POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: Assessing the impact of Climate Change on the Performance of a
" 'Water System in Alberta Considering Multiple Representations of

Title: the Catchment Hydrology
Auteur: ', . e
Author Ali Sharifinejad

Date: 2021
Type: Mémoire ou these / Dissertation or Thesis

L. Sharifinejad, A. (2021). Assessing the impact of Climate Change on the
Référence: Performance of a Water System in Alberta Considering Multiple Representations
Citation:  of the Catchment Hydrology [Master's thesis, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/9190/

Document en libre accés dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) S
PolyPublie URL: https://publications.polymtl.ca/9190/

Directeurs de
recherche: Elmira Hassanzadeh
Advisors:

Programme:

Génie civil
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/9190/
https://publications.polymtl.ca/9190/

POLYTECHNIQUE MONTREAL

affiliée a I’Université de Montréal

Assessing the impact of climate change on the performance of a water system

in Alberta considering multiple representations of the catchment hydrology

ALI SHARIFINEJAD

Département des Génies civil, géologique et des mines

Mémoire présenté en vue de 1’obtention du diplome de Maitrise es sciences appliquées
Génie Civil

Aolt 2021

© Ali Sharifinejad, 2021



POLYTECHNIQUE MONTREAL

affiliée a I’Université de Montréal

Ce mémoire intitulé:

Assessing the impact of climate change on the performance of a water system

in Alberta considering multiple representations of the catchment hydrology

Présenté par Ali SHARIFINEJAD
en vue de I’obtention du diplome de Maitrise es sciences appliquées

a éte dment accepté par le jury d’examen constitué de :

Emilie BEDARD, présidente
Elmira HASSANZADEH, membre et directrice de recherche
Ahmad SHAKIBAEINIA, membre



DEDICATION

| dedicate this work to
my beloved wife, Mahdieh, who is my rock through the ups and downs of my life,
my parents, who were always supportive of my decisions,

and to every member of the society, especially healthcare, who, despite the mental and physical
health challenges they confronted, helped humanity pass through the dark era of the Covid-19

pandemic.



ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Dr. EImira Hassanzadeh, for being a committed
mentor through my research. The completion of this project would not be accomplished without
her guidance and support. | want to appreciate the collaboration of Dr. Ali Nazemi and his lab
members in my project, especially Masoud Zaerpour, Henrique Vieira, and Shadi Hatami. | also
thank all my colleagues and friends, especially Andrea Mellado, Sarah-Claude Bourdeau-Goulet,
Amin Bakhtiari, Amirmohammad Sabziparvar, Mahyar Talebi, Faezeh Absalan, and Khalil
Zammali, for their support. 1 would like to express my gratitude to all employees of Polytechnique

Montreal, who made working from home possible for us during the Covid-19 pandemic.



RESUME

Les changements rapides des conditions climatiques modifient les spécifications du cycle
hydrologique a travers le monde, en particulier dans les régions froides. Ces changements peuvent
affecter les caractéristiques du régime d'écoulement, telles que le volume annuel et le moment du
débit de pointe. L'impact du changement climatique sur les systémes hydrologiques est
généralement évalué a l'aide des projections des modeles de circulation globale (GCM), qui sont
utilisées comme données d'entrée pour les modeles hydrologiques afin de simuler les séries de
débits naturels a I'avenir. L'objectif commun de ces modeles hydrologiques est de saisir les relations
mathématiques entre les variables climatiques et hydrologiques. Les modeles hydrologiques
peuvent différer en fonction de la résolution de leurs données d'entrée (locales ou basées sur une
grille), des représentations des processus hydrologiques (ensemble de sous-bassins). L'estimation
des conditions d'écoulement est potentiellement sensible a la structure du modéle hydrologique
utilisé. Par conséquent, les résultats des évaluations de I'impact du changement climatique peuvent

étre affectés par le choix des modeles hydrologiques ainsi que par les données d'entrée.

Dans cette étude, les impacts des conditions climatiques changeantes sur un systéme hydrologique
canadien sont évalués, dans le but principal d'analyser le role des modeles hydrologiques dans ce
processus. Le cours supérieur du bassin de la riviere Oldman en Alberta, dans lequel les rivieres
prennent leur source dans les montagnes Rocheuses, est choisi a cette fin. Le réservoir Oldman, le
plus grand réservoir de cette région, joue un role essentiel dans la gestion des ressources en eau de
cette région. Les rivieres Oldman, Castle et Crowsnest forment 1'afflux de ce réservoir. Le bassin
est déja sur-alloué et sous pression di aux changements de précipitations et de température. Le
premier objectif est de comprendre comment ['utilisation du méme mod¢le hydrologique mais avec
une désagrégation spatiale et une résolution des données d'entrée différentes peut affecter le régime
d'écoulement en amont, le volume du réservoir et I'allocation de I'eau en aval. Le deuxieme objectif
est d’évaluer comment 1'utilisation de différents modeles hydrologiques et routines de fonte des
neiges peut affecter la quantification du risque dans la performance du systéme d'eau. Enfin, une
série d'analyses sont poursuivies pour comprendre l'importance de tous ces facteurs notés dans

I'évaluation des risques.
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Pour le premier objectif de cette étude, le modele HBV-MTL, couplé a une routine de neige en
degrés-jours, est développé sur la base d'un modele HBV commun pour mieux présenter les
processus hydrologiques dans les régions froides en abordant les impacts des sols gelés sur la
génération de débit. Ce modele hydrologique est calibré selon quatre configurations différentes :
en utilisant des données de précipitation et de température basées sur des points et des grilles
comme entrées pour les structures localisées et semi-distribuées du modele hydrologique. Grace a
I'étalonnage de ces modéeles hydrologiques, non seulement le meilleur, mais aussi une enveloppe
d'ensembles de parameétres est trouvée qui peut ressembler adéquatement au débit observé. Un
modele simple d'allocation de I'eau est développé pour le réservoir Oldman afin d'imiter les
politiques opérationnelles existantes. Par conséquent, les modeles couplés d'allocation
hydrologique permettent d'estimer le risque d'inondation, le volume d'eau du réservoir et le déficit
en eau pour répondre aux demandes en eau. La performance des mod¢les couplés est évaluée a
l'aide de périodes d'étalonnage et de validation a I'aide d'une série de mesures de performance. En
conséquence, les sorties corrigées des biais de 19 GCM différents par la NASA - sous les voies de
concentration représentatives (RCP) 4.5 et 8.5 sont utilisées comme entrée dans les modeles
couplés pour évaluer la vulnérabilité du bassin de la riviére Oldman en amont. Etant donné que
chaque GCM a ses avantages et ses inconvénients dans la projection des conditions climatiques,
l'utilisation d'un tel ensemble de modeles climatiques peut représenter de maniere plus réaliste les
conditions climatiques futures. Les résultats montrent que les quatre configurations du modele
hydrologique reproduisent de maniere acceptable diverses composantes du systéeme hydrologique
au cours de la période historique, le modele semi-distribué étant forcé avec les données ponctuelles
ayant les meilleures performances. A l'avenir, bien que le consensus soit les débits de pointe
intensifiés et plus précoces, ainsi qu'une pénurie d'eau plus grave, I'importance de ces changements
dépend fortement de la configuration du modéele considéré. Les différences entre les risques
projetés dans le systeme d'eau peuvent atteindre 300 %, ce qui représente le role décisif de la
résolution spatiale d'entrée et de la représentation spatiale du bassin versant dans I'évaluation des

impacts du changement climatique sur le systeme d'eau a I'avenir.
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Pour remplir le deuxiéme objectif, de nouvelles configurations de modélisation hydrologique sont
¢galement envisagées pour comprendre comment ces choix peuvent affecter I'estimation du risque
dans les systemes hydrologiques dans des conditions changeantes. Ces options incluent I'utilisation
de GR4J, un mod¢le hydrologique bien connu en plus de HBV-MTL. De plus, outre la méthode
des degrés-jours, CemaNeige est utilis¢é pour représenter les processus neigeux. Alors que la
méthode des degrés-jours fournit une représentation globale des processus neigeux, le modele
CemaNeige vise a définir une routine de neige semi-distribuée basée sur l'altitude. Ainsi, au total,
compte tenu également des options pour les données d'entrée et la désagrégation spatiale du bassin
versant, I'impact de ['utilisation de 16 configurations de modeles hydrologiques est étudié. Les
modeles hydrologiques sont ensuite couplés au modele d'allocation de réservoir existant et sont
alimentés avec les 19 sorties GCM indiquées pour estimer les conditions du systéme d'eau a
l'avenir. Les projections de ces modéles couplés sont ensuite analysées pour comprendre
l'importance de l'incertitude structurelle de la modélisation hydrologique, entre autres facteurs, sur
les conditions projetées du systéme d'eau. Les résultats valident la performance adéquate de toutes
les représentations hydrologiques dans I'estimation des conditions d'apport observées au cours de
la période historique. Parmi 16 configurations, les modules de neige utilisés (degrés-jours vs.
CemaNeige) ont I'impact dominant sur l'estimation du moment et de l'intensité du débit de pointe
hebdomadaire. La dynamique du réservoir dépend également fortement du choix du module de
neige. Néanmoins, les modeles hydrologiques (HBV-MTL vs. GR4J) s'averent plus importants
pour simuler les caractéristiques des apports journaliers. L'utilisation de différentes routines
d'enneigement et de modeles hydrologiques montre une divergence de 23 % et 27 % dans les
intensités de débit de pointe hebdomadaires et quotidiennes estimées. En général, nous ne pouvons
prétendre qu'un modele hydrologique individuel surpasserait largement les autres dans I'estimation
des différentes caractéristiques du systeme hydrologique. Par conséquent, tous les modeles sont
utilisés pour analyser l'avenir du systeme d'eau dans des conditions climatiques changeantes.
Semblable a la période historique, l'utilisation du modele hydrologique et sa désagrégation spatiale,
ainsi que la résolution des données d'entrée, affectent principalement les conditions de débit
quotidien projetées. Cependant, le modele de routine d'enneigement utilisé a un impact
considérable sur le calendrier et l'intensité du débit hebdomadaire futur. Alors que différents

modeles projettent a ['unanimité une augmentation de l'intensité du débit de pointe, le changement
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de synchronisation reste subjectif aux caractéristiques du module de routine de neige appliqué. En
moyenne, les modéles avec les modules de neige CemaNeige et degrés-jours projettent un décalage
d'une semaine vers l'avant et de deux semaines vers l'arriecre du moment du débit de pointe,
respectivement. La transition décrite dans le régime d'apport, qui est plus sévere sous RCP 8.5 que
sous RCP 4.5, conduit a des changements dans le volume du réservoir a long terme dans le futur.
Alors que les modeles avec la routine de neige CemaNeige projettent un volume de réservoir plus
¢levé tout au long de 1'année, 1'utilisation du module degrés-jours montre une réduction du volume
en été. L'épuisement prévu du stockage d'eau a mis la pression sur les plans d'exploitation actuels
du réservoir pour répondre a la demande locale en eau d'irrigation a 'avenir, entrainant un déficit
hydrique accru. Néanmoins, les mode¢les utilisant le module neige CemaNeige estiment un déficit
hydrique considérablement plus faible dans le futur par rapport aux modéles utilisant le module
Degree-Day. Bien qu'au cours de la période historique, on observe jusqu'a 13 % de différence entre
le déficit hydrique estimé par différents modéles, cette valeur passe a 30 % de divergence dans le
futur. Dans les deux RCP, le déficit hydrique projeté augmente jusqu'a 1'horizon moyen-futur. Alors
que le déficit hydrique diminue en passant d'un avenir a moyen terme a un avenir a long terme dans
le cadre du RCP 4.5, une tendance a la hausse significative de la pénurie d'eau est prévue tout au
long du siecle dans le cadre du RCP 8.5. Ces analyses mettent en évidence la nécessité d'actualiser

les politiques d'exploitation du réservoir dans des conditions climatiques changeantes.

En résumé, les performances de différentes représentations hydrologiques pourraient étre presque
similaires et acceptables au cours de la période historique. Néanmoins, le comportement de ces
modeles peut diverger et leurs projections de débit peuvent étre considérablement différentes
lorsqu'elles sont forcées avec les projections des GCM. Ceci est essentiel car le choix de la
configuration du mode¢le hydrologique peut potentiellement affecter le risque quantifié et les seuils
de vulnérabilité dans les systémes d'eau. Par conséquent, l'utilisation d'un ensemble de modeles
hydrologiques peut donner une représentation plus réaliste de 'avenir des systeémes hydrologiques
et peut aider a proposer des politiques de gestion solides pour réduire les impacts négatifs du
changement climatique a I'avenir. En plus des modéles hydrologiques, les conditions climatiques
projetées sont sensibles a la structure du modéle climatique utilisé en raison de l'incertitude intégrée

dans ces mod¢les. Par conséquent, il est suggéré d'alimenter la représentation multi-modéle notée



du systeme hydrologique avec un ensemble de projections de modeles climatiques pour développer
une compréhension plus réaliste de 1'avenir des conditions d'écoulement. Le cadre d'évaluation
d'impact proposé est générique et peut étre appliqué dans d'autres régions pour évaluer les

vulnérabilités des systémes d'eau sous des conditions climatiques changeantes.



ABSTRACT

Rapid changes in climatic conditions are altering the specifications of the hydrological cycle across
the world, particularly in cold regions. Such changes can affect the characteristics of the flow
regime, such as annual volume and peak flow timing. The impact of climate change on water
systems is commonly assessed using Global Circulation Models (GCMs) projections, which are
used as inputs for hydrological models to simulate natural streamflow series in the future. The
common goal of these hydrological models is to capture the mathematical relationships between
the climatic and hydrological variables. Hydrological models may differ based on their input data
resolution (local or grid-based), representations of hydrological processes (e.g., estimation of
snowmelt), or assumptions related to the representation of catchment, e.g., lumped (one unit) or
semi-distributed (set of sub-basins). The estimation of streamflow conditions is potentially
sensitive to the structure of the utilized hydrological model. Therefore, the results of the climate
change impact assessments can be affected by the choice of hydrological models as well as input
data.

In this study, the impacts of changing climatic conditions on a Canadian water system are
evaluated, with the primary goal of analyzing the role of hydrological models in this process. The
headwater of Oldman River Basin in Alberta, in which the rivers originate from the Rocky
Mountains, is selected for this purpose. The Oldman Reservoir, the largest reservoir in this area,
plays a critical role in managing water resources in this region. The Oldman, Castle, and Crowsnest
Rivers form the inflow to this reservoir. The basin is already over-allocated and under pressure due
to changes in precipitation and temperature. The first objective is to understand how using the same
hydrological model but with different spatial disaggregation and input data resolution can affect
the upstream flow regime, reservoir volume, and downstream water allocation. The second
objective is to evaluate how using different hydrological models, and snowmelt routines can affect
the quantification of risk in water system performance. Finally, series of analyses are pursued to

understand the importance of all these noted factors in risk assessment.
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For the first purpose of this study, the HBV-MTL model, coupled with a Degree-Day snow routine,
is developed based on a common HBV model to better present hydrological processes in cold
regions by addressing the frozen soil impacts on the flow generation. This hydrological model is
calibrated under four different setups: using point- and grid-based precipitation and temperature
data as inputs to the lumped and semi-distributed structures of the hydrological model. Through
the calibration of these hydrological models, not only the best but also an envelope of parameters
sets is found that can adequately resemble the observed flow. A simple water allocation model is
developed for the Oldman Reservoir to emulate the existing operational policies. Therefore, the
coupled hydrological-allocation models enable the estimation of flood risk, reservoir water volume,
and water deficit in meeting water demands. The performance of the coupled models is assessed
using both calibration and validation periods using a series of performance measures. Accordingly,
the bias-corrected outputs of 19 different GCMs by NASA- under Representative Concentration
Pathways (RCPs) 4.5 and 8.5 are used as input to the coupled models to assess the vulnerability of
the upstream Oldman River Basin. Since each GCM has its pros and cons in projecting climatic
conditions, using such an ensemble of climate models can more realistically represent the future
climatic conditions. The results show that all four configurations of the hydrological model
acceptably reproduce various components of the water system during the historical period, with
the semi-distributed model forced with the point-based data having the best performance. In the
future, although the consensus is the intensified and earlier peak flows, as well as more severe
water shortage, the significance of these changes highly depends on the considered model
configuration. The differences between the projected risks in the water system can be as high as
300%, representing the decisive role of input spatial resolution and catchment spatial representation

in assessing the climate change impacts on the water system in the future.

To fulfill the second objective, new setups for hydrological modeling are also considered to
understand how these choices can affect the estimation of risk in water systems under changing
conditions. These options include the usage of GR4J, a well-known hydrological model in addition
to HBV-MTL. Moreover, besides the Degree-Day method, CemaNeige is utilized to represent
snow processes. While the Degree-Day method provides a lumped representation of snow
processes, the CemaNeige model aims at defining an elevation-based semi-distributed snow
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routine. Thus, in total, also considering the options for input data and catchment spatial
disaggregation, the impact of using 16 hydrological model setups is investigated. The hydrological
models are then coupled with the existing reservoir allocation model and are fed with the noted 19
GCMs outputs to estimate water system conditions in the future. The projections of these coupled
models are then analyzed to understand the importance of hydrological modeling’s structural
uncertainty, among other factors, on the projected water system conditions. Results validate the
adequate performance of all hydrological representations in estimating the observed inflow
conditions during the historical period. Among 16 setups, the utilized snow modules (Degree-Day
vs. CemaNeige) have the dominant impact on the estimation of weekly peak flow timing and
intensity. Reservoir dynamics also highly depend on the choice of snow module. Nevertheless, the
hydrological models (HBV-MTL vs. GR4J) are found to be more important in simulating the daily
inflow characteristics. Using different snow routines and hydrological models shows 23% and 27%
divergence in the estimated weekly and daily peak flow intensities. In general, we cannot argue
that an individual hydrological model would dominantly outperform others in estimating different
characteristics of the water system. Hence, all models are used to analyze the future of the water
system under changing climatic conditions. Similar to the historical period, the usage of the
hydrological model and its spatial disaggregation, as well as input data resolution, mainly affect
the projected daily flow conditions. However, the utilized snow routine model has a vivid impact
on the future weekly flow timing and intensity. While different models unanimously project an
increase in peak flow intensity, the shift in timing remains subjective to the characteristics of the
applied snow routine module. On average, models with CemaNeige and Degree-Day snow
modules project a one-week forward and a two-week backward shift in the peak flow timing,
respectively. The described transition in the inflow regime, which is more severe under RCP 8.5
than RCP 4.5, leads to changes in the long-term reservoir volume in the future. While models with
the CemaNeige snow routine project higher reservoir volume throughout the year, using the
Degree-Day module shows a reduction in the volume in summer. The projected depletion in the
water storage put pressure on the current reservoir operational plans to meet local irrigation water
demand in the future, resulting in an increased water deficit. Nonetheless, models using the
CemaNeige snow module estimate considerably lower water deficit in the future in comparison to

the models with the Degree-Day module. Although during the historical period, up to 13%
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difference is observed between the estimated water deficit by different models, this value rises to
30% divergence in the future. Under both RCPs, the projected water deficit ascends until the mid-
future horizon. While water deficit declines by moving from mid-term to long-term future under
RCP 4.5, a significant rising trend in the water shortage is projected throughout the century under
RCP 8.5. These analyses highlight the need to update the reservoir operational policies under

changing climate conditions.

To summarize, the performance of different hydrological representations might be almost similar
and acceptable during the historical period. Nonetheless, the behavior of these models can diverge,
and their projections of streamflow can be considerably different when they are forced with GCMs’
projections. This is critical as the choice of hydrological model setup can potentially affect the
quantified risk and thresholds of vulnerabilities in water systems. Hence, utilizing an ensemble of
hydrological models can result in a more realistic depiction of the future of water systems and can
assist in proposing robust management policies to reduce the adverse impacts of climate change in
the future. In addition to the hydrological models, the projected climatic conditions are sensitive to
the structure of the utilized climate model due to the uncertainty embedded in these models.
Therefore, it is suggested to feed the noted multi-model representation of the hydrological system
with an ensemble of climate models’ projections to develop a more realistic understanding of the
future of flow conditions. The proposed impact assessment framework is generic and can be

applied in other regions to assess water systems vulnerabilities under changing climate.
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CHAPTER 1 INTRODUCTION

1.1 Background and problem definition

Freshwater resources play vital roles in society’s flourishment (Yevjevich, 1992). Surface water in
lakes and rivers is commonly used to meet various water demands, including domestic, industrial,
energy, agricultural, and environmental water demands (Browne et al., 2013; Mekonnen et al.,
2015; Purwanto et al., 2019; Sharifinejad et al., 2020). However, water availability and demands
are not often spatiotemporally distributed similarly in watersheds. Thus, in response to this
disharmony, regional water resources managers seek ways to better use available water, e.g., by
constructing dams or diverting water to meet the demands equitably and sustainably (He et al.,
2020). These infrastructures are managed mainly based on historical long-term flow characteristics
in the system (Murphy et al., 2019).

While the water resources management plans lay their foundation in continuing observed historical
conditions, the rapid shift in climatic conditions and subsequent changes in the hydrological cycle
question the reliability of these assumptions and long-lasted water resources management policies.
In recent decades, rapid human-induced climate change has caused a shift in various components
of the hydrologic cycle, particularly in the forms of precipitation and snow/glacier melt rates
(DeBeer et al., 2016; Seiller et al., 2017; Amanambu et al., 2020). Such changes have led to
variations in the natural flow signatures, e.g., peak flow timing and intensity, affecting water supply
to downstream demands or cause flooding (Wi, 2012; Stahl et al., 2016; Rottler et al., 2020). Such
changes can eventually influence the performance of the water system, which are operated based
on the historical allocation plans, in meeting downstream water demands (Beven & Westerberg,
2011; Whitfield & Pomeroy, 2016; Hatami et al., 2019; Nazemi et al., 2020; Zaerpour et al., 2020).
Therefore, a comprehensive understanding of the potential impacts of climate change on water
systems is helpful to propose reliable water allocation plans and mitigate the adverse effects of

climate change.



The “Top-down” approach is widely used to assess the climate change impact on water systems
using the outputs of General Circulation Models (GCMs) (Wilby & Dessai, 2010; Gizaw et al.,
2017; Krysanova et al., 2017). In this approach, projections of General Circulation Models (GCMs)
are either used in hydrological models to depict the future of natural flow conditions or directly
analyzed to give a notion of changes in watersheds’ conditions (Arnell, 1999; Lauri et al., 2012;
Karamouz et al., 2013; Sunde et al., 2017; Hattermann et al., 2018). GCMs are mathematical
representations of the physical processes in the earth’s atmosphere and surface (Hannah, 2015;
Reshmidevi et al., 2018). Using different GCMs to project climatic conditions would necessarily
provide a different estimation of climatic conditions in the future (Wazneh et al., 2020; Bourdeau-
Goulet & Hassanzadeh, 2021). Hence, it is suggested to use an ensemble of GCMs’ outputs to

project future water systems’ conditions (Her et al., 2019).

Hydrological models, which mathematically represent different water cycle processes, play a
crucial role in the top-down assessment of climate change impacts on the water systems (Wheater
et al., 2007). In brief, these models use available climatic data to simulate multiple internal
variables in the basin, depending on the model’s complexity level, which is eventually used to
estimate the flow in the basin’s outlet. These models have been developed in different spatial (local
vs. regional) and temporal (e.g., daily vs. monthly) scales, considering the objective for which they
are developed (Singh, 2018; Beven, 2019). Despite consistent performance in these models during
the historical conditions, studies have reported that hydrological models with different
specifications provide dissimilar estimations of hydrological conditions in the future and under
changing conditions (Dibike & Coulibaly, 2005; Ludwig et al., 2009; Garavaglia et al., 2017). In
general, the usage of simple hydrological models has been suggested due to the lack of available
data in the future to use complex models (Michaud & Sorooshian, 1994; Her & Chaubey, 2015;
Sivapalan & Bldschl, 2017; dos Santos et al., 2018).

The primary attention in change impacts assessment studies is mainly on the intercomparison
between hydrological models with different levels of complexity. Nevertheless, there are critical

factors potentially affecting the performance of models with similar complexity under changing



conditions (Crosbie et al., 2011; Beck et al., 2017). For instance, the historical climatic data that
are used to calibrate the hydrological models may become from different sources, e.g., local station
vs. interpolated grid-based data (Patil et al., 2011). Therefore, using different input data can
eventually lead to diverging estimates of streamflow during the historical and/or future periods.
Furthermore, due to the lack of knowledge and data required to represent different hydrological
processes realistically, hydrological models mostly utilize conceptual equations with parameters
that are not necessarily measurable in the basin. The parameter set which yields an optimized
performance of the hydrological model in estimating the flow conditions should be sought through
the calibration process. Nevertheless, no one can argue that the optimized parameters set used in
the hydrological models is necessarily the “global” optimal solution, which introduces the
parametric uncertainty in the hydrological models. Lastly, hydrological models estimate the flow
only in the outlet of the basin, i.e., lumped, or provide spatially distributed information about flow
conditions across the basin, i.e., semi-distributed or distributed. Using different spatial resolutions
to develop a specific hydrological model can lead to different hydrological conditions, due to the
structural uncertainty embedded in the hydrological models (Booij, 2005; Das et al., 2008; Faiz et
al., 2018; Huang et al., 2019; Xin et al., 2019).

Snow processes are critical components of the hydrological cycle in snow-dominated basins.
Hence, the representation of snow dynamics is as effective as the hydrological model in the
estimation of flow conditions. In the literature, various types of snow routine models have been
developed and coupled with the hydrological models (Tobin et al., 2013; Wever et al., 2014;
Kazama et al., 2021). While these models are intrinsically relying on a degree-day concept,
different levels of details are used to represent snow dynamics in the basin. Although some studies
reported an improved estimation of streamflow after using a more detailed snow module (Warscher
et al., 2013), most studies did not find an increased precision in estimating flow conditions,
necessarily related to the augmented level of complexity in the snow module (Lehning et al., 2006;
Terzago et al., 2020). Instead of escalating the level of complexity in the snow model structure, it
is recommended to utilize an ensemble of snow models to better capture the potential deficiencies
in each model performance and make a more informative judgment about the snow routine

characteristics (Essery et al., 2013; Magnusson et al., 2015). Thus, in addition to the discussed



uncertainty in the hydrological models’ structure and input data, addressing the uncertainty in the
snow module structure, using multiple representations of snow processes would potentially provide

a more realistic and reliable estimation of the water system’s future conditions.

1.2 Research objectives

Hydrological models play a crucial role in estimating the flow entering a reservoir. These models
can be developed using various options for spatial disaggregation, input data resolution,
hydrological process equations, and snow modules. The characteristics of these models’ structures
are reported to have various impacts on the estimated water system conditions. However, the extent
of these impacts has not been studied adequately. The main objective of this study is to evaluate
the importance of the hydrologic system representations in quantifying the effects of climate
change on a headwater water resources system in Alberta, Canada. The specific objectives in order

to achieve the main goal are as follow.

(1) Develop a set of hydrological models that correspond to different representations of the
upstream watershed, i.e., consideration of different spatial disaggregation, input data conditions,

as well as model structures. Calibrate and validate these models during the historical period.

(2) Construct coupled hydrological and reservoir allocation models to simulate the reservoir’s

storage and outflow.

(3) Feed the developed models with climate projections of multiple GCMs to simulate future

inflow, reservoir storage, and outflow, as well as supplied water to different demands.

(4) Estimate the risk of water system failure under changing climate and consideration of different
models with a greater goal of assessing the role of hydrological modeling’s uncertainty in the

quantified impacts.



1.3 Case study

Oldman River Basin in Alberta is an over-allocated watershed (Nicol & Klein, 2006) with an area
of about 23,800 km? In this watershed, irrigated agriculture is the primary user of the water
resources, possessing 88% of the issued water use licenses (Zandmoghaddam et al., 2019). The
primary crops cultivated in these irrigated lands are “barley, wheat, alfalfa, canola, flax, corn, sugar
beet, potato, and beans” (Safa, 2015). The cultivation of these crops plays an essential role in
economic productivity and food security on regional and national scales (Rood & Vandersteen,
2010). The Oldman River originates from the Rocky Mountains’ east slopes and plays a crucial
role in meeting water demands in southern Alberta. In response to the rising irrigation demand in
this region, three dams were constructed over the headwaters of the Oldman River, i.e., Oldman,
St. Mary, and Waterton reservoirs (Foster & Rood, 2017). The Oldman Reservoir was constructed
on the Oldman River in 1991 and, with a capacity of 490 million m?, is the largest multi-purpose
dam in this area (SOW, 2010). The regulated flow of this dam confluences with the Bow River and
moves towards the downstream province of Saskatchewan. Therefore, the proper regulation of this
river is essential to guarantee reliable water supply to the South Saskatchewan River Basin (Nazemi
et al.,, 2017). The reliability of the Oldman Reservoir operation plan, developed based on the
historical conditions of the water systems, is questioned due to highly variable hydroclimatic and
socioeconomic conditions in this watershed. It is thus essential to analyze the vulnerability of the

headwater system under current and changing climate conditions.



CHAPTER 2 LITERATURE REVIEW

2.1 Hydrological modeling

Estimation of streamflow has high importance for water resources planning both in the short- and
long-term. Hydrological models are often used to simulate the transformation of precipitation into
streamflow by mathematically representing different components of the water cycle in watersheds,
e.g., evapotranspiration and water movement in the soil. Most of these models construct a water
balance in soil layers to generate flows. Simple hydrological models have developed as early as
the 1850s. However, computers’ computational capacity has led to a better representation of natural
system processes in this science in the 1960s (Singh, 2018). The Stanford Watershed model can be
named the first computer-based hydrological model (Crawford & Linsley, 1966). This hydrological
model worked on an hourly time basis. The water content in different soil layers was assumed to
be affected by evapotranspiration and infiltration to the lower soil layers. The upper soil layers
were sources for overland flow and interflow generation. The groundwater storage was the source
of base flow generation. The Stanford Watershed model, a state-of-art hydrological model, had not
been published publicly back in time due to invention processes. Nevertheless, many hydrological
models followed its path. Xinanjiang model is a “bucket-type” hydrological model, which has been
used extensively in China and the rest of the world (Ren-Jun, 1992). This model divided the soil
profile into three layers and prioritized the upper layers in contributing to evapotranspiration. The

distribution of soil moisture was reflected based on topographic factors (Zhao et al., 1980).

Since the introduction of the Stanford Watershed model, many hydrological models have been
developed. Apart from temporal and spatial resolution, the hydrological models mainly differ based
on the utilized equations and considered assumptions and simplifications to represent different
processes. For example, evapotranspiration has been modeled using a wide variety of equations,
ranging from Penman-Monteith Penman (1948), Monteith (1981), and Priestley-Taylor (Priestley
& Taylor, 1972) to Hargreaves (Hargreaves et al. 1985). The choice of these equations also
depends on the characteristics of the study area. While in water-limited regions, potential
evapotranspiration is of less importance, it can be very critical in hydrological simulation in energy-

limited areas (Jayathilake & Smith, 2020). Another example is related to simulation of snow



processes. While most models use a simple degree-day method to estimate snowmelt, the radiation
melt factor is also suggested in PREVAH (Viviroli et al., 2009). The importance of the utilized
snow routine in the hydrological modeling is especially important in cold regions, where the peak
flow conditions are highly driven by snowmelt in warm seasons (Fang et al., 2013). Since none of
the used equations and developed models are thoroughly either right or wrong, it is suggested to
use a variety of model configurations to generate an envelope of streamflow and reduce the
negative impacts of structural uncertainty (Craig et al., 2020).

As previously noted, the available hydrological models may use simplified equations or even
ignore some hydrological processes depending on the area they have been developed for. For
example, the Xinanjiang model is developed for warm regions, where snow processes are not
significant sources of streamflow generation. Therefore, usage of such models that lack a snow
module can be problematic to represent flow in cold, snow-dominated regions. Although
simulation of vegetation dynamics is not crucial for hydrological modeling in most studies,
Duethmann et al. (2020) highlight the importance of these processes while estimating the
streamflow in a climate transient region. Physical and process-based models have also been
developed to simulate the hydrological cycle, e.g., the Cold Region Hydrological Model (CRHM)
and Soil and Water Assessment Tool (SWAT) (Pomeroy et al., 2007; Neitsch et al., 2011).
However, they require various data to represent the processes that are either unavailable or include
missing data. In particular, due to the rudimentary representation of physical processes in these
models, they cannot provide an accurate solution for the projection problems (Sivapalan & Bléschl,
2017). Sustaining high data requirements does not seem logical for studying the water system under
changing conditions. Hence, usage of conceptual hydrological models that require limited data to
simulate the hydrological cycle, e.g., HBV and GR4J models, is recommended in the literature
(Seibert, 2000; Perrin et al., 2003; Piniewski et al., 2017; Pan et al., 2019).

In this study, the HBV model is improved and called HBV-MTL, which is used for impact
assessment. Details of this model are provided in Appendix A. In the first part of this work, the

impacts of climate change on the water system are evaluated using different spatial disaggregation



for the HBV-MTL and the input data resolution, leading to 4 different hydrological modeling
configurations. In addition to the spatial resolution of the hydrological model, the hydrological
models themselves are critical in the representation of the hydrological system. Therefore, in the
second phase of the project, we use two different conceptual hydrological models, i.e., HBV-MTL
and GR4J, coupled with two snow routine models, i.e., Degree-day and CemaNeige, Yyielding 4
different representations of the hydrological system to also evaluate the importance of hydrological
representation in the climate change impact assessment. Each of these hydrological representations
are developed applying different input and model resolutions, providing 16 various configurations

of hydrological models.

2.2 Water allocation under current and changing climate conditions

Water allocation infrastructures are commonly built to harmonize the spatiotemporal variability of
water availability and demand. For instance, as a fundamental component of water systems, dams
are constructed to alter the temporal distribution of water resources through the year to meet
downstream water demand at the required time. Multi-purpose dams are often built to not only
meet downstream water demands but also control flooding (Petts, 1996). Many researchers have
sought proper ways to manage dams to reduce water deficit and flood risk. In this section, previous
studies focusing on the adequate management of reservoirs are reviewed to gain insight into

developing a water allocation model.

The primarily used water allocation approaches in the literature can be categorized into four
categories (Yassin et al., 2019): (1) uncontrolled reservoirs, (11) inflow/demand-based methods,
(111 neural network methods, and (IV) target storage/release-based methods. In the first approach,
an empirical equation is used to estimate the release based on the stored water in the reservoir
(Doll, Kaspar, & Lehner, 2003; Meigh, McKenzie, & Sene, 1999; Rost et al., 2008). This approach
is mainly used to model simple dams, the primary purposes of which are not to alter the streamflow
regime. The simplicity of this approach limits its applicability in highly regulated water systems.

In the second method, the release is defined as a function of inflow (Wisser et al., 2010) and demand



(Hanasaki et al., 2006). Although improved compared to the unregulated method, the
inflow/demand-based methods do not reproduce the observed release well, especially in multi-year
and multi-purpose reservoir systems (Haddeland et al., 2006; Coerver et al., 2018).

The neural network methods try to find a complex relationship between the released water from
the reservoir and other characteristics of reservoir systems, e.g., stored water in the reservoir and
downstream water demand (Ehsani et al., 2016). Even though these models showed better
performance than the other methods in estimating the release of water from the reservoir, the
“black-box” nature provides limited knowledge about the philosophy beyond reservoir
management. The blind representation of the reservoir management puts the prediction ability of
these models under question (Yassin et al., 2019). Finally, the target storage/release-based methods
divide the storage volume into different zones. The stored water in each zone is managed in a
particular way to meet various demands in the water system (Neitsch et al., 2011; Wu & Chen,
2012; Zhao et al., 2016). The last group of methods provides a more transparent and realistic
representation of reservoir management (Yassin et al., 2019).

Currently, the Oldman Reservoir is managed using the Water Resources Management Model
(WRMM), which is a target storage-based reservoir operation model and supplies water to demands
with different levels of priority (Alberta Environment, 2002; Safa, 2015). This model utilizes a set
of operational rule curves, as shown in Figure 2.1. Following these rule curves, as long as the water
level is above the critical operational zone, the high priority water demand is met. The condition
for meeting the low priority water demand is to have a water level in the normal zone. If the water
level enters the flood control zone, water would be released to maintain the ability of the reservoir
to attenuate the flow intensity. During extreme flooding events, the capacity of the release gateways
may not be adequate to evacuate the excess water from the reservoir. Under such conditions, the
water level may exceed the maximum capacity of the dam, imposing the risk of overtopping on the
dam. Spillways are triggered to release the amount of water entered into the spill zone to mitigate
the risk of failure in the system. The WRMM model requires an intensive amount of data about

water demands in the basin. However, the main focus of this study is to develop a generic
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Figure 2.1 Oldman Reservoir operational rule curves in the WRMM model

framework for analyzing the water system. Since in many regions such comprehensive data is not
available about the socioeconomic water demands, an emulation of the WRMM model is

developed, inspired by the storage/release-based models applied in large-scale land-surface
models.
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2.3 Assessing climate change impacts on the water system

The variability of water availability due to changes in climatic (e.g., frequent flooding or earlier
snowmelt) can cause issues for water resources management and question the validity of using
conventional plans for future allocations (Wing et al., 2018; Mohanty & Simonovic, 2021; Roodari
et al., 2021). Therefore, there is a need to assess the performance of the water system under these
changing conditions (Haddeland et al., 2014; Milly et al., 2015). Various types of methodologies
have been proposed for assessing the impacts of climate change on water systems. These
methodologies can be categorized as top-down (scenario-led) and bottom-up approaches (Wilby &
Dessai, 2010). Bottom-up approaches present the expected conditions of water systems under a
plausible range of hydroclimatic conditions (Steinschneider & Brown, 2012; Danner et al., 2017,
Shortridge & Zaitchik, 2018; Tra et al., 2018). In this approach, risk maps are provided to raise
decision-makers' knowledge about the water system vulnerabilities (Steinschneider et al., 2015;
Hassanzadeh et al., 2016; Knighton et al., 2017). Researchers have primarily used bottom-up
approaches to avoid uncertainty in climate models by analyzing the water availability under
feasible climate stations, using hydrological models (e.g., Wilby & Dessai, 2010; Shortridge &
Zaitchik, 2018). Some studies have used stochastic streamflow generation under a wide range of
climatic conditions to avoid uncertainty in the climate and hydrological models (e.g., Nazemi et
al., 2013; Hassanzadeh et al., 2016). Although fully bottom-up approaches have avoided the
uncertainties in the top-down approaches, they have other types of uncertainties. When the
representation of sub-catchment is essential, the overlooked spatial dependencies can affect the
reliability of water availability estimation (Zscheischler & Seneviratne, 2017; Nazemi et al., 2020).
Moreover, the reluctance to address the dependencies between hydrological processes and climatic

conditions in these approaches may cause an unrealistic representation of hydroclimatic conditions.

The top-down approaches have fed different hydrological models with the projections of global
circulation models (GCMs) (Lauri et al., 2012; Karamouz et al., 2013; Sunde et al., 2017; Khatri
et al., 2018; Wang et al., 2018). The outputs of GCMs, mathematical representations of mass and
energy movements in the atmosphere, have their deficiencies in estimating climatic conditions,

which leads to differences in their projections even under the same scenarios (Smith, 2002; Hannah,
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2015; Hassanzadeh et al., 2019). It is recommended to utilize an ensemble of climate and
hydrological models to mitigate the adverse impacts of these models’ uncertainty on the top-down
assessment of climate change impacts (Faiz et al., 2018; Her et al., 2019; Hanus et al., 2021).
Moreover, the outcomes of GCMs are on coarse spatial scales, with more than a hundred kilometers
resolution, thus should be downscaled to finer spatial scales to be used in regional water system
studies. NASA has already downscaled climate projections of 33 models, run under the Coupled
Model Intercomparison Project Phase 5 (CMIP5). This bias-corrected dataset is one of the most
reliable and widely used climatic databases for analyzing the future of water systems (Chen &
Wang, 2018; Guevara-Ochoa et al., 2020; Zhao et al., 2021). Similarly, the reported climatic
projections by different GCMs in this database are used in this study to force the hydrological
models and predict the future conditions of the water system.
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CHAPTER 3 ORGANIZATION OF THE WORK

Changing climatic conditions can affect the characteristics of the streamflow regime, and
consequently, the performance of downstream water resources systems. Such changes are already
noticeable in Canadian watersheds. For instance, temperature and extreme precipitation conditions
in the Oldman River Basin are projected to be intensified by 2 to 6 °C and 10% to 50%,
respectively, moving toward the end of the century (Gizaw & Gan, 2016). In this study, a top-down
approach is used to evaluate the climate change impacts on the upstream Oldman River Basin.
Different setups of hydrological models may provide different estimations of flow conditions in
the future and under changing climatic conditions, despite their acceptable and similar performance
during the historical period. These differences might be exacerbated when used in the water
allocation models to analyze the water system’s future conditions. Different modeling approaches
are utilized in two stages to evaluate the importance of hydrological modeling’s uncertainty in

climate change impact assessment, as described in Chapters 4 and 5.

In Chapter 4, lumped and semi-distributed versions of the HBV-MTL hydrological model are
calibrated using point-based and grid-based input data. An ensemble of parameter sets, generating
flow conditions acceptably similar to the historical observations, are found through the calibration
and validation processes. The envelope of simulated flows using acceptable parameters sets are
then used as inflows to a reservoir water allocation model to estimate historical water system
conditions. The calibrated models are then fed with the bias-corrected climatic projections of 19
GCMs under 2 RCPs during the 2020-2099 period. Based on the estimated reservoir inflow and
release, flooding and water deficit risks are evaluated in the future. This chapter is submitted to the
Hydrological Sciences Journal (Impact factor: 2.19) on May 9th, 2021.

In Chapter 5, in addition to the spatial disaggregation of model and input data, different
hydrological models and snow routines are used. The same procedure, described for Chapter 4, is
followed in Chapter 5 for HBV-MTL and GR4J hydrological models coupled with Degree-day and
CemaNeige snow routine models. Therefore, four different configurations, i.e., semi-distributed

and lumped structures using point- and grid-based input, are developed for each hydrological
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representation, i.e., HBV-MTL with Degree-Day, HBV-MTL with CemaNeige, GR4J with
Degree-Day, and GR4J with CemaNeige, providing 16 different hydrological model configurations
in total. Similar to Chapter 4, an ensemble of acceptable parameter sets is sought in each
hydrological model configuration. The calibrated models, coupled with the developed reservoir
water allocation models, are used to estimate water system conditions in the historical and future
periods. Conclusions over the findings of Chapters 4 and 5, as well as suggestions for future work,

are presented in Chapter 6.
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Changes in climate is altering the historical characteristics of water availability and affecting the
performance of water systems. Here, the role of a hydrologic system representation on the
quantification of water system vulnerabilities under changing climate is evaluated in the Oldman
River Basin, Canada. For this purpose, four hydrological models are developed considering lumped
and semi-distributed structures and using point- and grid-based climate data. These hydrological
models are then coupled with a reservoir water allocation model. Accordingly, using an ensemble
of climate model projections, fed into these integrated models, changes in the water system's
behavior are evaluated. Although intensified and earlier peak flows and more critical water deficits
are projected, the estimated risks of failure strongly depend on the considered hydrological model
configuration. The divergence among models’ projections can be as high as 300%. Therefore,
usage of all configurations is recommended to revise the reservoir operational policies in this

region.

Keywords: Climate change; Hydrological modeling; Streamflow regime; Reservoir operation,

Vulnerability assessment; Oldman River Basin

4.1 Introduction

Changing climate has already affected the elements of the hydrological cycle across various spatial
scales (Seiller et al., 2017; Duan et al., 2019; Amanambu et al., 2020). In particular, changes in the
characteristics of precipitation as well as snow and glacier melt processes have been observed in
cold regions (Arnell, 1999; Wi, 2012; DeBeer et al., 2016; Stahl et al., 2016; Ganguli & Coulibaly,
2017; Rottler et al., 2020). Such alterations in the hydroclimate conditions can affect streamflow
regimes, such as peak flow volume and timing, which are critical for regional water resources
planning and management (Beven & Westerberg, 2011; Whitfield & Pomeroy, 2016; Hatami et
al., 2019; Nazemi et al., 2020; Zaerpour et al., 2020). Therefore, an improved understanding of

water systems' vulnerability in the future is required to propose effective water allocation policies.

The impacts of climate change on water systems are commonly evaluated using a so-called “top-

down” approach and by employing the projections of General Circulation Models (GCMs) (Wilby
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& Dessai, 2010; Gizaw et al., 2017; Krysanova et al., 2017). The GCMs aim to mathematically
represent the physical processes in the earth's atmosphere and surface (Hannah, 2015; Reshmidevi
et al., 2018). Although GCMs are relatively consistent in estimating the average changes in the
climate conditions at the global scale, their individual projections can be dissimilar, in particular at
the regional scales (Meehl et al., 2007; Prudhomme & Davies, 2009; Eisner et al., 2017). Therefore,
using an ensemble of GCMs is recommended to cover the possible changes in future climate (Chen
et al., 2011; Wada et al., 2013; Prudhomme et al., 2014; Schewe et al., 2014; Her et al., 2019).
Moreover, the GCMs' outputs are available at large spatial resolutions, i.e., typically a few
hundreds of kilometers, which are often coarser than the scale required for impact assessment in
the context of water resources management. Therefore, downscaling approaches have been
commonly used to transfer GCMs' outputs to finer resolutions (Okkan & Kirdemir, 2016;
Simonovic et al., 2017; Lee et al., 2019). The precipitation and temperature outputs of downscaled
GCMs are then either directly analyzed to give a notion of changes in watersheds' conditions or
incorporated into hydrological models to project streamflow characteristics (Arnell, 1999; Lauri et
al., 2012; Karamouz et al., 2013; Sunde et al., 2017; Hattermann et al., 2018).

Hydrological models aim to mathematically represent the interactions between water cycle
components to estimate streamflow discharge over time and space (Wheater et al., 2007). Various
hydrological models with different levels of structural complexity and data support are developed
over different spatiotemporal scales in the past few decades (Singh, 2018; Beven, 2019;
Darbandsari & Coulibaly, 2020). It is widely known that the structural complexity of hydrological
models affects climate change impact assessments (Poulin et al., 2011; Chen et al., 2012;
Veldzquez et al., 2013; Piniewski et al., 2017; Krysanova et al., 2018). Some studies recommend
the usage of more detailed hydrological models for water management purposes due to their high
performance in the historical period (e.g., Dibike & Coulibaly, 2005; Breuer et al., 2009; Ludwig
et al., 2009; Vansteenkiste et al., 2014; Garavaglia et al., 2017). However, utilizing simple models,
with a smaller number of variables and acceptable behavior, is suggested to be used for climate
change impact assessments (Michaud & Sorooshian, 1994; Her & Chaubey, 2015; Singh & Marcy,
2017; Sivapalan & Bléschl, 2017; dos Santos et al., 2018).
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Apart from model complexity, there are other factors that can also affect the representation of
hydrologic systems (Crosbie et al., 2011; Bisselink et al., 2016; Beck et al., 2017; Joseph et al.,
2018; Pang et al., 2020). For instance, climatic data are often available at point or grid scale in
various regions; therefore, utilization of each of these data conditions can potentially affect the
performance of hydrological models and consequently the water system analyses (Bardossy & Das,
2008; Patil et al., 2011; Isotta et al., 2014; Haerter et al., 2015; Abbas & Xuan, 2020). Moreover,
watershed hydrological processes can be modeled considering lumped, semi-distributed, or
distributed structures (Booij, 2005; Ruelland et al., 2008; Yaduvanshi et al., 2018; Xin et al., 2019).
Considering different spatial discretization of the watershed can also result in dissimilar
estimations of natural flow during the historical and future periods (Das et al., 2008; Bastola et al.,
2011; Lietal., 2013; Faiz et al., 2018; Huang et al., 2019; Srivastava et al., 2020). The combination
of these alternative input data as well as system structural resolutions can potentially influence

water system vulnerability assessment.

The objective of this study is to evaluate the role of hydrologic system representations in
quantifying the impact of climate change on a headwater water resources system in Alberta,
Canada. Four hydrological models, i.e., considering lumped and semi-distributed catchment
representations, calibrated utilizing point- and grid-based climate datasets are developed.
Accordingly, projections of an ensemble of GCMs used to estimate the natural streamflow series
and assess the downstream water system performance throughout the century. In Section 4.2, the
case study and its main challenges are introduced. Section 4.3 describes the impact assessment
framework, utilized data, developed hydrological models, and reservoir operation model. Section
4.4 presents the performance of hydrological models during the historical period and projected

water system behavior. The paper is concluded by providing remarking points in Section 4.5.

4.2 Case study

The Oldman River Basin, with an area of about 27,500 km?, is one of the important watersheds in

Alberta, Canada (Martz et al., 2007; Figure 4.1). The multi-purpose Oldman Reservoir, the largest
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dam in this region with a capacity of 490 million m?, plays a crucial role in supporting
socioeconomic activities and environmental conditions across the Prairie Provinces (Rood &
Vandersteen, 2010; Nazemi & Wheater, 2014; Safa, 2015; Foster & Rood, 2017) . In particular,
the basin covers about 2,160 km2 of agricultural land, which has high importance for sustaining
food security at the regional and global scales (Samarawickrema & Kulshreshtha, 2009). The three
primary inflows reaching the Oldman Reservoir are the Castle, Crowsnest, and Oldman Rivers,
which originate from the Rocky Mountains' east slopes, see Figure 4.1. For the sake of our analyses,
the drainage area of the Oldman Reservoir is split into four tributaries, i.e., the areas upstream of
the hydrometric stations on the three main inflows, as well as a zone, below these stations reaching
the Oldman Reservoir, hereafter Near Reservoir tributary (NR). The mean annual precipitation,
temperature, streamflow discharge, as well as considered drainage areas of these tributaries are

presented in Table 4.1.

The Oldman River Basin is already overallocated; therefore, any changes in the hydroclimatic
conditions and increasing water demands can put unprecedented pressure on the water system
(Pernitsky & Guy, 2010; Nazemi et al., 2017). While an increase of about 2 to 4 degrees Celsius is
observed for mean annual temperature, no meaningful trend in mean annual precipitation is
detected over the 20th century in this region (Harder et al., 2015; Vincent et al., 2015; Whitfield &
Pomeroy, 2016; Vincent et al., 2018; Zhang et al., 2019). However, the increasing temperature has
led to the rise in the rain over snow ratio and accelerated snowmelt processes, and consequently
altered flow regime in this snow-dominated region (Pomeroy et al., 2012; Woo & Pomeroy, 2012;
Fang et al., 2013). Climate variability alongside land and water management activities has altered
the timing and volume of flows and water availability characteristics in this region (Milly et al.,
2008; ESTR Secretariat, 2014; Nazemi et al., 2017).
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Figure 4.1 Oldman River Basin in Alberta, Canada (left), as well as the Oldman Reservoir's

key headwater

An increase of 2 to 6 °C in temperature and 10% to 50% in extreme precipitation (with a 30-year
return period) is projected through the 21st century in the Oldman River Basin (Gizaw & Gan,
2016). Using an ensemble of GCMs and a physically-based model, Tanzeeba & Gan (2012)
projected flows with roughly two weeks earlier peak timing and lower intensities during the
summer in the outlet of the Oldman River Basin. In the Crowsnest River tributary, Mahat &
Anderson (2013) estimated a significant rise in the winter flows (maximum 200%) and a
considerable decrease in the summer flows (maximum 63%). Such changes in upstream flow
conditions can affect the performance of the water system in this region. In particular, the system
becomes considerably vulnerable under the more intense flows with earlier peak timing (Nazemi
et al., 2013). The previous studies on this region have not fully explored the role of watershed

representations in characterizing water system behavior under changing climate conditions.
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Tributary PD GD Flow
Stations Mean Average Average Townships Mean Average Average Station Average Drainage
annual minimum maximum annual minimum maximum annual flow Area
precipitation  temperature temperature precipitation  temperature temperature (10°m3) 2
(mm) °C) °C) (mm) ) C) (km?)
Castle Ironstone 721 -3 8 T3R1WS5; T4R2WS 742 -2 9.5 05AA022 472 821
Castle T4R3WS5; TSR2W5
TS5R3W5; T6R2WS
T6R3W5; T6R4WS
T7R4AWS
Crowsnest Coleman 544 -2.5 9 T7R3WS5; T7RAWS 570 -2.5 9 05AA008 153 403
T8R3WS5; T8R4WS
TI9R4WS
Oldman Sugarloaf Lo 536 -5 4 TIR3WS5; TOR4AWS 605 -35 8 05AA035 383 1450

Livingstone Lo

Hailstone Butte Lo

T10R2WS5; TIOR3WS
T10R4WS; T11R2WS
T11R3W5; T11R4WS
T11R5WS5; T12R2WS
T12R3W5; T12R4W5
T13R3WS5; T13R4W5
T13R5WS5; T14R3W5
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Tributary PD GD Flow
Stations Mean Average Average Townships Mean Average Average Station Average Drainage
annual minimum maximum annual minimum maximum annual flow Area
precipitation  temperature temperature precipitation  temperature temperature (10%m3) 5
(mm) ) (°C) (mm) °C) c) (km*)
T14R4WS5; T14R5W5
T15R4W5
NR Beaver Mines 380 -1 6.5 T4R1WS5; T5R1W5 537 -2 10 05AA024 1200 1706

Cowley Olin Creek

T6R1WS; T6R30W4
T7R1IWS; T7TR2W5
T7R29W4; T7TR30W4
T8R1WS; T8R2W5
T8R29W4; T8R30W4
TIR1WS; TOR2W5
T9R29W4; TOR30W4
T10R1WS5; T10R29W4
T10R30W4; T11R1WS5
T11R30W4; T12R1WA4
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4.3 Materials and methods

4.3.1 Framework for climate change impact assessment

Figure 4.2 presents the framework used for climate change impact assessment in this study. In
brief, four different configurations are considered to simulate the natural flow. These are semi-
distributed (SE) and lumped (LU) models of the hydrological systems, calibrated using point-scale
(PD) and grid-based (GD) climatic Data. The hydrological models are coupled with a reservoir
operation model to simulate the water allocations during the historical period. The coupled models
are then forced with the outputs of an ensemble of climatic models to project the water system
specifications in the future. The described framework is applied to the Oldman River Basin. The
considered historical climate data and utilized GCMs are explained in Sections 4.3.2 and 4.3.3,
respectively. The developed hydrological model, alternative hydrological system representations,
and calibration procedure are explained in Section 4.3.4. The applied reservoir water allocation

model is elucidated in Sections 4.3.5.
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Figure 4.2 Framework to evaluate the climate change impacts on water systems
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4.3.2 Hydroclimatic data during the historical period

As noted, point- and grid-based climate datasets are used to calibrate the hydrological models and
estimate the natural streamflow. The considered historical period in this study is 1960-1990. The
point scale climatic data are obtained from the climate stations through
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html. Different approaches
such as interpolation and application of artificial neural networks (Karamouz et al., 2003; Coulibaly
& Evora, 2007) are used to fill out the missing data based on the neighbor stations. Moreover, the
grid-based climate data, which is based on the Alberta Township Systems with a spatial resolution
of about 9.7x9.7 km2, is obtained from https://acis.alberta.ca/township-data-viewer.jsp. Provided
by the Government of Alberta, this database is developed by transferring the climate stations' data
into grids' centers using an inverse distance weighting method (ACIS, 2019). The streamflow data
in the Castle, Crowsnest, Oldman, and NR tributaries are obtained from
https://wateroffice.ec.gc.ca/search/historical_e.html. Table 4.1 shows the considered hydroclimatic

stations and grids.

4.3.3 Climate model projections

In this study, we obtained the outputs of 19 GCMs based on the NASA Earth Exchange Global
Daily Downscaled Projections dataset (NEX-GDDP; available at https://cds.nccs.nasa.gov/nex-
gddp/). This dataset includes the bias-corrected daily maximum and minimum near-surface air
temperature and precipitation with a spatial resolution of 25x25 km2 over the historical period as
well as the short-term (2021-2040), mid-term (2041-2070), and long-term (2071-2099) future
horizons. The projections are available under two Representative Concentration Pathways (RCPS)
4.5 and 8.5, demonstrating the intermediate and high forcing scenarios by the end of the 21st
century, respectively (Thrasher et al., 2013).
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4.3.4 Hydrological model

HBV is a conceptual hydrological model commonly used with a lumped or semi-distributed to
estimate streamflow at the outlet of watersheds (Lindstrom et al., 1997; Seibert & Vis, 2012). In
this study, we develop the HBV-MTL, based on the available HBV model equations in
Aghakouchak & Habib (2010), to better estimate the natural flow in the cold regions. In brief, the
HBV-MTL is a bucket-type model with a series of state variables such as snowpack, soil moisture,
and water in soil layers, see Figure 4.3. The key inputs to this model are the daily time series of
precipitation and temperature. In this model, the precipitation is considered as rainfall, snowfall,
or a mixture of both, depending on the minimum and maximum air temperature values. The
snowmelt is estimated using the degree-day method (Lindstrom et al., 1997). The liquid water from
melted snow and the rainfall either infiltrates into the soil or turns into the surface flow, depending
on soil temperature and moisture. The latter is also impacted by the evapotranspiration rates,
calculated based on Hargreaves & Samani (1985) method. The infiltrated water contributes to
increasing soil moisture and can move into deeper soil layers to generate interflow and baseflow.
The total runoff, based on the surface flow, interflow, and baseflow, is then routed using a triangle
delay function to represent the daily streamflow in the outlet. HBV-based models are already used
in the Oldman River Basin to represent the hydrological processes (Mahat & Anderson, 2013,;
Gupta & Razavi, 2018). The main improvement in the HBV-MTL over these existing HBV-based
models is that it takes into account the infiltration into the frozen and thawed soil. For more details
about the HBV-MTL, see Supplementary A. This model contains 18 parameters, the values of

which are found through calibration, as explained below.

As noted earlier, the inflow to the Oldman Reservoir is estimated using the HBV-MTL based on
lumped and semi-distributed modeling. Under the lumped hydrological modeling, the upstream
basin is considered as a united catchment (hatched area in Figure 4.1). Therefore, the model is
calibrated against the observed inflow to the reservoir. However, under the semi-distributed
modeling, the streamflow in each of the tributaries is estimated. In brief, the estimated streamflow
in Castle, Crowsnest, Oldman Rivers is calibrated against the observed flow in their corresponding

tributary. The simulated flows in these tributaries and NR are then integrated and routed to simulate
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Figure 4.3 Schematic of the developed HBV-MTL hydrological model

the inflow to the Oldman Reservoir. The models under each of these representations are calibrated
using the point- and grid-based dataset (Table 4.1). If the point-scale data are used, the study area
is divided into the zones of Theisen polygons with the climate stations in the center of each
polygon. If the grid-based data are utilized, the contributing areas are discretized into the zones
corresponding to the grids of Alberta Township Systems. Accordingly, the hydrologic variables
are simulated in each zone and then integrated for the tributary and whole contributing area for

semi-distributed and lumped models, respectively.

The split-sample test is used to calibrate and validate the hydrological models (KlemeS, 1986;
Gharari et al., 2013). The historical climatic data is divided into three parts. The climate data in the
first six years of the study period are used to reach a reasonable estimation of the basin's initial

conditions and decrease the model's vulnerability to the biases. The simulations based on these
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data, called the burnout dataset, are discarded. The 66% and 34% of the rest of the dataset are used
for model calibration and validation, respectively. Moreover, an objective function based on the
Kling-Gupta Efficiency (KGE; Gupta et al., 2009) performance measure and consideration of both
daily and annual flow, due to their importance in water management, is used to calibrate the
hydrological models. The advantage of using KGE over other commonly used measures, e.g., Nash
& Sutcliffe (1970), is that it uses three different statistical criteria a, f and r to provide a more
comprehensive comparison between the simulated and observed flows (Gupta et al., 2009). In brief,
a, B, and r, respectively, compare the standard deviation, mean, and the Pearson correlation of
simulated and observed flows - see Equations 1, 2, and 3. In these equations, g, and o, are the
standard deviations of simulated and observed flows, S and O are the long-term average simulated
and observed flow, and S.and O.are simulated and observed flows, respectively. KGE combines
these statistical measures using a Euclidean distance measure (Equation 4). Accordingly, Equation
5 is used as the objective function for model calibration, based on minimizing the KGE at daily

and annual scales.

Equation 1
O-S
a=—
O-O
S .
B== Equation 2
0
%e(0 = 0)(S¢ = 5)
Equation 3

T =
(@0 -0 @5 -3))

KGE=1—-J(1—-a)2+(1—-£)%+(1—71)2 Equation 4
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Obj = Min \/ (1- 1!((;19daily)2 + (1 — KGE npuar)? Equation 5

In this study, the Shuffled Complex Evolution algorithm (SCE-UA; Duan et al., 1993; Yarpiz,
2020) is used to find the most optimal calibration parameter sets. The SCE-UA combines the
competitive evolutionary approach (used in the Genetic Algorithm; Holland, 1992) and control
random search methods (Price, 1987) to find global optimum solutions for various problems (Duan
et al., 1993). This technique's philosophy is to independently evolve each complex, in which new
parameter sets are generated based on randomly selected parents, to gain local knowledge and then
share it with other complexes to avoid reaching a local optimum. In the used SCE-UA, 50
parameter sets are randomly generated. This population is then divided into five complexes. After
several iterations, the independent complexes are mixed to produce a pool of best parameter sets.
This process is repeated in the new pools until the 100 (maximum) iteration is reached. The
ensemble of parameters, providing the smallest value for the considered objective function, is
called the “optimal parameter set”, which generates the “optimal simulated flow” for each
hydrological model configuration. Nevertheless, our investigations show that the final pool of
parameters contains ensembles that have almost similar values to the optimal set; thus, using this
pool may result in underestimation of the parametric uncertainty (Yang et al., 2007; Wu & Chen,
2015) in the hydrological models. Therefore, apart from this approach, the Generalized Likelihood
Uncertainty Estimation (GLUE) (Migliaccio & Chaubey, 2008; Mirzaei et al., 2015) is used in this
study to increase the knowledge regarding the impacts of parametric uncertainty on the flow
estimations. For this purpose, the first random parameter sets are extracted from a uniform
probability function, defined by a plausible range for each parameter. The criteria of KGEgaity > 0.5
and KGEannual > 0.5 for simulating observed flow are adopted to select “acceptable parameter sets”
out of 10,000 randomly generated sets. Accordingly, ensembles of “acceptable streamflow series”
are estimated, and along with optimal streamflow series are used in our analyses under each model

configuration.
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4.3.5 Reservoir operation model

A simple model to simulate the Oldman Reservoir operation is developed by emulating the existing
Water Resources Management Model (WRMM), a water allocation model for the South
Saskatchewan River Basin (Alberta Environment, 2002). For this purpose, the reservoir physical
characteristics, operational rule curves, and water demands are adopted from the WRMM. For the
sake of simplicity and similar to Zandmoghaddam et al., (2019), water demands are considered
under two categories: local and regional demands. The local water demand is mainly required water
to support local irrigated agriculture with an area of 67 km?. The regional water demand contains
required water to support the inter- and intra-provincial activities, including irrigation of 216 km?
land in the basin (Samarawickrema & Kulshreshtha, 2009). The Oldman reservoir storage is

simulated using a mass balance equation (Equation 6).

t
St = StO + (Pt X At + It - Et X At - Rl,t - RT,t - Spt)dt EquatiOH 6
to

where S, is the reservoir storage at time t and A, is the area of the reservoir, estimated based on the
reservoir storage and the reservoir's storage-area rating curve. Py and E: are precipitation and
evaporation rates, respectively. It is the volume of inflow to the reservoir, estimated by the
hydrological models. Rt and R are the supplied water to the regional and local water demands,
respectively. Spt is the spill from the reservoir. Following the existing reservoir operational rule
curves in the WRMM, the reservoir operation model considers multiple zones for reservoir storage.
Water demands with different orders of priority are met based on the state of the reservoir water
level. If the water level enters the flood control zone in the reservoir, the excess water is released
to maintain the reservoir's ability to attenuate the flow. During extreme flooding events, the amount
of water that enters the spill zone is released through the spillways to prevent a failure in the system.
If the water level in the reservoir drops below a critical threshold, the release is reduced until the
reservoir water level reaches the minimum state. Details of the considered water allocation
algorithm can be found in Alberta Environment (2002) and Safa (2015).
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4.4 Results

4.4.1 Performance of the hydrological and allocation models during the

historical period
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Figure 4.4 Observed and simulated daily and annual (left) and expected annual (right) inflow

to the Oldman Reservoir under different representations of upstream hydrological systems.
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The simulated and observed daily and annual inflows, as well as their expected annual hydrographs
during the calibration and validation periods are displayed in Figure 4.4. While all model
configurations perform properly (KGE>0.6), it seems that using the PD provides a higher precision
in simulating the expected annual observed flow during the validation period. The importance of
input data conditions in the behavior of models is more evident considering the models'
performance at the annual scale. For instance, the GD-based models continuously overestimate the
annual inflow during the second half of the historical period. In general, PD-based models better
represent the annual, early peak, and low inflows, while GD-based configurations more precisely
estimate late peak flows. Regarding the importance of catchment representation, as expected, the
semi-distributed models outperform the lumped ones in representing the magnitude of the early
peak inflow (Figure 4.4). With that said, lumped models better estimate the intensities of late peak
flows and low flows. Nevertheless, all model configurations show acceptable performances and

are used for impact assessment.

The ensemble of simulated inflow series under different hydrological model configurations is all
fed into the reservoir operation model. Figure 4.5 compares the simulated and observed reservoir
volume (left panels) and expected annual outflow hydrographs (right panels). It should be noted
that WRMM's outputs are considered as observed data, similar to Hassanzadeh et al. (2014) and
Safa (2015), due to the unavailability of reservoir volume records. The comparisons reveal that the
expected outflow hydrographs, estimated using optimal parameter sets, are almost similar under
the considered configurations (see the right panels in Figure 4.5). However, there are substantial
differences between the estimated reservoir volumes by the models at the weekly scale. On the one
hand, the semi-distributed models perform relatively well but tend to overestimate the water
volume during the dry years, especially using the grid- based data, see SE-GD in Figure 4.5. On
the other hand, using the lumped models, more frequent and significant underestimations of
observed reservoir volume can be seen. In fact, the simulated water volume reaches the minimum
water storage in some weeks using the LU-PD. Considering the data conditions, although a higher
statistical correlation is found between the simulated and observed water volume under the PD
setups, they do not dominantly outperform the GD-based representations, e.g., in the last years of
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Figure 4.5 Observed and simulated reservoir water volume (left) and outflow annual
hydrographs (right) under different configurations using the optimal (lines) and acceptable
(envelopes) parameters sets during the historical period.

simulation. Therefore, estimated reservoir volume and outflow are acceptable under all considered
configurations during the historical period.

4.4.2 Upstream flow regime under changing climate

A simple analysis of 19 GCMs' outputs reveals that the magnitudes of precipitation and temperature
in this region would increase by the end of the century (Figure 4.6). However, the rate of increase
in temperature is more significant than precipitation. Here, the outputs of climate models are
transferred from the centers of GCM grids to the climate stations' locations (in PD-based models)
and grid centers (in GD-based models), using the inverse distance weighted interpolation (Liu &
Zuo, 2012; Yang et al., 2015). These adapted climatic projections corresponding to individual
climate models are then incorporated into each of the developed hydrological models with optimal

and acceptable parameter sets to estimate future flow realizations.
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Figure 4.6 Percentage of relative change in mean (a) precipitation and (b) temperature based
on 19 GCMs under RCPs 4.5 and 8.5 with respect to the historical values in this region.
Boxplots are showing the 25" (bottom side of the box), 50" (middle line), 75™ (top side of the
box) percentiles, as well as maximum (upper whisker) and minimum (lower whisker) values of

the respective climatic variable.

The projected ensemble and expected inflow hydrographs under RCPs 4.5 and 8.5 are shown in
Figures 4.7 and 4.8, respectively. Earlier shifts in peak flow timing, as well as significant increases
in the inflow volume to the Oldman Reservoir, are noticed under all configurations. However, the
rate of increase in inflow volume, the shape of hydrographs as well as peak flow timing and
magnitude depend on the considered hydrological model configuration. For instance, the rate of
increase in the inflow intensity and shift in peak flow timing is more considerable using the PD-
based than GD-based models. Besides, the lumped models project on average one week earlier
peak flows compared to the semi- distributed models. Nevertheless, the semi-distributed
configurations project slightly more intense flow volume than the lumped setups. As expected,
changes in the inflow regime are more substantial under RCP 8.5 than RCP 4.5, moving towards
the end of the century. Overall, peak flow timing is projected to be affected considerably by

changing climatic conditions throughout the century and is expected to shift from early June to late
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May (roughly two weeks earlier). Such projected shifts in the long-term future horizon, in particular
under RCP 8.5, indicate that the flow in the outlet shows an alacritous response to changes in the
upstream hydrological processes, i.e., acceleration of snow and ice melt and increase of rain over
snow ratio. This finding is in accordance with the recent studies on the Prairies' future flow regime,
indicating a transition from snowmelt-runoff to the rainfall-runoff regime (Fang et al., 2020;

Pomeroy et al., 2020).
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Figure 4.7 Projected ensemble and expected annual inflow hydrographs (shaded area and
solid line, respectively) under RCP 4.5 using different hydrological model configurations

versus historical annual hydrograph (dashed line).
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Figure 4.8 Projected ensemble (shaded area) and expected (solid line) annual inflow
hydrographs under RCP 8.5 using different hydrological model configurations versus historical

annual hydrograph (dashed line).

Such significant increases in the inflow discharge can be problematic, in particular in the context
of managing downstream reservoir storage and release during the flood seasons. Therefore,
changes in high inflow magnitudes are further analyzed. For this purpose, first Q99, the 99th
percentile of the weekly inflow, is obtained based on the Empirical Cumulative Distribution
Function (ECDF) of inflow during the 30-year historical period. Accordingly, for a given

hydrologic model configuration and future scenario, we find the number of inflow realizations in
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which the future inflow exceeds Q99 each week. The weekly flood risk is then calculated by
dividing this number by the total number of realizations in each model configuration. Accordingly,
the maximum value of weekly flood risks among 52 weeks in a year is found to represent the annual
flood risk.

Figure 4.9 shows this annual risk of inflow flooding using different model configurations under
RCPs 4.5 (left panel) and 8.5 (right panel), respectively. The historical input data resolution has a
prominent impact on quantifying the flood risks; see the difference between the estimated values
by the PD-based and GD-based configurations. The PD-based models suggest that in most of the
years in the future, at least once extremely high flows would occur under both RCPs. The semi-
distributed structures project a slightly higher risk of upstream flooding events, comparing to the

lumped modeling. Moreover, interestingly risk of flooding is not necessarily higher under RCP
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Figure 4.9 Annual flood risk upstream of the Oldman Reservoir in the future. The projected
inflows are estimated using the developed hydrological model configurations based on climate
change projections under RCPs 4.5 (left) and 8.5 (right).
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8.5, and in fact, no significant trend in the inflow flood risk can be detected under the RCPs moving

towards the end of the century.

4.4.3 Reservoir operation under changing climate

Future inflow realizations are fed into the reservoir operation model to assess the alterations in the
reservoir storage and outflow, as well as water supply conditions under changing climate. The long-
term expected annual reservoir volume is calculated based on all inflow realizations. Figure 4.10
compares the projected ensemble of expected annual reservoir volume (shaded area) and its
average values (solid line) with the historical volume (dotted line) under RCPs 4.5 (left) and 8.5
(right), respectively. Due to the estimated increase and earlier peak flow inflow timing, earlier and
more intense reservoir peak volumes are projected in the future under all configurations and RCPs.
Considering the models, the PD-based configurations show a more distinct shift in the timing of
reservoir peak volume than GD-based structures. The lumped models project a lower water level
in the reservoir during summer in comparison to the semi-distributed configurations. While SE-PD
and LU-GD show a higher water level in the reservoir during winters, SE-GD and LU-PD projected
a reduction in the reservoir volume during these periods. Hence, the impacts of using different
resolutions for model structure and input data are evident. In general, under both RCPs, on average,
a 3-week earlier peak water level is projected. The illustrated changes in the reservoir water level

would inevitably influence the downstream water system.
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Here we analyze the outflow regime based on changes in Q10 (low flow), Q50 (median flow), and
Q99 (high flow). These weekly flow quantiles are first found based on the ECDF of outflow during
the historical period and under future realizations. Accordingly, relative changes in streamflow
quantiles under future and historical periods are calculated under each of the realizations. Figure
4.11 presents the ensemble of changes in Q10, Q50, and Q99, where each boxplot contains outflow
quantiles under future scenarios corresponding to realizations, obtained by 19 GCMs and using
each hydrological model configuration. While overall more intense high outflow conditions are
projected, PD-based configurations show a greater increment in Q99 than GD-based models.
Moreover, all model configurations, except the LU-PD, show an increase in the median flow
conditions; however, the amount of increase varies among models. All model configurations
project a slight rise in low-flow intensity. Therefore, different hydrologic signatures of outflow are
expected to increase in the future (Figure 4.11). These changes, in particular intensified high flows,
question the reliability of utilizing the business-as-usual reservoir operations for the management

of flood events in the future.
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Despite the potential increase in the low and median outflow intensity in the future, the alterations
in the streamflow regime can affect the timing and efficiency of water allocation plans. As an
example, the impact of changing climate on supplying the local irrigation demands is assessed to
represent the evolution of water deficit in the future. For this purpose, the annual water deficit is
estimated as the difference between water supply and demand divided by the total amount of water
demand under each flow realization. Afterward, the average water deficit over all realizations is
used to represent the state of water deficit in each year per configuration (Figure 4.12). The left
and right panels in Figure 4.12 show the expected annual water deficit using different hydrological

model configurations under RCPs 4.5 and 8.5, respectively.

Our analyses indicate that during the historical period, the system experiences about 15% of the

water deficit each year. Therefore, the results in Figure 4.12 show that in most cases, supplying

a)

o-

L

o

a) 3
o

N =

L S

@ @
o
P
&
©
S

o >

g

| =

a)

Q

-

-

2030
2040
2050
2060 -
2080
2090
2099
2030
2040
2090
2099

2021

Year
L

Figure 4.12 Projected percentage of water deficit in supporting the local irrigation water
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water demands would be more challenging in the future (the projected water deficit is above 15%).
Moreover, all modeling configurations unanimously show a significant ascending trend (p-values
< 0.05) in failure to meet the local water demands throughout the century. However, the magnitude
of the projected deficits highly depends on the considered hydrological configuration. For instance,
the projected water deficits by lumped models are more devastating than semi-distributed
configurations, especially in the PD-based models. In contrast to other system components, the
estimated amount of water deficit is less sensitive to the input sources than the spatial discretization.
While SE-PD shows a less severe rise in water deficit than SE-GD, the escalation of water deficit
estimated by LU-PD is higher than LU-GD. A more substantial water deficit is expected under
RCP 8.5 than RCP 4.5; however, the severity again depends on the considered model configuration
(compare left and right panels in Figure 4.12). The sensitivity of the quantified water deficit to the
considered modeling approaches underlines the importance of the hydrological model's spatial
representation and input uncertainty in water allocation analyses. Moreover, the projected rising
water deficit accentuates the need to revisit the historical operational plans to provide a more robust

allocation of water resources to meet the water demands.

4.5 Conclusion

Changes in climate is altering natural flow regime, which can subsequently affect the downstream
reservoir water storage and performance of water systems. This study evaluates the role of
hydrologic system representation on the assessment of water system vulnerabilities in the Oldman
River Basin in Alberta, Canada under changing climate conditions. A conceptual hydrological
model, HBV-MTL, is tailored as semi-distributed and lumped representations of the upstream
watershed and calibrated using point- and grid-based climatic datasets. Accordingly, the outputs of
19 climate models under 2 RCPs are fed into the coupled hydrological and reservoir allocation

models to evaluate the water system behavior.

Results show that during the historical period all considered model configurations can reasonably

reproduce the statistical characteristics of natural flow, reservoir volume, and outflow. In general,
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the semi-distributed model calibrated with point datasets shows the highest accuracy during the
historical period. Considering the future scenarios, greater flow intensities with earlier peak timing
are projected. However, the magnitude and weeks of peak flow are different between hydrological
models. Such changes in the inflow regime would lead to a few weeks earlier and more intense
reservoir peak volume conditions. Similarly, although in general a higher risk of downstream
flooding is estimated, the magnitude of changes depends on the considered hydrological model
configuration. For instance, about 20% higher flow intensities are estimated by the models
calibrated based on point than grid-based climate data. This clearly shows the importance of
historical climate data's conditions for water system impact assessment. Furthermore, changes in
flow regime decreases the ability of the water system to meet water demands, in particular during
the peak demand season and exacerbates the existing water deficit. In particular, lumped models
projected about 177% higher escalation in water deficit in the future, on average in comparison to
the semi-distributed models. Such differences show that even using the same equations to simulate
the hydrological processes, the spatial representation of upstream watershed can highly influence

water system analyses.

Based on these observations, it is recommended to consider the noted aspects of uncertainties in
the assessments of climate change impacts on the water systems. In addition, since a unique
hydrological model is used in this study, a comparison between the outcomes of multiple
hydrological models with various levels of complexity can be informative. Moreover, given the
projected higher risks of flooding and water deficit in the region, it is suggested to revisit the

historical reservoir operational plans to improve water resources management.
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CHAPTER 5 EVALUATING CLIMATE CHANGE IMPACTS ON THE
WATER SYSTEM USING MULTIPLE HYDROLOGICAL MODELS
WITH DIFFERENT INPUT AND MODEL SPATIAL RESOLUTION

5.1 Methods and materials

5.1.1 Framework for impact assessment

In this chapter, the previously presented analyses are extended to also evaluate the impact of using
multiple hydrological models and snow process representations on the quantification of risk in
water systems. Coupling the two utilized hydrological models, i.e., HBV-MLT and GR4J, with the
two applied snow routine modules, i.e., Degree-Day and CemaNeige, yields four different
hydrological representations. Depending on the used data and model resolution, each hydrological
representation has four different configurations, i.e., lumped hydrological models calibrated and
validated using point-based (LP) and grid-based (LG) input data, as well as semi-distributed
hydrological models calibrated and validated using point-based (SP) and grid-based (SG) input
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data. Thus, overall, 16 different configurations are considered for estimation of natural flow, see
Figure 5.1. The simulated natural flow series generated by these hydrological models is fed into a
reservoir water allocation model to simulate the reservoir volume and outflow regime. The coupled
models are then forced with an envelope of climate projections to estimate the streamflow series
and reservoir conditions in the future. This framework is again applied to assess the vulnerability
of the Oldman River Basin. The description of this case study and utilized observed data and future
projections and employed water allocation model are already explained in Chapter 4. In the
following, the utilized hydrological models and the considered representation of snow processes

are described in Sections 5.1.2 and 5.1.3, respectively.

5.1.2 Hydrological models

HBV-MTL, which is developed in this research, is a modified version of the HBV model, which
is better adapted to cold regions by considering infiltration into the frozen soil. As previously
noted, this model is a conceptual hydrological model, which requires daily temperature and
precipitation as inputs. The added liquid water to the model, from whether rainfall or snowmelt,
would infiltrate the soil or turn to runoff. A portion of infiltrated water would be captured by soil
particles and used by vegetation through evapotranspiration. The remaining infiltrated water is
stored in two buckets and released gradually to form intermediate flow and baseflow. The
integration of these flows and runoff is routed through a triangle delay function to estimate flow at

the outlet of the basin.

Similar to HBV-MTL, GR4J is a conceptual hydrological model which needs daily temperature
and precipitation data to estimate daily flow in the basin outlet. In contrast to HBV-MTL, in the
GR4J, the amount of net precipitation, i.e., the difference between precipitation and potential
evapotranspiration, is divided into two portions using a parabolic equation. One part of the net
precipitation is stored in the so-called production storage, from which the stored water can
percolate gradually. Moreover, vegetation uses the stored water in this production storage for
evapotranspiration. The rest of the net precipitation integrates with the percolated water from the
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production storage and enters the routing stage. In the routing, 10% of the available water is routed
directly to the outlet using a two-sided unit hydrograph. The remaining 90% of water is routed
using a one-sided unit hydrograph and then stored in routing storage, from which it is gradually
released. The schematic for the GR4J model is presented in Appendix B. For more information

about the model structure and equations, please refer to Perrin et al. (2003).

5.1.3 Represented snow processes in hydrological models

The previously used Degree-Day snow routine in the HBV-MTL model provides a lumped
representation of the snow processes in the basin. This module divides precipitation into rainfall
and snowfall based on the minimum and maximum air temperature in the basin. Snow would
accumulate homogenously across the basin and melt gradually as a function of ambient
temperature, snowmelt temperature, and a degree-day coefficient, see Equations A.1 and A.3 in
Appendix A. In contrast to the Degree-Day snow routine, the CemaNeige module provides a
spatially variable representation of snow processes in the basin. In this module, the basin is first
divided into five elevation zones with equal areas. The observed precipitation and temperature
values are then found in each zone based on the difference between the average elevation in the
zone and the basin’s mean altitude, using an elevation gradient factor. Consequently, the snow
processes are simulated in each zone separately. The precipitation is divided into snowfall and
rainfall based on the air temperature, like the Degree-Day snow routine. In contrast to the Degree-
Day snow routine, the CemaNeige module tracks not only the accumulation of snow particles but
also the snowpack’s temperature. The snowpack’s temperature in each timestep is estimated as a
weighted average of air temperature in that timestep and the snowpack’s temperature in the last
timestep while considering the weight as a model parameter. As long as the snowpack’s
temperature is below zero, the positive ambient temperature does not melt the snow. If the snow
temperature reaches zero, the potential snowmelt is estimated using a degree-day coefficient. In
the last step, the potential snowmelt is multiplied by the snow coverage factor. The snow coverage
factor is the ratio of accumulated snow over the snowpack required to cover the zone, which is
suggested to be about 90% of the long-term mean annual snowfall. For more information on the

CemaNeige snow module, please refer to Valery (2010). Both Degree-Day and CemaNeige snow
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routine modules are coupled with the HBV-MTL and GR4J hydrological models in this study to

understand their importance for streamflow simulations in our case study.

5.1.4 Calibration of developed hydrological models

The explained procedure in Chapter 4 is followed here to calibrate and validate the developed
hydrological models. In brief, in order to find optimal parameter sets, the historical data is split into
burn-out, calibration, and validation periods (KlemeS, 1986; Gharari et al., 2013). The first six
years of climatic data are used in the burn-out period. Two-third of the remaining data is used in
the calibration process to find the optimal parameter set, which yields the lowest error measure.
Here, the Euclidean distance between (1,1) and the annual and daily KGE measure is used as the
objective function to be minimized (Gupta et al., 2009). To solve this optimization problem, the
Shuffled Complex Evolution algorithm (SCE-UA; Duan et al., 1993; Yarpiz, 2020) is applied. In
addition to the optimized parameter set, an envelope of acceptable parameter sets, which could
result in KGE>0.5 on daily and annual scales, are extracted from a uniform probability function
following the GLUE approach (Migliaccio & Chaubey, 2008; Mirzaei et al., 2015). Finally, the
performance of different models using optimized and acceptable parameter sets is evaluated during
the validation period. Accordingly, to the number of optimized and acceptable parameter sets, each
hydrological model configuration generates multiple realizations of natural flow conditions.

5.2 Result

5.2.1 Upstream flow regime

5.2.1.1 Flow annual hydrograph

The expected annual inflow hydrographs to the Oldman Reservoir, simulated by 16 different
hydrological model setups, are compared with the observed values during the historical period in
Figure 5.2. In this figure, the top and bottom rows show the results of HBV-MTL and GR4J models,

respectively, while left and right columns represent the outcomes of hydrological models coupled
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with Degree-Day and CemaNeige modules, respectively. In each panel, the inflow hydrographs
and performance measures (KGE) are presented for different configurations of each hydrological
representation. The higher the value of KGE, the higher the statistical accordance between
simulated and observed historical daily inflow throughout the historical period. Although the peak
inflow timing is estimated properly with all models, its intensity is estimated more accurately using
Degree-Day than the CemaNeige module. Nevertheless, the performance of models with Degree-
Day and CemaNeige modules depends also on the considered season. For example, models with
the CemaNeige modules outperform the ones with the Degree-Day module in early summer as the
CemaNeige snow module can preserve snow in the high-elevation areas longer than the Degree-

Day module.

Comparing left and right columns in Figure 5.2 shows that different configurations of hydrological
models with Degree-Day snow module estimate the expected hydrographs similarly. However, in
the models that use the CemaNeige module, the estimated expected hydrographs deviate more from
each other. In general, semi-distributed models simulate the peak flow intensity more precisely

Table 5.1 Performance of the 16 applied hydrological setups in estimating the historical daily
inflow to the Oldman Reservoir, based on the KGE performance measure, during the

calibration and validation periods.

Degree-Day CemaNeige

Configuration Calibration Validation Calibration Validation
HBV-MTL LP 0.90 0.76 0.89 0.84

LG 0.89 0.65 0.87 0.64

SP 0.93 0.81 0.91 0.83

SG 0.92 0.67 0.90 0.66
GR4J LP 0.88 0.82 0.88 0.86

LG 0.88 0.72 0.86 0.72

SP 0.92 0.83 0.90 0.84

SG 0.89 0.65 0.89 0.68
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than lumped models. Comparing to the grid-based models, point-based configurations show
slightly higher performance measures. Intercomparison between the top and bottom rows indicates
that the usage of the hydrological model has a less vivid impact on the estimated inflow hydrograph
than other modeling specifications. Although GR4J models better estimate the peak flow intensity
when coupled with the Degree-Day snow module, these models are outperformed by the HBV-
MTL models when coupled with the CemaNeige module. Despite the described differences, which
are mainly rooted in the used snow routine model, all configurations of hydrological models
provide statistically similar estimations to the observed flow. Table 5.1 presents the statistical
similarity (based on KGE) between the observed and simulated historical daily inflow to the
reservoir, using 16 developed hydrological model structures, during the calibration and validation
periods. As expected, the developed models better performed during the calibration period than the
historical period, more notably in grid-based structures. In general, the reported performance
measures show that all model configurations perform acceptably during the calibration and
validation periods. Hence, all hydrological model setups are approved to be used for projecting
future inflow hydrographs.

The future annual inflow hydrographs, simulated by the 16 different hydrological models under
RCPs 4.5 and 8.5, are presented in Figures 5.3 and 5.4, respectively. The top and bottom rows
present the simulations of HBV-MTL and GR4J models in these figures, respectively. Moreover,
the left and right columns show the results of the models using Degree-Day and CemaNeige snow
modules, respectively. In each panel, the shaded areas represent the envelopes of simulated inflow
hydrographs, using an envelope of acceptable parameter sets and GCMs’ outputs in different
configurations of the respective hydrological representation. The median of the annual hydrograph
envelopes, simulated using each configuration, is shown by solid lines with different colors and
markers. All models unanimously show an increased peak flow intensity relative to the historical
conditions. Under both RCPs, the hydrological models with the Degree-Day snow module project
more intense and earlier peak flow compared to the CemaNeige module and historical period.
Nonetheless, in comparison with the historical observation, lumped configurations in the models
with the CemaNeige snow module estimate a forward shift in the peak flow timing, while semi-
distributed configurations of these models project earlier peak flow conditions, see right columns
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of Figures 5.3 and 5.4. Focusing on the left column of these figures illustrates that the accelerated
snowmelt processes in the future that caused the massive changes in the peak timing result in an
earlier drop in the inflow intensity and, subsequently, lower inflow rate during late spring compared
with the historical period. Conversely, the medians of the projected inflow hydrographs by model
coupled with the CemaNeige snow module are consistently higher than the historical flow rate
under both RCPs throughout the year. Comparing the top and bottom rows in Figures 5.3 and 5.4
highlights the role of hydrological model structures in estimating future annual inflow hydrographs.
As shown in these panels, HBV-MTL models project more intense and earlier peak flow conditions
and smaller low flow intensity than the GR4J models. However, the influence of the considered
snow module on the estimated future flow hydrograph projections seems more evident than the
choice between the hydrological models.

Comparison between the estimated inflow by various developed configurations reveals that the
divergence between different setups of models with the Degree-Day module is more visible than
models with the CemaNeige module. Interestingly, such a difference between the estimates of
model setups is more evident for CemaNeige-based models than models with Degree-Day snow
routine in the baseline period. This means that the behavior of models in the past may vary in the
future, and it is better to use an ensemble of models for impact assessment. In the models with the
Degree-Day module, the point-based and lumped configurations show less intense and earlier peak
flow conditions than grid-based and semi-distributed models, respectively, in the future period.
However, in the models using the CemaNeige module, semi-distributed models project less intense
and earlier peak flow conditions than lumped models. On the differences between future scenarios,
one can observe that generally under RCP 8.5, less severe flows with earlier peak flow conditions
are expected in the future in comparison to the RCP 4.5. With that said, these observations are
based on the expected flow hydrograph and considering the peak weekly flow. In the following

section, the results for the assessment of daily flow are provided.
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Figure 5.2 Comparison between the simulated (solid colored lines and shaded areas) and

observed (solid black line) expected annual inflow hydrographs reaching the Oldman Reservoir

during the historical period using 16 different hydrological setups, including lumped and semi-

distributed structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day
module, (b) HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d)
GR4J with CemaNeige module, developed based on point- and grid-based input data.
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Figure 5.3 Median and ensemble of projected expected annual inflow hydrographs (solid

colored lines and shaded areas, respectively) under RCP 4.5 using 16 different hydrological

setups, including lumped and semi-distributed structures of 4 hydrological representations, i.e.,
(@) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J
with Degree-Day module, and (d) GR4J with CemaNeige module, developed based on point-

and grid-based input data, compared with the historical observed annual expected hydrograph.
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5.4 Median and ensemble of projected expected annual inflow hydrographs (solid
lines and shaded areas, respectively) under RCP 8.5 using 16 different hydrological

setups, including lumped and semi-distributed structures of 4 hydrological representations, i.e.,
(a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J
with Degree-Day module, and (d) GR4J with CemaNeige module, developed based on point-

and grid-based input data, compared with the historical observed annual expected hydrograph.
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5.2.1.2 Streamflow signatures

Different flow signatures, including 99" (Q99), 50" (Q50), and 10" (Q10) percentile, as well as
peak flow timing of the daily inflow during the historical and future periods, are presented in Figure
5.5. Each boxplot contains the specific flow signatures of every component of the daily inflow
envelope, simulated by the respective configuration. As discussed in the previous section, the
simulated inflow envelops during the historical period consist of simulated inflow time-series using
all acceptable parameter sets in each hydrological modeling setup. Moreover, in the future, this
envelope is simulated by using all combinations of the noted acceptable parameter sets with various
GCMSs’ projections under each RCP. As shown in Figure 5.5, the hydrological models mainly
underestimate the high flow conditions, i.e., Q99, during the historical period. Nevertheless, HBV-
MTL provides higher values for Q99 than GR4J during the historical period. It is noteworthy to
mention that although the estimated values of daily Q99 appear to be more sensitive to the
considered model structures than employed snow modules, it is discussed previously that the values
of weekly peak flow intensity are more subjective to the use of snow routine than the structure of
the hydrological model. To justify this observation, we can argue that during extreme rainfall and
snowmelt events, leading to extreme flow conditions, the delayed storages in the hydrological
models would not be able to store most of the incoming water, hence direct the excess water to the
outlet. Moreover, in this particular study area, which is not a huge one, the routing functions of the
hydrological models were found to delay the water less than a week. Therefore, the hydrological
model is mainly effective on the daily peak flow conditions. The critical component in the peak
weekly flow generation in a snow-dominated basin, like the Oldman River Basin, is the
accumulated snow when the heat arrives. Therefore, the estimated weekly peak flow conditions are

susceptible to the utilized snow module.

The results show that all models project an increase in Q99 in the future. This increase in the high
flow conditions is more noticeable using the HBV-MTL than GR4J hydrological models.
Furthermore, models with Degree-Day snow module project generally higher Q99 in the future,
comparing with the models using the CemaNeige module. The high flow intensity projected by
lumped configurations in the models with the Degree-Day module is larger under RCP 4.5 than
RCP 8.5 throughout the century, while in the semi-distributed set up of these models, Q99 is quite
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similar under both RCPs. However, using the models with CemaNeige, the estimated high flow
conditions under RCP 4.5 are greater than RCP 8.5 during the short- and mid-term future, whereas
it is inverse for the long-term horizon. Hence, the sensitivity of estimated Q99 in the future depends
not only on the emission scenarios but also on the applied hydrological model resolution (i.e.,
lumped or semi-distributed) and snow routine representation, with the usage of hydrological model,
whether HBV-MTL or GR4J, being less effective on this sensitivity.

Figure 5.5 also shows that all hydrological representations overestimate the mid-flow conditions,
i.e., Q50, during the historical period. It seems that while the usage of the hydrological models and
snow routine does not have a meaningful impact on the estimated Q50, semi-distributed models
provide more similar values of Q50 to the observation than the lumped structures. During the future
period, all model configurations project an increase in mid-flow intensity. This augmentation is
more noticeable in the lumped than semi-distributed models, especially when we use the point-
based input data. In addition, although the values of Q50 are almost similar under both RCPs in the
short-term future, higher variation in this signature is projected under RCP 8.5 than RCP 4.5 in the
long-term future. Accordingly, the difference between estimated Q50s under two RCPs in the long-
term future is more evident using the Degree-Day module. In general, more intense mid-flow
conditions are estimated in the future by GR4J, especially when coupled with the Degree-Day snow

routine module.
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Figure 5.5 Boxplots of different inflow signatures estimations during the historical and future
periods using multiple hydrological representations, i.e., (a) HBV-MTL with Degree-Day
module, (b) HBV-MTL with CemaNeige module, (c¢) GR4 with Degree-Day module, and (d)
GR4J with CemaNeige module, based on historical data and different climate projections under
RCPs 4.5 (blue outline) and 8.5 (red outline).
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In addition to these observations, Figure 5.5 also illustrates that while HBV-MTL models slightly
underestimate the low-flow conditions, the estimations of Q10 in these models are closer to the
observed historical conditions in comparison to GR4J models which overestimate this signature.
Moreover, models with the Degree-Day module estimate a slightly larger estimation for Q10 than
models using the CemaNeige snow routine, especially when coupled with the GR4J model. Similar
to the historical period, the HBV-MTL models project a lower Q10 than the observed historical
conditions in short and mid-term future horizons, whilst an increase in this signature is expected in
the long-term future. However, GR4J models project an increase in all future horizons.
Approaching the end of the 21% century, the estimated Q10 under RCP 8.5 exceeds the projected

low-flow conditions under RCP 4.5.

The impact of using the different hydrological model setups on the estimated timing of the peak
inflow during the historical and future periods is also presented in Figure 5.5. Based on the results,
while models with the Degree-Day module project slightly earlier peak flows, CemaNeige models
provide later peak flow timing during the historical period. To a more limited extent, HBV-MTL
models also estimate earlier peak flow timings than GR4J models during the historical period. In
general, semi-distributed and point-based models better resemble historical peak flow timing
comparing to the lumped and grid-based models, respectively. In the future, point-based
configurations of models with the Degree-Day module project earlier peak flows than the historical
conditions. In contrast, grid-based structures of these models estimate future peak flow timing
relatively similar to the historical conditions. Nevertheless, CemaNeige models project a forward
shift in the peak flow timing, especially under RCP 4.5. In general, hydrological models project
earlier peak flows under RCP 8.5 than RCP 4.5, with the difference being more dominant using the

models with the CemaNeige snow module.
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5.2.2 Reservoir operation

5.2.2.1 Reservoir volume

The generated inflows using the hydrological models are used to simulate the reservoir volume and
outflow. Figure 5.6 compares the observed reservoir volume with the simulated storage using
multiple configurations (boxplots with different colors) of different hydrological representations
(rows) during the historical period. In this figure, the calculated differences between the simulated
and observed annual expected reservoir volume (dam®) are upscaled to four-week intervals by
taking the average of the storage during each interval to better summarize the impacts of utilized
hydrological representations on the simulated reservoir volume. The boxplots in this figure contain
the estimated reservoir volume, using the inflow envelopes, simulated by different configurations
of hydrological representations considering multiple acceptable parameters sets. As it can be seen,
the envelope of simulated reservoir volume using HBV models better captures the historical values
than GR4J models during the low water level conditions in winter. Focusing on the high water
level period in summer elucidates that models with the CemaNeige module more precisely
reproduce historical reservoir volume than the Degree-Day snow routine. However, models with
the Degree-Day module slightly better perform during fall in comparison to those with the
CemaNeige module. In general, based on the statistical measures provided in the figure, it is
apparent that models with the CemaNeige module outperform those with the Degree-Day module
throughout the year. Intercomparison between model configurations shows that the semi-
distributed and point-based configurations of models using the CemaNeige snow routine provides

the highest accuracy in estimating the historical reservoir volume.
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Figure 5.6 The difference between observed and simulated annual expected reservoir volume (dam?) during the historical period

using the simulated inflow by different configurations (boxplots with different colors) of multiple hydrological representations (rows),

i.e., (@) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d)

GR4J with CemaNeige module, considering ensembles of acceptable parameter sets. The KGE performance measures in each panel
show the performance of semi-distributed and lumped structures of the respective hydrological representation, developed using point-

based and grid-based climatic data.
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Figure 5.7 Median and ensemble of projected expected annual reservoir volume (solid lines
and shaded areas, respectively) under RCPs 4.5 (blue) and 8.5 (red) using 16 different
hydrological setups, including lumped and semi-distributed structures of 4 hydrological
representations, i.e., (a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige
module, (c) GR4J with Degree-Day module, and (d) GR4J with CemaNeige module,
developed based on point- and grid-based input data, compared with the historical observed

annual expected hydrograph.

The projected reservoir volume using different hydrological model setups and 19 GCMs under
RCPs 4.5 and 8.5 is presented in Figure 5.7. As shown in this figure, the models with the Degree-
Day snow module show high water levels would happen a few weeks earlier than the historical
period, which can affect the business-as-usual reservoir operation to release water earlier to
mitigate dam overtopping. However, this may lead to low reservoir storage in summer in
comparison to the historical period. Given the high irrigation water demands during summer, such

conditions may cause challenges in meeting local water demands. In contrast with the Degree-Day
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Figure 5.8 Comparison between the simulated (boxplots) and observed (dot line) long-term
expected annual water deficit in the water supply to the local downstream users during the
historical period using 16 different hydrological setups, including lumped and semi-distributed
structures of 4 hydrological representations, i.e., () HBV-MTL with Degree-Day module, (b)
HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) GR4J with

CemaNeige module, developed based on point- and grid-based input data.

snow routine, models with the CemaNeige module estimate a higher reservoir volume than the
historical period throughout the year, meaning less challenging reservoir operation is expected
during low flow than high flow seasons. Comparing the model projections under two RCPs shows
that larger reservoir water volume earlier in spring and lower values in summer and fall is projected
under RCP 8.5 in comparison to RCP 4.5. Therefore, a more challenging reservoir operation is

anticipated under the higher emission scenario.

5.2.2.2 Downstream water supply to local demands

The differences between the simulated inflow and reservoir volumes using different models can
signify that there might be diverging outflow estimated by them too. Figure 5.8 compares long-
term expected simulated and observed water deficit during the historical period. The water deficit
is defined as the annual shortage of supplied water to the local water users relative to their annual
water demand. In Figure 5.8, each boxplot contains the long-term average water deficit, estimated
by multiple acceptable parameter sets used in the respective configuration of the hydrological

representation. As shown in this figure, while models with the Degree-Day snow routine tend to
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Figure 5.9 5-year moving average of projected water deficit under RCPs 4.5 (left panel) and
8.5 (right panel), using 16 different hydrological setups, including lumped and semi-distributed
structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day module, (b)

HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) GR4J with

CemaNeige module, developed based on point- and grid-based input data.

overestimate the water deficit, models using the CemaNeige module generally underestimate these
conditions. If only the optimized realizations are evaluated, it can be seen that the performance of
models with the Degree-Day and CemaNeige modules in estimating the water deficit is relatively
equivalent. Focusing on the uncertainty boundaries shows that the models coupled with the Degree-
Day module capture the historical conditions between the 25" and 75™ percentile. In contrast, the
observed historical water deficit stands higher than the 75" percentile of the estimated water deficit

in lumped representations of models with the CemaNeige module.
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Figure 5.9 represents the 5-year moving average of the projected local water deficit in the future,
using different hydrological models under both RCPs. It is evidenced that models with the Degree-
Day module project higher water deficit throughout the century than those with the CemaNeige
module. Moreover, GR4J models suggest a slightly greater water deficit in the future than HBV-
MTL models. Generally, semi-distributed structures present a higher degree of water deficit in the
future comparing to the lumped representations, except for grid-based configurations of GR4J,
coupled with the Degree-Day snow routine. Under RCP 4.5, the projected water deficit rises in the
mid-term future and is followed by a decrease in the long-term future. Conversely, the estimated
water deficit under RCP 8.5, using different hydrological models, follows a meaningful ascending
trend throughout the century. Therefore, satisfying the local water demands in the Oldman River

Basin would be more challenging following the high emission scenario in the future.

5.3 Conclusion

Proper management of water systems is becoming challenging as historical characteristics of
streamflow are changing due to the warming climate. In this chapter, the impacts of climate change
on the water system in Oldman River Basin, Alberta, Canada, is evaluated, with the primary goal
of understanding the importance of the hydrological modeling approach in such assessments. For
this purpose, 16 different setups for hydrological modeling and estimation of natural streamflow
are considered. These include two choices for input data resolution (point- and grid-based), model
resolution (lumped and semi-distributed), model structure (HBV-MTL and GR4J), and snow
routine module (Degree-Day and CemaNeige). The performance of these models is evaluated, and
they are then coupled with a reservoir water allocation model to estimate reservoir volume and
outflow. For climate change impact assessments, the outputs of 19 climate models under RCPs 4.5
and 8.5 are used as climate input data in the coupled hydrological-allocation models to project
future natural flow and reservoir dynamics and evaluate the efficacy of existing reservoirs

operation plans in the future.
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Based on the provided discussion over the results, we can argue that hydrological modeling
uncertainties can affect the assessment of climate change impact on different levels of water
systems. It is evidenced that using multiple hydrological models with different resolutions can
potentially decrease the vulnerability of the assessments by raising knowledge about uncertainties
in the simulations. This study illustrates the sensitivity of the flow conditions and water allocation
in a snow-dominated basin in Western Canada. The generalizability of findings of this study can
be further investigated by applying this framework in other study areas with different, or even
similar, hydrological characteristics. Despite the differences between the model outputs, the
consensus is the rising intensity of peak flows and water deficit in the future, especially under RCP
8.5. Hence, on the local level, it is necessary to revise the established Oldman reservoir water
allocation plans to mitigate climate change's adverse impacts on the water system. Furthermore, on
the global level, it is vital to better manage anthropogenic activities to diminish carbon emission

and move towards RCP 4.5 in order to reduce risks of failure in long-term future.
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CHAPTER 6 GENERAL DISCUSSION

Rapid changing climatic conditions is altering the water system on different levels and exerting
more pressure on the current water allocation plans. Results show that during the historical period,
all hydrological models show acceptable performance considering the estimated error measures.
Yet, focusing on specific characteristics of the natural flow reveals meaningful differences between
the models. In particular, the estimation of weekly peak flow intensity depends mainly on the
considered snow representation model. During the historical period, models with the Degree-Day
snow routine better resembles the observed weekly peak flow intensity than models with the
CemaNeige module. Similarly, the timing of weekly peak flow is governed by the utilized snow
module. Hydrological representations with the Degree-Day and CemaNeige modules provide an
underestimation and overestimation of the peak flow timing during the historical period,
respectively. Nevertheless, the structure of the hydrological models can play a critical role in
estimating daily low and peak flow intensities. In fact, the simulated Q99 by HBV-MTL models is
more in accordance with the observed values in comparison to GR4J models. In addition, HBV-
MTL and GR4J underestimate and overestimate Q10, respectively. In contrast, the model
resolution is important for the representation of the mid-flow signature, with a better estimation of

Q50 in semi-distributed models than lumped models.

In the future, a great increase in the intensity of low-, mid-, and high-inflow to the Oldman
Reservoir is expected; however, the significance of this transition depends on the used model.
Similar to the historical period, snow routine modules and the utilized hydrological model influence
the intensity of peak flows. While models with the Degree-Day module estimate distinctively
higher peak flow intensities than models using the CemaNeige snow routine on the weekly scale,
HBV-MTL models project more severe high flow conditions than GR4J models on the daily scale.
The timing of this peak flow is greatly affected by the usage of snow models. While representation
based on the CemaNeige module project a forward shift in timing, models with the Degree-Day
snow routine expect earlier peak flow conditions. Following the historical period, the projected
mid-flow conditions in the future are mainly driven by the model resolution, and lumped models

suggest more rise in mid-flow intensities than semi-distributed models. The low-flow intensity in
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the future is primarily controlled by the usage of hydrological models, and HBV-MTL models
provide lower estimations of Q10 than GR4J models. Moreover, comparing different estimated
flow conditions under 2 RCPs reveals the sensitivity of projected flow characteristics to the
emission scenarios. In particular, the results indicate that, under RCP 8.5, more extreme changes
in the peak flow timing and intensity are expected than the RCP 4.5, especially in the long-term

future.

Because snow routine modules appear to have a more dominant impact on the weekly flow
intensities, these models are reckoned on affecting the reservoir operation more than the structure
of the considered hydrological models and their spatial resolution. The results approve that the
models using the CemaNeige module outperform the ones with the Degree-Day snow routine in
the historical period, especially during high reservoir volume in summer. However, this dominance
is not consistent as, for instance, models with the Degree-Day snow routine better reproduce
reservoir volume in summer during the historical period. The differences between the simulated
reservoir dynamics using different hydrological models propagate to the evaluation of water supply
deficit to local demands. Although using the CemaNeige snow routine provides a generally more
precise estimation of the reservoir volume than the Degree-Day module, models with the Degree-
Day snow module better estimate the water deficit during the historical period. This is essentially
due to the more accurate simulation of reservoir volume by models with the Degree-Day snow
module in summer when agricultural sector demand puts pressure on the depleting reservoir

volume.

Similar to the historical period, snow modules have the primary influence on the simulated
reservoir dynamics in the future. Models with the Degree-Day snow routine suggest that high water
level conditions would occur earlier in the future, compared with the projections of models with
the CemaNeige module. Moreover, the expected reservoir volume during summer and fall,
projected by models with Degree-Day snow module, drops below not only the simulated reservoir
volume by models with CemaNeige snow routine but also the historical conditions. This transition

in the reservoir volume is vividly reflected in the estimated water deficit in the future when models
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with the Degree-Day module suggest a considerably larger water shortage than models with the
CemaNeige module. Results illustrate the importance of emission scenarios on the evolution of
water deficit throughout the century. Under RCP 4.5, a rising trend in water deficit in the short-
and mid-term future is followed by a descending trend in the long-term future, while under RCP

8.5, an ascending trend in the projected water deficit is observable throughout the century.
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CHAPTER 7 CONCLUSION (AND RECOMMENDATIONS)

Changes in temperature and precipitation due to warming climate can alter the characteristics of
water availability. Such changes can degrade the efficacy of existing water allocation plans, which
are developed based on historical climate and flow regime conditions. Hydrological models are
used to represent various hydrological processes to estimate flow conditions in the basin. However,
using different specifications in the structure of these models leads to inconsistent estimation of
flow characteristics. Although these differences might be negligible during the historical period,
applying these models to study the hydrological system under changing climatic conditions can
cause more notable divergence in the estimated flow characteristics. This study analyzes the
importance of the hydrologic system representations in evaluating the effects of climate change on

a water resources system in western Canada.

A multi-model framework is developed to holistically represent the water system conditions in the
future in this area. In this framework, four hydrological representations are generated by coupling
two hydrological models, i.e., HBV-MTL and GR4J, with two snow routine modules, i.e., Degree-
Day and CemaNeige. For each hydrological representation, lumped and semi-distributed structures
are developed based on point- and grid-based climatic data, which vyields four different
configurations of each hydrological representation. Therefore, in total, 16 various configurations
of hydrological representations are used in this study. Each configuration of the hydrological
representation is calibrated against the historical observed inflow to the Oldman Reservoir, using
the historical observed climatic data to find the optimal parameter set. Moreover, multiple
acceptable parameter sets are sought through an uncertainty assessment technique. The found
acceptable parameter sets, along with the optimal one, are utilized in the model to generate an
envelope of simulated flow to address the importance of parametric uncertainty in the hydrological
modeling. The developed hydrological representations are then coupled with a water allocation
model, an emulation of the WRMM model, to estimate reservoir volume and release following the
current reservoir operation plans. Regarding the future projections, the outputs of 19 bias-corrected
GCMs under two scenarios, RCPs 4.5 and 8.5, are fed into the developed ensemble of coupled

hydrological-water allocation models to simulate inflow conditions and reservoir dynamics.



68

Results indicate that all developed hydrological models provide a statistically accurate estimation
of natural flow conditions and reservoir dynamics during the historical period in the headwater of
the Oldman River Basin. However, these models have dissimilar performances in reproducing
different characteristics of the water system. For instance, although weekly peak flow intensity and
timing are mainly sensitive to the usage of the snow module, daily high-flow conditions are
primarily determined by the utilized hydrological models. The reason for this observation is that
the hydrological models route the extreme water inflow during massive snowmelt periods through
functions with less than a week of delay in this study area. Therefore, on the weekly scale, the
primary determinant of the peak flow conditions is the accumulated snow when the temperature
rises in spring, directly related to the usage of the snow routine module.

The dissimilarity between models’ outputs is exacerbated in the future under changing climatic
conditions. While the resolution of model structure and input data does not highly affect the
simulated flow conditions in the historical period, models calibrated using point-based climatic
data project higher peak flow intensities in the future than models based on grid-based input. On
the one hand, although the hydrological models with Degree-Day modules project a backward shift
in the timing and rising trend in the intensity of weekly peak flows, the models with CemaNeige
estimate a relatively steady timing for an intensified weekly peak flow. On the other hand, HBV-
MTL models project more severe daily peak flow conditions than GR4J models. Similar to the
daily peak flows, the choice of hydrological model (HBV-MTL or GR4J) can affect the estimated
values of the low-flow intensity. In general, HBV-MTL models expect more severe low-flow
conditions than GR4J models. Conversely, the applied model resolution, lumped vs. Semi-
distributed representation, plays a prominent role in the accuracy of mid-flow intensity estimation.
In fact, lumped models project higher mid-flow intensity in the future. Intercomparison between
projected natural flow conditions following different emission scenarios shows that generally under

RCP 8.5, more extreme changes in the water system conditions are expected than under RCP 4.5.
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Analyzing the reservoir dynamics simulation during the historical period shows that while peak
flow intensity is more affected by the input resolution, estimated reservoir volume is more notably
affected by the applied spatial disaggregation in the model structure. In general, lumped models
tend to underestimate the historical reservoir volume. Moreover, given the critical role of snow
representation methods in the performance of the hydrological models, the usage of these models
also affects the reservoir water level and outflow simulations. In general, representations with the
CemaNeige module better reproduce the historical reservoir water volume than the Degree-Day
snow routine, especially during spring. However, models with the Degree-Day module estimate
the reservoir volume more appropriately for summer than those with the CemaNeige module. Using
models with the Degree-Day snow routine, a reduction in the reservoir volume during summer is
projected compared to the observed historical conditions. This reduction causes a rise in the
projected water deficit. This can be due to projections of earlier peak flow timing and shifts in the
annual expected hydrograph using these models. Moreover, water deficit conditions were found
to be more sensitive to the spatial disaggregation of the hydrological model than the input
resolution, where lumped models project more server water deficit. In contrast to the Degree-Day
module, because models with the CemaNeige module project a peak flow timing similar to the
historical period, the projected water deficit using these models is meaningfully lower than using
models with Degree-Day snow modules. The rate of water scarcity in this region also depends on
the future emission scenario too in the future. Under RCP 4.5, the water deficit would rise until the
mid-term future and then decline afterward by approaching the end of the century. However, an
ascending trend in the water deficit is estimated under RCP 8.5, reaching a climax in the 2090s due

to consistency in rising temperatures.

This study shows that under changing climatic conditions, the assessment of climate change
impacts on the water system can meaningfully depend on the utilized hydrological modeling setups.
Using an ensemble of hydrological and climate models to represent the future water system
conditions can decrease the vulnerability of top-down assessments to the embedded uncertainty in
the models. Here, despite the discussed dissimilarities between models’ performances, the
consensus is the intensified peak flows and water deficit in the future, especially under RCP 8.5.

Therefore, revising the long-lasted reservoir water allocation plans is required to diminish climate
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change’s undesirable impacts on the Oldman water system. While this study mainly analyzes the
effects of climate change on the availability of water resources, water demand is assumed to follow
a similar pattern to the historical period. Therefore, it is informative to address the existing
relationships between the water demand and hydroclimatic conditions in the water allocation
processes. Moreover, it is suggested to apply the described framework in different areas using the
newly released CMIP6 model outputs instead of CMIP5 used in this study to better highlight this

framework's sensitivity to the basin’s characteristics and climatic projections.
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APPENDIX A DESCRIPTION OF THE HBV-MTL HYDROLOGICAL
MODEL

The developed hydrological model, HBV-MTL, is a derivative of the HBV model with some
modifications to better represent hydrological processes in cold regions (please see Figure 3 for the
schematic of this model). In HBV-MTL, the precipitation is assumed to be in the form of either
rain or snow or a combination of both using an air temperature threshold (Eq. A.1) (Turcotte et al.,
2007). If the precipitation is in the form of snow, it is assumed that the snow is accumulated to
form a snowpack. The snow depth at each time step is estimated based on the initial depth of snow,
snowfall, and the refrozen retained water in the snow (Eq. A.2; ds represents the simulation
timestep). The precipitation input data to the model should be in the form of liquid water. In other
words, instead of snowfall data, the snow water equivalent of snowfall should be entered into the
model. Accordingly, the estimated accumulated snow is the water equivalent of the snowpack. In
this study, the snow density is assumed to be 10 percent of water density to convert snowfall to

rainfall.

The snowmelt is simulated based on the degree-day method (Seibert & Vis, 2012). In brief, the
accumulated snow would change its phase to liquid when the ambient temperature exceeds the
melting threshold. Accordingly, the snowmelt is estimated in the model as a function of the degree-
day factor, as well as the difference between air temperature and melting threshold (Eqg. A.3). The
degree-day coefficient depends on various factors such as the characteristics of the basin and is
typically assumed to be a constant value between 1.6 and 6 mm/°C (U.S. Dept. of Agriculture,
2004). This coefficient can also be estimated as a function of air temperature and snow
accumulation (Bergstrom, 1975). Although the melting threshold is usually considered equal to
zero, it can vary spatially based on the altitude and geographical characteristics of the study area.
It is assumed that this threshold is between 0 °C and 3 °C (Wang & Melesse, 2005). In this model,
it is assumed that the melted snow would not leave the snowpack instantly, and the water is retained
in the pores of the snowpack until these voids are full of water (Eq. A.4). The volume of these
pores in the snowpack, which represents of the snowpack capacity to retain water, is assumed to
be proportional to the snowpack volume. The retained water in the snow medium can refreeze if

the air temperature drops below the refreeze threshold (Eg. A.5). The refreeze threshold is assumed
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to be the same as the snowmelt threshold. The snowpack’s pores are filled with water when the
retained water exceeds the snowpack’s capacity to keep water. Afterward, water would start to
leave the snow medium. The retained water is estimated dynamically based on rainfall, snowmelt,

refrozen retained water and the water which leaves the snowpack (Eq. A.6).

The rain, melted snow, or their combination can either directly infiltrate the soil or flow over the
surface, based on the free liquid water, the infiltration capacity, and soil temperature. Soil
temperature indicates whether the soil is frozen or not, and it is estimated using the method
developed by (Zheng et al., 1993). In this approach, soil temperature in each timestep is calculated
as a function of initial soil temperature, as well as the eleven-day average of air temperature and
the existence of the snowpack over the surface (Eq. A.7). If the soil temperature is more than the
frozen soil temperature threshold, it means that the soil is not frozen. Accordingly, the infiltration
into the unfrozen soil is estimated based on the modified SCS method used in the SWAT model
(Neitsch et al., 2011).

On the one hand, if the soil moisture is less than the wilting point, more free water would infiltrate,
and less runoff would be generated. Therefore, the soil curve number (CN) will be revised (Eqg.
A.8). On the other hand, if the soil moisture is close to the field capacity, the ratio of free water,
which turns to runoff, would increase. This increase in runoff is reflected in the model by revising
the soil CN (Eqg. A.8). If the soil temperature is less than the frozen soil temperature threshold, it
means the soil is frozen. Consequently, CN is revised based on the level of soil saturation and its
physical characteristics. The higher the soil moisture in the frozen soil, the higher the CN and the
lower the infiltration capacity (Eq. A.9). The frozen soil coefficient in the equation shows the
pattern of soil moisture impact on the infiltration capacity of different types of frozen soils.
Retention and initial abstraction are calculated based on the revised CN (Eg. A.10 and A.11,
respectively). The runoff is estimated using the calculated initial abstraction and retention (Eq.
A.12). The amount of free liquid water, which does not turn to runoff, would infiltrate to the soil
(Eq. A.13).
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A part of infiltrated water into the soil would be absorbed by soil particles and cannot move freely
in the soil medium. The free water in the soil layers infiltrates the deep soil layers. The portion of
water in the soil medium, which infiltrates to the shallow and deep groundwater tanks, depends on
the initial soil moisture in each timestep and the field capacity (Eg. A.14). The remaining infiltrated
water, which is absorbed by soil particles, contributes to the soil moisture (Eq. A.15). In addition
to infiltrated water into the soil, evapotranspiration affects the soil moisture. Actual
evapotranspiration is calculated based on potential evapotranspiration and soil moisture conditions
(Eq. A.16). If the long-term average of evapotranspiration and temperature data are available,
potential evapotranspiration can be computed based on the deviation of the temperature from the
long-term mean temperature. Otherwise, different evapotranspiration models can be used to
calculate potential evapotranspiration. In this study, Hargreaves & Samani (1985) temperature-
based evapotranspiration model is used to prevent an increase in the model data demand. However,
in the case of data availability, other evapotranspiration models can be easily added to the model.
The soil moisture is estimated dynamically, considering the evapotranspiration and soil moisture
recharge as variation rates (Eq. A.17). The estimated soil moisture represents the available water

in the shallow soil layer.

Infiltrated water to deeper soil layers is assumed to be accumulated in two soil layers. The stored
water in intermediate and deep soil layers is released gradually to form the intermediate and base
flows, respectively. In this model, the intermediate soil layer has three conceptual outlets, two of
them contribute to the interflow (Eqg. A.18), and from the other one, water seeps into the deep soil
layer (Eg. A.19). The deep soil layer has only one outlet, forms the base flow (Eq. A.20). The
available water in intermediate and deep soil layers is estimated using simple differential water
balance equations (Egs. A.21 and A.22, respectively). The outflow from intermediate and deep soil
layers alongside the generated direct runoff in the shallow soil layer form the streamflow in the
outlet of the basin (Eq. A.23). Based on the watershed’s physical characteristics, the generated
streamflow would reach the watershed outlet with a time delay. Hence, the generated flow in the
outlet is routed by a triangular weighting function to simulate the flow in the watershed outlet (Eq.
A. 24; Seibert & Vis, 2012). Up to here, all of the estimated variables are calculated for one unit

of area. In the last step, the total flow is calculated by multiplying the basin’s area and the generated
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flow in a unit of the watershed area (Eq. A.25). The abbreviations used in the equations are

introduced in Table A.1. Subscript “t” in each variable indicates the time step of each variable.

Table A.1 Variables and parameters used in the hydrological model equations

(cont’d)

Variables

Parameter/Variable

Precipitation

Snowfall

Maximum temperature

Accumulated snow

Snowmelt

Water that leaves the snow

medium

Soil temperature

Soil revised curve number

Soil retention

Direct runoff

Groundwater recharge

Actual evapotranspiration

Interflow

Percolation to deep layers

Deep groundwater storage

Routed streamflow

Abbreviation

P

snow;

Tmax,t

LW,

ST,

CNsail,t

SR,

DR,

GWR,

ETA,

IF,

PERC,

DS,

RF,

Parameter/Variable

Rainfall

Minimum temperature

Refrozen retained water in the

snowpack

Average temperature

Retained water in the snow

medium

Snow cover coefficient

Soil moisture

Initial abstraction

Infiltration

Soil moisture recharge

Potential evapotranspiration

Shallow groundwater storage

Baseflow

Streamflow

The total flow in the outlet of the

basin

Abbreviation

rain,

Tmin, t

SM,

14,

I

SMR,

ETP,

SS,

BF,

F

TF,




Table A.1 Variables and parameters used in the hydrological model equations

(cont’d)

Parameter/Variable

Abbreviation

Parameter/Variable

Abbreviation

Calibration parameters

Snow gauge correction factor

Degree-day coefficient

Snow’s retaining capacity

coefficient

Soil curve number

Wilting point coefficient

Frozen soil coefficient

Wet-period interflow coefficient

Normal interflow coefficient

Baseflow coefficient

SCF

DD

Snowcap

CN

wp

FSC

Ko

Snowfall temperature threshold

Snowmelt temperature threshold

Refreeze coefficient

Soil field capacity

Frozen soil temperature threshold

Moisture coefficient

Wet-period threshold

Percolation coefficient

Delay length

Ta,thres

Tm,thres

FC

S Tthres

Ndeluy
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(raint = P;; snow, =0

Tmax,t - Ta,thres

{raint = X P;; snow; = SCF X (P, — rain;);

Tmax,t - Tmin,t
rain; = 0; snow, = SCF X P;;

T
Speer = Speg, + fto(snowtzs +Rf_ = Sp,_)ds
Sm, = min(Sp,_,, DD * max(0, Tape r — T thres))
LW; = max(0, Sw,_, + raing + Sp,, — Ry, — Snowcap X Sp,)

Ry = min(SWt_l, F X DD X max(0, Tgpe t — T thres))

T
SWt:T = SWtzto + j; (raintzs +Smos — Rpo — LWtzS)ds
0

0.1 Sp,>0

STt = (Tave,t—lo:t - STt—l) X Mt + STt—l WheT‘e Mt = {0 25 SP — 0
' t

Tmin,t > Ta,thres

Tmin,t < Ta,thres AND Tmax,t > Ta,thres

Tmax,t < Ta,thres
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(Eq. A.1)

(Eq. A.2)

(Eq. A.3)

(Eq. A.4)

(Eq. A5)

(Eq. A.6)

(Eq. A.7)



ST, < Ts,thres: CNsoil,t

(
|CN —

20 X (100 — CN)

B 4 100 — CN + exp(2.533 — 0.0636 x (100 — CN))
LCN x (0.00673 x (100 — CN))

CN

ST, > Tsenres: CNgoire = CN + (100 — CN) x min(

1000
SR, =254 X ( —10)

Nsoil,t
IA; = 0.2 X SR;

(LWt - IAt)Z
LW, > 1A

DRy = {LW, — IA, + SR, e > 1A

0 LW, <IA;

It == LWt— - DRt

100

(Eg. A.8)

SM, < WP x FC

SM, > 0.95 x FC

WP X FC <SM; <095 X FC

(Eq. A.9)

(Eq. A.10)

(Eq. A.11)

(Eq. A.12)

(Eq. A.13)



B

. SM¢-1
GWR, = (—=) xI

SMRt = It - GWRL-

ETA, = ETP, X min(1,SM,_, X WP)

T
SMt=T = SMt=t0 + (SMRt=S - ETAt=S)dS

to

IFt = KO X maX(O, SSt—l - L) - Kl X SSt—l

PERC, = K, X SS,_,

BFt == KZ X DSt—l
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(Eq. A.14)

(Eg. A.15)

(Eq. A.16)

(Eq. A.17)

(Eq. A.18)

(Eg. A.19)

(Eg. A.20)



T
SSt:T = SSt=t0 + f (GWRt=S - IFt=S - PERCt=S)dS

to

T
DSt=T - DSt=t0 + (PERCt=S - BFt=S)dS
to

F, = DR, + IF, + BF,

Ndelay i 2
RF, = Z TD(i) X Fi_j;, where TD(i) = J
o i21 Ndelay

TF; = RF; X Area

4

| Ndelay

> dx

Ndelay
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(Eq. A.21)

(Eq. A.22)

(Eq. A.23)

(Eq. A.24)

(Eq. A.25)
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APPENDIX B SCHEMATIC OF THE GR4J HYDROLOGICAL MODEL
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Figure B.1 Schematic of the GR4J hydrological models. X1 to X4 are calibration parameters.



