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Résumé

Les modèles théoriques ont été présentés pour la prédiction de la conductivité thermique

de composites constitués de particules sphériques. Parmi ces modèles, seuls quelques-

uns d’entre eux sont en mesure de prédire correctement la conductivité thermique de

nanocomposites. La difficulté à modéliser correctement cette propriété physique origine

de la différence entre la conductivité de la matrice et des particules à l’état pur par

rapport à leurs valeurs respectives dans le composite. En conséquence, la résistance

thermique à l’interface entre la matrice et les particules devient une variable importante

de la conductivité thermique des matériaux nanocomposites. Dans ce projet, l’analyse de

l’échange des phonons thermiques dans les milieux hétrogénes est réalisée et une formule

générale de la conductivité thermique effective de nanocomposites est présentée.

Dans la premire étape du travail, le transport de phonons à l’interface entre la matrice et

des nanoparticules est étudié. Cette investigation vise présenter la résistance thermique

sous une nouvelle forme. Les deux types de transport de phonons sur l’interface particule-

matrice, soient diffus et spéculaire, sont pris en compte dans le calcul de la conductivité

thermique effective pour les nanocomposites particulaires.

Dans un deuxième temps, le modèle proposé est évalué en regard de résultats numériques

et expérimentaux disponibles dans la littérature. Cette évaluation tend à prouver que le

modèle proposé est capable de prédire la conductivité thermique effective pour un large

éventail de fractions volumiques et de tailles de particules.
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Abstract

Theoretical models have been presented for predicting the thermal conductivity of com-

posites consisting of spherical particles. Among these models, only a few of them are able

to predict the thermal conductivity of nanocomposites. This is because the matrix and

particle thermal conductivities in nanocomposites are not equal to their bulk values due

to increased interface scattering. The boundary scattering becomes important when the

characteristic length of the media is smaller than the bulk mean free path of phonons.

The thermal boundary resistance at the interface between matrix and suspended parti-

cles is affected on the thermal conductivity of nanocomposites. In this work, the phonon

viewpoint of heat transport in heterogeneous media is investigated and a general formula

for the effective thermal conductivity of particulate nanocomposites is presented.

In the first step of this project, the phonon scattering at the interface between matrix

and nanoparticles is investigated. This study aims to present the thermal boundary re-

sistance in a new form. Both diffuse and specular types of scattering of phonons on the

particle-matrix interface are taken into account in the derivation of the effective thermal

conductivity for the particulate nanocomposites.

In the next step, the proposed model is evaluated with numerical and experimental results

available in literature. This evaluation is done to prove that the proposed model is able

to predict the effective thermal conductivity in a wide range of the volume fractions and

particle sizes.
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Chapter 1

Introduction
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Introduction

Heat transfer in nano-scale differs significantly from that in the bulk material (macro-

scale) since the characteristic length (i.e., diameter of wires and spherical particles and

thickness of thin films) of the media is comparable to the mean free path of heat carri-

ers. Three different types of heat carriers would be defined: phonons in semiconductors,

electrons in conductors and photons in radiation heat transfer. In this condition, local

thermal equilibrium assumption breaks down and, consequently, conventional Fourier heat

conduction cannot be directly applied. Furthermore, the heat transport becomes ballistic

rather than diffusive. For the ballistic regime, temperature jumps occur at the boundaries

of the media.

Boltzmann transport equation is the most commonly used method to study the heat trans-

fer of the nanostructures. Various techniques have been developed to solve the Boltzmann

transport equation in different geometries and conditions in order to provide more precise

results.

Particle size and shape, volume fraction, orientation and the thermal conductance at the

interface between two dissimilar materials are affected by the thermal conductivity of

the inhomogeneous systems. For a heterogeneous media, such as nanocomposites and

supperlattices, interfacial effects are very important. Phonon scattering at the interface

forms a resistance against the motion of phonons and, consequently, decreases the phonon

mean free path. This reduction in the phonon mean free path finally leads to a reduction

in the effective thermal conductivity. While this term (i.e., interfacial effects ) would be

neglected in macrostructures, when a heterogeneous media is under investigation, a better

understanding of the behaviour of phonons at the interface between dissimilar materials

is required. The interface can behave diffusely or specularly. Due to confinement of the

phonon transport in the diffuse boundary scattering, the diffuse thermal conductivity is

smaller than the specular thermal conductivity.

The main objective of this Master’s project is to introduce a new model to study the

effective thermal conductivity of an inhomogeneous (suspended spherical particles in ma-

trix) media by including the additional analysis details of the complex physics involved in

the phonon scattering on the particle-matrix interface. To meet this goal, the following

specific objectives have been considered:

(i). Modeling the thermal conductivity of composite using the generalized self-consistent

method.

(ii). Study the phonon transport at the interface between the matrix and particles and



3

present a new term for the thermal boundary resistance.

(iii). Study the effects of particle size, volume fraction of particles, and specular prob-

ability on the effective thermal conductivity of the nanocomposite and compare results

with experimental data and previous numerical results.

In the scope of these specific objectives, by using the definition of the equilibrium thermal

boundary resistance and the thermal conductivity based on the kinetic theory, the thermal

boundary resistance is presented in the form of the mean free path. Then, both diffuse

and specular types of phonon scattering on the particle-matrix interface are studied in the

derivation of the totally diffuse, totally specular, and partially diffuse-partially specular

thermal boundary resistance mean free paths. Finally, a generic model is introduced to

study the thermal conductivity of the nanocomposite comprising spherical particles.



4

Chapter 2

Background
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2.1 Heat Transfer

The energy transport process is a consequence of temperature difference known as heat

transfer. Heat transfer phenomena are commonly seen in our everyday life and play a

significant role in many industries and applications. Depending on the nature of the

medium, three types of heat carriers are defined. Heat carriers convey heat from one side

or arbitrary point to the other. Electrons, phonons, and photons are the most important

heat carriers under different conditions. In a radiation mechanism, heat is carried by pho-

tons while in conductors and semiconductors, heat is carried by electrons and phonons,

respectively. According to the principle of quantum mechanics, both the wave and par-

ticle natures of phonons would be studied in the heat transfer. The scattering among

the phonons causes them to thermalize their energy and transfer heat from one point to

another. Adequate scattering of the phonons establishes the local thermal equilibrium

state where the temperature gradient can be defined [1, 2]. Although heat transfer is in-

herently a non-equilibrium concept, the local thermal equilibrium is established where the

deviation from equilibrium state is negligible. It is remarked that the classic irreversible

thermodynamics (CIT) provides sufficient concepts to describe the equilibrium state. The

classic irreversible thermodynamics breaks down under non-equilibrium conditions where

basic physical quantities, such as temperature and mass, are not the only function of

place (size and time dependency become effective) [3,4]. In the macro-scale, the thermal

conductivity coefficient is defined as a ratio between the heat flux (q) and the temperature

gradient (∇T ) in the form of the well-known Fourier’s law.

q = −k∇T (2.1)
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Figure 2.1: Schematic illustration of heat transfer under diffuse and ballistic regimes [2].

By k, we denote the thermal conductivity of the media. Fourier’s law is a famous

approach in the formulation of the macroscopic heat conduction, where the dependence

of size and time on the heat transport is not important [5]. The diffuse collision (i.e.,

experiencing many collisions between phonons) and infinite heat propagation velocity are

important features of the Fourier heat conduction. It is experimentally observed and

physically supposed that even the smallest change in the temperature gradient is sensed

after relaxation time. On the other hand, any temperature disturbance propagates at the

finite velocity. In micro and nano-scales where time and size dependence are important,

the validity of Fourier heat conduction is questioned. The qualitative behaviour of the

thermal transport under diffuse and ballistic regimes has been illustrated in Figure (2.1).

2.2 Phonons

In crystalline solids, atoms are structured in periodical arrays known as lattice. Lattice

vibrations contribute to thermal conductivity. In non-metal solids, heat is transferred by

phonons. If two atoms in a solid body are far apart, an attractive force exists between the

atoms, while the interaction force becomes repulsive (because of the overlap of electronic

orbits in the atoms), if two atoms are close to each other. The minimum potential defines

the equilibrium positions of the atoms where the repulsive and attractive forces balance

each other. Atoms in a solid body vibrate about their equilibrium position. The vibration

of each atom is constrained by its neighbouring atoms through the interatomic potential.

A mass-spring system is a simplified picture of the interatomic interaction in crystalline

solids. In such a system, the vibration of the atoms is not independent of each other and

can cause the vibration of the whole system by creating a lattice wave in the system.
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Clearly, the atoms near the hot side of the solid have larger vibrational amplitudes, which

will be felt by atoms of the other side of the solid through the propagation and interaction

of the lattice waves.

According to the principle of quantum mechanics, the energy of each lattice wave is dis-

crete and must be a multiple of energy (hω), where h is the Planck’s constant and ω is

the frequency. The minimum energy of hω, a quantized lattice wave, is called phonon.

At a specific frequency and wavelength, phonon is a wave that travels through the entire

crystal. Phonons can be considered as particles as long as they are much smaller than

the crystal size. In this condition, the mass-spring picture of the crystal can be replaced

by a box of phonon particles with random movement in the phase space.

Phonon dispersion curves are used to approximate how phonons are affected by the ther-

mal conductivity of the media [4]. The phonon dispersion curves are usually divided into

acoustic and optical branches. Low frequency acoustic phonon contributes significantly

to thermal conductivity due to its large mean free paths. Although the optical phonon

often does not contribute to heat transfer due to its small mean free path, it could be

important when the characteristic length of the media is reduced [6–8].

2.3 Phonon Dispersion

The heat transfer in a solid is due to lattice vibration. This vibration is called thermal

motion. Based on the lattice vibration theory, the atoms in a solid are close to each other,

and interatomic forces keep them in position [9]. Vibration of the atoms takes place near

their equilibrium positions. Understanding the interatomic forces enables us to further

understand thermal properties of solids. If the bonds between two atoms are supposed

to be stiff (such as, a rod), it will be impossible to determine the specific heat, thermal

conductivity and melting point of the solid. Therefore, the elastic vibration model of

the ball and spring should be considered (see Figure (2.2)). The spring is a conceptual

representative of the repulsive and attractive forces [4, 10].
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Figure 2.2: Ball-spring model for introducing of the speed of phonon propagation [10].

2.3.1 The vibration of crystal with a mono-atomic basis

It is assumed that the elastic response of crystal is a linear function of the force. So, Hook’s

law could be used. According to this assumption, a harmonic vibration between atoms

is considered, while anharmonic vibration is discussed at higher temperatures. Another

assumption in the lattice vibration is that forces on an atom only come from its nearest-

neighbours. A mono-atomic chain is illustrated in Figure (2.3). Allowing all atom masses

(M) and spring constants (C) to be the same, the equation of motion of the atoms could

be written as follows:

F = −C(us+1 − us)− C(us − us−1) (2.2)

the equation of motion would be rearranged as follows:

M
d2us

dt2
= C(us+1 − 2us + us−1) (2.3)

The above equation is a special form of the differential wave equation

M
d2us

dt2
= Ca2

d2us

dx2
(2.4)

with a solution of the form us = u exp[−(iωt − kas)]. Where ω is the frequency of

vibration, k is the wave-vector, a is the spacing between the planes, and t is time [4].
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Figure 2.3: Mono-atomic vibration of an atom chain [9].

Displacements at s± 1 are

us±1 = u exp[−(iωt− ka(s± 1))] (2.5)

Substituting the guessed expressions for us and us±1 into the equation (2.3) and after

some manipulations, the frequency of vibration in the mono-atomic chain is

ω = 2(

√

C

M
)| sin(ak

2
)| (2.6)

2.3.2 First Brillouin zone

Only the wave-vectors, which are in the first Brillouin zone are physically affected by

elastic waves. At the boundaries of the first Brillouin zone, the group velocity of phonons

(vg ≡ ∂ω/∂k) is equal to zero, since the atoms at the boundaries oscillate in opposite

directions and their average movement tends to zero [9]. The first Brillouin zone takes

place between −π/a < k < π/a. The group velocity in the first Brillioun zone is

vg = (

√

Ca2

M
) cos(

ak

2
) (2.7)
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Figure 2.4: (a)Phonon dispersion curve of a one-dimensional mono-atomic lattice chain,
(b)Group velocity of a one-dimensional mono-atomic lattice chain.

Phonon dispersion and phonon group velocity curves for a 1-D mono-atomic lattice chain

are illustrated in Figure (2.4). As previously explained and schematically illustrated in

(2.4), the group velocity of phonons is equal to zero when phonons are at the boundaries

of the first Brillouin zone.

2.3.3 The vibration of crystal with a diatomic basis

The relationship between the vibration frequency and the phonon wave-vector for a di-

atomic chain follows the same procedure as the mono-atomic one. The interatomic forces

and the mass of the nearest-neighbour atoms are, however, not the same (Figure (2.5)).

Equations of motion of the atoms are written as follows:

M1
d2us

dt2
= −C1(vs − us) + C2(us − vs−1) (2.8)
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Figure 2.5: A chain of two atoms with different masses linked by springs with different
constants [9].

M2
d2vs
dt2

= −C2(us+1 − vs) + C1(vs − us) (2.9)

Again, a wave form solution is guessed for the above equations. After some manipulations,

we obtained the following equations:

(C1 + C2 −M1ω
2)u− (C1 + C2 exp(iak))v = 0 (2.10)

(C1 + C2 −M2ω
2)v − (C1 + C2 exp(iak))u = 0 (2.11)

The determinant must be zero,

2C1C2 − (C1 + C2)(M1 +M2)ω
2 +M1M2ω

4 − 2C1C2 cos(ak) = 0 (2.12)

Solving the above equation, the phonon dispersion curve is represented for a diatomic

chain. We use an example to introduce the phonon dispersion of a diatomic chain. Con-

sider a linear diatomic chain in which the force constants are C1 = 10C and C2 = C with

masses M1 = 10M and M2 = M .

The result of the phonon dispersion curve when masses are not the same has been shown

in Figure (2.6). Two branches are formed under this condition. The upper branch con-

tains atoms, which oscillate out of phase. This branch is called the optical branch. The

lower branch that corresponds to the in phase oscillation of atoms is called the acoustic

branch [11]. The result of the group velocities of the acoustic and optical branches has

been illustrated in Figure (2.6-b). The group velocity of the optical branch is significantly

lower than the acoustic one. Note that the contribution of the optical branch in heat

transfer can be neglected compared with the acoustic branch.
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Figure 2.6: (a)Phonon dispersion curve of a one-dimensional diatomic lattice chain,
(b)Group velocity of a one-dimensional diatomic lattice chain.

2.4 Macro and micro heat conduction

In heat conduction two major areas are studied; macro-scale and micro-scale. The char-

acteristic times and lengths are used to differentiate these regimes from each other. As

previously discussed, the local thermal equilibrium is applied to study the heat conduction

under macro-scale assumption where the heat transfer is independent of time and size.

While time and size dependence of the heat transport is considered in the micro-scale

formulation. The spatial and temporal dependence of the heat transport leads to the

definition of several parameters that are used in the characterization of the micro-scale

heat transfer [4, 5].

A famous dimensionless number which is widely used in the study of heat transfer is called

the Knudsen number (Kn = Λ/L). When the mean free path (Λ) of the heat carriers
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(i.e., phonons in our work) is much less than the characteristic length (L) of the system,

the heat transport occurs in the macroscopic state and the regime behaves in a purely

diffuse manner. In the opposite case, the microscopic heat transfer is established when the

mean free path is larger than the characteristic length of the system. In this condition,

the micro-scale heat transfer is categorized into partially ballistic (ballistic-diffusive) or

purely ballistic heat transfer [12]. Heat transfer based on the Knudsen number has been

tabulated in Table (2.1).

Table 2.1: Heat transfer based on Knudsen number [11].

Regime Method of calculation Kn range

Continuum Navir-Stokes and energy equation 0.001 < Kn

with no slip/jump boundary condition
Slip flow Navir-Stokes and energy equation 0.001 < Kn < 0.1

with slip/jump boundary condition , DSMC
Transition BTE, DSMC 0 < Kn < 10

(Free Molecule) Kn > 10

2.4.1 Mean Free Path

Fourier’s law is no longer valid when the characteristic length of the system is comparable

or smaller than the mechanistic length, such as the mean free path. In order to better

understand micro-scale heat transfer, the concept of the mean free path is described. The

mean free path is the average distance covered by a moving particle (i.e., phonon in this

work) between two subsequent collisions, which is affected by the direction and energy

of the particle. The mean free path is usually used to estimate whether a phenomenon

belongs to macro-scale regime or falls in the micro-scale regime [11, 13]. The chance of a

successful collision between phonons decreases dramatically when the heat transfer regime

falls into the micro-scale condition. On the other hand, the boundary scattering becomes

significant and local thermal equilibrium is not valid unless it is at the boundaries [4].

2.4.2 Scattering mechanisms

The thermal conductivity of the media when Kn >> 1 decreases due to some scattering

mechanism, which is not important in the corresponding bulk. Depending on the different

types of scattering mechanisms, heat transfer is faced with different types of resistances

shown in Figure (2.7). It is difficult to draw a conclusion about the relative strength of

the scattering mechanisms on the thermal conductivity in the micro-scale media. It is
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noted that phonon-boundary scattering is important in comparison with other scattering

mechanisms, especially at low temperatures [6, 7, 14].

In addition to different scattering mechanisms exhibited in Figure (2.7), phonon-phonon

collision also contributes to the heat transfer of the dielectric and semiconductor materi-

als. There are two types of the phonon-phonon collisions called Umklapp (U-process) and

normal (N-Process) processes. The N-process does not change the direction of the heat

flux (both the energy and momentum are conserved), hence, the N-process does not con-

tribute to thermal resistance. Phonon momentum is not conserved during the U-process,

which creates resistance against heat flow and thus reduces the thermal conductivity of

the media. It is noted that an infinite thermal conductivity is predicted, if the N-process

is only taken into account [4, 11].

According to the Wien’s displacement law for phonons, the phonon wavelength de-

Figure 2.7: Different phonon scattering mechanisms that reduce the thermal conductivity of
the medium [14].

pends inversely on temperature. Therefore, the wavelength of the dominant phonons

significantly decreases as the temperature rises. Figure (2.8) is a plot of the thermal

conductivity of CoSb3 as a function of temperature. At low temperatures, the phonon

wavelength is long and the Umklapp scattering does not make a significant contribution

to the thermal conductivity. As the temperature gradually increases, the phonon wave-

length obviously decreases and becomes comparable to the size of the defects. Thus,

defect scattering becomes important in moderate temperatures. Consequently, at high

temperatures, the phonon wavelength is shortened and the Umklapp scattering becomes

important [8, 11].

In order to study both micro- and macro-scale heat transfers, the powerful Boltzmann

transport equation is generally used.
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Figure 2.8: Thermal conductivity of CoSb3 as a function of temperature. The dots and solid
lines represent the experimental and theoretical results [8].

2.5 Boltzmann Transport Equation

Most transport theories in solids are derived based on the Boltzmann transport equation.

The Boltzmann transport equation is applied to model both phonon and electron trans-

port. Although phonons are inherently wave, the particle nature of phonons is considered

when the characteristic length of the media is greater than the dominant phonon wave-

length. Several types of heat conduction models are built upon the Boltzmann transport

equation. Each model has tried to explain the thermal conductivity under different condi-

tions and assumptions due to better coincidence with experimental results [6,7,12,15–18].

The Boltzmann transport equation gives us particle distribution in phase space at any

time. It is used to study deviation from the equilibrium state when the temperature gra-

dient is applied. The phonon distribution function (f(r, v, t)) gives the particle (number)

density of phonons in the phase state at any given time. Suppose a particle at the spatial

location r moves with a group velocity v at time t. At t + dt, without a collision, the

particle will reach position r + dr = r + vdt and its velocity will be v + dv = v + adt.

Where a is the acceleration in a body force field [11]. Therefore

f(r + dr, v + dv, t+ dt)− f(r, v, t)

dt
=

∂f

∂t
+ v.

∂f

∂r
+ a.

∂f

∂v
= 0 (2.13)
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The velocity of phonons in a dielectric material is fairly constant over a large range of

frequencies, thus the third term of equation (2.13) can be neglected [5]. In the presence

of the collision term, the Boltzmann transport equation can be written as

∂f

∂t
+ v.

∂f

∂r
= [

∂f

∂t
]coll (2.14)

The left hand side terms of the equation (2.14) describe the time evolution of the distri-

bution function and convective transport of the distribution function due to the group

velocity of the carriers. The term on the right hand side of the Boltzmann transport equa-

tion represents the scattering term, which brings the system back to the equilibrium state.

The local equilibrium approximation is established when phonons collide with phonons,

boundaries, defects, etc. In the ballistic heat conduction (i.e Kn >> 1), phonons are

only scattered at the boundaries of the system and the local equilibrium assumption is

valid only at the boundaries [19]. Since the Boltzmann transport equation is a nonlinear

integro-differential equation, it cannot be exactly solved. The relaxation time approxima-

tion is often used in order to solve the Boltzmann transport equation. The relaxation time

approximation assumes that the phonons slightly perturb the equilibrium state. Therefore

[
∂f

∂t
]coll =

f0 − f

τ
(2.15)

where f0 is the equilibrium distribution, which is defined by Bose-Einstein distribution

for phonons. By τ , we denote the relaxation time, which shows the deviation from the

equilibrium state [4,7]. Several important heat conduction models based on the Boltzmann

transport equation are derived in the next section.

2.5.1 Fourier’s law

Fourier’s law is widely and successfully used in the usual heat conduction problem where

the characteristic length of the media is much greater than the mean free path of the

energy carriers [12]. When the deviation from the equilibrium state is small, the local

thermal equilibrium (LTE) is applicable. Enough scattering between phonons due to

their energy being thermalized causes the local thermal equilibrium to be established.

If the characteristic length of the system is assumed to be smaller than the mean free

path, the local thermal equilibrium breaks down and the temperature cannot be defined

in the conventional sense. The temperature jump due to the non-equilibrium nature of

the phonon occurs under this condition. However, the media can be purely ballistic or
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ballistic-diffusive [3]. These limits can be observed in Figure (2.9).

Figure 2.9: Schematic diagram qualitatively showing the temperature profiles under
diffusive and ballistic phonon transport in steady sate condition [5].

Consider a phonon as a particle with energy ~ω and momentum ~v, when the character-

istic length of the system is larger than the phonon wavelength. In this condition, the

particle nature of the phonon could be considered. The internal energy is determined by

multiplying ~ω by the number (density) of states D(ω), and the distribution function of

phonons f , and integrating it over the phase space for a large range of frequencies. The

internal energy for r-direction (1−D) is given by

e =

ωD
∫

0

f(r)~ωD(ω)dω (2.16)

Consequently, the heat flux is obtained by multiplying the above equation by the group

velocity of the phonon.

qr =

ωD
∫

0

f(r)~ωD(ω)vrdω (2.17)

Where ωD is the Debye frequency. ~, ω and D(ω) are modified Plank’s constant, fre-

quency, and the density of states, respectively [11]. For a steady state condition, in a

one dimensional case and under relaxation time approximation, the Boltzmann transport

equation describes the diffusion of the particles and is written as follows [20]

vr
∂f

∂r
=

f0 − f

τ
(2.18)
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under local thermal equilibrium conditions, we have

∂f

∂r
=

∂f0
∂r

=
df0
dT

dT

dr
(2.19)

It is important that the local thermal equilibrium is applied in the presence of the tem-

perature gradient. Substituting equation (2.19) in equation (2.18) leads to following

expression

vr
df0
dT

dT

dr
=

f0 − f

τ
(2.20)

Rearranging the above equation

f − f0 = −vrτ
df0
dT

dT

dr
(2.21)

Multiplying equation (2.21) by ~ωD(ω)vr and integrating it over all frequencies gives

qr =

ωD
∫

0

−v2rτ~ωD(ω)
df0
dT

dT

dr
dω (2.22)

Note that
ωD
∫

0

f0~ωD(ω)vrdω = 0. Because f0 is equilibrium distribution.

The velocity of phonons is assumed to be identical in all directions (v2r = 1/3v2) and

τ.v ≡ Λ. By Λ, we denote the mean free path of the phonons. Thus, equation (2.22) is

rewritten in the following form

q = −1

3

dT

dr
vΛ

ωD
∫

0

df0
dT

~ωD(ω)dω (2.23)

where
ωD
∫

0

df0
dT

~ωD(ω)dω is the internal energy with respect to temperature, which is known

as the lattice specific heat C. Recalling equation (2.23) in the spirit of the lattice specific

heat, we have

q = −1

3
CvΛ

dT

dr
(2.24)

where phonon thermal conductivity, k is 1
3
CvΛ. Fourier’s law is not able to predict the

thermal conductivity of the media when the Knudsen number is comparable or larger

than the unit. Note that an infinite speed of heat propagation (exerted heat flux is

instantaneously sensed at every region of the media) is assumed by Fourier’s law, which

is not realistic [4, 11].
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2.5.2 Hyperbolic heat equation (Cattaneo equation)

To overcome the prediction of the infinite speed of heat propagation, the Cattaneo equa-

tion was proposed. Although the Cattaneo equation can solve the drawback of Fourier’s

law for a characteristic time smaller than the relaxation time of the system, the validity

of the Cattaneo equation for larger Knudsen numbers is still questioned [5, 13]. The uni-

directional transient Boltzmann transport equation under relaxation time approximation

is written as follows:
∂f

∂t
+ vr

∂f

∂r
=

f0 − f

τ
(2.25)

Multiplying equation (2.25) by ~ωD(ω)vrdω under the local thermal equilibrium approx-

imation, we have

ωD
∫

0

vr
df

dt
~ωD(ω)dω +

ωD
∫

0

v2r
df0
dT

dT

dr
~ωD(ω)dω = −

ωD
∫

0

f

τ
~ωD(ω)vrdω (2.26)

After some manipulations

τ
dq

dt
+ q = −k

dT

dr
(2.27)

The Cattaneo equation changes to Fourier’s law for the steady state condition or τ = 0.

τ = 0 corresponds to cw → ∞, implying thermal waves propagate at infinite speed. Note

that τ = α
c2w
, where cw is thermal wave speed and α is the thermal diffusivity (α = k

C
). C

is the volumetric specific heat capacity [11, 21].

2.5.3 Comparison between Fourier’s law and Cattaneo equation

In order to compare Fourier’s law and the Cattaneo equation, we consider a one-dimensional

transient heat conduction problem across the thin film. The desirable film with a thick-

ness of L is initially maintained at temperature T0. At time t = 0, the temperature at

r = 0 rises and reaches T1, while the temperature at r = L remains at T0. This geometry

has been widely used in several studies [12, 15, 22]. The following initial and boundary

conditions are determined:

T (r, t)|r=0 = T1 (2.28)

T (r, t)|r=L = T0 (2.29)

T (r, t)|t=0 = T0 (2.30)
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Fourier’s law is a well-known model for studying heat transport in macro-scale and steady

state conditions, where the mean free path is smaller than the characteristic length (i.e.,

the film thickness). Fourier’s law and the energy balance equation in a one-dimensional

geometry are written as follows:

q = −k
∂T

∂r
(2.31)

∂u

∂t
= −∂q

∂r
(2.32)

where ∂u
∂t

is the rate of change in internal energy, which can be defined as

∂u

∂t
= C

∂T

∂t
(2.33)

The divergence of equation (2.31) is substituted into equation (2.32) and the combination

of them with equation (2.33), finally gives

∂T

∂t
= α

∂2T

∂r2
(2.34)

where α is thermal diffusivity defined as k/C. Equation (2.34) is used to present the

temperature profile in the thin film. The following dimensionless variables are defined.

θ =
T − T0

T1 − T0
(2.35)

ς =
r

L
(2.36)

η =
t

τ
(2.37)

Equation (2.34), initial and boundary conditions are rewritten in dimensionless forms as

follows:

∂θ

∂η
= Υ2∂

2θ

∂ς2
(2.38)

θ(ς, η)|ς=0 = 1 (2.39)

θ(ς, η)|ς=1 = 0 (2.40)

θ(ς, η)|η=0 = 0 (2.41)

Υ is equal to ατ/L2. Equation (2.38) is a non-homogeneous partial differential equation.

The non-homogeneous case is initially transformed into a homogeneous problem. A new
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function, such as θ(ς, η) = ω(ς, η) + ι(ς), is defined with one condition ∂2ι
∂ς2

= ∂ι
∂η

= 0. It is

obvious that ι(ς) is a linear function of ς and independent of η. After determining ι(ς),

equation (2.38) is finally described based on ω(ς, η) instead of θ(ς, η) in the homogeneous

form with new boundary and initial conditions.

∂ω

∂η
= Υ2∂

2ω

∂ς2
(2.42)

ω(ς, η)|ς=0 = 0 (2.43)

ω(ς, η)|ς=1 = 0 (2.44)

ω(ς, η)|η=0 = ς − 1 (2.45)

The separation of variables method is used to solve the above-mentioned homogeneous

partial differential equation and the non-dimensionless temperature profile is obtained as

follows:

θ(ς, η) = 1− ς − 2

π

∞
∑

n

sin(nπς)

n
exp(−n2π2Υ2η) (2.46)

To take into account the finite propagation of heat in the medium, Fouriers law should

be modified [11]. The Cattaneo equation is an earlier attempt to predict the finite speed

of heat propagation (see equation (2.27)). The divergence of equation (2.27) and time

derivative of equation (2.32) give two equations, which are combined with equation (2.33)

and give two equations to eliminate the heat flux term. Eliminating heat flux terms leads

to the following differential equation:

∂T

∂t
+ τ

∂2T

∂t2
= α

∂2T

∂r2
(2.47)

The same procedure as Fourier’s law is applied to find the temperature profile equation.

This system also is non-homogeneous under boundary conditions. Using dimensionless

variables (equation (2.35)) and transferring the non-homogeneous system to homogeneous

conditions, we have

∂ω

∂η
+

∂2ω

∂η2
= Υ2∂

2ω

∂ς2
(2.48)

ω(ς, η)|ς=0 = 0 (2.49)

ω(ς, η)|ς=1 = 0 (2.50)

ω(ς, η)|η=0 = ς − 1 (2.51)

∂ω(ς, η)|∂η=0

η
= 0 (2.52)
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Figure 2.10: Temperature profile at the steady state condition in macroscopic domain.

Again, the separation of variables method is applied to achieve temperature profile.

θ(ς, η) = 1− ς − 2

π

∞
∑

n

exp
−η
2 (Ψ cos

ηΨ

2
+ sin

ηΨ

2
)
sin(nπς)

nΨ
(2.53)

where Ψ is related to
√
4n2π2Υ2 − 1.

First, we restrict ourselves to the macroscopic regime where the Knudsen number is less

than unity . As expected for η = 100 (steady state condition is satisfied), Fourier’s law

and the Cattaneo equation show the same linear temperature profiles (Figure (2.10)). A

qualitative comparison of these equations for η = 10 has been shown in Figure (2.11).

The influence of the temperature is sensed everywhere in the solid except near the regions

ς = 1. For η = 1 (see Figure (2.12)), the temperature profiles predicted by Fourier’s

law and the Cattaneo equation differ from each other. The Cattaneo equation shows a

discontinuity in temperature profile. The wave front (located at ςl) separates heated and

unheated regions. For ς > ςl the temperature has not yet been sensed while behind the

wave front (ς < ςl), the Cattaneo temperature profile is higher than the Fourier temper-

ature profile because the same amount of energy is exerted into a smaller volume of the

film [21].

Temperature profiles for Kn = 1 and η = 1 have been illustrated in Figure (2.13). As

previously mentioned, Fourier’s law is not able to predict temperature profile in the mi-
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Figure 2.11: Temperature profile at η = 10 in macroscopic domain.

croscale domain. A linear temperature profile is predicted by Fourier’s law even at smaller

η. Again, the Cattaneo equation shows a jump in the temperature profile. Fourier’s law

and the Cattaneo equation are not able to predict temperature jump at the boundaries

when Kn ≥ 1. Effect of the purely ballistic regime on the temperature profile has been

schematically described in Figure (2.14). Linear temperature profiles without any temper-

ature jumps at the boundaries are predicted by Fourier’s law, while the Cattaneo equation

shows a discontinuity in predicting the temperature profile. A temperature jump can be

seen for the Cattaneo equation, but it does not take place exactly at the boundaries.

Therefore

i. Fourier’s law and the Cattaneo equation are suitable to predict the temperature profile

for macroscopic regimes; especially at steady state conditions where the Cattaneo equa-

tion tends to Fourier’s law.

ii. Fourier’s law is valid when the characteristic length scale is higher than the mean free

path (i.e., macroscopic heat transfer).

iii. Fourier’s law and the Cattaneo equation cannot be used to explain temperature pro-

files in a micro-scale regime (temperature jump at boundaries is not predicted).

iv. A discontinuity in temperature profile is predicted by the Cattaneo equation.
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Figure 2.12: Temperature profile at η = 1 in macroscopic domain.

2.5.4 The equation of phonon radiative transfer (EPRT)

Using an analogy between phonon and photon, the Boltzmann transport equation can be

expressed in terms of the phonon intensity defined as

sin θ cosφ
∂I

∂r
+ cos θ

∂I

∂z
= −I − I0

Λ
(2.54)

where the phonon intensity (I) is

I =
1

4

∑

vrf~ωD(ω) (2.55)

By φ and θ, we denote azimuthal and polar angles, respectively [11,17]. For steady state

heat conduction in r−direction, the phonon intensity does not depend on z−direction.

Therefore
∂I

∂r
= −I − I0

Λ
(2.56)

where µ = cos θ is directional cosine. The two-flux method is a helpful solution for the

above equation. According to this method, the equations for forward (+) and backward

(−) intensities can be written as

∂I−

∂r
=

I0 − I−

Λ
, -1<µ<0 (2.57)
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Figure 2.13: Temperature profile at η = 1 for Kn = 1.

∂I+

∂r
=

I0 − I+

Λ
, 0<µ<1 (2.58)

General solutions of equations (2.57) and (2.58) can be expressed as follows [11]

I+(r, µ) = I+(0, µ) exp[
−r

Λµ
]−

r
∫

0

exp[
ξ − r

Λµ
]I0(ξ)

dξ

Λµ
(2.59)

I−(r, µ) = I−(0, µ) exp[
L− r

Λµ
]−

L
∫

r

exp[
ξ − r

Λµ
]I0(ξ)

dξ

Λµ
(2.60)

The heat flux is written as

q = 2π

1
∫

0

[I+(r, µ)− I−(r, µ)]µdµ (2.61)
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Figure 2.14: Temperature profile at η = 1 for Kn = 10.

Using equations (2.59) and (2.60) and the definition of the mth exponential integral

(Em(r) =
1
∫

0

[µm−2 exp[−r/µ]dµ]), equation (2.61) yields

q

2π
= I+(0)E3[

r

Λ
]− I−(L)E3[

L− r

Λ
]+

r
∫

0

E2[
r − ξ

Λ
]I0(ξ)

dξ

Λ
−

L
∫

r

E2[
ξ − r

Λ
]I0(ξ)

dξ

Λ
(2.62)

In the acoustically thick limit, the first two terms in equation (2.62) can be dropped.

Applying the first Taylor expansion I0(r) = I0(ξ)+
dI0
dr
(r−ξ)+ ... and letting z = (r−ξ)/Λ

in the third and fourth terms, we have

q

2π
= −dI0

dr
Λ(

∞
∫

0

zE2[z]dz +

−∞
∫

0

zE2[−z]dz) (2.63)

Since
∞
∫

0

zE2[z]dz = 1/3, the heat flux becomes

q = −4π

3
Λ
dI0
dr

(2.64)
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For temperatures lower than the Debye temperature, the total intensity over the frequen-

cies of interest is given by the Stefan-Boltzmann law.

I0 =
σSB

π
T 4 (2.65)

Where σSB is the Stefan-Boltzmann constant. Under the local thermal equilibrium con-

dition, we can see [11, 16]

q = −16σSBT
3

3
Λ
dT

dr
(2.66)

This is a heat diffusion equation, if the thermal conductivity is defined as

k =
16σSBT

3

3
Λ (2.67)

Comparing the thermal conductivity from the Boltzmann transport equation with the

EPRT, we find that Cv = 16σSBT
3.

2.6 Thermal boundary resistance

Thermal resistance at the interface between two dissimilar materials is very important for

heat transfer in heterostructures. The effect of the thermal boundary resistance manifests

itself as a discontinuity in the temperature gradient because of a mismatch in phonon

group velocity and the density of two dissimilar materials. The thermal boundary resis-

tance can be greatly affected by the effective thermal conductivity [1, 4].

The thermal boundary conductance (inversely proportional to the thermal boundary re-

sistance) is determined by the number of phonons occurring at the interface and the

probability of each phonon being transmitted across the interface. The net heat flux

transferring from one side (1) to the other (2) could be calculated by

q = hB∆T (2.68)

By hB, we denote the thermal conductance at the boundary between two dissimilar ma-

terials [23]. There have been two famous theoretical models developed to predict thermal

boundary resistance. The acoustic mismatch model (AMM) is used for the specular scat-

tering of phonons at the interface and the diffuse mismatch model (DMM) was proposed

to account for the diffuse scattering of phonons at the interface [24]. These models will

be elucidated in this section [11, 25, 26].
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The heat flux occurring at the interface can be expressed by

qinterface =

∫∫

Ω1>2π

[t12v1 cos θ1~ω[f(ω, Te1)− f(ω, Te2)]
D1(ω)

4π
dω]dΩ1 (2.69)

where t12 is the phonon transmission probability from one side (1) to the other (2), D1(ω)

is the density of states, f(ω, T ) is the Bose-Einstein phonon distribution function, ω is

the phonon frequency, dΩ = 2π sin θdθ is the differential angle, and v is the phonon

velocity [4, 11]. The rearranging equation (2.69) gives

qinterface = (Te1 − Te2)

2π
∫

0

π/2
∫

0

ωD
∫

0

t12v1~ω
df

dT

D1(ω)

4π
cos θ1 sin θ1dωdθ1dφ (2.70)

where Te1 and Te2 are emitted temperatures for side (1) and (2), respectively. After some

manipulation and using the definition of the volumetric specific heat capacity, the general

equation for the thermal boundary resistance becomes [17]

1

R
=

1

2

1
∫

0

t12(µ1)C1v1µ1dµ1 (2.71)

where R is the thermal boundary resistance, and µ1 is cos θ1.

2.6.1 Diffuse mismatch model

The diffuse mismatch model theory was proposed by Swartz and Pohl [24] to predict

the thermal boundary conductance. The diffuse mismatch model is established based on

elastic scattering, that is, a phonon from side (1) with frequency ω only emits a phonon

from the other side with same frequency. Also, according to the definition of diffuse

scattering (the phonon loses its memory and forgets where comes from), the probability

of reflection from one side is equal to the probability of transmission from the other

side [26, 27]. It means that

t
(d)
ji = r

(d)
ij = 1− t

(d)
ij (2.72)

where t
(d)
ij and r

(d)
ij are the probabilities of transmission and reflection from side (i) to side

(j), respectively. A balance of the total fluxes yields

t
(d)
12

∫

~ωv1D1(ω)f(ω)d(ω) = t
(d)
21

∫

~ωv2D2(ω)f(ω)d(ω) (2.73)
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Strictly speaking, within the limits of purely elastic scattering, a phonon from side (1) with

frequency ω can only emit a phonon from the interface with the same frequency [26, 27].

Therefore, equation (2.73) can be written as:

t
(d)
ij =

∑

m v−2
mj

∑

m v−2
mi +

∑

m v−2
mj

(2.74)

where vmi is the phonon group velocity of the m branch (m is transverse or longitudinal)

in the ith layer [24]. A similar relation can be obtained by using the relation between the

phonon intensity and the volumetric specific heat capacity [16, 17]. The intensity of the

phonon can be written as:

I0 =
Cv(T − Tref)

4π
(2.75)

where Tref is a reference temperature. From equations (2.72), (2.73) and (2.75), the follow-

ing expression for the probability of phonon transmission at the totally diffuse scattering

limit is obtained [4].

t
(d)
ij =

Cjvj
Civi + Cjvj

(2.76)

This equation assumes that phonons of all frequencies in mediums (1) and (2) will partic-

ipate in the thermal transmission. Therefore, a maximum transmission will occur in this

condition [17]. Finally, for the totally diffuse interface, equation (2.71) is rearranged as

h
(d)
B =

1

R(d)
=

t
(d)
12 C1v1

4
(2.77)

where h
(d)
B and R(d) are the diffuse thermal boundary conductance and the diffuse thermal

boundary resistance, respectively.

2.6.2 Acoustic mismatch model

The interfacial thermal resistance is a function of phonon density of both mediums. In

practice, when phonons are occurring at the interface, some of them are transmitted

to the other side, while the rest of the phonons are reflected. This reflection can be

specular (mirror like) or diffuse. The acoustic mismatch model is used to account for

the specular scattering of phonons at the interface. The acoustic mismatch model is able

to predict the interface properties at low temperatures, where the specular scattering is

dominant [25,28]. The degree of specularity of the phonons at the interface is determined
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by

s = exp[−16π2δ2rms

∆2
] (2.78)

where s is the probability that phonons are scattered specularly at the surface, δrms and

∆ are the asperity parameter of the interface and the coherence length, respectively. ∆

is given by ∆ = hv/kBT , where h is the Plank’s constant, v is the phonon velocity and

kB and T are the Boltzmann’s constant and temperature, respectively. The specular

(smooth) interface is defined, if the specularity parameter is unity . By s = 0, the totally

diffuse phonon scattering is satisfied. It is clear that temperature rising leads to increasing

the probability of diffuse scattering [26, 27].

Calculation of the transmission probability and the thermal boundary resistance between

two dissimilar materials is not a straightforward problem. In the acoustic mismatch model,

the characteristic length scale of the interface roughness is assumed to be much smaller

than the incident phonon wavelength. The acoustic mismatch model incorporates some

simplifying assumptions. First, the phonons are governed by continuum acoustics, that

is, the phonons are treated as plane waves in a continuous medium. Second, the interface

is considered as a perfect plane [24].

Figure 2.15: Schematic of many possibilities of a phonon incident at the interface between
two dissimilar materials [24].
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When a phonon is present at the interface, there are four general possible results

as shown in Figure (2.15). The phonon can specularly reflect, reflect and mode convert,

refract or refract and mode convert. The angles of reflection and refraction with or without

mode converts are calculated by the acoustic analog of Snell’s law for electromagnetic

waves. Therefore, the angle of the transmitted phonon is determined by

sin θ1
v1

=
sin θ2
v2

(2.79)

We can consider two possibilities for equation (2.79). Considering the case v1 > v2, the

Snell’s law can be applied without restriction. In the opposite case, when v1 < v2, a

critical angle θc, is defined. Above the critical angle (θ1 > θc), total internal reflection

occurs and the transmission probability vanishes completely (t
(s)
12 = 0), while for the angle

of incidence less than the critical angle, Snell’s law is still valid. The simplest picture

derivable from the acoustic mismatch model is presented by equation (2.80) in which the

mode conversion at the interface is neglected and the velocities of all three polarizations

are considered the same [29].

t
(s)
12 =

4ρ1v1ρ2v2 cos θ1 cos θ2
(4ρ1v1 cos θ1 + ρ2v2 cos θ2)2

(2.80)

Where t
(s)
12 is the probability of specular transmission, and ρ is the material density of

each medium. In the totally specular limit, equation (2.71) can be written as

h
(s)
B =

1

R(s)
=

C1v1
2

∫

t
(s)
12 (µ1)dµ1 (2.81)

where h
(s)
B and R(s) are the specular thermal boundary conductance and the specular

thermal boundary resistance, respectively.

The diffuse and specular thermal boundary resistance (equations (2.77 and 2.81)) were

defined based on the temperature of the emitted phonons. It is worthwhile to note that

the diffuse mismatch model discussed above is a simple approximation and not accurate

when two mediums are very similar. Under this condition, the transmissivity should ap-

proach unity; but equation (2.74) predicts the probability of transmission approaching 0.5

and a finite value for the thermal boundary resistance is predicted in equation (2.77), even

if the transmissivity sets t
(d)
12 = 1. This dilemma arises from the temperature definition

used in these equations. For heat conduction in micro and nano-scales where the Knudsen

number is higher than 1, the local thermal equilibrium condition is no longer valid and
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the temperature loses its conventional definition. So, the temperature is defined as the

average energy of all phonons around the interface and is equivalent to the equilibrium

temperature of those phonons, if they redistribute adiabatically to an equilibrium state.

This temperature definition is not in coincidence with the definition of the emitted tem-

perature. As illustrated in Figure (2.16), the equivalent equilibrium temperature on each

side of the interface is not the same as that of the emitted temperature [4].

Figure 2.16: Equilibrium and emitted phonon temperature at interface between two
dissimilar materials [4].

Therefore, the equivalent equilibrium temperature (T1 and T2) on each side of the interface

can be shown in terms of Te1 and Te2 as

T1 = Te1 − (Te1 − Te2)

∫

t12(µ1)µ1dµ1 (2.82)

and

T2 = Te2 + (Te1 − Te2)

∫

t21(µ2)µ2dµ2 (2.83)

therefore

T1 − T2 = (Te1 − Te2)[1−
∫

t12(µ1)µ1dµ1 −
∫

t21(µ2)µ2dµ2] (2.84)

Based on the equivalent equilibrium temperature, the diffuse and specular thermal bound-
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ary resistances are expressed as

Rd =
4[1− 0.5(t

(d)
12 + t

(d)
21 )]

t
(d)
12 C1v1

(2.85)

and

Rs =
2[1−

∫ 1

0
t
(s)
12 (µ1)µ1dµ1 −

∫ 1

0
t
(s)
21 (µ2)µ2dµ2]

C1v1
∫ 1

0
t
(s)
12 (µ1)µ1dµ1

(2.86)

Thus, the diffuse and specular thermal boundary resistances based on the emitted and

equivalent equilibrium temperatures are presented in Table 2.2 [4].

Table 2.2: thermal boundary resistance based on acoustic and diffuse mismatch models.

Thermal boundary Emitted temperature Equivalent equilibrium
resistance temperature

Diffuse mismatch model 4

t
(d)
12 C1v1

4[1−0.5(t
(d)
12 +t

(d)
21 )]

t
(d)
12 C1v1

Diffuse mismatch model 2

C1v1
∫
t
(s)
12 (µ1)dµ1

2[1−
∫ 1
0 t

(s)
12 (µ1)µ1dµ1−

∫ 1
0 t

(s)
21 (µ2)µ2dµ2]

C1v1
∫ 1
0 t

(s)
12 (µ1)µ1dµ1

2.7 Thermal conductivity of an inhomogeneous me-

dia using the generalized self consistent method

Consider a heterogeneous media comprising spherical particles suspended in a matrix.

Generally, the effective thermal conductivity of a heterogeneous media is a function of

particle size and shape, volume fraction, orientation and the thermal conductance at the

interface between the matrix and suspended particles [30]. According to the phonon heat

transfer approach, it is assumed that the thermal conductivity of the matrix and particles

can be described based on the kinetic theory, i.e., k = 1
3
CvΛ. First, it is considered that

the thermal conductivities of the matrix and suspended particles are the same as the

corresponding bulk values. It means that the bulk mean free paths of the phonons are

much smaller than the characteristic dimensions of the matrix and suspended particles.

It is also assumed that the system is isotropic.
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The volume average of the heat flux < q > can be described by

< q >= −keff
∆T

L
(2.87)

by ∆T , we denote the temperature difference between two faces of the system and L is

the length of the sample. The volume average of the heat flux also can be obtained by

another approach.

< q >= φm < q >m +φp < q >p (2.88)

Where φm and φp are the volume fractions of the matrix and suspended particles, respec-

tively. Here, < q >m and < q >p are the volume average of heat fluxes over the matrix

and suspended particles, respectively. Substituting Fourier’s law into the equation (2.88),

we have

< q >= −φmkm < ∇T >m −φpkp < ∇T >p (2.89)

Under the assumption of no discontinuities in the temperature field, it can be shown that

∆T

L
= φm < ∇T >m +φp < ∇T >p (2.90)

From equations (2.89) and (2.90), we have

< q >= −km
∆T

L
− φp(kp − km) < ∇T >p (2.91)

Using equation (2.87), finally we obtain,

keff
∆T

L
= km

∆T

L
+ φp(kp − km) < ∇T >p (2.92)

The unknown parameter remaining in equation (2.92) is < ∇T >p. It is assumed that

the spherical particle of radius rp is embedded in a spherical matrix shell of radius rm,

which is surrounded by an infinite homogeneous media with effective thermal conductiv-

ity, keff . Also, there is no interaction between suspended particles. It means that each

representative media comprises only one particle.

It is convenient to consider the steady state heat transfer to determine the tempera-

ture gradient inside the spherical particle. Laplace’s equation is applied to calculate the

temperature field.

∇2Tp = 0, 0 ≤ r ≤ rp (2.93)

∇2Tm = 0, rp ≤ r ≤ rm (2.94)
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∇2Teff = 0, rm ≤ r ≤ ∞ (2.95)

Where

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) (2.96)

The following boundary conditions should be satisfied to conserve the continuity of the

heat flux.

Tp(r, θ) = finite (2.97)

kp
∂Tp(rp, θ)

∂r
= km

∂Tm(rp, θ)

∂r
(2.98)

Tp(rp, θ) = Tm(rp, θ) (2.99)

km
∂Tm(rm, θ)

∂r
= keff

∂Teff (rm, θ)

∂r
(2.100)

Tm(rm, θ) = Teff(rm, θ) (2.101)

Teff (∞, θ) = −αr cos θ (2.102)

The temperature solutions can be written in the following simple form

Tp = A2r cos θ (2.103)

Tm = (A1r +
B1

r2
) cos θ (2.104)

Teff = (−αr +
B0

r2
) cos θ (2.105)

Note that A1, A2, B1 and B0 are constants and should be determined. Substitution of the

equations (2.103-2.105) into equations (2.97-2.102) is used to calculate the four unknown

parameters. Finally, the particle temperature gradient is determined and represented by

< ∇T >p= A2 =
9kmkeff

∆T
L

[kp + 2km](km + 2keff) + 2φp[kp − km](km − keff)
(2.106)

By inserting equation (2.106) into equation (2.92), finally the effective thermal conduc-

tivity of a heterogeneous media is determined.

keff = km
2km + kp + 2φp(kp − km)

2km + kp − φp(kp − km)
(2.107)

In derivation of this equation, it is assumed that the interface between the matrix and

suspended particles is perfect, i.e., no thermal boundary resistance at the interface. The
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first two theoretical models to account for the thermal boundary resistance were proposed

by Hasselman and Johnson [30] and Benveniste [31] with a different approach. Most

recently, a new hetero-structure model for the effective thermal conductivity of composites

comprising the thermal boundary resistance was presented by Nan et al. [32]. This model

has the following form,

keff = km
2km + kp(1 + 2α) + 2φp(kp(1− α)− km)

2km + kp(1 + 2α)− φp(kp(1− α)− km)
(2.108)

where α is a dimensionless parameter to introduce the thermal boundary resistance effects,

i.e., α = aK
ap
, where ap is the radius of the spherical particle and aK is the thickness of the

matrix-filled layer surrounding the particle in which the same temperature drop occurs as

that at the interface, defined as

ak = Rkm (2.109)

Note that R is the thermal boundary resistance. If aK = 0 and thus α = 0 then the

interface is called a perfect interface. Although these models had some privileges as

compared to that model with the perfect boundary resistance, they were still unable to

predict the effective thermal conductivity of nanocomposites.
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Chapter 3

Details about the modeling process
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3.1 Effective Thermal conductivity of the matrix

Based on the phonon transport theory, the thermal conductivity of materials can be

estimated from the bulk mean free path Λ, the volumetric specific heat C, and the phonon

group velocity v:

k =
1

3

∫

C(ω)v(ω)Λ(ω)dω ≈ 1

3
CvΛ (3.1)

For a heterogeneous media (spherical particles suspended in a matrix), the mean free

path of the phonons is affected by interfacial scattering. The effective mean free path is

defined for both matrix and particle phases. Under the assumption that the scattering

mechanisms are independent of each other, Matthiessen’s rule is applied. According to

Matthiessen’s rule, the effective mean free path, Λeff,m of the matrix is defined as follows:

1

Λeff,m
=

1

Λb,m
+

1

Λcoll
+

1

ΛTBR
+ ... (3.2)

where Λb,m and Λcoll are the bulk mean free path of the matrix and the mean free path

of the phonon-particle collision, respectively. ΛTBR is defined as the thermal boundary

resistance mean free path due to matrix-particle interfaces. As expected, the mean free

path of phonons in the matrix decreases due to the existence of the particles. Spherical

particles of radius ap are considered to be embedded in a representative medium of the

matrix with effective cell length a ( a is the average length of a side of a cube comprising

only one particle). The volume fraction φp of particles in the matrix phase is

φp =
4
3
πa3p
a3

(3.3)

The collision mean free path is the distance traveled by phonons divided by the number of

collisions. Now, if a phonon travels distance L (see Figure (3.1)), it will have N = (nπa2pL)

collisions with particles [33,34], where n is the density of particles defined as the number

of particles per unit volume of the composite, i.e., n = 1/a3. Finally, the collision mean

free path is defined as

Λcoll =
L

nπa2pL
=

a3

πpa2p
=

4ap
3φp

(3.4)
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Figure 3.1: Schematic showing phonon-particle collision in an inhomogeneous media [34].

Considering the probability of specular reflection (s) of phonons from the particle

surface, the specularity parameter is applied to alter the radius to an effective radius

[35, 36]. Thus, the effective particle radius is

a(s)p = ap
1 + s

1− s
(3.5)

And, consequently, the general equation for the collision mean free path is derived.

Λcoll =
4a

(s)
p

3φp

(3.6)

Where the probability that the phonon is scattered specularly at the interface is deter-

mined by the value of s. In practice, the interface surface roughness is an important

parameter to determine the value of the specularity parameter. Purely diffuse phonon

scattering is satisfied, when s = 0. It is remarkable to note that the pure specular collision

(i.e. for the case s = 1) is equivalent to a
(s)
p → ∞ or no resistance due to the particle size

effect [35].

The thermal boundary resistance in diffuse and specular limits was presented in Table

(2.2). Using these expressions and definition of thermal conductivity based on the kinetic

theory (see equation (3.1)), we reach the following expressions for the transmission mean

free path in the diffuse and specular phonon scatterings (see Table 3.1).
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Table 3.1: Derived transmission lengths for different boundary resistances.

Transmission Emitted temperature Equivalent equilibrium
mean free path temperature

Diffuse (Λ(d))
3a

(d)
K t

(d)
mp

4

3a
(d)
K td,mp

4[1−0.5(t
(d)
mp+t

(d)
pm)]

Specular (Λ(s))
3a

(s)
K

∫ 1
0
t
(s)
mp(µm)µmdµm

2

3a
(s)
K

∫ 1
0
t
(s)
mp(µm)µmdµm

2[1−
∫ 1
0
t
(s)
mp(µm)µmdµm−

∫ 1
0
t
(s)
pm(µp)µpdµp]

Where a
(d)
K = kmR

(d) and a
(s)
K = kmR

(s) are known as diffuse and specular Kapitza

lengths, respectively. Λ(d) and Λ(s) are the totally diffuse and the totally specular trans-

mission mean free paths, respectively. The Kapitza length is the thickness of the matrix

phase, which is thermally equivalent to the interface. In other words, the Kapitza length

is defined as the thickness of the bulk medium in which the same temperature drop occurs

as that at the interface [37].

Depending on the ratio of the particle radius to the bulk Kapitza length, the thermal

conductivity of the composite can increase or decrease with the volume fraction of the

particles. For ap
aK

≥ 1, the thermal conductivity increases with φp, while for ap
aK

≤ 1, it

decreases with φp [38].

The effective area for a collision between a phonon and a spherical particle is (πa2p), so

if a phonon travels the Kapitza length for transmission, it will have n(πa2paK) transmis-

sions. Where n is the density of particles (the number of particles per unit volume of the

composite), thus the volume fraction is φp = 4nπa3p/3.

The thermal boundary resistance mean free path is defined as the ratio of the transmis-

sion mean free path to the number of transmissions, with the assumption that a phonon

travels the Kapitza length to transmit from the matrix to the particle. Therefore, the

thermal boundary resistance mean free path under the totally diffuse (Λ
(d)
TBR) and the

totally specular (Λ
(s)
TBR) limits can be written by

ΛTBR =























apt
(d)
mp

φp[1−0.5(t
(d)
mp+t

(d)
pm)]

, totally diffuse

2ap
∫ 1
0
t
(s)
mp(µm)µmdµm

φp[1−
∫ 1
0
t
(s)
mp(µm)µmdµm−

∫ 1
0
t
(s)
pm(µp)µpdµp]

, totally specular

(3.7)

Furthermore, the specular and diffuse thermal boundary resistance mean free paths based
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on the emitted temperature are presented.

ΛTBR =



















apt
(d)
mp

φp
, totally diffuse

2ap
∫ 1
0 t

(s)
mp(µm)µmdµm

φp
, totally specular

(3.8)

Applying the collision and the thermal boundary resistance mean free paths for the specu-

lar and diffuse phonon scattering for the emitted and equivalent equilibrium temperatures,

the effective mean free path of the matrix phase can be calculated by Matthiessen’s rule

(equation(3.2)). Alternatively, we can write Matthiessen’s rule in the form of

Λeff,m = F (Ξ)
m Λb,m,Ξ=d, s (3.9)

where Fm is the scaling factor coefficient and the upper index ”Ξ” stands for the diffuse

(d) and specular (s) phonon scattering.

Therefore, the specular and diffuse scaling factor coefficients for the matrix phase for the

emitted and equivalent equilibrium temperatures are determined. For the diffuse scaling

factor, we have

F (d)
m =































4
ap

Λb,m
t
(d)
mp

4
ap

Λb,m
t
(d)
mp+φp[3t

(d)
mp+4]

, emitted temperature

4
ap

Λb,m
t
(d)
mp

4
ap

Λb,m
t
(d)
mp+φp[t

(d)
mp−2t

(d)
pm+4]

, equivalent equilibrium temperature

(3.10)

Similarly, the scaling factor for the specular phonon scattering is presented as

F (s)
m =











































4
ap

Λb,m

∫ 1
0
t
(s)
mp(µm)µmdµm

4
ap

Λb,m

∫ 1
0
t
(s)
mp(µm)µmdµm+φp[3

ap

a
(s)
p

∫ 1
0
t
(s)
mp(µm)µmdµm+2]

, emitted temperature

4
ap

Λb,m

∫ 1
0 t

(s)
mp(µm)µmdµm

4
ap

Λb,m

∫ 1
0 t

(s)
mp(µm)µmdµm+φp[2(1−

∫ 1
0 t

(s)
pm(µm)µmdµm)+

∫ 1
0 t

(s)
mp(µp)µpdµp(

3ap

a
(s)
p

−2)]
,

equivalent equilibrium temperature

(3.11)

Substituting equations (3.10) and (3.11) into equation (3.9), the effective mean free paths

of the matrix phase under the specular and diffuse phonon-particle scatterings are deter-
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mined and, consequently, the effective thermal conductivity of the matrix is obtained.

k
(Ξ)
eff,m =

1

3
CmvmΛ

(Ξ)
eff,m,Ξ = s, d (3.12)

3.2 Effective thermal conductivity of the suspended

particles

The thermal conductivity of micro- and nano-structures differs significantly from corre-

sponding bulk materials. This reduction creates some significant problems in instruments

where efficient heat removal is an important issue. However, it is beneficial when low

thermal conductivity is required.

In small scale regimes, the boundary effect becomes important and it is caused a reduction

in the effective thermal conductivity of the media. Different types of scattering mecha-

nisms can participate in the effective mean free path. Again, Matthiessen’s rule is used

to describe the contribution of the scattering mechanisms in the heat transfer [6, 7].

The conventional concept of the thermal conductivity breaks down when the characteris-

tic length of the media (i.e., diameter for spherical particles and wires, thickness for the

thin film) is smaller than the bulk mean free path. On the other hand, the boundary

scattering becomes significant for the Knudsen number greater than unity [39].

Thus, it would be considered that the effective mean free path of a nano-scale material

is a function of the bulk mean free path and the characteristic length of the media [33].

Recalling Matthiessen’s rule, an effective mean free path of the suspended nanoparticle is

taken into account.
1

Λeff,p

=
1

Λb,p

+
1

2a
(s)
p

(3.13)

Where Λb,p is the bulk mean free path of the suspended particles and a
(s)
p is the effective

radius of the particle. Note that for the diffuse phonon boundary scattering a
(s)
p ≡ ap,

while there is no boundary scattering resistance in the case of the completely specular

scattering. Rewriting equation (3.13) in the spirit of equation (3.9), the scaling factor for

the suspended particle is determined.

Fp =

2a
(s)
p

Λb,p

2a
(s)
p

Λb,p
+ 1

(3.14)
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It is clear that the particle scaling factor is unity (i.e., Fp = 1) for the pure specular

boundary scattering. On the other hand, the boundary scattering resistance is neglected

and only the internal resistance contributes to a reduction in the thermal conductivity.

Chen [39] proposed an analytical formula to determine the effective thermal conductivity

of the nano-spherical particles. This equation provides almost the same results as that

by the exact solution of the Boltzmann transport equation. We rearrange this equation

in the form of Matthiessen’s rule as follows:

1

Λeff,p
=

1

Λb,p
+

4

3a
(s)
p

(3.15)

Thus, using the above equation, the scaling factor for the particle phase is defined.

Fp =

3a
(s)
p

4Λb,p

3a
(s)
p

4Λb,p
+ 1

(3.16)

Finally, the effective thermal conductivity of the suspended particle is expressed as

k
(Ξ)
eff,p =

1

3
CpvpΛ

(Ξ)
eff,p,Ξ = s, d (3.17)

3.3 Effective thermal conductivity of the thin films

The thermal conductivity of a thin film is investigated in this section (see Figure(3.2)).

The steady state Boltzmann transport equation is written [11, 20].

vx
∂f

∂x
+ vz

∂f

∂z
=

f0 − f

τ
(3.18)

The phonon distribution function, f , is

f = f0 + ǫ (3.19)

where ǫ is the deviation from the equilibrium distribution (f0). It is assumed that the

local thermal equilibrium (temperature gradient) is established in the x-direction. Thus,

vx
dT

dx

df0
dT

+ vz
∂ǫ

∂z
=

−ǫ

τ
(3.20)
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In derivation equation (3.20), it is assumed that there is no temperature gradient in the

y- and z-directions, thus ∂f0
∂z

= ∂f0
∂y

= 0. It is also assumed that the film is infinite in the

y-direction. However, ∂ǫ
∂y

= 0. Finally ∂ǫ
∂x

is neglected as compared to ∂f0
∂x

. Considering

(vx
∂T
∂x

∂f0
∂T

)−1 = τ0, the solution to equation (3.20) is

ǫ(z) = A exp(
−z

vzτ
)− τ

τ0
(3.21)

Figure 3.2: Schematic diagram of the thin film. The film is finite in the z-direction and
periodic in the x- and y-directions [6].

The distribution function of phonons leaving the surface (z = −L
2
) is given by

f+(v+z ,−
L

2
) = sf−(v−z ,−

L

2
) + (1− s)f0 (3.22)

and similarly, at z = L
2

f−(v−z ,
L

2
) = sf+(v+z ,

L

2
) + (1− s)f0 (3.23)

It means that phonons traveling toward boundaries are either specularly reflected with

probability s or scattered into the equilibrium distribution with probability 1 − s [40].

Substituting equation (3.19) into equations (3.22) and (3.23), finally we have

ǫ+(v+z ,−
L

2
) = sǫ−(v−z ,−

L

2
) (3.24)

and

ǫ−(v−z ,
L

2
) = sǫ+(v+z ,

L

2
) (3.25)
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The upper index (+) denotes a phonon traveling toward the surface located at z = L/2

and the upper index (−) denotes a phonon traveling toward the surface located at z =

−L/2. Note that the boundary scattering is elastic (i.e. v+z = −v−z ). Applying boundary

conditions (equations (3.24) and (3.25)) into equation (3.21) and the elimination of ǫ−(−L
2
)

and ǫ+(L
2
) yields

ǫ±(z) =
τ

τ0
exp(

−L∓ 2z

2vzτ
)

1− s

1− s exp(− L
vzτ

)
− τ

τ0
(3.26)

The heat flux in x-direction can be defined as

qx = ~ωvxǭ (3.27)

where ǭ =

L/2∫

−L/2

ǫ(z)dz

L/2∫

−L/2

dz

. Therefore,

qx = −~ωvx
τ

τ0
F (3.28)

where F is the scaling factor given by

F = 1− 1− s

L/Λb

1− exp(−L/Λb)

1− s exp(−L/Λb)
(3.29)

Note the bulk mean free path Λb = τvz. Consequently, the in-plane thermal conductivity

of the thin film is

k =
qx

∂T/∂x
=

1

3
CvΛbF (3.30)

In the above derivation, the thin film is assumed as an isotropic material, i.e., the atomic

crystal is uniform in all directions. Therefore, the phonon group velocities in all directions

are the same [41]. Also, different approaches have been introduced to obtain the effective

thermal conductivity of the thin film [19, 42]. Note that phonon transport is confined by

scattering with the boundaries of the thin film and, subsequently, the effective thermal

conductivity becomes size dependent [43].

Under the assumption that the scattering mechanisms are independent of each other,

Matthiessen’s rule is applied [44]. Matthiessen’s rule can also be used to determine the

effective mean free path and, consequently, the effective thermal conductivity of the thin

film in the x-direction.
1

Λeff,thinfilm

=
1

Λb

+
1− s

L(1 + s)
(3.31)
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Rewriting equation (3.31) in the spirit of equation (3.9), the obtained scaling factor from

Matthiessen’s rule FM is

FM =

L(1+s)
Λb

L(1+s)
Λb

+ (1− s)
(3.32)

and

k =
1

3
CvΛbFM (3.33)

where L is the film thickness. In Figure (3.3), thickness dependence of the thermal con-
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Figure 3.3: Thickness dependence of the thermal conductivity of the silicon films.

ductivities of the silicon films resulting from equations (3.30) and (3.33) are compared to

the bulk thermal conductivity. The effect of the boundary scattering is neglected when

the film thickness is greater than the bulk phonon mean free path (i.e., Kn < 1). It

means that the thermal conductivity of the thin film tends to the corresponding bulk

thermal conductivity. The effective thermal conductivities resulting from equation (3.30)

predict smaller values than those resulting from equation (3.33), since independent scat-

tering mechanisms are considered in Matthiessen’s rule. In the case of the perfect specular

boundary scattering (i.e., s = 1), the effective thermal conductivity of the thin film is the

same as the corresponding bulk value. In contrast, the diffuse boundary scattering (i.e.,

s = 0) predicts the smallest thermal conductivity due to phonon transport confinement.

By doing some modifications to the scaling factor coefficient (equation (3.29)), the effec-

tive thermal conductivity of the thin film in the longitudinal direction will be modified.
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Figure 3.4: In-plane thermal conductivity of the silicon thin film as a function of the
thickness. Our results are in good agreement with experimental results.

Considering the boundary scattering effect, the phonon bulk mean free path (Λb) is re-

placed by the effective mean free path, (Λeff). Mathiessen’s rule is used to determine the

effective mean free path (see equation (3.31)). Finally we reach the following equation for

the scaling factor

F = 1− 1− s

L/Λeff

1− exp(−L/Λeff)

1− s exp(−L/Λeff )
(3.34)

And, consequently, the in-plane thermal conductivity of the thin film is presented as

follows:

k =
1

3
CvΛb(1−

1− s

L/Λeff

1− exp(−L/Λeff)

1− s exp(−L/Λeff)
) (3.35)

In Figure (3.4), the longitudinal thermal conductivity of a thin film of silicon as a func-

tion of the thickness has been illustrated. Our results (see (3.35)) are compared with

the experimental data [45–47], analytical results [6] and Matthiessen’s rule for the diffuse

boundary scattering (i.e., s = 0). The proposed model for the effective thermal conduc-

tivity of the silicon thin film agrees well with experimental results, especially for a lesser

thickness.

3.4 Generic formula for the thermal conductivity in

particulate nanocomposites

In fact, any phonon scattering mechanism in a more general case can be treated as partially

specular-partially diffuse, which can be quantified by the probability of specular reflection
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(s).

keff = sk
(s)
eff + (1− s)k

(d)
eff (3.36)

where

k
(i)
eff

=
1

3
CmvmΛb,mF

(i)
m

×
2
3
CmvmΛb,mF

(i)
m + 1

3
CpvpΛb,pF

(i,1)
p + 2φp

(

1
3
CpvpΛb,pF

(i,2)
p − 1

3
CmvmΛb,mF

(i)
m

)

2
3
CmvmΛb,mF

(i)
m + 1

3
CpvpΛb,pF

(i,1)
p − φp

(

1
3
CpvpΛb,pF

(i,2)
p − 1

3
CmvmΛb,mF

(i)
m

)

i = s, d

(3.37)

3.4.1 Minnich-Chen formula

Now, we can present specific cases of the generic formula. In the Minnich and Chen

formula, scaling factors are presented as,

F (d)
m =

2 2ap
Λb,m

2 2ap
Λb,m

+ 3φp

F (d,1)
p =

( 2ap
Λb,p

2ap
Λb,p

+ 1

)

(1 + 2α(φp, ap))

F (d,2)
p =

( 2ap
Λb,p

2ap
Λb,p

+ 1

)

(1− α(φp, ap)) (3.38)

Note that the Minnich-Chen formula does not consider the specular phonon scattering.

Thus, F
(s)
m = 0, F

(s,1)
p = 0, F

(s,2)
p = 0, and purely diffuse scattering is only described.

Traditional dimensionless thermal boundary resistance, α was presented based on the

emitted temperature at the interface between the matrix and suspended particles. It

means that the thermal boundary resistance is given by

R = 4

(

Cmvm + Cpvp
CmvmCpvp

)

(3.39)
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And, consequently, α is expressed in the following form

α(φp, ap) =
4Λm

3ap
(
Cmvm + Cpvp

Cpvp
)F (d)

m (3.40)

3.4.2 Novel formula

Derivation of the Minnich-Chen formula does not include the specular scattering of

phonons on the particle-matrix interface. The alternative derivation in this section al-

lows taking into account more details of phonon collisions. Our starting point is equation

(2.107) which is used for the perfect interface between matrix and particles. In our model,

the effect of the thermal boundary resistance is presented in terms of the effective phonon

mean free path. Also, we present our results based on the equivalent equilibrium temper-

ature, which is more realistic than the emitted temperature assumption [4]. The specular

and partially specular-partially diffuse phonon scatterings also are included in our for-

mula.

Our novel formula is presented by equations (3.36) and (3.37) using the following scaling

coefficients

F (i,1)
p = F (i,2)

p ; i = s, d

F (d)
m =

4 ap
Λb,m

t
(d)
mp

4 ap
Λb,m

t
(d)
mp + φp[t

(d)
mp − 2t

(d)
pm + 4]

F (s)
m = 4

ap
Λb,m

∫ 1

0

t(s)mp(µm)µmdµm/

4
ap
Λb,m

∫ 1

0

t(s)mp(µm)µmdµm + φp[2(1−
∫ 1

0

t(s)pm(µm)µmdµm) +

∫ 1

0

t(s)mp(µp)µpdµp(
3ap

a
(s)
p

− 2)]

F (d)
p =

3 ap
Λb,p

3 ap
Λb,p

+ 4

F (s)
p = 1 (3.41)
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Discussion

In Figure (4.1), the specular and diffuse scaling factor coefficients are plotted as a function

of the volume fraction for different particle sizes. The specular and diffuse scaling factors

decrease monotonically by increasing the volume fraction due to the relative increasing

phonon-particle collision area per unit volume. Increasing particle size leads to a decrease

in the effective area for phonon-particle scattering and, consequently, higher values for

the scaling factors are predicted. Note that the specular scaling factor always predicts

higher values than the diffuse one due to smaller phonon transport confinement.

Figure (4.2) shows the effective thermal conductivity of the matrix depends on whether

Figure 4.1: The totally specular and totally diffuse scaling factors plotted as a function of
the volume fraction for various particle sizes.

phonons are scattered specularly or diffusely at the interface. Diffuse phonon scattering

causes a drastic reduction in the effective thermal conductivity because of the diffuse in-

terface scattering is always more effective than the specular scattering at confining the

phonon transport.

Similar results are observed for the effective thermal conductivity of the suspended par-

ticles (see Figure (4.3)). For higher values of the specularity parameter (s), the effective

thermal conductivity of the particle is more sensitive to changes in s. These changes

are more significant for the smaller particle sizes due to the greater density of the inter-

face [18, 48]. In the case of the specular boundary scattering (i.e., s = 1), the effective
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Figure 4.2: Interfacial specularity dependency of the thermal conductivity of the matrix
phase in different particle sizes when φ = 0.1.

radius, a
(s)
p tends to infinity (i.e., no resistance due to particle size effect). However, the

confinement of phonon transport is less than the diffuse boundary scattering. It is re-

marked that the effect of the boundary scattering is neglected as compared to the internal

thermal resistance for the specular phonon transport.
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Figure 4.3: Interfacial specularity dependency of the thermal conductivity of suspended
particles in different particle sizes.

Figure (4.4) shows the effective thermal conductivity of an inhomogeneous media with

spherical particles as a function of the volume fraction for three different particle sizes.

Results are presented for a SiGe nanocomposite with Si particles suspended in a Ge

matrix. This nanocomposite has also been previously simulated by the Monte Carlo

method. The parameters required in the calculation are presented in Table (4.1).

Bulk mean free paths of epoxy and aluminum nitride (AlN) are calculated from Λb =

3k/Cv by considering thermal conductivities of epoxy and AlN are 0.168 [49] and 320

[50] Wm−1K−1, respectively. The unmodified Hashin’s model (equation (2.107)) is in

Table 4.1: Material parameters used in calculations.

Material Specific Heat Group Velocity Bulk Mean Free Path Density
[×106Jm−3K−1] [ms−1] [nm] [kgm−3]

Si (Ref. [17]) 0.93 1804 268 2330
Ge (Ref. [17]) 0.87 1042 171 5330
SiO2 (Ref. [16]) 1.687 4400 0.558 2278
AlN (Ref. [50]) 2.7 6972 51 3300
Epoxy (Ref. [51]) 1.91 2400 0.11 1970
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extremely poor agreement with the Monte Carlo simulation results, which is expected

since the corresponding bulk thermal conductivities of the matrix and suspended particles

are used to determine the effective thermal conductivity of the nanocomposite. On the

other hand, the internal thermal resistances in the matrix and nanoparticles are more

significant than the influence of the boundary scattering, since the perfect interface (no

thermal boundary resistance) between the matrix and suspended particles are assumed

in Hashin’s model. It is important to point out that the influence of the particle size

is not considered in this model. Our diffuse (i.e., s = 0) effective thermal conductivity

Figure 4.4: Thermal conductivity of a SiGe nanocomposite as a function of the particle
diameter and the volume fraction. Proposed model is compared with Hashin’s model and

obtained results from Monte Carlo simulations.

is compared to Nan’s model for three particle sizes (see Figure (4.5)). Although, Nan’s

model represents a better approximation than Hashin’s model, this model is not still able

to estimate precisely the effective thermal conductivity of nanocomposite, especially at

smaller particle sizes where the effect of the interface scattering due to the particle size

is undeniable. When compared to Hashin’s model, Nan’s model has a term to introduce

the particle size effect on the effective thermal conductivity of the inhomogeneous media.

Indeed, the particle size dependence of the effective thermal conductivity is presented by

the traditional dimensionless thermal boundary resistance term (i.e. α).

Figure (4.6) compares results of our model with the Minnich-Chen model and Monte

Carlo simulations for ap =5, 25, 100 nm. In the case s = 1 (i.e., for pure specular

reflection) the agreement is poor. On the other hand, the effective thermal conductivity

with diffuse reflection (i.e., the case when s = 0) agrees well with Monte Carlo simulations
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Figure 4.5: Thermal conductivity of a SiGe nanocomposite as a function of the particle
diameter and the volume fraction. Proposed model is compared with Hashin’s model, Nan’s

model and obtained results from Monte Carlo simulations.

for all volume fractions. A significant difference between the specular and diffuse effective

thermal conductivities is observed for higher volume fractions. It is worthwhile to note

that our results (except s = 1) are similar to those presented by Minnich and Chen for

smaller particle volume fractions. For all particle sizes, the proposed formula for diffuse

(i.e., s = 0) effective thermal conductivity predicts higher values than the Minnich-Chen

formula and approaches the effective thermal conductivity of suspended nanoparticles

when φ → 1. This difference becomes significant with an increase in the particle radius.

Our results still differ from those presented by Minnich-Chen model for smaller particle

sizes in moderate volume fractions. Using an appropriate value of s, our results are in

the good agreement with the Monte Carlo simulation for all particle sizes. Our results

also indicate how the effective thermal conductivity of the nanocomposite would change

if the particle-matrix surfaces were modified (for example lowering temperature to a few

Kelvin or changing the roughness of the nanoparticle) to favor specular reflections.



56

Figure 4.6: Effective thermal conductivity of a SiGe nanocomposite comprising spherical Si
particles with the radius: (a) ap = 5nm, (b) ap = 25nm and (c) ap = 100nm as a function of

the particle volume fraction φ.

Plotted in Figure (4.7) for a nanocomposite with suspended SiO2 particles, our re-
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sult is in excellent agreement with experimental data, while our model underpredicts the

thermal conductivity of a nanocomposite with AlN particles. Recently reported exper-

imental results [49] show that AlN nanoparticles have different shapes: cubic, spherical

and hexagonal with a wide particle size distribution, while SiO2 nanoparticles are spher-

ical and show a narrow particle size distribution. Since in the derivation of our model

uniform particle size distribution and quite spherical shape of nanoparticles are assumed,

our analytical results are in better agreement with SiO2 than AlN .

Figure 4.7: Experimental and calculated values of the effective thermal conductivity as a
function of the volume fractions φ of SiO2 and AlN embedded in epoxy resin.
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5.1 Conclusion

In this dissertation, heat transfer in a heterogeneous media comprising suspended spherical

particles has been studied. This work is motivated by understanding phonon transport

at the interface between dissimilar materials. In particular, a new generic formula for the

effective thermal conductivity coefficient is proposed, which is a multi-scale formula with

the ability to predict the effective thermal conductivity in a wide range of particle sizes and

volume fractions. The effective mean free path is used to study the behaviour of phonons

at boundaries. A new thermal boundary resistance mean free path term is proposed

to take the reflection and transmission of phonons at the interface between particle and

matrix into account. The specular and diffuse scatterings of phonons at the particle-

matrix interface are investigated. Results show that the effective thermal conductivity of

the nanocomposite increases with increasing particle size due to a reduction in the effective

area for phonon-particle collisions. On the other hand, the interfacial scattering effects

are neglected for higher particle sizes. Our results are compared with results from Monte

Carlo simulations and reported experimental data. There is good agreement between our

results and Monte Carlo simulation results. Our results agree well with experimental data

when suspended particles are assumed spherical with a narrow particle size distribution.

5.2 Recommendation for future works

The following unexplored topics are recommended for future research:

(i). Frequency-dependent properties, such as a frequency-dependent mean free path, can

be incorporated into the generic formula. One needs only to consider the frequency-

dependent effective mean free path, specific heat and velocity of each phase.

(ii). Study of heat transport in a heterogeneous media composed of thin films in a ma-

trix. The effective thermal conductivity of the nanocomposite can be investigated in both

longitudinal and transverse directions. The effects of orientation of thin films and particle

size distribution on the effective thermal conductivity can be studied as well.

(iii). Investigation of the phonon transport at the nanowire-matrix interface and pre-

sentation a new generic formula for the effective thermal conductivity of nanocomposites

with nanowires suspended in a matrix. Effect of orientation, size, phonon transport mech-

anisms (specular or diffuse) on the effective thermal conductivity can be considered.
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