
Titre:
Title:

In-FPGA instrumentation framework for openCL-based designs

Auteurs:
Authors:

Hachem Bensalem, Yves Blaquiere, & Yvon Savaria

Date: 2020

Type: Article de revue / Article

Référence:
Citation:

Bensalem, H., Blaquiere, Y., & Savaria, Y. (2020). In-FPGA instrumentation
framework for openCL-based designs. IEEE Access, 8, 212979-212994.
https://doi.org/10.1109/access.2020.3040081

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9321/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

IEEE Access (vol. 8)

Maison d’édition:
Publisher:

IEEE

URL officiel:
Official URL:

https://doi.org/10.1109/access.2020.3040081

Mention légale:
Legal notice:

This work is licensed under a Creative Commons Attribution 4.0 License. For more
information, see https://creativecommons.org/licenses/by/4.0/

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1109/access.2020.3040081
https://publications.polymtl.ca/9321/
https://doi.org/10.1109/access.2020.3040081

Received October 27, 2020, accepted November 15, 2020, date of publication November 24, 2020,
date of current version December 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040081

In-FPGA Instrumentation Framework
for OpenCL-Based Designs
HACHEM BENSALEM 1, (Graduate Student Member, IEEE),
YVES BLAQUIÈRE 1, (Member, IEEE), AND YVON SAVARIA 2, (Fellow, IEEE)
1Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
2Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada

Corresponding author: Hachem Bensalem (hachem.bensalem.1@ens.etsmtl.ca)

This work was supported in part by the CMC Microsystems, the Natural Sciences and Engineering Research Council (NSERC) of Canada,
and in part by the Canadian Fund for Innovation (the CFI-EmSysCan Project).

ABSTRACT The productivity achieved when developing applications on high-performance reconfig-
urable heterogeneous computing (HPRHC) systems is increased by using the Open Computing Lan-
guage (OpenCL). However, the hardware produced by OpenCL compilers in field-programmable gate
arrays (FPGAs) can result in severe performance bottlenecks that are challenging to solve. The problem is
compounded by the fact that the generated netlist details are disorganized, making them mostly unreadable
and only partially visible to designers. This paper proposes an in-FPGA instrumentation method and a
new framework for extracting the FPGA-cycle-accurate timing performances of OpenCL-based designs.
The results clearly show that the chosen execution model for OpenCL-based designs strongly affects the
timing performance when it is not properly implemented. Our framework is implemented on an HPRHC
platform that contains a CPU and two Arria10 FPGAs, and it is evaluated with a wide variety of benchmarks
with different complexities. After testing on the reported benchmarks, the average logic overhead for one
inserted instrument is 0.2 % of the total amount of adaptive look-up tables (ALUTs) and 0.1 % of the total
registers in an FPGA. This resource utilization is between 1.5 and six times lower than those reported in
the best previously published works. The scalability of the framework is also evaluated by inserting up to
50 instruments. The experimental results show that the average logic utilization per instrument is 0.19 % of
the ALUTs and 0.17 % of the registers in the FPGA when 50 instruments are inserted.

INDEX TERMS OpenCL, FPGA, instrumentation, high-performance reconfigurable computing, HLS,
timing performance.

I. INTRODUCTION
Field-programmable gate arrays (FPGAs) have progres-
sively evolved as powerful accelerators for high-performance
reconfigurable heterogeneous computing (HPRHC) systems.
The success of FPGAs is largely due to their inherent
flexibility, reconfigurable architecture, and high computing
capabilities [1]. Application development using hardware
description languages (HDLs) is time-consuming, and as
a result, it sometimes cannot fulfill time-to-market con-
straints. This problem is made worse with the increase in
application complexity. This is why FPGA vendors have
heavily invested in high-level synthesis (HLS) and associ-
ated tools to make FPGAs more easily programmable using

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

high-level languages (HLLs) for general-purpose comput-
ing [2]. HLS tools offer interesting options for overcoming
this design complexity, and they are mainly used to gener-
ate register transfer level (RTL) specifications from some
HLLs [3]. An important challenge of HLS tools is to gen-
erate high-quality HDL specifications, which depend not
only on the objectives and the specificities of the imple-
mented optimization methods [4] but also largely on the
adoption of good coding styles and practices. OpenCL is a
popular, open-standard high-level language that allows soft-
ware designers to develop applications executing in parallel
on HPRHC platforms, which may be graphic processing
units (GPUs) or FPGAs. An OpenCL-to-FPGA compiler [5],
a type of HLS compiler, promises better development produc-
tivity than traditional FPGA development [6]. However, writ-
ing an optimized OpenCL design is still challenging because

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 212979

https://orcid.org/0000-0001-9713-2410
https://orcid.org/0000-0001-6204-7427
https://orcid.org/0000-0002-3404-9959
https://orcid.org/0000-0001-9315-1788

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

the resulting netlists may have very significant performance
bottlenecks when running on FPGAs [7]. To resolve this
problem and to predict bottlenecks, researchers have been
working on optimization directives based on predictive mod-
eling for HPRHC platforms [8]–[13] .

These predictive modeling techniques can estimate some
performance metrics, such as power consumption and logic
resource utilization [11]. Accurate estimates allow developers
to optimize and rewrite their high-level code before compila-
tion. However, the quality of the RTL specifications gener-
ated by the OpenCL compilers highly depends on the target
platform and the quality of the high-level descriptions [14].
Indeed, the back-ends of the OpenCL compilers use meta-
heuristic algorithms, which tend to make them sensitive to
the OpenCL input code. Thus, FPGA vendors provide and
recommend using best practice guides while writing OpenCL
code [15]. Even when developers follow the recommended
best practices, performance bottlenecks may still occur due
to the complexity of OpenCL designs targeting HPRHC plat-
forms. For example, an OpenCL design may contain multiple
complex functions and computations, including loading and
storing from either on-chip or off-chip memories. Performing
these functions can lead to a degradation in performance if
they are not implemented judiciously [16]. Another draw-
back of OpenCL-based FPGA accelerators is that designers
using them lose the low-level observability of their designs
after compiling to low-level HDL descriptions. Moreover,
the size of the design space of an application targeting
HPRHC platforms increases with the application complexity,
and this increases the probability that the compilers generate
nonoptimal designs [17]. As a result, design optimization
is challenging mainly because the HDL code produced by
OpenCL compilers is mostly unreadable, and this code may
contain black-box modules instantiating intellectual property
modules offered by FPGAs or third party vendors.

A solution that offers great potential for identifying per-
formance bottlenecks is to include embedded instruments,
which can reveal the accurate performance and the internal
behavior of the circuits. As explored in this paper, these
instruments are specified from OpenCL source code to iden-
tify which sections of code or computations cause perfor-
mance degradation. To improve debugging and performance
analysis capabilities, these instruments allow the observation
of relevant values and accurate run-time analyses of any
data in any section of the generated FPGA circuit. This
instrumentation challenge is a known concern with hardware
produced by HLS tools [14]. Indeed, timing performance
analysis, hardware verification, and debugging capabilities
can be performedwith an assertion-based approach [18], such
as the use ANSI-C assertions, enabling the instrumentation of
the HLS-produced circuit [19]. Unfortunately, ANSI-C-like
assertions are not supported by OpenCL for FPGA compilers.
Moreover, most commercial tools for OpenCL (e.g., The
OpenCL Software Development Kit (SDK) from Intel [20])
do not have in-circuit verification and debugging capabilities.
There is a need for a computer-aided design approach for

OpenCL-based FPGA design flows to enhance the observ-
ability inside FPGAs and to diagnose where some undesired
behaviors may occur when derived hardware targets run on
FPGAs.

This paper addresses the problem of instrumenting
OpenCL designs targeting FPGA-based computing systems
and the challenge of portability and scalability with regard
to such an instrumentation method. It notably presents an
instrumentation method and framework that can be used by
a software developer and applied to any HPRHC platform
using OpenCL. The proposed instrumentation method uses
in-FPGA instruments instead of using assertion functions
such as ‘‘assert ()’’ from the ‘‘assert.h’’ library [21], which is
not supported by the OpenCL standard. This instrumentation
framework is based on an approach that specifies in-FPGA
instruments directly as part of the OpenCL description of
the application. These instruments extract cycle-accurate run-
time information and signal values from the FPGA. These
values may then be used for debugging, and identification
of eventual bottlenecks that may cause performance degra-
dation. Thus, the instrumentation framework helps to analyze
the behavior of OpenCL designs. This framework is proposed
as a complement to the Intel SDK for the OpenCL, thereby
demonstrating its low logic area overhead as well as the
resulting enhanced observability and diagnosis capabilities.
The main contributions of this work are summarized as
follows:

1) An instrumentation and performance modeling method
that uses inserted instruments to extract the actual per-
formance of OpenCL kernels is proposed. With this
method, instruments inserted directly in the OpenCL
code are synthesized with the kernel and embedded
with its functional modules;

2) A new framework that can be used by a developer, with-
out hardware skills, to identify critical and vulnerable
kernels or to record the value over time of any variable
inside the OpenCL kernels is designed;

3) An evaluation and a validation of the proposed frame-
work on a set of OpenCL benchmarks are performed.
On the reported benchmarks, the average logic resource
requirement is between 1.5 and 6 times lower than those
reported in best previously published works [22]–[24].

This paper is an extension of the previous work presented
in [25], where the focus was a comparative study of two mon-
itor descriptions: one in OpenCL and a second developed in
HDL. Compared with [25], this paper performs performance
modeling with a framework that supports timing analysis and
debugging. A data-tracing technique is added to collect data,
to generate a dynamic execution trace and to send it back
to a host. Additionally, the framework is applied to a wide
variety of benchmarks to study its impact on FPGA resource
utilization.

This paper is organized into six sections. The following
section reviews the literature on debugging HLS-generated
circuits and discusses the specific challenges related to

212980 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

instrumenting OpenCL-based designs. Section III describes
the proposed framework, explains its capabilities, and
explains how it can be used for instrumentation purposes.
Section IV presents the implementation of this framework
with the Intel SDK for OpenCL toolchain, and analyzes the
experimental results of the framework when applied to a wide
variety of benchmarks. Section V evaluates the framework
and compares it to previous works. Finally, Section VI sum-
marizes the main contributions of this work.

II. BACKGROUND AND RELATED WORK
This section provides a brief description of the OpenCL pro-
gramming model and establishes the importance of in-system
instruments for debugging and characterizing HLS-produced
circuits for FPGAs. Next, it highlights the instrumentation
challenges encountered with OpenCL toolchains compared
to those of other HLS tools. Previous works that approached
the in-system instrumentation of HLS-based FPGA designs
are then discussed.

A. OPENCL PLATFORM DESCRIPTION
OpenCL is a parallel programming language developed by
the Khronos Group for heterogeneous programming plat-
forms, which may contain central processing units (CPUs),
GPUs, and FPGA devices. Based on [26], the terminology
and concepts of OpenCL are summarized here. An OpenCL
platform typically consists of one host device (CPU) and one
or more accelerator devices. An accelerator device executes
kernels written in C99, a C-based language. Each accelerator
device (e.g., an FPGA or a GPU) can contain one or more
compute units (CUs), and each CU is divided into one ormore
processing elements (PEs). For example, a CU can infer a
vector addition dataflow structure in a PE, as shown in Fig. 1,
with three operations: load, store and add. In OpenCL, a
work-item corresponds to a single execution of a kernel that
is instantiated in an accelerator as a single dataflow structure.
Multiple work-items can be grouped into work-groups and
executed concurrently on the same device in or out of order.
A work-item can be executed by one or more PEs as part of
the same work-group. In addition, an OpenCL platform pro-
vides an environment for host-accelerator interaction, as well
as memory and accelerator management [16].

FIGURE 1. An OpenCL platform model with multiple FPGAs [27].

An OpenCL platform may support multiple accelera-
tors executed on OpenCL-compatible devices, which may
come from various vendors (e.g., Xilinx, Intel, or NVIDIA).
The OpenCL platform model shown in Fig. 1 includes a
host (CPU) and more than one FPGA used as accelerators.
The rest of the paper assumes that the accelerator is com-
posed of one or more FPGAs (no GPU is considered in this
research). An OpenCL design comprises two distinct parts:
the host code and the kernel code. The host code, written
in C or C++, is responsible for the runtime management of
OpenCL kernels. The host code is executed in the CPU and
is used to identify the hardware platform, to set up compu-
tations, to transfer data for processing, and finally, to pro-
gram the FPGAs. The compilation of kernel codes by offline
compilers generates the FPGA bit-streams. The OpenCL
standard [28] includes specifications that organize the ker-
nel description, including the number of work-groups and
compute units, barriers, and four memory models. A barrier
is an OpenCL function used to ensure the correct execution
order of work-items. The memory hierarchy in an OpenCL
platform may comprise four different regions (Fig. 1). The
first is the global memory that can be accessed from the host
or from a device with write and/or read privileges. The second
is the local memory, which is accessible by all work-items
within a work-group. The third type is private memory, which
is accessible only by a work-item; finally, constant memory
is read only, and it is accessible from the work-items. The
performance of an OpenCL design highly depends on the
mapping of OpenCL data into thesememory regions and their
interactions.

B. LIMITATIONS OF EMBEDDED LOGIC
ANALYZERS FOR FPGAS
Unlike the case of CPU-based applications, in-FPGA debug-
ging of HLS-generated circuits is still challenging. In-FPGA
visibility is offered by embedded logic analyzer (ELA) tools,
such as SignalTap by Intel [29] and ChipScope by Xil-
inx [31] . These tools provide debugging support to RTL
circuits, and they can be used to debug and unveil the internal
behavior of circuits expressed at the RTL level while they are
running in an FPGA. ELA tools capture and store the values
of selected signals in trace buffers, which can be implemented
using on-FPGA memories (e.g., BRAMs (Block RAMs)).
Indeed, designers must identify the signals that they wish to
observe from the RTL specification, which is usually human-
readable, and they must link them to ELA tools.

ELA tools are supported in some HLS tools, such as Xilinx
SDx and SDAccel [31], but they are almost impossible to
use in HLS tools for two main reasons. First, the RTL code
and the netlist generated by HLS tools are mostly unreadable
due to the generic, structural and nonoptimized nature of the
HLS-generated circuit. Second, RTL signal types and HLL
data types are incompatible. For instance, a single C variable
may correspond to several signals in an HLS-generated cir-
cuit.Moreover, different names are assigned by theHLS com-
pilers depending not only on the metaheuristic algorithms

VOLUME 8, 2020 212981

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

used by the HLS tool but also on the FPGA target. Linking
HLL variables, RTL signals, and netlist signals becomes
difficult, if not impossible, for the designer. These limitations
increase the interest in being able to specify the insertion of
instruments directly in the HLL code so that the HLS tools
can embed them in the FPGAs without using ELA tools.

C. RELATED WORK ON IN-SYSTEM FPGA
INSTRUMENTATION
Typically, embedded instruments record the internal behavior
of circuits inside an FPGA [32], [33]. Some instruments
can verify that behavior using hardware assertions [34].
This section reviews previous works that approached
the instrumentation challenge of HLS-produced circuits.
Bussa et al. [35] proposed an incremental compilation tech-
nique to reduce the time required for debugging and to
accelerate the debugging of HLS circuits running on FPGAs.
Inserting debugging and trace logic incrementally increases
the compilation time and may reduce design productivity.
This is significant when each iteration of the compilation pro-
cess takes several hours. By contrast, our proposed method
requires a single compilation of an OpenCL design that leads
to a simplified instrumentation flow for developers with lim-
ited hardware design skills. In [36], [37], a source trans-
formation approach was proposed to insert instrumentation
circuits at the source level. This approach enables debugging
by mapping the circuit states to the source code during HLS
compilation, and it was applied to the LegUp HLS tool [38].
Unfortunately, this approach requires access to the source
code of the HLS compilers, and this is not possible with
commercial tools such as Intel or Xilinx compilers.

Monson and Hutchings [22], [39] used a source-to-source
compilation approach to enhance observability, focusing on
the C code rather than the RTL code generated by HLS tools.
The source-to-source approach consists of adding debug-
ging ports that are connected to C expressions in the source
code, and these can provide access points in the design.
However, these access points need to be connected by an
embedded logic analyzer or by modifying the generated RTL
code. Moreover, this approach is expensive in terms of logic
resources, and it is closely related to HLS tools that have C
code as input and is not compatible with existing OpenCL
tool-chains.

Pinilla et al. [23], [40] described a methodology for debug-
ging C-based HLS designs using a source-level instrumenta-
tion approach. First, the C code is structured into an abstract
syntax tree (AST), and then the instrument is inserted into
a C code by a source-to-source compiler. Finally, Vivado
HLS [32] or LegUp generates the RTL description. This
approach requires an instrumentation flow with several steps
to debug a C-based design. It consumes a costly amount of
memory; thus, Pinilla et al. applied an optimization technique
called array duplicate minimization (ADM) to increase trace
memory efficiency. Additionally, their approach requires an
additional tool to generate the AST, and then an ADM is
used for optimization to decrease the overhead. Finally, [40]

and [23] extracted variable content without any timing and
ordering information that is essential for debugging the
timing issues in high-performance computing applications.
Compared to those of previous papers, our proposed frame-
work provides an FPGA-cycle-accurate performance analy-
sis, and it also specifies debugging instruments at theOpenCL
level without the need for any other custom tool, thereby
reducing the developmental effort.

Eslami et al. [41] proposed an instrumentation approach
through which the abstraction level to implement the code
is elevated using virtual overlays. The overlay is a virtual,
reconfigurable architecture that raises the abstraction level
by overlaying it on top of the physical FPGA. The vir-
tual overlay architecture for FPGAs is a new software-like
design ecosystem that increases the software layer and cannot
provide accurate performance characterizations of functions
embedded in an FPGA. Additionally, this virtual architecture
cannot be associated with or even applied to commercially
available OpenCL-for-FPGA design tools. A framework for
debugging and monitoring OpenCL-based FPGA designs
was proposed in [42]. This framework is limited to capturing
events and their sequences based on timestamps. Moreover,
this work does not provide sufficient insight into performance
to characterize features such as loop performances (initiation
interval and latency) and multikernel OpenCL-based kernel
performance and to analyze the root causes of their possible
performance bottlenecks. Goeders et al. [24], [43] proposed
an approach to improve trace buffer efficiency that allows for
increasing the storage of useful debugging information such
as captured signal values. The focus of the authors was to
improve trace buffer capability rather than to implement a
mechanism for performance monitoring and diagnosis.

As a partial debugging solution, Xilinx SDAccel [31] and
Intel SDK for OpenCL tools support the printf function
for software or hardware emulation purposes [20]. Software
emulation allows for the functional verification of an appli-
cation on a CPU, while hardware emulation is more accu-
rate as it performs a functional verification using a model
of the hardware. These emulations do not allow develop-
ers to detect unexpected behaviors exhibited by the circuits
while running in FPGAs. Moreover, Intel SDK for OpenCL
compiler provides a profiling report that contains general
performance such as the logic resources usage and memory
bandwidth. However, this performance report does not allow
for the identification of a performance bottleneck because
no integrated logic analyzers are supported by Intel SDK for
the OpenCL toolchain. Thus, to overcome these problems,
adding an instrument – including a debugger – could provide
interesting information about features such as pipeline stalls.
This would allow the acquisition of the precise processing
time for each task or function inside OpenCL kernels. A task
can be a set of operations, which are functions defined in a
section of code inside an OpenCL kernel.

After a deep comprehensive review of the related literature,
we found that the features and limitations of the in-FPGA
instrumentation of HLS-produced circuits depend on two

212982 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

main factors. The first factor is the level of abstraction of
the circuit description to be instrumented, and the second is
the back-end technology of the HLS tool and its supported
libraries. Remarkably, some previous works did not take the
back-end technology and the specificities of the OpenCL
design flow for FPGAs into consideration. Therefore, we
address the challenge of extracting the accurate performances
of OpenCL-based FPGA designs using a source-level instru-
mentation method.

In this work, we first propose an FPGA instrumentation
method that acts at the HLL level and that can be applied
to both open-source and commercial HLS tools. Compared
to those of previous works, this proposed method does not
require access to the source code of the HLS tool. Second,
we propose an RTL instrument that can be inserted in an
OpenCL kernel. This instrument assists developers who need
to identify possible timing performance bottlenecks for each
target task or operation inside the kernels. Unlike in previ-
ous works, the proposed RTL instruments capture the vari-
ables at high levels associated with their runtime information
expressed in terms of FPGA clock cycle accuracy. Addition-
ally, we improve the trace data efficiency by selecting only
useful data.

III. IN-SYSTEM INSTRUMENTATION FRAMEWORK OF
OPENCL-BASED FPGA DESIGNS
This section describes the proposed instrumentation frame-
work for OpenCL-based FPGA designs. First, the instrumen-
tation method is presented. Then, the hardware and software
architectures of the proposed framework are detailed, as well
as the instrumentation flow, and the performance model for
the OpenCL kernel is finally summarized.

A. PROPOSED INSTRUMENTATION METHOD
The proposed method is based on the OpenCL-Verilog code-
sign approach and enables instrumenting OpenCL-based
FPGA designs using macro assertions inserted in OpenCL
kernels. Instrumenting OpenCL kernels is performed in sev-
eral steps (Fig. 2). In step S1, the instruments are inserted
into the OpenCL kernel code (Fig. 2). The new kernel code
is then compiled, and the FPGAs are configured using the
bitstream. At that point, the resulting circuit can run on the
FPGA, fromwhich performances such as specific runtimes of
any computations of interest are recorded (S2). That data can
be offloaded to a CPU for analysis and to generate dynamic
performance metrics (S3). Then, the developer analyzes the
extracted performance, and he/she and may decide to opti-
mize some sections of code and can add or remove some
instruments (S4).

The instrumentation of kernels consists of instantiating
instruments by calling the instrumentation function instru-
ment () inside their code, as shown in Fig. 3, in which a loop is
monitored inside a vector addition kernel. An array, called TB
in Fig. 3, is defined to store the data returned by instrument
() instances. This array is a trace buffer used to store the data
extracted by the instrument. The function instrument () is a

FIGURE 2. Instrumentation steps of OpenCL-based FPGA designs.

FIGURE 3. Instantiating an instrument at the OpenCL source level.

C-based function that is defined in an OpenCL instrumenta-
tion library called ‘‘instrument.h’’. The function instrument
() can be called from any OpenCL kernel and can have one
or more inputs as defined in its related library. This function
is paired with a precompiled generic instrument described
by HDL, and it is called the instrument engine (IE) in the
rest of this paper. The main advantage of describing the IE
with HDL compared to a high-level description is that its
internal architecture can be defined to minimize the logic
area overhead in the FPGA. Furthermore, by using the HDL
description of the IE, it is easy to abstract and manage not
only the clock frequency and reset inside an FPGA but also
the FPGA resources or interfaces such as PCI-Express or
the cache coherent interconnect for accelerators [44]. This
OpenCL source-level instrumentation method makes it easy
for a software developer with no hardware skills to perform
in-FPGA instrumentation and performance analyses.

The inserted instrument () functions in OpenCL kernels
memorize the value of a specified variable and its run-
time information at FPGA clock cycle accuracy. As shown
in Fig. 3, the function instrument (1, i, sum) samples the
variable ‘‘sum’’ associated with its index ‘‘i’’. The value
1 is the value of the input ‘‘selector’’ of the instrument that
enables the instrumentation mode. Fig. 4 shows the concep-
tual view of an OpenCL kernel with six inserted instruments
I1, I2, I3, I4, I5, and I6 and a computation (C) that can be
arithmetic, loading, or storage operations. The instrumenta-
tion of OpenCL kernels generates a dynamic execution trace
that can be analyzed to detect bottlenecks, such as stalls,
and to provide runtime information about computations (C1,
C2, C3) inside the OpenCL kernel (Fig. 4). For example,
C1 can be instrumented either using I1 or I1 and I2 together.
Indeed, the difference between the timing values returned
by I1 and I2 can determine the latency of C1 for a set of

VOLUME 8, 2020 212983

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

FIGURE 4. Conceptual view of the kernel instrumentation process in an
FPGA.

executed work-items. The difference between two successive
timing values returned by I2 allows for the determination of
the initiation interval (II) of C1. The instruments I1 and I6 can
be used to determine the kernel performance metrics (pro-
cessing time (Tc1, Tc2, Tc3), latency and II) when executed in
an FPGA device.

B. OVERALL FRAMEWORK
The framework is based on a hardware/software codesign
approach that comprises two modules: the hardware module,
which is designed with Verilog, and the software module that
is specified with C++. In this section, the IE architecture and
the hardware architecture of the framework are first detailed.
Then, the software module of the framework is presented.

1) HARDWARE MODULE OF THE FRAMEWORK
The hardware architecture of the proposed framework com-
bines the circuits generated from an OpenCL specification
and the embedded IEs in the FPGA. This hardware archi-
tecture shown in Fig. 5 comprises two main modules. The
first module is the ‘‘user’s circuit’’ that corresponds to the
original kernel code. The second module includes IEs, which
are connected to memories. Each IE communicates with the
user’s circuit via an embedded interface, such as the Avalon
Streaming Interface (ASI) in the Intel Arria 10 FPGA.

FIGURE 5. System architecture with embedded instruments.

The IE is described using RTL-Verilog and contains three
modules (Fig. 6). The first module is a monitor, which is
a clock cycle accurate timer that is sampled and buffered
with each data value specified by the developer. The second

FIGURE 6. Instrument engine architecture.

is an untimed probe that records the value of any variable
inside the kernel without any timing information. The third
module is a timed probe that provides the variable value
associated with its FPGA run-time information. Each module
of this instrument can be activated with a selector input that
can be specified by the developer during the call of the
instrumentation function inside the OpenCL kernel, as shown
in Fig. 3. The Verilog description of an IE also contains a
trace buffer and an upstream and downstream manager. The
upstream and downstream manager allows the instrumented
kernel to interact with the IE; the kernel sends and receives
data over upstream and downstreamFPGA interfaces. Indeed,
the upstream and downstream FPGA interface controls the
data capture process and enables communication between
the kernel and the embedded instrument. These interfaces
depend on the specific FPGA technology used. The two
most common internal interfaces available are the AXI bus
in Xilinx FPGAs [45] and the Avalon Streaming Interface
(ASI) [46] in Intel FPGAs. For example, the ASI interacts
with the upstream kernel through the inputs of the IE, which
are specified in the kernel and the control signals of the ASI.

Each IE records a set of signal values and timing data into a
collection of on-chip memories called ‘‘trace buffers’’. These
trace buffers can be built from either on-FPGA (such as the
TB specified in Fig. 3) or off-FPGAmemory connected to the
FPGA via an external memory interface. The developer can
choose between these two types of trace buffers depending
on the size of the data set to be extracted. If the data set is
relatively small, it is feasible and generally more efficient to
store it in on-chip memory than in off-chip memory to reduce
latency. Otherwise, some off-chip memory can be used to
store data in real time if the data set is too large. Once the
data are stored, the host reads all that data and provides the
desired information to developers (e.g., timing and debugging
data).

2) SOFTWARE MODULE OF THE FRAMEWORK
The software module of this framework contains multiple
functions executed by the CPU, including OpenCL platform
functions such as defining devices and writing and reading
memory buffers. Targeted performance metrics are sampled
by instruments from the FPGA and stored in local memory.
These data are transferred back to global memories, and
then the CPU reads and postprocesses the extracted data to
extract the values of variables and the relevant timing perfor-
mance at FPGA clock cycle accuracy (i.e., the latency and II).

212984 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

The software module includes but is not limited to the fol-
lowing functions: creating buffers, setting up the kernels,
transferring data from/to the FPGA, kernel execution on the
FPGA, computing the latency, computing the II for loops,
and executing the checker function. The software module
can compute the latency, the II, and the number of stalls
for computations in real-time. These performance metrics are
expressed in FPGA clock cycles as explained in the next sub-
section (Section III.D). The checker function is a verification
function that compares the extracted values of variables with
a reference generated by the CPU. The insertion of a checker
in the software unit is required for verification purposes and is
needed to ensure that the instrumentation framework does not
affect the output result. The checker function can be extended
to detect hang-up conditions using data returned from the
FPGA to the CPU. Hang-up is not included in this framework
and may occur not only because of bus congestion but also
because of synchronization problems or infinite loops.

C. FRAMEWORK CAPABILITIES
The proposed framework allows developers to implement
kernels by offering debugging and timing analysis capabil-
ities at the OpenCL source level: extracting timing perfor-
mances, analyzing the critical computations and identifying
the performance bottlenecks seen in the kernel, such as stalls.
The main advantage of the proposed source-level instrumen-
tation framework is that it avoids the difficulty of inserting
instruments at the HDL circuit level, which requires in-depth
knowledge of hardware design. In fact, in-system debugging
consists of inserting an embedded instrument to reveal the
behavior of a set of selected OpenCL variables. As shown
in Fig. 3, the function instrument (1, i, sum) samples the
variable ‘‘sum’’ associated with its index ‘‘i’’. The value 1 is
the value of the input ‘‘selector’’ of the instrument (as shown
in Fig.6), which enables the untimed probe. The monitor is
likewise enabled when the input selector is equal to 0. The
timed probe performs the timing analysis function. It records
the run-time information of the variable to identify possible
stalls associated with the variable ‘‘sum’’.

The instrument can also be used to provide the runtime
information of any operation or computation inside the kernel
(e.g., loop, load, or FFT). Furthermore, the software mod-
ule contains a verification function, which performs a func-
tional verification by comparing the result of the accelerated
algorithm that is running on an FPGA to a model of this
algorithm that is written in C++ and executed by the CPU.
The main advantage of this function is that it ensures that
the functionality of an accelerated algorithm remains correct
when IEs are present. This software function can then detect
unexpected behaviors exhibited by the system that could be
caused by IEs. For example, the variable ‘‘sum’’ presented in
Fig. 3 is compared to the reference value, and this comparison
is an addition operation executed on the host (CPU) to verify
the integrity of the in-FPGA operation (sum) and then to
ensure that the framework does not affect the result during
the instrumentation process.

D. PERFORMANCE MODELING AND INSTRUMENTATION
AnOpenCL application can be designed using a single-kernel
or multikernel structure. The performance of an OpenCL
application changes in terms of frequency, bandwidth and
logic resource utilization following some changes to the
design topology. This section presents performance models
of OpenCL using single kernels and multiple kernels together
with performance metrics that can be calculated using the
proposed framework.

1) SINGLE-KERNEL PERFORMANCE MODELING
A single OpenCL kernel may contain many pipelined com-
putations (C) that can be instrumented to determine differ-
ent performance metrics (Fig. 7), such as the latency (L)
and II of various pipelines. These performance metrics are
expressed in FPGA clock cycles except for the execution time
(Tsk), which is expressed in seconds. The inserted instruments
extract the run-time of each processed work-item (wi), while
the circuit is running on the FPGA. The number of instru-
ments to be inserted depends on which performance metrics
need to be characterized. For example, only one instrument is
needed to extract the II of a given processing pipeline, and a
minimum of two instruments are required for measuring the
latency of the kernel, which are computed as follows:

II ij = tj(wi(i+ 1))− tj(wi(i)) (1)

L = tn(wi(i))− t1(wi(i)) (2)

where t(wi(i)) is the measured run-time for the specific
work-item wi(i) expressed in FPGA clock cycles. The ini-
tiation interval IIij is defined as the difference between the
information about two successive run-times of two successive
work-items processed by the computation Cj. Instrumenting
computations allows for the optimization of FPGA run-times
and the detection of pipeline stalls and the causes of these
stalls. For example, an efficient and perfect loop implemen-
tation in an FPGA has a constant II of 1, meaning that one
work-item is processed per FPGA clock cycle. Therefore,
inserting instruments allows us to monitor the changes in II
as the work-items are processed and to detect the occurrence
of stalls (number, frequency, profile).

FIGURE 7. Performance metrics of a single kernel.

Alternatively, it is generally difficult to achieve a perfect II
in complex computations; thus, it is crucial to insert instru-
ments that can accurately measure the II and then detect
computations that cause stalls. Therefore, we propose to
insert instruments between each computation to allow for the
calculation of IIs, to diagnose bottlenecks that may degrade

VOLUME 8, 2020 212985

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

the performance and to trace stall paths through computa-
tions. Fig. 7 shows a single kernel containing n computations.
The total number of FPGA-clock cycles required by a kernel
to process all work-items is defined by Tsk and given by
equation 3:

Tsk = L + II × (NWI − 1)+ Tstalls (3)

where NWI denotes the number of work-items. Tstalls denotes
the overhead due to stalls in clock cycles, and it is difficult
to predict because it is highly dependent on hardware archi-
tecture and operating systems and very sensitive to data sizes
andmemory footprints and topologies. Tstalls is then extracted
and computed by the proposed framework.

The latency (L) is the maximum number of clock cycles
needed to produce a kernel output from its inputs, and it is
defined as follows:

L = Max(LC1,LC2, . . . ,LCn) (4)

The total processing time (Tpr) of an OpenCL application
expressed in seconds is calculated by equation 5, where
FFPGA denotes the frequency of the kernel.

Tpr =
Tsk

FFPGA
(5)

2) MULTIKERNEL PERFORMANCE MODELING
The main challenge in multikernel OpenCL designs is that
bottlenecks may simultaneously occur in several kernels.
Moreover, performance degradation may occur due to kernel-
to-kernel communication interfaces, which are called pipes
or channels in OpenCL. For example, bad settings of pipe
depths may significantly degrade the timing performance.
Indeed, instruments are inserted at the inputs and outputs of
each kernel, as shown in Fig. 8, to dynamically characterize
pipes and to track the timing performances of kernels, mainly
stalls, during their execution on the FPGA. In addition, these
measurements at FPGA clock cycle accuracy can be used to
determine the exact depths of OpenCL pipes to avoid stalls
and to save FPGA logic resources. The following model
is proposed to detect stalls in multikernel data flow-based
OpenCL applications. It is assumed that n instruments (I =
{I1, I2, I3,. . . , In}) are inserted in kernels and that a set of m
work-items (WI = {wi1, wi2, wi3,. . . , wim}) is processed by
the kernels.

FIGURE 8. Multikernel modeling using the inserted instruments.

The run-time extracted by each instrument for a specific
work-item can be represented by a Tnm matrix:

Tnm =

 t11 · · · t1m
...

. . .
...

tn1 · · · tnm

 (6)

An initiation interval matrix 0n(m−1) can then be computed
according to equation (1):

0n(m−1)=

t12 · · · t1m...
. . .

...

tn2 · · · tnm

−Tn(m−1)=
II11 · · · II1(m−1)...

. . .
...

IIn1 · · · IIn(m−1)


(7)

A kernel without stalls implies that IInm = IIn(m+1) for all
values of n and m. A stall is then detected when IInm 6=
IIn(m+1), and the number of stall cycles in instrument n
between work-items m + 1 and m is computed as IIn(m+1)−
IInm. These differences can be expressed as an II difference
matrix (1n(m−2)), as in equation 8:

1n(m−2)=

II12 · · · II1(m−1)...
. . .

...

IIn2 · · · IIn(m−1)

−IIn(m−2)=
δ11 · · · δ1m...

. . .
...

δn1 · · · δnm


(8)

which is a zero matrix in the absence of stalls. A stall exists
when one δij 6= 0. If the number of stalls is different from one
kernel to another, several kernels may cause stalls simultane-
ously. As an example based on Fig. 8, if instruments I2, I3,
and I4 provide the 1n(m−2) matrix with δ24 = δ34 = 15, and
δ44 = 35, then kernel 1 and kernel 2 have caused different
numbers of stalls more or less simultaneously. Finally, each
kernel k and a set of work-items m that cause the stalls
are detected by the framework for optimization purposes.
A latency matrix for the multikernel data-flow architecture,
as shown in Fig. 8, can also be computed (equation 9). This
matrix provides the latency of the computations between two
consecutive instruments for each work-item.

L(n−1)m=

 t21 · · · t2m
...

. . .
...

tn1 · · · tnm

−
 t11 · · · t1m

...
. . .

...

t(n−1)1 · · · t(n−1)m


=

 l11 · · · l1m
...

. . .
...

l(n−1)1 · · · l(n−1)m

 (9)

IV. FRAMEWORK IMPLEMENTATION AND RESULTS
The implementation of the proposed framework is presented
in this section. The experimental setup used for the devel-
opment of the framework is first described. The source files
required to build the instrumentation library are then detailed.
Two use cases, an OpenCL single-kernel design and a mul-
tikernel design, are finally used to show the capabilities of
the proposed instrumentation methodology. Finally, the logic
area overhead of the framework is discussed.

212986 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

A. EXPERIMENTAL SETUP
Our proposed framework is validated using a heterogeneous
platform. This platform includes the Nallatech 510T FPGA
board shown in Fig. 9, which features two Arria 10 1150 GX
FPGAs and four 4GBmemory banks per FPGA (32GB total)
installed on a Dell machine using a PCIe x8 3.0 interface. The
Intel SDK for OpenCL v17.1 is used for the implementation.

FIGURE 9. Nallatech 510T platform used for the experiments.

B. IMPLEMENTATION OF THE INSTRUMENTATION
LIBRARY
Implementing an instrument consists of creating an instru-
mentation library, which is composed of three files: the
header file, a Verilog file, and an eXtensible Markup Lan-
guage (XML) file, as shown in Listing 1. The Verilog file
describes the IE architecture presented in Fig. 6. The output
‘‘probe’’ of the IE, as illustrated in line 8 of Listing 1, returns
the sampled 64-bit data defined in lines 31 to 33 accord-
ing to the selected type of instrument defined by the input
selector (sel). The input ‘‘sel’’ is given by the developer at
the OpenCL level to select the monitor, the timed probe or
the untimed probe, as described in lines 27 to 29 (Listing 1).
Lines 19 to 24 implement the synchronization process of the
inputs of the instrument with the internal interface of the
FPGA, as required by the Avalon Interface for Intel FPGAs.

An XML file is required to describe the IE properties,
such as expected the stall-free operations, desired latency, and
side effects (lines 39, 41). The stall-free attribute specifies
‘‘probe’’ data to be sent without constant delays. Paired with
the expected instrument latency, these data allow for syn-
chronization with different sections of the kernel. The side
effects attribute is necessary when the function instrument
() includes an internal state or communicates with external
memory. In addition to properties, in the XML file the devel-
oper must specify: the Verilog file of the IE called instru-
ment.v; the input and output ports of the IE; and the kernel
file called instrument.cl that defines the model of the IE used
for emulation purposes. These three files are compiled using
an OpenCL compiler to generate the instrumentation library
(instrument.aoclib), as shown in Fig. 10. Finally, the function
instrument () described in line 1 can be called from any
OpenCL kernel to infer an instrument in the FPGA. The main

Listing 1. Subset of the pseudocode for the instrumentation library
(Header, Verilog and XML files).

advantage of this structure is that the instrumentation library
does not need to be rewritten or recompiled for a new use
case. The implementation flow in Fig. 10 uses Intel SDK for
OpenCL, which supports the OpenCL 1.0 standard and some
of the features of OpenCL 1.1 and 1.2 [47]. The Intel offline
compiler compiles the kernel (.cl) to the FPGA image (.aocx).
The host code is compiled with a regular C compiler to an
executable file (.exe) using GCC under Linux or Microsoft
Visual Studio. The instrumentation library is then linked to
the OpenCL kernel and compiled with the offline compiler.

VOLUME 8, 2020 212987

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

FIGURE 10. Instrument implementation flow using the Intel FPGA SDK for
OpenCL.

The interaction between the IE and the OpenCL kernel is
made by using an ASI in the FPGA. The ASI is an intellectual
property (IP) core supported by the Intel SDK for OpenCL
compiler. Its input and output ports (e.g., ivalid, oready) are
specified in the Verilog and XML files, as shown in Listing 1
(lines 3, 7 and 43). The ASI receives the inputs as specified
in the function instrument () inside the kernel. For example,
the ASI interacts with the upstream kernel through the ASI
control signals (Fig. 6) and the inputs specified in the function
instrument (2, i, a) (line 11 of Listing 2). The ivalid signal is
set to 1 if the input signal accommodates valid data. When the
oready signal is equal to 1, this indicates that the IE has valid
data to be processed. When ivalid is activated and oready
falls to 0, the upstream kernel holds the values during the
next clock cycle. The IE communicates with the downstream
kernel through the ovalid and iready signals. If the output
data signal of the trace buffer contains valid data, the ovalid
signal is activated. If the output data are valid, then the iready
signal is equal to 1, which means that the kernel possesses
valid output data for processing.When ovalid is equal to 1 and
iready is equal to 0, the IE holds the valid data until the next
clock cycle.

C. INSTRUMENTATION METHODOLOGY AND RESULTS
Two use cases implemented to validate the proposed instru-
mentation and performance characterization methods are
detailed in this section to show how to extract kernel perfor-
mances using the instrumentation framework introduced in
Section III.D. The first use case shows the instrumentation of
a single OpenCL kernel to extract its performance metrics.
The second use case is a multikernel implementation of the
first use case, and it shows the instrumentation methodology
of a multikernel OpenCL-based design. Finally, the impact of
the inserted instruments on FPGA resources is characterized
for both single-kernel and multikernel designs.

1) SINGLE-KERNEL INSTRUMENTATION
An algorithm that contains addition, multiplication, loading
and storage operations is described in Listing 2 as an OpenCL
single kernel with 4 inserted instruments. I1 to I4 represent
the trace buffers that are declared in the kernel as local
variables (lines 11, 12, 14 and 16). These local variables

Listing 2. Pseudocode of a single-kernel example with 4 instruments.

are interpreted by the OpenCL for FPGA compiler as local
memories (BRAMs). The width of the trace buffers is mainly
defined according to the sampled data (64 bits) extracted by
each instrument (). Since trace buffers are interpreted by the
OpenCL for the FPGA compiler as BRAMs, the depth of the
trace buffer is managed by the compiler and mainly depends
on the FPGA technology used, in which the BRAMs may
have different sizes. Each sampled data is then transferred
to global memory to provide access to the host, as shown
in line 19 of Listing 2. Once the extracted data reside in
global memory, the host has access to each data point for
postprocessing.

Two execution models are instrumented: the NDRange and
single work-item (SWI) execution models. The NDRange
model explicitly implements data parallelism while perform-
ing computations by dividing the problem into work-groups
and work-items. The kernel is interpreted as an SWI when
the WLsize parameter (line 3, Listing 2) equals 1 and as an
NDRange otherwise. Instruments are inferred as timed probes
to compute the performance metrics defined in Section III.D:
the latency of the output ‘‘mul’’ and the initiation interval of
the loop and its pipeline stalls. Indeed, instruments I1 and
I2 probe at the moment when the inputs ‘‘a’’ and ‘‘b’’ are
loaded while I3 and I4 allow for computing the latency of
both the addition and multiplication operations. Additionally,
the kernel presented in Listing 2 is tested with problems of
various sizes (numbers of work-items) to reveal its behavior
while it is running in the target FPGA. The latency and II
are then computed according to equations 1 and 2. The II is
measured by I4 on 50 K work-items (a workload of 200 KB),
and it is presented in Fig. 11. The II shows that one work-item
is processed at each clock cycle in the SWI execution model.

212988 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

FIGURE 11. Initiation interval measured by I4 in the OpenCL SWI
execution model, as described in Listing 2 (WLsize=N=50 K).

However, Fig. 11 also clearly shows eight stalls that range in
duration from 94 clock cycles to 286 FPGA clock cycles.

Following the instrumentation methodology for the single-
kernel case, a simulation of 50000 work-items is executed,
during which work-items are sampled to reveal the behav-
ior of the NDRange execution model (WLsize = 50 K).
Fig. 12 shows the II of the NDRange execution model with
and without a barrier function (Listing 2), which is used to
synchronize operations to local memory. A kernel with a
barrier function is interpreted by the OpenCL for the FPGA
compiler as an NDRange execution model, and it exhibits
a different execution behavior while running in the FPGA
(Fig. 12.(b)). Unlike that of the SWI model, the execution of
the NDRange model has an unstable throughput of the mul-
tiplication operation measured by I4, as shown in Fig. 12 (a),
where only the II for the first 100 work-items processed is
presented. The II curve starts with 33 clock cycles and jumps
to thousands of FPGA clock cycles when in a stalled state.
The II of the NDRange model measured by I4 is clearly poor
compared to that of the SWI model. As instruments I1 and
I2 exhibit the same behavior, as shown by Fig. 12 (a), for
load and store operations, this unstable II is then explained
by the unsuitable host-FPGA data transfer in the NDRange
model, and these stalls are not caused inside the FPGA. The
II of the NDRange implementation with a barrier function
(Fig. 12(b)) is 50 K clock cycles for most of the 50 K
work-items. It also shows several stall-states with durations
between 2 (II=50002) and 32 (II=50032) FPGA clock cycles
when 200 KB of data are processed (Fig. 12 (b)).

The timing performances are computed as described by
equations 3 and 4 for both the SWI and NDRange models
without barriers, and they are summarized in Table 1. The
framework shows that the SWI execution model requires
21.2 times fewer FPGA clock cycles for execution than the
NDRange model does. This overhead is mainly due to the
large number of stalls observed in the NDRange implemen-
tation that contribute up to 1975 % of the optimal execution
time Tsk, which should be 50 K clock cycles for the 50 K
work-items. However, these two models maintain a stable
minimum latency of 3 clock cycles for the multiplication
operation, computed as the difference between I3 and I4

FIGURE 12. Initiation Interval of NDRange execution models described in
listing 2 (WLsize=1, N=50 K), which is the same for the four instruments.
(a) without a barrier (only the first 110 work-items are presented),
(b) with a barrier (50 K work-items).

TABLE 1. Timing performance in terms of FPGA clock-cycles for Listing
2 with 50 K work-items (200 KB workload) for two execution models.

for the same processed work-item. These results help not
only to determine the suitable execution model but also to
confirm that the choice of an execution model running on
FPGAs has a significant impact on the timing performance
and must be considered while writing a kernel targeting
an FPGA.

The FPGA resource utilizations related to the two exe-
cution kernels presented in Listing 2 are summarized in
Table 2. The overhead costs of four instantiated instruments
measured from the FPGA resource utilization reports are
similar for both execution models and remain acceptable.
The overhead of these instruments for the NDRange model
is 0.72 % greater for the logic unit (LU), 0.61 % greater for
flip-flops (FFs) and 1 % greater for ALUTs than the values
obtained by the implementation without instruments, and this
confirms that the framework has a small impact on FPGA
resource utilization. The FPGA operating frequency slightly
decreases (from 287 MHz to 280 MHz) with the insertion
of four instruments in the SWI execution model. In addition,

VOLUME 8, 2020 212989

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

TABLE 2. FPGA resource utilization for kernels with 4 inserted
instruments.

TABLE 3. Kernel execution time (ms) for the SWI kernel (Listing 2).

experiments are performed to characterize the impact of the
insertion of a different number of instruments on kernel exe-
cution times, as summarized in Table 3. The results show that
even when the number of work-items increases, the kernel
execution time slightly increases (by a maximum of 0.04 ms)
when 40 MB of data is processed. Since high-performance
applications require a large amount of input data [1], this
experiment confirms the efficiency of the proposed frame-
work in terms of its very small impact on the execution
time when a heavy workload is processed by an OpenCL
application.

2) MULTIKERNEL INSTRUMENTATION
This section presents a use case in which instruments are
added to a multikernel-based design. The algorithm pre-
sented in Listing 2 is instrumented by dividing the single
kernel into three kernels, as shown in Listing 3: the first
kernel contains the loading of variables a and b. The sec-
ond kernel contains the addition and multiplication compu-
tations, and the last kernel contains the storage operation. Six
instruments are inserted to provide the performance metrics,
as explained in section III.D. These instruments monitor the
performance of in-FPGA operations and the OpenCL pipe as
well.

The run-time is extracted and used to compute the initiation
interval and the II difference matrix, as shown in Fig. 13. The
instruments allow the detection of stalls either inside kernels
or in the pipe between kernels. The second kernel of Listing
3 contains the in-FPGA multiply-add operations, in which
stalls are also observed. These stalls can be caused by the

Listing 3. Pseudocode of a multikernel example with six instruments
I1-I6.

FIGURE 13. Matrices of II (068) and its difference 167, computed
according to equations (8) and (9), respectively, for the multikernel
implementation.

propagation of stalls from the first kernel when the OpenCL
pipes (Load_A, Load_B) are empty or when the Mul_OUT
pipe is full. In such a case, a new pipe implementation with
a larger depth would be required to reduce the occurrences
and impacts of stalls and to improve the performance of the
model. Fig. 13 shows 068 and 167 computed according to
equations 7 and 8. The II of the addition and multiplication
computations performed by I5 is constant to one clock cycle;
this demonstrates a stall-free operation compared to that of
the single-kernel implementation.

The latency of the in-FPGA operations is equal to 1 clock
cycle, which is ideal. Compared to the unstable II curve of
the NDRange single-kernel implementation (Fig. 12), this
implementation shows a stable II of 1 clock cycle, similar to
that of the SWI kernel, but with a higher frequency (352MHz,
a 13 % increase). It is also of interest that the framework
results in a low logic area. Table 4 summarizes the FPGA
resource utilization; the overhead is very small: 1.29 % in
ALUTs, 1.34 % in LU utilizations, and 0.73 % in Flip-Flops.
The table also reports that the framework causes a 4.54 %
reduction in the operation frequency.

212990 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

TABLE 4. FPGA resource utilization and overhead of multiple kernels
with 6 inserted instruments (Listing 3).

D. EVALUATION OF FRAMEWORK SCALABILITY
As a final experiment, the impact of inserting instruments on
a set of benchmarks is investigated to validate the scalability
of the proposed framework. These benchmarks are part of
the CHO benchmark suite [48], Intel benchmark [49], and
Rodinia benchmark sets [50]. They include the implemen-
tation of arithmetic applications such as dfadd, dfmul, dfsin
and other algorithms inspired by cryptographic applications
such as sha and blowfish. The FPGA resource utilizations
for these benchmarks without instruments are presented in
Table 5. Two, 10, 20 and 50 instruments are instantiated in
each benchmark. The FPGA logic overhead per instrument
is summarized in Fig. 14, Fig. 15 and Fig. 16, where the
maximum resource utilizations in terms of the ALUTs, FFs
and LU per instrument are 0.25%, 0.22% and 0.31%, respec-
tively. These results show that the variation in terms of FPGA
resource consumption per instrument is larger when fewer
instruments are inserted. However, the overhead converges to

TABLE 5. FPGA resource utilization for 17 benchmarks without
instruments.

FIGURE 14. ALUT utilization in the FPGA for 17 benchmarks with different
numbers of inserted instruments.

FIGURE 15. FF utilization for 17 benchmarks with different numbers of
inserted instruments.

FIGURE 16. LU utilization for 17 benchmarks with different numbers of
inserted instruments.

a relatively stable percentage of FPGA resource utilization
when an important number of instruments is inserted. Notice
that the insertion of instruments may also lead to a decrease
in the amount of logic resources (FFs or ALUTs) needed for
each instrument, as shown by benchmark 9 (−0.01 % for
FFs) in Fig. 15. This is possible since the optimization of the
OpenCL compiler is applied heuristically, and the instrumen-
tation framework may then lead the OpenCL compiler along
new optimization paths, from which the compiler may find a
better solution. However, this decrease in the number of FFs
corresponds to an increase in the number of ALUTs (0.06 %
for ALUTs, as shown in Fig. 14).

VOLUME 8, 2020 212991

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

The framework also increases the number of BRAMs
needed to record the data and timing information of targeted
signals. The maximum reported memory utilization in an
Arria 10 is 114 BRAMs when 50 instruments are inserted;
this represents 4.2 % utilization of the available number of
memory blocks. In fact, the experimental results of the instru-
mentation of 17 benchmarks show that the average memory
utilization per instrument is 1.5, 2.35, 2.45, and 2.22 BRAM
blocks when 2, 10, 20, and 50 instruments are inserted,
respectively. It is of interest that the inserted instruments do
not consume any DSP slices. Finally, these results show that
the logic consumption is relatively small, and the framework
can be applied to a wide variety of applications.

The operating frequency of the kernels under instrumen-
tation decreases when the number of instruments increases.
However, the frequency increases in some benchmarks when
embedded instruments are inserted. For example, the fre-
quency of the MIPS benchmark (benchmark 1) improves by
2.39% when 2 instruments are inserted, as shown in Fig. 17.
Two reasons explain this improvement. First, the OpenCL-
to-FPGA compiler uses a heuristic algorithm for the place
and route in the FPGA, and the addition of instrumentation
circuits may lead the compiler to find better solutions. Sec-
ond, the circuit with embedded instruments may be better
structured than the circuit without embedded instruments.
This may lead to more efficient solutions in the FPGA.
Fig. 17 summarizes the impacts of the framework on the oper-
ating frequencies of 17 benchmarks, for which the maximum
frequency loss is 4.5% (benchmark 5). This result demon-
strates that the framework slightly affects the performance of
OpenCL kernels.

FIGURE 17. Frequency variations for 17 benchmarks with different
numbers of inserted instruments.

V. FRAMEWORK COMPARISON
As mentioned in the introduction, several works have
reported on the instrumentation of digital circuits for FPGAs.
These works focused on the instrumentation of circuits
by developing infrastructures from low-level to high-level
specifications. Nonetheless, in terms of functionality and
compatibility, none of these previousworks provide an instru-
mentation method compatible with OpenCL-based FPGA
designs. Moreover, both the Xilinx and Intel for FPGA

toolchains do not offer debugging or profiling support for
detecting the causes of stalls inside OpenCL kernels includ-
ing multiple compute units or pipes. The Xilinx SDAccel
toolchain [51] generates general profiling reports that contain
logic resource utilizations and DDR external memory perfor-
mance metrics, such as bandwidth, usage, and the occurrence
of stalls. The II for loops can also be reportedwhen an optimal
pipelined kernel is implemented. However, the II of a loop
is undefined when an OpenCL kernel is implemented as an
NDRange. The proposed framework enables performance
analyses inside kernels regardless of the contents and the
execution model of the kernels, as reported in the use cases
presented in Section IV.C.

The framework also offers portability and scalability.
Table 6 compares the logic resource overhead per instrument
of our framework to those of previous works. The logic area
overhead shows that our framework consumes on average
6 times fewer FFs and almost 1.5 times fewer ALUTs than
the best previously published work [22] in terms of logic
overhead when one instrument is inserted. For example,
the average relative Flip-Flop utilization overhead (compared
to the original design) in our experiments is 0.10 %, which
can be compared to the value of 0.6 % in [22], while the
average logic element (LE(LU)) utilization is 2.5% in [24].
To the best of our knowledge, our proposed framework is
also the first that can simultaneously support, debugging and
timing performance analysis capabilities for OpenCL-based
FPGA designs at FPGA clock cycle accuracy, as summarized
in Table 7. In addition, this OpenCL-based method can be
applied to any OpenCL-based design for a FPGA, and this
confirms its portability when using other FPGA vendors,
unlike the works reported in [23], [24], [31].

TABLE 6. Comparison of average resource overhead per instrument (%).

TABLE 7. Comparison of framework capabilities.

VI. CONCLUSION
In this paper, we proposed a framework that offers devel-
oper support for enhancing visibility and observability inside

212992 VOLUME 8, 2020

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

OpenCL-synthesized designs. It does so by adding embedded
instruments to OpenCL kernels. These instruments enable the
timing performance analyses of OpenCL designs compiled
to FPGA targets. This makes our work the first to consider
the insertion-based instrumentation restrictions in OpenCL
designs compiled for FPGA targets. It also considers the
debugging challenges in Intel SDK for OpenCL while over-
coming the lack of a supported integrated logic analyzer.
To our knowledge, the proposed framework is the first that
offers the insertion of embedded instruments described with
HDL by specifying them directly into high-level code to
extract performances at FPGA clock cycle accuracy. The
different use cases presented in this paper demonstrate the
accurate measurements of initiation intervals and stalls and
confirm that the timing performance highly depends on the
OpenCL execution model chosen. The timing performances
extracted by the framework enable the developer to choose
an implementation and an OpenCL model that help elimi-
nate stalls and achieve better timing performances. Finally,
the results also show that the maximum relative FPGA over-
head in terms of ALUTs, FFs, and LU cannot exceed 0.25 %,
0.22 %, and 0.31 % per instrument, and the average overhead
is 6 times fewer FFs and almost 1.5 times fewer ALUTs than
in previous works.

ACKNOWLEDGMENT
The authors specifically thank CMC Microsystems for pro-
viding the design tools and FPGA platforms that made this
work possible.

REFERENCES
[1] W. Vanderbauwhede and K. Benkrid,High-Performance Computing Using

FPGAs. Berlin, Germany: Springer, 2013.
[2] D. Singh, ‘‘Implementing FPGA design with the OpenCL standard,’’ Intel.

(Altera), San Jose, CA, USA, White Paper WP-01173-3.0, Nov. 2013.
[3] P. Coussy and A. Morawiec, High-Level Synthesis: From Algorithm to

Digital Circuit. Dordrecht, The Netherlands: Springer, 2008.
[4] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey
and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,
Oct. 2016.

[5] T. S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong,
D. Denisenko, P. Yiannacouras, J. Freeman, D. P. Singh, and S. D. Brown,
‘‘OpenCL for FPGAs: Prototyping a compiler,’’ in Proc. Int. Conf. Eng.
Reconfigurable Syst. Algorithms (ERSA), 2012, p. 1.

[6] K. Hill, S. Craciun, A. George, and H. Lam, ‘‘Comparative analysis of
OpenCL vs. HDL with image-processing kernels on Stratix-V FPGA,’’ in
Proc. IEEE 26th Int. Conf. Appl.-Specific Syst., Archit. Processors (ASAP),
Jul. 2015, pp. 189–193.

[7] A. Sanaullah and M. C. Herbordt, ‘‘Unlocking performance-
programmability by penetrating the intel FPGA OpenCL toolflow,’’
in Proc. IEEE High Perform. extreme Comput. Conf. (HPEC), Sep. 2018,
pp. 1–8.

[8] K. O’Neal and P. Brisk, ‘‘Predictive modeling for CPU, GPU, and FPGA
performance and power consumption: A survey,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2018, pp. 763–768.

[9] H. M. Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. P. Dinakarrao,
H. Homayoun, and S. Rafatirad, ‘‘Pyramid: Machine learning framework
to estimate the optimal timing and resource usage of a high-level synthe-
sis design,’’ in Proc. 29th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2019, pp. 397–403.

[10] K. O’Neal, M. Liu, H. Tang, A. Kalantar, K. DeRenard, and P. Brisk,
‘‘HLSPredict: Cross platform performance prediction for FPGA high-level
synthesis,’’ in Proc. Int. Conf. Comput.-Aided Design, Nov. 2018, pp. 1–8.

[11] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, ‘‘A sur-
vey of power and energy predictive models in HPC systems and applica-
tions,’’ ACM Comput. Surv., vol. 50, no. 3, pp. 1–38, Oct. 2017.

[12] K. O’Neal, Performance and Power Prediction of Compute Accelerators
Using Machine Learning. Riverside, CA, USA: UC Riverside, 2018.

[13] D. Holanda Noronha, R. Zhao, J. Goeders, W. Luk, and S. J. E. Wilton,
‘‘On-chip FPGA debug instrumentation for machine learning applica-
tions,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2019, pp. 110–115.

[14] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, ‘‘Are we there yet?
A study on the state of high-level synthesis,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019.

[15] The Intel FPGA SDK for OpenCL Best Practices Guide, Intel, Santa Clara,
CA, USA, May 2018.

[16] H. M. Waidyasooriya, M. Hariyama, and K. Uchiyama, Design of FPGA-
Based Computing Systems With OpenCL. New York, NY, USA: Springer,
2018.

[17] B. Carrion Schafer and Z. Wang, ‘‘High-level synthesis design space
exploration: Past, present, and future,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 10, pp. 2628–2639, Oct. 2020.

[18] T. Todman and W. Luk, ‘‘In-circuit assertions and exceptions for
reconfigurable hardware design,’’ in Provably Correct Systems. Cham,
Switzerland: Springer, 2017, pp. 265–281.

[19] J. Curreri, G. Stitt, and A. D. George, ‘‘High-level synthesis of in-circuit
assertions for verification, debugging, and timing analysis,’’ Int. J. Recon-
figurable Comput., vol. 2011, pp. 1–17, Jan. 2011.

[20] Intel FPGA SDK forOpenCLPro Edition ProgrammingGuide, Intel, Santa
Clara, CA, USA, May 2018.

[21] P. Baudin, J.-C. Filliâ̂tre, C. Marché, B. Monate, Y. Moy, and V. Prevosto,
‘‘ACSL: ANSI C specification language,’’ CEA-LIST, Saclay, France,
Tech. Rep. v1.2, Oct. 2008.

[22] J. S. Monson and B. Hutchings, ‘‘Using source-to-source compilation to
instrument circuits for debug with high level synthesis,’’ in Proc. Int. Conf.
Field Program. Technol. (FPT), Dec. 2015, pp. 48–55.

[23] J. P. Pinilla, Source-Level Instrumentation for in-System Debug of High-
Level Synthesis Designs for FPGA. Vancouver, BC, Canada: Univ. British
Columbia, 2016.

[24] J. Goeders and S. J. E. Wilton, ‘‘Using dynamic signal-tracing to
debug compiler-optimized HLS circuits on FPGAs,’’ in Proc. IEEE 23rd
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2015,
pp. 127–134.

[25] H. Bensalem, Y. Blaquiere, and Y. Savaria, ‘‘Toward in-system monitoring
of OpenCL-based designs on FPGA,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2019, pp. 1–5.

[26] A. Munshi, The OpenCL Specification Version: 1.2 Document Revision:
15. Beaverton, OR, USA: Khronos Group, 2011.

[27] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL Program-
ming Guide. London, U.K.: Pearson, 2011.

[28] The OpenCL Specification: Version 1.0, Khronos Group, Beaverton, OR,
USA, 2010.

[29] Design Debugging Using the SignalTap II Logic Analyzer, Intel, Santa
Clara, CA, USA, 2013.

[30] ChipScope Pro Software and Cores: User Guide, Xilinx, San Jose, CA,
USA, Oct. 2012.

[31] SDAccel Environment Debugging Guide, Xilinx, San Jose, CA, USA,
2018.

[32] Y.-K. Choi and J. Cong, ‘‘HLScope: high-level performance debugging
for FPGA designs,’’ in Proc. IEEE 25th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), Apr. 2017, pp. 125–128.

[33] E. Hung and S. J. E. Wilton, ‘‘Speculative debug insertion for FPGAs,’’ in
Proc. 21st Int. Conf. Field Program. Log. Appl., Sep. 2011, pp. 524–531.

[34] T. Todman, S. Stilkerich, and W. Luk, ‘‘In-circuit temporal monitors
for runtime verification of reconfigurable designs,’’ in Proc. 52nd Annu.
Design Autom. Conf. - DAC, 2015, pp. 1–6.

[35] P. K. Bussa, J. Goeders, and S. J. E. Wilton, ‘‘Accelerating in-system
FPGAdebug of high-level synthesis circuits using incremental compilation
techniques,’’ in Proc. 27th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2017, pp. 1–4.

[36] N. Calagar, S. D. Brown, and J. H. Anderson, ‘‘Source-level debugging for
FPGA high-level synthesis,’’ in Proc. 24th Int. Conf. Field Program. Log.
Appl. (FPL), Sep. 2014, pp. 1–8.

VOLUME 8, 2020 212993

H. Bensalem et al.: In-FPGA Instrumentation Framework for OpenCL-Based Designs

[37] J. Goeders and S. J. E. Wilton, ‘‘Effective FPGA debug for high-level
synthesis generated circuits,’’ in Proc. 24th Int. Conf. Field Program. Log.
Appl. (FPL), Sep. 2014, pp. 1–8.

[38] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S.
D. Brown, and J. H. Anderson, ‘‘LegUp: An open-source high-level syn-
thesis tool for FPGA-based processor/accelerator systems,’’ ACM Trans.
Embedded Comput. Syst., vol. 13, no. 2, pp. 24:1–24:27, Sep. 2013.

[39] J. S. Monson and B. L. Hutchings, ‘‘Enhancing debug observability for
HLS-based FPGA circuits through source-to-source compilation,’’ J. Par-
allel Distrib. Comput., vol. 117, pp. 148–160, Jul. 2018.

[40] J. P. Pinilla and S. J. E. Wilton, ‘‘Enhanced source-level instrumentation
for FPGA in-system debug of high-level synthesis designs,’’ in Proc. Int.
Conf. Field-Program. Technol. (FPT), Dec. 2016, pp. 109–116.

[41] F. Eslami, E. Hung, and S. J. E. Wilton, ‘‘Enabling effective FPGA debug
using overlays: Opportunities and challenges,’’ 2016, arXiv:1606.06457.
[Online]. Available: http://arxiv.org/abs/1606.06457

[42] A. Verma, H. Zhou, S. Booth, R. King, J. Coole, A. Keep, J. Marshall,
andW.-C. Feng, ‘‘Developing dynamic profiling and debugging support in
OpenCL for FPGAs,’’ in Proc. 54th Annu. Design Autom. Conf., Jun. 2017,
pp. 1–6.

[43] J. Goeders and S. J. E. Wilton, ‘‘Signal-tracing techniques for in-system
FPGA debugging of high-level synthesis circuits,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 36, no. 1, pp. 83–96, Jan. 2017.

[44] CCIX Consortium. (2017). Cache Coherent Interconnect for Accelerators.
[Online]. Available: http://www.ccixconsortium.com

[45] AXI Reference Guide, Xilinx, San Jose, CA, USA, 2012.
[46] Avalon Interface Specifications, Intel, Santa Clara, CA, USA, 2018.
[47] S. O. Settle, ‘‘High-performance dynamic programming on fpgas with

OpenCL,’’ in IEEE High Perform. Extreme Comput. Conf. (HPEC), 2013,
pp. 1–6.

[48] G. Ndu, J. Navaridas, and M. Luján, ‘‘CHO: Towards a benchmark suite
for OpenCL FPGA accelerators,’’ in Proc. 3rd Int. Workshop OpenCL -
IWOCL, 2015, p. 10.

[49] Intel FPGA SDK for OpenCL Support (Design Examples), Intel,
Santa Clara, CA, USA, 2019.

[50] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous computing,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44–54.

[51] SDAccel Environment Profiling and Optimization Guide, Xilinx, San Jose,
CA, USA, Mar. 2018.

HACHEM BENSALEM (Graduate Student Mem-
ber, IEEE) received the B.Ing. degree in elec-
trical engineering from the National Engineering
School of Monastir, Tunisia, in 2012, and the
M.Sc.A. degree in electrical engineering from the
National Engineering School of Tunis, in 2015.
He is currently pursuing the Ph.D. degree in elec-
trical engineering with the Department of Electri-
cal Engineering, École de Technologie Supérieure
(ÉTS), Montreal, QC, Canada. He was a Research

Associate with the Electronics and Microelectronics Laboratory, Monastir,
Tunisia, in 2013 and 2014. He has also been a Teaching Assistant position
with ÉTS since 2017. His general research interests include related to micro-
electronic circuits andmicrosystems, in particular, reconfigurable computing
and high-performance applications, hardware design and acceleration on
ASICs and FPGAs, debugging and instrumentation techniques on FPGAs,
digital circuit design techniques, and CAD methods.

YVES BLAQUIÈRE (Member, IEEE) received
the B.Ing., M.Sc.A., and Ph.D. degrees in elec-
trical engineering from the École Polytechnique
de Montreal, Canada, in 1984, 1986, and 1992,
respectively.

From 1987 to 2016, he was a Professor of
microelectronic engineering with the University
of Quebec in Montreal (UQAM), Montreal, QC,
Canada. He has been a Professor with the École de
Technologie Supérieure, Montreal, Canada, since

2016. He currently works in the field of electrical/electronic/microelectronic
engineering, specifically in ASIC/FPGA design, VLSI/WSI microsystems,
high-speed digital circuits, timing tools, architectures, defect tolerance
and applications in signal processing, network/high-speed processors, and
embedded systems. He has done research and development projects in col-
laboration with several microelectronic companies, such as Gestion Tech-
noCap Inc., and DreamWafer Division, Hyperchip Inc. He performed WSI
Research with Hyperchip Inc., from 1997 to 2004, including a two-year
period where he contributed full time as the Technical Lead Researcher and
the Manager of a team of ASIC/FPGA engineers, to deliver a core internet
protocol petabit router. He is a member of the Regroupement Stratégique
en Microélectronique du Québec and the Ordre des Ingénieurs du Québec
(OIQ). He was the Director of the Laboratoire de Recherche de Conception
en Microélectronique, UQAM, from 1992 to 1999 and from 2004 to 2008,
the Director of the Microelectronic Engineering Program with UQAM from
2004 to 2010, and the Director of Engineering with UQAM from 2011 to
2015.

YVON SAVARIA (Fellow, IEEE) received the
B.Ing. and M.Sc.A. degrees in electrical engi-
neering from École Polytechnique Montreal
in 1980 and 1982, respectively, and the Ph.D.
degree in electrical engineering from McGill Uni-
versity, in 1985.

Since 1985, he has been with Polytechnique
Montréal, where he is currently a Professor with
the Department of Electrical Engineering. He is
also affiliated with the Hangzhou Innovation Insti-

tute, Beihang University. He has carried out work in several areas related
to microelectronic circuits and microsystems, such as testing, verification,
validation, clocking methods, defect, and fault tolerance, effects of radiation
on electronics, high-speed interconnects and circuit design techniques, CAD
methods, reconfigurable computing and applications of microelectronics to
telecommunications, aerospace, image processing, video processing, radar
signal processing, and the acceleration of digital signal processing. He is
also involved in several projects related to embedded systems in aircraft,
radiation effects on electronics, asynchronous circuit design and testing,
green IT, wireless sensor networks, virtual networks, software-defined net-
works, machine learning, computational efficiency, and application-specific
architecture design. He holds 16 patents, has published 170 journal articles
and 470 conference papers, and was the thesis advisor of 165 graduate
students who completed their studies. He was the Program Co-Chairman
of NEWCAS’2018. He has been working as a Consultant or was sponsored
for carrying out research by Bombardier, CNRC, Design Workshop, DREO,
Ericsson, Genesis, Gennum, Huawei, Hyperchip, ISR, Kaloom, LTRIM,
Miranda, MiroTech, Nortel, Octasic, PMC-Sierra, Technocap, Thales, Tun-
dra, and Wavelite. He is a member of the Regroupement Stratégique en
Microélectronique du Québec (RESMIQ) and of the Ordre des Ingénieurs
du Québec (OIQ). He is a member of the CMC Microsystems Board.
In 2001, he was awarded a Tier 1 Canada Research Chair on the designs
and architectures of advanced microelectronic systems that he held until
June 2015.

212994 VOLUME 8, 2020

