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Abstract

Near-optimality robustness extends multilevel optimization with a limited deviation
of a lower level from its optimal solution, anticipated by higher levels. We analyze the
complexity of near-optimal robust multilevel problems, where near-optimal robust-
ness is modelled through additional adversarial decision-makers. Near-optimal robust
versions of multilevel problems are shown to remain in the same complexity class as
the problem without near-optimality robustness under general conditions.

Keywords Near-optimal robustness · Multilevel optimization · Complexity theory

Mathematics Subject Classification 91A65 · 90C26 · 90C10 · 90C10 · 90C11 · 90C60

1 Introduction

Multilevel optimization is a class of mathematical optimization problems where other
problems are embedded in the constraints. They are well suited to model sequential
decision-making processes, where a first decision-maker, the leader intrinsically inte-
grates the reaction of another decision-maker, the follower, into their decision-making
problem. In recent years, most of the research focuses on the study and design of effi-
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cient solution methods for the case of two levels, namely bilevel problems [1], which
fostered a growing range of applications.

Near-optimal robustness, defined in [2], is an extension of bilevel optimization. In
this setting, the upper level anticipates limited deviations of the lower level from an
optimal solution and aims at a solution that remains feasible for any feasible and near-
optimal solution of the lower level. This protection of the upper level against uncertain
deviations of the lower-level has led to the characterization of near-optimality robust-
ness as a robust optimization approach for bilevel optimization. The models where
the upper level is protected against all optimal lower level responses (that is, without
deviations) are referred to as pessimistic bilevel optimization models. In near-optimal
robustness, the lower-level response corresponds to the uncertain parameter and the
maximum deviation of the objective value from an optimal solution to the uncer-
tainty budget. Because the set of near-optimal lower-level solutions potentially has
infinite cardinality and depends on the upper-level decision itself, near-optimality
robustness adds generalized semi-infinite constraints to the bilevel problem. The addi-
tional constraint can also be viewed as a form of robustness under decision-dependent
uncertainty.

In this paper, we prove complexity results on multilevel problems to which near-
optimality robustness constraints are added under various forms. We show that under
fairly general conditions, the near-optimal robust version of a multilevel problem
remains on the same level of the polynomial hierarchy as the canonical problem. These
results are non-trivial assuming that the polynomial hierarchy does not collapse and
open the possibility of solution algorithms for near-optimal robust multilevel problems
as efficient as for their canonical counterpart. Even though we focus on near-optimal
robust multilevel problems, the complexity results we establish hold for all multilevel
problems that present the same hierarchical structure, i.e. the same anticipation and
parameterization between levels as the near-optimal formulation with the adversarial
problems, as defined in Sect. 3. In particular, the results extend to pessimistic multilevel
problems, which can be viewed as a special case of the equivalent near-optimal robust
multilevel problem.

The rest of this paper is organized as follows. Section 2 introduces the notation and
the background on near-optimality robustness and existing complexity results in mul-
tilevel optimization. Section 3 presents complexity results for the near-optimal robust
version of bilevel problems, where the lower level belongs to P and NP . These results
are extended in Section 4 to multilevel optimization problems, focusing on integer
multilevel linear problems with near-optimal deviations of the topmost intermediate
level. Section 5 provides complexity results for a generalized form of near-optimal
robustness in integer multilevel problems, where multiple decision-makers anticipate
near-optimal reactions of a lower level. Finally, we draw some conclusions in Sect. 6.

2 Multilevel optimization and near-optimality robustness

In this section, we introduce the notation and terminology for bilevel optimization
and near-optimality robustness, and highlight prior complexity results in multilevel
optimization. Let us define a bilevel problem as:
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min
x

F(x, v) (1a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (1b)

x ∈ X (1c)

where v ∈ arg min
y∈Y

{ f (x, y) s.t. gi (x, y) ≤ 0 ∀i ∈ [[ml ]]}. (1d)

We denote by X and Y the domain of upper- and lower-level variables respectively.
We use the convenience notation [[n]] = {1, . . . , n} for a natural n.

Problem (1) is ill-posed, since multiple solutions to the lower level may exist [3,
Ch. 1]. Models often rely on additional assumptions to alleviate this ambiguity, the
two most common being the optimistic and pessimistic approaches. In the optimistic
case (BiP), the lower level selects an optimal decision that most favours the upper
level. In this setting, the lower-level decision can be taken by the upper level, as long
as it is optimal for the lower-level problem. The upper level can thus optimize over
both x and v, leading to:

(BiP): min
x,v

F(x, v) (2a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (2b)

x ∈ X (2c)

v ∈ arg min
y∈Y

{ f (x, y) s.t. gi (x, y) ≤ 0 ∀i ∈ [[ml ]]}. (2d)

Constraint (2d) implies that v is feasible for the lower level and that f (x, v) is the
optimal value of the lower-level problem, parameterized by x .

The pessimistic approach assumes that the lower level chooses an optimal solution
that is the worst for the upper-level objective as in [1] or with respect to the upper-level
constraints as in [4].

The near-optimal robust version of (BiP) considers that the lower-level solution may
not be optimal but near-optimal with respect to the lower-level objective function. The
tolerance for near-optimality, denoted by δ is expressed as a maximum deviation of the
objective value from optimality. The problem solved at the upper level must integrate
this deviation and protects the feasibility of its constraints for any near-optimal lower-
level decision. The problem is formulated as:

(NORBiP): min
x,v

F(x, v) (3a)

s.t. (2b) − (2d) (3b)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]]
(3c)

where Z(x; δ) = {y ∈ Y | f (x, y) ≤ f (x, v) + δ, g(x, y) ≤ 0}. (3d)

Z(x; δ) denotes the near-optimal set, i.e. the set of near-optimal lower-level solutions,
depending on both the upper-level decision x and δ. (NORBiP) is a generalization of
the pessimistic bilevel problem since the latter is both a special case and a relaxation
of (NORBiP) [2]. We refer to (BiP) as the canonical problem for (NORBiP) [or
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equivalently Problem (4)] and (NORBiP) as the near-optimal robust version of (BiP). In
the formulation of (NORBiP), the upper-level objective depends on decision variables
of both levels, but is not protected against near-optimal deviations. A more conservative
formulation also protecting the objective by moving it to the constraints in an epigraph
formulation [2] is given by:

(NORBiP-Alt): min
x,v,τ

τ

s.t. (2b) − (2d)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]]

F(x, z) ≤ τ ∀z ∈ Z(x; δ),

The optimal values of the three problems are ordered as:

opt(BiP) ≤ opt(NORBiP) ≤ opt(NORBiP-Alt).

We next provide a review of complexity results for bilevel and multilevel optimiza-
tion problems. Bilevel problems are NP-hard in general, even when the objective
functions and constraints at both levels are linear [5]. When the lower-level problem is
convex, a common solution approach consists in replacing it with its KKT conditions
[6,7], which are necessary and sufficient if the problem satisfies certain constraint
qualifications. This approach results in a single optimization problem with comple-
mentarity constraints, of which the decision problem is NP-complete [8]. A specific
form of the three-level problem is investigated in [9], where only the objective value
of the bottom-level problem appears in the objective functions of the first and second
levels. If these conditions hold and all objectives and constraints are linear, the problem
can be reduced to a single level one with complementarity constraints of polynomial
size.

Pessimistic bilevel problems for which no upper-level constraint depends on lower-
level variables are studied in [10]. The problem of finding an optimal solution to
the pessimistic case is shown to be NP-hard, even if a solution to the optimistic
counterpart of the same problem is provided. A variant is also defined, where the
lower level may pick a suboptimal response only impacting the upper-level objective.
This variant is comparable to the Objective-Robust Near-Optimal Bilevel Problem
defined in [2]. In [11], the lower-level is assumed to respond to the upper level with a
decision derived from a heuristic algorithm from a predefined set. An uncertain bilevel
setting with a pure binary lower level is considered in [12]. Lower-level response
uncertainty is encoded as a maximum Hamming distance of the near-optimal decision
to the optimal one. In [4], the independent case of the pessimistic bilevel problem
is studied, corresponding to a special case of (NORBiP) with δ = 0 and all lower-
level constraints independent of the upper-level variables. It is shown that the linear
independent pessimistic bilevel problem, and consequently the linear near-optimal
robust bilevel problem, can be solved in polynomial time while it is strongly NP-
hard in the non-linear case.

When the lower-level problem cannot be solved in polynomial time, the bilevel
problem is in general Σ P

2 -hard. The notion of Σ P
2 -hardness and classes of the polyno-

mial hierarchy are recalled in Sect. 3. Despite this complexity result, new algorithms
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and corresponding implementations have been developed to solve these problems and
in particular, mixed-integer linear bilevel problems [13–15]. Variants of the bilevel
knapsack were investigated in [16], and proven to be Σ P

2 -hard as the generic mixed-
integer bilevel problem.

Multilevel optimization was initially investigated in [17] in the case of linear con-
straints and objectives at all levels. In this setting, the problem is shown to be in Σ P

s ,
with s +1 being the number of levels. The linear bilevel problem corresponds to s = 1
and is in Σ P

1 ≡ NP . If, on the contrary, at least the bottom-level problem involves
integrality constraints (or more generally belongs to NP but not P), the multilevel
problem with s levels belongs to Σ P

s . A model unifying multistage stochastic and mul-
tilevel problems is defined in [18], based on a risk function capturing the component
of the objective function which is unknown to a decision-maker at their stage. Com-
plexity and completeness results in the polynomial hierarchy above the first level are
compiled in [19]. We also refer the interested reader to Kleinert et al. [20] for a recent
review on complexity results and computational approaches in bilevel optimization.

As highlighted in [18], most results in the literature on complexity of multilevel
optimization use NP-hardness as the sole characterization. This only indicates that a
given problem is at least as hard as all problems in NP and that no polynomial-time
solution method should be expected unless NP = P .

We characterize near-optimal robust multilevel problems not only on the hardness
or “lower bound” on complexity, i.e. being at least as hard as all problems in a given
class but through their complexity “upper bound”, i.e. the class of the polynomial
hierarchy they belong to. The linear optimistic bilevel problem is for instance strongly
NP-hard, but belongs to NP and is therefore not Σ P

2 -hard. The results are established
for (NORBiP) and directly apply to (NORBiP-Alt), to the constraint-based pessimistic
bilevel problem from [4], and to the more classical objective-based pessimistic bilevel
formulation which can be reformulated as constraint-based.

3 Near-optimal robust bilevel problems

We establish in this section complexity results for near-optimal robust bilevel problems
for which the lower level L is a single-level problem parameterized by the upper-level
decision. (NORBiP) can be reformulated as in [2] by replacing each k-th semi-infinite
Constraint (3c) with the lower-level solution zk in Z(x; δ) that yields the highest value
of Gk(x, zk):
min
x,v

F(x, v) (4a)

s.t. (2b) − (2d) (4b)

Gk(x, zk) ≤ 0∀k ∈ [[mu]] (4c)

zk ∈ arg max
y∈Y

{Gk(x, y) s.t. f (x, y) ≤ f (x, v) + δ, g(x, y) ≤ 0} ∀k ∈ [[mu]].

(4d)

From a game-theoretical perspective, the near-optimal robust version of a bilevel
problem can be seen as a three-player hierarchical game. The upper level U and
lower level L are identical to the canonical bilevel problem. The third level is the
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adversarial problem A and selects the worst near-optimal lower-level solution with
respect to upper-level constraints, as represented by the embedded maximization in
Constraint (4d). If the upper-level problem has multiple constraints, the adversarial
problem can be decomposed into problems Ak, k ∈ [[mu]], where mu is the number
of upper-level constraints. The interaction among the three players is depicted in Fig.
1a. The adversarial problem can be split into mu adversarial problems as done in
[2], each finding the worst-case with respect to one of the upper-level constraints.
The canonical problem refers to the optimistic bilevel problem without near-optimal
robustness constraints. We refer to the variable v as the canonical lower-level decision.

The complexity classes of the polynomial hierarchy are only defined for decision
problems. We consider that an optimization problem belongs to a given class if that
class contains the decision problem of determining if there exists a feasible solution
for which the objective value at least as good as a given bound.

Definition 1 The decision problem associated with an optimization problem is in
P∗ [H], with H a set of real-valued functions on a vector space Y , iff:

i. it belongs to P;
ii. for any h ∈ H, the problem with an additional linear constraint and an objective

function set as h(·) is also in P .

A broad range of problems in P are also in P∗ [H] for certain sets of functions
H (see Example 1 for linear problems and linear functions and Example 2 for some
combinatorial problems in P). The classes NP∗ [H] and Σ P∗

s [H] are defined in a
similar way. We next consider two examples illustrating these definitions.

Example 1 Denoting by HL the set of linear functions from the space of lower-level
variables to R, linear optimization problems are in P∗ [HL ], since any given problem
with an additional linear constraint and a different linear objective function is also a
linear optimization problem.

Example 2 Denoting by HL the set of linear functions from the space of lower-level
variables to R, combinatorial optimization problems in P which can be formulated as
linear optimization problems with totally unimodular matrices are not in P∗ [HL ] in
general. Such problems include network flow or bipartite matching problems. Indeed,
adding a linear constraint may break the integrality of solutions of the linear relaxation
of the lower-level problem.

The polynomial hierarchy is first defined in [21] and a link to multilevel games is
established in [17]. The complexity class at the s-th level of the polynomial hierarchy
is denoted by Σ P

s , defined recursively as Σ P
0 = P , Σ P

1 = NP , and problems of
the class Σ P

s , s > 1 being solvable in non-deterministic polynomial time, provided
an oracle for problems of class Σ P

s−1. In particular, a positive answer to a decision
problem in NP can be verified, given a certificate, in polynomial time. If the decision
problem associated with an optimization problem is in NP , and given a potential
solution, the objective value of the solution can be compared to a given bound and the
feasibility can be verified in polynomial time. We reformulate these statements in the
following proposition:
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(c)

(a)

(d)

(b)

Fig. 1 Graphical representations of different near-optimal robust multilevel problems. Blue dashed arcs
represent a parameterization of the source vertex by the decisions of the destination vertex, solid red arcs
represent an anticipation of the decisions of the destination vertex in the problem of the source vertex.
Section 3 focuses on the setting presented in a, Section 4 addresses the multilevel problem illustrated in b

while c and d are the subject of Sect. 5

Proposition 1 [17] An optimization problem is in Σ P
s+1 if verifying that a given solution

is feasible and attains a given bound can be done in polynomial time, when equipped

with an oracle solving problems in Σ P
s in a single step.
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Proposition 1 is the main property of the classes of the polynomial hierarchy used to
determine the complexity of near-optimal robust bilevel problems in various settings
throughout this paper.

Lemma 1 Given a bilevel problem in the form of Problem (2), if the lower-level problem

is in P∗ [H], and

−Gk(x, ·) ∈ H ∀x,∀k ∈ [[mu]],

then the adversarial problem (4d) is in P .

Proof The lower-level problem can equivalently be written in an epigraph form:

(v,w) ∈ arg min
y,u

u

s.t. f (x, y) − u ≤ 0

g(x, y) ≤ 0.

Given a solution of the lower-level problem (v,w) and an upper-level constraint
Gk(x, y) ≤ 0, the adversarial problem is defined by:

min
y,u

− G(x, y)

s.t. f (x, y) − u ≤ 0

g(x, y) ≤ 0

u ≤ w.

Compared to the lower-level problem, the adversarial problem contains an additional
linear constraint u ≤ w and an objective function updated to −G(x, ·). ⊓⊔

Lemma 1 highlights that the restriction imposed by the class P∗ [H] on the lower
level ensures the complexity class for the adversarial problem. This result is now
leveraged in Theorem 1.

Theorem 1 Given a bilevel problem (P), if there exists H such that the lower-level

problem is in NP∗ [H] and

−Gk(x, ·) ∈ H ∀x ∈ X ,∀k ∈ [[mu]],

then the near-optimal robust version of the bilevel problem is in Σ P
2 similarly to the

canonical problem.

Proof The proof relies on the ability to verify that a given solution (x, v) results in
an objective value at least as low as a bound Γ according to Proposition 1. This
verification can be carried out with the following steps:

i. compute the upper-level objective value F(x, v) and verify that F(x, v) ≤ Γ ;
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ii. verify that upper-level constraints are satisfied;
iii. verify that lower-level constraints are satisfied;
iv. compute the optimum value L(x) of the lower-level problem parameterized by x

and check if:

f (x, v) ≤ min
y

L(x);

v. Compute the worst case: Find

zk ∈ arg max
y∈Y

Ak(x, v) ∀k ∈ [[mu]],

where Ak(x, v) is the k-th adversarial problem parameterized by (x, v);
vi. Verify near-optimal robustness: ∀k ∈ [[mu]], verify that the k-th upper-level con-

straint is feasible for the worst-case zk .

Steps i and ii can be carried out in polynomial time by assumption. Step iii requires to
check the feasibility of a solution to a problem in NP . This can be done in polynomial
time. Step iv consists in solving the lower-level problem, while Step v corresponds to
solving mu adversarial problems belonging to NP based on Lemma 1. ⊓⊔

Theorem 2 Given a bilevel problem (P), if the lower-level problem is convex and in

P∗ [H] with H a set of convex functions, and if the upper-level constraints are such

that −Gk(x, ·) ∈ H, then the near-optimal robust version of the bilevel problem is in

NP . If the upper-level constraints are convex non-affine with respect to the lower-level

constraints, the near-optimal robust version is in general not in NP .

Proof If the upper-level constraints are concave with respect to the lower-level vari-
ables, the adversarial problem defined as:

max
y∈Y

Gk(x, y) (5a)

s.t. g(x, y) ≤ 0 (5b)

f (x, y) ≤ f (x, v) + δ (5c)

is convex. Furthermore, by definition of P∗ [H], the adversarial problem is in P .
Applying the same reasoning as in the proof of Theorem 1, Steps 1-3 are identical

and can be carried out in polynomial time. Step 4 can be performed in polynomial time
since L is in P . Step 5 is also performed in polynomial time since ∀k ∈ [[mu]], each
k-th adversarial problem (5) is a convex problem that can be solved in polynomial
time since L is in P∗ [H]. Step 6 simply is a simple comparison of two quantities.

If the upper-level constraints are convex non-affine with respect to the lower-level
variables, Problem (5) maximizes a convex non-affine function over a convex set. Such
a problem is NP-hard in general. Therefore, the verification that a given solution is
feasible and satisfies a predefined bound on the objective value requires solving the mu

NP-hard adversarial problems. If L is in NP∗ [H], then these adversarial problems
are in NP by Eq. (3), and the near-optimal robust problem is in Σ P

2 according to
Proposition 1. ⊓⊔
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4 Near-optimal robust mixed-integer multilevel problems

In this section, we study the complexity of a near-optimal robust version of mixed-
integer multilevel linear problems (MIMLP), where the lower level itself is a s-level
problem and is Σ P

s -hard. The canonical multilevel problem is, therefore, Σ P
s+1-hard

[17]. For some instances of mixed-integer bilevel, the optimal value can be approached
arbitrarily but not reached [22]. To avoid such pathological cases, we restrict our atten-
tion to multilevel problems satisfying the criterion for mixed-integer bilevel problems
from Fischetti et al. [13]:

Property 1 The continuous variables at any level s do not appear in the problems at
levels that are lower than s (the levels deciding after s).

More specifically, we will focus on mixed-integer multilevel linear problems where
the upper-most lower level L1 may pick a solution deviating from the optimal value,
while we ignore deviations of the levels Li>1. This problem is noted (NOMIMLPs)
and depicted in Fig. 1b.

The adversarial problem corresponds to a decision of the level L1 different from
the canonical decision. This decision induces a different reaction from the subsequent
levels L2, L3. Since the top-level constraints depend on the joint reaction of all follow-
ing levels, we will note zki = (zk1, zk2, zk3) the worst-case joint near-optimal solution
of all lower levels with respect to the top-level constraint k.

Theorem 3 If L1 is in Σ P∗
s [HL ], the decision problem associated with (NOMIMLPs)

is in Σ P
s+1 as the canonical multilevel problem.

Proof Given a solution to all levels (xU , v1, v2, . . . vs) and a bound Γ , verifying that
this solution is (i) feasible, (ii) near-optimal robust of parameter δ, and (iii) has an
objective value at least as good as the bound Γ can be done through the following
steps:

i. Compute the objective value and verify that it is lower than Γ ;
ii. verify variable integrality;

iii. solve the problem L1, parameterized by xU , and verify that the solution
(v1, v2, . . . ) is optimal;

iv. ∀k ∈ [[mu]], solve the k-th adversarial problem. Let zk = (zk1, zk2 . . . zks) be the
solution;

v. ∀k ∈ [[mu]], verify that the k-th upper-level constraint is feasible for the adversarial
solution zk .

Steps i, ii, and v can be performed in polynomial time. Step iii requires solving a
problem in Σ P

s , while Step iv consists in solving mu problems in Σ P
s , since L1 is in

Σ P∗
s [HL ]. Checking the validity of a solution thus requires solving problems in Σ P

s

and is itself in Σ P
s+1, like the original problem. ⊓⊔

5 Generalized near-optimal robust multilevel problem

In this section, we study the complexity of a variant of the problem presented in
Sect. 4 with s + 1 decision-makers at multiple top levels U1,U2, . . . ,Us and a single
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bottom level L. We denote by U1 the top-most level. We assume that the bottom-level
entity may choose a solution deviating from optimality. This requires that the entities
at all Ui ∀i ∈ {1 . . . s} levels anticipate this deviation, thus solving a near-optimal
robust problem to protect their feasibility from it. The variant, coined GNORMPs , is
illustrated in Fig. 1c, d. We assume throughout this section that Property 1 holds
in order to avoid the unreachability problem previously mentioned. The decision
variables of all upper levels are denoted by x(i), and the objective functions by
F(i)(x(1), x(2), . . . , x(s)). The lower-level canonical decision is denoted v as in previ-
ous sections.

If the lowest level L belongs to NP , Us belongs to Σ P
2 and the original problem

is in Σ P
s+1. In a more general multilevel case, if the lowest level L solves a problem

in Σ P
r , Us solves a problem in Σ P

r+1 and U1 in Σ P
r+s .

We note that for all fixed decisions x(i)∀i ∈ {1 . . . s −1}, Us is a near-optimal robust
bilevel problem. This differs from the model presented in Sect. 4 where, for a fixed
upper-level decision, the top-most lower level L1 is the same parameterized problem
as in the canonical setting. Furthermore, as all levels Ui anticipate deviations of the
lower-level decision in the near-optimal set, the worst case can be formulated with
respect to the constraints of each of these levels. In conclusion, distinct adversarial
problems Ai ∀i ∈ {1 . . . s} can be formulated. Each upper level Ui integrates the
reaction of the corresponding adversarial problem in its near-optimality robustness
constraint. This formulation of (GNORMPs) is depicted Fig. 1d.

Theorem 4 Given a s + 1-level problem (GNORMPs), if the bottom-level problem

parameterized by all upper-level decisions L(x(1), x(2) . . . , x(s)) is in Σ P∗
r [HL ], then

(GNORMPs) is in Σ P
r+s like the corresponding canonical bilevel problem.

Proof We denote by xU = (x(1), x(2), . . . , x(s)) and mUi
the number of constraints

of problem Ui . As for Theorem 1, this proof is based on the complexity of verifying
that a given solution (xU , v) is feasible and results in an objective value below a given
bound. The verification requires the following steps:

i. compute the top-level objective value and assert that it is below the bound;
ii. verify feasibility of (xU , v) with respect to the constraints at all levels;

iii. verify optimality of v for L parameterized by xU ;
iv. verify optimality of x(i) for the near-optimal robust problem solved by the i-th

level Ui (x(1), x(2) . . . x(i−1); δ) parameterized by all the decisions at levels above
and the near-optimality tolerance δ;

v. compute the near-optimal lower-level solution zk which is the worst-case with
respect to the k-th constraint of the top-most level ∀k ∈ [[mU1]];

vi. verify that each k ∈ [[mU1]] top-level constraint is satisfied with respect to the
corresponding worst-case solution zk .

Steps i-ii are performed in polynomial time. Step iii requires solving Problem
L(xU ), belonging to Σ P

r . Step iv consists in solving a generalized near-optimal robust
multilevel problem (GNORMPs−1) with one level less than the current problem. Step
v requires the solution of mU1 adversarial problems belonging to Σ P

r since L is in
Σ P∗

r [HL ]. Step vi is an elementary comparison of two quantities for each k ∈ [[mu]].
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The step of highest complexity is Step 4. If it requires to solve a problem in Σ P
r+s−1,

then (GNORMPs) is in Σ P
r+s similarly to its canonical problem.

Let us assume that Step iv requires to solve a problem outside Σ P
r+s−1. Then

(GNORMPs−1) is not in Σ P
r+s−1 as the associated canonical problem, and that Step iv

requires to solve a problem not in Σ P
r+s−2. By recurrence, (GNORMP1) is not in Σ P

r+1.
However, (GNORMP1) is a near-optimal robust bilevel problem where the lower level
itself in Σ P

r ; this corresponds to the setting of Section 4. This contradicts Theorem 3,
(GNORMPs−1) is therefore in Σ P

r+s−1. Verifying the feasibility of a given solution to

(GNORMPs) requires solving a problem at most in Σ P
r+s−1. Based on Proposition 1,

(GNORMPs) is in Σ P
r+s as its canonical multilevel problem. ⊓⊔

In conclusion, Theorem 4 shows that adding near-optimality robustness at an arbi-
trary level of the multilevel problem does not increase its complexity in the polynomial
hierarchy. By combining this property with the possibility to add near-optimal devia-
tion at an intermediate level as in Theorem 3, near-optimality robustness can be added
at multiple levels of a multilevel model without changing its complexity class in the
polynomial hierarchy.

6 Conclusion

In this paper, we have shown that for many configurations of bilevel and multilevel
optimization problems, adding near-optimality robustness to the canonical problem
does not increase its complexity in the polynomial hierarchy. This result is obtained
even though near-optimality robustness constraints add another level to the multilevel
problem, which in general would change the complexity class.

We defined the class Σ P∗
s [H] as a slight restriction on problems from Σ P

s , ensuring
that the adversarial problem derived from a lower-level problem from Σ P

s lies in the
same complexity class. While the definition of Σ P∗

s [H] is general enough to capture
many non-linear multilevel problems, it avoids specific cases where the modified
objective or additional linear constraint changes the complexity class for the adversarial
problem.

Future work will consider specialized solution algorithms for some classes of near-
optimal robust bilevel and multilevel problems.
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