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A multimodal computational 
pipeline for 3D histology 
of the human brain
Matteo Mancini1,2,3,4*, Adrià Casamitjana1, Loic Peter1, Eleanor Robinson1,5, 
Shauna Crampsie5, David L. Thomas6,7, Janice L. Holton5, Zane Jaunmuktane5 & 
Juan Eugenio Iglesias1,8,9*

Ex vivo imaging enables analysis of the human brain at a level of detail that is not possible in vivo 
with MRI. In particular, histology can be used to study brain tissue at the microscopic level, using a 
wide array of different stains that highlight different microanatomical features. Complementing MRI 
with histology has important applications in ex vivo atlas building and in modeling the link between 
microstructure and macroscopic MR signal. However, histology requires sectioning tissue, hence 
distorting its 3D structure, particularly in larger human samples. Here, we present an open-source 
computational pipeline to produce 3D consistent histology reconstructions of the human brain. The 
pipeline relies on a volumetric MRI scan that serves as undistorted reference, and on an intermediate 
imaging modality (blockface photography) that bridges the gap between MRI and histology. We 
present results on 3D histology reconstruction of whole human hemispheres from two donors.

Motivation.  One of the major challenges in the quest to understand the human brain as a complex system is 
characterizing its multiscale organization. From a macroscopic anatomical perspective, the brain is subdivided 
into distinct structures and presents well-defined landmarks, for instance its gyri and sulci. At a much finer scale, 
neurons are interconnected to form complex circuits. These circuits give rise to features at coarser scales, e.g., 
the laminar organization of the cortex1. Although these distinct levels of organization may seem separate, they 
are, in fact, deeply linked and mutually influential. One clear example is given by Alzheimer’s disease, which 
can be described by the interactions between proteinopathy at the microscale and distributed, network-level 
disruptions at the macroscale2. Understanding these multi-scale mechanisms requires a multi-scale map of the 
brain. However, the current concept of brain mapping is closely linked to the specific tool used to construct 
cartographic representations, and thus to the spatial scale of the tool. As a result, the different organizational 
principles can only be observed in a scale-specific fashion with dedicated tools3.

Multi-scale imaging of the human brain is therefore necessarily multimodal, as different modalities are needed 
to study different scales. While a macroscopic anatomical picture of the brain is easily acquired non invasively 
or ex vivo with magnetic resonance imaging (MRI), finer characterization requires histological procedures and 
microscopy. Histology and MRI are highly complementary modalities: histology produces excellent contrast at 
the microscopic scale using dedicated stains that target different microanatomical or cytoarchitectural features, 
but it is a 2D modality that also inevitably introduces distortions in the tissue during blocking and sectioning. 
MRI does not yield microscopic resolution, but produces undistorted 3D volumes. Therefore, the combination 
of these two modalities offers a solution to the problem of imaging the human brain at high resolution in 3D. 
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In fact, successful large-scale projects like BigBrain4 or the Allen Atlas5 have shown important advancements in 
terms of creating new whole-brain atlases with cellular-level resolution. Creating such atlases requires spatial 
alignment of images (“registration”) at the macroscopic (MRI) and microscopic (histology) scales. Such registra-
tion produces 3D-consistent histological volumes, and is often called “3D histology reconstruction”6.

Despite remarkable efforts like BigBrain, 3D histology reconstruction still presents obstacles: it requires 
manual intervention and tailored equipment, which leads to poor scalability and limited applicability in other 
experimental and clinical studies. Specifically, three main issues can be identified: 

1.	 Cutting and sectioning of tissue for histology introduces distortions (stretching, tearing, folding, cracking, 
see6) that are specific to each section. Therefore, an external volumetric reference (typically an MRI scan) 
is required to produce an unbiased registration. Without such a reference, naïve pairwise registration leads 
to accumulation of errors (“z-shift”) and spurious straightening of curved structures (the so-called “banana 
effect”7).

2.	 Large differences in contrast and resolution between MRI and histology, combined with potential inhomo-
geneous staining and the aforementioned sectioning artifacts, make the alignment of these two modalities 
a difficult inter-modality registration problem.

3.	 The large size of the human brain, compared with most animal models, requires cutting the tissue in blocks 
for whole-brain analyses, with the resulting need to reassemble the blocks6, which is a part-to-whole reg-
istration problem8,9. This problem can be solved with whole brain microtomes, although such microtomes 
are only available in few selected sites around the world. Moreover, they exacerbate the sectioning artifacts, 
due to the much larger surface area of the sections.

Even when a reference MRI is available, 3D histology reconstruction is an underconstrained problem, as errors in 
the—typically linear—registration between the MRI and the histological stack can also be explained by nonlin-
early deforming the histological sections. To overcome this problem, a common strategy is to use an intermediate 
modality for registration purposes. Several works10–13 have used photographs of the block during sectioning (so-
called blockface photos). While these photos do not have nearly as much contrast or resolution as the histology, 
they have the advantage of being free from sectioning artifacts. Even if some nonlinear deformation remains 
due to tissue blocking and processing for paraffin embedding, these are negligible compared with the distortion 
introduced by sectioning. Therefore, blockface photographs can be corrected for illumination and perspective 
and then stacked into blockface volumes, which constitute a useful stepping stone between histology and MRI.

Other potential ways of obtaining 3D consistent volumes at microscopic scale include optical coherence 
tomography (OCT,14), polarized light imaging (PLI,15) and cleared tissue microscopy16. Notably, large-scale 
microtomes are not a feasible solution with these techniques, as they are inherently limited to small tissue blocks. 
In fact, despite technological advances in terms of both increasingly larger samples17–19 and novel microscopic 
acquisitions20,21, complete multi-scale characterization of the human brain as a whole organ still requires the 
use of complementary tools able to cover all the biologically relevant scales. This inherent limitation makes the 
development of inter-modality workflows a necessity, especially as cutting-edge research starts to target the 
whole human body22.

Related work.  There is a growing literature on the topic of combining histology with other modalities, 
encompassing different scopes and subdomains in medical imaging beyond neuroimaging. Here we will provide 
a brief survey of the approaches proposed so far for this multimodal problem, presenting first the ones focused 
on specific samples or small organs, and then addressing methods targeting whole organs.

Despite not being spatially comprehensive, approaches based on selected regions of interest (ROIs) have a high 
clinical relevance, mainly because of their potential applications in oncology. It is no surprise, then, that several 
studies have combined MRI with histopathology for cancer applications: examples include breast cancer23,24, 
pancreatic tumors25 and gliomas26. These examples lay the foundation for future 3D histopathology, especially 
given the parallel effort in 3D reconstruction for confocal microscopy27.

In human neuroimaging, combined MRI-histology also holds great potential because of the cross-scale 
nature of neurological diseases. Recent studies have proposed ROI-based approaches to better understand the 
microscopic substrate of pathologies such as amyotrophic lateral sclerosis28, epilepsy13 and Alzheimer’s disease29. 
The main targets mostly include subcortical structures, including thalamus30,31, hippocampus32,33, nucleus 
accumbens34, and pedunculopontine nucleus35, among others10. In addition to the practical advantage of dealing 
with well-defined structures, the focus on the subcortex is due mainly to its implications in neurological diseases 
and psychiatric disorders. Related approaches in terms of target size include methods focused on small organs. 
Several studies have proposed combined MRI-histology approaches for the prostate36,37, lymphoidstructures38, 
mammary glands39, and kidneys40. Another comparable application is the study of small animal brains, in par-
ticular rodents41–43 and small monkeys44,45.

A common element to most of the pipelines mentioned so far is the histological section stacking procedure, 
with registration of consecutive sections as the central step, usually using a combination of rigid and nonlinear 
transformations, and taking advantage of application-specific landmarks where available. An important part 
of these approaches is the registration between histology and MRI: choices by previous studies include use 
of landmarks to inform registration28, iterative refinement of the registration32, stack-based refinement46, and 
graph-theoretic stacking33 (for a comprehensive review, see6). To further facilitate the registration process, an 
interesting approach recently proposed by several works is based on the use of 3D printing to create personal-
ized molds on the basis of MRI data37,47–49, introducing shape constraints for the subsequent cutting procedure. 
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Specifically for brain applications48,50, these approaches allow to dissect the specimen in the same orientation as 
during the MRI scan, simplifying the subsequent matching of MRI planes and tissue slices.

In contrast to the large body of existing work in 3D reconstruction of small samples, the literature on whole-
brain approaches is rather limited. Apart from the major initiatives already mentioned above4,5, to the best of 
our knowledge there are only two other studies that have targeted either the entire brain51 or a major portion 
of the cerebrum52.

In the studies mentioned so far, the approaches used to study microscopic features in a macroscopic context 
(i.e. whole-brain) can be classified on the basis of two main strategies: whole-brain sectioning, and part-to-whole 
registration. In studies where a whole-brain microtome was used, the section stacking procedure is similar to that 
sample-targeted approaches, with the main issue to tackle being z-shift and banana effects. To reduce these, it is 
possible to rely on blockface photographs as an additional modality51, multi-step registration with the MRI data52, 
or probabilistic modelling of intra- and inter-modality transformations for histology and MRI data46. As already 
mentioned, the main limitations of these approaches are the scarce availability of whole-brain microtomes, the 
more prominent sectioning artifacts, and the incompatibility with microscopic methods inherently based on 
small samples. As already mentioned, this is a significant limitation for the scalability of 3D histology, and also 
strongly limits attempts to leverage on new microscale technologies, as most recent advancements require small 
samples and therefore cutting the brain into blocks.

The other main strategy for integrating microscopic and macroscopic information targets specific brain 
regions using part-to-whole image registration. To tackle this problem, it is common to first initialize the ROI 
into rough alignment, before proceeding with finer-level registration: such initialization can be done acquiring 
additional MRI data after cutting the tissue sample in blocks33, or using photographs for each step of the cutting 
procedure as a collateral modality28. The former approach can be extended to surgical resection scenarios to 
relate ex vivo to in vivo data32,53. The main drawback for these approaches is that they are limited to specific ROIs.

Contribution.  As explained above, the number of potential approaches to probe microstructure in small 
samples is increasing, but directly adopting such techniques in whole human brain histology-MRI reconstruc-
tion is infeasible. Therefore, the ability to reconstruct a whole brain distribution of a given microscopic bio-
marker from a set of smaller samples is crucial to build multimodal, multi-scale maps of the human brain. We 
highlighted in the previous section how previous studies have focused either on major portions of the brain 
using a large-scale microtome4,5,51,52 or on specific ROIs using a standard microtome10,13,28–35. There is currently 
no clear approach to target a large part of the brain (e.g. a hemisphere) relying on a standard microtome. This is 
the gap that this study seeks to bridge: what we want to provide is an approach that does not rely on the avail-
ability of whole-brain microtomes, and that allows to study an entire human brain hemisphere, leveraging on an 
integrated pipeline of automated and semi-automated methods.

In this article, we present an open-source computational pipeline to reconstruct human brain volumes from 
histological sections with ex vivo MRI, blockface photographs and a standard microtome. To the best of our 
knowledge, this is the first approach able to reconstruct whole-brain 3D histology from a block-based cutting 
protocol. Since a highly specialized whole hemisphere microtome is not required, the proposed pipeline can 
be used by any research site with access to a standard microtome and an MRI scanner. The pipeline relies on 
a number of 2D and 3D image registration methods, some standard, and some developed specifically for this 
pipeline, which have already been introduced at conferences46,54. Here we introduce the pipeline as a whole and 
present results on the reconstruction of whole human hemispheres from two donors.

Materials and methods
In this section, we describe the pipeline for 3D histology reconstruction, including the data acquisition protocol 
and computational processing, as summarized in Fig. 1. We used two human brain samples in this study. First, the 
left hemisphere from a human donor with no neurological disease was processed with the proposed pipeline (age 
at death: 84; post mortem interval: 40 h; formalin fixed whole brain weight: 1244 g). For replication purposes, the 
pipeline was then used to process the left hemisphere from another human donor with no neurological disease 
(age at death: 94; post mortem interval: 27 h; formalin fixed whole brain weight: 1200 g). All experiments were 
performed in accordance with relevant guidelines and regulations.

Data acquisition.  Specimen preparation and ex vivo MRI scanning.  In this study, we use tissue donated for 
research to the Queen Square Brain Bank for Neurological Disorders (QSBB). The brain donation program and 
protocols have received ethical approval for research by the National Research Ethics Service (NRES) Committee 
London - Central and tissue is stored for research under a license issued by the Human Tissue Authority (No. 
12198). According to the standard protocol at QSBB, fresh brains are first hemisected. The right hemisphere is 
frozen, while the left one is fixed in 10% neutral buffered formalin.

For ex vivo MRI scanning, it is important to immerse the brain in a fluid, in order to avoid susceptibility 
artifacts at tissue-air interfaces around the edges of the brain. Using the fixative as a medium for this purpose is 
problematic due to the high proton density of formalin, which quickly saturates the MR signal, thus greatly reduc-
ing the dynamic range of the acquired images. Instead, we use Fluorinert (perfluorocarbon), a proton-free fluid 
which matches the magnetic susceptibility of brain tissue but has no MR signal, so it is invisible in MR images. 
Immersion in Fluorinert yields excellent ex vivo contrast, and it is known not to affect subsequent histological 
analysis of the tissue for a wide array of stains, for up to a week of immersion55.

MRI data are acquired on a 3T Siemens MAGNETOM Prisma scanner. T1-weighted MR imaging is a com-
mon choice in vivo due to its excellent contrast between gray and white matter. However, death and fixation 
induce a cross linking of proteins that greatly shortens T1 relaxation times of brain tissue, reducing T1 contrast 
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ex vivo. Instead, we use a T2-weighted sequence (optimized long echo train 3D fast spin echo,56) with parameters: 
TR = 500 ms, TEeff = 69 ms, BW = 558 Hz/Px, echo spacing = 4.96 ms, echo train length = 58, 10 averages, with 
400 μm isotropic resolution, acquisition time for each average = 547 s. The choice of voxel size is motivated by 
the fact that 0.4 mm is enough to visualize many brain subregions, and thus suffices to serve as volumetric refer-
ence for 3D histology reconstruction6. Spatial variations in image signal intensity caused by the receiver array 
coil sensitivity profiles are accounted for using a vendor-provided online correction (Prescan Normalize). The 
hemisphere is scanned in a container filled with Fluorinert, with the medial surface facing up. We place a 3D 
printed hollow box between the specimen and the container lid in order to ensure full immersion in the fluid. 
Sample slices of the acquisition are shown in Fig. 2a.

Specimen dissection and slice photography.  After MRI scanning, the hemisphere is dissected following the pro-
cedure illustrated in Fig. 3. First, the brainstem is detached with a transection below the mammillary body, using 
as a plane of section the one perpendicular to the brainstem axis (Fig. 3c,d), and the cerebellar hemisphere is 
separated from the brainstem by carefully cutting through the superior, middle and inferior cerebellar pedun-
cles. The three structures are then dissected independently. The forebrain is first cut into 10 mm-thick coronal 

Figure 1.   Workflow of data acquisition (orange) and computational processing (green). The ex vivo brain 
is scanned, dissected, sectioned and stained, providing data for the pipeline: the MRI volume, the whole and 
blocked slice photographs (dissection), the blockface photographs (sectioning), and the stained sections. The 
flowchart illustrates the main steps of the pipeline: stacking of blockface photographs; registration of blockface 
volumes to slice photographs; blocks initialization; block mosaic-preprocessed MRI alignment; and MRI-
histology registration.
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Figure 2.   Overview of the main MRI preprocessing steps. (a) The raw ex vivo MRI data as acquired, showed 
in sagittal (left), axial (middle) and coronal (right) views; (b) brain extraction and bias field correction 
given by SAMSEG; (c) segmentation or subcortical structures given by SAMSEG, combined with cortical 
segmentation and parcellation provided by FreeSurfer, with the outline of the reconstructed surfaces in yellow; 
(d) 3D rendering of the cortical surface from lateral (left) and medical (right) views. The color coding of the 
segmentation and parcellation follows the FreeSurfer convention.
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Figure 3.   Overview of the dissection procedure. (a, b) Brain hemisphere from lateral (a) and medial (b) views; 
(c) incision; (d) subsequent brainstem transection below the mamillary body; (e) overview of how the anterior 
and posterior slices are cut: the forebrain is cut coronally; (f) forebrain slices and remaining brainstem and 
cerebellum portions: the brainstem is cut transversely while the cerebellum is cut sagittally; (g) example of block 
cut planning; (h) example of blocked slice photograph; (i) example of blockface photograph, including the 
microtome setup.
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slices using a metal frame as a guide (frame thickness: 10 mm), starting from the mammillary body and proceed-
ing in both anterior and posterior directions (Fig. 3e,f). In a similar way, the cerebellum and the brainstem are 
sliced in sagittal and axial orientation, respectively, with the same thickness. All the slices are then photographed 
on both sides (posterior and anterior for the forebrain, rostral and caudal for the brainstem, medial and lateral 
for the cerebellum) inside a rectangular frame of known dimensions (internal boundary: 120 mm × 90 mm), and 
thickness equal to the slice thickness (10 mm). The frame enables perspective correction and pixel size calibra-
tion in subsequent steps of the pipeline. We will refer to these images as “whole slice photographs”, which will be 
useful to initialize the 3D histology reconstruction.

The forebrain sections are further cut into blocks that fit into 74 × 52 mm cassettes, seeking to minimize the 
number of blocks while trying to preserve the integrity of subcortical structures (Fig. 3g). In our datasets, cutting 
the brainstem and the cerebellum in blocks was never necessary, since they always fit directly into the cassettes. 
Photographs of the blocked slices, where the blocks were slightly pulled apart to clearly expose their boundaries, 
were taken using the same frame as for the whole slices, both from the anterior and posterior side. We will refer 
to these images as “blocked slice photographs”.

All slice photographs (whole and blocked) are taken with a Nikon D5100 camera mounted over the samples. 
Consistent image contrast across samples is ensured by manually setting: ISO = 100; one-shot auto focus using 
a single point in the center of the image (which is aligned with the center of the slice); and f/20 aperture for 
large depth of field. The shutter speed was computed automatically by the camera to compensate for variations 
in lighting level. Examples of slice photographs are shown in Fig. 5a,b.

Tissue processing, sectioning and blockface photography.  All blocks are processed for paraffin wax embedding, 
and subsequently sectioned with a sledge microtome at 25 μm thickness.

Minor artifacts such as tissue folding and tearing occur during this process, but they were never severe enough 
to impede the subsequent steps in the pipeline.

Before cutting each section, a photograph is taken with a camera mounted above the microtome, set in a 
fixed position that is approximately perpendicular to the slicing plane (Fig. 3i). We will refer to these images as 
“blockface photographs”. Since these photographs will need to be perspective corrected, pixel size calibrated, and 
co-registered (since keeping the camera absolutely still is not possible), we printed and glued two checkerboard 
patterns with maximally distinct colors57 to the microtome, which facilitates subsequent registration. The pho-
tographs are taken at 24MPx resolution with a Canon EOS 750D camera. As for the slice photographs, we use 
manual settings to ensure consistency of image appearance across sections: ISO = 200; white balance = fluorescent 
light source; one-shot auto focus using a single point in the center of the image (which is aligned with the center 
of the tissue block); and crucially, a narrow aperture (f/13) for large depth of field, thus ensuring sharpness of 
objects not exactly in focus. An example of blockface photograph is shown in Fig. 5c.

Staining and digitization.  The sampling strategy for mounting and staining sections for each tissue block 
was tailored to the presence of structures of interest for post-mortem neuropathology. In line with previous 
studies10,30–35, a more dense sampling scheme was used for blocks that included subcortical structures in the 
forebrain, medial structures of the cerebellum and brainstem structures. Specifically, for such blocks, we mount 
on glass slides and stain two consecutive sections every 10 sections (i.e., every 250 μm) with two routine histo-
logical stains: hematoxylin and eosin (H&E) and Luxol Fast Blue (LFB). We use an H&E protocol with short hae-
matoxylin staining time, which is optimized for microscopic examination, but yields less macroscopic contrast 
between gray and white matter—this does not constitute a problem since such contrast is guaranteed by LFB 
staining. For the other blocks, the frequency is one every 20 sections instead (i.e., every 500 μm). The sections 
are mounted on 75 × 50 mm glass slides. We also mount 2 additional slides every 10 (blocks of interest) or 200 
sections (other blocks), kept unstained for potential future use. With this sampling strategy, the resulting trans-
verse (i.e. across sections) resolution when reconstructing 3D blocks is either 250 μm or 500 μm: these values are 
assumed to be adequate for the size of most cortical and subcortical structures.

Stained sections are digitized with a flatbed scanner (Epson Perfection V850) using its transparency mode 
at 6,400 DPI (i.e., 3.97 μm resolution). This resolution is sufficient for 3D histology reconstruction purposes. 
Selected sections are also digitized at microscopic resolution (40 × ) using an Olympus VS120 microscope/slide 
scanner, and linearly aligned to the corresponding images acquired with the flatbed scanner using NiftyReg58.

Computational pipeline.  After completing the acquisition of MRI and histological data, the following 
pipeline is used to compute the 3D reconstruction. The following sections are briefly summarized in Fig. 4.

Ex vivo MRI.  The T2-weighted MRI scan is preprocessed using a Bayesian segmentation algorithm (SAMSEG59) 
that simultaneously registers, segments and bias field corrects the scan (Fig. 2b). To reflect the presence of just 
the left hemisphere in the images, we modified the SAMSEG probabilistic atlas by manually setting to 1 the 
probability of background (and to 0 for all other classes) for all voxels in the right half of the atlas. Our modified 
SAMSEG produces a bias field corrected scan, as well as segmentations for 22 brain structures: cerebral white 
matter, cerebellum white matter, brainstem, ventral diencephalon, optic chiasm, cerebral cortex, cerebellum cor-
tex, caudate, hippocampus, amygdala, accumbens area, lateral ventricle, inferior lateral ventricle, third ventricle, 
fourth ventricle, fifth ventricle, cerebrospinal fluid, vessel, choroid plexus, thalamus, putamen, and pallidum.

After SAMSEG, we used the FreeSurfer60 to extract and parcellate the cortical ribbon. Specifically, we used the 
ex vivo processing stream described in frees​urfer​.net/fswik​i/ExViv​o (Fig. 2c,d): (i) computation of a white matter 
mask (rather than using the expectation maximization algorithm described in the FreeSurfer wiki, we directly 
extract the mask from the SAMSEG segmentation); (ii) extraction of a triangular mesh from the cerebral white 

http://freesurfer.net/fswiki/ExVivo
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matter segmentation with marching cubes61; (iii) inflation of the mesh and mapping to spherical coordinates62; 
(iv) topology correction63; (v) reconstruction of white matter and pial surfaces64; and (vi) cortical parcellation65. 
While parcellation is not strictly required by our reconstruction methods, it can be used to subdivide the cerebral 
cortex in the histology, which would be extraordinarily difficult for a human labeler.

Blockface photographs.  In an ideal scenario, the blockface photographs would be perfectly aligned without any 
need for processing. However, the position of the arm holding the camera can suffer from small perturbations 
due to vibrations in the furniture and walls, operation of the microtome, and other external factors. Therefore, 

Figure 4.   A flowchart of the computational pipeline. This flowchart represents the main processing steps, 
subdivided by the related subsections in the main text. Where relevant, the flowchart specifies what algorithm or 
software was used, or if any manual intervention was needed.
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it is necessary to align the photographs before further processing. For this purpose, we first create a global refer-
ence image (“microtome reference”), which is a photograph of the microtome with an empty cassette. On this 
image, we manually mark the four corners of the cassette, and delineate two masks: one over the checkerboard 
patterns, and another over a band around the edges of the cassette.

We use the microtome reference to perspective correct and calibrate the pixel size of all other blockface 
photographs, by propagating the location of the four corners of the cassette. For this purpose, we first select the 
photograph half way through the block, which we will refer to as “block reference”. The microtome reference is 
registered to the block reference to propagate the location of the cassette corners as follows: (i) we compute salient 
points and SURF features66 on both images, and discard those outside the checkerboard in the microtome refer-
ence; (ii) we match the salient points; (iii) we use random sample consensus (RANSAC,67) to fit an homography 
(perspective) transform; and (iv) we refine the registration to accurately align the cassettes, by repeating the 
procedure in steps (i-iii), but with two differences: we use the mask for the cassette edges instead of the check-
erboard mask, and we add an Euclidean distance term to the matching, since the cassettes are already in coarse 
alignment. We use RANSAC to make the registration robust against different positions of the microtome handle 
and appearance of the tissue block. The final transform is used to propagate to the block reference the location 
of the manually labeled cassette corners, as well as the mask for the checkerboard patterns.

Once we have estimated the checkerboard mask and cassette corners for the blockface reference, we register 
all photographs in the block to the reference using steps (i-iii) of the procedure described above. Finally, we 
compute an homography transform between the four cassette corners and coordinates (1, 1), (1, 740), (520, 1
), (520, 740), and use it to resample the blockface photographs into 520 × 740 pixel images with known pixel 

Figure 5.   An example of blocked slice photograph to blockface photograph registration. The three images 
on the top show the three types of photograph we are dealing with: (a) a sample whole slice photograph; 
(b) the related blocked slice photograph; (c) corresponding blockface photograph of the bottom left block. 
The three images on the bottom show the outcome of the registration: (d) block of interest in the blocked slice 
photograph; (e) aligned blockface photograph; (f) blocked slice photograph with blockface photograph overlaid 
in transparency.
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size equal to 100 μm, where the corners of the image coincide with the corners of the cassette. These images 
can be safely stacked into a single volume, with z resolution equal to 25 μm. We note that the in-plane pixel 
size is slightly overestimated due to the fact that the actual blockface is slightly closer to the camera than the 
cassette. Moreover, the z resolution is also corrupted by inaccuracies in the section thickness provided by the 
microtome. Nevertheless, these voxel size errors do not represent a problem in practice because tissue shrinks 
during processing, and both the pixel size and section thickness need to be corrected in subsequent steps of the 
computational pipeline anyway.

The blockface photograph module is completed by a supervised segmentation algorithm, which discriminates 
tissue versus background wax.

Here we use a fully convolutional network (FCN) for semantic segmentation68. Compared with classification 
networks that assign a label to a whole image, FCNs only use convolutions and can automatically segment inputs 
of arbitrary size, producing outputs of the same size. Moreover, they can be built directly on top of existing image 
classification networks, thus capitalizing on existing models trained on million of examples. Specifically, we use 
the VGG16 architecture69, pretrained on the large public dataset ImageNet70. The FCN is trained with manual 
segmentations made on 50 randomly selected (perspective corrected, pixel size calibrated) images from different 
blocks. The manual segmentations aggressively discard tissue below the block surface (which appears blurry due 
to the translucent paraffin), such that the FCN attempts to mimic this behavior and thus avoids overestimating 
tissue surface in convex blocks. While the FCN operates in 2D, stacking the automated segmentations yields a 
3D mask that is spatially smooth, due to the 3D smoothness of the underlying images.

Slice photographs.  The slice photographs are crucial to initialize the registration of the tissue blocks. Processing 
of both whole and blocked slice photographs begins by segmenting the corners of the frame, which are painted 
in black, using a FCN similar to the one used for blockface photographs. This time we used 20 manually labeled 
images for training, which is enough, given the simplicity of the problem. The center of gravity of the four largest 
clusters are identified as the corners. Then, four sets of parallel lines are fit to the gradient magnitude images, to 
identify the internal and external boundaries of the frame. The internal corners are computed as the intersec-
tions of the internal boundaries, and used to fit an homography to correct for perspective and calibrate the pixel 
size to 100 μm (i.e., 1,200 × 900 pixels), in a similar way as for the blockface photographs.

Next, the blocked slice photographs (perspective and pixel size calibrated) are segmented into foreground 
and background using a simple Gaussian mixture model (GMM) with two components, optimized with the 
Expectation Maximization (EM) algorithm71. The resulting mask is overlaid onto the corresponding image and 
displayed on a simple graphical user interface (GUI), where a user assigns block numbers to the different con-
nected components of the binary mask, producing a multilabel segmentation of the different blocks.

Digitized histological sections.  Processing of digitized histological sections has two components: segmentation 
and intensity standardization. For segmentation, we used two FCNs, one for LFB and one for H&E, trained on 
50 randomly selected sections each. Simple intensity standardization was carried out using only the pixels inside 
the masks, by matching their histogram to the average histogram of the foreground pixels of the training dataset.

Linear alignment of blocks.  Direct nonlinear registration of 2D histological sections to a volumetric reference 
(an MRI scan in our case) is a highly underconstrained problem6, whereas linear registration is well constrained 
but also insufficient to model the heavy spatial distortions introduced by tissue sectioning and mounting. This is 
the motivation for using blockface photography as intermediate modality. Even though some nonlinear defor-
mation still remains due to sample slicing and blocking, as well as tissue processing for paraffin embedding, 
imaging the blockface before sectioning removes the largest contribution to nonlinear distortion. Therefore, the 
simplified assumption of the spatial mapping between blockface photography and MRI being linear is approxi-
mately valid.

In our pipeline, we first use the slice and blockface photographs to initialize the registration between block-
face volumes and the MRI. Then, we use a dedicated joint registration algorithm to optimize the alignment. To 
initialize the registration, we start by calculating three different sets of 2D linear transforms. First, we use SURF 
and RANSAC (see section “Blockface photographs”) to rigidly register whole slice photographs of the lateral/
anterior/inferior face of each block to the medial/posterior/superior face of the neighboring lateral/anterior/
inferior block. These images are nearly identical, so registration is easy and accurate. Second, we use SURF/
RANSAC to rigidly align each block in the blocked slice photographs (using the available multi-label masks) to 
the corresponding whole slice photograph. Despite being a whole-to-part registration problem, SURF/RANSAC 
produces accurate solutions, since the photographs are of the same objects and acquired in the same illumination 
conditions. And third, we estimate a similarity transform (i.e., translation, rotation and scaling) between each 
block in the blocked slice photographs and the approximately corresponding image in the blockface photograph 
volume, using mutual information as cost function72–74. The target blockface photograph is the first one where 
the whole block is completely visible, which we estimate by finding the first section in which the ratio between 
surface area and its maximum across the block is at least 2/3. The surface areas are estimated with the masks 
produced by the FCN. An example of the alignment between a blocked slice photograph and the related blockface 
one is showed in Fig. 5d–f.

Given these sets of 2D transforms, initializing the blocks in the cerebellum, forebrain and brainstem is 
straightforward. For the forebrain, a reference slice is first chosen (the one corresponding to the mammillary 
bodies, in our case). Then, for each block, one simply concatenates its corresponding blocked-slice-to-whole-slice 
transform, along with all the whole-slice-to-whole-slice transforms between the slice at hand and the reference. 
Finally, a shift in the anterior–posterior direction is computed by each block, which is simply equal to the slice 
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thickness (10 mm) multiplied by the (signed) number of slices between the slice at hand and the reference. The 
cerebellum and brainstem are processed the same way, with two differences: the blocked-slice-to-whole-slice 
transform is not needed (since slices are not blocked), and the shifts occur in the medial–lateral (cerebellum) and 
inferior–superior directions (brainstem). Finally, the three sets of blocks (forebrain, cerebellum and brainstem) 
are manually aligned to the preprocessed reference MRI using a rigid transform by means of tools available in 
Freeview (FreeSurfer’s volumetric image viewer).

Once the transforms for each block have been initialized, they are optimized using a joint hierarchical regis-
tration algorithm. The details of the methods can be found in54, but we summarize them here for completeness. 
Each blockface volume has an associated spatial transform that has a set of 8 parameters, corresponding to 3D 
translation (3 parameters), 3D rotation (3), in-plane scaling (1), and scaling along the thickness direction (1). The 
cost function of the registration combines a data term and two regularizers. The former is simply the correlation 
of edge maps. The first regularizer is a customized penalty term that encourages the sum of the soft deformed 
masks to be equal to the binary mask of the MRI. This regularizer penalizes gaps between blocks (the sum is 
zero, whereas the target is 1) as well as overlapping blocks (sum is 2, target is 1), and also encourages the surface 
of the whole hemisphere to be the same for the MRI and the mosaic of blockface volumes. The second regular-
izer penalizes deviations of the global scaling of each block (i.e., the cubic root of the determinant of its linear 
transformation matrix) from an empirical value, which represents the expected tissue shrinkage, and which we 
derive from the blocked-slice-to-blockface registrations.

The optimization procedure is hierarchical, in order to exploit prior knowledge on the cutting procedure. 
There are five levels of hierarchy. At the first level, blocks are grouped into three sets (forebrain, cerebellum, 
brainstem), each of which undergoes an independent rigid registration. At the second level, the forebrain blocks 
are grouped into corresponding slices and can only rotate or translate simultaneously in the slice plane. At the 
third level, individual translation and rotation are allowed, with the addition of a scaling factor that is common 
to all blocks. At the fourth level, each block is allowed its own scaling factor. At the fifth and final level, each 
block has its own transform. We use the L-BFGS75 algorithm for numerical optimization of the cost function.

Registration with histology.  Once the blockface volumes have been linearly registered to the reference MRI 
volume, we can use the resulting transforms to resample the MRI to the planes corresponding to the different 
blockface photographs—and therefore the histological sections, since we know what photograph corresponds 
to each section.

Furthermore, the 2D resampled MRI slices can be masked with the automated segmentations of the blockface 
photographs provided by the FCN. This process yields a stack of resampled, segmented MR images that have 
direct correspondence to the images in the histology stack.

To 3D reconstruct the histology for each of the two stains (LFB and H&E), we used a method that we pre-
sented in46, and which we summarize here for completeness. The goal is to register a stack of histological sections 
to a corresponding stack of resampled 2D MRI slices. First, the histology stack is put into coarse alignment by 
linearly registering each section to the corresponding MR image. For this purpose, we used the linear registration 
module in NiftyReg58, which relies on a block matching approach and mutual information. Then, we compute a 
set of nonlinear registrations parameterized by stationary velocity fields (SVF,76), as implemented in NiftyReg. 
Using SVFs has three advantages. First, the corresponding deformations are guaranteed to be diffeomorphic and 
thus invertible; second, inversion is achieved simply by changing the sign of the SVF; and third, composition of 
transforms can be approximated by the sum of the corresponding SVFs. The set of registrations includes: (i) inter-
modality registrations between each histological section and the corresponding MRI slice, computed with mutual 
information; (ii) intra-modality registrations, between each histological section and its two nearest neighbors 
in the stack, computed with local normalized cross-correlation; and (iii) intra-modality registrations, between 
each MRI slice and its two nearest neighbors in the stack, also computed with local normalized cross-correlation.

While one could use the inter-modality registrations—i.e., subset (i)—directly to obtain a 3D reconstruc-
tion, this approach is known to produce volumes that are jagged, due to inconsistencies in the registrations of 
neighboring image pairs. At the opposite end of the spectrum, an alternative approach is to use only the intra-
modality registrations for histology, i.e., subset (ii), but this method leads to accumulation of errors along the 
stack (“z-shift”) and straightening of curved structures (“banana effect”, see6). Instead, our method46 achieves the 
best of both approaches by combining all three subsets. The method relies on a spanning tree of unknown, “true” 
deformations connecting all the images in the two stacks. Then, all the registrations in the three subsets can be 
seen as noisy measurements of compositions of transforms in the set of true deformations. Within this model, 
Bayesian inference is used to compute the most likely set of underlying true deformations that gave rise to the 
observed data. This approach produces 3D reconstructions that are both smooth and robust against z-shift and 
banana effect. The intuition behind it is that subset (i) aligns the two stacks; subset (ii) ensures the smoothness, 
and subset (iii) enables us to undo the banana effect incurred by subset (ii).

After running all the modules of the computational pipeline, correspondence between spatial locations in the 
MRI and digitized histological sections can be obtained by concatenating 3D (blockface volume to MRI) and 2D 
spatial transforms (histology to resampled MRI).

Results
In this section we present intermediate and final results, including 3D tissue blocks, alignment with MRI and 
3D histology reconstruction.

Building blockface volumes.  Figure 6 displays results from the first fundamental step of our 3D histol-
ogy pipeline: assembling blockface photographs into 3D volumes. The reconstructed views of a sample cerebral 
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block (axial and sagittal, Fig. 6a) present a smooth and consistent profile, demonstrating how effective the co-
registration strategy we adopted is.

Figure 6b,c provides a first glimpse of how the blockface volumes are used as a stepping stone in the overall 
process of fusing MRI and histology. The figure shows the histological sections (LFB and H&E) corresponding 
to the blockface photograph in Fig. 6a. For easier visualization, we show the sections after nonrigid registra-
tion with the MRI, which indirectly aligns them with the blockface photograph as well. Therefore, the volumes 
are consistent with each other—but they also shows some differences because of inevitable artifacts that occur 
during sectioning.

Effective alignment of MRI reference and tissue blocks.  Once all the blockface volumes have been 
assembled and initialized, a 3D mosaic representing the brain is obtained (Fig. 7a,b). Notably, the overall shape 
and the coarse subdivisions (forebrain, cerebellum, brainstem) are a good first approximation, although mis-
alignment in the gyrification patterns and in the antero-posterior organization are clearly noticeable. When 

Figure 6.   Blockface and histological volumes. Example of reconstructed blockface volumes (a) from three 
different views (coronal on the left, axial in the centre, and sagittal on the right). The same views are also showed 
for the correspondent histological volumes, stained with LFB (b) and H&E (c).
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compared with the actual MRI reference (whose whole brain mask is surface rendered in transparent green), 
there is a clear mismatch in their shapes.

Our joint registration procedure yields the refined mosaic shown in Fig. 7c,d: not only the blocks match the 
MRI reference well, but also yield a more consistent and smoother gyrification pattern. Similar results were 
obtained for the second hemisphere (Supplementary figure 1). Supplementary video 1 thoroughly illustrates the 
joint registration procedure, and gives a more detailed overview of both the initialized and the refined mosa-
ics—highlighting how the consistency of brain structures improves as a result of the spatial alignment.

Nonlinear alignment of MRI and histology.  Concatenating the linear alignment of blocks (“Linear 
alignment of blocks”) with the nonlinear registrations of the histological sections yields a complete nonlin-
ear 3D histology reconstruction. While the two registration algorithms have been quantitatively validated in 
the corresponding publications46,54, here we seek to evaluate the accuracy of their concatenation. For this pur-
pose, we manually annotated 50 corresponding pairs of landmarks on both modalities for each hemisphere, and 
compared the ground truth shift with the estimate given by the registration. We note that we used continuous 
coordinates, i.e., the landmarks are not constrained to lie in the center of voxels. This experimental setup ena-
bles us to measure registration error directly, although it suffers from two sources of bias. The first is due to the 
fact that human observers generally choose salient points (i.e. prominent anatomical features) as landmarks. 
Because salient points are normally easier to register, they often underestimate registration error. The second 
bias is due to the fact that annotating landmarks in 3D is very difficult and subject to relatively large inter- and 
intra-observer variability (a few mm77), hence overestimating registration error—and partly compensating the 
positive bias due to landmark placement.

Figure 8 shows the results for the landmark-based registration error, including a 3D visualization and a his-
togram with the distribution of the registration error. Both show that most landmarks are accurately registered 
in both hemispheres, with median errors equal to 0.8 and 0.89 mm, which is approximately two MRI voxels. 
When errors from the linear and nonlinear registration accumulate in similar directions, the error grows to a 

Figure 7.   Initialization and refined blockface mosaics. A surface rendering of the whole brain mask derived 
from the MRI is overlaid in green. (a) Blockface volume for the whole hemisphere resulting from the 
initialization with the slice photographs; the color for rendering is taken from the blockface photographs. 
(b) Same volume as (a), where each block is rendered in a different color. The color coding is random and 
simply emphasizes the block cutting profiles. (c,d) Same volumes as (a,b) after joint registration.
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maximum of 8 mm, but 94% of the landmarks remain under 5 mm, which is approximately equal to the inter-
rater variability reported in77.

Navigating histological sections in 3D.  Navigating through different scales of co-registered histology-
MRI data, e.g., to localize and examine a section of interest, is one of the most immediate applications of this 
pipeline. Given the estimated transformations between blockface photographs and histological sections, it is 
possible to use the refined, MRI-aligned blockface mosaic to jointly explore the histological sections and the 
MRI in a common three-dimensional space. Figure 9 shows the same block as Fig. 6, this time overlaid on the 
MRI volume; for visualization, we also labeled whole brain structures on the LFB sections of this block with a 
semi-automated approach78, and deformed them along with the histology. The figure displays the alignment 
of the different brain structures across MRI and histology, both in the sectioning (coronal) and reconstructed 
planes (axial, sagittal), highlighting the smoothness of the reconstructed 3D histology and segmentations. Also 
in this case, similar results were obtained for the second hemisphere (Supplementary figure 2).

Figure 10a shows a more detailed example of navigation and alignment, displaying an LFB section on the 
corresponding resampled MRI plane. The red square delineates a 5 × 5 mm patch magnifying part of the lenti-
form nucleus (Fig. 10b–d), specifically the boundaries between the putamen and the two segments of the globus 
pallidus. The alignment is excellent, and the histology reveals details that are effectively invisible in MRI (even 
at sub-millimeter resolution). Likewise, the green square marks a 30 × 30 mm patch magnifying hippocampal 

Figure 8.   Registration error in 3D MRI-histology alignment. (a) 3D visualization of the landmark pairs after 
registration. The red spheres represent the landmarks annotated on the MRI. The green spheres represent 
the corresponding landmarks on the histology, after shifting them with the deformation field estimated 
by our registration algorithms. The blue lines connect landmark pairs, thus illustrating registration error. 
(b) Distribution of the landmark registration error (mean: 1.50 mm, standard deviation: 1.61 mm; median: 
0.89 mm). (c,d) 3D visualization of landmark pairs after registration and distribution of the landmark 
registration error for the second processed hemisphere (mean: 1.44 mm; standard deviation: 1.80 mm; median: 
0.80 mm).
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head and the amygdala (Fig. 10e–g). Once again, the alignment between the boundaries across the two modali-
ties is qualitatively very high.

Navigation is further exemplified in Supplementary video 2, which combines the multimodal imaging data 
with the segmentations from SAMSEG and FreeSurfer. Starting from the brain surface, the perspective slowly 
focuses on the basal ganglia, highlighting the alignment between blockface photograph, MRI and histology 
across different scales—from centimeters to microns per pixel. Finally, it is also possible to reconstruct an entire 
histology volume by mosaicking all the sections in 3D. An example at 0.4 mm resolution (i.e., the voxel size of 
the MRI) is showed in Fig. 10h–j.

Discussion
In this paper, we have described a scalable and reproducible method for MRI-informed 3D histology. This 
includes both a protocol for tissue cutting and processing, without any requirements apart from a standard 
microtome, and a computational pipeline that requires minimal manual intervention. We have also presented 
results for single hemispheres from two human brains processed with the pipeline. As the reader may have 
observed, the proposed procedure consists of several steps, each with different design choices. In this section, 
we want to provide further context for such choices and discuss how they influenced our results.

Figure 9.   MRI-histology alignment. Histological sections from a sample block aligned with the MRI volume 
as a result of the refinement algorithm, showed from three different views (top: axial; middle: coronal; bottom: 
sagittal) and for the two stains (left: LFB; center: H&E). On the right, we have overlaid semi-automated 
segmentations of brain structures made on the LFB sections, including the hippocampus (yellow), cerebral 
cortex (red), cerebral white matter (white), pallidum (dark blue), putamen (bright pink), claustrum (green), 
thalamus (dark green), caudate (light blue), hypothalamus (light pink), substantia nigra (bright green), and 
subthalamic nucleus (violet).
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MRI as a reference for histology.  The transition towards 3D histology is becoming necessary for a more 
complete study of biological specimens at a microscopic level. Such specimens are 3D objects and therefore a 3D 
characterization is required. Unfortunately, histology requires by definition the loss of 3D shape for the target 
object, and without prior information on the original shape, it is not possible to reconstruct a 3D volume in a 
way that is coherent with the original object.

As outlined in the introduction, MRI is a powerful tool when imaging entire organs, especially for large 
human organs such as the brain. There are virtually no comparable alternatives when one considers also how 
different acquisition sequences can be used to obtain a diverse collection of contrasts. Unfortunately, the wide 
spatial coverage comes at the expense of a coarser resolution. Although the idea of combining MRI and histology 
to achieve the best of both worlds is reasonable, the practical implementation is not straightforward. For instance, 
registration of a single histological section leads to a difficult slice-to-volume problem8, with the disadvantages 
of high sensitivity to initialization conditions and challenging multi-modal registration issues6. One issue to 
mention is the complicated assumption of the sectioning plane being parallel to MRI acquisition plane, that can 
be tackled using novel approaches based on 3D printed containers48,50 as mentioned in the introduction. This 
is why our approach relies on a volume-based approach, by first assembling together histological sections from 
the same block into volumes. In this way, although the mentioned 3D printed containers could simplify the 
computational processing, they are not an additional requirement. The overall registration problem still requires 
further steps as discussed in the following paragraphs.

Choice of intermediate modality.  An important choice in designing a pipeline for 3D histology regards 
the intermediate modality, which will serve as a stepping stone between the stained sections and the volumetric 
reference. In this paper, we relied on blockface photographs. Since they keep structural information before the 
cutting procedure6, they allow on one hand to assume a linear relationship with the reference, and on the other 
hand to deterministically map histological sections and blockface photographs. However, there are other poten-
tial candidates for this role, most notably MRI, OCT, PLI and clearing techniques.

Figure 10.   Registration between MRI and histological sections. (a) Sample MRI slice with registered LFB 
section overlaid; (b) magnified view of the 5 × 5 mm area marked in red; (c) corresponding region on LFB 
section; (d) MRI and LFB overlapped in transparency; (e–g) magnification of the 30 × 30 mm area marked with 
the green square in (a); (h) another sample coronal MRI slice; (i) corresponding slice in reconstructed LFB 
mosaic; (j) overlay of (h) and (i) in transparency.
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MRI itself is a candidate for intermediate modality: one can scan individual blocks after the brain cut, and 
use them as stepping stone (e.g., as in33). While this strategy simplifies the registration of the blocks with the 
volumetric reference (since it becomes an intra-modality registration problem), it also has two disadvantages. 
First, it is considerably more expensive, since requires scanning the tissue twice. And second, the direct slice 
mapping between the intermediate modality and histology is lost, so one needs to estimate the relative orienta-
tion between the MRI of the block and the stack of histological sections; this is not necessary with blockface 
photography because every histological section has a known matching photograph.

OCT is an interferometry technique based on near-infrared light14. OCT volumes can be acquired during 
the sectioning procedure of a sample, with the important difference (compared with histology) that the data are 
acquired before sectioning. Therefore, geometric distortion is avoided and direct stacking of the 2D images yields 
a 3D consistent volume. While OCT produces images with excellent contrast at high resolution, it is much more 
costly to acquire than photographs, especially in terms of time79,80: imaging a single 20 mm thick human tissue 
block at 5× 5× 50µ m takes several days of uninterrupted data acquisition.

Also based on optical imaging, PLI exploits the transmission of polarized light to give a quantitative estimate 
of fiber orientation and inclination angles for a given point in a tissue section15. This technique has great potential 
to study white matter at the mesoscopic and microscopic scales81, but still requires sectioning.

Tissue clearing16 is a powerful solution that avoids sectioning. Clearing methods can make opaque tis-
sue transparent and, combined with fluorescent labeling tools, they offer a new way of probing microscopic 
structures82,83. As a consequence of the transparency, there is no need to slice the sample and it is sufficient to 
adjust the focus of the microscope on the plane of interest. The main drawbacks of this technique are the long 
time needed to process the tissue, the size limits for clearable samples and the limited depth of antibody penetra-
tion in the cleared tissue.

It is evident then that the choice of an intermediate modality is a trade-off between result quality and costs. 
Therefore, we chose to use blockface photographic imaging as it is cheap and fast, and as a result ideal for larger 
scale studies. The poorer contrast of blockface photographs compared to the alternatives is indeed a limit of 
the approach presented here, but in the context of the whole pipeline, it serves its purpose well as intermediate 
modality.

Assumptions of registration‑based pipelines.  In our pipeline, we have made the assumption that the 
deformation between the MRI and the tissue blocks (imaged via photography) is linear. This is an approxima-
tion: even with fixed tissue, cutting into slices and blocks introduces small nonlinear deformations, particularly 
near the cut boundaries. Moreover, tissue processing also introduces nonlinear distortions, even if minimal.

Another potential error source for the registration is the imperfection of the automated segmentation of the 
blockface photographs, particularly when the tissue is concave: since paraffin is not opaque, the apparent surface 
of the tissue on the blockface is often overestimated. As these automatically generated masks are crucial in the 
regularization of our linear registration, their oversegmentation may have directly affected the quality of our 
linear alignment and thus our results. This problem could be mitigated by integrating the linear and nonlinear 
registration algorithms: given the nonlinear registration of the histological sections, we could take advantage 
of the superior contrast of the stained sections and their more accurate automated segmentations, in order to 
improve the linear registration. In a similar fashion, the newly improved linear alignment could be used to refine 
the nonlinear registration, and so on. This approach may be particularly useful in order to avoid the overlap of 
tissue from different blocks in the reconstruction, and also to better fit the boundary of the tissue on the brain 
surface. Future work will explore this direction.

Improving nonlinear registration.  The final step of this pipeline and the last transformation needed 
for MRI-histology alignment is given by the registration between the resampled MRI slices and the related 
histological sections. In this case, the nonlinearities are considerable, and the cross-modality nature of the prob-
lem requires the use of inter-modality metrics, such as mutual information. As it has been previously shown84, 
approaches based on mutual information often perform poorly in inter-modality registration, and therefore rep-
resent a bottleneck when registering MRI images and stained sections—even when they are already initialized 
with our joint linear registration method. In order to improve the alignment, an important direction to explore 
is the use of synthesis, i.e. estimating MRI contrast from the histology (or vice versa) to reduce the registration to 
an easier intra-modality problem. Recent advances with architectures based on generative adversarial networks 
have shown great potential for this specific problem85,86, even with specific applications to medical imaging87.

Future applications.  In this paper we have presented, as a preliminary practical application of our pipe-
line, the chance of exploring histological sections through the related MRI volume. This is only the tip of the ice 
for the potential applications of our approach. In the overarching strategy of our current project, the next step 
is to acquire a larger set of brains, manually segment the stained sections, and exploit 3D histology to create a 
probabilistic atlas of the human brain at the subregion level. The MRI not only serves as frame of reference for 
the reconstruction, but can also be used to parcellate the cortex. This parcellation can be used to include cortical 
regions in the probabilistic atlas, and also to aid the segmentation of cortical structures in histological sections.

As opposed to existing techniques, our pipeline will be able to build whole-brain datasets from stained sec-
tions, allowing us to build atlases that are much more detailed than current templates. Moreover, since specific 
staining agents and immunohistochemistry techniques can enhance different microscopic details, the approach 
described here opens the door to draw new multimodal maps of the human brain88, in a scalable and reproduc-
ible way. With the advancement of microscopy-oriented techniques (e.g.,50,82,89–92), we believe that closing the 
gap with macroscopic modalities is crucial.
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Another potential application is the use of histology for development of MRI-based biomarkers and quantita-
tive imaging93: as ex vivo validation with histology becomes more common, the neuroimaging field will largely 
benefit from 3D histology.

Finally, aligned MRI and histology also have the potential to lead to ultra-large-scale microscopy: so far it 
is possible to create a large dataset with several images acquired using electron microscopy, by stitching them 
together to cover the entire histological section94. In this perspective, our approach could potentially lead to the 
ability to navigate a brain volume and then retrieve ultra-high-resolution details from a point of interest. This 
would be the new frontier of multi-scale imaging and would of course create new challenges, since the associated 
storage and processing requirements are highly demanding.

Conclusion.  We have presented a pipeline to effectively obtain high-resolution 3D images of the human 
brain using histology and MRI. The related code and the acquired data are publicly available (http://www.jeigl​
esias​.com), and we plan to use the presented methods to build a high-resolution computational atlas of the 
human brain based on 3D reconstructed histology. As increasingly more advanced macroscale and microscale 
techniques to study the brain become available, the open-source tools we have presented here will have a key role 
in bridging together the two ends of the scale.
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