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RESUME 

Les changements rapides des conditions climatiques modifient les spécifications du cycle 

hydrologique à travers le monde, en particulier dans les régions froides. Ces changements peuvent 

affecter les caractéristiques du régime d'écoulement, telles que le volume annuel et le moment du 

débit de pointe. L'impact du changement climatique sur les systèmes hydrologiques est 

généralement évalué à l'aide des projections des modèles de circulation globale (GCM), qui sont 

utilisées comme données d'entrée pour les modèles hydrologiques afin de simuler les séries de 

débits naturels à l'avenir. L'objectif commun de ces modèles hydrologiques est de saisir les relations 

mathématiques entre les variables climatiques et hydrologiques. Les modèles hydrologiques 

peuvent différer en fonction de la résolution de leurs données d'entrée (locales ou basées sur une 

grille), des représentations des processus hydrologiques (ensemble de sous-bassins). L'estimation 

des conditions d'écoulement est potentiellement sensible à la structure du modèle hydrologique 

utilisé. Par conséquent, les résultats des évaluations de l'impact du changement climatique peuvent 

être affectés par le choix des modèles hydrologiques ainsi que par les données d'entrée. 

 

Dans cette étude, les impacts des conditions climatiques changeantes sur un système hydrologique 

canadien sont évalués, dans le but principal d'analyser le rôle des modèles hydrologiques dans ce 

processus. Le cours supérieur du bassin de la rivière Oldman en Alberta, dans lequel les rivières 

prennent leur source dans les montagnes Rocheuses, est choisi à cette fin. Le réservoir Oldman, le 

plus grand réservoir de cette région, joue un rôle essentiel dans la gestion des ressources en eau de 

cette région. Les rivières Oldman, Castle et Crowsnest forment l'afflux de ce réservoir. Le bassin 

est déjà sur-alloué et sous pression dû aux changements de précipitations et de température. Le 

premier objectif est de comprendre comment l'utilisation du même modèle hydrologique mais avec 

une désagrégation spatiale et une résolution des données d'entrée différentes peut affecter le régime 

d'écoulement en amont, le volume du réservoir et l'allocation de l'eau en aval. Le deuxième objectif 

est d’évaluer comment l'utilisation de différents modèles hydrologiques et routines de fonte des 

neiges peut affecter la quantification du risque dans la performance du système d'eau. Enfin, une 

série d'analyses sont poursuivies pour comprendre l'importance de tous ces facteurs notés dans 

l'évaluation des risques. 
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Pour le premier objectif de cette étude, le modèle HBV-MTL, couplé à une routine de neige en 

degrés-jours, est développé sur la base d'un modèle HBV commun pour mieux présenter les 

processus hydrologiques dans les régions froides en abordant les impacts des sols gelés sur la 

génération de débit. Ce modèle hydrologique est calibré selon quatre configurations différentes : 

en utilisant des données de précipitation et de température basées sur des points et des grilles 

comme entrées pour les structures localisées et semi-distribuées du modèle hydrologique. Grâce à 

l'étalonnage de ces modèles hydrologiques, non seulement le meilleur, mais aussi une enveloppe 

d'ensembles de paramètres est trouvée qui peut ressembler adéquatement au débit observé. Un 

modèle simple d'allocation de l'eau est développé pour le réservoir Oldman afin d'imiter les 

politiques opérationnelles existantes. Par conséquent, les modèles couplés d'allocation 

hydrologique permettent d'estimer le risque d'inondation, le volume d'eau du réservoir et le déficit 

en eau pour répondre aux demandes en eau. La performance des modèles couplés est évaluée à 

l'aide de périodes d'étalonnage et de validation à l'aide d'une série de mesures de performance. En 

conséquence, les sorties corrigées des biais de 19 GCM différents par la NASA - sous les voies de 

concentration représentatives (RCP) 4.5 et 8.5 sont utilisées comme entrée dans les modèles 

couplés pour évaluer la vulnérabilité du bassin de la rivière Oldman en amont. Étant donné que 

chaque GCM a ses avantages et ses inconvénients dans la projection des conditions climatiques, 

l'utilisation d'un tel ensemble de modèles climatiques peut représenter de manière plus réaliste les 

conditions climatiques futures. Les résultats montrent que les quatre configurations du modèle 

hydrologique reproduisent de manière acceptable diverses composantes du système hydrologique 

au cours de la période historique, le modèle semi-distribué étant forcé avec les données ponctuelles 

ayant les meilleures performances. À l'avenir, bien que le consensus soit les débits de pointe 

intensifiés et plus précoces, ainsi qu'une pénurie d'eau plus grave, l'importance de ces changements 

dépend fortement de la configuration du modèle considéré. Les différences entre les risques 

projetés dans le système d'eau peuvent atteindre 300 %, ce qui représente le rôle décisif de la 

résolution spatiale d'entrée et de la représentation spatiale du bassin versant dans l'évaluation des 

impacts du changement climatique sur le système d'eau à l'avenir. 
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Pour remplir le deuxième objectif, de nouvelles configurations de modélisation hydrologique sont 

également envisagées pour comprendre comment ces choix peuvent affecter l'estimation du risque 

dans les systèmes hydrologiques dans des conditions changeantes. Ces options incluent l'utilisation 

de GR4J, un modèle hydrologique bien connu en plus de HBV-MTL. De plus, outre la méthode 

des degrés-jours, CemaNeige est utilisé pour représenter les processus neigeux. Alors que la 

méthode des degrés-jours fournit une représentation globale des processus neigeux, le modèle 

CemaNeige vise à définir une routine de neige semi-distribuée basée sur l'altitude. Ainsi, au total, 

compte tenu également des options pour les données d'entrée et la désagrégation spatiale du bassin 

versant, l'impact de l'utilisation de 16 configurations de modèles hydrologiques est étudié. Les 

modèles hydrologiques sont ensuite couplés au modèle d'allocation de réservoir existant et sont 

alimentés avec les 19 sorties GCM indiquées pour estimer les conditions du système d'eau à 

l'avenir. Les projections de ces modèles couplés sont ensuite analysées pour comprendre 

l'importance de l'incertitude structurelle de la modélisation hydrologique, entre autres facteurs, sur 

les conditions projetées du système d'eau. Les résultats valident la performance adéquate de toutes 

les représentations hydrologiques dans l'estimation des conditions d'apport observées au cours de 

la période historique. Parmi 16 configurations, les modules de neige utilisés (degrés-jours vs. 

CemaNeige) ont l'impact dominant sur l'estimation du moment et de l'intensité du débit de pointe 

hebdomadaire. La dynamique du réservoir dépend également fortement du choix du module de 

neige. Néanmoins, les modèles hydrologiques (HBV-MTL vs. GR4J) s'avèrent plus importants 

pour simuler les caractéristiques des apports journaliers. L'utilisation de différentes routines 

d'enneigement et de modèles hydrologiques montre une divergence de 23 % et 27 % dans les 

intensités de débit de pointe hebdomadaires et quotidiennes estimées. En général, nous ne pouvons 

prétendre qu'un modèle hydrologique individuel surpasserait largement les autres dans l'estimation 

des différentes caractéristiques du système hydrologique. Par conséquent, tous les modèles sont 

utilisés pour analyser l'avenir du système d'eau dans des conditions climatiques changeantes. 

Semblable à la période historique, l'utilisation du modèle hydrologique et sa désagrégation spatiale, 

ainsi que la résolution des données d'entrée, affectent principalement les conditions de débit 

quotidien projetées. Cependant, le modèle de routine d'enneigement utilisé a un impact 

considérable sur le calendrier et l'intensité du débit hebdomadaire futur. Alors que différents 

modèles projettent à l'unanimité une augmentation de l'intensité du débit de pointe, le changement 
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de synchronisation reste subjectif aux caractéristiques du module de routine de neige appliqué. En 

moyenne, les modèles avec les modules de neige CemaNeige et degrés-jours projettent un décalage 

d'une semaine vers l'avant et de deux semaines vers l'arrière du moment du débit de pointe, 

respectivement. La transition décrite dans le régime d'apport, qui est plus sévère sous RCP 8.5 que 

sous RCP 4.5, conduit à des changements dans le volume du réservoir à long terme dans le futur. 

Alors que les modèles avec la routine de neige CemaNeige projettent un volume de réservoir plus 

élevé tout au long de l'année, l'utilisation du module degrés-jours montre une réduction du volume 

en été. L'épuisement prévu du stockage d'eau a mis la pression sur les plans d'exploitation actuels 

du réservoir pour répondre à la demande locale en eau d'irrigation à l'avenir, entraînant un déficit 

hydrique accru. Néanmoins, les modèles utilisant le module neige CemaNeige estiment un déficit 

hydrique considérablement plus faible dans le futur par rapport aux modèles utilisant le module 

Degree-Day. Bien qu'au cours de la période historique, on observe jusqu'à 13 % de différence entre 

le déficit hydrique estimé par différents modèles, cette valeur passe à 30 % de divergence dans le 

futur. Dans les deux RCP, le déficit hydrique projeté augmente jusqu'à l'horizon moyen-futur. Alors 

que le déficit hydrique diminue en passant d'un avenir à moyen terme à un avenir à long terme dans 

le cadre du RCP 4.5, une tendance à la hausse significative de la pénurie d'eau est prévue tout au 

long du siècle dans le cadre du RCP 8.5. Ces analyses mettent en évidence la nécessité d'actualiser 

les politiques d'exploitation du réservoir dans des conditions climatiques changeantes. 

 

En résumé, les performances de différentes représentations hydrologiques pourraient être presque 

similaires et acceptables au cours de la période historique. Néanmoins, le comportement de ces 

modèles peut diverger et leurs projections de débit peuvent être considérablement différentes 

lorsqu'elles sont forcées avec les projections des GCM. Ceci est essentiel car le choix de la 

configuration du modèle hydrologique peut potentiellement affecter le risque quantifié et les seuils 

de vulnérabilité dans les systèmes d'eau. Par conséquent, l'utilisation d'un ensemble de modèles 

hydrologiques peut donner une représentation plus réaliste de l'avenir des systèmes hydrologiques 

et peut aider à proposer des politiques de gestion solides pour réduire les impacts négatifs du 

changement climatique à l'avenir. En plus des modèles hydrologiques, les conditions climatiques 

projetées sont sensibles à la structure du modèle climatique utilisé en raison de l'incertitude intégrée 

dans ces modèles. Par conséquent, il est suggéré d'alimenter la représentation multi-modèle notée 
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du système hydrologique avec un ensemble de projections de modèles climatiques pour développer 

une compréhension plus réaliste de l'avenir des conditions d'écoulement. Le cadre d'évaluation 

d'impact proposé est générique et peut être appliqué dans d'autres régions pour évaluer les 

vulnérabilités des systèmes d'eau sous des conditions climatiques changeantes. 
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ABSTRACT 

Rapid changes in climatic conditions are altering the specifications of the hydrological cycle across 

the world, particularly in cold regions. Such changes can affect the characteristics of the flow 

regime, such as annual volume and peak flow timing. The impact of climate change on water 

systems is commonly assessed using Global Circulation Models (GCMs) projections, which are 

used as inputs for hydrological models to simulate natural streamflow series in the future. The 

common goal of these hydrological models is to capture the mathematical relationships between 

the climatic and hydrological variables.  Hydrological models may differ based on their input data 

resolution (local or grid-based), representations of hydrological processes (e.g., estimation of 

snowmelt), or assumptions related to the representation of catchment, e.g., lumped (one unit) or 

semi-distributed (set of sub-basins). The estimation of streamflow conditions is potentially 

sensitive to the structure of the utilized hydrological model. Therefore, the results of the climate 

change impact assessments can be affected by the choice of hydrological models as well as input 

data.    

 

In this study, the impacts of changing climatic conditions on a Canadian water system are 

evaluated, with the primary goal of analyzing the role of hydrological models in this process. The 

headwater of Oldman River Basin in Alberta, in which the rivers originate from the Rocky 

Mountains, is selected for this purpose. The Oldman Reservoir, the largest reservoir in this area, 

plays a critical role in managing water resources in this region. The Oldman, Castle, and Crowsnest 

Rivers form the inflow to this reservoir. The basin is already over-allocated and under pressure due 

to changes in precipitation and temperature. The first objective is to understand how using the same 

hydrological model but with different spatial disaggregation and input data resolution can affect 

the upstream flow regime, reservoir volume, and downstream water allocation. The second 

objective is to evaluate how using different hydrological models, and snowmelt routines can affect 

the quantification of risk in water system performance. Finally, series of analyses are pursued to 

understand the importance of all these noted factors in risk assessment. 
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For the first purpose of this study, the HBV-MTL model, coupled with a Degree-Day snow routine, 

is developed based on a common HBV model to better present hydrological processes in cold 

regions by addressing the frozen soil impacts on the flow generation. This hydrological model is 

calibrated under four different setups: using point- and grid-based precipitation and temperature 

data as inputs to the lumped and semi-distributed structures of the hydrological model. Through 

the calibration of these hydrological models, not only the best but also an envelope of parameters 

sets is found that can adequately resemble the observed flow. A simple water allocation model is 

developed for the Oldman Reservoir to emulate the existing operational policies. Therefore, the 

coupled hydrological-allocation models enable the estimation of flood risk, reservoir water volume, 

and water deficit in meeting water demands. The performance of the coupled models is assessed 

using both calibration and validation periods using a series of performance measures. Accordingly, 

the bias-corrected outputs of 19 different GCMs by NASA- under Representative Concentration 

Pathways (RCPs) 4.5 and 8.5 are used as input to the coupled models to assess the vulnerability of 

the upstream Oldman River Basin. Since each GCM has its pros and cons in projecting climatic 

conditions, using such an ensemble of climate models can more realistically represent the future 

climatic conditions. The results show that all four configurations of the hydrological model 

acceptably reproduce various components of the water system during the historical period, with 

the semi-distributed model forced with the point-based data having the best performance. In the 

future, although the consensus is the intensified and earlier peak flows, as well as more severe 

water shortage, the significance of these changes highly depends on the considered model 

configuration. The differences between the projected risks in the water system can be as high as 

300%, representing the decisive role of input spatial resolution and catchment spatial representation 

in assessing the climate change impacts on the water system in the future. 

 

To fulfill the second objective, new setups for hydrological modeling are also considered to 

understand how these choices can affect the estimation of risk in water systems under changing 

conditions. These options include the usage of GR4J, a well-known hydrological model in addition 

to HBV-MTL. Moreover, besides the Degree-Day method, CemaNeige is utilized to represent 

snow processes. While the Degree-Day method provides a lumped representation of snow 

processes, the CemaNeige model aims at defining an elevation-based semi-distributed snow 
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routine. Thus, in total, also considering the options for input data and catchment spatial 

disaggregation, the impact of using 16 hydrological model setups is investigated. The hydrological 

models are then coupled with the existing reservoir allocation model and are fed with the noted 19 

GCMs outputs to estimate water system conditions in the future. The projections of these coupled 

models are then analyzed to understand the importance of hydrological modeling’s structural 

uncertainty, among other factors, on the projected water system conditions. Results validate the 

adequate performance of all hydrological representations in estimating the observed inflow 

conditions during the historical period. Among 16 setups, the utilized snow modules (Degree-Day 

vs. CemaNeige) have the dominant impact on the estimation of weekly peak flow timing and 

intensity.  Reservoir dynamics also highly depend on the choice of snow module. Nevertheless, the 

hydrological models (HBV-MTL vs. GR4J) are found to be more important in simulating the daily 

inflow characteristics. Using different snow routines and hydrological models shows 23% and 27% 

divergence in the estimated weekly and daily peak flow intensities. In general, we cannot argue 

that an individual hydrological model would dominantly outperform others in estimating different 

characteristics of the water system. Hence, all models are used to analyze the future of the water 

system under changing climatic conditions. Similar to the historical period, the usage of the 

hydrological model and its spatial disaggregation, as well as input data resolution, mainly affect 

the projected daily flow conditions. However, the utilized snow routine model has a vivid impact 

on the future weekly flow timing and intensity. While different models unanimously project an 

increase in peak flow intensity, the shift in timing remains subjective to the characteristics of the 

applied snow routine module. On average, models with CemaNeige and Degree-Day snow 

modules project a one-week forward and a two-week backward shift in the peak flow timing, 

respectively. The described transition in the inflow regime, which is more severe under RCP 8.5 

than RCP 4.5, leads to changes in the long-term reservoir volume in the future. While models with 

the CemaNeige snow routine project higher reservoir volume throughout the year, using the 

Degree-Day module shows a reduction in the volume in summer. The projected depletion in the 

water storage put pressure on the current reservoir operational plans to meet local irrigation water 

demand in the future, resulting in an increased water deficit. Nonetheless, models using the 

CemaNeige snow module estimate considerably lower water deficit in the future in comparison to 

the models with the Degree-Day module. Although during the historical period, up to 13% 
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difference is observed between the estimated water deficit by different models, this value rises to 

30% divergence in the future. Under both RCPs, the projected water deficit ascends until the mid-

future horizon. While water deficit declines by moving from mid-term to long-term future under 

RCP 4.5, a significant rising trend in the water shortage is projected throughout the century under 

RCP 8.5. These analyses highlight the need to update the reservoir operational policies under 

changing climate conditions.  

 

To summarize, the performance of different hydrological representations might be almost similar 

and acceptable during the historical period. Nonetheless, the behavior of these models can diverge, 

and their projections of streamflow can be considerably different when they are forced with GCMs’ 

projections. This is critical as the choice of hydrological model setup can potentially affect the 

quantified risk and thresholds of vulnerabilities in water systems. Hence, utilizing an ensemble of 

hydrological models can result in a more realistic depiction of the future of water systems and can 

assist in proposing robust management policies to reduce the adverse impacts of climate change in 

the future. In addition to the hydrological models, the projected climatic conditions are sensitive to 

the structure of the utilized climate model due to the uncertainty embedded in these models. 

Therefore, it is suggested to feed the noted multi-model representation of the hydrological system 

with an ensemble of climate models’ projections to develop a more realistic understanding of the 

future of flow conditions. The proposed impact assessment framework is generic and can be 

applied in other regions to assess water systems vulnerabilities under changing climate. 

 

 

 

      

 

 



 

 

xiv 

TABLE OF CONTENTS 

DEDICATION .............................................................................................................................. III 

ACKNOWLEDGEMENTS .......................................................................................................... IV 

RESUME ........................................................................................................................................ V 

ABSTRACT ................................................................................................................................... X 

TABLE OF CONTENTS ........................................................................................................... XIV 

LIST OF TABLES .................................................................................................................... XVII 

LIST OF FIGURES ................................................................................................................. XVIII 

LIST OF SYMBOLS AND ABBREVIATIONS...................................................................... XXII 

LIST OF APPENDICES ......................................................................................................... XXIII 

 INTRODUCTION ............................................................................................... 1 

1.1 Background and problem definition ................................................................................. 1 

1.2 Research objectives .......................................................................................................... 4 

1.3 Case study ........................................................................................................................ 5 

 LITERATURE REVIEW .................................................................................... 6 

2.1 Hydrological modeling ..................................................................................................... 6 

2.2 Water allocation under current and changing climate conditions .................................... 8 

2.3 Assessing climate change impacts on the water system ................................................ 11 

 ORGANIZATION OF THE WORK ................................................................ 13 

 ARTICLE 1: ASSESSING WATER SYSTEM VULNERABILITIES UNDER 

CHANGING CLIMATIC CONDITIONS USING DIFFERENT REPRESENTATIONS OF A 

HYDROLOGIC SYSTEM ............................................................................................................ 15 

4.1 Introduction .................................................................................................................... 16 

4.2 Case study ...................................................................................................................... 18 



 

 

xv 

4.3 Materials and methods ................................................................................................... 23 

4.3.1 Framework for climate change impact assessment ................................................ 23 

4.3.2 Hydroclimatic data during the historical period ..................................................... 24 

4.3.3 Climate model projections ..................................................................................... 24 

4.3.4 Hydrological model ................................................................................................ 25 

4.3.5 Reservoir operation model ..................................................................................... 29 

4.4 Results ............................................................................................................................ 30 

4.4.1 Performance of the hydrological and allocation models during the historical 

period….. ................................................................................................................................ 30 

4.4.2 Upstream flow regime under changing climate ..................................................... 32 

4.4.3 Reservoir operation under changing climate .......................................................... 37 

4.5 Conclusion ...................................................................................................................... 41 

 EVALUATING CLIMATE CHANGE IMPACTS ON THE WATER SYSTEM 

USING MULTIPLE HYDROLOGICAL MODELS WITH DIFFERENT INPUT AND MODEL 

SPATIAL RESOLUTION ............................................................................................................ 43 

5.1 Methods and materials ................................................................................................... 43 

5.1.1 Framework for impact assessment ......................................................................... 43 

5.1.2 Hydrological models .............................................................................................. 44 

5.1.3 Represented snow processes in hydrological models ............................................ 45 

5.1.4 Calibration of developed hydrological models ...................................................... 46 

5.2 Result .............................................................................................................................. 46 

5.2.1 Upstream flow regime ............................................................................................ 46 

5.2.2 Reservoir operation ................................................................................................ 57 

5.3 Conclusion ...................................................................................................................... 62 



 

 

xvi 

 GENERAL DISCUSSION ................................................................................ 64 

 CONCLUSION (AND RECOMMENDATIONS) ........................................... 67 

REFERENCES .............................................................................................................................. 71 

APPENDICES…………………………………………………………………………………………………..……………94 

 

 

 

 



 

 

xvii 

LIST OF TABLES 

Table 4.1   Hydroclimatic data and their long-term annual average values in each tributary (cont’d)

 ................................................................................................................................................ 21 

Table 5.1   Performance of the 16 applied hydrological setups in estimating the historical daily 

inflow to the Oldman Reservoir, based on the KGE performance measure, during the 

calibration and validation periods. ......................................................................................... 47 

Table A.1 Variables and parameters used in the hydrological model equations (cont’d) ............. 97 



 

 

xviii 

LIST OF FIGURES 

Figure 2.1 Oldman Reservoir operational rule curves in the WRMM model ................................ 10 

Figure 4.1   Oldman River Basin in Alberta, Canada (left), as well as the Oldman Reservoir's key 

headwater ............................................................................................................................... 20 

Figure 4.2   Framework to evaluate the climate change impacts on water systems ....................... 23 

Figure 4.3   Schematic of the developed HBV-MTL hydrological model ..................................... 26 

Figure 4.4   Observed and simulated daily and annual (left) and expected annual (right) inflow to 

the Oldman Reservoir under different representations of upstream hydrological systems. ... 30 

Figure 4.5   Observed and simulated reservoir water volume (left) and outflow annual hydrographs 

(right) under different configurations using the optimal (lines) and acceptable (envelopes) 

parameters sets during the historical period. .......................................................................... 32 

Figure 4.6   Percentage of relative change in mean (a) precipitation and (b) temperature based on 

19 GCMs under RCPs 4.5 and 8.5 with respect to the historical values in this region. Boxplots 

are showing the 25th (bottom side of the box), 50th (middle line), 75th (top side of the box) 

percentiles, as well as maximum (upper whisker) and minimum (lower whisker) values of the 

respective climatic variable. ................................................................................................... 33 

Figure 4.7   Projected ensemble and expected annual inflow hydrographs (shaded area and solid 

line, respectively) under RCP 4.5 using different hydrological model configurations versus 

historical annual hydrograph (dashed line). ........................................................................... 34 

Figure 4.8   Projected ensemble (shaded area) and expected (solid line) annual inflow hydrographs 

under RCP 8.5 using different hydrological model configurations versus historical annual 

hydrograph (dashed line). ....................................................................................................... 35 

Figure 4.9   Annual flood risk upstream of the Oldman Reservoir in the future. The projected 

inflows are estimated using the developed hydrological model configurations based on climate 

change projections under RCPs 4.5 (left) and 8.5 (right). ...................................................... 36 

Figure 4.10   Projected ensemble (shaded area) and expected (solid line) annual reservoir volume 

under RCPs 4.5 and 8.5 in left and right panels, respectively, using different hydrological 



 

 

xix 

model configurations versus the expected annual reservoir volume in the historical period 

(dashed line). .......................................................................................................................... 38 

Figure 4.11   Boxplots of relative changes in the future outflow quantiles with respect to the 

historical values. Future quantiles are estimated using alternative hydrological model 

configurations and climate change projections under RCPs 4.5 (blue) and 8.5 (red). ........... 39 

Figure 4.12   Projected percentage of water deficit in supporting the local irrigation water demand, 

estimated using the developed hydrological model configurations based on different climate 

change projections under RCPs 4.5 (left) and 8.5 (right). ...................................................... 40 

Figure 5.1   Framework for assessment of climate change impacts on the performance water system 

using multiple climate models, hydrological models, catchment representation, and input data 

resolution. ............................................................................................................................... 43 

Figure 5.2    Comparison between the simulated (solid colored lines and shaded areas) and observed 

(solid black line) expected annual inflow hydrographs reaching the Oldman Reservoir during 

the historical period using 16 different hydrological setups, including lumped and semi-

distributed structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day 

module, (b) HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) 

GR4J with CemaNeige module, developed based on point- and grid-based input data. ....... 50 

Figure 5.3    Median and ensemble of projected expected annual inflow hydrographs (solid colored 

lines and shaded areas, respectively) under RCP 4.5 using 16 different hydrological setups, 

including lumped and semi-distributed structures of 4 hydrological representations, i.e., (a) 

HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J with 

Degree-Day module, and (d) GR4J with CemaNeige module, developed based on point- and 

grid-based input data, compared with the historical observed annual expected hydrograph..

 ................................................................................................................................................ 51 

Figure 5.4   Median and ensemble of projected expected annual inflow hydrographs (solid colored 

lines and shaded areas, respectively) under RCP 8.5 using 16 different hydrological setups, 

including lumped and semi-distributed structures of 4 hydrological representations, i.e., (a) 

HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J with 

Degree-Day module, and (d) GR4J with CemaNeige module, developed based on point- and 



 

 

xx 

grid-based input data, compared with the historical observed annual expected hydrograph..

 ................................................................................................................................................ 52 

Figure 5.5   Boxplots of different inflow signatures estimations during the historical and future 

periods using multiple hydrological representations, i.e., (a) HBV-MTL with Degree-Day 

module, (b) HBV-MTL with CemaNeige module, (c) GR4 with Degree-Day module, and (d) 

GR4J with CemaNeige module, based on historical data and different climate projections 

under RCPs 4.5 (blue outline) and 8.5 (red outline). ............................................................. 55 

Figure 5.6   The difference between observed and simulated annual expected reservoir volume 

(dam3) during the historical period using the simulated inflow by different configurations 

(boxplots with different colors) of multiple hydrological representations (rows), i.e., (a) HBV-

MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J with 

Degree-Day module, and (d) GR4J with CemaNeige module, considering ensembles of 

acceptable parameter sets. The KGE performance measures in each panel show the 

performance of semi-distributed and lumped structures of the respective hydrological 

representation, developed using point-based and grid-based climatic data. .......................... 58 

Figure 5.7   Median and ensemble of projected expected annual reservoir volume (solid lines and 

shaded areas, respectively) under RCPs 4.5 (blue) and 8.5 (red) using 16 different hydrological 

setups, including lumped and semi-distributed structures of 4 hydrological representations, 

i.e., (a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) 

GR4J with Degree-Day module, and (d) GR4J with CemaNeige module, developed based on 

point- and grid-based input data, compared with the historical observed annual expected 

hydrograph. ............................................................................................................................ 59 

Figure 5.8   Comparison between the simulated (boxplots) and observed (dot line) long-term 

expected annual water deficit in the water supply to the local downstream users during the 

historical period using 16 different hydrological setups, including lumped and semi-

distributed structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day 

module, (b) HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) 

GR4J with CemaNeige module, developed based on point- and grid-based input data. ....... 60 



 

 

xxi 

Figure 5.9   5-year moving average of projected water deficit under RCPs 4.5 (left panel) and 8.5 

(right panel), using 16 different hydrological setups, including lumped and semi-distributed 

structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day module, (b) 

HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) GR4J with 

CemaNeige module, developed based on point- and grid-based input data. ......................... 61 

Figure B.1   Schematic of the GR4J hydrological models. X1 to X4 are calibration parameters...

 .............................................................................................................................................. 103 

 



 

 

xxii 

LIST OF SYMBOLS AND ABBREVIATIONS 

CMIP Coupled Model Intercomparison Project 

GCM General Circulation Model 

GLUE Generalized Likelihood Uncertainty Estimation 

KGE Kling-Gupta Efficiency 

LG Lumped hydrological model calibrated using grid-based climatic data 

LP Lumped hydrological model calibrated using point-based climatic data 

NEX-GDDP NASA Earth Exchange Global Daily Downscaled Projections dataset 

NR Near (the Oldman) Reservoir tributary 

RCP Representative Concentration Pathway 

SCE-UA Shuffled Complex Evolution algorithm 

SG Semi-distributed hydrological model calibrated using grid-based climatic data 

SP Semi-distributed hydrological model calibrated using point-based climatic data 

WRMM Water Resources Management Model 

  

  



 

 

xxiii 

LIST OF APPENDICES 

Appendix A   Description of the HBV-MTL Hydrological Model ................................................ 94 

Appendix B   Schematic of the GR4J Hydrological Model ......................................................... 103 

  

 

 



1 

 INTRODUCTION 

1.1 Background and problem definition 

Freshwater resources play vital roles in society’s flourishment (Yevjevich, 1992). Surface water in 

lakes and rivers is commonly used to meet various water demands, including domestic, industrial, 

energy, agricultural, and environmental water demands (Browne et al., 2013; Mekonnen et al., 

2015; Purwanto et al., 2019; Sharifinejad et al., 2020). However, water availability and demands 

are not often spatiotemporally distributed similarly in watersheds. Thus, in response to this 

disharmony, regional water resources managers seek ways to better use available water, e.g., by 

constructing dams or diverting water to meet the demands equitably and sustainably (He et al., 

2020). These infrastructures are managed mainly based on historical long-term flow characteristics 

in the system (Murphy et al., 2019). 

 

While the water resources management plans lay their foundation in continuing observed historical 

conditions, the rapid shift in climatic conditions and subsequent changes in the hydrological cycle 

question the reliability of these assumptions and long-lasted water resources management policies. 

In recent decades, rapid human-induced climate change has caused a shift in various components 

of the hydrologic cycle, particularly in the forms of precipitation and snow/glacier melt rates  

(DeBeer et al., 2016; Seiller et al., 2017; Amanambu et al., 2020). Such changes have led to 

variations in the natural flow signatures, e.g., peak flow timing and intensity, affecting water supply 

to downstream demands or cause flooding (Wi, 2012; Stahl et al., 2016; Rottler et al., 2020). Such 

changes can eventually influence the performance of the water system, which are operated based 

on the historical allocation plans, in meeting downstream water demands (Beven & Westerberg, 

2011; Whitfield & Pomeroy, 2016; Hatami et al., 2019; Nazemi et al., 2020; Zaerpour et al., 2020). 

Therefore, a comprehensive understanding of the potential impacts of climate change on water 

systems is helpful to propose reliable water allocation plans and mitigate the adverse effects of 

climate change. 
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The “Top-down” approach is widely used to assess the climate change impact on water systems 

using the outputs of General Circulation Models (GCMs) (Wilby & Dessai, 2010; Gizaw et al., 

2017; Krysanova et al., 2017). In this approach, projections of General Circulation Models (GCMs) 

are either used in hydrological models to depict the future of natural flow conditions or directly 

analyzed to give a notion of changes in watersheds’ conditions (Arnell, 1999; Lauri et al., 2012; 

Karamouz et al., 2013; Sunde et al., 2017; Hattermann et al., 2018). GCMs are mathematical 

representations of the physical processes in the earth’s atmosphere and surface (Hannah, 2015; 

Reshmidevi et al., 2018). Using different GCMs to project climatic conditions would necessarily 

provide a different estimation of climatic conditions in the future (Wazneh et al., 2020; Bourdeau-

Goulet & Hassanzadeh, 2021). Hence, it is suggested to use an ensemble of GCMs’ outputs to 

project future water systems’ conditions (Her et al., 2019). 

 

Hydrological models, which mathematically represent different water cycle processes, play a 

crucial role in the top-down assessment of climate change impacts on the water systems (Wheater 

et al., 2007). In brief, these models use available climatic data to simulate multiple internal 

variables in the basin, depending on the model’s complexity level, which is eventually used to 

estimate the flow in the basin’s outlet. These models have been developed in different spatial (local 

vs. regional) and temporal (e.g., daily vs. monthly) scales, considering the objective for which they 

are developed (Singh, 2018; Beven, 2019). Despite consistent performance in these models during 

the historical conditions, studies have reported that hydrological models with different 

specifications provide dissimilar estimations of hydrological conditions in the future and under 

changing conditions (Dibike & Coulibaly, 2005; Ludwig et al., 2009; Garavaglia et al., 2017). In 

general, the usage of simple hydrological models has been suggested due to the lack of available 

data in the future to use complex models (Michaud & Sorooshian, 1994; Her & Chaubey, 2015; 

Sivapalan & Blöschl, 2017; dos Santos et al., 2018).    

 

The primary attention in change impacts assessment studies is mainly on the intercomparison 

between hydrological models with different levels of complexity. Nevertheless, there are critical 

factors potentially affecting the performance of models with similar complexity under changing 
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conditions (Crosbie et al., 2011; Beck et al., 2017). For instance, the historical climatic data that 

are used to calibrate the hydrological models may become from different sources, e.g., local station 

vs. interpolated grid-based data (Patil et al., 2011). Therefore, using different input data can 

eventually lead to diverging estimates of streamflow during the historical and/or future periods. 

Furthermore, due to the lack of knowledge and data required to represent different hydrological 

processes realistically, hydrological models mostly utilize conceptual equations with parameters 

that are not necessarily measurable in the basin. The parameter set which yields an optimized 

performance of the hydrological model in estimating the flow conditions should be sought through 

the calibration process.  Nevertheless, no one can argue that the optimized parameters set used in 

the hydrological models is necessarily the “global” optimal solution, which introduces the 

parametric uncertainty in the hydrological models. Lastly, hydrological models estimate the flow 

only in the outlet of the basin, i.e., lumped, or provide spatially distributed information about flow 

conditions across the basin, i.e., semi-distributed or distributed. Using different spatial resolutions 

to develop a specific hydrological model can lead to different hydrological conditions, due to the 

structural uncertainty embedded in the hydrological models (Booij, 2005; Das et al., 2008; Faiz et 

al., 2018; Huang et al., 2019; Xin et al., 2019). 

 

Snow processes are critical components of the hydrological cycle in snow-dominated basins. 

Hence, the representation of snow dynamics is as effective as the hydrological model in the 

estimation of flow conditions. In the literature, various types of snow routine models have been 

developed and coupled with the hydrological models (Tobin et al., 2013; Wever et al., 2014; 

Kazama et al., 2021). While these models are intrinsically relying on a degree-day concept, 

different levels of details are used to represent snow dynamics in the basin. Although some studies 

reported an improved estimation of streamflow after using a more detailed snow module (Warscher 

et al., 2013), most studies did not find an increased precision in estimating flow conditions, 

necessarily related to the augmented level of complexity in the snow module (Lehning et al., 2006; 

Terzago et al., 2020). Instead of escalating the level of complexity in the snow model structure, it 

is recommended to utilize an ensemble of snow models to better capture the potential deficiencies 

in each model performance and make a more informative judgment about the snow routine 

characteristics (Essery et al., 2013; Magnusson et al., 2015). Thus, in addition to the discussed 
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uncertainty in the hydrological models’ structure and input data, addressing the uncertainty in the 

snow module structure, using multiple representations of snow processes would potentially provide 

a more realistic and reliable estimation of the water system’s future conditions. 

 

1.2 Research objectives 

Hydrological models play a crucial role in estimating the flow entering a reservoir. These models 

can be developed using various options for spatial disaggregation, input data resolution, 

hydrological process equations, and snow modules. The characteristics of these models’ structures 

are reported to have various impacts on the estimated water system conditions. However, the extent 

of these impacts has not been studied adequately. The main objective of this study is to evaluate 

the importance of the hydrologic system representations in quantifying the effects of climate 

change on a headwater water resources system in Alberta, Canada. The specific objectives in order 

to achieve the main goal are as follow. 

 

(1) Develop a set of hydrological models that correspond to different representations of the 

upstream watershed, i.e., consideration of different spatial disaggregation, input data conditions, 

as well as model structures. Calibrate and validate these models during the historical period. 

(2) Construct coupled hydrological and reservoir allocation models to simulate the reservoir’s 

storage and outflow. 

(3) Feed the developed models with climate projections of multiple GCMs to simulate future 

inflow, reservoir storage, and outflow, as well as supplied water to different demands. 

(4) Estimate the risk of water system failure under changing climate and consideration of different 

models with a greater goal of assessing the role of hydrological modeling’s uncertainty in the 

quantified impacts. 
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1.3 Case study 

Oldman River Basin in Alberta is an over-allocated watershed (Nicol & Klein, 2006) with an area 

of about 23,800 km2. In this watershed, irrigated agriculture is the primary user of the water 

resources, possessing 88% of the issued water use licenses (Zandmoghaddam et al., 2019). The 

primary crops cultivated in these irrigated lands are “barley, wheat, alfalfa, canola, flax, corn, sugar 

beet, potato, and beans” (Safa, 2015). The cultivation of these crops plays an essential role in 

economic productivity and food security on regional and national scales (Rood & Vandersteen, 

2010). The Oldman River originates from the Rocky Mountains’ east slopes and plays a crucial 

role in meeting water demands in southern Alberta. In response to the rising irrigation demand in 

this region, three dams were constructed over the headwaters of the Oldman River, i.e., Oldman, 

St. Mary, and Waterton reservoirs (Foster & Rood, 2017). The Oldman Reservoir was constructed 

on the Oldman River in 1991 and, with a capacity of 490 million m3, is the largest multi-purpose 

dam in this area (SOW, 2010). The regulated flow of this dam confluences with the Bow River and 

moves towards the downstream province of Saskatchewan. Therefore, the proper regulation of this 

river is essential to guarantee reliable water supply to the South Saskatchewan River Basin (Nazemi 

et al., 2017). The reliability of the Oldman Reservoir operation plan, developed based on the 

historical conditions of the water systems, is questioned due to highly variable hydroclimatic and 

socioeconomic conditions in this watershed. It is thus essential to analyze the vulnerability of the 

headwater system under current and changing climate conditions.  
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 LITERATURE REVIEW 

2.1 Hydrological modeling 

Estimation of streamflow has high importance for water resources planning both in the short- and 

long-term. Hydrological models are often used to simulate the transformation of precipitation into 

streamflow by mathematically representing different components of the water cycle in watersheds, 

e.g., evapotranspiration and water movement in the soil. Most of these models construct a water 

balance in soil layers to generate flows. Simple hydrological models have developed as early as 

the 1850s. However, computers’ computational capacity has led to a better representation of natural 

system processes in this science in the 1960s (Singh, 2018). The Stanford Watershed model can be 

named the first computer-based hydrological model (Crawford & Linsley, 1966). This hydrological 

model worked on an hourly time basis. The water content in different soil layers was assumed to 

be affected by evapotranspiration and infiltration to the lower soil layers. The upper soil layers 

were sources for overland flow and interflow generation. The groundwater storage was the source 

of base flow generation. The Stanford Watershed model, a state-of-art hydrological model, had not 

been published publicly back in time due to invention processes. Nevertheless, many hydrological 

models followed its path. Xinanjiang model is a “bucket-type” hydrological model, which has been 

used extensively in China and the rest of the world (Ren-Jun, 1992). This model divided the soil 

profile into three layers and prioritized the upper layers in contributing to evapotranspiration. The 

distribution of soil moisture was reflected based on topographic factors (Zhao et al., 1980).  

 

Since the introduction of the Stanford Watershed model, many hydrological models have been 

developed. Apart from temporal and spatial resolution, the hydrological models mainly differ based 

on the utilized equations and considered assumptions and simplifications to represent different 

processes. For example, evapotranspiration has been modeled using a wide variety of equations, 

ranging from Penman-Monteith Penman (1948), Monteith (1981), and Priestley-Taylor (Priestley 

& Taylor, 1972)  to Hargreaves (Hargreaves et al. 1985). The choice of these equations also 

depends on the characteristics of the study area. While in water-limited regions, potential 

evapotranspiration is of less importance, it can be very critical in hydrological simulation in energy-

limited areas (Jayathilake & Smith, 2020). Another example is related to simulation of snow 
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processes. While most models use a simple degree-day method to estimate snowmelt, the radiation 

melt factor is also suggested in PREVAH (Viviroli et al., 2009). The importance of the utilized 

snow routine in the hydrological modeling is especially important in cold regions, where the peak 

flow conditions are highly driven by snowmelt in warm seasons (Fang et al., 2013). Since none of 

the used equations and developed models are thoroughly either right or wrong, it is suggested to 

use a variety of model configurations to generate an envelope of streamflow and reduce the 

negative impacts of structural uncertainty (Craig et al., 2020).  

 

As previously noted, the available hydrological models may use simplified equations or even 

ignore some hydrological processes depending on the area they have been developed for. For 

example, the Xinanjiang model is developed for warm regions, where snow processes are not 

significant sources of streamflow generation. Therefore, usage of such models that lack a snow 

module can be problematic to represent flow in cold, snow-dominated regions. Although 

simulation of vegetation dynamics is not crucial for hydrological modeling in most studies, 

Duethmann et al. (2020) highlight the importance of these processes while estimating the 

streamflow in a climate transient region. Physical and process-based models have also been 

developed to simulate the hydrological cycle, e.g., the Cold Region Hydrological Model (CRHM) 

and Soil and Water Assessment Tool (SWAT) (Pomeroy et al., 2007; Neitsch et al., 2011). 

However, they require various data to represent the processes that are either unavailable or include 

missing data. In particular, due to the rudimentary representation of physical processes in these 

models, they cannot provide an accurate solution for the projection problems (Sivapalan & Blöschl, 

2017). Sustaining high data requirements does not seem logical for studying the water system under 

changing conditions. Hence, usage of conceptual hydrological models that require limited data to 

simulate the hydrological cycle, e.g., HBV and GR4J models, is recommended in the literature 

(Seibert, 2000; Perrin et al., 2003; Piniewski et al., 2017; Pan et al., 2019).  

 

In this study, the HBV model is improved and called HBV-MTL, which is used for impact 

assessment. Details of this model are provided in Appendix A. In the first part of this work, the 

impacts of climate change on the water system are evaluated using different spatial disaggregation 
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for the HBV-MTL and the input data resolution, leading to 4 different hydrological modeling 

configurations. In addition to the spatial resolution of the hydrological model, the hydrological 

models themselves are critical in the representation of the hydrological system. Therefore, in the 

second phase of the project, we use two different conceptual hydrological models, i.e., HBV-MTL 

and GR4J, coupled with two snow routine models, i.e., Degree-day and CemaNeige, yielding 4 

different representations of the hydrological system to also evaluate the importance of hydrological 

representation in the climate change impact assessment. Each of these hydrological representations 

are developed applying different input and model resolutions, providing 16 various configurations 

of hydrological models. 

 

2.2 Water allocation under current and changing climate conditions 

Water allocation infrastructures are commonly built to harmonize the spatiotemporal variability of 

water availability and demand. For instance, as a fundamental component of water systems, dams 

are constructed to alter the temporal distribution of water resources through the year to meet 

downstream water demand at the required time. Multi-purpose dams are often built to not only 

meet downstream water demands but also control flooding (Petts, 1996). Many researchers have 

sought proper ways to manage dams to reduce water deficit and flood risk. In this section, previous 

studies focusing on the adequate management of reservoirs are reviewed to gain insight into 

developing a water allocation model.  

 

The primarily used water allocation approaches in the literature can be categorized into four 

categories (Yassin et al., 2019): (I) uncontrolled reservoirs, (II) inflow/demand-based methods, 

(III) neural network methods, and (IV) target storage/release-based methods. In the first approach, 

an empirical equation is used to estimate the release based on the stored water in the reservoir 

(Döll, Kaspar, & Lehner, 2003; Meigh, McKenzie, & Sene, 1999; Rost et al., 2008). This approach 

is mainly used to model simple dams, the primary purposes of which are not to alter the streamflow 

regime. The simplicity of this approach limits its applicability in highly regulated water systems. 

In the second method, the release is defined as a function of inflow (Wisser et al., 2010) and demand 
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(Hanasaki et al., 2006). Although improved compared to the unregulated method, the 

inflow/demand-based methods do not reproduce the observed release well, especially in multi-year 

and multi-purpose reservoir systems (Haddeland et al., 2006; Coerver et al., 2018). 

 

The neural network methods try to find a complex relationship between the released water from 

the reservoir and other characteristics of reservoir systems, e.g., stored water in the reservoir and 

downstream water demand (Ehsani et al., 2016). Even though these models showed better 

performance than the other methods in estimating the release of water from the reservoir, the 

“black-box” nature provides limited knowledge about the philosophy beyond reservoir 

management. The blind representation of the reservoir management puts the prediction ability of 

these models under question (Yassin et al., 2019). Finally, the target storage/release-based methods 

divide the storage volume into different zones. The stored water in each zone is managed in a 

particular way to meet various demands in the water system (Neitsch et al., 2011; Wu & Chen, 

2012; Zhao et al., 2016). The last group of methods provides a more transparent and realistic 

representation of reservoir management (Yassin et al., 2019).  

 

Currently, the Oldman Reservoir is managed using the Water Resources Management Model 

(WRMM), which is a target storage-based reservoir operation model and supplies water to demands 

with different levels of priority (Alberta Environment, 2002; Safa, 2015). This model utilizes a set 

of operational rule curves, as shown in Figure 2.1. Following these rule curves, as long as the water 

level is above the critical operational zone, the high priority water demand is met. The condition 

for meeting the low priority water demand is to have a water level in the normal zone. If the water 

level enters the flood control zone, water would be released to maintain the ability of the reservoir 

to attenuate the flow intensity. During extreme flooding events, the capacity of the release gateways 

may not be adequate to evacuate the excess water from the reservoir. Under such conditions, the 

water level may exceed the maximum capacity of the dam, imposing the risk of overtopping on the 

dam. Spillways are triggered to release the amount of water entered into the spill zone to mitigate 

the risk of failure in the system. The WRMM model requires an intensive amount of data about 

water demands in the basin. However, the main focus of this study is to develop a generic 
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framework for analyzing the water system. Since in many regions such comprehensive data is not 

available about the socioeconomic water demands, an emulation of the WRMM model is 

developed, inspired by the storage/release-based models applied in large-scale land-surface 

models.  

 

 

Figure 2.1 Oldman Reservoir operational rule curves in the WRMM model 
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2.3 Assessing climate change impacts on the water system 

The variability of water availability due to changes in climatic (e.g., frequent flooding or earlier 

snowmelt) can cause issues for water resources management and question the validity of using 

conventional plans for future allocations (Wing et al., 2018; Mohanty & Simonovic, 2021; Roodari 

et al., 2021). Therefore, there is a need to assess the performance of the water system under these 

changing conditions (Haddeland et al., 2014; Milly et al., 2015). Various types of methodologies 

have been proposed for assessing the impacts of climate change on water systems. These 

methodologies can be categorized as top-down (scenario-led) and bottom-up approaches (Wilby & 

Dessai, 2010). Bottom-up approaches present the expected conditions of water systems under a 

plausible range of hydroclimatic conditions (Steinschneider & Brown, 2012; Danner et al., 2017; 

Shortridge & Zaitchik, 2018; Tra et al., 2018). In this approach, risk maps are provided to raise 

decision-makers' knowledge about the water system vulnerabilities (Steinschneider et al., 2015; 

Hassanzadeh et al., 2016; Knighton et al., 2017). Researchers have primarily used bottom-up 

approaches to avoid uncertainty in climate models by analyzing the water availability under 

feasible climate stations, using hydrological models (e.g., Wilby & Dessai, 2010; Shortridge & 

Zaitchik, 2018). Some studies have used stochastic streamflow generation under a wide range of 

climatic conditions to avoid uncertainty in the climate and hydrological models (e.g., Nazemi et 

al., 2013; Hassanzadeh et al., 2016). Although fully bottom-up approaches have avoided the 

uncertainties in the top-down approaches, they have other types of uncertainties. When the 

representation of sub-catchment is essential, the overlooked spatial dependencies can affect the 

reliability of water availability estimation (Zscheischler & Seneviratne, 2017; Nazemi et al., 2020). 

Moreover, the reluctance to address the dependencies between hydrological processes and climatic 

conditions in these approaches may cause an unrealistic representation of hydroclimatic conditions. 

 

The top-down approaches have fed different hydrological models with the projections of global 

circulation models (GCMs) (Lauri et al., 2012; Karamouz et al., 2013; Sunde et al., 2017; Khatri 

et al., 2018; Wang et al., 2018). The outputs of GCMs, mathematical representations of mass and 

energy movements in the atmosphere, have their deficiencies in estimating climatic conditions, 

which leads to differences in their projections even under the same scenarios (Smith, 2002; Hannah, 
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2015; Hassanzadeh et al., 2019). It is recommended to utilize an ensemble of climate and 

hydrological models to mitigate the adverse impacts of these models’ uncertainty on the top-down 

assessment of climate change impacts (Faiz et al., 2018; Her et al., 2019; Hanus et al., 2021). 

Moreover, the outcomes of GCMs are on coarse spatial scales, with more than a hundred kilometers 

resolution, thus should be downscaled to finer spatial scales to be used in regional water system 

studies. NASA has already downscaled climate projections of 33 models, run under the Coupled 

Model Intercomparison Project Phase 5 (CMIP5). This bias-corrected dataset is one of the most 

reliable and widely used climatic databases for analyzing the future of water systems  (Chen & 

Wang, 2018; Guevara-Ochoa et al., 2020; Zhao et al., 2021). Similarly, the reported climatic 

projections by different GCMs in this database are used in this study to force the hydrological 

models and predict the future conditions of the water system.  
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 ORGANIZATION OF THE WORK 

Changing climatic conditions can affect the characteristics of the streamflow regime, and 

consequently, the performance of downstream water resources systems. Such changes are already 

noticeable in Canadian watersheds. For instance, temperature and extreme precipitation conditions 

in the Oldman River Basin are projected to be intensified by 2 to 6 °C and 10% to 50%, 

respectively, moving toward the end of the century (Gizaw & Gan, 2016). In this study, a top-down 

approach is used to evaluate the climate change impacts on the upstream Oldman River Basin. 

Different setups of hydrological models may provide different estimations of flow conditions in 

the future and under changing climatic conditions, despite their acceptable and similar performance 

during the historical period. These differences might be exacerbated when used in the water 

allocation models to analyze the water system’s future conditions. Different modeling approaches 

are utilized in two stages to evaluate the importance of hydrological modeling’s uncertainty in 

climate change impact assessment, as described in Chapters 4 and 5. 

 

In Chapter 4, lumped and semi-distributed versions of the HBV-MTL hydrological model are 

calibrated using point-based and grid-based input data.  An ensemble of parameter sets, generating 

flow conditions acceptably similar to the historical observations, are found through the calibration 

and validation processes. The envelope of simulated flows using acceptable parameters sets are 

then used as inflows to a reservoir water allocation model to estimate historical water system 

conditions. The calibrated models are then fed with the bias-corrected climatic projections of 19 

GCMs under 2 RCPs during the 2020-2099 period. Based on the estimated reservoir inflow and 

release, flooding and water deficit risks are evaluated in the future. This chapter is submitted to the 

Hydrological Sciences Journal (Impact factor: 2.19) on May 9th, 2021.  

 

In Chapter 5, in addition to the spatial disaggregation of model and input data, different 

hydrological models and snow routines are used. The same procedure, described for Chapter 4, is 

followed in Chapter 5 for HBV-MTL and GR4J hydrological models coupled with Degree-day and 

CemaNeige snow routine models. Therefore, four different configurations, i.e., semi-distributed 

and lumped structures using point- and grid-based input, are developed for each hydrological 
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representation, i.e., HBV-MTL with Degree-Day, HBV-MTL with CemaNeige, GR4J with 

Degree-Day, and GR4J with CemaNeige, providing 16 different hydrological model configurations 

in total. Similar to Chapter 4, an ensemble of acceptable parameter sets is sought in each 

hydrological model configuration. The calibrated models, coupled with the developed reservoir 

water allocation models, are used to estimate water system conditions in the historical and future 

periods. Conclusions over the findings of Chapters 4 and 5, as well as suggestions for future work, 

are presented in Chapter 6.    
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Changes in climate is altering the historical characteristics of water availability and affecting the 

performance of water systems. Here, the role of a hydrologic system representation on the 

quantification of water system vulnerabilities under changing climate is evaluated in the Oldman 

River Basin, Canada. For this purpose, four hydrological models are developed considering lumped 

and semi-distributed structures and using point- and grid-based climate data. These hydrological 

models are then coupled with a reservoir water allocation model. Accordingly, using an ensemble 

of climate model projections, fed into these integrated models, changes in the water system's 

behavior are evaluated. Although intensified and earlier peak flows and more critical water deficits 

are projected, the estimated risks of failure strongly depend on the considered hydrological model 

configuration. The divergence among models’ projections can be as high as 300%. Therefore, 

usage of all configurations is recommended to revise the reservoir operational policies in this 

region.  

Keywords: Climate change; Hydrological modeling; Streamflow regime; Reservoir operation, 

Vulnerability assessment; Oldman River Basin 

 

4.1 Introduction 

Changing climate has already affected the elements of the hydrological cycle across various spatial 

scales (Seiller et al., 2017; Duan et al., 2019; Amanambu et al., 2020). In particular, changes in the 

characteristics of precipitation as well as snow and glacier melt processes have been observed in 

cold regions (Arnell, 1999; Wi, 2012; DeBeer et al., 2016; Stahl et al., 2016; Ganguli & Coulibaly, 

2017; Rottler et al., 2020). Such alterations in the hydroclimate conditions can affect streamflow 

regimes, such as peak flow volume and timing, which are critical for regional water resources 

planning and management (Beven & Westerberg, 2011; Whitfield & Pomeroy, 2016; Hatami et 

al., 2019; Nazemi et al., 2020; Zaerpour et al., 2020). Therefore, an improved understanding of 

water systems' vulnerability in the future is required to propose effective water allocation policies. 

 

The impacts of climate change on water systems are commonly evaluated using a so-called “top-

down” approach and by employing the projections of General Circulation Models (GCMs) (Wilby 
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& Dessai, 2010; Gizaw et al., 2017; Krysanova et al., 2017). The GCMs aim to mathematically 

represent the physical processes in the earth's atmosphere and surface (Hannah, 2015; Reshmidevi 

et al., 2018). Although GCMs are relatively consistent in estimating the average changes in the 

climate conditions at the global scale, their individual projections can be dissimilar, in particular at 

the regional scales (Meehl et al., 2007; Prudhomme & Davies, 2009; Eisner et al., 2017). Therefore, 

using an ensemble of GCMs is recommended to cover the possible changes in future climate (Chen 

et al., 2011; Wada et al., 2013; Prudhomme et al., 2014; Schewe et al., 2014; Her et al., 2019). 

Moreover, the GCMs' outputs are available at large spatial resolutions, i.e., typically a few 

hundreds of kilometers, which are often coarser than the scale required for impact assessment in 

the context of water resources management. Therefore, downscaling approaches have been 

commonly used to transfer GCMs' outputs to finer resolutions (Okkan & Kirdemir, 2016; 

Simonovic et al., 2017; Lee et al., 2019). The precipitation and temperature outputs of downscaled 

GCMs are then either directly analyzed to give a notion of changes in watersheds' conditions or 

incorporated into hydrological models to project streamflow characteristics (Arnell, 1999; Lauri et 

al., 2012; Karamouz et al., 2013; Sunde et al., 2017; Hattermann et al., 2018).  

 

Hydrological models aim to mathematically represent the interactions between water cycle 

components to estimate streamflow discharge over time and space (Wheater et al., 2007). Various 

hydrological models with different levels of structural complexity and data support are developed 

over different spatiotemporal scales in the past few decades (Singh, 2018; Beven, 2019; 

Darbandsari & Coulibaly, 2020). It is widely known that the structural complexity of hydrological 

models affects climate change impact assessments (Poulin et al., 2011; Chen et al., 2012; 

Velázquez et al., 2013; Piniewski et al., 2017; Krysanova et al., 2018). Some studies recommend 

the usage of more detailed hydrological models for water management purposes due to their high 

performance in the historical period (e.g., Dibike & Coulibaly, 2005; Breuer et al., 2009; Ludwig 

et al., 2009; Vansteenkiste et al., 2014; Garavaglia et al., 2017). However, utilizing simple models, 

with a smaller number of variables and acceptable behavior, is suggested to be used for climate 

change impact assessments (Michaud & Sorooshian, 1994; Her & Chaubey, 2015; Singh & Marcy, 

2017; Sivapalan & Blöschl, 2017; dos Santos et al., 2018). 
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Apart from model complexity, there are other factors that can also affect the representation of 

hydrologic systems (Crosbie et al., 2011; Bisselink et al., 2016; Beck et al., 2017; Joseph et al., 

2018; Pang et al., 2020). For instance, climatic data are often available at point or grid scale in 

various regions; therefore, utilization of each of these data conditions can potentially affect the 

performance of hydrological models and consequently the water system analyses (Bárdossy & Das, 

2008; Patil et al., 2011; Isotta et al., 2014; Haerter et al., 2015; Abbas & Xuan, 2020). Moreover, 

watershed hydrological processes can be modeled considering lumped, semi-distributed, or 

distributed structures (Booij, 2005; Ruelland et al., 2008; Yaduvanshi et al., 2018; Xin et al., 2019). 

Considering different spatial discretization of the watershed can also result in dissimilar 

estimations of natural flow during the historical and future periods (Das et al., 2008; Bastola et al., 

2011; Li et al., 2013; Faiz et al., 2018; Huang et al., 2019; Srivastava et al., 2020). The combination 

of these alternative input data as well as system structural resolutions can potentially influence 

water system vulnerability assessment. 

 

The objective of this study is to evaluate the role of hydrologic system representations in 

quantifying the impact of climate change on a headwater water resources system in Alberta, 

Canada. Four hydrological models, i.e., considering lumped and semi-distributed catchment 

representations, calibrated utilizing point- and grid-based climate datasets are developed. 

Accordingly, projections of an ensemble of GCMs used to estimate the natural streamflow series 

and assess the downstream water system performance throughout the century. In Section 4.2, the 

case study and its main challenges are introduced. Section 4.3 describes the impact assessment 

framework, utilized data, developed hydrological models, and reservoir operation model. Section 

4.4 presents the performance of hydrological models during the historical period and projected 

water system behavior. The paper is concluded by providing remarking points in Section 4.5. 

 

4.2 Case study 

The Oldman River Basin, with an area of about 27,500 km2, is one of the important watersheds in 

Alberta, Canada (Martz et al., 2007; Figure 4.1). The multi-purpose Oldman Reservoir, the largest 
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dam in this region with a capacity of 490 million m3, plays a crucial role in supporting 

socioeconomic activities and environmental conditions across the Prairie Provinces (Rood & 

Vandersteen, 2010; Nazemi & Wheater, 2014; Safa, 2015; Foster & Rood, 2017) . In particular, 

the basin covers about 2,160 km2 of agricultural land, which has high importance for sustaining 

food security at the regional and global scales (Samarawickrema & Kulshreshtha, 2009). The three 

primary inflows reaching the Oldman Reservoir are the Castle, Crowsnest, and Oldman Rivers, 

which originate from the Rocky Mountains' east slopes, see Figure 4.1. For the sake of our analyses, 

the drainage area of the Oldman Reservoir is split into four tributaries, i.e., the areas upstream of 

the hydrometric stations on the three main inflows, as well as a zone, below these stations reaching 

the Oldman Reservoir, hereafter Near Reservoir tributary (NR). The mean annual precipitation, 

temperature, streamflow discharge, as well as considered drainage areas of these tributaries are 

presented in Table 4.1.  

 

The Oldman River Basin is already overallocated; therefore, any changes in the hydroclimatic 

conditions and increasing water demands can put unprecedented pressure on the water system 

(Pernitsky & Guy, 2010; Nazemi et al., 2017). While an increase of about 2 to 4 degrees Celsius is 

observed for mean annual temperature, no meaningful trend in mean annual precipitation is 

detected over the 20th century in this region (Harder et al., 2015; Vincent et al., 2015; Whitfield & 

Pomeroy, 2016; Vincent et al., 2018; Zhang et al., 2019). However, the increasing temperature has 

led to the rise in the rain over snow ratio and accelerated snowmelt processes, and consequently 

altered flow regime in this snow-dominated region (Pomeroy et al., 2012; Woo & Pomeroy, 2012; 

Fang et al., 2013). Climate variability alongside land and water management activities has altered 

the timing and volume of flows and water availability characteristics in this region (Milly et al., 

2008; ESTR Secretariat, 2014; Nazemi et al., 2017). 
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An increase of 2 to 6 °C in temperature and 10% to 50% in extreme precipitation (with a 30-year 

return period) is projected through the 21st century in the Oldman River Basin (Gizaw & Gan, 

2016). Using an ensemble of GCMs and a physically-based model, Tanzeeba & Gan (2012) 

projected flows with roughly two weeks earlier peak timing and lower intensities during the 

summer in the outlet of the Oldman River Basin. In the Crowsnest River tributary, Mahat & 

Anderson (2013) estimated a significant rise in the winter flows (maximum 200%) and a 

considerable decrease in the summer flows (maximum 63%). Such changes in upstream flow 

conditions can affect the performance of the water system in this region. In particular, the system 

becomes considerably vulnerable under the more intense flows with earlier peak timing (Nazemi 

et al., 2013). The previous studies on this region have not fully explored the role of watershed 

representations in characterizing water system behavior under changing climate conditions.

 

Figure 4.1   Oldman River Basin in Alberta, Canada (left), as well as the Oldman Reservoir's 

key headwater 
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Table 4.1   Hydroclimatic data and their long-term annual average values in each tributary (cont’d) 

Tributary PD  GD  Flow  

Stations Mean 

annual 
precipitation 

(mm) 

Average 

minimum 

temperature 

(°𝑪) 

Average 

maximum 

temperature 

(°𝑪)  

 Townships Mean 

annual 
precipitation 

(mm) 

Average 

minimum 

temperature 

(°𝑪) 

Average 

maximum 

temperature 

(°𝑪) 

 Station Average 

annual flow 

(𝟏𝟎𝟔𝒎𝟑) 

Drainage 

Area 

 (𝒌𝒎𝟐) 

Castle Ironstone 

Castle 

721 -3 8  T3R1W5; T4R2W5 

T4R3W5; T5R2W5 

T5R3W5; T6R2W5 

T6R3W5; T6R4W5 

T7R4W5 

742 -2 9.5  05AA022 472 821 

Crowsnest Coleman 544 -2.5 9  T7R3W5; T7R4W5 

T8R3W5; T8R4W5 

T9R4W5 

570 -2.5 9  05AA008 153 403 

Oldman Sugarloaf Lo 

Livingstone Lo 

Hailstone Butte Lo 

536 -5 4  T9R3W5; T9R4W5 

T10R2W5; T10R3W5 

T10R4W5; T11R2W5 

T11R3W5; T11R4W5 

T11R5W5; T12R2W5 

T12R3W5; T12R4W5 

T13R3W5; T13R4W5 

T13R5W5; T14R3W5 

605 -3.5 8  05AA035 383 1450 
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Table 4.1   Hydroclimatic data and their long-term annual average values in each tributary (cont’d) 

Tributary PD  GD  Flow  

Stations Mean 

annual 
precipitation 

(mm) 

Average 

minimum 

temperature 

(°𝑪) 

Average 

maximum 

temperature 

(°𝑪)  

 Townships Mean 

annual 
precipitation 

(mm) 

Average 

minimum 

temperature 

(°𝑪) 

Average 

maximum 

temperature 

(°𝑪) 

 Station Average 

annual flow 

(𝟏𝟎𝟔𝒎𝟑) 

Drainage 

Area 

 (𝒌𝒎𝟐) 

T14R4W5; T14R5W5 

T15R4W5 

NR Beaver Mines 

Cowley Olin Creek 

380 -1 6.5  T4R1W5; T5R1W5 

T6R1W5; T6R30W4 

T7R1W5; T7R2W5 

T7R29W4; T7R30W4 

T8R1W5; T8R2W5 

T8R29W4; T8R30W4 

T9R1W5; T9R2W5 

T9R29W4; T9R30W4 

T10R1W5; T10R29W4 

T10R30W4; T11R1W5 

T11R30W4; T12R1W4 

537 -2 10  05AA024 1200 1706 
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4.3 Materials and methods 

4.3.1 Framework for climate change impact assessment 

Figure 4.2 presents the framework used for climate change impact assessment in this study. In 

brief, four different configurations are considered to simulate the natural flow. These are semi-

distributed (SE) and lumped (LU) models of the hydrological systems, calibrated using point-scale 

(PD) and grid-based (GD) climatic Data. The hydrological models are coupled with a reservoir 

operation model to simulate the water allocations during the historical period. The coupled models 

are then forced with the outputs of an ensemble of climatic models to project the water system 

specifications in the future. The described framework is applied to the Oldman River Basin. The 

considered historical climate data and utilized GCMs are explained in Sections 4.3.2 and 4.3.3, 

respectively. The developed hydrological model, alternative hydrological system representations, 

and calibration procedure are explained in Section 4.3.4. The applied reservoir water allocation 

model is elucidated in Sections 4.3.5. 

 

Figure 4.2   Framework to evaluate the climate change impacts on water systems 
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4.3.2 Hydroclimatic data during the historical period 

As noted, point- and grid-based climate datasets are used to calibrate the hydrological models and 

estimate the natural streamflow. The considered historical period in this study is 1960-1990. The 

point scale climatic data are obtained from the climate stations through 

https://climate.weather.gc.ca/historical_data/search_historic_data_e.html. Different approaches 

such as interpolation and application of artificial neural networks (Karamouz et al., 2003; Coulibaly 

& Evora, 2007) are used to fill out the missing data based on the neighbor stations. Moreover, the 

grid-based climate data, which is based on the Alberta Township Systems with a spatial resolution 

of about 9.7×9.7 km2, is obtained from https://acis.alberta.ca/township-data-viewer.jsp. Provided 

by the Government of Alberta, this database is developed by transferring the climate stations' data 

into grids' centers using an inverse distance weighting method (ACIS, 2019). The streamflow data 

in the Castle, Crowsnest, Oldman, and NR tributaries are obtained from 

https://wateroffice.ec.gc.ca/search/historical_e.html. Table 4.1 shows the considered hydroclimatic 

stations and grids. 

 

4.3.3 Climate model projections 

In this study, we obtained the outputs of 19 GCMs based on the NASA Earth Exchange Global 

Daily Downscaled Projections dataset (NEX-GDDP; available at https://cds.nccs.nasa.gov/nex-

gddp/). This dataset includes the bias-corrected daily maximum and minimum near-surface air 

temperature and precipitation with a spatial resolution of 25×25 km2 over the historical period as 

well as the short-term (2021-2040), mid-term (2041-2070), and long-term (2071-2099) future 

horizons. The projections are available under two Representative Concentration Pathways (RCPs) 

4.5 and 8.5, demonstrating the intermediate and high forcing scenarios by the end of the 21st 

century, respectively (Thrasher et al., 2013).  
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4.3.4 Hydrological model 

HBV is a conceptual hydrological model commonly used with a lumped or semi-distributed to 

estimate streamflow at the outlet of watersheds (Lindström et al., 1997; Seibert & Vis, 2012). In 

this study, we develop the HBV-MTL, based on the available HBV model equations in 

Aghakouchak & Habib (2010), to better estimate the natural flow in the cold regions. In brief, the 

HBV-MTL is a bucket-type model with a series of state variables such as snowpack, soil moisture, 

and water in soil layers, see Figure 4.3. The key inputs to this model are the daily time series of 

precipitation and temperature. In this model, the precipitation is considered as rainfall, snowfall, 

or a mixture of both, depending on the minimum and maximum air temperature values. The 

snowmelt is estimated using the degree-day method (Lindström et al., 1997). The liquid water from 

melted snow and the rainfall either infiltrates into the soil or turns into the surface flow, depending 

on soil temperature and moisture. The latter is also impacted by the evapotranspiration rates, 

calculated based on Hargreaves & Samani (1985) method. The infiltrated water contributes to 

increasing soil moisture and can move into deeper soil layers to generate interflow and baseflow. 

The total runoff, based on the surface flow, interflow, and baseflow, is then routed using a triangle 

delay function to represent the daily streamflow in the outlet. HBV-based models are already used 

in the Oldman River Basin to represent the hydrological processes (Mahat & Anderson, 2013; 

Gupta & Razavi, 2018). The main improvement in the HBV-MTL over these existing HBV-based 

models is that it takes into account the infiltration into the frozen and thawed soil. For more details 

about the HBV-MTL, see Supplementary A. This model contains 18 parameters, the values of 

which are found through calibration, as explained below. 

 

As noted earlier, the inflow to the Oldman Reservoir is estimated using the HBV-MTL based on 

lumped and semi-distributed modeling. Under the lumped hydrological modeling, the upstream 

basin is considered as a united catchment (hatched area in Figure 4.1). Therefore, the model is 

calibrated against the observed inflow to the reservoir. However, under the semi-distributed 

modeling, the streamflow in each of the tributaries is estimated. In brief, the estimated streamflow 

in Castle, Crowsnest, Oldman Rivers is calibrated against the observed flow in their corresponding 

tributary. The simulated flows in these tributaries and NR are then integrated and routed to simulate 
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the inflow to the Oldman Reservoir. The models under each of these representations are calibrated 

using the point- and grid-based dataset (Table 4.1). If the point-scale data are used, the study area 

is divided into the zones of Theisen polygons with the climate stations in the center of each 

polygon. If the grid-based data are utilized, the contributing areas are discretized into the zones 

corresponding to the grids of Alberta Township Systems. Accordingly, the hydrologic variables 

are simulated in each zone and then integrated for the tributary and whole contributing area for 

semi-distributed and lumped models, respectively. 

 

The split-sample test is used to calibrate and validate the hydrological models (KlemeŠ, 1986; 

Gharari et al., 2013). The historical climatic data is divided into three parts. The climate data in the 

first six years of the study period are used to reach a reasonable estimation of the basin's initial 

conditions and decrease the model's vulnerability to the biases. The simulations based on these 

 

Figure 4.3   Schematic of the developed HBV-MTL hydrological model 
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data, called the burnout dataset, are discarded. The 66% and 34% of the rest of the dataset are used 

for model calibration and validation, respectively. Moreover, an objective function based on the 

Kling-Gupta Efficiency (KGE; Gupta et al., 2009) performance measure and consideration of both 

daily and annual flow, due to their importance in water management, is used to calibrate the 

hydrological models. The advantage of using KGE over other commonly used measures, e.g.,  Nash 

& Sutcliffe (1970), is that it uses three different statistical criteria 𝛼, 𝛽 and 𝑟 to provide a more 

comprehensive comparison between the simulated and observed flows (Gupta et al., 2009). In brief, 

𝛼, 𝛽, and 𝑟, respectively, compare the standard deviation, mean, and the Pearson correlation of 

simulated and observed flows - see Equations 1, 2, and 3. In these equations, 𝜎𝑠  and 𝜎𝑜  are the 

standard deviations of simulated and observed flows, 𝑆 and 𝑂 are the long-term average simulated 

and observed flow, and 𝑆𝑡 and 𝑂𝑡 are simulated and observed flows, respectively. KGE combines 

these statistical measures using a Euclidean distance measure (Equation 4). Accordingly, Equation 

5 is used as the objective function for model calibration, based on minimizing the KGE at daily 

and annual scales. 

𝛼 =
𝜎𝑠
𝜎𝑜

 

Equation 1 

 

𝛽 =
𝑆

𝑂
 Equation 2 

𝑟 =
∑ (𝑂𝑡 − 𝑂)(𝑆𝑡 − 𝑆)𝑡

√(∑ (𝑂𝑡 − 𝑂)
2
)𝑡 (∑ (𝑆𝑡 − 𝑆)

2
)𝑡

 
Equation 3 

𝐾𝐺𝐸 = 1 − √(1 − 𝛼)2 + (1 − 𝛽)2 + (1 − 𝑟)2 Equation 4 
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𝑂𝑏𝑗 = 𝑀𝑖𝑛 √(1 − 𝐾𝐺𝐸𝑑𝑎𝑖𝑙𝑦)
2
+ (1 − 𝐾𝐺𝐸𝑎𝑛𝑛𝑢𝑎𝑙)

2 Equation 5 

In this study, the Shuffled Complex Evolution algorithm (SCE-UA; Duan et al., 1993; Yarpiz, 

2020) is used to find the most optimal calibration parameter sets. The SCE-UA combines the 

competitive evolutionary approach (used in the Genetic Algorithm; Holland, 1992) and control 

random search methods (Price, 1987) to find global optimum solutions for various problems (Duan 

et al., 1993). This technique's philosophy is to independently evolve each complex, in which new 

parameter sets are generated based on randomly selected parents, to gain local knowledge and then 

share it with other complexes to avoid reaching a local optimum. In the used SCE-UA, 50 

parameter sets are randomly generated. This population is then divided into five complexes. After 

several iterations, the independent complexes are mixed to produce a pool of best parameter sets. 

This process is repeated in the new pools until the 100 (maximum) iteration is reached. The 

ensemble of parameters, providing the smallest value for the considered objective function, is 

called the “optimal parameter set”, which generates the “optimal simulated flow” for each 

hydrological model configuration. Nevertheless, our investigations show that the final pool of 

parameters contains ensembles that have almost similar values to the optimal set; thus, using this 

pool may result in underestimation of the parametric uncertainty (Yang et al., 2007; Wu & Chen, 

2015) in the hydrological models. Therefore, apart from this approach, the Generalized Likelihood 

Uncertainty Estimation (GLUE) (Migliaccio & Chaubey, 2008; Mirzaei et al., 2015) is used in this 

study to increase the knowledge regarding the impacts of parametric uncertainty on the flow 

estimations. For this purpose, the first random parameter sets are extracted from a uniform 

probability function, defined by a plausible range for each parameter. The criteria of KGEdaily ≥ 0.5 

and KGEannual ≥ 0.5 for simulating observed flow are adopted to select “acceptable parameter sets” 

out of 10,000 randomly generated sets. Accordingly, ensembles of “acceptable streamflow series” 

are estimated, and along with optimal streamflow series are used in our analyses under each model 

configuration. 
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4.3.5 Reservoir operation model 

A simple model to simulate the Oldman Reservoir operation is developed by emulating the existing 

Water Resources Management Model (WRMM), a water allocation model for the South 

Saskatchewan River Basin (Alberta Environment, 2002). For this purpose, the reservoir physical 

characteristics, operational rule curves, and water demands are adopted from the WRMM. For the 

sake of simplicity and similar to Zandmoghaddam et al., (2019), water demands are considered 

under two categories: local and regional demands. The local water demand is mainly required water 

to support local irrigated agriculture with an area of 67 km2. The regional water demand contains 

required water to support the inter- and intra-provincial activities, including irrigation of 216 km2 

land in the basin (Samarawickrema & Kulshreshtha, 2009). The Oldman reservoir storage is 

simulated using a mass balance equation (Equation 6). 

𝑆𝑡 = 𝑆𝑡0 +∫ (𝑃𝑡 × 𝐴𝑡 + 𝐼𝑡 − 𝐸𝑡 × 𝐴𝑡 − 𝑅𝑙,𝑡 − 𝑅𝑟,𝑡 − 𝑆𝑝𝑡)𝑑𝑡
𝑡

𝑡0

   Equation 6 

where St is the reservoir storage at time t and At is the area of the reservoir, estimated based on the 

reservoir storage and the reservoir's storage-area rating curve. Pt and Et are precipitation and 

evaporation rates, respectively. It is the volume of inflow to the reservoir, estimated by the 

hydrological models. Rr,t and Rl,t are the supplied water to the regional and local water demands, 

respectively. Spt is the spill from the reservoir. Following the existing reservoir operational rule 

curves in the WRMM, the reservoir operation model considers multiple zones for reservoir storage. 

Water demands with different orders of priority are met based on the state of the reservoir water 

level. If the water level enters the flood control zone in the reservoir, the excess water is released 

to maintain the reservoir's ability to attenuate the flow. During extreme flooding events, the amount 

of water that enters the spill zone is released through the spillways to prevent a failure in the system. 

If the water level in the reservoir drops below a critical threshold, the release is reduced until the 

reservoir water level reaches the minimum state. Details of the considered water allocation 

algorithm can be found in Alberta Environment (2002) and Safa (2015). 
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4.4 Results 

4.4.1 Performance of the hydrological and allocation models during the 

historical period 

 

Figure 4.4   Observed and simulated daily and annual (left) and expected annual (right) inflow 

to the Oldman Reservoir under different representations of upstream hydrological systems. 
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The simulated and observed daily and annual inflows, as well as their expected annual hydrographs 

during the calibration and validation periods are displayed in Figure 4.4. While all model 

configurations perform properly (KGE>0.6), it seems that using the PD provides a higher precision 

in simulating the expected annual observed flow during the validation period. The importance of 

input data conditions in the behavior of models is more evident considering the models' 

performance at the annual scale. For instance, the GD-based models continuously overestimate the 

annual inflow during the second half of the historical period. In general, PD-based models better 

represent the annual, early peak, and low inflows, while GD-based configurations more precisely 

estimate late peak flows. Regarding the importance of catchment representation, as expected, the 

semi-distributed models outperform the lumped ones in representing the magnitude of the early 

peak inflow (Figure 4.4). With that said, lumped models better estimate the intensities of late peak 

flows and low flows. Nevertheless, all model configurations show acceptable performances and 

are used for impact assessment. 

 

The ensemble of simulated inflow series under different hydrological model configurations is all 

fed into the reservoir operation model. Figure 4.5 compares the simulated and observed reservoir 

volume (left panels) and expected annual outflow hydrographs (right panels). It should be noted 

that WRMM's outputs are considered as observed data, similar to Hassanzadeh et al. (2014) and 

Safa (2015), due to the unavailability of reservoir volume records. The comparisons reveal that the 

expected outflow hydrographs, estimated using optimal parameter sets, are almost similar under 

the considered configurations (see the right panels in Figure 4.5). However, there are substantial 

differences between the estimated reservoir volumes by the models at the weekly scale. On the one 

hand, the semi-distributed models perform relatively well but tend to overestimate the water 

volume during the dry years, especially using the grid- based data, see SE-GD in Figure 4.5. On 

the other hand, using the lumped models, more frequent and significant underestimations of 

observed reservoir volume can be seen. In fact, the simulated water volume reaches the minimum 

water storage in some weeks using the LU-PD. Considering the data conditions, although a higher 

statistical correlation is found between the simulated and observed water volume under the PD 

setups, they do not dominantly outperform the GD-based representations, e.g., in the last years of 
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simulation. Therefore, estimated reservoir volume and outflow are acceptable under all considered 

configurations during the historical period. 

 

4.4.2 Upstream flow regime under changing climate 

A simple analysis of 19 GCMs' outputs reveals that the magnitudes of precipitation and temperature 

in this region would increase by the end of the century (Figure 4.6). However, the rate of increase 

in temperature is more significant than precipitation. Here, the outputs of climate models are 

transferred from the centers of GCM grids to the climate stations' locations (in PD-based models) 

and grid centers (in GD-based models), using the inverse distance weighted interpolation (Liu & 

Zuo, 2012; Yang et al., 2015). These adapted climatic projections corresponding to individual 

climate models are then incorporated into each of the developed hydrological models with optimal 

and acceptable parameter sets to estimate future flow realizations. 

 

Figure 4.5   Observed and simulated reservoir water volume (left) and outflow annual 

hydrographs (right) under different configurations using the optimal (lines) and acceptable 

(envelopes) parameters sets during the historical period. 
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The projected ensemble and expected inflow hydrographs under RCPs 4.5 and 8.5 are shown in 

Figures 4.7 and 4.8, respectively. Earlier shifts in peak flow timing, as well as significant increases 

in the inflow volume to the Oldman Reservoir, are noticed under all configurations. However, the 

rate of increase in inflow volume, the shape of hydrographs as well as peak flow timing and 

magnitude depend on the considered hydrological model configuration. For instance, the rate of 

increase in the inflow intensity and shift in peak flow timing is more considerable using the PD-

based than GD-based models. Besides, the lumped models project on average one week earlier 

peak flows compared to the semi- distributed models. Nevertheless, the semi-distributed 

configurations project slightly more intense flow volume than the lumped setups. As expected, 

changes in the inflow regime are more substantial under RCP 8.5 than RCP 4.5, moving towards 

the end of the century. Overall, peak flow timing is projected to be affected considerably by 

changing climatic conditions throughout the century and is expected to shift from early June to late 

 

Figure 4.6   Percentage of relative change in mean (a) precipitation and (b) temperature based 

on 19 GCMs under RCPs 4.5 and 8.5 with respect to the historical values in this region. 

Boxplots are showing the 25th (bottom side of the box), 50th (middle line), 75th (top side of the 

box) percentiles, as well as maximum (upper whisker) and minimum (lower whisker) values of 

the respective climatic variable. 
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May (roughly two weeks earlier). Such projected shifts in the long-term future horizon, in particular 

under RCP 8.5, indicate that the flow in the outlet shows an alacritous response to changes in the 

upstream hydrological processes, i.e., acceleration of snow and ice melt and increase of rain over 

snow ratio. This finding is in accordance with the recent studies on the Prairies' future flow regime, 

indicating a transition from snowmelt-runoff to the rainfall-runoff regime (Fang et al., 2020; 

Pomeroy et al., 2020).  

 

Figure 4.7   Projected ensemble and expected annual inflow hydrographs (shaded area and 

solid line, respectively) under RCP 4.5 using different hydrological model configurations 

versus historical annual hydrograph (dashed line). 
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Such significant increases in the inflow discharge can be problematic, in particular in the context 

of managing downstream reservoir storage and release during the flood seasons. Therefore, 

changes in high inflow magnitudes are further analyzed. For this purpose, first Q99, the 99th 

percentile of the weekly inflow, is obtained based on the Empirical Cumulative Distribution 

Function (ECDF) of inflow during the 30-year historical period. Accordingly, for a given 

hydrologic model configuration and future scenario, we find the number of inflow realizations in 

 

Figure 4.8   Projected ensemble (shaded area) and expected (solid line) annual inflow 

hydrographs under RCP 8.5 using different hydrological model configurations versus historical 

annual hydrograph (dashed line). 
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which the future inflow exceeds Q99 each week. The weekly flood risk is then calculated by 

dividing this number by the total number of realizations in each model configuration. Accordingly, 

the maximum value of weekly flood risks among 52 weeks in a year is found to represent the annual 

flood risk. 

 

Figure 4.9 shows this annual risk of inflow flooding using different model configurations under 

RCPs 4.5 (left panel) and 8.5 (right panel), respectively. The historical input data resolution has a 

prominent impact on quantifying the flood risks; see the difference between the estimated values 

by the PD-based and GD-based configurations. The PD-based models suggest that in most of the 

years in the future, at least once extremely high flows would occur under both RCPs. The semi-

distributed structures project a slightly higher risk of upstream flooding events, comparing to the 

lumped modeling. Moreover, interestingly risk of flooding is not necessarily higher under RCP 

 

Figure 4.9   Annual flood risk upstream of the Oldman Reservoir in the future. The projected 

inflows are estimated using the developed hydrological model configurations based on climate 

change projections under RCPs 4.5 (left) and 8.5 (right). 
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8.5, and in fact, no significant trend in the inflow flood risk can be detected under the RCPs moving 

towards the end of the century. 

 

4.4.3 Reservoir operation under changing climate 

Future inflow realizations are fed into the reservoir operation model to assess the alterations in the 

reservoir storage and outflow, as well as water supply conditions under changing climate. The long-

term expected annual reservoir volume is calculated based on all inflow realizations. Figure 4.10 

compares the projected ensemble of expected annual reservoir volume (shaded area) and its 

average values (solid line) with the historical volume (dotted line) under RCPs 4.5 (left) and 8.5 

(right), respectively. Due to the estimated increase and earlier peak flow inflow timing, earlier and 

more intense reservoir peak volumes are projected in the future under all configurations and RCPs. 

Considering the models, the PD-based configurations show a more distinct shift in the timing of 

reservoir peak volume than GD-based structures. The lumped models project a lower water level 

in the reservoir during summer in comparison to the semi-distributed configurations. While SE-PD 

and LU-GD show a higher water level in the reservoir during winters, SE-GD and LU-PD projected 

a reduction in the reservoir volume during these periods. Hence, the impacts of using different 

resolutions for model structure and input data are evident. In general, under both RCPs, on average, 

a 3-week earlier peak water level is projected. The illustrated changes in the reservoir water level 

would inevitably influence the downstream water system. 
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Figure 4.10   Projected ensemble (shaded area) and expected (solid line) annual reservoir 

volume under RCPs 4.5 and 8.5 in left and right panels, respectively, using different 

hydrological model configurations versus the expected annual reservoir volume in the 

historical period (dashed line). 
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Here we analyze the outflow regime based on changes in Q10 (low flow), Q50 (median flow), and 

Q99 (high flow). These weekly flow quantiles are first found based on the ECDF of outflow during 

the historical period and under future realizations. Accordingly, relative changes in streamflow 

quantiles under future and historical periods are calculated under each of the realizations. Figure 

4.11 presents the ensemble of changes in Q10, Q50, and Q99, where each boxplot contains outflow 

quantiles under future scenarios corresponding to realizations, obtained by 19 GCMs and using 

each hydrological model configuration. While overall more intense high outflow conditions are 

projected, PD-based configurations show a greater increment in Q99 than GD-based models. 

Moreover, all model configurations, except the LU-PD, show an increase in the median flow 

conditions; however, the amount of increase varies among models. All model configurations 

project a slight rise in low-flow intensity. Therefore, different hydrologic signatures of outflow are 

expected to increase in the future (Figure 4.11). These changes, in particular intensified high flows, 

question the reliability of utilizing the business-as-usual reservoir operations for the management 

of flood events in the future. 

 

Figure 4.11   Boxplots of relative changes in the future outflow quantiles with respect to the 

historical values. Future quantiles are estimated using alternative hydrological model 

configurations and climate change projections under RCPs 4.5 (blue) and 8.5 (red). 
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Despite the potential increase in the low and median outflow intensity in the future, the alterations 

in the streamflow regime can affect the timing and efficiency of water allocation plans. As an 

example, the impact of changing climate on supplying the local irrigation demands is assessed to 

represent the evolution of water deficit in the future. For this purpose, the annual water deficit is 

estimated as the difference between water supply and demand divided by the total amount of water 

demand under each flow realization. Afterward, the average water deficit over all realizations is 

used to represent the state of water deficit in each year per configuration (Figure 4.12). The left 

and right panels in Figure 4.12 show the expected annual water deficit using different hydrological 

model configurations under RCPs 4.5 and 8.5, respectively. 

 

Our analyses indicate that during the historical period, the system experiences about 15% of the 

water deficit each year. Therefore, the results in Figure 4.12 show that in most cases, supplying 

 

Figure 4.12   Projected percentage of water deficit in supporting the local irrigation water 

demand, estimated using the developed hydrological model configurations based on different 

climate change projections under RCPs 4.5 (left) and 8.5 (right). 
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water demands would be more challenging in the future (the projected water deficit is above 15%). 

Moreover, all modeling configurations unanimously show a significant ascending trend (p-values 

< 0.05) in failure to meet the local water demands throughout the century. However, the magnitude 

of the projected deficits highly depends on the considered hydrological configuration. For instance, 

the projected water deficits by lumped models are more devastating than semi-distributed 

configurations, especially in the PD-based models. In contrast to other system components, the 

estimated amount of water deficit is less sensitive to the input sources than the spatial discretization. 

While SE-PD shows a less severe rise in water deficit than SE-GD, the escalation of water deficit 

estimated by LU-PD is higher than LU-GD. A more substantial water deficit is expected under 

RCP 8.5 than RCP 4.5; however, the severity again depends on the considered model configuration 

(compare left and right panels in Figure 4.12). The sensitivity of the quantified water deficit to the 

considered modeling approaches underlines the importance of the hydrological model's spatial 

representation and input uncertainty in water allocation analyses. Moreover, the projected rising 

water deficit accentuates the need to revisit the historical operational plans to provide a more robust 

allocation of water resources to meet the water demands. 

 

4.5 Conclusion 

Changes in climate is altering natural flow regime, which can subsequently affect the downstream 

reservoir water storage and performance of water systems. This study evaluates the role of 

hydrologic system representation on the assessment of water system vulnerabilities in the Oldman 

River Basin in Alberta, Canada under changing climate conditions. A conceptual hydrological 

model, HBV-MTL, is tailored as semi-distributed and lumped representations of the upstream 

watershed and calibrated using point- and grid-based climatic datasets. Accordingly, the outputs of 

19 climate models under 2 RCPs are fed into the coupled hydrological and reservoir allocation 

models to evaluate the water system behavior. 

 

Results show that during the historical period all considered model configurations can reasonably 

reproduce the statistical characteristics of natural flow, reservoir volume, and outflow. In general, 
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the semi-distributed model calibrated with point datasets shows the highest accuracy during the 

historical period. Considering the future scenarios, greater flow intensities with earlier peak timing 

are projected. However, the magnitude and weeks of peak flow are different between hydrological 

models. Such changes in the inflow regime would lead to a few weeks earlier and more intense 

reservoir peak volume conditions. Similarly, although in general a higher risk of downstream 

flooding is estimated, the magnitude of changes depends on the considered hydrological model 

configuration. For instance, about 20% higher flow intensities are estimated by the models 

calibrated based on point than grid-based climate data. This clearly shows the importance of 

historical climate data's conditions for water system impact assessment. Furthermore, changes in 

flow regime decreases the ability of the water system to meet water demands, in particular during 

the peak demand season and exacerbates the existing water deficit. In particular, lumped models 

projected about 177% higher escalation in water deficit in the future, on average in comparison to 

the semi-distributed models. Such differences show that even using the same equations to simulate 

the hydrological processes, the spatial representation of upstream watershed can highly influence 

water system analyses. 

 

Based on these observations, it is recommended to consider the noted aspects of uncertainties in 

the assessments of climate change impacts on the water systems. In addition, since a unique 

hydrological model is used in this study, a comparison between the outcomes of multiple 

hydrological models with various levels of complexity can be informative. Moreover, given the 

projected higher risks of flooding and water deficit in the region, it is suggested to revisit the 

historical reservoir operational plans to improve water resources management. 
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 EVALUATING CLIMATE CHANGE IMPACTS ON THE 

WATER SYSTEM USING MULTIPLE HYDROLOGICAL MODELS 

WITH DIFFERENT INPUT AND MODEL SPATIAL RESOLUTION 

5.1 Methods and materials 

5.1.1 Framework for impact assessment 

In this chapter, the previously presented analyses are extended to also evaluate the impact of using 

multiple hydrological models and snow process representations on the quantification of risk in 

water systems. Coupling the two utilized hydrological models, i.e., HBV-MLT and GR4J, with the 

two applied snow routine modules, i.e., Degree-Day and CemaNeige, yields four different 

hydrological representations. Depending on the used data and model resolution, each hydrological 

representation has four different configurations, i.e., lumped hydrological models calibrated and 

validated using point-based (LP) and grid-based (LG) input data, as well as semi-distributed 

hydrological models calibrated and validated using point-based (SP) and grid-based (SG) input 

 

Figure 5.1   Framework for assessment of climate change impacts on the performance water 

system using multiple climate models, hydrological models, catchment representation, and 

input data resolution. 
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data. Thus, overall, 16 different configurations are considered for estimation of natural flow, see 

Figure 5.1. The simulated natural flow series generated by these hydrological models is fed into a 

reservoir water allocation model to simulate the reservoir volume and outflow regime. The coupled 

models are then forced with an envelope of climate projections to estimate the streamflow series 

and reservoir conditions in the future. This framework is again applied to assess the vulnerability 

of the Oldman River Basin. The description of this case study and utilized observed data and future 

projections and employed water allocation model are already explained in Chapter 4. In the 

following, the utilized hydrological models and the considered representation of snow processes 

are described in Sections 5.1.2 and 5.1.3, respectively. 

 

5.1.2 Hydrological models 

HBV-MTL, which is developed in this research, is a modified version of the HBV model, which 

is better adapted to cold regions by considering infiltration into the frozen soil.  As previously 

noted, this model is a conceptual hydrological model, which requires daily temperature and 

precipitation as inputs. The added liquid water to the model, from whether rainfall or snowmelt, 

would infiltrate the soil or turn to runoff. A portion of infiltrated water would be captured by soil 

particles and used by vegetation through evapotranspiration. The remaining infiltrated water is 

stored in two buckets and released gradually to form intermediate flow and baseflow. The 

integration of these flows and runoff is routed through a triangle delay function to estimate flow at 

the outlet of the basin.  

 

Similar to HBV-MTL, GR4J is a conceptual hydrological model which needs daily temperature 

and precipitation data to estimate daily flow in the basin outlet. In contrast to HBV-MTL, in the 

GR4J, the amount of net precipitation, i.e., the difference between precipitation and potential 

evapotranspiration, is divided into two portions using a parabolic equation. One part of the net 

precipitation is stored in the so-called production storage, from which the stored water can 

percolate gradually. Moreover, vegetation uses the stored water in this production storage for 

evapotranspiration. The rest of the net precipitation integrates with the percolated water from the 
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production storage and enters the routing stage. In the routing, 10% of the available water is routed 

directly to the outlet using a two-sided unit hydrograph. The remaining 90% of water is routed 

using a one-sided unit hydrograph and then stored in routing storage, from which it is gradually 

released. The schematic for the GR4J model is presented in Appendix B. For more information 

about the model structure and equations, please refer to Perrin et al. (2003). 

 

5.1.3 Represented snow processes in hydrological models 

The previously used Degree-Day snow routine in the HBV-MTL model provides a lumped 

representation of the snow processes in the basin. This module divides precipitation into rainfall 

and snowfall based on the minimum and maximum air temperature in the basin. Snow would 

accumulate homogenously across the basin and melt gradually as a function of ambient 

temperature, snowmelt temperature, and a degree-day coefficient, see Equations A.1 and A.3 in 

Appendix A. In contrast to the Degree-Day snow routine, the CemaNeige module provides a 

spatially variable representation of snow processes in the basin. In this module, the basin is first 

divided into five elevation zones with equal areas. The observed precipitation and temperature 

values are then found in each zone based on the difference between the average elevation in the 

zone and the basin’s mean altitude, using an elevation gradient factor. Consequently, the snow 

processes are simulated in each zone separately. The precipitation is divided into snowfall and 

rainfall based on the air temperature, like the Degree-Day snow routine. In contrast to the Degree-

Day snow routine, the CemaNeige module tracks not only the accumulation of snow particles but 

also the snowpack’s temperature. The snowpack’s temperature in each timestep is estimated as a 

weighted average of air temperature in that timestep and the snowpack’s temperature in the last 

timestep while considering the weight as a model parameter. As long as the snowpack’s 

temperature is below zero, the positive ambient temperature does not melt the snow. If the snow 

temperature reaches zero, the potential snowmelt is estimated using a degree-day coefficient. In 

the last step, the potential snowmelt is multiplied by the snow coverage factor. The snow coverage 

factor is the ratio of accumulated snow over the snowpack required to cover the zone, which is 

suggested to be about 90% of the long-term mean annual snowfall. For more information on the 

CemaNeige snow module, please refer to Valery (2010). Both Degree-Day and CemaNeige snow 
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routine modules are coupled with the HBV-MTL and GR4J hydrological models in this study to 

understand their importance for streamflow simulations in our case study.  

 

5.1.4 Calibration of developed hydrological models 

The explained procedure in Chapter 4 is followed here to calibrate and validate the developed 

hydrological models. In brief, in order to find optimal parameter sets, the historical data is split into 

burn-out, calibration, and validation periods (KlemeŠ, 1986; Gharari et al., 2013). The first six 

years of climatic data are used in the burn-out period. Two-third of the remaining data is used in 

the calibration process to find the optimal parameter set, which yields the lowest error measure. 

Here, the Euclidean distance between (1,1) and the annual and daily KGE measure is used as the 

objective function to be minimized (Gupta et al., 2009). To solve this optimization problem, the 

Shuffled Complex Evolution algorithm (SCE-UA; Duan et al., 1993; Yarpiz, 2020) is applied. In 

addition to the optimized parameter set, an envelope of acceptable parameter sets, which could 

result in KGE>0.5 on daily and annual scales, are extracted from a uniform probability function 

following the GLUE approach (Migliaccio & Chaubey, 2008; Mirzaei et al., 2015). Finally, the 

performance of different models using optimized and acceptable parameter sets is evaluated during 

the validation period. Accordingly, to the number of optimized and acceptable parameter sets, each 

hydrological model configuration generates multiple realizations of natural flow conditions. 

 

5.2 Result 

5.2.1 Upstream flow regime 

5.2.1.1 Flow annual hydrograph 

The expected annual inflow hydrographs to the Oldman Reservoir, simulated by 16 different 

hydrological model setups, are compared with the observed values during the historical period in 

Figure 5.2. In this figure, the top and bottom rows show the results of HBV-MTL and GR4J models, 

respectively, while left and right columns represent the outcomes of hydrological models coupled 
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with Degree-Day and CemaNeige modules, respectively. In each panel, the inflow hydrographs 

and performance measures (KGE) are presented for different configurations of each hydrological 

representation. The higher the value of KGE, the higher the statistical accordance between 

simulated and observed historical daily inflow throughout the historical period. Although the peak 

inflow timing is estimated properly with all models, its intensity is estimated more accurately using 

Degree-Day than the CemaNeige module. Nevertheless, the performance of models with Degree-

Day and CemaNeige modules depends also on the considered season. For example, models with 

the CemaNeige modules outperform the ones with the Degree-Day module in early summer as the 

CemaNeige snow module can preserve snow in the high-elevation areas longer than the Degree-

Day module.  

 

Comparing left and right columns in Figure 5.2 shows that different configurations of hydrological 

models with Degree-Day snow module estimate the expected hydrographs similarly. However, in 

the models that use the CemaNeige module, the estimated expected hydrographs deviate more from 

each other. In general, semi-distributed models simulate the peak flow intensity more precisely 

Table 5.1   Performance of the 16 applied hydrological setups in estimating the historical daily 

inflow to the Oldman Reservoir, based on the KGE performance measure, during the 

calibration and validation periods. 

  Degree-Day CemaNeige 

 Configuration  Calibration  Validation  Calibration  Validation 

HBV-MTL LP 0.90 0.76 0.89 0.84 

LG 0.89 0.65 0.87 0.64 

SP 0.93 0.81 0.91 0.83 

SG 0.92 0.67 0.90 0.66 

GR4J LP 0.88 0.82 0.88 0.86 

LG 0.88 0.72 0.86 0.72 

SP 0.92 0.83 0.90 0.84 

SG 0.89 0.65 0.89 0.68 
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than lumped models. Comparing to the grid-based models, point-based configurations show 

slightly higher performance measures. Intercomparison between the top and bottom rows indicates 

that the usage of the hydrological model has a less vivid impact on the estimated inflow hydrograph 

than other modeling specifications. Although GR4J models better estimate the peak flow intensity 

when coupled with the Degree-Day snow module, these models are outperformed by the HBV-

MTL models when coupled with the CemaNeige module.  Despite the described differences, which 

are mainly rooted in the used snow routine model, all configurations of hydrological models 

provide statistically similar estimations to the observed flow. Table 5.1 presents the statistical 

similarity (based on KGE) between the observed and simulated historical daily inflow to the 

reservoir, using 16 developed hydrological model structures, during the calibration and validation 

periods. As expected, the developed models better performed during the calibration period than the 

historical period, more notably in grid-based structures.  In general, the reported performance 

measures show that all model configurations perform acceptably during the calibration and 

validation periods. Hence, all hydrological model setups are approved to be used for projecting 

future inflow hydrographs.   

 

The future annual inflow hydrographs, simulated by the 16 different hydrological models under 

RCPs 4.5 and 8.5, are presented in Figures 5.3 and 5.4, respectively. The top and bottom rows 

present the simulations of HBV-MTL and GR4J models in these figures, respectively. Moreover, 

the left and right columns show the results of the models using Degree-Day and CemaNeige snow 

modules, respectively. In each panel, the shaded areas represent the envelopes of simulated inflow 

hydrographs, using an envelope of acceptable parameter sets and GCMs’ outputs in different 

configurations of the respective hydrological representation. The median of the annual hydrograph 

envelopes, simulated using each configuration, is shown by solid lines with different colors and 

markers. All models unanimously show an increased peak flow intensity relative to the historical 

conditions. Under both RCPs, the hydrological models with the Degree-Day snow module project 

more intense and earlier peak flow compared to the CemaNeige module and historical period. 

Nonetheless, in comparison with the historical observation, lumped configurations in the models 

with the CemaNeige snow module estimate a forward shift in the peak flow timing, while semi-

distributed configurations of these models project earlier peak flow conditions, see right columns 



 

 

49 

of Figures 5.3 and 5.4. Focusing on the left column of these figures illustrates that the accelerated 

snowmelt processes in the future that caused the massive changes in the peak timing result in an 

earlier drop in the inflow intensity and, subsequently, lower inflow rate during late spring compared 

with the historical period. Conversely, the medians of the projected inflow hydrographs by model 

coupled with the CemaNeige snow module are consistently higher than the historical flow rate 

under both RCPs throughout the year. Comparing the top and bottom rows in Figures 5.3 and 5.4 

highlights the role of hydrological model structures in estimating future annual inflow hydrographs. 

As shown in these panels, HBV-MTL models project more intense and earlier peak flow conditions 

and smaller low flow intensity than the GR4J models. However, the influence of the considered 

snow module on the estimated future flow hydrograph projections seems more evident than the 

choice between the hydrological models.    

 

Comparison between the estimated inflow by various developed configurations reveals that the 

divergence between different setups of models with the Degree-Day module is more visible than 

models with the CemaNeige module. Interestingly, such a difference between the estimates of 

model setups is more evident for CemaNeige-based models than models with Degree-Day snow 

routine in the baseline period. This means that the behavior of models in the past may vary in the 

future, and it is better to use an ensemble of models for impact assessment. In the models with the 

Degree-Day module, the point-based and lumped configurations show less intense and earlier peak 

flow conditions than grid-based and semi-distributed models, respectively, in the future period. 

However, in the models using the CemaNeige module, semi-distributed models project less intense 

and earlier peak flow conditions than lumped models. On the differences between future scenarios, 

one can observe that generally under RCP 8.5, less severe flows with earlier peak flow conditions 

are expected in the future in comparison to the RCP 4.5. With that said, these observations are 

based on the expected flow hydrograph and considering the peak weekly flow. In the following 

section, the results for the assessment of daily flow are provided. 
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Figure 5.2    Comparison between the simulated (solid colored lines and shaded areas) and 

observed (solid black line) expected annual inflow hydrographs reaching the Oldman Reservoir 

during the historical period using 16 different hydrological setups, including lumped and semi-

distributed structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day 

module, (b) HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) 

GR4J with CemaNeige module, developed based on point- and grid-based input data. 
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Figure 5.3    Median and ensemble of projected expected annual inflow hydrographs (solid 

colored lines and shaded areas, respectively) under RCP 4.5 using 16 different hydrological 

setups, including lumped and semi-distributed structures of 4 hydrological representations, i.e., 

(a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J 

with Degree-Day module, and (d) GR4J with CemaNeige module, developed based on point- 

and grid-based input data, compared with the historical observed annual expected hydrograph. 



 

 

52 

 

Figure 5.4   Median and ensemble of projected expected annual inflow hydrographs (solid 

colored lines and shaded areas, respectively) under RCP 8.5 using 16 different hydrological 

setups, including lumped and semi-distributed structures of 4 hydrological representations, i.e., 

(a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J 

with Degree-Day module, and (d) GR4J with CemaNeige module, developed based on point- 

and grid-based input data, compared with the historical observed annual expected hydrograph. 
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5.2.1.2 Streamflow signatures 

Different flow signatures, including 99th (Q99), 50th (Q50), and 10th (Q10) percentile, as well as 

peak flow timing of the daily inflow during the historical and future periods, are presented in Figure 

5.5. Each boxplot contains the specific flow signatures of every component of the daily inflow 

envelope, simulated by the respective configuration. As discussed in the previous section, the 

simulated inflow envelops during the historical period consist of simulated inflow time-series using 

all acceptable parameter sets in each hydrological modeling setup. Moreover, in the future, this 

envelope is simulated by using all combinations of the noted acceptable parameter sets with various 

GCMs’ projections under each RCP. As shown in Figure 5.5, the hydrological models mainly 

underestimate the high flow conditions, i.e., Q99, during the historical period. Nevertheless, HBV-

MTL provides higher values for Q99 than GR4J during the historical period. It is noteworthy to 

mention that although the estimated values of daily Q99 appear to be more sensitive to the 

considered model structures than employed snow modules, it is discussed previously that the values 

of weekly peak flow intensity are more subjective to the use of snow routine than the structure of 

the hydrological model. To justify this observation, we can argue that during extreme rainfall and 

snowmelt events, leading to extreme flow conditions, the delayed storages in the hydrological 

models would not be able to store most of the incoming water, hence direct the excess water to the 

outlet. Moreover, in this particular study area, which is not a huge one, the routing functions of the 

hydrological models were found to delay the water less than a week. Therefore, the hydrological 

model is mainly effective on the daily peak flow conditions. The critical component in the peak 

weekly flow generation in a snow-dominated basin, like the Oldman River Basin, is the 

accumulated snow when the heat arrives. Therefore, the estimated weekly peak flow conditions are 

susceptible to the utilized snow module. 

 

The results show that all models project an increase in Q99 in the future. This increase in the high 

flow conditions is more noticeable using the HBV-MTL than GR4J hydrological models. 

Furthermore, models with Degree-Day snow module project generally higher Q99 in the future, 

comparing with the models using the CemaNeige module. The high flow intensity projected by 

lumped configurations in the models with the Degree-Day module is larger under RCP 4.5 than 

RCP 8.5 throughout the century, while in the semi-distributed set up of these models, Q99 is quite 
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similar under both RCPs. However, using the models with CemaNeige, the estimated high flow 

conditions under RCP 4.5 are greater than RCP 8.5 during the short- and mid-term future, whereas 

it is inverse for the long-term horizon. Hence, the sensitivity of estimated Q99 in the future depends 

not only on the emission scenarios but also on the applied hydrological model resolution (i.e., 

lumped or semi-distributed) and snow routine representation, with the usage of hydrological model, 

whether HBV-MTL or GR4J, being less effective on this sensitivity.   

 

Figure 5.5 also shows that all hydrological representations overestimate the mid-flow conditions, 

i.e., Q50, during the historical period. It seems that while the usage of the hydrological models and 

snow routine does not have a meaningful impact on the estimated Q50, semi-distributed models 

provide more similar values of Q50 to the observation than the lumped structures. During the future 

period, all model configurations project an increase in mid-flow intensity. This augmentation is 

more noticeable in the lumped than semi-distributed models, especially when we use the point-

based input data. In addition, although the values of Q50 are almost similar under both RCPs in the 

short-term future, higher variation in this signature is projected under RCP 8.5 than RCP 4.5 in the 

long-term future. Accordingly, the difference between estimated Q50s under two RCPs in the long-

term future is more evident using the Degree-Day module. In general, more intense mid-flow 

conditions are estimated in the future by GR4J, especially when coupled with the Degree-Day snow 

routine module. 
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Figure 5.5   Boxplots of different inflow signatures estimations during the historical and future 

periods using multiple hydrological representations, i.e., (a) HBV-MTL with Degree-Day 

module, (b) HBV-MTL with CemaNeige module, (c) GR4 with Degree-Day module, and (d) 

GR4J with CemaNeige module, based on historical data and different climate projections under 

RCPs 4.5 (blue outline) and 8.5 (red outline).  



 

 

56 

In addition to these observations, Figure 5.5 also illustrates that while HBV-MTL models slightly 

underestimate the low-flow conditions, the estimations of Q10 in these models are closer to the 

observed historical conditions in comparison to GR4J models which overestimate this signature. 

Moreover, models with the Degree-Day module estimate a slightly larger estimation for Q10 than 

models using the CemaNeige snow routine, especially when coupled with the GR4J model.  Similar 

to the historical period, the HBV-MTL models project a lower Q10 than the observed historical 

conditions in short and mid-term future horizons, whilst an increase in this signature is expected in 

the long-term future. However, GR4J models project an increase in all future horizons. 

Approaching the end of the 21st century, the estimated Q10 under RCP 8.5 exceeds the projected 

low-flow conditions under RCP 4.5.  

 

The impact of using the different hydrological model setups on the estimated timing of the peak 

inflow during the historical and future periods is also presented in Figure 5.5. Based on the results, 

while models with the Degree-Day module project slightly earlier peak flows, CemaNeige models 

provide later peak flow timing during the historical period. To a more limited extent, HBV-MTL 

models also estimate earlier peak flow timings than GR4J models during the historical period. In 

general, semi-distributed and point-based models better resemble historical peak flow timing 

comparing to the lumped and grid-based models, respectively. In the future, point-based 

configurations of models with the Degree-Day module project earlier peak flows than the historical 

conditions. In contrast, grid-based structures of these models estimate future peak flow timing 

relatively similar to the historical conditions. Nevertheless, CemaNeige models project a forward 

shift in the peak flow timing, especially under RCP 4.5. In general, hydrological models project 

earlier peak flows under RCP 8.5 than RCP 4.5, with the difference being more dominant using the 

models with the CemaNeige snow module. 
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5.2.2 Reservoir operation 

5.2.2.1 Reservoir volume 

The generated inflows using the hydrological models are used to simulate the reservoir volume and 

outflow. Figure 5.6 compares the observed reservoir volume with the simulated storage using 

multiple configurations (boxplots with different colors) of different hydrological representations 

(rows) during the historical period. In this figure, the calculated differences between the simulated 

and observed annual expected reservoir volume (dam3) are upscaled to four-week intervals by 

taking the average of the storage during each interval to better summarize the impacts of utilized 

hydrological representations on the simulated reservoir volume. The boxplots in this figure contain 

the estimated reservoir volume, using the inflow envelopes, simulated by different configurations 

of hydrological representations considering multiple acceptable parameters sets. As it can be seen, 

the envelope of simulated reservoir volume using HBV models better captures the historical values 

than GR4J models during the low water level conditions in winter. Focusing on the high water 

level period in summer elucidates that models with the CemaNeige module more precisely 

reproduce historical reservoir volume than the Degree-Day snow routine. However, models with 

the Degree-Day module slightly better perform during fall in comparison to those with the 

CemaNeige module. In general, based on the statistical measures provided in the figure, it is 

apparent that models with the CemaNeige module outperform those with the Degree-Day module 

throughout the year. Intercomparison between model configurations shows that the semi-

distributed and point-based configurations of models using the CemaNeige snow routine provides 

the highest accuracy in estimating the historical reservoir volume. 
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Figure 5.6   The difference between observed and simulated annual expected reservoir volume (dam3) during the historical period 

using the simulated inflow by different configurations (boxplots with different colors) of multiple hydrological representations (rows), 

i.e., (a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) 

GR4J with CemaNeige module, considering ensembles of acceptable parameter sets. The KGE performance measures in each panel 

show the performance of semi-distributed and lumped structures of the respective hydrological representation, developed using point-

based and grid-based climatic data.
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The projected reservoir volume using different hydrological model setups and 19 GCMs under 

RCPs 4.5 and 8.5 is presented in Figure 5.7. As shown in this figure, the models with the Degree-

Day snow module show high water levels would happen a few weeks earlier than the historical 

period, which can affect the business-as-usual reservoir operation to release water earlier to 

mitigate dam overtopping. However, this may lead to low reservoir storage in summer in 

comparison to the historical period. Given the high irrigation water demands during summer, such 

conditions may cause challenges in meeting local water demands. In contrast with the Degree-Day 

 

Figure 5.7   Median and ensemble of projected expected annual reservoir volume (solid lines 

and shaded areas, respectively) under RCPs 4.5 (blue) and 8.5 (red) using 16 different 

hydrological setups, including lumped and semi-distributed structures of 4 hydrological 

representations, i.e., (a) HBV-MTL with Degree-Day module, (b) HBV-MTL with CemaNeige 

module, (c) GR4J with Degree-Day module, and (d) GR4J with CemaNeige module, 

developed based on point- and grid-based input data, compared with the historical observed 

annual expected hydrograph. 
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snow routine, models with the CemaNeige module estimate a higher reservoir volume than the 

historical period throughout the year, meaning less challenging reservoir operation is expected 

during low flow than high flow seasons. Comparing the model projections under two RCPs shows 

that larger reservoir water volume earlier in spring and lower values in summer and fall is projected 

under RCP 8.5 in comparison to RCP 4.5. Therefore, a more challenging reservoir operation is 

anticipated under the higher emission scenario. 

5.2.2.2 Downstream water supply to local demands 

The differences between the simulated inflow and reservoir volumes using different models can 

signify that there might be diverging outflow estimated by them too. Figure 5.8 compares long-

term expected simulated and observed water deficit during the historical period. The water deficit 

is defined as the annual shortage of supplied water to the local water users relative to their annual 

water demand. In Figure 5.8, each boxplot contains the long-term average water deficit, estimated 

by multiple acceptable parameter sets used in the respective configuration of the hydrological 

representation. As shown in this figure, while models with the Degree-Day snow routine tend to 

 

Figure 5.8   Comparison between the simulated (boxplots) and observed (dot line) long-term 

expected annual water deficit in the water supply to the local downstream users during the 

historical period using 16 different hydrological setups, including lumped and semi-distributed 

structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day module, (b) 

HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) GR4J with 

CemaNeige module, developed based on point- and grid-based input data. 
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overestimate the water deficit, models using the CemaNeige module generally underestimate these 

conditions. If only the optimized realizations are evaluated, it can be seen that the performance of 

models with the Degree-Day and CemaNeige modules in estimating the water deficit is relatively 

equivalent. Focusing on the uncertainty boundaries shows that the models coupled with the Degree-

Day module capture the historical conditions between the 25th and 75th percentile. In contrast, the 

observed historical water deficit stands higher than the 75th percentile of the estimated water deficit 

in lumped representations of models with the CemaNeige module.  

 

 

Figure 5.9   5-year moving average of projected water deficit under RCPs 4.5 (left panel) and 

8.5 (right panel), using 16 different hydrological setups, including lumped and semi-distributed 

structures of 4 hydrological representations, i.e., (a) HBV-MTL with Degree-Day module, (b) 

HBV-MTL with CemaNeige module, (c) GR4J with Degree-Day module, and (d) GR4J with 

CemaNeige module, developed based on point- and grid-based input data. 
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Figure 5.9 represents the 5-year moving average of the projected local water deficit in the future, 

using different hydrological models under both RCPs. It is evidenced that models with the Degree-

Day module project higher water deficit throughout the century than those with the CemaNeige 

module. Moreover, GR4J models suggest a slightly greater water deficit in the future than HBV-

MTL models. Generally, semi-distributed structures present a higher degree of water deficit in the 

future comparing to the lumped representations, except for grid-based configurations of GR4J, 

coupled with the Degree-Day snow routine. Under RCP 4.5, the projected water deficit rises in the 

mid-term future and is followed by a decrease in the long-term future. Conversely, the estimated 

water deficit under RCP 8.5, using different hydrological models, follows a meaningful ascending 

trend throughout the century. Therefore, satisfying the local water demands in the Oldman River 

Basin would be more challenging following the high emission scenario in the future. 

 

5.3 Conclusion 

Proper management of water systems is becoming challenging as historical characteristics of 

streamflow are changing due to the warming climate. In this chapter, the impacts of climate change 

on the water system in Oldman River Basin, Alberta, Canada, is evaluated, with the primary goal 

of understanding the importance of the hydrological modeling approach in such assessments. For 

this purpose, 16 different setups for hydrological modeling and estimation of natural streamflow 

are considered. These include two choices for input data resolution (point- and grid-based), model 

resolution (lumped and semi-distributed), model structure (HBV-MTL and GR4J), and snow 

routine module (Degree-Day and CemaNeige). The performance of these models is evaluated, and 

they are then coupled with a reservoir water allocation model to estimate reservoir volume and 

outflow. For climate change impact assessments, the outputs of 19 climate models under RCPs 4.5 

and 8.5 are used as climate input data in the coupled hydrological-allocation models to project 

future natural flow and reservoir dynamics and evaluate the efficacy of existing reservoirs 

operation plans in the future.  
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Based on the provided discussion over the results, we can argue that hydrological modeling 

uncertainties can affect the assessment of climate change impact on different levels of water 

systems. It is evidenced that using multiple hydrological models with different resolutions can 

potentially decrease the vulnerability of the assessments by raising knowledge about uncertainties 

in the simulations. This study illustrates the sensitivity of the flow conditions and water allocation 

in a snow-dominated basin in Western Canada. The generalizability of findings of this study can 

be further investigated by applying this framework in other study areas with different, or even 

similar, hydrological characteristics. Despite the differences between the model outputs, the 

consensus is the rising intensity of peak flows and water deficit in the future, especially under RCP 

8.5. Hence, on the local level, it is necessary to revise the established Oldman reservoir water 

allocation plans to mitigate climate change's adverse impacts on the water system. Furthermore, on 

the global level, it is vital to better manage anthropogenic activities to diminish carbon emission 

and move towards RCP 4.5 in order to reduce risks of failure in long-term future. 
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 GENERAL DISCUSSION 

Rapid changing climatic conditions is altering the water system on different levels and exerting 

more pressure on the current water allocation plans. Results show that during the historical period, 

all hydrological models show acceptable performance considering the estimated error measures. 

Yet, focusing on specific characteristics of the natural flow reveals meaningful differences between 

the models. In particular, the estimation of weekly peak flow intensity depends mainly on the 

considered snow representation model. During the historical period, models with the Degree-Day 

snow routine better resembles the observed weekly peak flow intensity than models with the 

CemaNeige module. Similarly, the timing of weekly peak flow is governed by the utilized snow 

module.  Hydrological representations with the Degree-Day and CemaNeige modules provide an 

underestimation and overestimation of the peak flow timing during the historical period, 

respectively. Nevertheless, the structure of the hydrological models can play a critical role in 

estimating daily low and peak flow intensities. In fact, the simulated Q99 by HBV-MTL models is 

more in accordance with the observed values in comparison to GR4J models. In addition, HBV-

MTL and GR4J underestimate and overestimate Q10, respectively. In contrast, the model 

resolution is important for the representation of the mid-flow signature, with a better estimation of 

Q50 in semi-distributed models than lumped models.  

 

In the future, a great increase in the intensity of low-, mid-, and high-inflow to the Oldman 

Reservoir is expected; however, the significance of this transition depends on the used model. 

Similar to the historical period, snow routine modules and the utilized hydrological model influence 

the intensity of peak flows. While models with the Degree-Day module estimate distinctively 

higher peak flow intensities than models using the CemaNeige snow routine on the weekly scale, 

HBV-MTL models project more severe high flow conditions than GR4J models on the daily scale. 

The timing of this peak flow is greatly affected by the usage of snow models. While representation 

based on the CemaNeige module project a forward shift in timing, models with the Degree-Day 

snow routine expect earlier peak flow conditions. Following the historical period, the projected 

mid-flow conditions in the future are mainly driven by the model resolution, and lumped models 

suggest more rise in mid-flow intensities than semi-distributed models. The low-flow intensity in 
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the future is primarily controlled by the usage of hydrological models, and HBV-MTL models 

provide lower estimations of Q10 than GR4J models. Moreover, comparing different estimated 

flow conditions under 2 RCPs reveals the sensitivity of projected flow characteristics to the 

emission scenarios. In particular, the results indicate that, under RCP 8.5, more extreme changes 

in the peak flow timing and intensity are expected than the RCP 4.5, especially in the long-term 

future.  

 

Because snow routine modules appear to have a more dominant impact on the weekly flow 

intensities, these models are reckoned on affecting the reservoir operation more than the structure 

of the considered hydrological models and their spatial resolution. The results approve that the 

models using the CemaNeige module outperform the ones with the Degree-Day snow routine in 

the historical period, especially during high reservoir volume in summer. However, this dominance 

is not consistent as, for instance, models with the Degree-Day snow routine better reproduce 

reservoir volume in summer during the historical period. The differences between the simulated 

reservoir dynamics using different hydrological models propagate to the evaluation of water supply 

deficit to local demands. Although using the CemaNeige snow routine provides a generally more 

precise estimation of the reservoir volume than the Degree-Day module, models with the Degree-

Day snow module better estimate the water deficit during the historical period. This is essentially 

due to the more accurate simulation of reservoir volume by models with the Degree-Day snow 

module in summer when agricultural sector demand puts pressure on the depleting reservoir 

volume.  

 

Similar to the historical period, snow modules have the primary influence on the simulated 

reservoir dynamics in the future. Models with the Degree-Day snow routine suggest that high water 

level conditions would occur earlier in the future, compared with the projections of models with 

the CemaNeige module. Moreover, the expected reservoir volume during summer and fall, 

projected by models with Degree-Day snow module, drops below not only the simulated reservoir 

volume by models with CemaNeige snow routine but also the historical conditions. This transition 

in the reservoir volume is vividly reflected in the estimated water deficit in the future when models 
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with the Degree-Day module suggest a considerably larger water shortage than models with the 

CemaNeige module. Results illustrate the importance of emission scenarios on the evolution of 

water deficit throughout the century. Under RCP 4.5, a rising trend in water deficit in the short- 

and mid-term future is followed by a descending trend in the long-term future, while under RCP 

8.5, an ascending trend in the projected water deficit is observable throughout the century. 
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 CONCLUSION (AND RECOMMENDATIONS) 

Changes in temperature and precipitation due to warming climate can alter the characteristics of 

water availability. Such changes can degrade the efficacy of existing water allocation plans, which 

are developed based on historical climate and flow regime conditions. Hydrological models are 

used to represent various hydrological processes to estimate flow conditions in the basin.  However, 

using different specifications in the structure of these models leads to inconsistent estimation of 

flow characteristics. Although these differences might be negligible during the historical period, 

applying these models to study the hydrological system under changing climatic conditions can 

cause more notable divergence in the estimated flow characteristics. This study analyzes the 

importance of the hydrologic system representations in evaluating the effects of climate change on 

a water resources system in western Canada.  

 

A multi-model framework is developed to holistically represent the water system conditions in the 

future in this area. In this framework, four hydrological representations are generated by coupling 

two hydrological models, i.e., HBV-MTL and GR4J, with two snow routine modules, i.e., Degree-

Day and CemaNeige. For each hydrological representation, lumped and semi-distributed structures 

are developed based on point- and grid-based climatic data, which yields four different 

configurations of each hydrological representation. Therefore, in total, 16 various configurations 

of hydrological representations are used in this study. Each configuration of the hydrological 

representation is calibrated against the historical observed inflow to the Oldman Reservoir, using 

the historical observed climatic data to find the optimal parameter set. Moreover, multiple 

acceptable parameter sets are sought through an uncertainty assessment technique. The found 

acceptable parameter sets, along with the optimal one, are utilized in the model to generate an 

envelope of simulated flow to address the importance of parametric uncertainty in the hydrological 

modeling. The developed hydrological representations are then coupled with a water allocation 

model, an emulation of the WRMM model, to estimate reservoir volume and release following the 

current reservoir operation plans. Regarding the future projections, the outputs of 19 bias-corrected 

GCMs under two scenarios, RCPs 4.5 and 8.5, are fed into the developed ensemble of coupled 

hydrological-water allocation models to simulate inflow conditions and reservoir dynamics. 
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Results indicate that all developed hydrological models provide a statistically accurate estimation 

of natural flow conditions and reservoir dynamics during the historical period in the headwater of 

the Oldman River Basin. However, these models have dissimilar performances in reproducing 

different characteristics of the water system. For instance, although weekly peak flow intensity and 

timing are mainly sensitive to the usage of the snow module, daily high-flow conditions are 

primarily determined by the utilized hydrological models. The reason for this observation is that 

the hydrological models route the extreme water inflow during massive snowmelt periods through 

functions with less than a week of delay in this study area. Therefore, on the weekly scale, the 

primary determinant of the peak flow conditions is the accumulated snow when the temperature 

rises in spring, directly related to the usage of the snow routine module.  

 

The dissimilarity between models’ outputs is exacerbated in the future under changing climatic 

conditions. While the resolution of model structure and input data does not highly affect the 

simulated flow conditions in the historical period, models calibrated using point-based climatic 

data project higher peak flow intensities in the future than models based on grid-based input. On 

the one hand, although the hydrological models with Degree-Day modules project a backward shift 

in the timing and rising trend in the intensity of weekly peak flows, the models with CemaNeige 

estimate a relatively steady timing for an intensified weekly peak flow. On the other hand, HBV-

MTL models project more severe daily peak flow conditions than GR4J models. Similar to the 

daily peak flows, the choice of hydrological model (HBV-MTL or GR4J) can affect the estimated 

values of the low-flow intensity. In general, HBV-MTL models expect more severe low-flow 

conditions than GR4J models. Conversely, the applied model resolution, lumped vs. Semi-

distributed representation, plays a prominent role in the accuracy of mid-flow intensity estimation. 

In fact, lumped models project higher mid-flow intensity in the future. Intercomparison between 

projected natural flow conditions following different emission scenarios shows that generally under 

RCP 8.5, more extreme changes in the water system conditions are expected than under RCP 4.5.   
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Analyzing the reservoir dynamics simulation during the historical period shows that while peak 

flow intensity is more affected by the input resolution, estimated reservoir volume is more notably 

affected by the applied spatial disaggregation in the model structure. In general, lumped models 

tend to underestimate the historical reservoir volume. Moreover, given the critical role of snow 

representation methods in the performance of the hydrological models, the usage of these models 

also affects the reservoir water level and outflow simulations. In general, representations with the 

CemaNeige module better reproduce the historical reservoir water volume than the Degree-Day 

snow routine, especially during spring. However, models with the Degree-Day module estimate 

the reservoir volume more appropriately for summer than those with the CemaNeige module. Using 

models with the Degree-Day snow routine, a reduction in the reservoir volume during summer is 

projected compared to the observed historical conditions. This reduction causes a rise in the 

projected water deficit. This can be due to projections of earlier peak flow timing and shifts in the 

annual expected hydrograph using these models.  Moreover, water deficit conditions were found 

to be more sensitive to the spatial disaggregation of the hydrological model than the input 

resolution, where lumped models project more server water deficit. In contrast to the Degree-Day 

module, because models with the CemaNeige module project a peak flow timing similar to the 

historical period, the projected water deficit using these models is meaningfully lower than using 

models with Degree-Day snow modules. The rate of water scarcity in this region also depends on 

the future emission scenario too in the future. Under RCP 4.5, the water deficit would rise until the 

mid-term future and then decline afterward by approaching the end of the century. However, an 

ascending trend in the water deficit is estimated under RCP 8.5, reaching a climax in the 2090s due 

to consistency in rising temperatures.  

 

This study shows that under changing climatic conditions, the assessment of climate change 

impacts on the water system can meaningfully depend on the utilized hydrological modeling setups. 

Using an ensemble of hydrological and climate models to represent the future water system 

conditions can decrease the vulnerability of top-down assessments to the embedded uncertainty in 

the models. Here, despite the discussed dissimilarities between models’ performances, the 

consensus is the intensified peak flows and water deficit in the future, especially under RCP 8.5. 

Therefore, revising the long-lasted reservoir water allocation plans is required to diminish climate 
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change’s undesirable impacts on the Oldman water system. While this study mainly analyzes the 

effects of climate change on the availability of water resources, water demand is assumed to follow 

a similar pattern to the historical period. Therefore, it is informative to address the existing 

relationships between the water demand and hydroclimatic conditions in the water allocation 

processes. Moreover, it is suggested to apply the described framework in different areas using the 

newly released CMIP6 model outputs instead of CMIP5 used in this study to better highlight this 

framework's sensitivity to the basin’s characteristics and climatic projections.      
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APPENDIX A   DESCRIPTION OF THE HBV-MTL HYDROLOGICAL 

MODEL 

The developed hydrological model, HBV-MTL, is a derivative of the HBV model with some 

modifications to better represent hydrological processes in cold regions (please see Figure 3 for the 

schematic of this model). In HBV-MTL, the precipitation is assumed to be in the form of either 

rain or snow or a combination of both using an air temperature threshold (Eq. A.1) (Turcotte et al., 

2007). If the precipitation is in the form of snow, it is assumed that the snow is accumulated to 

form a snowpack. The snow depth at each time step is estimated based on the initial depth of snow, 

snowfall, and the refrozen retained water in the snow (Eq. A.2; ds represents the simulation 

timestep). The precipitation input data to the model should be in the form of liquid water. In other 

words, instead of snowfall data, the snow water equivalent of snowfall should be entered into the 

model. Accordingly, the estimated accumulated snow is the water equivalent of the snowpack. In 

this study, the snow density is assumed to be 10 percent of water density to convert snowfall to 

rainfall.  

 

The snowmelt is simulated based on the degree-day method (Seibert & Vis, 2012). In brief, the 

accumulated snow would change its phase to liquid when the ambient temperature exceeds the 

melting threshold. Accordingly, the snowmelt is estimated in the model as a function of the degree-

day factor, as well as the difference between air temperature and melting threshold (Eq. A.3). The 

degree-day coefficient depends on various factors such as the characteristics of the basin and is 

typically assumed to be a constant value between 1.6 and 6 mm/°C (U.S. Dept. of Agriculture, 

2004). This coefficient can also be estimated as a function of air temperature and snow 

accumulation (Bergström, 1975). Although the melting threshold is usually considered equal to 

zero, it can vary spatially based on the altitude and geographical characteristics of the study area. 

It is assumed that this threshold is between 0 °C and 3 °C (Wang & Melesse, 2005). In this model, 

it is assumed that the melted snow would not leave the snowpack instantly, and the water is retained 

in the pores of the snowpack until these voids are full of water (Eq. A.4). The volume of these 

pores in the snowpack, which represents of the snowpack capacity to retain water, is assumed to 

be proportional to the snowpack volume. The retained water in the snow medium can refreeze if 

the air temperature drops below the refreeze threshold (Eq. A.5). The refreeze threshold is assumed 
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to be the same as the snowmelt threshold. The snowpack’s pores are filled with water when the 

retained water exceeds the snowpack’s capacity to keep water. Afterward, water would start to 

leave the snow medium. The retained water is estimated dynamically based on rainfall, snowmelt, 

refrozen retained water and the water which leaves the snowpack (Eq. A.6). 

 

The rain, melted snow, or their combination can either directly infiltrate the soil or flow over the 

surface, based on the free liquid water, the infiltration capacity, and soil temperature. Soil 

temperature indicates whether the soil is frozen or not, and it is estimated using the method 

developed by (Zheng et al., 1993). In this approach, soil temperature in each timestep is calculated 

as a function of initial soil temperature, as well as the eleven-day average of air temperature and 

the existence of the snowpack over the surface (Eq. A.7). If the soil temperature is more than the 

frozen soil temperature threshold, it means that the soil is not frozen. Accordingly, the infiltration 

into the unfrozen soil is estimated based on the modified SCS method used in the SWAT model 

(Neitsch et al., 2011).  

 

On the one hand, if the soil moisture is less than the wilting point, more free water would infiltrate, 

and less runoff would be generated. Therefore, the soil curve number (CN) will be revised (Eq. 

A.8). On the other hand, if the soil moisture is close to the field capacity, the ratio of free water, 

which turns to runoff, would increase. This increase in runoff is reflected in the model by revising 

the soil CN (Eq. A.8). If the soil temperature is less than the frozen soil temperature threshold, it 

means the soil is frozen. Consequently, CN is revised based on the level of soil saturation and its 

physical characteristics. The higher the soil moisture in the frozen soil, the higher the CN and the 

lower the infiltration capacity (Eq. A.9). The frozen soil coefficient in the equation shows the 

pattern of soil moisture impact on the infiltration capacity of different types of frozen soils. 

Retention and initial abstraction are calculated based on the revised CN (Eq. A.10 and A.11, 

respectively). The runoff is estimated using the calculated initial abstraction and retention (Eq. 

A.12). The amount of free liquid water, which does not turn to runoff, would infiltrate to the soil 

(Eq. A.13).  
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A part of infiltrated water into the soil would be absorbed by soil particles and cannot move freely 

in the soil medium. The free water in the soil layers infiltrates the deep soil layers. The portion of 

water in the soil medium, which infiltrates to the shallow and deep groundwater tanks, depends on 

the initial soil moisture in each timestep and the field capacity (Eq. A.14). The remaining infiltrated 

water, which is absorbed by soil particles, contributes to the soil moisture (Eq. A.15). In addition 

to infiltrated water into the soil, evapotranspiration affects the soil moisture. Actual 

evapotranspiration is calculated based on potential evapotranspiration and soil moisture conditions 

(Eq. A.16). If the long-term average of evapotranspiration and temperature data are available, 

potential evapotranspiration can be computed based on the deviation of the temperature from the 

long-term mean temperature. Otherwise, different evapotranspiration models can be used to 

calculate potential evapotranspiration. In this study, Hargreaves & Samani (1985) temperature-

based evapotranspiration model is used to prevent an increase in the model data demand. However, 

in the case of data availability, other evapotranspiration models can be easily added to the model. 

The soil moisture is estimated dynamically, considering the evapotranspiration and soil moisture 

recharge as variation rates (Eq. A.17). The estimated soil moisture represents the available water 

in the shallow soil layer. 

 

Infiltrated water to deeper soil layers is assumed to be accumulated in two soil layers. The stored 

water in intermediate and deep soil layers is released gradually to form the intermediate and base 

flows, respectively. In this model, the intermediate soil layer has three conceptual outlets, two of 

them contribute to the interflow (Eq. A.18), and from the other one, water seeps into the deep soil 

layer (Eq. A.19). The deep soil layer has only one outlet, forms the base flow (Eq. A.20). The 

available water in intermediate and deep soil layers is estimated using simple differential water 

balance equations (Eqs. A.21 and A.22, respectively). The outflow from intermediate and deep soil 

layers alongside the generated direct runoff in the shallow soil layer form the streamflow in the 

outlet of the basin (Eq. A.23). Based on the watershed’s physical characteristics, the generated 

streamflow would reach the watershed outlet with a time delay. Hence, the generated flow in the 

outlet is routed by a triangular weighting function to simulate the flow in the watershed outlet (Eq. 

A. 24; Seibert & Vis, 2012). Up to here, all of the estimated variables are calculated for one unit 

of area. In the last step, the total flow is calculated by multiplying the basin’s area and the generated 
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flow in a unit of the watershed area (Eq. A.25). The abbreviations used in the equations are 

introduced in Table A.1. Subscript “t” in each variable indicates the time step of each variable. 

 

Table A.1 Variables and parameters used in the hydrological model equations 

(cont’d) 

 Parameter/Variable Abbreviation Parameter/Variable Abbreviation 

V
a

r
ia

b
le

s 

Precipitation 𝑃𝑡 Rainfall 𝑟𝑎𝑖𝑛𝑡 

Snowfall 𝑠𝑛𝑜𝑤𝑡  Minimum temperature 𝑇𝑚𝑖𝑛,𝑡 

Maximum temperature 𝑇𝑚𝑎𝑥,𝑡 
Refrozen retained water in the 

snowpack 
𝑅𝑓𝑡 

Accumulated snow 𝑆𝑃𝑡 Average temperature 𝑇𝑎𝑣𝑒,𝑡 

Snowmelt 𝑆𝑚𝑡
 

Retained water in the snow 

medium 
𝑆𝑤𝑡 

Water that leaves the snow 

medium 
𝐿𝑊𝑡 Snow cover coefficient 𝑀𝑡 

Soil temperature 𝑆𝑇𝑡 Soil moisture 𝑆𝑀𝑡 

Soil revised curve number 𝐶𝑁𝑠𝑜𝑖𝑙,𝑡 Initial abstraction 𝐼𝐴𝑡  

Soil retention 𝑆𝑅𝑡 Infiltration 𝐼𝑡  

Direct runoff 𝐷𝑅𝑡 Soil moisture recharge 𝑆𝑀𝑅𝑡 

Groundwater recharge 𝐺𝑊𝑅𝑡 Potential evapotranspiration 𝐸𝑇𝑃𝑡  

Actual evapotranspiration 𝐸𝑇𝐴𝑡 Shallow groundwater storage 𝑆𝑆𝑡  

Interflow 𝐼𝐹𝑡 Baseflow 𝐵𝐹𝑡 

Percolation to deep layers 𝑃𝐸𝑅𝐶𝑡 Streamflow 𝐹𝑡 

Deep groundwater storage 𝐷𝑆𝑡  
The total flow in the outlet of the 

basin 
𝑇𝐹𝑡 

Routed streamflow 𝑅𝐹𝑡   
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Table A.1 Variables and parameters used in the hydrological model equations 

(cont’d) 

 Parameter/Variable Abbreviation Parameter/Variable Abbreviation 
C

a
li

b
r
a

ti
o

n
 p

a
r
a
m

e
te

r
s 

Snow gauge correction factor SCF Snowfall temperature threshold 𝑇𝑎,𝑡ℎ𝑟𝑒𝑠 

Degree-day coefficient 𝐷𝐷 Snowmelt temperature threshold 𝑇𝑚,𝑡ℎ𝑟𝑒𝑠 

Snow’s retaining capacity 

coefficient 
𝑆𝑛𝑜𝑤𝑐𝑎𝑝 Refreeze coefficient 𝐹 

Soil curve number 𝐶𝑁 Soil field capacity 𝐹𝐶 

Wilting point coefficient 𝑊𝑃 Frozen soil temperature threshold 𝑆𝑇𝑡ℎ𝑟𝑒𝑠 

Frozen soil coefficient 𝐹𝑆𝐶 Moisture coefficient 𝛽 

Wet-period interflow coefficient 𝐾0 Wet-period threshold 𝐿 

Normal interflow coefficient 𝐾1 Percolation coefficient 𝐾𝑝 

Baseflow coefficient 𝐾2 Delay length 𝑁𝑑𝑒𝑙𝑎𝑦 
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{
 

 
𝑟𝑎𝑖𝑛𝑡 = 𝑃𝑡  ;  𝑠𝑛𝑜𝑤𝑡 = 0                                                                                                                                  𝑇𝑚𝑖𝑛,𝑡 ≥ 𝑇𝑎,𝑡ℎ𝑟𝑒𝑠  

𝑟𝑎𝑖𝑛𝑡 =
𝑇𝑚𝑎𝑥,𝑡 − 𝑇𝑎,𝑡ℎ𝑟𝑒𝑠
𝑇𝑚𝑎𝑥,𝑡 − 𝑇𝑚𝑖𝑛,𝑡

× 𝑃𝑡;   𝑠𝑛𝑜𝑤𝑡 = 𝑆𝐶𝐹 × (𝑃𝑡 − 𝑟𝑎𝑖𝑛𝑡);                 𝑇𝑚𝑖𝑛,𝑡 < 𝑇𝑎,𝑡ℎ𝑟𝑒𝑠 𝐴𝑁𝐷 𝑇𝑚𝑎𝑥,𝑡 > 𝑇𝑎,𝑡ℎ𝑟𝑒𝑠  

𝑟𝑎𝑖𝑛𝑡 = 0;  𝑠𝑛𝑜𝑤𝑡 = 𝑆𝐶𝐹 × 𝑃𝑡;                                                                                                                      𝑇𝑚𝑎𝑥,𝑡 ≤ 𝑇𝑎,𝑡ℎ𝑟𝑒𝑠

 (Eq. A.1) 

𝑆𝑃𝑡=𝑇 = 𝑆𝑃𝑡=𝑡0 + ∫ (𝑠𝑛𝑜𝑤𝑡=𝑠 + 𝑅𝑓𝑡=𝑠 − 𝑆𝑚𝑡=𝑠
)𝑑𝑠

𝑇

𝑡0
   (Eq. A.2) 

𝑆𝑚𝑡
= min(𝑆𝑃𝑡−1, 𝐷𝐷 ∗ max (0, 𝑇𝑎𝑣𝑒,𝑡 − 𝑇𝑚,𝑡ℎ𝑟𝑒𝑠)) (Eq. A.3) 

𝐿𝑊𝑡 = max (0, 𝑆𝑊𝑡−1
+ 𝑟𝑎𝑖𝑛𝑡 + 𝑆𝑚𝑡

− 𝑅𝑓𝑡 − 𝑆𝑛𝑜𝑤𝑐𝑎𝑝 × 𝑆𝑃𝑡) (Eq. A.4) 

𝑅𝑓𝑡 = min (𝑆𝑊𝑡−1
, 𝐹 × 𝐷𝐷 × max(0, 𝑇𝑎𝑣𝑒,𝑡 − 𝑇𝑚,𝑡ℎ𝑟𝑒𝑠)) (Eq. A.5) 

𝑆𝑊𝑡=𝑇
= 𝑆𝑊𝑡=𝑡0

+∫ (𝑟𝑎𝑖𝑛𝑡=𝑠 + 𝑆𝑚𝑡=𝑠
− 𝑅𝑓𝑡=𝑠 − 𝐿𝑊𝑡=𝑠)𝑑𝑠

𝑇

𝑡0

 
(Eq. A.6) 

𝑆𝑇𝑡 = (𝑇𝑎𝑣𝑒,𝑡−10:𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑆𝑇𝑡−1) × 𝑀𝑡 + 𝑆𝑇𝑡−1 𝑤ℎ𝑒𝑟𝑒 𝑀𝑡 = {
0.1        𝑆𝑃𝑡 > 0

0.25     𝑆𝑃𝑡 = 0
   

(Eq. A.7) 
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  𝑆𝑇𝑡 ≤ 𝑇𝑠,𝑡ℎ𝑟𝑒𝑠:  𝐶𝑁𝑠𝑜𝑖𝑙,𝑡

=  

{
 
 

 
 𝐶𝑁 −

20 × (100 − 𝐶𝑁)

100 − 𝐶𝑁 + exp(2.533 − 0.0636 × (100 − 𝐶𝑁))
                      𝑆𝑀𝑡 < 𝑊𝑃 × 𝐹𝐶

𝐶𝑁 × (0.00673 × (100 − 𝐶𝑁))                                                                  𝑆𝑀𝑡 > 0.95 × 𝐹𝐶

𝐶𝑁                                                                                             𝑊𝑃 × 𝐹𝐶 ≤ 𝑆𝑀𝑡 ≤ 0.95 × 𝐹𝐶

 

(Eq. A.8) 

𝑆𝑇𝑡 > 𝑇𝑠,𝑡ℎ𝑟𝑒𝑠:  𝐶𝑁𝑠𝑜𝑖𝑙,𝑡 = 𝐶𝑁 + (100 − 𝐶𝑁) × min (1,
𝑆𝑀𝑡

𝐹𝐶
)
𝐹𝑆𝐶

   
(Eq. A.9) 

𝑆𝑅𝑡 = 25.4 × (
1000

𝐶𝑁𝑠𝑜𝑖𝑙,𝑡
− 10) 

(Eq. A.10) 

𝐼𝐴𝑡 = 0.2 × 𝑆𝑅𝑡 (Eq. A.11) 

𝐷𝑅𝑡 = {

(𝐿𝑊𝑡 − 𝐼𝐴𝑡)
2

𝐿𝑊𝑡 − 𝐼𝐴𝑡 + 𝑆𝑅𝑡
𝐿𝑊𝑡 > 𝐼𝐴𝑡

0 𝐿𝑊𝑡 ≤ 𝐼𝐴𝑡

 

(Eq. A.12) 

𝐼𝑡 = 𝐿𝑊𝑡 − 𝐷𝑅𝑡 (Eq. A.13) 
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𝐺𝑊𝑅𝑡 = (
SMt−1

FC
)
β

× 𝐼𝑡 
(Eq. A.14) 

𝑆𝑀𝑅𝑡 = 𝐼𝑡 − 𝐺𝑊𝑅𝑡 (Eq. A.15) 

𝐸𝑇𝐴𝑡 = 𝐸𝑇𝑃𝑡 ×min (1, 𝑆𝑀𝑡−1 ×𝑊𝑃) (Eq. A.16) 

𝑆𝑀𝑡=𝑇 = 𝑆𝑀𝑡=𝑡0 +∫ (𝑆𝑀𝑅𝑡=𝑠 − 𝐸𝑇𝐴𝑡=𝑠)𝑑𝑠
𝑇

𝑡0

 
(Eq. A.17) 

𝐼𝐹𝑡 = 𝐾0 ×max(0, 𝑆𝑆𝑡−1 − 𝐿) − 𝐾1 × 𝑆𝑆𝑡−1 (Eq. A.18) 

𝑃𝐸𝑅𝐶𝑡 = 𝐾𝑝 × 𝑆𝑆𝑡−1 (Eq. A.19) 

𝐵𝐹𝑡 = 𝐾2 × 𝐷𝑆𝑡−1 (Eq. A.20) 



102 

𝑆𝑆𝑡=𝑇 = 𝑆𝑆𝑡=𝑡0 +∫ (𝐺𝑊𝑅𝑡=𝑠 − 𝐼𝐹𝑡=𝑠 − 𝑃𝐸𝑅𝐶𝑡=𝑠)𝑑𝑠
𝑇

𝑡0

 
(Eq. A.21) 

𝐷𝑆𝑡=𝑇 = 𝐷𝑆𝑡=𝑡0 +∫ (𝑃𝐸𝑅𝐶𝑡=𝑠 − 𝐵𝐹𝑡=𝑠)𝑑𝑠
𝑇

𝑡0

 
(Eq. A.22) 

𝐹𝑡 = 𝐷𝑅𝑡 + 𝐼𝐹𝑡 + 𝐵𝐹𝑡 (Eq. A.23) 

𝑅𝐹𝑡 = ∑ 𝑇𝐷(𝑖) × 𝐹𝑡−𝑖+1

𝑁𝑑𝑒𝑙𝑎𝑦

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑇𝐷(𝑖) = ∫
2

𝑁𝑑𝑒𝑙𝑎𝑦
− |𝑥 −

𝑁𝑑𝑒𝑙𝑎𝑦

2
| ×

4

𝑁𝑑𝑒𝑙𝑎𝑦
𝑑𝑥

𝑖

𝑖−1

 

(Eq. A.24) 

𝑇𝐹𝑡 = 𝑅𝐹𝑡 × 𝐴𝑟𝑒𝑎 (Eq. A.25) 
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APPENDIX B   SCHEMATIC OF THE GR4J HYDROLOGICAL MODEL 

 

Figure B.1   Schematic of the GR4J hydrological models. X1 to X4 are calibration parameters. 

 


