations
and errors. Several methods are available in the literature for interpolation and handling of discontinuities.
This paper intends to analyze how accuracy is affected by existing techniques for handling discontinuities
in time-domain simulations based on the trapezoidal integration method. New algorithms are proposed to
improve accuracy.

INDEX TERMS Accuracy, interpolation, time-domain simulation, trapezoidal integration method.

I. INTRODUCTION

THE trapezoidal integration method is a one-step implicit
A-stable method commonly employed in the simulation

of electromagnetic transients [1], [2]. It has a second order
accuracy level [3], [4] the same as 2S-DIRK [5], [6] and
Gear 2 [7] and can perform efficiently/accurately for a wide
range of transient frequencies [4]. But this method is not
perfect.

Firstly, trapezoidal integration causes numerical oscilla-
tions at discontinuities. Discontinuities occur due to switch-
ing in power electronics circuits or due to nonlinear functions.
Several techniques are proposed in the literature to eliminate
numerical oscillations. One of them consists of switching
from trapezoidal (TR) integration to L-stable Backward Euler
(BE) method for two half time-steps after the discontinuity
occurrence [4], [8]. This method is implemented in [9]. It fol-
lows the initial idea of [10] where the BEmethod is used only
to reinitialize TR integration after locating the discontinuity
instant.

Some works have demonstrated the effectiveness of
the L-stable 2S-DIRK [5], [6], [11] method for eliminat-
ing numerical oscillations. This 2-step method is more

complicated to implement than TR and may become less
accurate for very stiff systems [4]. TR integration with
2S-DIRK for eliminating numerical oscillations is also tested
in [4].

Another method for avoiding numerical oscillations is
the chatter removal technique [12]. It consists in per-
forming a half time-step interpolation after crossing a
discontinuity [12].

In [13] TR integration is combined with the backward
differentiation formula method, called BDF2 [14] to obtain
the TR-BDF2 formula.

All of the above approaches may affect numerical accu-
racy, especially with power-electronics circuits.

Secondly, with fixed time-step simulation, discontinuities
occurring between two discrete time points may not be
accurately tracked, resulting in additional errors and even
in non-characteristic harmonics for some power-electronic
circuits [15], [16].

Interpolation techniques are used in [17], [18] to fall back
to discontinuity instant and to resynchronize with simulation
time-mesh. That is also called double interpolation [12]. This
mechanism is assumed to yield better accuracy, compared

VOLUME 8, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

157

https://orcid.org/0000-0001-9266-635X
https://orcid.org/0000-0003-2924-049X
https://orcid.org/0000-0001-6056-7103
https://orcid.org/0000-0003-0865-6947


to performing fixed step-size numerical integration without
applying interpolation. However, sometimes this might not be
the case, as it was pointed out in [3] without further analysis.

This paper follows research initiated in [3] to present new
details and analysis on accuracy for existing numerical meth-
ods with techniques to handle discontinuities. Contrary to
[3] the focus of this paper is on TR integration only, since
it is commonly used in EMT-type software packages [1].
In addition, this paper presents a more comprehensive analy-
sis on a larger set of existing numerical methods and provides
new explanations on accuracy issues while proposing better
methods. Also, this paper uses more sophisticated test cases
for pin-pointing all potential accuracy issues in switching sys-
tems. The contributions are valuable for EMT-type software
development and accuracy analysis.

This paper is organized as follows. Section II presents
existing techniques for handling discontinuities. Section III
contributes new methods and alternatives. In section IV,
numerical results based on analysis performed in section II,
are presented. Finally, section V shows simulations for prac-
tical cases.

II. TECHNIQUES FOR HANDLING DISCONTINUITIES
WITH TRAPEZOIDAL INTEGRATION METHOD
A. ACCURATE TRACKING OF DISCONTINUITIES
In fixed time-step 1t computations, when a discontinuity
occurs between two consecutive time-points, interpolation
can be used to calculate unknown variables at the disconti-
nuity instant. Interpolation can be linear or quadratic. In the
case of linear interpolation:

xz = (1− α)xn + αxn+1 (1)

α = (tz − tn)/(tn+1 − tn) (2)

where xn, xn+1 and xz are respectively the values of a variable
x at time-points tn, tn+1 = tn + 1t and at the discontinuity
instant tz ∈ [tn, tn+1].
Quadratic interpolation [3], [19] requires the solution xn−1

at tn−1 and gives:

xz = p1xn−1 + p2xn + p3xn+1 (3)

where p1 =
(tz−tn)(tz−tn+1)

(tn−1−tn)(tn−1−tn+1)
, p2 =

(tz−tn−1)(tz−tn+1)
(tn−tn−1)(tn−tn+1)

, and

p3 =
(tz−tn−1)(tz−tn)

(tn+1−tn−1)(tn+1−tn)
.

In [17], [20] and [21] after linear interpolation for solu-
tion at tz using (1), trapezoidal integration is performed to
reach tz +1t . After this point, another linear interpolation is
used to resynchronize with time-mesh solution at tn+1. This
mechanism is hereinafter referred to as TR_DI for trapezoidal
rule and double interpolation. Resynchronization remains
optional and the single interpolation approach is given the
acronym TR_SI.

In forced or naturally commutated power electronics cir-
cuits, the change of state of one switch may lead to changes
of states in one or more switches. Accurate tracking of such
discontinuities requires to complete all switch status changes
at the same simulation time-point (without advancing in

time). This method was initially introduced in EMTP [9] (see
also [2]) and named simultaneous switching (SS). In fact,
completely wrong answers may result if SS is not applied in
some circuit topologies, such as the buck-boost converter.

B. SUPPRESSION OF NUMERICAL OSCILLATIONS
In time-domain simulation, network components are
described by differential equations [22] in the form:

ẋ = f (x, t) (4)

TR integration can be used to discretize (4):

xn+1 = xn +
1t
2
[fn+1 + fn] (5)

Equation (5) is used to create companion models for all
network components and formulate network equations using,
for example, modified-augmented-nodal-analysis [9]:

Atxt = bt (6)

where At is the simulated network Jacobian matrix, xt is the
vector of unknowns and bt is the vector of known quantities
(includes history terms and known sources). Equation (6) is
solved at each time-point t . Various discontinuities may occur
due to switching devices in power-electronics circuits or non-
linear functions. It can be shown that although the trapezoidal
rule is A-stable, such discontinuities may cause numerical
oscillations in (5).

Numerical oscillations can be eliminated using various
techniques, one of them is presented in [10]. It uses inter-
polation and a single1t/2 projection step BE integration for
reinitialization of TR integration.

It is recalled that BE numerical integration is given by

xn+1 = xn +1t fn+1 (7)

This approach [10] can however produce significant errors
for large values of 1t . It is modified in [8] by applying two
consecutive 1t/2 time-step BE integrations without interpo-
lation. This version is used in [9] where the BE steps are
applied until all discontinuities are eliminated and followed
by TR integration. This method is hereinafter referred to as
TR_BE. In [9] discontinuities are automatically detected by
monitoring events, such as switch status changes, sources
starting and stopping and nonlinear functions changing oper-
ating segments. In addition, [9] uses a simultaneous switching
algorithm, as also proposed in [21]. Simultaneous switching
consists in verifying all switch states before advancing in
time.

It is also possible to apply a two-step integration method.
The first one is performed with TR and the second one uses
an L-stable method. In TR-BDF2 [3], [13], [14], [23],an
intermediate stage xγ is calculated to move from xn to xn+1
as:

xγ = xn + γ
1t
2
[f (xγ , tγ )+ f (xn, tn)] (8)

xn+1 = (1− η)xn + ηxγ + γ
1t
2
f (xn+1, tn+1) (9)
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where γ = 2 −
√
2 and η = (1+

√
2)/2. The internal

trapezoidal stage has the size γ1t , so tγ = tn + γ1t .
This idea is similar to the 2S-DIRK method [11] where an
intermediate point solution is also used. Such methods are
typically more complicated to implement in large scale sim-
ulation tools since they require two history term calculations
per simulation time-point. This also creates complications for
several models, such as rotating machines and transmission
lines. Comparative efficiency with TR is a concern. Never-
theless, the target of research in this paper is the TR method.

It is also possible to suppress numerical oscillations by
applying a chatter removal technique [12], [17]. This method
can be explained using the companion model of an induc-
tance. The voltage across an inductance L at any time-point
tn+1 is given by

vn+1 =
2L
1t

(in+1 − in)− vn (10)

when using trapezoidal integration. When the current
in+1 = 0 due to a discontinuity (switch opening), the voltage
becomes vn+1 = −(2L/1t)in − vn. At the following time-
point in+2 = 0 and vn+2 = −vn+1. At any following time-
points the voltage is the opposite of the preceding time-point
which constitutes numerical oscillations. The oscillations can
be avoided by performing a half time step linear interpolation
between time-points tn+2 and at tn+1. The resulting value
(theoretically exactly zero) will stand for the solution at
tn+2 and the simulation can continue from there. In practice,
some simulation techniques combine double interpolation
and chatter removal to handle discontinuities that occur in-
between time-points [12], [17]. It is assumed in this method
that perfect equality is reached between two consecutive
opposite voltage values, which remains true within negli-
gible numerical roundoff error. We refer to this method as
TR_DICR. Note that TR_SI and TR_DI do not remove
numerical oscillations.

C. ERROR ANALYSIS
In time-domain simulations with TR integration, the tech-
niques used to handle discontinuities may cause additional
errors. This section aims to quantify those errors. The local-
error e(tk ) of a given variable x at a given timepoint tk is
evaluated by calculating the difference between its numerical
value xk and its exact value x(tk ):

e(tk ) = xk − x(tk ) (11)

The exact value x(tk ) may be obtained through a reference
simulation or can be analytical. From (11), relative-local-
error is defined as:

er (tk ) = e(tk )/x(tk ) (12)

Local and relative-local errors ((11) and (12)) may not be
sufficient to assess accuracy. For a simulation between time-
points tstart and tend , the error should be evaluated for every
instant tk ∈ [tstart , tend ]. To do that, we define the error

FIGURE 1. Simulation timeline.

function for every tk and quantify the overall error by the
relative rms error (RRE) as presented in [3]:

erms =
1
xrms

√√√√ 1
ns

ns∑
k=1

e(tk )2 (13)

where xrms is the rms value of the exact solution waveform
and ns is the number of simulation points.
The local-error of a numerical integration technique after

crossing a discontinuity can be evaluated using the basic
function [22]:

ẋ = λx (14)

where Re(λ) < 0. If x0 is the initial value, the exact solution
of (14) is:

x(t) = x0eλt (15)

In the timeline of Fig. 1 the hatted variables are on the
time-mesh and the simulation starts from x̂0 at t̂0, assuming
that t̂0 = 0. A discontinuity occurs at t01 and α is calculated
using (2). According to (14) and (5), x̂1 is found in a first step
by TR integration:

x̂1 = K0x0 = K0x̂0 (16)

where K0 = (1+ λ1t2 )/(1− λ1t2 ).
With TR_SI the second step is a linear interpolation to find

x01 using x̂0 and x̂1. According to (1) and (16)

x01 = (1− α + αK0) x̂0 = K1x̂0 (17)

The third step is to apply trapezoidal integration to move
from x01 to x12:

x12 = K0K1x̂0 = K2x̂0 (18)

Combining (18), (17) and (16), then using (11) and (15),
the e(t12) for TR_SI is given by

eTR_SI = [(1− α)K0 + αK 2
0 − e

λ(1+α)1t ]x̂0 (19)

If we use TR_DI, there is one more step that consists of
applying a second interpolation to recalculate the solution x̂1
at t̂1, using x01 and x12:

x̂1 = [αK1 + (1− α)K2] x̂0 = K3x̂0 (20)
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From (20), (18), (17) and (16), using (11) and (15), the e(t̂1)
with TR_DI is

eTR_DI =
[
α(1− α)+

[
(1− α)2 + α2

]
K0

+α(1− α)K 2
0 − e

λ1t
]
x̂0 (21)

Now if we use TR_DICR in one of its two forms presented
in [12], then from (20), a one-step integration is done to
calculate the solution at t̂2, that is: x̂2 = K0K3x0. Then a half
time step interpolation is performed from x̂1 and x̂2. The final
solution at t̂2 becomes:

x̂2 = 0.5(K3 + K0K3)x̂0 = K4x̂0 (22)

which gives for e(t2)

eTR_DICR = [0.5 [1− α + αK0] [α + (1− α)K0]

(1+ K0)− eλ21t ]x̂0 (23)

Another approach for performing chatter removal,
as explained in [12], consists in performing a half time-
step interpolation from x01 and x12 in (18), to obtain x11.
Then a one-step integration is used to calculate x21. Finally,
linear interpolation is performed from x11 and x21 to get x̂1.
This approach executes the same steps as TR_DICR, but
in a slightly different order. Simulation results not shown
here indicate that those two approaches yield similar results,
the main objective being avoiding numerical oscillations.

Finally, if we use TR_BE, a discontinuity occurring at t01
is detected at t̂1. The error due to inaccurate detection is the
difference between x̂1 in (16) and the exact solution at t01,
because both represent instants at which the discontinuity is
taken into account. The e(t1) is therefore equal to:

eTR_BE =
[
K0 − eλα 1t

]
x̂0 (24)

Equations (19), (21), (23) and (24) indicate that the instant
at which a discontinuity occurs (defined by α) impacts on e.
Furthermore, through K0, the errors also depend on λ (which
characterizes the simulated system) and1t . The above equa-
tions allow to compare different techniques.

III. NEW METHODS
Finding a perfect numerical method capable to simulate
power-electronics circuits at the best accuracy level is a chal-
lenging task. Several techniques are developed and used in
existing software. They all seek the optimal trade-off between
accuracy and computing time. In this section, some new
simulation approaches derived from existing methods are
proposed. They aim to improve accuracy in simulation tools.

A. TR_BE WITH LINEAR INTERPOLATION (TR_BE_I)
It is possible to improve TR_BE by performing a linear
interpolation to find x01, before applying the two BE steps.
We refer to this method as TR_BE_I. It has not been pre-
viously applied in the literature. According to Fig. 1, with
TR_BE_I, the simulation moves from t̂0 to t̂1 and comes back
to t01. The result is (17). A first half time-step BE integration

is performed to move from t01 to t11. When (7) is applied
to (14)

x11 = K5x01 (25)

where K5 = (1− λ1t2 )−1. Then, a second half time-step BE
integration is performed to calculate the solution at t12:

x12 = K5x11 = K 2
5 x01 (26)

From t12, TR integration is used to move the simulation for-
ward without resynchronization to time-mesh. (26) with (17)
gives

x12 = K 2
5 [(1− α)+ αK0] x̂0 (27)

The e(t12) is therefore given by:

eTR_BE_I =
[
K 2
5 (1− α + αK0)− eλ(1+α)1t

]
x̂0 (28)

B. TR_BE_I WITH TWO TIME-STEP VALUES (TR_BE_I_V)
Oneway to achieve higher levels of accuracy in simulations is
to vary the time-step. The method proposed here is following
the work of [24]. We refer to it as TR_BE_I_V. It uses two
time-step values: a normal 1t1 and a very smaller 1t2. The
simulation is normally performed using1t1. When a discon-
tinuity occurs, linear interpolation is performed to bring the
simulation back to the point of discontinuity. At this point the
time-step is set to1t2, two halved time-steps BE integrations
are performed, and the time-step is set back to 1t1 to con-
tinue with TR. This method is similar to TR_BE_I with the
difference that the two halved time-step BE integrations are
performed using a very small time-step 1t2. The objective is
to increase accuracy near the discontinuity point solution.

This method requires to modify At in (6) for changing the
time-step, leading to higher computational burden. Although
two versions of At can be stored and reused.

C. MODIFIED TRAPEZOIDAL WITHOUT INTERPOLATION
(MTR_BE_V)
This method allows to directly reach any discontinuity point
from the previously calculated time-point by modifying the
integration method. Therefore, it accurately tracks disconti-
nuities without interpolation. It is inspired from [25] and [26]
where a modified version of the trapezoidal method called
weighted-averaged integration was presented as

xn+1 = xn +
1t
2

[(2− w)fn+1 + wfn] (29)

where w is a weight that modifies the numerical method.
w = 0 corresponds to BE and w = 1 corresponds to TR.
In this formulation, it is possible to substitute 1t by γ1t .
Then, by varying γ between 0 and 1, the step-size of the
obtained numerical method is varied. Ifw is adjusted in a way
that the condition γ (2 − w) = 1 is always satisfied, then At
in (6) remains unchanged. The new formulation becomes:

xn+1 = xn +
γ1t
2

[(2− w)fn+1 + wfn] (30)
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This new formulation is referred to as MTR_BE_V.
It works as follows: the simulation is normally done with
γ = 1 (TR integration). At each time-point tn, the code
verifies if a discontinuity will occur between tn and tn+1 by
checking control signals or using linear extrapolation to make
a prediction, as described in [27]. If so, the discontinuity
instant tz is calculated and the three following steps are exe-
cuted:

1) set γ = (tz − tn)/1t and perform one integration step
using (30) to advance from tn to tz.

2) set γ = (tn+1 − tz)/1t , account for the discontinuity,
then use (30) to advance from tz to tn+1.

3) set back γ = 1 and perform two halved time-step BE
integrations, then continuewith trapezoidal integration.
This step eliminates numerical oscillations.

According to the analysis performed in section II.C, the
e(t̂2) for the proposed MTR_BE_V method, is given by:

eMTR_BE_V =
[
K6(α) K6(1− α) K 2

5 − e
λ21t

]
x̂0 (31)

where K6(α) =
[
1+ λ |2α−1|1t2

]/[
1− λ1t2

]
. It is noted that

the implementation of MTR_BE_V requires the use of linear
extrapolation. This could lead to loss of accuracy as it will be
shown later is section IV.B.

D. METHODS WITH SIMULTANEOUS SWITCHING
(TR_BE_SS, TR_BE_SS_I)
The simultaneous switching (SS) technique discussed in
section II.A. can be combined to TR_BE to obtain the
TR_BE_SS method. According to Fig. 1, the simulation
moves from t̂0 to t̂1, where the discontinuity is detected. The
switch state is changed, and the circuit is solved again at t̂1.
The algorithm continues to monitor all switches and resolves
the circuit until no more changes are detected. The next steps
from t̂1 are the same as in TR_BE.

The SS technique can be also included with TR_BE_I to
give the method named TR_BE_SS_I. It consists of applying
SS at t̂1, the same way as in TR_BE_SS and then interpolate
to t01. The next steps from t01 are the same as in TR_BE_I.
This new method performs both interpolation and SS.

SS is not required for all circuit simulation cases, but when
needed, it allows to achieve more accurate results.

The accuracies of above methods will be evaluated next.

IV. NUMERICAL RESULTS
A. ACCURACIES OF TECHNIQUES USED TO HANDLE
DISCONTINUITIES
In this part, the accuracies of techniques presented to handle
discontinuities are evaluated. Equations (19), (21), (23), (24),
(28) and (31) are used to evaluate e for different values of
α. The results are presented in Fig. 2. In this graph λ =
−104, x̂0 = 1 and 1t = 50µs. Similar conclusions are
reached for other values of λ and 1t .
It is observed from Fig. 2, that without any interpolation

technique (TR_BE) to track discontinuities, |e| is linearly
correlated with α. TR_SI and TR_DI both use interpolation,

FIGURE 2. Local-error of simulation techniques in relation to α.

FIGURE 3. Simple RLC circuit.

but TR_SI which does not interpolate back to resynchro-
nize with the time-mesh, yields lower errors than TR_DI
(uses resynchronization). Therefore, using interpolation for
time-mesh resynchronization adds extra errors and should
be avoided when unnecessary. It is noted that TR_SI is not
capable of removing numerical oscillations and should not
be used for practical applications.

With TR_DICR the error does not vary significantly with
respect to α. However, it is observed that for higher values of
α, TR_BE (no interpolation) performs better than TR_DICR.
The above explains the findings of [3] where only compar-
isons were made without further analysis.

Finally, TR_BE_I and the proposedMTR_BE_V both give
lower errors than TR_DICR and TR_BE.

The results presented above are related to local error after
discontinuity. In practical simulations, this error may become
attenuated in the following steps. It is important to check
how accuracy is affected in a complete simulation to verify
if the conclusions drawn from Fig. 2 remain valid. To do
that, the simple example of Fig. 3, taken from [3] with slight
modifications, is simulated with 1t = 10µs.

The switch SW1 is closed at different instants tz between
two consecutive time-points tn = 30ms and tn+1 = tn +1t .
This means that α defined in (2) varies from 0 to 1 with a
step of 0.1: tz = 30ms + α1t . The methods TR_BE, TR-
BDF2, TR_DICR, MTR_BE_V and TR_BE_I are tested for
each value of α. For α 6= 0 and α 6= 1, the TR_DICR and
TR_BE_I methods account for exact discontinuity instant tz,
whereas TR_BE and TR-BDF2 detect it at tn+1. For each
simulation, the relative-rms-error (RRE) in the inductance
L1 current is calculated using (11) and (13) for the duration
of the transient state from tn+1 = 30ms + 1t to 40ms. The
exact solution in (11), is found using 1t = 1µs. The results
are presented in Fig. 4.
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FIGURE 4. Relative-rms-error in L1 current for tested methods
with 1t = 10µs.

These results validate the theoretical analysis presented in
Fig. 2. Indeed, for TR_BE the RRE is again linearly corelated
with α. For TR_DICR and TR_BE_I, the RRE is almost
constant with varying α. One very interesting observation is
the fact that the TR_BE and the TR_DICR graphs intercept
each other for a certain value of α. This again explains
the counter intuitive result obtained in [3]. When handling
a discontinuity, TR_BE may become more accurate than
TR_DICR and that depends on α. In a practical simulation,
α is unpredictable, so accuracy comparisons amongst some
methods may become probabilistic. If SW1 is closed and
opened several times, we can claim that TR_DICR that uses
interpolation has only about 50% of chance to be more accu-
rate than TR_BE. Also, TR_DICR has 80% more chances
to be more accurate than TR-BDF2. TR_BE performs bet-
ter than TR-BDF2 and the proposed MTR_BE_V performs
better than TR_DICR. Furthermore, TR_BE_I is the most
accurate technique

B. COMPARISONS BETWEEN INTERPOLATION AND
EXTRAPOLATION
Interpolation or extrapolation [27] may be used in simulation
algorithms to move back to a discontinuity instant or to
calculate the exact moment at which the discontinuity has
occurred. We consider 4 consecutive time-points tn−2, tn−1,
tn and tn+1 in a simulation and assume a discontinuity occur-
ring between tn and tn+1. To determine the exact instant tz,
one can apply linear interpolation from solutions at tn and
tn+1, quadratic interpolation from tn−1, tn and tn+1, linear
extrapolation from tn−1 and tn or quadratic extrapolation from
tn−2, tn−1 and tn.
This section aims to compare accuracy for the above

interpolation and extrapolation techniques. For this purpose,
the simple diode rectifier circuit of Fig. 5 is simulated with
TR_BE. Each diode is modelled by a 1m� resistance in series
with an ideal switch model and with a 0.7V DC source when
closed, and by a 1M� resistance in parallel with an ideal
switch when opened.

The circuit is first simulated with 1t = 100ns (fixed
time-step) using TR_BE as reference. Each time a diode state
changes, the switching instant tZR is recorded, no matter what

FIGURE 5. Diodes rectifier circuit with RC load.

FIGURE 6. Error in linear/quadratic interpolation (solid
line)/extrapolation (dashed line) with TR_BE.

diode it is. t iZR is the ith value of change. In the second step,
the circuit is simulated with TR_BE and with different 1t
values.

For each simulation, each time a diode state changes, lin-
ear interpolation, quadratic interpolation, linear extrapolation
and quadratic extrapolation are successively used to calculate
and record the exact instant. Each obtained value of tZ , named
t iZ , is compared to its corresponding value t iZR from the refer-
ence simulation, then the absolute value of the mean relative
error is calculated using (32). The results are presented in
Fig. 6 where solid lines represent interpolation and dashed
lines represent extrapolation. The mean relative error formula
is

emean =
1
n

n∑
i=1

∣∣t iZ − t iZR∣∣
t iZR

× 100 (32)

The results indicate that linear interpolation is the most
accurate. Differences with quadratic interpolation are neg-
ligible. Which means that the more complex quadratic
interpolation does not improve accuracy. Also, extrapola-
tion as performed in [27] (linear or quadratic) gives larger
errors.

At this level, several techniques to handle discontinuities
have been presented and evaluated. For the next section,
the most promising amongst them are used to simulate actual
power electronics circuits.

V. SIMULATION CASES
A. SIMULATION OF A THYRISTOR CONTROLLED
REACTOR (TCR)
The circuit presented in Fig. 7 is taken from [3] and used here
for comparison purposes. The thyristors are modeled as the
diodes for Fig. 5 in on/off states.
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FIGURE 7. Thyristor Controlled Reactor (TCR) circuit.

FIGURE 8. Error in inductance current for the TCR circuit with
1t = 50µs.

The reference simulation is obtained with TR_BE with
a 1µs step-size. The circuit is simulated using TR_BE,
TR_BE_I, TR_DICR and MTR_BE_V with 1t = 50µs.
The error functions for those methods, obtained using (11) at
each time-point are presented in Fig. 8. Each time a thyristor
closes, the value of α as defined in (2) is calculated and shown
in the graph. In cases of thyristor openings, the current in
L1 becomes 0 for all methods and α recording is pointless.

From Fig. 8, it is observed that TR_DICR gives an almost
constant error when the thyristors are closed. For TR_BE,
the smaller values of α lead to larger errors. These two obser-
vations are in accordance with the theory presented in Fig. 2
and with simulation results of Fig. 4. Also, the proposed
MTR_BE_V ismore accurate than TR_DICR.However other
simulation results not shown here, demonstrate that the accu-
racy of MTR_BE_V can decrease when simulating circuits
with diodes. This is because linear extrapolation is used in
MTR_BE_V to find discontinuity instants. As stated before
and shown in Fig. 6, linear extrapolation degrades accuracy.

Finally, it is noticed that TR_BE_I achieves the best
accuracy level and remains the best approach to handle

FIGURE 9. DC-AC-DC converter.

FIGURE 10. Load voltage for the DC-AC-DC converter with
1t = 80 ns.

discontinuities. Also, it is worth to notice that the
TR_BE_I_V method (not shown here) gives about the same
level of accuracy than TR_BE_I for this circuit. The TCR
circuit is a simple circuit. Amore complex circuit is simulated
in the following section.

B. SIMULATION OF A DC-AC-DC CONVERTER
The circuit of Fig. 9 is made up with 4 IGBTs and 4 diodes.
Each IGBT is modelled by 2 diodes and one controlled
switch. Therefore, there are 16 switches. Each diode is mod-
elled as in the circuit of Fig. 5. This example demonstrates the
previously discussed (section II.V-A) issue in the simulation
of electronic converters: the change of state of one or some
switches leads to the change of state of some other switches
at the same instant. That is why the SS method in is applied
below.

The controlled switches of the 4 IGBTs are driven by
a periodic step signal generator with 50% width and a
frequency of 300 kHz. Five methods are tested: TR_BE,
TR_BE_I, TR_BE_I_V, TR_BE_SS and TR_BE_SS_I.

The reference for comparisons is a TR_BE_SS simulation
with 1t = 1 ns. All tested methods are simulated using
1t = 80 ns. The proposed TR_BE_I_V method uses 80ns
and 10ns time-step values. Simulation results for voltage
across load Rload and absolute error in the same voltage are
presented in Fig. 10 and Fig. 11.
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FIGURE 11. Absolute error in load voltage for tested methods.

FIGURE 12. Load voltage for the DC-AC-DC converter with 1t =

10 ns.

Fig. 10 and Fig. 11 show that TR_BE yields less accurate
results for the given time-step. Secondly, we can see that
TR_BE_I is more accurate than TR_BE but is less accurate
than TR_BE_SS. This reveals that using interpolation alone
is not enough to accurately simulate circuits with possible
simultaneous commutations. In [21] and [28], it is demon-
strated that using a technique to account for instantaneous
switching, can reduce the observed losses in power electron-
ics converters. Thirdly, TR_BE_SS_I is the most accurate,
compared to TR_BE, TR_BE_I and TR_BE_SS.

The proposed TR_BE_I_Vmethod gives the best accuracy.
The very small time-step used after interpolation helps to
avoid possible errors due to instantaneous switching situa-
tions. It is noted that reducing 1t improves accuracy for
all methods, by shifting them towards the reference solution
and in the same order. If the simulation time-step is suffi-
ciently small, all methods deliver similar accuracy. This can
be observed in Fig. 12 where the methods are simulated using
1t = 10 ns.

Simulation results not shown here, demonstrate that when
the frequency of the control signal generator varies, the con-
clusions remain the same.

C. EFFICIENCY ASSESSMENT
This part aims to assess simulation efficiency. Different algo-
rithms exhibit different behavior. For instance, the number of

TABLE 1. Efficiency evaluation.

TABLE 2. Normalized criteria.

times NS that (6) is solved, may vary from one algorithm to
another. When simulating the circuit of Fig. 9 for 1 ms, the
steady-state error (SSE) and NS are presented in Table 1.
From Table 1, it is seen that the number of system solu-

tions NS is directly corelated with accuracy. More accu-
rate methods exhibit more system solves. TR_BE_SS and
TR_BE_SS_I use simultaneous switching and increase the
computational burden. Also, since TR_BE_I_V sometimes
uses a smaller time-step, the number of simulation points
required to complete the simulation increases. Therefore,
the computation burden increases.

For the 4 methods compared above, we can normalize
criteria values by dividing them by the maximum of the
4 values in each row (see Table 2).

The best tradeoff between accuracy and computational
burden is obtained for a method with the smallest ‖SSE‖ and
‖NS‖ as expressed by the last row in Table 2. The smallest
value which is 0.434 is achieved with TR_BE_I_V, which
clearly demonstrates that this method is the most efficient
simulation technique for the studied example. It gives the
best tradeoff between accuracy and computational burden.
Also, it is seen from the last row of Table 2 that TR_BE_SS
gives a better tradeoff than TR_BE_I. In this case, usage
of simultaneous switching technique is more efficient than
using only interpolation. Finally, TR_BE_SS_I gives the best
tradeoff, compared to TR_BE_I and TR_BE_SS.

VI. CONCLUSION
In this paper, we presented new analysis on how interpolation
affects accuracy with trapezoidal integration. We demon-
strated that interpolation may lead to different accuracy lev-
els, depending on when exactly the discontinuity occurs and
depending on the technique used to handle it. We demon-
strated the limits of interpolation by showing and explaining
why: a) a method with no interpolation can sometimes be
more accurate; b) interpolation alone cannot be sufficiently
accurate when simulating simultaneously switching circuits.

Usage of Backward Euler method combined with trape-
zoidal integration, interpolation and variable time-step
(TR_BE_I_V), provides the most accurate results. How-
ever, due to related complexity in software programming
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with TR_BE_I_V, it can be concluded that the fixed
time-step Backward Euler method combined with trape-
zoidal integration, interpolation and simultaneous switching
(TR_BE_SS_I) is the best tradeoff between complexity and
accuracy.
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