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Shock-Fitting Approach for Calculating Air Pocket
Entrapment Caused by Full Obstruction in

Closed Conduit Transient Flow
Arman Rokhzadi, Ph.D.1; and Musandji Fuamba, Ph.D., M.ASCE2

Abstract: This paper studies the ability of a Shock-Fitting approach in computing air pocket entrapments in a closed conduit transient flow,
caused by suddenly blocking the downstream end. The flow is pressurized at the upstream, which detaches from the wall somewhere at the
downstream after which a free surface flow develops. In this Shock-Fitting approach a pressurized flow is simulated by the rigid column
model and the free surface flow is simulated by the Saint-Venant equations set. A transient region, which is characterized by the speed of the
discontinuity, links these two flow regimes. The relevant governing equations of the rigid column model and the transient region are solved
using the backward Euler temporal scheme and the Saint-Venant equations set is solved using the method of characteristics. It was found that
this Shock-Fitting approach is able to predict the attenuation behavior as well as to calculate the flow variables more efficiently than the rigid
column model and the modified Saint-Venant equations. By means of a linear stability analysis, it was shown that these improvements are
provided by the speed of discontinuity in the transient region and the pressurized water column length. DOI: 10.1061/(ASCE)HY.1943-
7900.0001817. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://
creativecommons.org/licenses/by/4.0/.

Introduction

The ground level water and rainfall amounts are conducted through
below-grade closed conduit systems, in which the flow regime
is mostly a free surface flow. Disturbing boundary conditions,
i.e., blockage or excessive amounts of discharge, may cause
the free surface flow to change to a partially pressurized flow. Pre-
vious studies, either numerically or experimentally, e.g., Hamam
and McCorquodale (1982), Cardle et al. (1989), and Li and
McCorquodale (1999), indicated that a hydraulic instability may
occur due to this transition, from free surface flow to partially
pressurized flow, by which the air is trapped and undergoes com-
pressions and expansions with high pressure values. Consequently,
the air pocket could abruptly escape and result in damaging effects
to structures as well as the public safety and health.

The Preissmann slot model, exemplified by the work of Cunge
and Wegner (1964), has been used to simulate these transient flows;
however, this model is unable to predict subatmospheric pressures.
Furthermore, this hypothetical slot can result in spurious oscilla-
tions as shown by Trajkovic et al. (1999) and Vasconcelos et al.
(2006). The two-components pressure approach (TPA), an alterna-
tive to the Preissmann slot, was proposed by Vasconcelos et al.
(2006) and further studied by Vasconcelos and Wright (2007)
and Vasconcelos and Marwell (2011) to overcome the inability
of the Preissmann slot model in calculating subatmospheric

pressures. This approach can capture the relevant experimental data
with a good agreement; however, it is subject to oscillatory behav-
iors, particularly, in presence of high pressure wave speeds (Bousso
et al. 2013). The other shock capturing models, as of those studied
by León et al. (2007), León (2007), and León et al. (2010), provide
more accurate and reliable solutions since they are solved by finite
volume methods, which preserve the conservation of mass and mo-
mentum. However, the main disadvantages of these models are that
they are expensive and difficult to implement.

The rigid column (RC) model has attracted extensive attention
as it is conceptually simple while it incorporates fundamental fea-
tures of closed conduit transient flows. This lumped-pressure
model is based on neglecting the water compressibility, which al-
lows assuming a space-invariant velocity and acceleration, as those
of Li and McCorquodale (1999, 2001) and Zhou et al. (2004).

Zhou et al. (2004) experimentally studied the air pocket entrap-
ment in a rapidly filling partially pressurized flow in a dead-end
pipe. They described the free surface flow section as tail water and
they found it beneficial to reduce the induced air pressure.

Vasconcelos and Leite (2012), by using the RC model, exper-
imentally and numerically investigated air pocket entrapments,
caused by completely and partially closing a gate valve at the
downstream. Subsequently, Hatcher et al. (2015) studied the same
problem, experimentally and numerically, using the RC model as
well as the modified Saint-Venant equations set (MSV). Both mod-
els predicted the solutions with reasonable tolerance of accuracy,
except for the total valve closure in which both models significantly
overestimated peak values as well as these models were unable to
predict attenuation behaviors attributed to these transient flows.
The results showed that in calculating cases with small initial air
volume, the modified Saint-Venant equations set improves the ac-
curacy compared to the RC model, while in calculating the cases
with larger air volumes, both models perform similarly.

Tijsseling et al. (2019) used a rigid column model to solve, nu-
merically and analytically, a pipe filling flow with a liquid supplied
from a reservoir with varying elevations in which an air pocket is
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allowed to be vented. They found that the result of their model
is consistent with Martin (1996). Chaiko and Brinckman (2002)
studied the air pocket entrapment in a pipe flow assuming two sep-
arate columns for the water and the air flows. For the water flow,
they applied the water hammer equations, and for the air flow they
solved the relevant momentum and continuity equations. To calcu-
late the air flow, they studied two cases; in the first one, they as-
sumed the air velocity varies along the pipe axis, called nonuniform
compression, while in the second case, they neglected this varia-
tion, called uniform compression process. They also investigated
whether the variation of the water length has any possible effect
on the solutions. They concluded that for cases in which the air
pocket volume is less than 5% of the total pipe volume the assump-
tions of the nonvarying water column length and uniform air com-
pression are acceptable while for other cases the uniform air
compression and time-varying water column length can capture
all the essential features of the flow.

Shock-Fitting approaches allow using different governing equa-
tions for the pressurized and the free surface flows as indicated in
numerous studies, e.g., Guo and Song (1990) and Fuamba (2002),
and the air-water interface could be calculated using interpolation
techniques. As indicated by Politano et al. (2007) and Bousso and
Fuamba (2014), interpolations do not conserve the mass continuity
and generate significant errors. Thus, using the mass and momen-
tum conservation equations around the wave front improves the ac-
curacy (Bousso and Fuamba, 2014).

Objectives

This paper studies a transient pressurized-free surface flow in a
closed conduit, in which, by suddenly blocking the downstream
end, an air pocket is entrapped causing a surge pressure to induce.
Using a Shock-Fitting approach, the upstream pressurized flow is
simulated by the rigid column model and the downstream free sur-
face flow is simulated by the Saint-Venant equations and both flows
are connected by a transient region that contains a discontinuity of
the pressurized flow from the free surface flow.

Malekpour and Karney (2012) studied the rigid column model
and found that the water column length has an influential impact on
the maximum pressure head. In this regard, the goal of this study is
to show that the water column length and the speed of discontinuity
play an important role in predicting the distributions of flow var-
iables, including peak values (maximum and minimum) as well as
attenuation behaviors. Therefore, the Shock-Fitting approach, by
facilitating the calculation of the free surface flow, allows calculat-
ing the speed of discontinuity that produces a more precise equation
for calculating the water column length.

For this purpose, a closed conduit transient flow will be solved
by a Shock-Fitting approach and solutions will be compared to the
solutions of the rigid column model and the modified Saint-Venant
equations as well as the experimental data of Hatcher et al. (2015).
The undertaken Shock-Fitting approach includes the rigid column
model, applied to the upstream pressurized flow, in which the rel-
evant governing equations are solved using the implicit backward
Euler scheme and the Saint-Venant equations set applied to the
downstream free surface flow, which is solved by the method of
characteristics (MOC).

General Description

In the steady state condition, the water, supplied by a constant flow-
rate (Qi) from a reservoir with initial absolute pressure head (Hu),
enters the pipeline in a pressurized regime at the upstream.

Somewhere along the pipeline the flow detaches from the pipe wall
in which the free surface flow develops and discharges to the
atmosphere at the downstream end at which it is assumed to be in-
stantly blocked by a gate valve (Fig. 1). Following the experiment of
Hatcher et al. (2015), the pipeline diameters are set as D ¼ 53 mm
and 102 m with the total length Lt ¼ 10.7 m and Lt ¼ 12 m and
adverse slopes S ¼ 2% and S ¼ 1.3%, respectively. The pipematerial
is clear PVC with Manning roughness coefficient n ¼ 0.009. Note
that the kinematic viscosity of water is set as θ ¼ 10−6 m2=s.

Governing Equations

As mentioned before, in the current Shock-Fitting approach the
pressurized flow is simulated by the rigid column model and the
free surface flow is calculated using the Saint-Venant governing
equations set, solved by the MOC method. The Saint-Venant gov-
erning equations set have a form as (Chaudhry 2008)

∂y
∂t þ V

∂y
∂xþDh

∂V
∂x ¼ 0

∂V
∂t þ V

∂V
∂x þ g

∂y
∂x ¼ gðS − SfÞ ð1Þ

where g is the gravitational constant ðg ¼ 9.81 ms−2Þ and y and V
represent the flow depth and the velocity, respectively, varying
along the pipe axis (x) with positive direction toward the down-
stream and varying along the time coordinate (t). The hydraulic
depth (Dh) is calculated as Dh ¼ A

B, where B is the water surface
width and A is the cross-section area of the free surface flow. The
parameter S is the pipe slope, assuming to be constant, and Sf is
the friction slope calculated at each cross-section using the Chézy
formula as

Sf ¼ n2
V2

R
4
3

h

ð2Þ

where Rh is the hydraulic radius.
The main concept of the rigid column model is to neglect the

water compressibility so that the pressurized flow could be treated
as a rigid column with a space-invariant velocity and acceleration.
Thus, applying the momentum conservation law to this rigid col-
umn yields an equation as

dVu

dt
¼ g

Hu −Ha

Lu
þ g

�
S −

�
f
D
þ Kloss

Lu

�
VujVuj
2g

�
ð3Þ

where Ha is the air pocket absolute pressure head and Vu and Lu
are the velocity and the length of the pressurized water column,
respectively. The parameters f and Kloss are the Darcy friction
factor and the summation of the local loss coefficients, respectively,
which are assumed constant with given values f ¼ 0.025 and
Kloss ¼ 2.9, similar to Hatcher et al. (2015) and Vasconcelos
and Leite (2012). Note that this friction factor value, in the Moody

Fig. 1. Schematic diagram of entrapped air pocket in a closed conduit
pressurized-free surface flow caused by blocking downstream end.
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diagram, corresponds to a fully turbulent flow with the relative pipe
roughness ε ¼ 0.002. Moreover, the local head loss coefficient
is set as Kloss ¼ 2.9 in order to match experimental observations
(Vasconcelos and Leite 2012).

The continuity equation applied to the pressurized column gives
an equation for the rigid column length as

dLu

dt
¼ Wu ð4Þ

whereWu is the speed of the discontinuity between the pressurized
and the free surface flows, also known as the celerity of wave
fronts. Note that the upstream pressure head (Hu) is assumed to
be constant and is calculated using the steady state condition as
subsequently explained. Following Vasconcelos and Leite (2012)
and Hatcher et al. (2015), the air absolute pressure head (Ha) is
calculated using a polytropic process as

Ha∀k
a ¼ cte ð5Þ

where k represents the polytropic coefficient, which is set as k ¼
1.2 (Vasconcelos and Leite 2012; Hatcher et al. 2015) and ∀a is the
air volume. The air volume change is caused by variations of depths
in the free surface flow region and by variations of the length of the
pressurized flow. Thus, by using the mass conservation law, the air
volume rate could be calculated as

d∀a

dt
¼ −V1A1 þ Vimax

Aimax
− ðA − A1Þ

dLu

dt
ð6Þ

and substituting Eq. (4) into Eq. (6) results in

d∀a

dt
¼ −V1A1 þ Vimax

Aimax
− ðA − A1ÞWu ð7Þ

where the subscripts, 1 and imax, denote the first and last mesh grid
points of the free surface flow.

As mentioned before, in the Shock-Fitting approach the up-
stream pressurized flow and the downstream free surface flow
are connected by the transient region. The celerity (Wu) is
calculated using the mass conservation law applied to the transient
region

Wu ¼
AVu − A1V1

A − A1

ð8Þ

Note that the downstream end is assumed to be suddenly
blocked, which implies Vimax

¼ 0. Therefore, substituting Eq. (8)
into Eq. (7) yields

d∀a

dt
¼ −AVu ð9Þ

Boundary Conditions

It is assumed that the upstream reservoir maintains a constant water
level and discharges a constant flowrate (Qi) to the pipe.

At each time step, the water depth at the first node of the free
surface flow (y1) is calculated by interpolating the solutions in the
other grid points. By using the method of characteristics, Fig. 2
illustrates that the velocity at the first grid point of the free surface
flow (V1) is calculated using the negative characteristic line origi-
nated from somewhere between the first and the second grid points
of the free surface flow, as explained in the section “Numerical
Simulations.” In addition, Fig. 2 shows that only the positive char-
acteristic line intersects the downstream boundary. Therefore, the
relevant compatible equation to the positive characteristic line

originated from a point between the last grid and the one before
is used to calculate the water depth in the last grid point ðyimax

Þ
at the time level nþ 1. Note that for this grid point the velocity
is zero ðVimax

¼ 0Þ.

Initial Conditions

With respect to the initial conditions, the first challenge is to find
the profile of the free surface flow depth in the steady state con-
dition. Alves et al. (1993) studied the drift velocity of an air bubble
in an inclined liquid column and calculated the surface profile for
different inclination angles, including the horizontal one. Further
details are referred to Benjamin (1968) and Alves et al. (1993)
and here it is only mentioned that the surface profile with zero in-
clination angle is taken as the steady state solution of the free sur-
face flow because the undertaken slopes in this study are not so
steep. Therefore, so far, the initial water surface elevations, yiðxiÞ
at each location (xi) are calculated. The initial air pocket volume is
calculated using the following formula,

∀0
a ¼ AðLt − L0

uÞ −
Z

Lt

Lu

AfðxÞdx ð10Þ

where ∀0
a denotes the initial air volume and L0

u is the initial rigid
column length and AfðxÞ represents the cross-section area of the
free surface flow at a location x. Following Hatcher et al. (2015),
the initial air pocket volume is set to a certain amount and by using
Eq. (10) the initial pressurized water column length ðL0

uÞ is changed
manually such that the value of the initial air volume is achieved.

The initial velocity, at each cross-section, V0
i ðxiÞ, can be calcu-

lated using the continuity equation as

Qi ¼ V0
i ðxiÞAfðxiÞ ð11Þ

With respect to the pressurized column, the initial velocity (V0
u)

is calculated through

Qi ¼ V0
uA ð12Þ

In order to calculate the initial absolute pressure head ðH0
uÞ, the

Bernoulli equation is solved from any point in the pressurized flow
to a point in which the pressurized flow detaches from the wall,
since this detachment implies zero velocity. Therefore

H0
u ¼ H0

a − ð1 − KlossÞ
V0
ujV0

uj
2g

þ L0
u

�
−Sþ

�
f
D
þ Kloss

L0
u

�
V0
ujV0

uj
2g

�
ð13Þ

where H0
a is the initial air pressure head, which set as H0

a ¼ Hatm.

Fig. 2. Characteristic lines in a computational mesh.
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Numerical Simulations

The Saint-Venant equations set of the free surface flow is solved
using the MOCmethod, which preserves the first order of accuracy.
To find dependent variables in time-space coordinates, this method
transforms the governing Eq. (1) into two ordinary differential
equations (ODEs) called compatibility equations that can be inte-
grated along the characteristic lines. Further details of this method
could be found in reference books (Chaudhry 2008). The compat-
ibility equations of Eq. (1) are as

DV
Dt

− g
c
Dy
Dt

¼ gðS − SfÞ ð14Þ

DV
Dt

þ g
c
Dy
Dt

¼ gðS − SfÞ ð15Þ

where c denotes the gravity wave speed ðc ¼ ffiffiffiffiffiffiffiffiffiffiffi
gA=B

p Þ. Note that
derivatives in terms of the independent variables ðx; tÞ have been
changed to a derivative along the characteristic lines. Therefore

D
Dt

¼ ∂
∂tþ

∂
∂x

dx
dt

ð16Þ

where the positive and negative characteristic lines, corresponding
to Eqs. (14) and (15) could be found, respectively, as follows

dx
dt

¼ V − c ð17Þ

dx
dt

¼ V þ c ð18Þ

The numerical solution of the compatibility equations can be
found using a finite difference computational mesh depicted in

Fig. 3. (a) Distribution of nondimensional air pressure head; (b) discharge flowrate; and (c) air volume, calculated for case with D ¼ 53 mm,
∀�
a;0 ¼ 2.63, and Q�

0 ¼ 0.15. Shock-Fitting approach (solid), modified Saint-Venant equations (dashed), rigid column model (dash dot), and experi-
mental data (circled).

© ASCE 04020078-4 J. Hydraul. Eng.

 J. Hydraul. Eng., 2020, 146(11): 04020078 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

17
3.

17
6.

9.
14

7 
on

 1
0/

22
/2

1.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Fig. 2. As illustrated in Fig. 2, unknown variables at a time level
ðnþ 1Þ for a grid point (P) can be calculated using solutions at R
and S, corresponding to a time level (n). As can be seen, character-
istic lines do not intersect time lines at the grid points A and B.
Therefore, solutions at R and S need to be interpolated using so-
lutions in other grid points. Note that in this paper a linear inter-
polation technique has been utilized. The discrete equations can
then be written as follows (Chaudhry 2008)

Vp ¼ Dq − g
cR

yP ð19Þ

Vp ¼ Dn þ
g
cS

yP ð20Þ

where

Dq ¼ VR þ g
cR

yR þ gðS − SfÞRΔt ð21Þ

Dn ¼ VS − g
cS

yS þ gðS − SfÞSΔt ð22Þ

where

φR ¼ φB þ CFLðφA − φBÞ ð23Þ

φS ¼ φB þ CFLðφC − φBÞ ð24Þ

where φ could be either V or y. Note that Δt represents the time
step increment that is calculated using the Courant-Friedrichs-
Lewy ðCFLÞ condition. This condition for a free surface flow is as

CFL ¼ ½maxðVÞ þmaxðcÞ� Δt
Δx

ð25Þ

where max denotes the maximum absolute value.
The governing equations of the pressurized flow [Eqs. (3) and

(4)] and of the air pocket volume change [Eq. (9)] are solved using
the backward Euler scheme, which is an implicit scheme with the
first order of accuracy. Considering a general ODE problem as

dψ
dt

¼ fðψÞ ð26Þ

where ψ is any dependent variable. The backward Euler scheme
applied to Eq. (26) yields a discrete formula as

ψnþ1 ¼ ψn þΔtfðψnþ1Þ ð27Þ

where the superscripts indicate the time levels.
The air pocket pressure head, Eq. (5), at the time level nþ 1 is

calculated as

Hnþ1
a ð∀nþ1

a Þk ¼ Hn
að∀n

aÞk ð28Þ

Afterward, the celerity of the wave front in the transient region
at each time level will be calculated using Eq. (8) as

Wnþ1
u ¼ AVnþ1

u − A1V
nþ1
1

A − A1

ð29Þ

It is worth mentioning that due to the implicit time integration
scheme, an iterative approach is needed, in which the residuals of
all discrete equations, solved by backward Euler scheme at each
time level, were imposed to converge up to a certain tolerance
ðTol ¼ 10−15Þ. Note that this tolerance is the smallest one that
could be achieved during the calculations.

Fig. 4. (a) Numerical error of pressure head (εH) and (b) flowrate (εQ) in terms of CPU time usage, for MSV (square), RC (gradient), and RC-SV
(circle), associated with Fig. 3.
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Linear Stability Analysis

The purpose of a linear stability analysis is to analytically show
how solutions propagate within a time coordinate. Although the
behavior of solutions of nonlinear equations is not expected to
be fully explained by this linear analysis, it still can provide general
informative descriptions. In this study, the governing equations in-
clude the momentum [Eq. (3)], the continuity [Eq. (4)], the poly-
tropic process [Eq. (5)], and the mass conservation law applied to
the air pocket [Eq. (9)]. Note that the friction loss term in the mo-
mentum equation is neglected, since this term is nonlinear and its
linearization unnecessarily makes the analysis complicated. The
momentum equation is then simplified as

Lu
dVu

dt
¼ −gðHa −HuÞ ð30Þ

The continuity that provides an equation for the water column
length variation is already linear and helps to reform Eq. (30) as

dLuVu

dt
¼ −gðHa −HuÞ þ VuWu ð31Þ

In order to retrieve the new variable ðLuVuÞ in the right-hand
side (RHS) of Eq. (31), this equation is rearranged as

dLuVu

dt
¼ −gðHa −HuÞ þ

Wu

Lu
LuVu ð32Þ

Fig. 5. (a) Distribution of nondimensional air pressure head; (b) discharge flowrate; and (c) air volume, calculated for case with D ¼ 102 mm,
∀�
a;0 ¼ 3.70, and Q�

0 ¼ 0.2. Shock-Fitting approach (solid), modified Saint-Venant equations (dashed), rigid column model (dash dot), and experi-
mental data (circled).
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In this equation it is assumed that the variation of the coefficient
Wu=Lu could be considered independent from the other variables.
The polytropic process Eq. (5), after taking time derivative of both
sides, could be linearized as

dHa

dt
þ k

H0
a

∀0
a

d∀a

dt
¼ 0 ð33Þ

The mass conservation of the air pocket [Eq. (9)] simplifies
[Eq. (9)] as

dHa

dt
¼ k

H0
a

∀0
a
AVu ð34Þ

and it is further simplified as

dHa

dt
¼ k

H0
a

∀0
a

A
Lu

LuVu ð35Þ

Thus the linearized governing equations are Eqs. (32) and (35)
that can be presented in a vector form as

d~F
dt

¼ G~Fþ ~S ð36Þ

where

~F ¼
�
LuVu

Ha

�
; ~S ¼

�
gHu

0

�
and G ¼

2
6664

Wu

Lu
−g

k
H0

a

∀0
a

A
Lu

0

3
7775

ð37Þ
Note that for the purpose of stability analysis the homogenous

solutions of Eq. (36), also known as general solutions, are suffi-
cient. The Eigen decomposition method gives the general solutions
as an exponential function ðeλtÞ, in which λ is an eigenvalue. The
analytical stability function ðRaÞ, defined as the ratio of the ana-
lytical solutions in two consecutive time steps, can be found as

~Fnþ1 ¼ Ra
~Fn ð38Þ

where

Ra ¼
"
eλ1Δt 0

0 eλ2Δt

#
ð39Þ

where

λ1;2 ¼
Wu

2Lu
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

u

L2
u
− 4k

gH0
a

∀0
a

A
Lu

s
ð40Þ

Two important remarks with respect to the analytical solutions
of the linearized equations, which are related to the forms of the
eigenvalues, Eq. (40); first, the experimental work of Hatcher et al.
(2015) reveals that the solutions of the air pocket entrapment in a
closed conduit transient flow propagate as a sinusoidal function
through the time coordinate. With respect to the analytical solutions
of the linearized governing equations, the sinusoidal function needs
the term inside the square root in the RHS of Eq. (40) to be negative
in order to produce a complex number. As can be seen in Eq. (40),
the sign of the term inside the square root depends on the initial
values of the flow variables, more dominantly, the initial air volume
and the initial water column length. This dependency could result
in a weak stability for the Shock-Fitting approach.

Second, the magnitude of the analytical stability function shows
how the analytical solution attenuates through the time coordinate.
It can be realized that this magnitude is

jRaj ¼ eWuΔt=2Lu ð41Þ

This equation indicates that the Shock-Fitting approach is able
to predict the attenuation because of the celerity and the water col-
umn length; however, it depends on the choice of the time step that
is related to the time integration scheme. Thus, it is required to find
the numerical stability function of the backward Euler scheme.

Fig. 6. (a) Numerical error of pressure head (εH) and (b) flowrate (εQ) in terms of CPU time usage, for MSV (square), RC (gradient), and RC-SV
(circle), associated with Fig. 5.
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The numerical stability function, defined as the ratio of the
numerical solutions in two consecutive time steps, of the backward
Euler scheme ðRB:E:Þ applied to Eq. (36) can be found as

RB:E: ¼ ðI −ΔtGÞ−1 ð42Þ

where I is the unit matrix. Here again, the solutions are in expo-
nential form and the magnitude of the stability function is

jRB:E:j ¼ e

	
1−WuΔt=ð2LuÞ

ð1−WuΔt=LuÞþkðha;0=∀a;0ÞðA=LuÞgΔt2



ð43Þ

This equation indicates that the backward Euler scheme is able
to predict the attenuation and it is affected by the size of time step.

Results and Discussions

In this section, the Shock-Fitting approach will be used to calculate
the solutions in several cases with different ranges of initial air
pocket volumes and initial flowrates, in order to examine the per-
formance of this approach in practices. Note that the time step size
is limited by the CFL condition in Eq. (25), which is set to 0.9.

The results of the Shock-Fitting approach, hereafter called RC-
SV representing the rigid column model applied to the pressurized
flow and the Saint-Venant equations applied to the free surface
flow, is compared to the experimental data of Hatcher et al.
(2015), called EXP, as well as their numerical solutions calculated
by the rigid columnmodel, called RC, and the modified Saint-Venant
equations solved by MOC method, called MSV. It is worthwhile to
mention that the MSV, due to taking the water compressibility and
pipe elasticity into account, has an ability to calculate the pressure
head variation implying that the flow is able to restore potential

Fig. 7. (a) Distribution of nondimensional air pressure head; (b) discharge flowrate; and (c) air volume, calculated for case with D ¼ 102 mm,
∀�
a;0 ¼ 0.51, and Q�

0 ¼ 0.4. Shock-Fitting approach (solid), modified Saint-Venant equations (dashed), rigid column model (dash dot), and experi-
mental data (circled).
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energy (Karney 1990) besides the kinetic energy, which the rigid
column model is able to calculate only.

In addition, to see how efficient each model is, the calculation
costs and the magnitude of their numerical errors have been calcu-
lated for each example. The central processing unit (CPU) time us-
age shows the calculation cost, by which the ability of each model
in converging to the solutions can be realized as well. Note that the
CPU time usage was not calculated by Hatcher et al. (2015), thus,
these models have been applied to those examples undertaken to
calculate the CPU time. In this regard, the time step size, used
for the rigid column model, was set as Δt ¼ 0.005 s and the num-
ber of grid points, used in the Shock-Fitting approach and the modi-
fied Saint-Venant equations were set similarly. The CPU time usage
is calculated as a time each model is taking to calculate the solu-
tions for the entire calculation time period. It is worth mentioning
that the calculations were done on a computer with an Intel 2 proc-
essor running Windows Server 2008 at 3.47 GHz using 96.0 GB
of RAM.

In order to show how the Shock-Fitting approach improves the
accuracy of the solutions, the percentage of the numerical error of
each model was calculated as

εφ ¼ jP jφN j=nN −P jφEj=nEjP jφEj=nE
× 100 ð44Þ

where ε represents the percentage of the numerical error, n repre-
sents the number of the time intervals and φ is either the pressure
head or the flowrate and the subscripts N and E represent the
numerical and experimental, respectively. Note that for the rigid
column model and the modified Saint-Venant equations, using
the work of Hatcher et al. (2015) the relevant numerical and exper-
imental data of the pressure head and the flowrate variables were
extracted by digitalizing the graphs provided in their article.

In the first case, the total length and diameter of the pipe are set
as Lt ¼ 10.7 m and D ¼ 53 mm, respectively, which is adversely
sloped with S ¼ 2.0%. The initial air pocket volume and the
initial flowrate were set in nondimensional forms as ∀�0

a ¼ 2.63

andQ�0 ¼ 0.15, where∀�
a ¼ ∀a=D3 andQ� ¼ Q=

ffiffiffiffiffiffiffiffi
gD5

p
. Fig. 3(a)

shows the distribution of the nondimensional air gauge pressure
head,H�

a ¼ ðHa −HatmÞ=D; and the nondimensional flowrate ðQ�Þ
[Fig. 3(b)] and the nondimensional air volume ð∀�

aÞ are illustrated in
terms of the nondimensional time variable ðT� ¼ t

ffiffiffiffiffiffi
gD

p
=

ffiffiffiffiffiffi∀0
a

3
p

Þ in
Fig. 3(b) and Fig. 3(c), respectively.

As mentioned before, the water column length was adjusted
manually so that the certain initial air volume value is found. The
initial water column length for this example is found as Lu

Lt
≅ 0.96.

As can be seen from Fig. 3(a), the Shock-Fitting approach can cap-
ture the measured air pressure head more accurately than the RC
and the MSV. This accuracy not only includes the pressure peak
values (maximum and minimum values), but also, as expected from
the solutions of the linearized equations, includes the attenuation of
the solution through the time coordinate. Contrary to the RC model
and the MSV, the Shock-Fitting approach slightly underestimates
the first two peaks. The air volume distribution, calculated by the
Shock-Fitting approach, is also provided in Fig. 3(c), to show that
the behavior of the air volume is opposite of the air pressure head
because of the polytropic process assumption.

Fig. 3(b) illustrates the distribution of the flowrate, calculated by
the Shock-Fitting approach, which is compared to the experiment
and the numerical results of Hatcher et al. (2015). Similar to the air
pressure head distribution, the RC-SV could predict the attenuation
of the flowrate and the first two peaks are underestimated, while
they are similarly overestimated by the RC model and the MSV.

Fig. 4 illustrates the numerical errors calculated using Eq. (44)
in terms of the CPU time usage. As can be seen, the RC-SV im-
proves the accuracy of the solutions less expensively than the RC
and the MSV models, which is also implying that this approach
converges to the solution faster. It is worth mentioning that the
numerical errors of the RC-SV are less than 5%, while those of
RC and MSV models are more than 90%.

The performance of the Shock-Fitting approach is examined by
solving another example with large initial air volume. In this ex-
ample, the total length and diameter of the pipe are Lt ¼ 12.0 m
and D ¼ 102 mm, which is adversely sloped with S ¼ 1.3% and

Fig. 8. (a) Numerical error of pressure head (εH); and (b) flowrate (εQ) in terms of CPU time usage, for MSV (square), RC (gradient), and RC-SV
(circle), associated with Fig. 7.
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the initial nondimensional air volume and flowrate are ∀�0
a ¼ 3.70

and Q�0 ¼ 0.20. Note that the initial water column length has been
found as Lu

Lt
≅ 0.90. Fig. 5 illustrates (a) the distributions of the

nondimensional air pressure head, (b) the nondimensional flowrate,
and (c) the nondimensional air volume, calculated by the Shock-
Fitting approach, which are compared to the results of the RC
model and the MSV as well as the experimental data of Hatcher
et al. (2015). Fig. 5 confirms that the Shock-Fitting approach out-
performs the other models in calculating the maximum and mini-
mum values as well as predicting the attenuation. These graphs also
show that, similar to the previous example, the Shock-Fitting ap-
proach slightly underestimates the first maximum pressure value,
while it is overestimated by the RC model and the MSV.

Fig. 6 illustrates the numerical errors in terms of CPU time us-
age and shows that after the RC model, the RC-SV is less expensive
than the MSV model. However, in terms of the accuracy, the
RC-SV provides more accurate solutions than the other two models.

As can be seen, the RC-SV approach generates numerical errors not
more than 10%, which is significantly less than the corresponding
values of RC and MSV models, which are more than 60%.

In order to further assess the performance of the Shock-Fitting
approach, two more examples were solved in which the initial air
pocket volumes are less and the initial flowrates are larger. Fig. 7
illustrates (a) the distributions of the nondimensional air pressure
head, (b) the flowrate, and (c) the air volume in terms of the non-
dimensional time variable. In this case, the pipeline total length and
diameter are set as Lt ¼ 12 m and D ¼ 102 mm, respectively, and
it is adversely sloped with S ¼ 1.3%. The initial air pocket volume
and the initial flowrate were set in nondimensional forms as ∀�0

a ¼
0.51 and Q�0 ¼ 0.4. Note that the initial water column length has
been calculated as Lu

Lt
≅ 0.98.

Similar to the previous examples, compared to the RC model
and the MSV, the RC-SV provides a more accurate solution for
the air pressure head, particularly the first two maximum and

Fig. 9. (a) Distribution of nondimensional air pressure head; (b) discharge flowrate; and (c) air volume, calculated for case with D ¼ 53 mm,
∀�
a;0 ¼ 0.32, and Q�

0 ¼ 0.4. Shock-Fitting approach (solid), modified Saint-Venant equations (dashed), rigid column model (dash dot), and experi-
mental data (circled).
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minimum values. Here again the Shock-Fitting approach underes-
timates these peak values. This approach calculates the flowrate
distribution more accurately, while the maximum and minimum
values are underestimated. Moreover, the attenuated behavior is
predicted for both variables, even though it is more rapid than
the solutions in the previous examples. Looking at the magnitude
of the numerical stability function in Eq. (43), the fast damping
would be due to the small air pocket volume and large pressurized
water column length. Note that the air volume rate, as shown in
Fig. 7(c), confirms the ability of the Shock-Fitting approach in pre-
dicting the attenuation behavior.

Fig. 8 shows that for this example, the RC-SVapproach is more
expensive than the other two models. However, this approach im-
proves the accuracy of the solutions of both the pressure head and
the flowrate variables because the percentage of the numerical er-
rors of the RC-SV approach is around 50% while these values for
other models are significantly more than 60%. Note that the
numerical error of the pressure head generated by the RC model
is around 180%. This value implies a very large deviation of the
RC model for cases with small initial air pocket sizes, particularly
in calculating the pressure head.

For another example with a small initial air pocket, Fig. 9(a)
illustrates the distributions of the nondimensional air pressure head,
(b) the nondimensional flowrate, and (c) the nondimensional air
volume. In this example, the pipeline total length and diameter
were set as Lt ¼ 10.7 m and D ¼ 53 mm, respectively, which is
adversely sloped with S ¼ 2.0%. The initial air pocket volume
and the initial flowrate were set in nondimensional forms as ∀�0

a ¼
0.32 and Q�0 ¼ 0.4. In this example, the initial water column
length has been found as Lu

Lt
≅ 0.99.

Unlike the previous examples, in this example the first peak of
the air pressure head is significantly overestimated by the Shock-
Fitting approach. The reason, which certainly requires more in-
vestigation, could be due to very small air pocket volume that is
identical to a very large pressurized water column length. Mean-
while, this overestimation could be linked to the weak unstable
behavior of the Shock-Fitting approach. The first minimum pressure

head is calculated more accurately, similar to the previous examples.
The attenuation is also predicted, even though the Shock-Fitting ap-
proach dampens faster than the experiment and faster than the cases
with larger air pocket volumes. The upper-right graph shows that
the distribution of the flowrate is calculated similar to the previous
examples, although the first minimum value is overestimated. The
attenuation is also predicted in the flowrate calculation similar to
the previous examples as well as in calculating the air volume dis-
tribution in Fig. 9(c). Unlike the cases with large initial air volume,
in which the rigid column model and the modified Saint-Venant
equations behave similarly, as can be seen in Figs. 3 and 5, both
Figs. 7 and 9 show that for cases with small initial air pocket vol-
umes and large initial flowrates, the MSV improves the overestima-
tion, compared to the RC model. Therefore, it could be mentioned
that for the cases with small air pocket volume, which is identical to
larger pressurized flow length, the elasticity of the pipe and the
water compressibility, encompassed in the modified Saint-Venant
equations by the acoustic wave speed, becomes more effective in
calculations.

Fig. 10 shows that, for this example, the RC-SV takes less cal-
culation cost than both RC and MSV models. Also, the numerical
error of the Shock-Fitting approach is much less than the numeri-
cal error of the other two models. As can be seen from the numerical
error of the pressure head, both RC and MSV models generate a
large numerical error that is implying a poor behavior of both mod-
els in calculating the cases with small initial air pocket volume.

Fig. 11 shows the variation of the free surface flow depth at three
different locations: at the first and the last grid points, and at the
central section of the free surface flow, for all four preceding ex-
amples explained. Two important notes can be realized in Fig. 11;
first, the water level at the first grid point as well as at the center, in
all graphs, approaches a constant value after oscillations, which is
implying an attenuation behavior of the free surface flow. The sec-
ond note is, as shown in Fig. 11(d), the water level at the last grid
point of this example, in which D ¼ 102 mm, ∀�

a ¼ 0.51, and
S ¼ −1.3%, becomes more than the pipe diameter and the flow
touches the pipe crown. It means that the Saint-Venant equations

Fig. 10. (a) Numerical error of pressure head (εH) and (b) flowrate (εQ) in terms of CPU time usage, for MSV (square), RC (gradient), and
RC-SV (circle), associated with Fig. 9.
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are no longer valid for the control volume around this grid point
since flow at this section is no longer free surface type. Thus,
as can be seen, the water level, calculated by the Saint-Venant equa-
tions, at this grid point does not exhibit an attenuation behavior. It is
worth mentioning that this flow regime’s change does not affect the
calculation because it only shows creation of another rigid column
at the downstream end with zero velocity, since the velocity at the
last grid point is zero. Therefore, Eqs. (7) and (9) are still valid to
calculate the variation of the air pocket volume.

Conclusion

In this paper, the Shock-Fitting approach has been studied in
simulation of the air pocket entrapment caused by the complete
obstruction of the downstream end of a closed conduit. The
transient flow contains a pressurized flow at the upstream that

somewhere along the pipe at the downstream changes to a free sur-
face flow. In the Shock-Fitting approach, the pressurized column is
simulated using the rigid column model and the relevant governing
equations have been solved by the backward Euler scheme. The
free surface flow is modeled by the Saint-Venant equations and
solved using the method of characteristics. Both flow regimes
are linked with a transient region in which the discontinuity is
contained.

The flow variables, the air pressure head, and the flowrate, have
been calculated by the Shock-Fitting approach and the results were
compared to the experimental data as well as the numerical results
of the rigid column model and the modified Saint-Venant equations
that were provided by Hatcher et al. (2015). Two cases have been
studied in which large and small initial air pocket volumes and
water flowrates have been considered in order to examine the abil-
ity of the Shock-Fitting approach in different conditions.

Fig. 11. Distribution of nondimensional free surface flow depth ðy=DÞ in first grid point (solid), central grid point (dashed), and last grid point (dash
dot), calculated by Shock-Fitting approach for the case withD ¼ 53 mm and (a) ∀�

a;0 ¼ 2.63, and (c) ∀�
a;0 ¼ 0.32; and for the case withD ¼ 102 mm

and (b) ∀�
a;0 ¼ 3.70 and (d) ∀�

a;0 ¼ 0.51.
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The linear stability analysis revealed the effects of the water col-
umn length and the celerity on the solutions. This analysis showed
that the Shock-Fitting approach is able to calculate the attenuation
behaviors of the physical solutions depending on the choice of the
time integration scheme. Note that this attenuation was not pre-
dicted by the rigid column model, but it was slightly predicted
by the modified Saint-Venant equations, as shown by Hatcher et al.
(2015). Furthermore, the linear stability function showed that the
Shock-Fitting approach has a potential of instability because the
form of the solutions depends on the initial flow variables, particu-
larly, the initial air pocket volume.

The Shock-Fitting approach was applied to different practical
cases and it was found that this approach can improve the accuracy
of the numerical solutions compared to the rigid column model and
the modified Saint-Venant equations. It was shown that the Shock-
Fitting approach, more effectively, predicts the first peak of the air
pressure head, although it is slightly underestimated. The same
behavior was found in calculating the flowrate, even though the
Shock-Fitting approach seems to be more accurate in calculating
the air pressure head.
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