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This file consists of four main sections. The first contains supplmentary results figuties baseline
scenario presented in the main manuscript. This includes a figure illustratingahatlectricity
trading, and results for all four segments included. Numerical data fagthed are available in the
Excel file in the Supplementary information. The second section contains the resultheredes no
allocation of battery production to second life applications. In the third sectiaitsrés the grid
average approach to calculating eletricity consumption mix are presentedastisedtion contains
background information regarding the vehicle specifications and calculation of footprints.
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Supplementary results figures from main manuscript: electricity trading an
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Figure 1 - Electricity imports and exports by country, with net trade anetaab6 of total domestic production
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Figure 2 - Absolute BEV lifecycle carbon intensities (g@@kmt) for all four studied segments: (a) mi@-segment), (b) medium (C-
segment), (c) large (D-segment) and (d) luxury (F-segment) vehicles
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Figure 3 +Vehicle manufacturing emissions, as % of total lifecycle CO2 footprint forall fadiedtsegments: (a) mini (A-segment, 26.6 kWh),
(b) medium (C-segment, 42.1 kWh), (c) large (D-segment, 59.9 k&/(d)doxury (F-segment, 89.8 kWh) vehicles

(a) A-segment (mini) (b) C-segment (medium) }

10

12 F—10

Lifecycle CO» mitigated through electrification,
% difference from ICEV

Figure 4 - Lifecycle climate mitigation effects of electrification, as % differenoe similarly sized ICEV for all four studied segments: (a) mini
(A-segment), (b) medium (C-segment), (c) large (D-segment) and (d) luxurgniiers vehicles.



Results using assuming no allocation of battery production emissions to seco
life applications
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Figure 5 - Absolute BEV lifecycle carbon intensities (@@ km') for (a) mini(A-segment), (b) medium (C-segment), (c) compact SUV (JC-
segment) and (d) mid-size SUV (JE-segment) vehicles assuming no alloth#tiery production emissions to second life applications.
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Figure 6 - Vehicle manufacturing emissions, as % of total lifecycle CO2 footprifat)fmini (A-segment, 36.8 kWh), (b) medium (C-segment,
62 kWh), (c) compact SUV (JC-segment, 82 kWh) and (d) mid-size SUV (@énse@b kWh) vehicles. Assumes no allocation of battery
production emissions to second life applications.
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Figure 7 - Lifecycle climate mitigation effects of electrification, as % differgnoesimilarly sized ICEV for (a) mifA-segment), (b) medium
(C-segment), (c) compact SUV (JC-segment) and (d) mid-size SUV (JE-seghieley.vessumes no allocation of battery production
emissions to second life applications.
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Figure 8 - Sensitivity of lifecycle intensity to BEV lifetime assumptions. Bars ted&age of BEV intensities for lifetime assumptions of
150800 km (upper limit) and 25800 km (lower limit). Markers indicate BEV under baseline assumptio@@8d0 km. Horizontal lines
indicate ICEV intensities for 1880 (baseline assumption), 2800 and 25@00 km. Assumes no allocation of battery production emissions to
second life applications.



Results using grid average approach to calculating consumption for electricity

Figure 9 - Lifecycle carbon footprints of European electricity mi@20 using grid average approach for calculating consumptionkaxo
and Lonza 2018Bubble colour indicates total electricity traded (export and imports) as a percentagé ddmestic productiolubble area
LQGLFDWHY HDFK  oRsQriplibhFalathedditReNothL Fukopean consumption. Sterded indicate +/- 10%, 20% and 50% of
45-degree line.

Figure 10 - Absolute BEV lifecycle carbon intensities (g2 kmt') for (a) mini(A-segment), (b) medium (C-segment), (c) large (D-segment)
and (d) luxury (F-segment) vehicles using consumption electricity mix calcwilkethe grid average approach (Moro and Lonza 2018).



Figure 11 - Vehicle manufacturing emissions, as % of total lifecycle CO2 footprint for (ajAnsggment, 26.6 kwh), (b) medium (C-segment,
42.1 kWh), (c) large (D-segment, 59.9 kWh) and (d) luxury (Ferg 89.8 kWh) vehicles. Uses grid average approach for calculating
consumption mix (Moro and Lonza 2018).

Figure 12 - Lifecycle climate mitigation effects of electrification, as % difference from sinsiadyg ICEVfor (a) mini(A-segment), (b)
medium (C-segment), (c) large (D-segment) and (d) luxury (F-segment) valiggegyrid average approach for calculating consumption mix
(Moro and Lonza 2018).



Figure 13 - Sensitivity of lifecycle intensity to BEV lifetime assumptions. Bars indicate cdri8eV intensities for lifetime assumptions of
150800 km (upper limit) and 25800 km (lower limit). Markers indicate BEV under baseline assumptio8@8d0 km. Horizontal lines
indicate ICEV intensities for 1880 (baseline assumption), 2800 and 25@00 km. Uses grid average approach for calculating consumption
mix (Moro and Lonza 2018).

Figure 14 - Effect of domestic battery production on BEV lifecycle carbon inteR&tgtive change from BEV of the same segment with Asian
production of batteries. Uses grid average approach for calculatimgwumption mix (Moro and Lonza 2018).



Background data

describes selected technical specifications regarding the vehicles moddikedriticte. The curb and battery weight, use phase energy intensity
(WLTP), WLTP tailpipe emissions and fuel efficiency were based on the respectiveengptige models listed below. Note, however, that generic
production and endf-life emissions intensities were used and therefore the study does not reareE@#A of the specific models. Emissions factors for
production and end-of-life for both powertrain technologies are based on Ellings€@@t6)| with the F-segment (luxury) values being used as a proxy for

the SUV classes here.

Table 1: Detailed vehicle specifications and background information.

A C JC JE
mini car medium car compact SUV mid-size SUV
Representative model Volkswagen e4 Nissan Leaf e Volkswagen Audi e-tron S 55
up! 36.8 kWh 62 kWh ID.4 82 kWh quattro 95 kWh
Curb weight kg 1160 1686 2149 2620
Battery weight kg 248 440 493 700
Curb weight without battery kg 912 1246 1656 1920
5 Vehicle production emissions intensi t COe (t vehicle} | 5.2 5.2 5.2 5.2
m | (without battery)
End of life emissions intensity, battery t COe (t battery} | 0.36 0.36 0.36 0.36
End of life emissions intensity (withol t COse (t vehicle)} | 0.45 0.45 0.45 0.45
battery)
Allocated share of production emissions | % 53% 39% 30% 38%
BEV
Representative model Volkswagen up! Volkswagen Skoda Kodiag BMW X4 M40i
GTI Golf 1.5 TSI 2.0TSI
Curb weight kg 916 1240 1700 1985
> | WLTP fuel efficiency L (100 km)* 5.3 6 8.6 9.3
'(-'_)J WLTP tailpipe emissions g CO2 km 120 135.5 194 212
= | Well-to-wheel use phase intensitftailpipe +| g CO2e kit 148 168 240 261
fuel chain, based on fuel efficiency)
Production emissions intensity t COee (t vehicle} | 3.9 4.3 5.7 5.7
End of life emissions intensity t COee (t vehicle} | 0.4 0.5 0.6 0.7
I Assumes 17 g CO2-eq upstream emissions tél and lower heating value of 31.6 M3 (Prussi et al. 2020)
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Table 2 Correspondence of ecoinvent 3.5 activities with ENEJOwer generation technolgg

ENTSO-E category

categories

ecoinvent3.5 activity

Biomass

Fossil Brown coal/Lignite

Fossil Coal-derived gas
Fossil Gas

Fossil Hard coal
Fossil Oil

Fossil Peat
Geothermal
Hydro Pumped Storage

Hydro Run-of-river and
poundage
Hydro Water Reservoir

Nuclear

Solar

heat and powero-generation, wood chips, 6667 kW, state-of
the-art 2014

heat and power co-generation, biogas, gas engine

heat and power co-generation, wood chips, 6667 kW

heat and power co-generation, lignite

electricity production, lignite

treatment of coal gas, in power plant

electricity production, natural gas, conventional power plant
heat and power co-generation, natural gas, 500kW electrica
lean burn

heat and powero-generation, natural gas, conventional powt
plant, 100MW electrical

electricity production, natural gas, combined cycle power pl:
heat and power co-generation, natural gas, combined cycle
power plant, 400MW electrical

heat and power co-generation, hard coal

electricity production, hard coal

heat and power co-generation, oil

electricity production, oil

electricity production, peat

electricity production, deep geothermal

electricity production, hydro, pumped storage

electricity production, hydro, run-of-river

electricity production, hydro, reservoir, non-alpine region
electricity production, hydro, reservoir, alpine region
electricity production, nuclear, pressure water reactor
electricity production, nuclear, boiling water reactor
electricity production, nuclear, pressure water reactor, heav'
water moderated

electricity production, photovoltaic, 3kWp slanted-roof
installation, CIS, panel, mounted

electricity production, photovoltaic, 3kWp slanted-roof
installation, a-Si, laminated, integrated

electricity production, photovoltaic, 3kWp slanted-roof
installation, single-Si, laminated, integrated

electricity production, photovoltaic, 3kWp slanted-roof
installation, ribbon-Si, laminated, integrated

electricity production, photovoltaic, 3kWp facade installation
multi-Si, panel, mounted

electricity production, photovoltaic, 3kWp slanted-roof
installation, ribbon-Si, panel, mounted

electricity production, photovoltaic, 3kWp slanted-roof
installation, a-Si, panel, mounted

electricity production, photovoltaic, 3kWp slanted-roof
installation, CdTe, laminated, integrated
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ENTSO-E category

ecoinvent3.5 activity

Waste

Wind Offshore
Wind Onshore

electricity production, photovoltaic, 570kWp open ground
installation, multiSi

electricity production, photovoltaic, 3kWp slanted-roof
installation, single-Si, panel, mounted

electricity production, photovoltaic, 3kWp facade installation
single-Si, laminated, integrated

electricity production, photovoltaic, 3kWp flat-roof installatiol
singleSi

electricity production, photovoltaic, 3kWp facade installation
multi-Si, laminated, integrated

electricity production, photovoltaic, 3kWp slanted-roof
installation, multi-Si, panel, mounted

electricity production, photovoltaic, 3kWp slanted-roof
installation, multi-Si, laminated, integrated

electricity production, photovoltaic, 3kWp slanted-roof
installation, multi-Si, panel, mounted, label-certified
electricity production, photovoltaic, 3kWp facade installation
single-Si, panel, mounted

electricity production, photovoltaic, 3kWp slanted-roof
installation, single-Si, panel, mounted, label-certified
electricity production, solar tower power plant, 20 MW
electricity production, solar thermal parabolic trough, 50 MW
electricity production, photovoltaic, 3kWp flat-roof installatiol
multi-Si

electricity, from municipal waste incineration to generic marl
for electricity, medium voltage

electricity production, wind, 1-3MW turbine, offshore
electricity production, wind, <IMW turbine, onshore
electricity production, wind, >3MW turbine, onshore

electricity production, wind, 1-3MW turbine, onshore
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