
Titre:
Title:

Lagrangian Derivation of Variable-Mass Equations of Motion using 
an Arbitrary Attitude Parameterization

Auteurs:
Authors:

Charles Champagne Cossette, James Richard Forbes, & David 
Saussié 

Date: 2020

Type: Article de revue / Article

Référence:
Citation:

Champagne Cossette, C., Forbes, J. R., & Saussié, D. (2020). Lagrangian 
Derivation of Variable-Mass Equations of Motion using an Arbitrary Attitude 
Parameterization. Journal of the Astronautical Sciences, 67(4), 1206-1219. 
https://doi.org/10.1007/s40295-020-00230-3

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9265/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Journal of the Astronautical Sciences (vol. 67, no. 4) 

Maison d’édition:
Publisher:

Springer Nature

URL officiel:
Official URL:

https://doi.org/10.1007/s40295-020-00230-3

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1007/s40295-020-00230-3
https://publications.polymtl.ca/9265/
https://doi.org/10.1007/s40295-020-00230-3


https://doi.org/10.1007/s40295-020-00230-3

TECHNICAL NOTE

Lagrangian Derivation of Variable-Mass Equations
of Motion using an Arbitrary Attitude
Parameterization

Charles Champagne Cossette1 · James Richard Forbes1 ·David Saussié2

© American Astronautical Society 2020

Abstract
Lagrange’s equation is a popular method of deriving equations of motion due
to the ability to choose a variety of generalized coordinates and implement con-
straints. When using a Lagrangian formulation, part of the generalized coordinates
may describe the attitude. This paper presents a means of deriving the dynam-
ics of variable-mass systems using Lagrange’s equation while using an arbitrary
constrained attitude parameterization. The equivalence to well-known forms of the
equations of motion is shown.

Keywords Lagrange’s equation · variable-mass dynamics · constrained attitude
parameterizations

Introduction

Deriving the equations of motion of a dynamic system that expels mass is a complex
problem with historical roots in rocketry [5]. Numerous technical reports and papers
present different means to arrive at the now familiar equations of motion of a variable-
mass system. A Newton-Euler approach is presented in [10, 15, 16, 22, 25], while
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Kane’s Equations are used in [4–6]. Hamilton’s Principle is adapted to the variable-
mass dynamics problem in [11, 14], and Lagrange’s equation is commonly seen with
an appended term to account for mass-variablility, as discussed in [9, 14, 18].

Lagrange’s equation is a popular method of deriving equations of motion due to
it’s ability to accommodate different generalized coordinates, as well as its ease of
handling constraints. Lagrange’s equation can be applied to systems where a subset of
the chosen generalized coordinates is an attitude parameterization. Attitude parame-
terizations will often have constraints, such as the quaternion possessing a unit-norm
constraint. In [24], identities are derived for general attitude parameterizations that
enable a streamlined application of Lagrange’s equation, without having to resort to
the use of the Boltzmann-Hamel equations [24]. These identities greatly enhance the
tractability of the equations derived by maintaining the equations in matrix form.
Similar identities appear in [3, 8, 17, 20, 23], when attitude is parameterized using
Euler angles, a quaternion, or axis/angle parameters, whereas the identities in [24]
collectively consider any attitude parameterization. The identities allow access to the
analysis of new and more sophisticated systems using a Lagrangian framework, such
as those seen in [2, 12, 26–28]. However, these identities have only been used to
model constant-mass systems.

The contribution of this note is to show how the identities in [24] can be used
to model variable-mass systems, thus even further expanding the category of sys-
tems that can be analysed using Lagrange’s equation. An example is the equations
of motion of a launch vehicle with coupled rigid-body, variable-mass, and flex-
ible dynamics. Unlike other research articles, the presented formulation allows a
Lagrangian approach for variable-mass systems, using any arbitrary attitude param-
eterization, while explicitly incorporating attitude constraints. This note shows how
the well-known form of the variable-mass equations of motion can be directly
retrieved from the presented formulation.

The upcoming derivation uses the popular approach of treating the variable-mass
system as an equivalent constant-mass system [4, 19], and using Reynold’s Transport
Theorem to convert the result into a formulation appropriate for variable-mass systems.
The “Preliminaries” section outlines the required preliminaries and notation used in
this note, as well as the key identities that enable the use of arbitrary attitude paramete-
rizations. The “Derivation of the Equations of Motion” section contains the derivation,
and shows the equivalence to the well-known variable-mass equations of motion.

Nomenclature

u
−→

� a physical vector
Fa � a reference frame ‘a’ associated with the physical basis vectors

ai

−→
, i = 1, 2, 3

F
−→a �

⎡

⎢
⎣

a1
−→
a2
−→
a3
−→

⎤

⎥
⎦ � a vectrix, a columnmatrix of physical basis vectors ai

−→
, i =1,2,3
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ua � the components of u
−→

resolved in Fa such that u
−→

= F
−→

T
aua

Cba � the direction cosine matrix (DCM)
(·)× � the skew-symmetric cross-product matrix
r
−→

zw � the position of z relative to w

v
−→

zw/a = r
−→

zw·a
� the velocity of z relative to w with respect to Fa

qba � a column matrix parameterization of Cba

q � a column matrix of generalized coordinates
ω
−→

ba � the angular velocity of Fb relative to Fa

ω
−→

ba·c
� the angular acceleration of Fb relative to Fa with respect to Fc

mS � the mass of system S

cSz
b � the first moment of mass of system S about point z, resolved

in Fb

JSz
b � the second moment of mass matrix of system S about point z,

resolved in Fb

1 � an appropriately dimensioned identity matrix
0 � an appropriately dimensioned matrix of zeros

Preliminaries

Physical Vectors and Reference Frames

A physical vector u
−→

∈ P is an element of physical space, where physical space
is denoted P. Physical vectors often represent physical quantities, such as position,
velocity, and acceleration. Consider the orthornormal, dextral, physical basis vectors
a
−→

1, a
−→

2, and a
−→

3 that may be used to define a reference frame, denoted Fa . A
physical vector may be resolved in, for example, Fa as [13]

u
−→

= ua1 a
−→

1 + ua2 a
−→

2 + ua3 a
−→

3 = F
−→

T

aua,

where the vectrix F
−→a ∈ P

3 and the column matrix ua ∈ R
3 are defined as F

−→a =
[

a
−→

1 a
−→

2 a
−→

3
]T

and ua = [ua1 ua2 ua3]T, respectively. A physical vector may be
resolved in any frame,

u
−→

= F
−→

T

aua = F
−→

T

bub,

and the relationship between ua and ub is given by ua = Cabub where Cab = F
−→a ·

F
−→

T

b is the direction cosine matrix (DCM) [13]. DCMs are orthonormal, meaning that
Cba = CT

ab and C
T

baCba = 1.
The skew-symmetric cross-product matrix is defined for any column matrix v =

[v1 v2 v3]T ∈ R
3 as

v× =

⎡

⎣

0 −v3 v2
v3 0 −v1

−v2 v1 0

⎤

⎦ ,

where v
−→

× u
−→

= F
−→

T
av×

a ua holds in any reference frame.
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The position of point z relative to point w is denoted by r
−→

zw. The velocity of
point z relative to point w with respect to Fa is denoted by v

−→
zw/a = r

−→
zw·a . A

physical vector’s time rate-of-change with respect to an arbitrary frame Fa can be
related to its time rate-of-change with respect to another arbitrary frame Fb using the
Kinematic Transport Theorem [13],

u
−→

·a = u
−→

·b + ω
−→

ba × u
−→

,

where ω
−→

ba is the angular velocity of Fb relative to Fa .
The attitude of a body can be globally and uniquely described by a DCM, Cba ,

where Fb is a frame fixed to the body and Fa is a datum reference frame.
There are many ways to parameterize a DCM, such as quaternions, Euler angles,

and Gibbs parameters [13]. An arbitrary attitude parameterization of Cba will be
denoted qba , which can be the quaternion elements, a set of three Euler angles, or
simply the columns of the DCM stacked in a 9 × 1 column matrix. The angular
velocity differs from the attitude parameterization’s time rate-of-change q̇ba , yet they
can be related by a mapping matrix Sba

b (qba), where [13]

ωba
b = Sba

b (qba)q̇ba,

and the inverse mapping is given by

q̇ba = Ŵba
b (qba)ωba

b .
The matrices Sba

b and Ŵba
b can be shown to be orthogonal complements, that is

Sba
b Ŵba

b = 1.
Certain attitude parameterizations also have constraints. For example, the unit-length
constraint associated with a quaternion can be written in the form,

�ba(qba)q̇ba = 0, (1)
where �ba(qba) is a constraint matrix associated with the attitude constraint. The
columns of Ŵba

b lie in the null-space of �ba(qba), that is

�ba(qba)Ŵba
b = 0.

For any vector u
−→

that is not a function of qba , the following three identities (and
their transposes) [24],

(

Ṡba
b −

∂ωba
b

∂qba

)

Ŵba
b = −ωba×

b ⇐⇒ ŴbaT

b

⎛

⎝ṠbaT

b −

(

∂ωba
b

∂qba

)⊤
⎞

⎠ = ωba×

b , (2)

∂(Cabub)

∂qba
Ŵba

b = −Cabu×
b ⇐⇒ ŴbaT

b

(
∂(Cabub)

∂qba

)⊤

= u×
b Cba, (3)

∂(Cbaua)

∂qba
Ŵba

b = (Cbaua)
× ⇐⇒ ŴbaT

b

(
∂(Cbaua)

∂qba

)⊤

= −(Cbaua)
×, (4)
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are of crucial importance in forthcoming derivations. Note that the argument qba has
been suppressed in Eq. 2, Eq. 3, and Eq. 4, and will continue to be suppressed in
forthcoming derivations.

Derivation of the Equations of Motion

Consider a constant-mass system S. Consider also a region with volume V (t) and
boundary B(t) defined such that it encloses the mass of S at all times. The volume
V (t) and boundary B(t) are therefore time-varying quantities. The system S can be
arbitrarily composed of mass that is rigid, and some that is not.

Next, consider an arbitrary time-varying mass system S̄(t) that has a known, con-
stant volume V̄ with boundary B̄. Note that system S̄ has time-varying mass but
constant volume and boundary, whereas system S has constant mass but time-varying
volume and boundary. Let S be defined such that at a specific instant t̄ the system S

conincides exactly with S̄, and consequently so does V (t̄) = V̄ , B(t̄) = B̄. For any
other instant, V̄ will generally differ from V , and B̄ will generally differ from B.

Referring to Fig. 1, let w be an unforced particle and Fi be an inertial frame [1].
Let z be a reference point fixed to any rigid portion of S, and Fb be a frame fixed to
the same rigid portion of S, as shown in Fig. 1. In order to properly define z and Fb,
there must exist some sort of reference rigid-body, and hence the requirement for S
to possess at least some portion that is considered rigid. The enabling theorem in this
derivation is Reynold’s Transport Theorem, which states

d
dt

(∫

V (t)

f
−→
dV

)∣
∣
∣
∣
Fb

=

∫

V (t)

f ·b

−→
dV +

∫

B(t)

f
−→

(

v
−→

dSz/b
· n
−→

)

dS, (5)

where f
−→

is a scalar-, vector-, or tensor-valued property of a system of interest [4,

13, 15, 16, 19, 21, 29, 30]. The term v
−→

dSz/b refers to the velocity of an area element
dS, which can be assumed to be equivalent to the velocity of a mass element at the
boundary, v

−→
dmz/b. The notation

d
dt

(

u
−→

)∣
∣
∣
Fb

� u·b

−→

is an alternate way to write the time-derivative of u
−→

with respect to Fb, in order to
clarify the meaning of the time derivative on the left-hand-side of Eq. 5.

Generalized Coordinates

The generalized coordinates are q =
[

rzw
T

i qbiT
]T

where qbi is an arbitrary attitude
parameterization describing the attitude of Fb relative to Fi . The reader should be
careful not to confuse the attitude parameterization qbi with the generalized coordi-
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Fig. 1 Illustration of an arbitrary system S̄, with the grey area being rigid

nates q, which also contains the position. The augmented velocity matrix is defined
as ν =

[

vzw/iT

i ωbiT

b

]T

, which is related to the generalized coordinates by

ν = Sq̇,

where S = diag(1, Sbi
b ). The inverse mapping is

q̇ = Ŵν,

where Ŵ = diag(1,Ŵbi
b ). Notice that the matrices S and Ŵ are orthogonal comple-

ments, that is, SŴ = 1.

Kinetic Energy and the Lagrangian

For simplicity, potential energy sources are not considered, and their effects can
be included as external forces. The kinetic energy of the constant-mass system S,
relative to w, with respect to Fi is

TSw/i =
1
2

∫

S

v
−→

dmw/i · v
−→

dmw/idm,

where, using the Kinematic Transport Theorem, the velocity of a mass element dm
relative to w, with respect to Fi can be shown to be

v
−→

dmw/i = v
−→

dmz/b + ω
−→

bi × r
−→

dmz + v
−→

zw/i .
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Resolving in Fi , the kinetic energy is

TSw/i =
1
2

∫

S

(vdmz/b

i + Cibω
bi×

b rdmz
b + vzw/i

i )T(vdmz/b

i + Cibω
bi×

b rdmz
b + vzw/i

i )dm,

=
1
2

[

vzw/i⊤

i ωbi⊤

b

]
[

mS1 −CibcSz×

b

cSz×

b Cbi JSz
b

]

︸ ︷︷ ︸

M

[

vzw/i

i

ωbi
b

]

+
[

vzw/i⊤

i ωbi⊤

b

]
[

Cib

∫

S
vdmz/b

b dm
∫

S
rdmz×

b vdmz/b

b dm

]

︸ ︷︷ ︸

β

+
1
2

∫

S

vdmz/b⊤

i vdmz/b

i dm,

︸ ︷︷ ︸

T 0
Sw/i

(6)

where mS =
∫

S
dm, cSz

b =
∫

S
rdmz
b dm and JSz

b =
∫

S
−rdmz×

b rdmz×

b dm are the
zeroth, first, and second moments of mass of S about point z. Equation 6 can be
written compactly as

TSw/i =
1
2
νTMν + νTβ + T 0

Sw/i,

which is alternatively written using the generalized coordinates,

TSw/i =
1
2
q̇TSTMSq̇+ q̇TSTβ + T 0

Sw/i . (7)

Notice that the kinetic energy expression in Eq. 7 is not strictly quadratic in q̇, but
includes first and zeroth order terms. In particular, the terms q̇TSTβ and T 0

Sw/i
stem

from the fact that vdmz/b

b is non-zero, which is not the case for rigid bodies. Since
there is no potential energy considered, the Lagrangian simply reduces to the kinetic
energy, LSw/i = TSw/i .

Lagrange’s Equation

Lagrange’s equation is

d
dt

(
∂LSw/i

∂q̇

)T

−

(
∂LSw/i

∂q

)T

= f + �Tλ, (8)

where f is the generalized forces and moments and � is a constraint matrix such
that �q̇ = 0. Currently, the only constraint is the attitude constraint, and as such
� =

[

0 �bi
]

. Moreover, it is straightforward to confirm that �Ŵ = 0. The terms
of Lagrange’s equation will now be evaluated one-by-one.

The First Term, d
dt

(

∂LSw/i

∂q̇

)T

Using the Lagrangian in Eq. 7, it follows that
∂LSw/i

∂q̇
= q̇TSTMS+ βTS,

= νTMS+ βTS,
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owing to the fact thatM = MT. It follows that

(
∂LSw/i

∂q̇

)T

= STMν + STβ,

and as such,

d
dt

(
∂LSw/i

∂q̇

)T

= ṠTMν + STṀν + STMν̇ + ṠTβ + STβ̇. (9)

The terms Ṁ and β̇ are

Ṁ =

[

0 − (Ċ⊤
bic

Sz×

b + C⊤
bi ċ

Sz×

b )

ċSz×

b Cbi + cSz×

b Ċbi J̇Sz
b

]

,

β̇ =

⎡

⎢
⎣

ĊT

bi

∫

S
vdmz/b

b dm + CT

bi

∫

S
v̇dmz/b

b dm

∫

S
ṙdmz×

b vdmz/b

b dm +
∫

S
rdmz×

b v̇dmz/b

b dm

⎤

⎥
⎦ .

Recall that the system S is a constant-mass system, but is not necessarily rigid. As
such, ṁS = 0 while ċSz

b �= 0 and J̇Sz
b �= 0.

The Second Term,
(

∂LSw/i

∂q

)T

First, write ∂LSw/i

∂q as

∂LSw/i

∂q
=

[
∂LSw/i

∂rzwi

∂LSw/i

∂qbi

]

, (10)

where the second term can be expanded as

∂LSw/i

∂qbi
=

∂LSw/i

∂ωbi
b

∂ωbi
b

∂qbi
+

∂̂LSw/i

∂̂qbi
.

The term ∂̂LSw/i

∂̂qbi
is the partial derivative of LSw/i with respect to qbi neglecting the

dependence of ωbi
b on qbi . Equation 10 can now be written as

∂LSw/i

∂q
=

[
∂LSw/i

∂rzwi
0
]

+

[

∂LSw/i

∂vzw/i

i

∂LSw/i

∂ωbi
b

]

︸ ︷︷ ︸

∂LSw/i
∂ν

�bi +

[

0
∂̂LSw/i

∂̂qbi

]

,
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where �bi = diag(0, ∂ωbi
b

∂qbi ). The term
∂LSw/i

∂rzwi
is zero, whilst ∂LSw/i

∂ν
= νTM+ βT. To

compute ∂̂LSw/i

∂̂qbi
, first note that the Lagrangian is

LSw/i =
1
2
mSv

zw/iT

i vzw/i

i − vzw/iT

i CT

bic
Sz×

b ωbi
b +

1
2
ωbiT

b JSz
b ωbi

b

+vzw/iT

i CT

bi

∫

S

vdmz/b

b dm + ωbiT

b

∫

S

rdmz×

b vdmz/b

b dm + T 0
Sw/i .

Therefore,

∂̂LSw/i

∂̂qbi
= ∂̂

∂̂qbi

(

−vzw/iT

i CT

bic
Sz×

b ωbi
b + vzw/i⊤

i CT

bi

∫

S
vdmz/b

b dm
)

,

= ∂̂

∂̂qbi

(

ωbiT

b cSz×

b Cbivzw/i

i +
∫

S
vdmz/b⊤

b dmCbivzw/i

i

)

,

= ωbiT

b cSz×

b

∂(Cbivzw/i
i )

∂qbi +
∫

S
vdmz/b⊤

b dm ∂(Cbivzw/i
i )

∂qbi .

Finally, the second term of Lagrange’s equation is

∂LSw/i

∂q
=

(

νTM+ βT

)

�bi

+

[

0
(

ωbiT

b cSz×

b

∂(Cbivzw/i

i )

∂qbi
+

∫

S

vdmz/bT

b dm
∂(Cbivzw/i

i )

∂qbi

)]

,

(
∂LSw/i

∂q

)T

= �biTMν + �biTβ

+

⎡

⎣

0
(

−
∂(Cbivzw/i

i )T

∂qbi cSz×

b ωbi
b +

∂(Cbivzw/i
i )T

∂qbi

∫

S
vdmz/b

b dm
)

⎤

⎦

︸ ︷︷ ︸

−anon

. (11)

Virtual Work and the Generalized Forces

For simplicity, only discrete forces acting at specific points will be considered. Con-
sider a discrete force f

−→
p acting at point p. The position of p relative to w resolved

in Fi is

rpw

i = Cibrpz

b + rzwi .

A virtual displacement associated with r
−→

pw is [24]

δrpw

i = δrzwi +
∂(CT

bir
pz

i )

∂qbi
δqbi,
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and thus the virtual work done by f
−→

p is

δWSw,p = f
−→

p · δ r
−→

pw

= fp
T

i δrzwi + fp
T

i

∂(CT

birpz)

∂qbi
δqbi

=
[

δrzw
T

i δqbiT
]

︸ ︷︷ ︸

δqT

[ fpi
∂(CT

bir
pz)

∂qbi

T

fpi

]

︸ ︷︷ ︸

f p

. (12)

Since the total virtual work done on S is the sum of virtual work done by each force,
the sum of generalized forces and moments would be a summation of terms identical
to f p. That is, f = f p1+f p2+· · ·+f pN , and thus this is the term that is substituted
into Lagrange’s equation.

Lagrange’s Equation

Substituting Eq. 9, Eq. 11, and the generalized forces described by Eq. 12 into Eq. 8
gives

STMν̇ + STṀν + (ṠT − �biT)Mν + STβ̇ + (ṠT − �biT)β + anon = f + �Tλ, (13)

where anon has been defined in Eq. 11. Recalling the identities Eq. 2, Eq. 3, Eq. 4,
as well as the fact that ŴTST = 1 and ŴT�T = 0, pre-multiplying Eq. 13 by ŴT and
simplifying yields

Mν̇ + Ṁν +

[
0 0
0 ωbi×

b

]

Mν + β̇ +

[
0 0
0 ωbi×

b

]

β − ŴTanon = ŴTf . (14)

The terms ŴTanon and ŴTf are

Ŵ⊤anon =

[
0

−(Cbivzw/i

i )×cSz×

b ωbi
b + (Cbivzw/i

i )×
∫

S
vdmz/b

b dm

]

,

Ŵ⊤f =

[ ∑N
n=1f

pn

i
∑N

n=1r
pnz×

b Cbifpn

i

]

�

[

fSi
mSz

b

]

,

where fSi is the sum of external forces acting on S and mSz
b is the sum of external

moments acting on S about point z. The mass matrixM in Eq. 14 is symmetric pos-
itive definite, regardless of the attitude parameterization, and is therefore invertible.
Equation 14 constitutes the equation of motion of the constant-mass system S. To
convert this to variable-mass equations of motion, Eq. 14 will be expanded into its
constituent translational and rotational dynamics and Reynold’s Transport Theorem
will be invoked. This will also make the equivalence to traditional forms clear.
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Translational Dynamics

Expanding the first three rows of Eq. 14, whilst staying in matrix form, yields

mS v̇
zw/i

i − CT

bic
Sz×

b ω̇bi
b −

(

(−ωbi×

b Cbi)
TcSz×

b + C⊤
bi ċ

Sz×

b

)

ωbi
b

+ (−ωbi×

b Cbi)
T

∫

S

vdmz/b

b dm + CT

bi

∫

S

v̇dmz/b

b dm = fSi . (15)

Recalling that

cSz×

b =

∫

S

rdmz×

b dm = mSrSz×

b ,

ċSz×

b =

∫

S

vdmz/b×

b dm,

where rSz
b is the instantaneous center of mass of S, Eq. 15 becomes

mS

[

v̇zw/i

i + Cibω̇
bi×

b rSz
b + Cibω

bi×

b ωbi×

b rSz
b

]

+ 2Cib

∫

S

ωbi×

b vdmz/b

b dm + Cib

∫

S

v̇dmz/b

b dm = fSi .

Using Reynold’s Transport Theorem given in Eq. 5, it can be shown that
∫

S

v̇dmz/b

b dm =

∫

V (t)

d
dt

(

ρvdmz/b

b

)∣
∣
∣
Fb

dV +

∫

B(t)

ρvdmz/b

b (vdmz/bT

b nb)dS,

where nb is the components of an outwards-pointing normal unit vector to the
boundaryB, resolved inFb, and ρ is the mass density of the element dm. By defining,

fCi = −2Cib

∫

V (t)

ρωbi×

b vdmz/b

b dV,

fUi = −Cib

∫

V (t)

d
dt

(

ρvdmz/b

b

)∣
∣
∣
Fb

dV,

fRi = −Cib

∫

B(t)

ρvdmz/b

b (vdmz/bT

b nb)dS,

the well-known variable-mass translational equations reported in [4–7, 15, 16, 19]
emerge, that being

mS

[

v̇zw/i

i + ω̇bi×

i rSz
i + ωbi×

i ωbi×

i rSz
i

]

= fSi + fCi + fUi + fRi . (16)

Recall that, in general, neither V (t) or B(t) are known since they correspond to
the constant-mass system, and the state of the mass that has left the primary volume
of interest is unknown. Only at the specific time t = t̄ where the systems S and S̄

coincide exactly, are V̄ and B̄ known, where by design V (t̄) = V̄ and B(t̄) = B̄.
Since Eq. 16 has the same form for any general instant t̄ , the bounds of integration
may now be replaced with S̄, V̄ , B̄. This is the exact result seen in [4–7, 15, 16, 19],
amongst others, when resolved in Fi . Although Eq. 16 is written in a form that can
be recognized, it is not necessarily convenient to resolve ω

−→
bi and r

−→
Sz in Fi . Terms

in Eq. 16 can be resolved in any frame with an appropriate use of DCMs.
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Rotational Dynamics

Expanding the last three rows of Eq. 14, whilst staying in matrix form, yields

cSz×

b Cbi v̇zw/i

i + JSz
b ω̇bi

b +
(

ċSz×

b Cbi + cSz×

b (−ωbi×

b Cbi)
)

vzw/i

i + J̇Sz
b ωbi

b

+ ωbi×

b

(

ċSz×

b Cbivzw/i

i + JSz
b ωbi

b

)

+

∫

S

ṙdmz×

b vdmz/b

b dm +

∫

S

rdmz×

b v̇dmz/b

b dm

+ ωbi×

b

∫

S

rdmz×

b vdmz/b

b − (Cbivzw/i

i )×cSz×

b ωbi
b + (Cbivzw/i

i )×
∫

S

vdm/b

b dm = mSz
b .

(17)

The terms −(Cbivzw/i

i )×cSz×

b ωbi
b and (Cbivzw/i

i )×
∫

S
vdm/b

b dm can be simplified.
Specifically,

−(Cbivzw/i

i )×cSz×

b ωbi
b = (cSz×

b ωbi
b )×Cbivzw/i

i

= (cSz×

b ωbi×

b − ωbi×

b cSz×

b )Cbivzw/i

i

= cSz×

b ωbi×

b Cbivzw/i

i − ωbi×

b cSz×

b Cbivzw/i

i ,

(Cbivzw/i

i )×
∫

S

vdm/b

b dm = −

∫

S

vdm/b×

b dmCbivzw/i

i

= −ċSz×

b Cbivzw/i

i ,

resulting in multiple terms in Eq. 17 to cancel out. Equation 17 now becomes,

cSz×

b Cbi v̇zw/i

i + JSz
b ω̇bi

b + J̇Sz
b ωbi

b + ωbi×

b JSz
b ωbi

b

+

∫

S

rdmz×

b v̇dmz/b

b dm + ωbi×

b

∫

S

rdmz×

b vdmz/b

b dm = mSz
b .

It can be shown by use of Reynold’s Transport Theorem that
∫

S

rdmz×

b v̇dmz/b

b dm =

∫

V

d
dt

(

ρrdmz×

b vdmz/b

b

)∣
∣
∣
Fb

dV

+

∫

B

ρrdmz×

b vdmz/b

b (vdmz/b⊤

b nb)dS,

and that

ωbi×

b

∫

S

rdmz×

b vdmz/b

b dm =

∫

V

ρωbi×

b rdmz×

b vdmz/b

b dV

+

∫

B

ρrdmz×

b ωbi×

b rdmz
b (vdmz/bT

b nb)dS.
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Therefore,

cSz×

b Cbi v̇zw/i

i + JSz
b ω̇bi

b + J̇Sz
b ωbi

b + ωbi×

b JSz
b ωbi

b +

∫

V

d
dt

(

ρrdmz×

b vdmz/b

b

)∣
∣
∣
Fb

dV

+

∫

B

ρrdmz×

b vdmz/b

b (vdmz/b⊤

b nb)dS +

∫

V

ρωbi×

b rdmz×

b vdmz/b

b dV

+

∫

B

ρrdmz×

b ωbi×

b rdmz
b (vdmz/bT

b nb)dS = mSz
b ,

(18)

which is again the exact result obtained in [4–7, 15, 16, 19], amongst others, resolved
in Fb. As before, since the system S coincides exactly with S̄ at the general instant
t = t̄ , and since the form of Eq. 18 is identical for all t̄ , the bounds of integration can
be changed to the known V̄ , B̄.

Conclusion

This note presents a Lagrangian approach to deriving the translational and rotational
dynamics of variable-mass systems. The advantage of the approach presented is that
any arbitrary attitude parameterization can be used to derive equations of motion
using the standard form of Lagrange’s equation. Moreover, the equations of motion
are maintained in matrix form, leading to concise representations of the equations of
motion.
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