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RESUME

Dans un réseau à n+1 sommets, un 0-circuit e*t un chemin 

d'origine x0 fixée, devant comporter n+1 arcs, et d'extrémité 

x0; une formulation par un programme linéaire, à n contraintes, 

du problème du voyageur de commerce est définie; utilisant un

schéma de génération de colonne par recherche d'un 0-circuit 

de longueur minimale dans un réseau associé, ce programme li­

néaire fournit une "excellente" borne inférieure sur la lon­

gueur du trajet du voyageur de commerce; un algorithme par

"Branch and Bound" en est dérivé, et donne une solution exacte

du problème du voyageur de commerce.
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INTRODUCTION

Le problème du voyageur de commerce (TSF) est l'un des problèmes 

les plus célèbres de la littérature de la Recherche Opérationnelle

(voir par exemple £3] ). Il consiste à trouver le plus court circuit

qui traverse au moins une fois chaque sommet d'un réseau. De nombreu­

ses méthodes de résolution approchée ont été suggérées, fournissant 

une "bonne" solution dont on ne peut toutefois pas garantir en général 

1'optimalité.

Peu de méthodes fournissant une solution exacte en un temps de

calcul raisonnable ont été développées; le principe général de celles

qui sont actuellement disponibles semble être le suivant:

définir un problème combinatoire(a)

facile à résoudre(i)

(ü) tel que les circuits hamiltoniens (tours) soient

solution réalisable

(iii) qui respecte le classement des tours selon leur longueur

(b) si la solution de (a) n'est pas un tour, définir une structure

de "branch and bound" de la façon suivante:

séparer l'ensemble des tours selon qu'ils utilisent ou(i)

non, certains arcs

évaluer une borne inférieure sur la longueur du tour(ü)

optimal dans chaque sous-ensemble ainsi défini, en
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retournant au point (a).

Une procédure ainsi définie est donc récursive et l'on ne peut

garantir que la solution optimale sera trouvée en un nombre "raisonna­

ble" d'itérations; à ce point de vue, une bonne méthode est caractéri­

sée par:

la facilité de résolution du sous-problème (a)1)

la qualité de la borne fournie par la solution optimale de (a)2)

Les méthodes disponibles sont essentiellement définies par la nature 

du sous-problème combinatoire (a):

problème d'affectation: c'est la voie classique (voir [2], [3], 

[b], [7], [lo], (j.7]), le sous -problème est aisé à résoudre 

mais la borne obtenue est assez médiocre, d'où un nombre consi­

dérable de séparations et d'évaluations (voir £2] ). 

arbre de poids minimum (SST): Cette approche, aperçue par 

Christofides [sj, et développée par Held et Karp jl2 I et 

fournit une borne bien meilleure, pour un sous-problème plus 

facile à résoudre, d'où des performances bien meilleures £l2 Il|.

n],

Nous développons ici une nouvelle approche par laquelle le TSP est 

plongé dans un problème général de plus-court-chemin: le sous -problème (a)

consiste en la recherche d'un chemin, dont l'origine, l'extrémité et le 

nombre d'arcs sont fixés ("0-circuit") de longueur minimale; ce problème 

a été défini d'abord par Saigal |^lbj , qui en avait d'ailleurs indiqué la
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connexion avec le T.S.P. mais sans en dériver une méthode effective

de résolution.

A cette fin, nous définissons un programme linéaire à n contraintes 

(où n+1 est le nombre de sommets du réseau) et à variables implicites 

(voir par exemple [u], [12 l] , ) pour lequel la génération d'une

colonne candidate s'obtient en cherchant un 0-circuit de longueur mini­

male dans un réseau associé. La solution optimale du programme linéai­

re fournit une borne, généralement meilleure que celle de Held et Karp,

et dont nous prouvons qu'elle est toujours au moins aussi bonne (presque

toujours nettement meilleure) que celle du problème d'affectation; en

outre, la solution optimale(qui est presque toujours un tour optimal dans

les problèmes de taille modeste) fournit également des indications sur

les "chances" qu'ont les arcs d'appartenir au tour optimal; de là nous

dérivons une structure de branch and bound efficace. Toutefois, le phé­

nomène de convergence lente vers la solution du programme linéaire sem­

ble indiquer que la méthode ici décrite devra être abandonnée pour des 

problèmes de taille moyenne (n ^ 30), au profit d'une méthode de relaxa-

Karp |l2 II],

développement, et qui constituera la suite de cette étude.

tion, à la manière de Held et dont nous avons entrepris le
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1. O-Circuits

Soit R = (V, E, d) un réseau à V - n + 1 sommets, où l'arc

est muni d'une valuation d(x,y) représentant la "longueur"(x,y)eE

de l'arc (x,y). Nous supposerons ce réseau complet (on peut affecter 

une longueur infinie aux arcs inexistants) et sans boucle. Désignons 

par x0 un sommet quelconque de R (pour le choix de xq, voir £6 )

et les autres sommets par x^,. 

dij = d(xi,Xj) (i ^ j).

dans toute la suite, nous noterons••v

Nous emploierons le mot tour pour désigner un circuit hamiltonien.

c'est à dire un chemin traversant exactement une fois chacun des sommets

Un tour peut être considéré comme un chemin issuXj,...xn du réseau, 

de x0, comportant exactement n + 1 arcs, et d'extrémité x0.

x0>

Nous appellerons O-circuit tout chemin (non nécessairement élémen-

comprenant n sommets intermédiaires distincts de xQ,et 

en particulier, un tour est un O-circuit et, réciproque-

taire) issu de xo >

d'extrémité x0;

ment, un O-circuit c est un tour si et seulement s'il traverse exactement

une fois chaque sommet intermédiaire’, sinon il existe quelque sommet

xi (^ x0) qui n'est pas atteint par c, et aussi quelque autre sommet 

xi x0) qui est traversé au moins deux fois par c, c'est à dire que la 

"partie intermédiaire" obtenue en ôtant de c le sommet x0 et les deux 

arcs incidents à xQ, comprend (au moins) un circuit (non nécessairement
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élémentaire) sur certains des "sommets intermédiaires" xi,...xn.

Nous sommes naturellement conduits à définir, pour chaque 

0-circuit c, son vecteur associé ac€|Rm dont chacune des composantes

représente le nombre de fois que c traverse le sommet xî (/ Xo) . 

l’a& = - yi (où 1_ désigne le fl-vecteurClairement at^O / 

dont toutes les composantes sont 1), et un 0-circuit T est un tour

si et seulement si son vecteur associé - 1_.

Une formulation par la Programmation linéaire du problème du
voyageur de commerce

Désignons par c l'ensemble des O-circuits définis dans le réseau

2.

R, et par lc, la longueur d'un 0-circuit (somme des longueurs des arcs).

Considérons le programme linéaire en nombres entiers suivant:

= 2ï- xt(PLI)/ Minimiser
ce C

' %c ^ O jSC.
<

<
CD

21- i
ceC

et le programme linéaire déduit en relâchant les contraintes d'intégrité

sur x.
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z-(’c) = Cc XC_
ceG

(P.L.) Minimiser

x ^ os.c.

— â-c x«- ~ ^1 (2)
C€ C

n-1
programme linéaire à n(n-l) variables non-négatives et n contraintes.

Il est clair que, dans la solution optimale de(PLI)ou de(PL), si c

et c' ont même vecteur associé, et si lc < lc' alors xc' = 0; ceci

permet de réduire considérablement le nombre de variables. Dans toute

la suite, l'ensemble c sera réduit aux 0-circuits de longueur minimale

parmi ceux ayant le même vecteur associé.

Lemme 2-1. Il existe un seul point entier satisfaisant aux con­

traintes de (PLI),et ce point représente le tour optimal dans le réseau R.

En additionnant les w contraintes de (PLI)on obtient

Z— YV xc 
etc

= Y\-

soit (3)

= \
c t C

Comme x non-négatif, les seules solutions à (3) sont telles que

-3 c ■* e C = A.xc*

■x-d » O
(4)

ftvX C é C.

&C* * 4.d ' où c'est à dire que c* est un tour dans R, et

d'après la remarque ci-dessus, un tour optimal.
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Cette solution est un sommet du polyèdre P définiLemme 2-2.

par les contraintes de (PL)> et le sommet associé est adjacent à tous

les autres sommets du polyèdre P.

D'après le lemme 2-1, le polyèdre P est non vide. Considérons

un sommet de P,et B une base réalisable correspondante; 

démontrer que l'on peut passer au point entier par une simple opéra-

nous allons

tion de pivotage.

Considérons le vecteur-colonne aT =-4 associé au tour optimal, 

et les opérations de pivotage permettant de faire entrer xp dans la base 

(les notations sont celles de [l5] )

A

a) aT = er' aT = B"' -l = b'1 w = w £ O

b) choix du pivot et de la variable r sortante

>\

Jii » M; (ÿ- = Mi* ^ ^ >oJ-* V\
ôr

on choisit une variable r quelconque de niveau non-nul dans la
A

base B (il en existe toujours puisque b > 0)

obtenue en substituant xp à xr correspond au sommet entier: 

En effet x'j = 1 eT x'c = 0 , Vc t T 

a bien B'x' = 1) et cette solution de base est unique.

La base B

est bien une solution de base (on

Cette dernière propriété tient au fait que le sommet entier correspond 

à une solution extrêmement dégénérée.
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Un procédé très général pour aborder ce genre de programme

linéaire, où les variables sont en fait définies implicitement, est 

d'utiliser la méthode revisée du simplexe: La génération de la co­

lonne entrant dans la base s'effectue en résolvant un sous-problème

de nature généralement combinatoire (voir par exemple [^Mj, £i4] , )

La génération de la colonne devant entrer dans laLemme 2-3.

base se ramène à la recherche d'un 0-circuit de longueur minimale

dans un réseau associé.

Soit B une base réalisable et U le vecteur-multiplicateur associé.

La variable candidate est choisie en calculant le minimum de

l -L- (5)

A

pour les variables hors-base (si c est dans la base 6C
A

ble Xr sera donc choisie pour entrer dans la base tant que oc < O
teC

Pour un circuit c le calcul de lc revient à affecter une "pénalité" -Hi 

à la longueur de c chaque fois que le sommet xi ? xQ est traversé;

= 0). Une varia-

cette

pénalité peut être répartie sur les arcs adjacents au sommet i en définis­

sant les "longueurs pénalisées" suivantes:

K,i =

- 'X'rrL -

ji:
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Xe[0,l]où est un paramètre: on utilisera par exemple les

valeurs À - i pour conserver éventuellement la 
2

symétrie du réseau, ou À = 0 (resp 1) pour pré­

server l'ordre des longueurs des arcs indicents

en (resp. issus de xjj .

Pénalités et formulation "Duale"3.

Remarquons que les pénalités H introduites dans la démonstration 

du lemme 2-3 agissent comme une simple translation sur la longueur des

ces pénalités laissent inchangé l'ordre des différents tours.tours :

Nous sommes naturellement amenés à poser le problème: "Existe-t-il des

pénalités H telles que le 0-circuit de longueur minimale dans le réseau

associé soit un tour"?

Mathématiquement, ce problème se transcrit ainsi:

TT e UC'(D) Trouver

)/c.e Cec + ïr- ac ^ C* + 'Tt-4tel que

où C* désigne la longueur (inconnue) du tour optimal.

Ce problème est de trouver un point H appartenant à un polyèdre 

défini par un très grand nombre de contraintes; même si l'on

effectue la même réduction que dans le problème P (un seul 0-circuit, de

longueur minimum, pour chaque vecteur ac ) ce nombre reste considérable.
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On peut appliquer à ce problème une approche développée par 

Karp Nous ne développerons pas davantage ici cette

voie, qui sera étudiée dans un rapport ultérieur. Nous déduirons

Held et

simplement ici des relations entre ce problème et le problème (PL),

qui feront l'objet du théorème 3-2. Introduisons dans (D) des

, une par contrainte ; on définit"variables artificielles"
3c

ainsi le "programme auxiliaire" suivant

w(Tr) = Z- 
ceC

(Py) Minimiser

(6)^ TT w** ouo t^L* ■vtT3c ? °sx-

Ve t C.SLm Oc/.-4)

(tf par [_6~\ ) qu'il existe une solution à (D)Il est bien connu

si et seulement si le minimum Wmjn de (Dy) est nul.

En dualisant, nous obtenons

v-M = 21 Ce*- ej ’‘c(p*) Maximiser
ctC

VctC
-z

Oè -Xc (7)S.c.

ZL (atA-4)*c
CtC

Le vecteur nul 0^ est une solution réalisable de (p*) avec v(0)=0. 

S'il existe une solution réalisable x' ^ 0^, telle que v(x') > 0 alors
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(puisque x' £ 0)

4-x.' = Z- * 'c, > O 
t« c

Définissons un vecteur x par tcc = ; il est clair

V6C
que x est une solution réalisable de (P*) vérifiant

vr£<-) > O

(3)

(8)

La propriété (3) va nous permettre de faire disparaître C*:

soit (P1) le programme linéaire obtenu en ajoutant la contrainte (3)

au problème (P*).

Le problème (P1) est équivalent au problème (PL).Lemme 3-1.

zM = 2^ <c ^Ecrivons (P’): Minimiser

et C

Vc« c
V *•' = >C"-yw"

O <. ->cc 4 
3c./*- ^

t«C

= •4

(9)s.c.

c*C

la contrainte x 1 découle de xc = 1 et de x ^0.
c«C

la somme des contraintes suivantes donne vt *(.
ctC

donc la contrainte (3) est redondante avec celles-ci et

a)

b)

peut également être supprimée.

On obtient alors exactement le problème (LP) .
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Théorème 3-2. Le problème (D) a une solution si et seulement si

un tour est solution optimale de (LP).

Preuve :

Condition nécessaire: supposons que le tour optimal T de
U

longfeur C* soit solution optimale de (LP).

D'après le théorème fondamental de la Pr-o^rammafion cette

solution optimale est de base: considérons la base optimale

et le vecteur multiplicateur TT associé. Les conditions d'opti­

malité s'énoncent:

-'tt ^ o
(10)

eT = -o (ii)

qui implique «pu -TTest une solution de (D) .ce

Condition suffisante: Supposons que le tour optimal T ne soit pas

solution optimale de P: il existe x vérifiant les contraintes 

de (P) et tel que Z(x) < C*. Le vecteur x est aussi une solution 

réalisable de (P*) et V(x) = C* - Z(x) >0. Par conséquent la 

solution optimale de P* vérifiera à fortiori V^ax >0. D'après 

le théorème de dualité on aura W[q^n > 0 ce qui implique que le 

polyèdre est vide.
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Solution optimale de (PL) et relation avec le problème d'affectation4.

Généralement la solution optimale de (PL) n'est pas un tour, mais

elle permet de tirer des informations sur les "chances" qu'ont certains

arcs de participer au tour optimal; ceci permettra d'élaborer au chapitre 

5 une procédure de Branch-and-Bound qui donnera la solution exacte du 

Problème du voyageur de commerce.

A toute solution réalisable de PL nous associerons un graphe pondéré

G = (X,E',p): soit L l'ensemble des O-circuits correspondants aux varia­

bles à niveau non nul dans cette solution; soit nc(i,j) le nombre de 

fois que le 0-circuit c, de niveau Xc >0, parcourt l'arc (xi,xj); nous 

définissons le poids de l'arc (x^,xj) par:

2LpO'P = (12)

ce L

et E'cE sera l'ensemble des arcs de poids (strictement) positif.

pondéré G = (X,E',p) est fortement connexe.Lemme 4-1. Le graphe

Soit x,y£.X(x f y), nous allons démontrer qu'il existeDémonstration :

toujours un chemin allant de x à y dans G:

i ) si x = x0 remarquons qu'il existe un 0-circuit c de niveau xc > 0 

dans la solution optimale de (PL), traversant au moins une fois 

le sommet y; ce 0-circuit contient donc un chemin (x0,y) joignant 

l'origine x0 à y, et tous les arcs (i,j) de ce chemin ont un poids >0
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ii ) si y = x0, de la même manière, il existe un O-circuit c

de niveau xc non-nul traversant x, et par conséquent un

chemin (x,x0) joignant x à xQ et dont tous les arcs ont

des poids >0.

iii) enfin si x et y sont différents de x0, il suffit de mettre 

bout-à-bout les chemins (x,x0) et (x0,y) exhibés aux points 

(ii) et (i) .

Les poids p(i,j) associés à une solution réalisable x.Lemme 4-2.

représentent une circulation telle que le flot traversant chaque sommet

est égal à 1, c'est à dire

ZL_ pOâ,*) =-21- = 4V*- e x (13)

et de coût total égal à Z(x).

Démonstration: pour tout 0-circuit c, on a:

(14)

la relation (13) est alors équivalente à la contrainte correspon­

dant au sommet seX dans le programme linéaire (PL).
U

Remarquons que la longueur du 0-circuit c peut être définie par

Z— «xCAj) <bj
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donc le coût total de la circulation p est

c(p> = ZL pO'4)
0.i)tE

= JL. 21
(,^£E *fcL

~2L(Z. .
«6L. ^ (i^)£ E

Kc c& L

= z 60

Théorème 4-3. Soit la valeur de l’affectation optimale dans

le réseau R, 2. la valeur optimale de la fonction-objectif de (PL), et

C* la longueur du tour optimal, on a:

^ z: <. c*(i) Za

(ii) si la solution optimale du problème d’affectation (PA) est

unique et si Za = Z alors le tour optimal est solution optimale

de (PA) et de (PL).

Démonstration:

(i) la seconde inégalité découle du lemme 2-1 (le tour optimal 

représente une solution-réalisable de LP); le problème

d’affectation étant défini ainsi:

z *(■*■)- 2ï— 

O.jye
(PA) / Minimiser:

x ^ Oç.c.

X= 1

Vit X7 1
\^(K,06E
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il découle du lemme 4-2 que les poids P vérifient les con­

traintes de (PA) d'où la seconde inégalité.

(ü) si Za = Z alors p est la solution optimale de (PA), unique

par hypothèse. L'affectation optimale définit un graphe

(X'E') forcément connexe (d'après le lemme 4-1) c'est-à- 

dire ne contenant pas de sous-tours, 

donc le tour optimal (tf p«r Mempk [XI , , G*6!])

Cette solution est

si la condition d'unicité de la solution optimale de (PA) 

n'est pas vérifiée, le point (ii) n'est pas nécessairement

Remarque :

vrai .

Exemple:

Z*” O A Z 3 q.

O O >1 O A

A A O A A

i O O

3 A A A

^ I O A

A A

O

A O

ci»,*M out» « u- L*> deux iduHowsv»C« s

H* = O

ewdeVt «ssout ô la ©r

Jl* (PU) ; z. -OC* = A
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Branch and Bound5.

Une méthode de Branch and Bound consiste en un principe de sépara­

tion de l'ensemble des solutions réalisables (fci les tours dans le

réseau R) et une méthode de calcul de bornes (inférieures pour un pro­

blème de minimisation) sur la valeur de la fonction-objectif (longueur

du tour minimal) sur les sous-ensembles ainsi engendrés.

Soit FcE un ensemble d'arcs (dits "forcés")

l£E un ensemble (disjoint de X) d'arcs (dits "interdits")

C(F,I) l'ensemble des O-circuits qui empruntent

- exactement une fois chaque arc eeF

aucun des arcs ecl

Z(F,I) la valeur optimale de la fonction-objectif du problème:et

(PL(F,!))/Minimiser Z- (P l) O) - 2L-
CCF,I)

C £

■5C > O5 C .

ceC(F, x)

Afin de réduire le nombre de contraintes de PL(F,I) l'ensemble F

et sera définiconstituera un chemin (x,y) comprenant le sommet xo>

comme suit:

- au début F0 = 0 (le chemin est réduit à x0) et I0 = 0 ,

= V-{x0)l'ensemble des "sommets intermédiaires" sera Vc
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le chemin F' et l'ensemble I' d'arcs ayant été définis à la

Ke séparation, la (K+l)e séparation s'effectuera en définissant

une liste ordonnée d'arcs ei, 62,...eg soit tous issus de l'ex­

trémité du chemin F', soit tous incidents à l'origine de I'.

Soit l'extrémité de l'arête e^ qui n'appartient pas au chemin 

F', nous considérerons alors les f+1 sous-problèmes définis par

(Fi.Ii):

> V'" {^}
I1 - 1’{ii}

Ie=I'
V* = v'- {e?}

-.F' Im

et la borne inférieure associée au problème (Fi,Ii) sera ZCF^,!^).

problèmes (F^jl^),...L'intérêt d'une telle méthode est que les 

(Fg>Ig) comprennent une contrainte de moins que le problème (F,,I,), car à 

chaque fois un sommet exactement est rajouté au chemin F’(c'est l'extrémi-

ej qui ne s'y trouvait pas); de plus le dernier problème 

(Ff + l’Ig + i) comporte autant de contraintes que (F’, 1*) mais moins de varia­

bles .

té yi de l'arc

est définie comme suit:La liste d'arcs

considérons les arcs (y,z) issus de l'extrémité y du chemin F, de

poids (strictement) positif dans la solution optimale de PL(F,I);

leur poids total est égal à 1; puisque dans le tour optimal T(F,I)
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(utilisant le chemin F et aucun des arcs eel) le poids de ces

arcs vaut 1 (s'ils sont dans T(F,I)) ou 0 (sinon), un principe

raisonnable de séparation peut être de s'intéresser d'abord aux 

arcs sur lesquels pèse la plus grande incertitude, c'est à dire

sur ceux dont le poids est le plus proche de 1/2; on est ainsi 

conduit à classer les arcs,suivant les valeurs croissantes de

I p(y,z) - 1/2I .
(Remarquons qu'un seul arc (y,z), au plus, peut avoir un poids 

p(y,z)> 1/2, c'est à dire qu'en fin de compte les arcs seront

classés par ordre de poids décroissant).

on peut effectuer le même classement sur les arcs (z,x) incidents 

à l'origine x du chemin F; on choisira en fait d'abord des deux 

listes, celle qui contient le moins d'arcs (de poids > 0).

Exemple 1 tiré de Wagner [4?]

4 *. 5 M 5
On prendra comme sommet de départ x0 = 2

A o is 2 s 104

(remarquons que chacun des 4 autres choix
2 1 do <15 J,

de x0 conduit au tour optimal comme solution3 1 9 lo [O

4 <4 40 24 oo 45 de PL, sans avoir besoin d'appliquer le Branch
5 40 % 25 »

and Bound)

<te, fhsfi *
La solution optimale de PL est

= 1/2 pour c =f234342) 

xp = 1/2 pour c =(215152) 

avec Z = 61.5 (l'affectation optimale donne Za = 60)

xc

le graphe pondéré est représenté ci-contre.et
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Considérons les arcs issus de 2 et définissons

= (2-1) 11 = 0

12 = 0

13 = (2-1),(2-3)

F1 Vj = 3,4,5

= (2-3) V2F2 1,4,5

= 0 V3 = V0F3

a) Problème (Fi.Ii)

On définit des nouvelles distances:

= d(1,2) 4 d(e,z)£ £{3,4,5})

(z e (3,4,5])

(m « (3,4,5))

z* x0 ; 3 4 5
Xo 2-é 26 d4c*-o

3 9 Oo 20 d'ifxQ.z) 

d'xfz.x0) = d(z, 1)4 dû . 24 e»

5 8 ! 25 2? «,
d' 1 (u,v) d(u,v)

4 - Di'sfctv't.cs La solution optimale de PL(Fj,Ii) est donnée 

par le 0-circuit hamiltonien:

3 - 4 - x0)(x0 5

qui donne le tour

(2 3-5-2.)
1 - 4

2-a - 66
Zi = 66avec

Aucune séparation n'est plus nécessaire (puis­

qu'un tour est trouvé.

b) Problème PL (F2,l2)*o’ 4 4 5

00 1 11 30 2,0
On définit de même les nouvelles distances d2

d 25 1010 1 oo
(voir tableau 2).1

10 1 14 00 154
La solution optimale est le 0-circuit hamilto-

S J 10 2.} c5
1 nien:

(x0 - 4 5 - xQ)1
2 - J} 'Sfi *t«v
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qui donne le tour

(2-3-4 1-5-2)

Z2 = 62avec

Aucune séparation n'est plus nécessaire.«U. PL , 11)

2, ,
c) Problème PL ^3,13)x0' 4 l M 5

2. *0 15 Z00 1 00 00 Les distances d3 sont définies par
1

40 1 ©O 25 25 lo4 d3(u,v) = d(a,v)
J

5 ' % 00 2-0 103 sauf pour d3(2,l) =

d3 (2,3) =

00
1

>10 1 tq 2A 00 154
001

1 10 2.S 2} <*>5 Z l La solution optimale est le 0-circuit hamil-

3- 'Dis,rn.«£*s olj tonien:
-5-2)(2-4-3 

Z3 ■ 65

1

avec

oprr^itE Le problème est donc résolu:

1 - 5 - 2)de longueur

le tour optimal

(2-3-4
62.est

= 65

Nous pouvons résumer la procédure par une arborescence à chaque 

sommet de laquelle sont associéisles données (F,I,Z(I,F)) et éventuellement

une étoile * si la solution est un tour.

Nombre de 
contraintes

5

- - -
^(2 V)},<^ 62.*4

SvluTT»» e^Tr»«««le
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Dans le cas où la matrice des distances est symétrique, c'est â

dire,en somme,le graphe non orienté, nous remarquons que le graphe 

pondéré obtenu peut être considéré également comme non-orienté, avec

les pondérations:

V<Ss)‘ V*

En effet p représente la pondération associée à une solution

optimale de (PL) tel que p(x,y) f p(y,x), il existe une autre solution

optimale, déduite de la précédente en renversant dans chaque 0-circuit 

le sens des arcs; si p' représente la pondération associée à cette nou­

velle solution, on a

Vf*, 3) t F

Alors la demi-somme des deux solutions donne encore une solution 

optimale, avec une pondération P" = i (p + p’) symétrique.
2

La pondération q définie sur le graphe non-orienté sous-jacent à 

(V,E) ne représente plus une circulation, mais vérifie l'égalité suivante:

t,'Jits «refts «t/jace*fi S a ?*-

P £ (x)
<rA Ac^j (*)

La première séparation devra tenir compte de cette symétrie afin

d'éviter qu'une même solution ne se présente (sous forme symétrique)

dans plusieurs sous-problèmes. On n'utilisera (arbitrairement) que les

et, en notant ëi = (yi,x0) l'arc symétrique dearcs (x0,yi) issus de xo >

e, nous définissons:
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l-i - {‘•'î
Xï* [îa/I*

F,
F» » H

I(= X(., w Je(.i »*{} 

I t,i= X, w. {e(J
{^e}^ - 

Fm - 9>

Si, dans le problème PL(F£+1, Ig+1), x0 a moins de 2 arêtes ad­

jacentes, il n'y a pas de tour hamiltonien dans le réseau, et le sous- 

problème peut être abandonné.

Adj€4l(x0) = |(x0,y),Cx0,zj} , tout tour hamiltonien traverseraSi

x0 entre y et z; choisissons une orientation arbitraire, disons y-► x0-*■ z

le nombre de sommets intermédiaires (c'est à dire le nombre de contraintes

de PL(Fe i,Ie j)) est alors diminué de 2 par rapport au problème initial. 

Après cette première séparation, le réseau est, dans tous les cas, orien- 

est ramené au cas non-symétrique.té et l'on

Nous allons illustrer tout ceci sur l'exemple 2.

Exemple 2 tiré de Held et Karp , fc* porfawt" cU x„ = “i.

/r ^ l î U 5 6

c- 9} 60 11 17 SZÀ

Ul SZ 90 3 02

3 11 3S M

“o <35 46
5

Oo SI
é

OO

ZOè.S2- -
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Une solution optimale est constituée par 

les O-circuits ((1) - 5 - 3 

((1) - 4 - 2 

au niveau 1/2 chacun, 'z. =2,06.5 

On en déduit les pondérations non-orientées

3 - 5 - (1)) 

2 - 6 - (1))

4

6

représentées ci-contre (remarquons que l'arête
4. Pewelefn rTo»5 now ofi'iwfi'ej

2-6 a un poids: 3/2 > 1).

Posons e^ = (1-6) e2 = (1-4), e3 = (1-5).

Nous trouvons successivement:

(4-6)-2-<t-3-S-(4)i,= {(«-0} l< Tou r^ = 2û?F, = pouf

Ij = |((>-4)/(d-^)/(4-l)^

(îf-4)-é-2-3-5- (J)It ToutZj - 2*t2, (»•'"

F, = {(-<• 5)}
= 2-36. s

(d-S) - é - 2 - é-2. - (V) 

(^-S)- 3 - 4 - 3-4 -

Its O-cite uif*AUtt

et
</i

chacun au niveau 1/2. Le graphe pondéré est 

représenté fig.2.
2-^-2365

Nous allons développer davantage le 4e sous-problème:

f, = <p = ( (« i), (h q, (4-1),6-4), (s.-O, d-s)}
restent exactement deux arêtes (1-2) et (1-3) adjacentes à 1.
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Choisissons arbitrairement l'orientation 3 1 2.

Dfoi 4 5 6 L'ensemble des sommets intermédiaires est
co 1 £09 2-4? WXo 4,5,6V4 =4- -

95 46214 Oo
et les distances modifiées:1

US *5 1 95 OO

dufxo.y) = d(3,1) + d(l,2) -t d(2,y) 

du(y,2) = d(y,z)

dU(z >xo) = d(z,3)

1

M, 46G CO

A l'occasion de ce sous-problème, définissons une borne inférieure

assez grossière sur Zj :

4+ (iVil-d)* Mi* di

Lv 3.3 ê ^

ici nous avons b^ = 187 + [2 x 4ô] 21 = 300 ;

ayant déjà trouvé une solution réalisable de longueur 20? 

abandonner le dernier sous-problème sans avoir besoin de le résoudre.

, on peut

La procédure est résumée dans l'arborescence ci-dessous

Nombre de 
contraintes

, 206.65

234 Ü{0-6)}, I $ 5>},I{(l-4)}>Ia,24 2*2.0? *4 A / l »
SolufTo* o p TT +

- - - {(vO,(-U)}, li», >3003
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6. Mise en oeuvre et perspectives

La part prépondérante de l'effort de calcul dans la mise en oeuvre 

de la procédure décrite ci-dessus est consacrée à la recherche des

Les considérations suivantes mè-O-circuits de coût marginal minimal.

nent à une économie sensible:

O - bonne solution de départ: on restreint d'abord l'ensemble des

variables aux O-circuits qui cyclent sur deux sommets intermé­

diaires .

Si n désigne le nombre de sommets 

intermédiaires, on distinguera selon 

la parité de n:

- si n pair, le programme linéaire se 

ramène à la formulation linéaire con­

tinue du problème du couplage; des 

algorithmes efficaces peuvent être 

dérivés du simplexe (Burlet 

ou de considérations basées sur la dualité (Liebman £d3^])

- si n est impair, on obtient une légère variante du problème ci-dessus(1). 

-1 - recherche d'un 0-circuit de longueur minimale: on peut appliquer

l'algorithme de Bellman, ce qui conduit à un nombre d'opérations 

(additions, comparaisons) de l'ordre de n^. On peut également appliquer

n iwjpair

0-C.ircuif£> Sur J2, SowMMttç

i w Pfc^uwvteL'a irt s

Note (1): Ces points seront développés dans un rapport "Sur les plus 
courts chemins à nombre d'arcs fixé, et application à des 
problèmes combinatoires et de da*nées" - à paraître.

four.
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l'algorithme de Dijkstra qui garantit (en structurant bien les

données) un nombre maximum d'opérations de l'ordre de n2Log n(l)

Z- variante: on peut restreindre l'ensemble des variables de PL en exclu­

ant les O-circuits qui "bouclent" sur un seul arc: si x,y sont deux

sommets successifs dans le 0-circuit c, le sommet suivant ne sera ni y 

évidemment (le réseau R est supposé sans boucles) ni x; ceci s'obtient 

au prix d'un temps de calcul exactement double, de même pour l'encombre­

ment mémoire (double-marquage )^. Si la première version permettait 

de résoudre, sans branch and bound, la plupart des exemples avec n ^ 6, 

cette variante s'est révélée efficace pour des réseaux avec n = 10.

Dans tous les cas, la bonne obtenue est nécessairement plus proche de la

longueur du tour optimal qu'avec le premier algorithme.

3 - choix du sommet de départ: bien qu'aucun résultat n'ait été prouvé.

les expériences réalisées semblent indiquer qu'un sommet "central" 

c'est à dire tel que les distances aux autres sommets soient assez voi­

sines, donne les plus mauvaises bornes; on assiste en effet à une proli­

fération de O-circuits partiels, donnant au graphe une structure rappel-

Un choix raisonnable semble être de choisir unlant une marguerite.

sommet "périphérique", c'est à dire dont les distances aux autres som­

mets sont rapidement grandes par rapport aux plus petites; on peut choi­

sir par exemple un sommet dont la distribution des distances présente

la plus grande variance.

Voir note (1)
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La première version de l'algorithme fut essayée sur 3 classes 

de problèmes pour n = 5,6,10 (symétriques comme asymétriques)

pour n = 5 tous les problèmes furent résolus en partant d'au

moins un sommet

pour n = 6 ce fut le cas pour tous les problèmes symétriques et la 

moitié des problèmes asymétriques 

pour n = 10 seul le problème tiré d'Ashour-Vega-Parker 

résolu en partant du sommet 5.

Sur 4 problèmes de taille 10 (dont (VJ,[?])l'écart 

Z et C* est de 6.5%, et sa valeur moyenne fut de 3.5%.

fut

maximum entre

La variante (permettant d'éviter les circuits de longueur 2) a

toujours donné le tour optimal pour n = 5 et 6.

pour n = 10 le problème 4SjjMétîi«jut f«t résolu en partant de tous les

Les 3 autres furent résolus en partant de 

plus de la moitié des sommets.

L'écart moyen est de l'ordre de 5%.

sommets.

En outre sur les problèmes de taille 10, l'utilisation de la solution

de départ suggérée plus haut permet d'économiser plus de la moitié du temps

de calcul, et cette proportion semble croître avec n.

Enfin l'application de la variante évoquée ci-dessus à partir de la 

solution de départ donne une valeur de ï comprise entre celles fournies 

séparément par chacun des 2 autres algorithmes (voir fig. page suivante).
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valeur de la solution obtenue avec l'algorithme originalZ1

valeur de la solution obtenue avec la varianteZ2

valeur de la solution obtenue en partant de la solution de départ2'2

valeur de la solution de départZ

longueur de tour optimalC*

Dans le rapport précision/temps de calcul, c'est donc cette version

qui semble donner les meilleurs résultats.

Problèmes de grande taille7.

Pour des valeurs de n comprises entre 10 et 20, se produit un effet

bien connu dans les PL de grande taille: la valeur de la fonction-objectif

ne décroit plus que très lentement ("effet de plateau") ce qui rend la con­

vergence très lente. ( j

Pour pouvoir appliquer les considérations ci-dessus à des problèmes

de taille moyenne, nous avons entrepris de développer une procédure par 

relaxation, très proche de celle de Held et Karp , dont les résultats

seront alors publiés.

L'approche par des chemins à nombre d'arcs fixé (baptisés 0-circuits
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si ce nombre est égal au nombre de sommets) se révèle fructueuse et

s'étend à divers problèmes combinatoires, de cheminement et de tour­

nées: à suivre.
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