POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE =50

PolytechniqUe Montréal D'INGENIERIE

Titre: ' Probleme du voyageur de commerce : une formulation par
Title: programmation linéaire

Auteurs:
Authors:

Date: 1975
Type: Rapport / Report

Jean-Claude Picard, & Maurice Queyranne

Référence: Picard, J.-C., & Queyranne, M. (1975). Probleme du voyageur de commerce : une
" formulation par programmation linéaire. (Rapport technique n° EP-R-75-07).

Citation: https://publications.polymtl.ca/9217/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) o
PolyPublie URL: https://publications.polymtl.ca/9217/

Version: Version officielle de I'éditeur / Published version

Conditions d’utilisation

Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: EP-R-75-07
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/9217/
https://publications.polymtl.ca/9217/

CA2PQ
UPL
75R0O7
FRE

RAPPORT TECHNIQUE : EP75- R - 7
Classification: Library of Congress

LE PROBLEME DU VOYAGEUR DE COMMERCE:
UNE FORMULATION PAR PROGRAMMATION LINEAIRE

PAR: Jean Claude Picard, Ecole Polytechnique
Maurice Queyranne, Ecole Polytechnique

Le 5 février 1975

Ecole Polytechnique de Montréal

P00l

Snowdon
Montréal 248







= céﬂ’)—

p™

1 9 SFPT 1975

o 0. cienT el v glatna

| O- bpwre solufie

2.
A tediche 4
.
ol A

ot /"v * N
/\.Q’a.»oz';v-'«()&’ ‘& (’P*)

ook - Ao ene

(7445

SUR PLAGE



LE PROBLEME DU VOYAGEUR DE COMMERCE:
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RESUME

Dans un réseau d n+l sommets, un O-circuit et un chemin
d'origine x, fixée, devant comporter n+l arcs, et d'extrémité
Xo; une formulation par un programme lin€aire, d@ n contraintes,
du probléme du voyageur de commerce est définie; utilisant un
schéma de génération de colonne par recherche d'un O-circuit
de longueur minimale dans un réseau associé, ce programme li-
néaire fournit une ”excellenté" borne inférieure sur la lon-
gueur du trajet du voyageur de commerce; un algorithme par
"Branch and Bound'" en est dérivé, et donne une solution exacte

du probléme du voyageur de commerce.



INTRODUCTION

Le probléme du voyageur de commerce (TSP) est 1'un des problémes
les plus célébres de la littérature de la Recherche Opérationnelle
(voir par exemple [3] ). I1 consiste a trouver le plus court circuit
qui traverse au moins une fois chaque sommet d'un réseau. De nombreu-
ses méthodes de résolution approchée ont €té suggérées, fournissant
une "bonne'" solution dont on ne peut toutefois pas garantir en général

1'optimalité.

Peu de méthodes fournissant une solution exacte en un temps de
calcul raisonnable ont été développées; le principe général de celles
qui sont actuellement disponibles semble &tre le suivant:

(a) définir un probléme combinatoire

(1) facile a résoudre
(ii) tel que les circuits hamiltoniens (tours) soient
solution réalisable

(iii) qui respecte le classement des tours selon leur longueur

(b) si la solution de (a) n'est pas un tour, définir une structure
de '"branch and bound" de la facon suivante:
(1) séparer l'ensemble des tours selon qu'ils utilisent ou
non, certains arcs
(ii) évaluer une borne inférieure sur la longueur du tour

optimal dans chaque sous-ensemble ainsi défini, en



retournant au point (a).

Une procédure ainsi définie est donc récursive et 1'on ne peut
garantir que la solution optimale sera trouvée en un nombre ''raisonna-
ble" d'itérations; a ce point de vue, une bonne méthode est caractéri-
sée par:

1) la facilité de résolution du sous-probléme (a)

2) la qualité de la borne fournie par la solution optimale de (a)

Les méthodes disponibles sont essentiellement définies par la nature
du sous-probléme combinatoire (a): |

- probléme d'affectation: c'est la voie classique (voir [2}, [3],
[6], [7], Cuﬂ 5 [17]), le sous -probléme est aisé da résoudre
mais la borne obtenue est assez médiocre, d'ol un nombre consi-
dérable de séparations et d'évaluations (voir [2] s

- arbre de poids minimum (SST): Cette approche, apergue par
Christofides [S], et développée par Held et Karp [}2 I et II],
fournit une borne bien meilleure, pour un sous-probléme plus

facile a résoudre, d'ou des performances bien meilleures [}2 III.

Nous développons ici une nouvelle approche par laquelle le TSP est
plongé dans un probléme général de plus-court-chemin: le sous -probléme (a)
consiste en la recherche d'un chemin, dont 1'origine, 1l'extrémité et le
nombre d'arcs sont fixés ("0-circuit'') de longueur minimale; ce probléme

a été défini d'abord par Saigal [16], qui en avait d'ailleurs indiqué la



connexion avec le T.S.P. mais sans en dériver une méthode effective

de résolution.

A cette fin, nous définissons un programme linéaire 3 n contraintes
(ol n+l est le nombre de sommets du réseau) et a variables implicites
(voir par exemple [Lq, EQ I] 3 [14] ) pour lequel la génération d'une
colonne candidate s'obtient en cherchant un O-circuit de longueur mini-
male dans un réseau associé. La solution optimale du programme linéai-
re fournit une borne, généralement meilleure que celle de Held et Karp,
et dont nous prouvons qu'elle est toujours au moins aussi bonne (presque
toujours nettement meilleure) que celle du probléme d'affectation; en
outre, la solution optimale(qui est presque toujours un tour optimal dans
les problémes de taille modeste) fournit €galement des indications sur
les '"'chances'" qu'ont les arcs d'appartenir au tour optimal; de 13 nous
dérivons une structure de branch and bound efficace. Toutefois, le phé-
noméne de convergence lente vers la solution du programme linéaire sem-
ble indiquer que la méthode ici décrite devra &tre abandonnée pour des
problémes de taille moyenne (n » 30), au profit d'une méthode de relaxa-
tion, a la maniére de Held et Karp l}Z II], dont nous avons entrepris le

développement, et qui constituera la suite de cette &tude.



1. 0-Circuits

Soit R = (V, E, d) un réseaud V = n + 1 sommets, ou 1l'arc
(x,Y)€EE est muni d'une valuation d(x,y) représentant la '"longueur"
de 1'arc (x,y). Nous supposerons ce réseau complet (on peut affecter
une longueur infinie aux arcs inexistants) et sans boucle. Désignons
par Xo un sommet quelconque de R (pour le choix de xo, voir §6 )
et les autres sommets par XqsoeoXps dans toute la suite, nous noterons

dij = d(xi,x3) @E# 1)

Nous emploierons le mot tour pour désigner un circuit hamiltonien,
c'est d dire un chemin traversant exactement une fois chacun des sommets
Xps Xps...Xp du réseau. Un tour peut &tre considéré comme un chemin issu

de xgo, comportant exactement n + 1 arcs, et d'extrémité xq.

Nous appellerons O-circuit tout chemin (non nécessairement &lémen-
taire) issu de x,, comprenant n sommets intermédiaires distincts de xg,et
d'extrémité x5; en particulier, un tour est un O-circuit et, réciproque-
ment, un O-circuit ¢ est un tour si et seulement s'il traverse exactement
une fois chaque sommet intermédiairej sinon il existe quelque sommet
xi (# Xo) qui n'est pas atteint par c, et aussi quelque autre sommet
xj (# Xo) qui est traversé au moins deux fois par c, c'est @ dire que la
"partie intermédiaire' obtenue en Otant de ¢ le sommet X, et les deux

arcs incidents 3 xo, comprend (au moins) un circuit (non nécessairement



€lémentaire) sur certains des 'sommets intermédiaires" xj,...Xp.

Nous sommes naturellement conduits d définir, pour chaque
0-circuit c, son vecteur associé ace€R™ dont chacune des composantes
ac,j représente le nombre de fois que c traverse le sommet xj (# Xo).
Clairement 8,20 , 4_.a°=2_“_acl; =M (ol 1 désigne le m-vecteur
dont toutes les composantes sont 1), et un O-circuit T est un tour

si et seulement si son vecteur associé ay = 1.

2.  Une formulation par la Programmation linéaire du probléme du
voyageur de commerce

Désignons par c 1'ensemble des O-circuits définis dans le réseau

R, et par 1lc, la longueur d'un O-circuit (somme des longueurs des arcs).
Considérons le programme lin€aire en nombres entiers suivant:

(PLI)(Minimiser z(x) = Zé Ce %e
ce

« $.E. e 20 , enfien
(1)
Z., e X, = /1
ceC
\

et le programme linéaire déduit en rellchant les contraintes d'intégrité

sur X.



(P.L.) { Minimiser z.(*-) = 2 ec X,
ceC

se.( 20

> a,xe=41 (2)

programme linéaire a n(n—l)n'l variables non-négatives et n contraintes.

Il est clair que, dans la solution optimale de(PLI)ou de(PL), si c
et c' ont méme vecteur associ&, et si 1¢ < 1.' alors x¢' = 0; ceci
permet de réduire considérablement le nombre de variables. Dans toute

la suite, 1l'ensemble c sera réduit aux O-circuits de longueur minimale

parmi ceux ayant le méme vecteur associé.

Lemme 2-1. Il existe un seul point entier satisfaisant aux con-

traintes de (PLI),et ce point représente le tour optimal dans le réseau R.

En additionnant les w contraintes de (PLI)on obtient

2 n"wx, =Wn
ceC
soit (3)

Z_'?Cc_ =’1

ceC

Comme x non-négatif, les seules solutions a (3) sont telles que

AeteC @ .4 nd

(4)
A =20 ,vw T X C,I&C (c’#C«)

d'ou Qe a'j._ c'est a dire que c* est un tour dans R, et

d'aprés la remarque ci-dessus, un tour optimal.



Lemme 2-2. Cette solution est un sommet du polyédre P défini
par les contraintes de (PL), et le sommet associé est adjacent a tous

les autres sommets du polyédre P.

D'aprés le lemme 2-1, le polyédre P est non vide. Considérons
un sommet de P,et B une base réalisable correspondante; nous allons
démontrer que 1'on peut passer au point entier par une simple opéra-

tion de pivotage.

Considérons le vecteur-colonne a;=4 associé au tour optimal,
et les opérations de pivotage permettant de faire entrer x7 dans la base

(les notations sont celles de [15] )

A -\ -\ -\ A
a) 3, =B'a; =B"'4=R'b=b 20

b) choix du pivot et de la variable r sortante

ﬁr ‘ A' A . A
.75__ = M-ni%ﬁ. /a.i >_O_} = Min {’1/ LJ>O}

r

on choisit une variable r quelconque de niveau non-nul dans la

N
base B (il en existe toujours puisque b > 0)

La base B' obtenue en substituant xp d X, correspond au sommet entier:
En effet x'p = 1 el x'c =0, %LC # T est bien une solution de base (on

a bien B'x' = 1) et cette solution de base est unique.

Cette derniére propriété tient au fait que le sommet entier correspond

d une solution extrémement dégénérée.



Un procédé trés général pour aborder ce genre de programme
linéaire, ou les variables sont en fait définies implicitement, est
d'utiliser la méthode revisée du simplexe: La génération de la co-
lonne entrant dans la base s'effectue en résolvant un sous-probléme

de nature généralement combinatoire (voir par exemple 94],[44],[41,1])

Lemme 2-3. La génération de la colonne devant entrer dans la
base se raméne d la recherche d'un 0-circuit de longueur minimale

dans un réseau associé.

Soit B une base réalisable et T le vecteur-multiplicateur associé.

La variable candidate est choisie en calculant le minimum de

A s
ec = ec- T3, ;

A
pour les variables hors-base (si ¢ est dans la base €. = 0). Une varia-

-~

A
ble xy sera donc choisie pour entrer dans la base tant que e,. =Mia ec <0
e
Pour un circuit c le calcul de lc revient a affecter une '"pénalité" -Y;
a la longueur de c¢ chaque fois que le sommet xj # Xo est traversé; cette

pénalité peut &tre répartie sur les arcs adjacents au sommet i en définis-

sant les '"'longueurs pénalisées" suivantes:

= Ay - AT - (S0

Lig = dij =2m - (407



ou Ae[b,q est un paramétre: on utilisera par exemple les
valeurs A = %.pour conserver éventuellement la
symétrie du réseau, ou A = 0 (resp 1) pour pré-
server l'ordre des longueurs des arcs indicents

en x; (resp. issus de xj).

3. Pénalitéset formulation '"'Duale'"

Remarquons que les pénalités T introduites dans la démonstration
du lemme 2-3 agissent comme une simple translation sur la longueur des
tours: ces pénalités laissent inchangé 1'ordre des différents tours.
Nous sommes naturellement amenés a poser le probléme: '"Existe-t-il des
pénalités T telles que le O-circuit de longueur minimale dans le réseau

associé soit un tour'?
Mathématiquement, ce probléme se transcrit ainsi:
(D) Trouver Y e TR,“'
tel que €c+"n'-'ag 2 C*+'Tf'/1_ btcec
oi C* désigne la longueur (inconnue) du tour optimal.

Ce probléme est de trouver un point f appartenant a un polyé&dre
n o ~ 5 & s
Pc TR" défini par un trés grand nombre de contraintes; méme si 1'on
effectue la méme réduction que dans le probléme P (un seul O-circuit, de

longueur minimum, pour chaque vecteur a, ) ce nombre reste considérable.
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On peut appliquer @ ce probléme une approche développée par
Held et Karp [HQUIJ. Nous ne développerons pas davantage ici cette
voie, qui sera €tudiée dans un rapport ultérieur. Nous déduirons
simplement ici des relations entre ce probléme et le probléme (PL),
qui feront 1'objet du théoréme 3-2. Introduisons dans (D) des

"'variables artificielles" 3c >O , une par contrainte ; on définit

ainsi le ''programme auxiliaire' suivant
(Dy) { Minimiser w(’\T) = Z.C Ye
ce

s¢.((Yez 0O , T nm a0 Painl (6)

e
2. W (ac,a“'i) +4. 2 C -l ¥eeC
L
I1 est bien connu (ef par exemple [GJ ) qu'il existe une solution a (D)
si et seulement si le minimum Wpip de (Dy) est nul.

En dualisant, nous obtenons

(P*) Maximiser \r(x,) o= Z_ (C*—- e,') Y
ceC

gL, Oe¢n,. ¢1 Mo aC. )
Z._ (ac,i."'i)"(c =0 VC: 4,...,1\_
ceC

Le vecteur nul 0 est une solution réalisable de (P*) avec v(0)=0.

S'il existe une solution réalisable x' # 0, telle que v(x') > 0 alors
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(puisque x' > 0)
1-3(_‘:2 _'l'g >O

ce C
Définissons un vecteur x par %, = ___EEET_ ; 11 est clair
2 x¥
¥el
que x est une solution réalisable de (P*) vérifiant
1-= =;4. (3)
8
u(z) >0 (8)
La propriété (3) va nous permettre de faire disparaitre C*:
soit (P') le programme linéaire obtenu en ajoutant la contrainte (3)
au probléme (P*).
Lemme 3-1. Le probléme (P') est €quivalent au probléme (PL).
Ecrivons (P'):{ Minimiser =2(x) = 2 Lo %
ceC
se.f 0O¢x, ¢4 Yee C 9)

Z‘ a‘-_’:, xcsi ‘V‘-‘=‘{,---,VL
ceC
AZE;_ W, ::<i.

ceC
a) la contrainte x & 1 découle de Z Xc = 1 et de x 20.
ceC
b) 1la somme des W contraintes suivantes donne Z nw X, =N

ceC
donc la contrainte (3) est redondante avec celles-ci et

peut également €tre supprimée.

On obtient alors exactement le probléme (LP).
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Théoréme 3-2. Le probléme (D) a une solution si et seulement si

un tour est solution optimale de (LP).

Preuve:
Condition nécessaire: supposons que le tour optimal T de
longéur C* soit solution optimale de (LP).
D'aprés le théoréme fondamental de la Projrammaffon lineairg cette
solution optimale est de base: considérons la base optimale
et le vecteur multiplicateur T associé. Les conditions d'opti-

malité s'énoncent:

? ¢ a

er, = e~ M- Qe ?O (10)
A

by =C*"-m4 =0 (11)

ce qui implique que -Trest une solution de (D).

Condition suffisante: Supposons que le tour optimal T ne soit pas
solution optimale de P: il existe x vérifiant les contraintes
de (P) et tel que Z(x) € C*. Le vecteur x est aussi une solution
réalisable de (P*) et V(x) = C* - Z(x) > 0. Par conséquent la
solution optimale de P* vérifiera a fortiori Vyyx > 0. D'aprés
le théoréme de dualité on aura Wyip > 0 ce qui implique que le

polyédre P est vide.
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4. Solution optimale de (PL) et relation avec le probléme d'affectation

Généralement la solution optimale de (PL) n'est pas un tour, mais
elle permet de tirer des informations sur les ''chances' qu'ont certains
arcs de participer au tour optimal; ceci permettra d'élaborer au chdpitre
5 une procédure de Branch-and-Bound qui donnera la solution exacte du

Probléme du voyageur de commerce.

A toute solution réalisable de PL nous associerons un graphe pondéré

G = (X,E',p): soit L 1'ensemble des O-circuits correspondants aux varia-
bles a niveau non nul dans cette solution; soit nq(i,j) le nombre de
fois que le O-circuit c, de niveau X¢ » 0, parcourt 1l'arc (Xi,Xj); nous

définissons le poids de 1l'arc (xi,Xj) par:

pCiy) = Zf.. % N (ihY) (12)
ceé

\ et E'cE sera 1'ensemble des arcs de poids (strictement) positif.

l Lemme 4-1. Le graphe pondéré G = (X,E',p) est fortement connexe.
Démonstration: Soit x,ye X(x # y), nous allons démontrer qu'il existe
tasjours un chemin allant de x 4 y dans G:
i ) si x = x, remarquons qu'il existe un O-circuit c¢ de niveau Xc >0
dans la solution optimale de (PL), traversant au moins une fois
\ le sommet y; ce O-circuit contient donc un chemin (xg,y) joignant

\ 1'origine x5 4 y, et tous les arcs (i,j) de ce chemin ont un poids >O
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ii ) si y = xg, de la méme maniére, il existe un O-circuit c
de niveau X¢ non-nul traversant x, et par conséquent un
chemin (x,xp) joignant x a xo et dont tous les arcs ont
des poids 0.

iii) enfin si x et y sont différents de xo, il suffit de mettre

bout-a-bout les chemins (x,x,) et (Xg,y) exhib&s aux points

(i1) et (1)-

Lemme 4-2. Les poids p(i,j) associés a une solution réalisable x,
représentent une circulation telle que le flot traversant chaque sommet
est €gal a 1, c'est a dire

¥xeX . Z—  plu) = P ’F(x/})= 4

((é,x)éE (ﬂ,%)é E

et de cofit total €gal a Z(x).

Démonstration: pour tout O-circuit c, on a:

Z—- e ('3;”') = Z_— N, ("'}) = d¢,%

(3,2)<E (ny)eE

la relation (13) est alors €quivalente a la contrainte correspon-

dant au sommet s€X dans le programme linéaire (PL).
W
Remarquons que la longeur du O-circuit c peut &tre définie par

b =l wc_(i,;).d;j

))€E

(13)

(14)



15

donc le cofit total de la circulation p est

c(P):; Z_ , F("J)J'J -"—'Z. Z- Vlc(i',j)'z‘-‘dij

(i) <€ (Q)eE' eel
= i, tl." %X, = Z L e
z:(g; G dig) e = 2 L
= 2!(;t)

Théoréme 4-3. Soit Zp la valeur de l'affectation optimale dans

le réseau R,'if la valeur optimale de la fonction-objectif de (PL), et

C* la longueur du tour optimal, on a:

(i) zyn & 2 ¢ C”

~

(ii) si la solution optimale du probléme d'affectation (PA) est
unique et si Zp = Z alors le tour optimal est solution optimale

de (PA) et de (PL).

Démonstration:
(i) 1la seconde inégalité découle du lemme 2-1 (le tour optimal
représente une solution-réalisable de LP); le probléme
d'affectation &€tant défini ainsi:

(PA) / Minimiser: Zy (%) = Z_ Oli') xij

(i,DeE
| s.c. x =0
(j)eE

Z_ 'lk"'-:i VCGX

(k) €eE
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il découle du lemme 4-2 que les poids P vérifient les con-

traintes de (PA) d'ol la seconde inégalité.

(i1) si Zp = Z alors p est la solution optimale de (PA), unique
par hypothése. L'affectation optimale définit un graphe
(X'E') forcément connexe (d'aprés le lemme 4-1) c'est-a-
dire ne contenant pas de sous-tours. Cette solution est

donc le tour optimal (cf par exemple [3] ,[6] ; [’“’])

Remarque: si la condition d'unicité de la solution optimale de (PA)
n'est pas vérifiée, le point (ii) n'est pas nécessairement

vrai.

Exemple:

o
o
S
[e]
A A M |f
(>
q
>

11 4 0 4
(o o A4 9 2) ©
314 4 4 o)
blo 4 A o0 (]:::::::13) ) 3)
Mabic dos dislances” Les dewr solufons opfimales 4 TA.
Z,=0

grar\\e ,ov«J!"‘t’ assouie o ba Soluffow opfwale
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5 Branch and Bound

Une méthode de Branch and Bound consiste en un principe de sépara-
tion de 1'ensemble des solutions réalisables (ci les tours dans le
réseau R) et une méthode de calcul de bormes (inférieures pour un pro-
bléme de minimisation) sur la valeur de la fonction-objectif (longueur

du tour minimal) sur les sous-ensembles ainsi engendrés.

Soit FcE un ensemble d'arcs (dits ''forcés')
IcE un ensemble (disjoint de X) d'arcs (dits "interdits')
C(F,I) 1'ensemble des O-circuits qui empruntent

- exactement une fois chaque arc eeF

- aucun des arcs eel

et i(F,I) la valeur optimale de la fonction-objectif du probléme:

(PL(F,I)){ Minimiser Z(F‘,I_) (n) = 2 C‘x,_

ce C(F,1)
5. ¢ %z Q
Z acxc:"/‘
ceC(F,I)

Afin de réduire le nombre de contraintes de PL(F,I) 1l'ensemble F

constituera un chemin (x,y) comprenant le sommet x,, et sera défini

comme Ssuit:

- au début Fy = @ (le chemin est réduit a xpo) et Ip = @,

1'ensemble des "sommets intermédiaires' sera Vg = V —~{xo}
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- le chemin F' et l'ensemble I' d'arcs ayant été définis a la

K€ séparation, la (K+1)€ séparation s'effectuera en définissant
une liste ordonnée d'arcs ej, €2,...e@ soit tous issus de 1'ex-
trémité du chemin F', soit tous incidents @ 1'origine de I'.

Soit y; 1'extrémité de 1'ar8te ej qui n'appartient pas au chemin

F', nous considérerons alors les f+1 sous-problémes définis par

(Fl’Il):
F4=F’u{°4} I4=I’ V4=VI‘{'3‘}
Fa= F'w {es} I,-T° Ver V= {43}
Fe= Flufeed Tp- T Ve=V'- fee}
Feﬂ:F, I{H:I'u{e.,‘-um;%} \/(N‘.V'

et la borme inférieure associée au probléme (Fi,Ij) sera E(Fi,Ii).

L'intérét d'une telle méthode est que les problémes (Fy,I),...
(FC’IQ) comprennent une contrainte de moins que le probléme (F,1), car 3
chaque fois un sommet exactement est rajouté au chemin F’ (c'est 1'extrémi-
té yij de 1'are ej qui ne s'y trouvait pas); de plus le dernier probléme
(F?*1’18+1) comporte autant de contraintes que (FﬂIﬁ mais moins de varia-

bles.

La liste d'ares est définie comme suit:
- considérons les arcs (y,z) issus de 1'extrémité y du chemin F, de
poids (strictement) positif dans la solution optimale de PL(F,I);

leur poids total est €gal d 1; puisque dans le tour optimal T(F,I)
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(utilisant le chemin F et aucun des ares eel) le poids de ces
arcs vaut 1 (s'ils sont dans T(F,I)) ou 0 (sinon), un principe
raisonnable de séparation peut &tre de s'intéresser d'abord aux
arcs sur lesquels pése la plus grande incertitude, c'est @ dire
sur ceux dont le poids est le plus proche de 1/2; on est ainsi
conduit 3 classer les arcs,suivant les valeurs croissantes de
[ply,2) - 1/2] .

(Remarquons qu'un seul arc (y,z), au plus, peut avoir un poids
p(y,z) > 1/2, c'est a dire qu'en fin de compte les arcs seront

classés par ordre de poids décroissant).

- on peut effectuer le méme classement sur les arcs (z,X) incidents
a 1'origine x du chemin F; on choisira en fait d'abord des deux

listes, celle qui contient le moins d'arcs (de poids > 0).

Exemple 1 tiré de Wagner [4?]

)| At 3 M4 8 On prendra comme sommet de départ xqo = 2

®0 Ao 2% 2% 0

A
(remarquons que chacun des 4 autres choix

2 1 do A0 A5 9

3

T 9 e 20 I0 de x5 conduit au tour optimal comme solution

A de PL, sans avoir besoin d'appliquer le Branch

5 |40 2 25 217 e

and Bound)

Mubice des distawces

La solution optimale de PL est

> 1/2 pour c =(234342)

Xp 1/2 pour ¢ =(215152)
avec Z = 61.5 (1'affectation optimale donne Zp = 60)

et le graphe pondéré est représenté ci-contre.
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Considérons les arcs issus de 2 et définissons

B, = (2-1) I, =9 Vi = 3,4,5
Fy = {(2-3) Io =@ Vo = 1,4,5
Fz = @ Iz = (2-1),(2-3) Vz = Vg

7o, 3 4 5 a) Probléme (Fy,I7)

Ao | oo ; 26 26 41 ' On définit des nouvelles distances:

3] 9 » 2040 4')(x,2) = d(1,2) + d(e,2)k €{3,4,5)

L | 40 :24 oo 45 d'l(z,xo) = d(z,1) (z 6{3,4,SP

5 8 .25 27 -

. d'1(u,v) = d(u,v) (u,v € {3,4,5§)

4- :D‘&rmcgg A4

La solution optimale de PL(F;,I;) est donnée
par le O-circuit hamiltonien:
(xo -5 - 3 - 4 - xo)
qui donne le tour
(2—1-4-3-5—1)

avec 21 = 66

Aucune séparation n'est plus nécessaire (puis-

qu'un tour est trouvé.

» ag; 4 & ¢© b) Probléme PL (F2,1,)

Ao ' RS = 3
..__ff._[?__?ﬂ‘_%? z On définit de méme les nouvelles distances d

' (voir tableau 2).

La solution optimale est le O-circuit hamilto-

! nien:

(%0 - 4-1-5-x)
9. DisTances dl




=,-62

Solullon opl male Ao PL(Fz,I;)

2,
/% 4 3 4 s
2 xo| el 00 oo 15 2
1 405 oo 25 25 1o
319 : 2 oo 20 10
[N 40: 4 24 oo IS
5|8, 25 23 oo

3. D;sruncc; ol;

So‘uﬁon orru:m'f.

de  PL(FRy,T,)
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qui donne le tour
(2-3-4-1-5- 2)
avec 22 = 62

Aucune séparation n'est plus nécessaire.

c) Probléme PL (F3,I3)

Les distances dz sont définies par

dz(u,v) = d(a,v)
sauf pour dz(2,1) = oo
= oo

dz(2,3)
La solution optimale est le O-circuit hamil-

tonien:
(2-4-3-1-5-2)

avec 23 = 65

Le probléme est donc résolu: le tour optimal

est(2 -3-4-1-5 - 2)de longueur 62.

Nous pouvons résumer la procédure par une arborescence a chaque

sommet de laquelle sont associégsles données (F,I,i(I,F)) et éventuellement

une étoile x si la solution est un tour.

Nombre de
contraintes

- @,p, 6.5

¢, {e1, (2}, 65*

(23) ’ ¢/ 62* '
Soluffen orTTn.lc
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Dans le cas ol la matrice des distances est symétrique, c'est a
dire,en somme,le graphe non orient&, nous remarquons que le graphe
pondéré obtenu peut @tre considéré également comme non-orienté&, avec

les pondérations:

q(‘x.,oj) = P(x,5)+ P(a,n) V('zz,,:')e V2

En effet p représente la pondération associée d une solution
optimale de (PL) tel que p(x,y) # p(y,x), il existe une autre solution
optimale, déduite de la précédente en renversant dans chaque 0-circuit
le sens des arcs; si p' représente la pondération associée a cette nou-

velle solution, on a
F/(x,g) = F(‘j'x) fo,\a}é E

Alors la demi-somme des deux solutions donne encore une solution

optimale, avec une pondération P" = %.(p + p') symétrique.

La pondération q définie sur le graphe non-orienté sous-jacent a

(V,E) ne représente plus une circulation, mais vérifie 1'égalité suivante:

Z q(‘:) =2 Py Ao'a(x) o Llosemble des aréles adjacu\rcs a x
FF.AJS('I.)
La premiére séparation devra tenir compte de cette symétrie afin
d'éviter qu'une méme solution ne se présente (sous forme symétrique)
dans plusieurs sous-problémes. On n'utilisera (arbitrairement) que les

arcs (Xq,yi) issus de xg, et, en notant &; = (yj,Xy) l'arc symétrique de

e, nous définissons:
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(1] 1]

~
“.’ ~
=, o)

1
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-
(e ]
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"
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Si, dans le

jacentes, il n'y

probléme PL(Fg,q, I€+l)’ X, a moins de 2 ar@tes ad-

a pas de tour hamiltonien dans le réseau, et le sous-

probléme peut €tre abandonné.

Si Adje*l(xo
Xo entre y et z;
le nombre de somm
de PL(Fg 1,I¢ 1))

Aprés cette premi

) = {(xo,y),(xo,z)}, tout tour hamiltonien traversera
choisissons une orientation arbitraire, disons y == Xg =+ z
ets intermédiaires (c'est a dire le nombre de contraintes
est alors diminué de 2 par rapport au probléme initial.

ére séparation, le réseau est, dans tous les cas, orien-

té et 1'on est ramené au cas non-symétrique.

Nous allons illustrer tout ceci sur 1'exemple 2.

Exemple 2 tiré de

Held et Karp [42,1] , en Parf'm\‘f' de x,=4

S 6

/11 ¢ 3 u
4 | = 93 60 I3
2 s ULl 52
3 oo 2
" Qo
5

3

DPisYances (syme

13 52
% 30
35 4

a5 4¢

ao B4

oo

f-rl'oluli)

Um So\uﬁou Orﬁw\qlt

Z= 206.5

23
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Une solution optimale est constituée par
les 0-circuits ((1) - 5 -3 -4 -3 -5 - (1)

((1)-4-2-6-2-6-(1))

au niveau 1/2 chacun, z = 206.5

On en déduit les pondérations non-orientées

représentées ci-contre (remarquons que 1'aréte

A. Towdéralions wow oriculies 2-6 a un poids: 3/2 > 1).

Posons e; = (1-6), ep = (1-4), e3 = (1-5).
Nous trouvons successivement:
F\z{o-é)} g {(6.4)} Z, =207 pour le Tour (A-6F2-4-3-5-(1)

Fa = {(4-‘#)} I2 = {(6-4)’ (4-&),(44)}
E,: 242 pove le Tour ("-‘r)-‘-Z-S-S- (4)

Fy= {09} Tya {(60), (16), (u-4), (1-4), (50}
23 =9236.5 avee les O-arcuiTs
G-s)-6-2-6-2-(1)

¢-5)- 3-4-3-u- (1)

Ve chacun au niveau 1/2. Le graphe pondéré est

représenté fig. 2

@"_'9 is-;zss.s

2. Solufiow orﬁmqlg de PL(F"I‘)

Nous allons développer davantage le 4 sous-probléme:

Fq % ¢ I,= i(64),(44)/(@-4),(441), (S"')’(".S)}

restent exactement deux arétes (1-2) et (1-3) adjacentes a 1.
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Choisissons arbitrairement 1l'orientation 3 —w1-%2,

/" Xot & 5 6 L'ensemble des sommets intermédiaires est
Ao | 0! 203 243 183
Sieill] T A Vq = 4,5,6

b |2t & 95 4¢
| et les distances modifiées:

5 |35 95 w ®4

6 W46 % dy(x0,y) = d(3,1) + d(1,2) + d(2,y)
' oo
' dy(y,2) = d(y,z)
Dis lamces o‘q ditex * S50

A 1'occasion de ce sous-probléme, définissons une borme inférieure
assez grossiére sur ii : _
= b; = Min al-t(xe,'j) + (,\/;'-'1);: Min d;(ué,g] + Min ii(},zo)
yeVi 43 €V 3¢V

Z4

ici nous avons bg = 187+ [2 x 46]+ 21 = 300 ;
ayant déja trouvé une solution réalisable de longueur 20% , on peut

abandonner le dernier sous-probléme sans avoir besoin de le résoudre.

La procédure est résumée dans 1'arborescence ci-dessous

Nombre de
contraintes

R {06, I, 209 fa-5%},1,,236.5]

SelulMon oPﬂmalg

f(-a} 1, 242"

3 ---- [{GA, (2}, I, >300
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6. Mise en oeuvre et perspectives

La part prépondérante de 1'effort de calcul dans la mise en oeuvre
de la procédure décrite ci-dessus est consacrée d la recherche des
0-circuits de cofit marginal minimal. Les considérations suivantes mé-

nent a une économie sensible:

O - bonne solution de départ: on restreint d'abord 1'ensemble des
variables aux O-circuits qui cyclent sur deux sommets intermé-
diaires.

Si n désigne le nombre de sommets

intermédiaires, on distinguera selon

la parité de n:

- si n pair, le programme linéaire se

raméne a la formulation linéaire con-
n rair n 'wv;raih
tinue du probléme du couplage; des

O-circvi™s syr 2 sommeTs algorithmes efficaces peuvent &tre

inTeawmediaires

dérivés du simplexe (Burlet [4]) |
ou de considérations basées sur la dualité (Liebnmu1[43])
- si n est impair, on obtient une légére variante du probléme ci-dessus (1),
4 - recherche d'un O-circuit de longueur minimale: on peut appliquer (t&
[36]) 1'algorithme de Bellman, ce qui conduit a un nombre d'opérations

(additions, comparaisons) de 1'ordre de n3. On peut également appliquer
Y P PP

Note (1): Ces points seront développés dans un rapport '"Sur les plus
courts chemins a nombre d'arcs fixé, et application 3 des
problémes combinatoires et de .demnées'" - 3 paraitre.

n“f-
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1'algorithme de Dijkstra [%] qui garantit (en structurant bien les
données) un nombre maximum d'opérations de 1'ordre de n2Log n(1)
variante: on peut restreindre 1l'ensemble des variables de PL en exclu-
ant les O-circuits qui "bouclent" sur un seul arc: si x,y sont deux
sommets successifs dans le O-circuit c, le sommet suivant ne sera ni y
évidemment (le réseau R est supposé sans boucles) ni x; ceci s'obtient
au prix d'unlemps de calcul exactement double, de méme pour 1'encombre-
ment mémoire (double-marquage )(1). Si la premi&re version permettait
de résoudre, sans branch and bound, la plupart des exemples avec n £ 6,
cette variante s'est révélée efficace pour des réseaux avec n = 10.
Dans tous les cas, la bome obtenue est nécessairement plus proche de la

longueur du tour optimal qu'avec le premier algorithme.

choix du sommet de départ: bien qu'aucun résultat n'ait été prouvé,

les expériences réalisées semblent indiquer qu'un sommet 'central'

c'est 3 dire tel que les distances aux autres sommets soient assez voi-
sines, donne les plus mauvaises bornes; on assiste en effet d une proli-
fération de O-circuits partiels, donnant au graphe une structure rappel-
lant une marguerite. Un choix raisonnable semble &tre de choisir un
sommet ''périphérique', c'est a dire dont les distances aux autres som-
mets sont rapidement grandes par rapport aux plus petites; on peut choi-
sir par exemple un sommet dont la distribution des distances présente

la plus grande variance.

Voir note (1)
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La premiére version de l'algorithme fut essayée sur 3 classes

de problémes pour n = 5,6,10 (symétriques comme asymétriques)

pour n = 5 tous les problémes furent résolus en partant d'au

moins un sommet

n
(o))

pour n ce fut le cas pour tous les problémes symétriques et la

moitié des problémes asymétriques

pour n = 10 seul le probléme tiré d'Ashour-Vega-Parker [4] fut
résolu en partant du sommet 5.

Sur 4 problémes de taille 10 (Am— [B],[?])l'écart maximum entre

Z et C* est de 6.5%, et sa valeur moyenne fut de 3.5%.

La variante (permettant d'éviter les circuits de longueur 2) a

toujours donné le tour optimal pour n = 5 et 6.

pour n = 10 le problé&me QSSMSGQucFutrésolu en partant de tous les
sommets. Les 3 autres furent résolus en partant de
plus de la moitié des sommets.

L'écart moyen est de 1'ordre de 5%.

En outre sur les problémes de taille 10, l'utilisation de la solution
de départ suggérée plus haut permet d'économiser plus de la moitié du temps

de calcul, et cette proportion semble croitre avec n.

Enfin 1'application de la variante évoquée ci-dessus a partir de la
solution de départ donne une valeur de Z comprise entre celles foumies

séparément par chacun des 2 autres algorithmes (voir fig. page suivante).
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e

SSNZF <-c*

Z1 valeur de la solution obtenue avec 1'algorithme original

Zo valeur de la solution obtenue avec la variante

Z'9 valeur de la solution obtenue en partant de la solution de départ
Z' valeur de la solution de départ

C*  longueur de tour optimal

Dans le rapport précision/temps de calcul, c'est donc cette version

qui semble donner les meilleurs résultats.

7. Problémes de grande taille

Pour des valeurs de n comprises entre 10 et 20, se produit un effet
bien connu dans les PL de grande taille: 1la valeur de la fonction-objectif

ne décroit plus que trés lentement ("effet de plateau') ce qui rend la con-

vergence trds lente. ([44_],[42,1])

Pour pouvoir appliquer les considérations ci-dessus @ des problémes
de taille moyenne, nous avons entrepris de développer une procédure par
relaxation, trés proche de celle de Held et Karp Ez;u], dont les résultats

seront alors publiés.

L'approche par des chemins d& nombre d'arcs fixé (baptisés O-circuits



si ce nombre est égal au nombre de sommets) se révéle fructueuse et
s'étend d divers problémes combinatoires, de cheminement et de tour-

nées: a suivre.

30
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