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a b s t r a c t

The determination of non-fundamental modes of the diffusion equation is required for computing
CANDU reactor power distribution from analysis of in-core detector readings. They are also important
for understanding subcritical mode instabilities occurring in boiling water reactors. The legacy method
for computing these modes is the Hotelling deflation technique based on bi-harmonic decontamination.
However, the Hotelling technique becomes unstable as the number of modes increase or as their eigen-
values become closer. Effective and fast alternatives are provided with Implicit Arnoldi Restarted
Methods (IRAM). Among them, we investigated the Krylov–Schur method available in the SLEPc library,
and we are proposing a custom implementation of the augmented block Householder Arnoldi (ABHA)
method, similar to the Open Source implementation of Prof. James Baglama. In our work, the ABHA
method is applied to the neutron diffusion equation, discretized with the Raviart–Thomas and Raviart–
Thomas-Schneider methods or with the mesh-centered finite difference method.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The flux modes are referred to the k–harmonics of the diffusion
equation or to the simplified Pn equation. The 13 dominant modes
are required for computing CANDU reactor power distribution
from analysis of in-core detector readings (Levine and Diamond,
1972; Xia, 2012). They can also be used for performing modal

space–time kinetics simulations of the core dynamics using applica-
tions such as the SMOKIN code system (Gold andWight, 1990). The
capability to generate time-averaged flux modes for CANDU-PHWR
is currently provided by the MONIC code using the legacy Hotelling
deflation technique (Kugler, 1976). This technique is a decontami-
nation process of the power method so as to converge on non-
fundamental modes of the eigenvalue problem, as explained by
Hébert (2016) in Sect. C.2.3. An exercise is currently undertaken
to develop a new generation of reactor physics codes, known as
Industrial Standard Toolset (IST), for supporting operation of
CANDU-PHWR across the world. The capability of generating flux
modes is one of many requirements for the new IST.

Knowledge of flux modes is also important for performing sta-
bility analyses in Boiling Water Reactors (BWR). A mechanism
has been identified where operation of a BWR results in out-of-

phase power oscillations (March-Leuba and Blakeman, 1991). In
this instability mode, the reactor power established a self-

sustained oscillation of large amplitude in which half the core
increased power while the other half decreased. The resulting aver-
age power, however, remained essentially constant during these
oscillations. In those cases, the unstable subcritical modes domi-
nates the reactor response, thus providing an explanation for the
observes out-of-phase oscillations. The representation of these
instabilities requires the knowledge of a minimum of five modes.

The finite-element flux calculation code TRIVAC5 includes sev-
eral numerical approach for solving the diffusion equation and the
simplified Pn equation, such as the mesh-centered finite difference
approximation (MCFD), the Raviart–Thomas and the Raviart–
Thomas-Schneider finite element methods (Hébert, 1987; Hébert,
1993; Hébert, 2008). It is worth mentioning that TRIVAC5 uses
the same Raviart–Thomas discretization technique as COCAGNE
(Hoareau et al., 2008), the flux solution module embedded in
ODYSSEE, the new reactor physics platform conjointly developed
by EDF and Framatome. Flux solution support in the full-core sim-
ulation code DONJON5 is based on finite-difference and finite-
element techniques available in TRIVAC5 (Hébert, 2016).

TRIVAC5 currently uses a MCFD discretization approach with
Hotelling deflation, similar to the MONIC code, for computing flux
modes in a CANDU-PHWR. After years of use, we observe that the
Hotelling technique become unstable as the number of modes
increase or as their eigenvalues become closer. The advantage of this
technique is theuseof theacceleratedpowermethod,but its conver-
gence rate is not as fast as that of the fundamentalmode. In addition,
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this technique cannot calculate thosemodes belonging to amultiple
eigenvalue, because convergence depends on the magnitude of the
eigenvalue ratio being calculated and the next one.

Several authors are proposing more effective methods than the
Hotelling deflation technique for calculating non-fundamental flux
modes. Effective and fast alternatives to Hotelling deflation are pro-
vided with Implicit Arnoldi Restarted Methods (IRAM). The original
IRAM implementation was contributed by Lehoucq et al. (1998) in
the legacy ARPACK package. A few years later, Stewart (2001) pro-
posed theKrylov-Schurmethodwhich ismathematically equivalent
to the IRAM implementation, but offers two practical advantages.
First, it is easier to deflate convergedRitz vectors; second, the poten-
tial forward instability of the QR algorithm is avoided. The Krylov–
Schur method is now used in Matlab, SciPy (Virtanen et al., 2020)
and in the SLEPc library (Hernandez et al., 2005). More recently,
two block implementations of the Krylov–Schur method were pre-
sented by Baglama (2008) and Baker et al. (2009).

Our first investigation of the Krylov-Schur method, based on the
SLEPc library, was conducted in collaboration with the Universitat
Politècnica de València and was presented by Bernal et al. (2017).
In this paper, we are proposing a custom implementation of the
augmented block Householder Arnoldi (ABHA) method, similar to
the Open Source implementation of Baglama (2008). Both IRAM
approaches were implemented in TRIVAC5 and were compared
to the legacy Hotelling deflation technique on a set of benchmarks
and on a time-averaged CANDU6 representation.

2. Implementation details

The discretization of the multigroup diffusion equation in TRI-
VAC5 is producing a generalized matrix eigenvalue system of the
form

A�
1
k‘

B

� �

v‘ ¼ 0; ‘ ¼ 1; L ð1Þ

whereA and B are non-symmetric real matrices, k‘ is the ‘-th eigen-

value and v‘ is the corresponding eigenvector. The right-hand side 0
is the zero-vector (whose components are zero). The non-symmetry
of matrices A and B is due to the discretization process that is gen-
erally performed for G > 1 energy groups. The order L of these
matrices is equal to the product of the number of energy groups
times the number of flux unknowns per group. Eq. (1) has L eigen-

solutions or flux modes, each of them corresponding to root k‘ of
the characteristic equation, written as

det A�
1
k‘

B

� �

¼ 0; ‘ ¼ 1; L: ð2Þ

We are concerned about the dominant flux modes, i. e., those
with maximum eigenvalues k‘. At most, a dozen of them need to
be calculated. If the reactor geometry has symmetries, some eigen-
values may be degenerated (i.e., kk ¼ k‘ if k– ‘). The fundamental

solution refers to the first harmonics of Eq. (1). Keff ¼ k1 is the effec-

tive multiplication factor and U ¼ v1 is the discretized particle flux.
Only the fundamental solution corresponds to a positive particle
flux defined over the domain. As stated by Reuss (2008) in Sec-
tion 5.2.8 of his reference textbook, a fundamental solution is
never degenerated. The fundamental problem is therefore written

A�
1
Keff

B

� �

U ¼ 0: ð3Þ

Matrix A generally exhibits a block structure similar to the
example depicted in Fig. 1, where the diagonal blocks are symmet-
ric and the Ag;g blocks are positive definite. The complete matrix
system can be written in a block structure, each block representing
specific values of the primary and secondary energy group indices.

The basic strategy for finding the first m dominant eigensolu-
tions of Eq. (1) is the block inverse power method, an iterative algo-
rithm written as

Q
ð0Þ ¼ v

ð0Þ
1 ;v

ð0Þ
2 ; . . . ;v

ð0Þ
m

h i

given

Z
ðkþ1Þ ¼ AQ

ðkÞ if kP 0

Q
ðkþ1Þ

R
ðkþ1Þ ¼ Z

ðkþ1Þ ðeconomy sizeQR factorizationÞ

D ¼ diagðRðkþ1ÞÞ at convergence

ð4Þ

where Q
ð0Þ is a non-zero initial estimate of the dominant eigenvec-

tors A is the iterative matrix defined as

A ¼ A
�1
B: ð5Þ

and whereD is a diagonal matrix containing them dominant eigen-
values at convergence.

The IRAM (Implicit Restarted Arnoldi Method) algorithm was
proposed by Sorensen (1992) as a Krylov subspace method to com-
pute dominant eigensolutions and to speed up iterations in solving
large and sparse nonsymmetric eigenvalues systems similar to Eq.
(1). A legacy implementation of the IRAM is provided by the
ARPACK package (Lehoucq et al., 1998) as a set of Application Pro-
gramming Interfaces (API) based on LAPACK (Anderson et al., 1999)
and contributed by Rice University and Argonne National
Laboratory.

In practical applications of the IRAM, the matrix product AQ
ðkÞ

is performed repetitively, being responsible for most of the CPU

resources used in the flux mode calculation. Matrices A and Q
ðkÞ

have size L� L and L�m, respectively. The iterative matrix order
L can exceed a million in some cases, making the reconstruction

of A in memory unfeasible. Matrix Q
ðkÞ can yet be stored, as the

value of m is generally small. Matrix A is made of an assembly of
groupwise submatrices, each of them being sparse; they are stored
in sparse storage mode. The IRAM implementation strategy con-
sists to program a callback function atv(b) defined as

x :¼ atvðbÞ () x ¼ Ab ð6Þ

Fig. 1. A multigroup partitioning example with G ¼ 5.
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and computing the product Ab, without an inversion of matrix A,
using iterative techniques based on sparse matrix algebra. The atv

function is applied on each column of matrix Q
ðkÞ at each iteration.

The application of the IRAM algorithm involves the transforma-
tion of a generalized eigenvalue problem into an ordinary eigen-
value problem, the latter been solved with the inverse power
method. If the condition number of matrix B is high, it is necessary
to converge the solutions of the callback function with very high
precision to obtain a solution of the generalized eigenvalue prob-
lem with acceptable precision. Such a constraint doesn’t exist with
methods based on the preconditioned power method such as the
symetrical variational acceleration technique (SVAT) and used by
the Hotelling deflation technique (Hébert, 1986). Unfortunately,
the SVAT is unsuccessful at computing higher harmonics of the
eigenvalue problem. The available implementation of the IRAM
algorithm is only compatible with the inverse power method,
requiring convergence of the linear system Ax ¼ Bb at each call
of the atv function. Failure to converge the solution of this linear
system may result in wrong eigensolution. Practical implementa-
tions of the IRAM algorithm are based on an iterative solution of
this linear system with the introduction of a preconditioning matrix

M ’ A
�1. Available preconditioning options are the Jacobi, Gauss–

Seidel, SSOR or ADI preconditioning matrices.
We made two implementations of the IRAM over the recent

years. These implementations differ in the choice of the Krylov
subspace orthogonal iteration strategy used to speedup algorithm
(4) and in the way the call-back function atv was programmed.

2.1. The Krylov–Schur method with SLEPc

The first IRAM implementation in TRIVAC5 was developed by
Bernal et al. (2017) as a collaboration with the Universitat
Politècnica de València. This implementation was based on the
Krylov–Schur method available in SLEPc (Hernandez et al., 2005),
a software library for the solution of large-scale sparse eigenvalue
problems on parallel computers. It is an extension of PETSc (Balay
et al., 2020) and can be used for linear eigenvalue problems in
either standard or generalized form, with real or complex arith-
metic. All the linear algebra routines and sparse matrix storage
support required by the Krylov–Schur method is provided by the
SLEPc powerful API.

The Krylov–Schur method was not committed in the production
version of DRAGON5/DONJON5. All numerical results presented in
this study were obtained with the original version of Bernal et al.
(2017). SLEPc offers many possibilities to optimize the implemen-
tation of the IRAM solver, but we chose to keep the 2017 settings
for consistency reasons.

2.2. The augmented block Householder Arnoldi method

We are providing a simple implementation of the IRAM algo-
rithm based on the augmented block Householder Arnoldi (ABHA)
method that makes use of Householder reflections to maintain
orthogonality and where restarting is accomplished by augmenta-
tion of the Krylov subspace with Schur vectors (Baglama, 2008).
Our implementation of the ABHA method takes the form of a cus-
tom 465–line Fortran-90 module named ALBEIGS.f90 and of a
304–line Fortran callback function named FLDTMX.f. All linear
algebra routines and sparse matrix storage support are provided
by the UTILIB5 library, already available in the official DRAGON5/
DONJON5 distribution and used by the legacy Hotelling decontam-
ination technique. Among utility linear algebra tools recovered
from the Utilib library are the Cholesky L� D� L> factorization,
the economy size QR factorization, and a powerful full-matrix
eigensolver based on the shifted Hessenberg QR algorithm as pro-

posed by Robles (2017). ARPACK and LAPACK are not used. The
new IRAM capabilities are not adding software configuration com-
plexity. The ABHA method was committed in production version
5.0.7 of DRAGON5/DONJON5.

An interesting capability of the ABHAmethod is worth mention-
ing. The block implementation makes possible the initialization of
each specific eigenvector to improve computation efficiency. By
default, initialization is made with a triangular matrix with ones
on the upper part and zeros on the lower part. The fundamental
eigenvector is therefore initialized with ones by default.

2.3. Implementation of the callback function in the ABHA method

The callback function used by the ABHA method with a TRIVAC
discretization is based on a preconditioned iterative process. All
matrix operations are performed in sparse matrix algebra using
the UTILIB5 library. The sparse matrix algebra techniques used in
TRIVAC5 are specific to the finite-difference, nodal collocation
(Hébert, 1987), Raviart–Thomas (Hébert, 1993) and Raviart–
Thomas-Schneider (Hébert, 2008) finite-element approximations.
We are assuming that the diagonal blocks Ag;g can be expressed
as an alternating direction implicit (ADI) splitting and that all other
blocks Ag;h (g – h) and Bg;h are diagonal (Hébert, 1986). An ADI
split of block Ag;g is written

Ag;g ¼ Uþ PxXP
>
x þ PyYP

>
y þ PzZP

>
z ð7Þ

where
U = matrix containing the diagonal elements of Ag;g .
X;Y;Z = symmetrical matrices containing the nondiagonal ele-

ments of Ag;g .
Px;Py;Pz = permutation matrices that ensure a minimum band-

width for matrices X;Y and Z.
The corresponding preconditioning matrix can be defined as

Mg;g ¼ Pz
~Z�1

P
>
z

� �

U Py
~Y�1

P
>
y

� �

U Px
~X�1

P
>
x

� �

ð8Þ

where

~X ¼ Xþ P
>
x UPx; ~Y ¼ Yþ P

>
y UPy ð9Þ

and

~Z ¼ Zþ P
>
z UPz: ð10Þ

In the case of an hexagonal tridimensional domain, the ADI split of
Eq. (7) is generalized as

A ¼ Uþ PwWP
>
w þ PxXP

>
x þ PyYP

>
y þ PzZP

>
z : ð11Þ

Matrices W;X;Y and Z are diagonal banded matrices where all
the components, located within their external profile, are non-zero.
This type of preconditioning is efficient as inverses ~W�1; ~X�1; ~Y�1

and ~Z�1 don’t need to be explicitely calculated. Any linear system
of the form Xx ¼ S can be efficiently solved using a Cholesky fac-
torization approach. The ADI splitting approach based on Eqs. (7)
or (11) is not producing any fill-in. It is only available in the Utilib5
library and should not be confused with the incomplete Cholesky
factorization IC(0), a more general preconditioning technique
available in ARPACK and SLEPc.

In the particular case where the up-scattering blocks vanish, i.e.,
if Ag;h ¼ O for all group indices h > g, the product x ¼ Ab in the
callback function can be evaluated in a recursive way, using

x1 ¼ A
�1
1;1

X

G

h¼1

B1;hbh

xg ¼ A
�1
g;g

X

g�1

h¼1

Ag;h xh þ
X

G

h¼1

Bg;hbh

 !

if g ¼ 2;G:

ð12Þ
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Using the ADI partitioning of Eqs. (7)–(10), any groupwise mul-
tiplication of the form xg ¼ A

�1
g;g Sg can be replaced by an iterative

algorithm written as

xð0Þ
g given

xðjþ1Þ
g ¼ xðjÞ

g þMg ðSg �Ag;gx
ðjÞ
g Þ if jP 0:

ð13Þ

One option is to perform a fixed number J of iterations, suffi-
cient for convergence. One also has the option to accelerate the
fixed-point algorithm (13) using the Livolant acceleration method
or the GMRES (Generalized Minimum RESidual) algorithm, as pre-
sented in Sect. C.1.3 of Hébert (2016).

If up-scattering is present, an additional level of thermal itera-
tions should be added so as to converge on the up-scattering reac-
tion rates. Note that the IRAM is an inverse power method, not a
preconditioned power method similar to the symmetric variational
acceleration technique (SVAT) introduced by Hébert (1986). If the
thermal iterations are not correctly converged, the eigenvalue
spectrum will come out in error.

3. Numerical results

All the flux mode calculation techniques have been imple-
mented in the finite-element code TRIVAC5 (Hébert, 1987) and val-
idated on a set of simple two-group diffusion theory 3-D
benchmarks. A time-averaged CANDU6 representation is also
investigated. Only the eigenvalues are shown in this work because
the same TRIVAC5 discretization is used with every flux mode cal-
culation technique. If the eigenvalue spectrum matches, the eigen-
vectors will do so. Agreement on reaction rate distributions was
verified for the first IAEA-3D benchmark but not reported. Agree-

ment between Hotelling defflation and ABHA methods on any
benchmark can be reproduced with the Open-Source version of
the code. All CPU times reported in this Section are obtained on a
8-Core Intel Core i9, 2.4 GHz laptop (MacBookPro15,3).

3.1. The IAEA-3D benchmark

The IAEA-3D benchmark (Argonne Code Center, 1977) is a sim-
plified representation of a PWR with one-eighth symmetry in
Cartesian geometry, as depicted in Fig. 2. Although Fig. 2 shows
one-eighth symmetry of this reactor, the modal calculation was
performed for the whole core, after unfolding the one-eighth
benchmark geometry. Vacuum boundary conditions are set at axial
levels z = 0 and z = 380 cm. A Cartesian mesh of 17� 17� 5 was
used. The length of each mesh in X and Y directions are 20 cm.
The axial mesh sizes are: 20, 130, 130, 80, and 20 cm. Cross-
section data for this benchmark is provided in Section 5 of
Hébert (2020). A detailed convergence study of this Cartesian
geometry with Raviart–Thomas finite elements was presented by
Hébert (1993). Here, we selected parabolic (K = 2) Raviart–Thomas
finite elements with a Gauss–Legendre (superconvergent) quadra-
ture. The eigenvalue spectrum obtained using the three approaches
is presented in Table 1. The eigenvalues of modes 2, 3, 5, 6, 8 and
12 cannot be computed without unfolding the one-eighth bench-
mark geometry. Duplicate eigenvalues are due to the benchmark
symmetry. We observe the ineffectiveness of the legacy Hotelling
decontamination technique on this benchmark. The Hotelling tech-
nique is unable to find duplicate modes, fail to find some of them
and suffers from convergence difficulties. Many of the Krylov–
Schur modes presented in Table 1 were found by Bernal et al.
(2017), with the exception of those resulting from the unfolding
of the domain. The CPU time required for obtaining the modes is

Fig. 2. Description of the IAEA-3D benchmark.

A. Hébert Annals of Nuclear Energy 151 (2021) 107912

4



120 s for the Hotelling technique, 13.3 s for the Krylov–Schur
method and 10.4 s for the ABHA method.

The numerical results presented in Table 1 are not spatially con-
verged. We have redone the same numerical exercise using cubic
(K = 3) Raviart–Thomas finite elements in Table 2. In this case,
the CPU time required for obtaining the modes is 150 s for the
Hotelling technique, 44.6 s for the Krylov–Schur method and
26.7 s for the ABHA method.

3.2. The VVER-1000 benchmark

The VVER-1000 3D benchmark (Chao and Shatilla, 1995) is a
simplified representation of a vodo-vodyanoi energetichesky reaktor

(VVER) defined by Chao and Shatilla (1995) and depicted in Fig. 3.
The core symmetry is one-sixth core cyclic, radially. The reflector
region outside the fuel assemblies is not explicitly modeled and
is assumed to be represented by a radial albedo b = 0.125. An axial
albedo b = 0.15 is used, as proposed in the benchmark definition.
The axial mesh sizes is 20 cm. The total height of the core is
200 cm and the eccentric control rod (mixture 4) in the third ring
of hexagons are inserted axially for 100 cm. Two-group diffusion
coefficients and cross sections are provided in Table 3 for five dif-
ferent material mixtures.

We first present verification results about TRIVAC5 convergence
on the VVER-1000 benchmarks obtained using the preconditioned
power method with a symmetric variational acceleration tech-
nique (SVAT) as presented by Hébert (1986). Radial mesh-
splitting is the number of regions per hexagon in finite-difference
cases and the number of lozenges per hexagon in the Raviart–
Thomas-Schneider cases. Ntot is the number of unknowns per
energy group. Statistics on power distribution accuracies are given
by �max and ��, as defined by Hébert (2008). The finite-difference
and Raviart–Thomas-Schneider results are presented in Tables 4
and 5, respectively. We note the low-order convergence of finite
difference approaches for VVER problems. Numerical results

demonstrate the capability of high-order polynomial expansions
for obtaining accurate results.

Next, we obtain the eigenvalue spectrum for a discretization
based on parabolic (K = 2) Raviart–Thomas-Schneider finite ele-
ments, with 3 lozenges per hexagon and with an analytical integra-
tion. The symmetric variational acceleration method (SVAT) used
by the Hotelling technique was deactivated so as to help the defla-
tion process, at the cost of increasing number of iterations. The
eigenvalue spectrum obtained using the three approaches is pre-
sented in Table 6. An unexpected observation is the occurrence
of conjugate complex pairs of eigenvalues in the flux mode spec-
trum. The same complex pairs were obtained with both the Kry-
lov–Schur and ABHA methods, in spite of their dissimilar
implementations. The existence of complex conjugate pairs is not
a fundamental issue of this study but we do believe that this issue
deserves further investigations. The Hotelling technique was
unable to find these complex modes. The CPU time required for
obtaining the modes is 1500 s for the Hotelling technique, 57.9 s
for the Krylov–Schur method and 84.8 s for the ABHA method.

3.3. The VV1K3D benchmark

The VVER-1000 3D benchmark of Section 3.2 was modified by
Bernal et al. (2017) so as to remove the complex eigenvalues from
the flux mode spectrum. The modification, known as VV1K3D, con-
sists to define a non-symmetrical assembly layout, as depicted in
Fig. 4 where the non-symmetric assemblies with respect to a rota-
tional symmetry are highlighted. The albedo boundary conditions
are replaced by zero-flux conditions. The cross-section data
remains the same and we used the same discretization as for the
VVER-1000 3D benchmark. The eigenvalue spectrum obtained
using the three approaches is presented in Table 7. Krylov–Schur
results have already been presented by Bernal et al. (2017) and
are reproduced here for completeness. We observe that making
the reactor layout slightly non-symmetrical is sufficient to obtain
12 distinct eigenvalues. Deactivation of the SVAT enable the
Hotelling technique to find the complete spectrum. The CPU time
required for obtaining the modes is 2400 s for the Hotelling tech-
nique, 52.4 s for the Krylov–Schur method and 77.8 s for the ABHA
method.

Table 1

Eigenvalue spectrum of the IAEA-3D benchmark (parabolic polynomials).

mode Hotelling Krylov–Schur ABHA

1 1.029287 1.029285 1.029285
2 1.017120 1.017120 1.017120
3 (failure) 1.017120 1.017120
4 1.014651 1.014651 1.014651
5 1.003770 1.003771 1.003771
6 (failure) 1.003771 1.003771
7 (failure) 1.002558 1.002558
8 (failure) 0.997148 0.997148
9 0.991518 0.991518 0.991518
10 (failure) 0.990508 0.990508
11 0.986883 0.986882 0.986882
12 (failure) 0.984233 0.984232

Table 2

Eigenvalue spectrum of the IAEA-3D benchmark (cubic polynomials).

mode Hotelling Krylov–Schur ABHA

1 1.028982 1.028980 1.028980
2 1.017052 1.017052 1.017053
3 (failure) 1.017052 1.017053
4 1.014952 1.014952 1.014953
5 1.004151 1.004151 1.004151
6 (failure) 1.004151 1.004151
7 (failure) 1.002960 1.002961
8 (failure) 0.996990 0.996992
9 0.994732 0.994732 0.994733
10 (failure) 0.991208 0.991208
11 (failure) 0.990664 0.990665
12 (failure) 0.984512 0.984510

Fig. 3. Description of the VVER-1000 3D benchmark.
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3.4. The time-averaged CANDU6 case

The fourth numerical experiment is a legacy CANDU6 represen-
tation recovered from the non-regression data directory of the offi-
cial DONJON5 distribution, version 5.0.7 (Hébert et al., 2014). This
dataset is located at position Version5/Donjon/data/can-

du6_iram.x2m. The Cartesian mesh is 26� 26� 12 and the num-
ber of energy groups is G ¼ 2.

Flux modes of a CANDU-PHWR are computed in time-averaged
conditions. The time-average model (Rouben, 2007) is formulated
to take into account the spatial distribution of properties over time,
arising from different fuel irradiation in different fuel bundles. As
opposed to the axially-uniform model, the time-average model

does not average lattice properties along a channel. Instead, it
takes into account the fact that individual fuel channels are refu-
elled once in a while, and that fuel bundles remain in a certain
location in the channel until the channel is refuelled. It models
the effect of the axial refuelling scheme (e.g., 8-bundle-shift, 4-
bundle-shift, etc.) used in each channel on the average lattice prop-
erty at each bundle location in the channel. For any fuel bundle
position fc; bg in core and any cross section of type x, we can write
the time-average macroscopic cross section �Rx;c;b during the bun-
dle’s residence time at that location using

�Rx;c;b ¼
1

xout;c;b �xin;c;b

Z xout;c;b

xin;c;b

dxRx;c;bðxÞ

Table 3

Cross-section data for the hexagonal VVER-1000 3D benchmark.

Mixture Group Dg
R

g
r mRg

f R
g!gþ1
s0

(cm) (cm�1) (cm�1) (cm�1)

1 1 1.3832 2.48836 �10�2 4.81619 �10�3 1.64977 �10�2

2 0.386277 6.73049 �10�2 8.46154 �10�2

2 1 1.38299 2.62865 �10�2 4.66953 �10�3 1.47315 �10�2

2 0.389403 8.10328 �10�2 8.52264 �10�2

3 1 1.39522 2.45662 �10�2 6.04889 �10�3 1.56219 �10�2

2 0.386225 8.44801 �10�2 1.19428 �10�1

4 1 1.39446 2.60117 �10�2 5.91507 �10�3 1.40185 �10�2

2 0.387723 9.89671 �10�2 1.20497 �10�1

5 1 1.39506 2.46141 �10�2 6.40256 �10�3 1.54981 �10�2

2 0.384492 8.93878 �10�2 1.29281 �10�1

Table 4

Finite-differences VVER-1000 3D benchmark calculations.(a)

Type of Mesh-splitting Dkeff �max �� CPU

quadrature radial axial Ntot keff (pcm) (%) (%) time (s)

Mesh-corner 1 5þ 5 5722 1.005621 �106.0 38.5 12.6 0.2
finite differences 6 10þ 10 14495 1.007725 104.4 15.8 6.5 0.6
Mesh-centered 1 5þ 5 1630 1.013683 3402.0 700.2 49.2 0.8
finite differences 6 10þ 10 22820 1.007724 104.3 13.3 4.3 1.2

24 15þ 15 122250 1.006910 22.9 4.5 1.5 8.7
54 20þ 20 358600 1.006773 9.2 2.3 0.8 65.0
96 25þ 25 790550 1.006736 5.4 1.4 0.5 209.5

(a) The reference effective multiplication factor is keff ¼ 1:006681.

Table 5

Raviart–Thomas-Schneider VVER-1000 3D benchmark calculations.(a)

Type of Poly. Mesh-splitting Dkeff �max �� CPU

quadrature order radial axial Ntot keff (pcm) (%) (%) time (s)

Analytical 1 3 5þ 5 20499 1.006724 4.3 7.2 2.3 0.6
12 10þ 10 160236 1.006621 �6.1 2.9 1.0 11.2

2 3 5þ 5 140676 1.006601 �8.1 1.5 0.6 5.5
12 10þ 10 1110384 1.006668 �1.4 0.3 0.1 112.0

3 3 5þ 5 448551 1.006672 �0.9 0.2 0.1 24.2
12 10þ 10 3554604 1.006681 ’0 ’0 ’0 616.8

Gauss- 1 3 5þ 5 20499 1.009862 318.0 25.2 8.1 0.5
Lobatto 12 10þ 10 160236 1.007397 71.6 9.0 2.9 8.2

2 3 5þ 5 140676 1.006581 �10.1 2.3 0.9 5.9
12 10þ 10 1110384 1.006652 �2.9 0.6 0.2 105.0

3 3 5þ 5 448551 1.006656 �2.6 0.5 0.2 29.6
12 10þ 10 3554604 1.006681 �0.1 ’0 ’0 614.2

Gauss- 1 3 5þ 5 20499 1.005209 �147.3 7.6 2.4 1.4
Legendre 12 10þ 10 160236 1.006289 �39.2 1.5 0.6 6.1

2 3 5þ 5 140676 1.006641 �4.1 0.6 0.2 8.3
12 10þ 10 1110384 1.006681 �0.1 ’0 ’0 71.6

3 3 5þ 5 448551 1.006691 0.9 0.1 ’0 62.8
12 10þ 10 3554604 1.006681 Reference 595.1

(a) The reference effective multiplication factor is keff ¼ 1:006681.
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where xin;c;b and xout;c;b are the entry and exit burnups of fuel bun-
dles in fuel channel c and bundle position b (with 1 6 b 6 12). The
burnup-dependent macroscopic cross sections are recovered from
the multi-parameter reactor database generated by the lattice code
(Hébert, 2016).

The 3D Cartesian geometry was discretized using mesh-
centered finite-differences (MCFD), as presented in Section 5.2.2
of Hébert (2016). Again, the symmetric variational acceleration
method (SVAT) used by the Hotelling technique was deactivated
so as to help the deflation process, at the cost of increasing number
of iterations. The eigenvalue spectrum obtained using the three
approaches is presented in Table 8. The CPU time required for

Table 6

Eigenvalue spectrum of the VVER-1000 3D benchmark.

mode Hotelling Krylov–Schur ABHA

1 1.006601 1.006601 1.0066001
2 0.988090 0.988091 + 9.966�10�7 i 0.988090 + 1.041�10�6 i

3 (failure) 0.988091–9.966�10�7 i 0.988090–1.041�10�6 i

4 0.967791 0.967791 0.967791
5 0.964047 0.964048 + 2.237�10�6 i 0.964047 + 2.275�10�6 i

6 (failure) 0.964048–2.237�10�6 i 0.964047–2.275�10�6 i

7 0.951447 0.951447 + 9.170�10�7 i 0.951447 + 9.308�10�7 i

8 (failure) 0.951447–9.170�10�7 i 0.951447–9.308�10�7 i

9 0.948055 0.948056 0.948055
10 0.945470 0.945470 0.945470
11 (failure) 0.932268 + 4.673�10�7 i 0.932268 + 4.435�10�7 i

12 (failure) 0.932268–4.673�10�7 i 0.932268–4.435�10�7 i

Fig. 4. Description of the VV1K3D benchmark.

Table 7

Eigenvalue spectrum of the VV1K3D benchmark.

mode Hotelling Krylov–Schur ABHA

1 1.005450 1.005450 1.005450
2 0.987368 0.987368 0.987369
3 0.987360 0.987360 0.987360
4 0.968519 0.968519 0.968521
5 0.964399 0.964399 0.964399
6 0.963050 0.963050 0.963050
7 0.954741 0.954743 0.954745
8 0.948942 0.948942 0.948943
9 0.948283 0.948283 0.948283
10 0.946417 0.946414 0.946414
11 0.934308 0.934309 0.934310
12 0.930107 0.930121 0.930122

Table 8

Eigenvalue spectrum of the time-averaged CANDU6 case.

mode Hotelling Krylov–Schur ABHA

1 1.000000 1.000000 1.000000
2 0.986041 0.986041 0.986041
3 0.985432 0.985432 0.985432
4 0.976302 0.976303 0.976303
5 0.961844 0.961843 0.961843
6 0.961471 0.961476 0.961476
7 0.959934 0.959944 0.959944
8 0.958942 0.958932 0.958932
9 0.944784 0.944783 0.944783
10 0.934379 0.934380 0.934380
11 0.934255 0.934256 0.934256
12 0.931808 0.931812 0.931812
13 (failure) 0.931478 0.931478
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obtaining the modes is 639 s for the Hotelling technique, 2.8 s for
the Krylov–Schur method and 6.7 s for the ABHA method.

4. Conclusion

Application of the Krylov–Schur and ABHAmethods in TRIVAC5,
as an alternative to the legacy Hotelling deflation technique has
proven more effective in terms of computer resources and more
reliable in terms of stability. Both IRAMmethods are equally stable
end equivalent from a computational point of view. The Krylov–
Schur implementation of Bernal et al. (2017) was based on pack-
ages SLEPc, PETSc, ARPACK, LAPACK and BLAS, representing over
a million lines of code, a mixture of Fortran code written in the sev-
enties with modern C++ code. The proposed ABHA implementation
is only based on two new subroutines linked with the UTILIB5
library, containing ’10,000 lines of code. The UTILIB5 library con-
tains the linear algebra tools already used in the codes TRIVAC5,
DRAGON5 and DONJON5. Our custom implementation of the ABHA
method is adding a limited increase in configuration complexity
and has limited effect on ease of maintenance, quality assurance
(QA) and licensing issues. This new capability is now included in
the Open Source distribution of DONJON5, version 5.0.7.
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