
Titre:
Title:

An Empirical Study of Testing and Release Practices for Machine
Learning Software Systems

Auteur:
Author:

Moses Openja

Date: 2021

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Openja, M. (2021). An Empirical Study of Testing and Release Practices for
Machine Learning Software Systems [Mémoire de maîtrise, Polytechnique
Montréal]. PolyPublie. https://publications.polymtl.ca/9177/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9177/

Directeurs de
recherche:

Advisors:
Foutse Khomh

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9177/
https://publications.polymtl.ca/9177/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

An Empirical Study of Testing and Release Practices for Machine Learning
Software Systems

MOSES OPENJA
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie informatique

Août 2021

© Moses Openja, 2021.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

An Empirical Study of Testing and Release Practices for Machine Learning
Software Systems

présenté par Moses OPENJA
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Ettore MERLO, président
Foutse KHOMH, membre et directeur de recherche
Heng LI, membre

iii

DEDICATION

Dedicated to
My dear beloved mother, Rose Biywaga (decease),

and My dad John Yuka, My big brother Godfred, my dear siblings,
and not forgetting Adubango Emmanuel and his family.

Thank you for all your endless love,
sacrifices, and support. . .

iv

ACKNOWLEDGEMENTS

I want to acknowledge all who contributed to the completion of this thesis in one way or
another. First and foremost, I wish to express my deep and sincere gratitude to my super-
visor, prof. Foutse Khomh, for his tremendous support throughout, guidance, motivation,
and patience, and for giving me an excellent atmosphere to conduct my research. His vast
knowledge and logical way of thinking helped me throughout this process. Furthermore, his
knowledge and warmth made the collaboration highly beneficial for me. It has always been
a great pleasure to work with him; the lessons he taught me to go beyond what is written in
this thesis and will help me in all aspects of my life.

In a special way, I want to acknowledge prof. Foutse Khomh, prof. Zhen Ming (Jack) Jiang,
prof. Ahmed E. Hassan, and prof. Bram Adams for reviewing these works and all their
comments, sharing their knowledge and ideas throughout this study.

I want to acknowledge the committee members of my thesis, prof. Ettore Merlo and Prof.
Heng Li for taking interest in my work and sacrificing their efforts and time to review my
thesis and provide insightful feedback. I also want to acknowledge the member of SWAT
Lab, especially those who help in the manual labeling of the different testing strategies, ML
properties, the test methods, and release engineering topics presented in this thesis. These
include the following SWAT Lab member: Amin Nikanjam, Ph.D., Mehdi Morovati, Ph.D.,
Dima Gumenyuk, Msc., Mohamed Raed El Aoun, Msc, Mouna Abidi, Ph.D., Gias Uddin,
Ph.D., Md Saidur Rahman, Ph.D., and Gabriel Laberge Ph.D.

I want to acknowledge the other professors and technical staff at the Computer Engineering
Department at École Polytechnique de Montréal and SWAT Lab to provide a conducive
environment for my research career. Finally, I would like to thank the SEMLA committee
for organizing different workshops, most of which were directly beneficial in this study.

v

RÉSUMÉ

Nous assistons à une adoption croissante des algorithmes d’apprentissage automatique et
d’apprentissage profond dans de nombreux systèmes logiciels, y compris dans des domaines
critiques telque la santé et les transports. D’une part, assurer la qualité logicielle de ces
systèmes est encore un défi ouvert pour la communauté des chercheurs, principalement en
raison de la nature inductive de l’apprentissage automatique. Mais, d’un autre côté, les
équipes d’ingénierie et de mise en production de systèmes intégrant l’intelligence artificielle,
sont tenues de fournir continuellement des produits logiciels de haute qualité aux utilisateurs.

Récemment, la communauté de génie logiciel a commencée à adapter plusieurs concepts des
tests de logiciels traditionnels, tels que les tests par mutation, afin d’améliorer la fiabilité des
systèmes logiciels basés sur l’apprentissage automatique. De plus, pour faciliter le processus
de livraison de ces systèmes, les éditeurs de logiciels proposent de nouveaux changements dans
leur processus de mise en production qui s’adaptent aux nouvelles technologies telles que le dé-
ploiement continu et l’Infrastructure-as-Code. Cependant, les ingénieurs en charge de la mise
en production de ces logiciels éprouvent des difficiles d’implémentation de ces technologies et
ont recours à des sites Web de questions et réponses tels que StackOverflow pour trouver des
réponses. Concernant la qualité des systèmes logiciels basés sur l’apprentissage automatique,
il n’est pas clair si les techniques de test proposées dans les travaux de recherche académiques
sont adoptées en pratique. De plus, il existe très peu d’information sur les stratégies de test
employés par les ingénieurs des systèmes logiciels basés sur l’apprentissage automatique.

Pour combler les lacunes, cette thèse rapporte trois études empiriques: 1) Une étude sur les
pratiques de test de systèmes logiciels basés sur l’apprentissage automatique; identifiant, les
propriétés testées, les stratégies de test suivies, et leur mise en œuvre tout au long du cycle
de développement de composants d’apprentissage automatique. 2) Une étude des types de
tests/méthodes de tests utilisés en pratique tout au long des phases de développement de sys-
tèmes logiciels basés sur l’apprentissage automatique. 3) Une étude basée sur StackOverflow,
permettant d’identifier les défis de la mise en production des systèmes logiciels.

Nous présentons une analyse systématique des différentes stratégies de test (telles que l’approximation
Oracle), des propriétés testes dans les composants d’apprentissage automatique (telles que
l’exactitude, la robustesse, l’efficacité, le biais et l’équité) et les méthodes de test (par exem-
ple, les tests unitaires, les tests d’intégration, ou les tests exploratoire). Cette étude a été
menée via des analyses qualitatives et quantitatives. Plus précisément, nous avons extrait les
fichiers de test et les cas de test correspondants de neuf systèmes de basés sur l’apprentissage

vi

automatique, à code source libre, hébergés sur GitHub, et, à la suite d’une procédure de
codage ouverte, nous avons examiné manuellement les stratégies de test proposées dans la
littérature de recherche existante qui ont été mises en œuvre, ainsi que les propriétés testées,
et les différents types de tests/méthodes de test, dans le but de comprendre comment le test
est opérationnalisé dans les systèmes logiciels basés sur l’apprentissage automatique. Nos
résultats montrent que : 1) L’injection de fautes, les vérifications Oracle Approximation,
State transition, Value Range analysis et Decision & Logical conditional sont cinq stratégies
de test couramment utilisées par les ingénieurs tout au long du cycle de développement.
2) Nous identifions 20 propriétés testées fréquement, notamment Sécurité & Confidential-
ité, Consistance, Correction fonctionnelle, Robustesse et Importance des fonctionnalités. 3)
Les stratégies de test telles que Fault-injection (c’est-à-dire Null Reference detection, Module
import error), Oracle Approximation (c’est-à-dire Absolute Relative Tolerance, Error bound-
ing), Negative Test, Value Range Analysis sont utilisées dans différentes activités du cycle de
développement des composants d’apprentissage automatique. De même, les propriétés telles
que Consistance, Complétude ou Efficacité sont testées fréquement lors de plusieurs activités.
De plus, nous examinons comment les stratégies de test et les méthodes de test sont utilisées
pour vérifier différentes propriétés dans les projets logiciels étudiés. Concernant les méth-
odes de test utilisées, nous avons identifié un total de 11 de différents types de tests, dont
seulement six sont inclus dans la pyramide des tests pour systèmes basés sur l’apprentissage
automatique. En outre, nous examinons comment les méthodes de test sont utilisées dans
les différents projets logiciels étudiées et comment les méthodes de test sont utilisées pour
vérifier différentes propriétés des composants d’apprentissage automatique.

En ce qui concerne les défis de mise en production, en utilisant des techniques de modélisation
de sujets (topic modeling), nous constatons que (i) les développeurs discutent sur un large
éventail de sujets d’ingénierie de mise en production. Au total, nous avons identifiés 38
sujets couvrant les six phases de l’ingénierie de mise en production de systèmes logiciels,
(ii) les sujets Conflit de fusion, Branching & Remote Upstream sont plus populaires, tandis
que les sujets Code review, Web deploy, MobileApp Debugging & Deployment, Continuous
Deployment sont moins populaires mais plus difficiles, (iii) En particulier, le sujet portant
sur la “sécurité ” est à la fois populaire et difficile selon les données collectées à partir de
StackOverflow. De plus, nous avons constaté que le sujet portant sur le test, i.e., Software
Testing est le plus discuté (pourcentage le plus élevé) au cours de la phase CI/CD de la mise en
production. Ce qui pourrais signifier que le test constitue le défi majeur de l’automatisation
du processus de mise en production des systèmes logiciels, tant celui des logiciels traditionnels
que celui des logiciels basés sur l’apprentissage automatique.

vii

ABSTRACT

We are witnessing an increasing adoption of machine learning (ML) and deep learning (DL)
algorithms in many software systems, including safety-critical systems such as health care
systems or autonomous driving vehicles. On the one hand, ensuring the software quality
of these systems is yet an open challenge for the research community, mainly due to the
inductive nature of ML software system. But, on the other hand, the ML and the Release
engineering teams are continuously required to deliver high-quality ML software products to
the end-user.

Few recent research advances in the quality assurance of ML systems have been adapting
different concepts from traditional software testing, such as mutation testing, to help im-
prove the reliability of ML software systems. Also, to assist in the delivery process of these
systems, modern ML software companies are proposing new changes in their delivery process
that adapt to new technologies such as continuous deployment and Infrastructure-as-Code.
However, the ML and release engineers still find these practices challenging and resort to
question and answer websites such as StackOverflow to find answers. For the ML software
quality, it is unclear if any of the proposed testing techniques from research are adopted
in practice. Moreover, there is little empirical evidence about the testing strategies of ML
engineers. Software testing and release engineering together are important for the efficient
delivery of reliable ML applications.

To fill the gaps, this thesis reports three empirical studies: 1) a study of the ML testing prac-
tices in the wild, to identify the ML properties being tested, the testing strategies followed,
and their implementation throughout the ML workflow. 2) a study of the types of test/ test-
ing methods used in practice throughout the development phases of an ML software system.
3) instead of studying release engineering for ML applications only, the thesis studies release
engineering in the general software domain, as releasing engineering of ML applications still
lack sufficient data and lessons learnt from general software applications can provide insights
for releasing ML applications.

To study ML testing practices, first, we systematically summarized the different testing
strategies (such as Oracle Approximation), the ML test properties (such as Correctness, Ro-
bustness, Efficiency, Bias and Fairness), and the testing methods (e.g., Unit Test, Integration,
Manual/ Exploratory Test) from the previous literature. Then, we conduct the study using
a mixture of qualitative and quantitative analysis. Specifically, we extracted the test files
and the corresponding test cases of nine open source ML systems hosted on GitHub, and

viii

following an open coding procedure we manually examined the testing strategies proposed in
the existing research literature that were implemented, as well as the tested properties, and
the different types of tests/ testing methods with the aim to understand how the tests are
being operationized in the delivery of ML based software systems. Our findings show that:
1) Fault Injection, Oracle Approximation, State transition, Value Range analysis, and Deci-
sion & Logical conditional checks are five commonly used testing strategies used by engineers
throughout ML workflow. 2) We identify 20 ML properties that engineers frequently test in
an ML workflow, including Security & Privacy, Consistency, Functional Correctness, Robust-
ness and Feature importance. 3) The testing strategies such as Fault-injection (i.e., Value
error, Null Reference, Runtime error and Exception), Oracle Approximation (i.e., Absolute
Relative Tolerance, Error bounding), Negative Test, Value Range Analysis are used across
different ML workflow activities. Similarly, the ML properties such as Consistency, Com-
pleteness, or Efficiency are being tested across multiple ML workflow activities compared to
other ML properties. Moreover, we examine how the testing strategies and testing methods
are used to verify different ML properties across the studied ML software systems. For the
testing methods used in ML software system, we identified a total of 11 different types of
tests, out of which only six are included in the Test Pyramid of ML. Also, we examine how
the testing methods are being used across different ML software systems, and how the testing
methods are used in verifying different ML properties.

Regarding the release engineering topics, using topic modeling techniques, we find that (i)
developers discuss on a broader range of 38 release engineering topics covering all the six
phases of modern release engineering, (ii) the topics Merge Conflict, Branching & Remote
Upstream are more popular, while topics Code review, Web deployment, MobileApp Debug-
ging & Deployment, Continuous Deployment are less popular yet more complicated, (iii)
particularly, the release engineering topic “security” is both popular and difficult according
to data collected from StackOverflow. Moreover, we found that Software Testing is the most
discussed (highest percentage) during the CI/CD phase of release engineering. This can po-
tentially indicate that Software Testing is a general challenge when automating the delivery
process of both ML and traditional software.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xv

LIST OF SYMBOLS AND ACRONYMS . xvi

LIST OF APPENDICES . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Practice of Testing ML software systems . 2
1.2 Release Engineering Topics . 2
1.3 Thesis Overview . 3
1.4 Thesis Contributions . 5
1.5 Thesis Implication . 6
1.6 Thesis organization . 7

CHAPTER 2 BACKGROUND . 9
2.1 Testing practices for ML software system . 9

2.1.1 Testing Strategies and ML Properties 9
2.1.2 Testing in Python and C/C++-based projects: 9
2.1.3 Machine Learning workflow . 12
2.1.4 testing methods and Test Pyramid for ML software system 14

2.2 Modern Release Engineering . 16

CHAPTER 3 A COMPREHENSIVE REVIEWOF SOFTWARE ENGINEERING STUD-
IES . 19

x

3.1 Software Engineering Studies on Testing practices for ML software system . 19
3.2 Software Engineering Studies on Release Engineering 20

CHAPTER 4 STUDYING THE PRACTICES OF TESTING MACHINE LEARNING
SOFTWARE IN THE WILD . 22
4.1 Introduction . 22
4.2 Methodology . 26
4.3 Results . 35

4.3.1 RQ1: What are the testing strategies used across the ML workflow? . 35
4.3.2 RQ2: What are the specific ML properties tested in a ML workflow? 44
4.3.3 RQ3: Are testing strategies and ML properties used consistently across

different projects? . 51
4.3.4 RQ4: How are testing strategies used in verifying different ML Prop-

erties? . 54
4.4 Discussion and Implications . 56
4.5 Threats to Validity . 59
4.6 Summary . 60

CHAPTER 5 STUDYING THE TYPES OF TEST/ TESTING METHODS in AN ML
WORKFLOW . 62
5.1 Introduction . 62
5.2 Methodology . 63
5.3 Results . 65

5.3.1 RQ1: What are the software testing methods used in an ML workflow? 66
5.3.2 RQ2: Are testing methods used consistently across projects? 69
5.3.3 RQ3: How are ML properties being tested along different testing levels? 72

5.4 Discussion and Implications . 74
5.5 Summary . 75

CHAPTER 6 STUDYING RELEASE ENGINEERING CHALLENGES USING STACK-
OVERFLOW . 76
6.1 Introduction . 76
6.2 Methodology . 78
6.3 Results . 85

6.3.1 RQ1: What topics are discussed around Release Engineering? 85
6.3.2 RQ2: What topics are popular among the release engineers? 91
6.3.3 RQ3: How do topic popularity and difficulties correlate? 91

xi

6.3.4 RQ4: How do topic popularity and difficulties correlate? 93
6.3.5 RQ5: What types of questions do release engineers ask in StackOverflow? 95

6.4 Discussion and Implications . 96
6.5 Threats to validity . 97
6.6 Summary . 98

CHAPTER 7 CONCLUSION . 99
7.1 Summary . 99
7.2 Future Works . 101
7.3 Authors remarks . 101

REFERENCES . 103

APPENDICES . 115

xii

LIST OF TABLES

4.1 List of studied Machine learning software systems and their
characteristics. Com: Number of commits, Stars: Number of Stars,
Language: The dominant programming language and their composi-
tion, Samp: The random sample size of the test cases based on 95%
confidence and a 5% confidence interval (refer to following step), Re-
lease: The release version studied, Testing Framework: The unit test-
ing framework . 28

4.2 The list of common Testing Strategies and their percentage
composition across the ML Workflow. The highlighted cells in
yellow indicate the highest value of the percentage test proportional Tc

for each testing strategies. Due to space constrians, the following terms
are abbreviated: Data: Data Collection, Clean: Data Cleaning, Label:
Data Labelling, Feat: Feature Engineering, Train: Model training re-
lated activities including model fit, prediction, hyper-parameter tuning,
Eval: Model Evaluation and Post Processing, Deploy: Model Deploy-
ment activities including Model inspection, model update, pickling and
pipeline export, Moni: Monitoring including Model Monitoring and In-
spection, Config: Share configurations and Utility file or frameworks
used across ML workflow activities 40

4.3 The list of common ML Tests Properties and their percent-
age composition across the ML Workflow. Data: Data Col-
lection, Clean: Data Cleaning, Label: Data Labelling, Feat: Feature
Engineering, Train: Model training related activities including model
fit, prediction, hyper-parameter tuning, Eval: Model Evaluation and
Post Processing, Deploy: Model Deployment activities including Model
inspection, model update, pickling and pipeline export, Moni: Moni-
toring including Model Monitoring and Inspection, Config: Share con-
figurations and Utility file or frameworks used across ML workflow
activities, C&R: Category and Related works 45

xiii

4.4 The percentage number of testing strategies aiming to verify
the ML test properties in the ML software project. The high-
lighted values (in yellow) are the highest percentage of testing strate-
gies (only for ML specific, refer to column ‘ML specific’ in Table 4.2
) across the ML properties for each projects. For example, in about
(55%) projects (i.e., Apollo, tpot, Ray, Autokeras, and Nupic) the test-
ing strategy Value Error has the highest percentage of test verifying the
ML property Data Validity. Due to space constraints, we use the fol-
lowing abbreviations for various testing strategies: Value: Value Error,
Type:Type Error, Runtime: Runtime Error and Exception, Memory:
Memory Error, Module: Module Import Error, Lookup: Lookup Er-
ror, AbsoluteRT : Absolute Relative Tolerance, EB: Error Bounding,
RoundingT : Rounding Tolerance, Logical: Decision and Logical Con-
dition, State: State Transition, ValueRange: Value Range Analysis,
Member : Membership Testing P1: Apollo, P2: Tpot, P3: Ray, P4:
Nni, P5: Autokeras, P6: Auto-sklearn, P7: Automl, P8: Nupic, P9:
DeepSpeech . 55

5.1 The list of 11 Test types/ test methods, and their correspond-
ing test categories, arranged basing on the level of the test
(from bottom to top) during the continuous delivery of ML
software system. Data: Data Collection, Clean: Data Cleaning, La-
bel: Data Labelling, Feat: Feature Engineering, Train: Model training
related activities including model fit, prediction, hyper-parameter tun-
ing, Eval: Model Evaluation and Post Processing, Deploy: Model De-
ployment activities including Model inspection, model update, pickling
and pipeline export, Moni: Monitoring including Model Monitoring
and Inspection, Config: Share configurations and Utility file or frame-
works used across ML workflow activities, Cat: The test category, proj:
percentage number of projects with the test method. 67

5.2 The percentage number of testing strategies aiming to verify
the ML properties in the studied ML software project. The
highlighted values (in yellow) indicate the composition of tests corre-
sponding to test method with the highest value across ML properties,
for each projects. P1: Apollo, P2: Tpot, P3: Ray, P4: Nni, P5: Au-
tokeras, P6: Auto-sklearn, P7: Automl, P8: Nupic, P9: DeepSpeech
. 73

xiv

6.1 The Selected significantly relevant tag-sets (in light gray) for 6 releng
phases. 82

6.2 Release Engineering Topic Label, Category, and their top 10 stemmed
words separated by a commas . 86

6.3 Releng Topics Popularity . 92
6.4 Releng Topics Difficulty . 92
6.5 Correlations of releng topics popularity/difficulty. 94
A.1 API code example for expressing Value Range analysis and Decision

& Logical Condition Test . 115
A.2 Assertion API example code expressing the selected testing strategies 116

xv

LIST OF FIGURES

2.1 The example of a test file in Python that uses unittest testing frame-
work. We use the different color codes defined as follows: The dotted
orange line is the code under test, dotted green line indicate the test
case definition, dotted gray lines indicate the test functions/ tests, bold
gray lines indicate the ML properties being tested, and the bold light
blue color indicate the testing strategies. 10

2.2 The example of test file in C++ that uses ‘Google Test’ testing
framework. We use the different color codes defined as follows: The
dotted green line indicate the test case definition, dotted gray lines indi-
cate the test functions/ tests, bold gray lines indicate the ML properties
being tested, and the bold light blue color indicate the testing strategies. 11

2.3 An overview of the machine learning workflow adopted from [1] . . . 12
2.4 The Test Pyramid for Continuous Delivery of Machine Learning based

software system proposed in [2] . 14
4.1 An overview of our study design/ methodology 26
4.2 Overview of the common testing strategies found in the studied ML

Systems. The nine (9) high-level categories of the testing strategies
are highlighted in light gray color code, while the sub-categories are
shown in white boxes. 36

4.3 The composition of the testing strategies across the studied ML soft-
ware projects. We used the three (3) Keys: Tol for Tolerance, OA for
Oracle Approximation, and F-I for Fault Injection testing. 52

4.4 The composition of ML properties across the studied ML software
projects . 53

5.1 Comparing the percentage composition of test types/ methods across
the studied ML software systems. 70

6.1 Overview of our data analysis process. 79
6.2 Percentage of questions asked in Release Engineering Topics 87
6.3 Topics and percentage number of their questions. 88
6.4 Comparison of releng topics by popularity & difficulty 94
6.5 Distributions of questions type in Releng topics category 95

xvi

LIST OF SYMBOLS AND ACRONYMS

ML Machine Learning

DL Deep Learning

CD4ML Continuous Delivery for ML software project

CI Continuous Integration

CD Continuous Deployment

AUT Application Under Test

UI User Interface

VCSs Version Control Systems

API Application Programming Interface

SA Sensitive Attribute

LDA Latent Dirichlet allocation

NLP Natural Language Processing

OA Oracle Approximation

F-I Fault Injection

BLOB Binary Large Object

CNN Convolution Neural Network

xvii

Tol Tolerance

FST Finite State Transducer

Q&A Question and Answer

RQ Research Question

HTML Hypertext Markup Language

URL Uniform Resource Locator

releng Release Engineering

xviii

LIST OF APPENDICES

Appendix A Assertion API and example code representing the Test strategies . . . 115

1

CHAPTER 1 INTRODUCTION

The increasing adoption of Machine Learning (ML) and Deep Learning (DL) in many software
systems, including safety-critical software systems (e.g., autonomous driving [3, 4], medical
software systems [5]) raises concerns about their reliability and trustworthiness. Ensuring
the quality of these software systems is yet an open challenge for the research community.
The main reason behind the difficulty to ensure quality in ML software systems is the shift in
the development paradigm induced by ML. On the other hand, due to the market pressure,
software industries are continuously required to deliver high-quality software products to the
end-users faster. Unlike a few years ago, when ML software companies could work for months
or even years on a release, many software companies now have only a limited time (e.g., a
few weeks, days, or even hours) to ship their latest features to end users [6]. For instance
Facebook Mobile app have reduced their release “cycle time” to between two to six weeks,
while Facebook web releases new features (1-2 times) a day [7].

A Few research advances in quality assurance on ML systems recently have been adapting
different concepts from traditional software testing (i.e., software not using ML), such as
evaluating their effectiveness (e.g., mutation testing [8, 9]) and new techniques to verify the
security or privacy of the ML system (e.g., Spoofing attacks in autonomous systems [10,11]),
to help improve the reliability of ML based software systems. Little is known about the
current practices on testing ML software systems. It is unclear if there are new unique
testing techniques that originated from the practice. Also, the ML and release engineers may
find it challenging to adapt the different release engineering practices and resort to question
and answer websites such as StackOverflow to find answers. Software testing and release
engineering together are important for the efficient delivery of reliable ML systems.

To fill the gaps, in this thesis, we perform the empirical studies broken down into two parts: 1)
study of the ML testing practices in the wild, to identify the ML properties being tested, the
testing strategies follow, and their implementation throughout the ML workflow. 2) instead
of studying release engineering for ML systems only, the thesis studies release engineering in
the general software domain from the discussion in StackOverflow to understand the modern
release engineering topics of interest and their difficulty. Releasing engineering of ML systems
still lack sufficient data and therefore the lessons learnt from general software applications
can provide insights for releasing ML systems.

2

1.1 Practice of Testing ML software systems

Here, we perform the first fine-grained empirical study on ML testing practices in the wild,
specifically broken down into two empirical studies. 1) Examined the ML properties being
tested, and the testing strategies follow, and their implementation throughout the ML work-
flow. ML testing strategies are important to ensure that test activities meet software quality
assurance objectives, and that the best approaches are used to test the behavior of ML sys-
tems (e.g., Oracle Approximation [12]) or to evaluate the effectiveness of existing ML test
cases (e.g., mutation testing). In the context of ML software system, in addition to ensuring
that the program behaves adequately, they also help ensure that important ML properties
(i.e., underspecification issues) are not violated during the development and evolution of the
system [13]. 2) In the second part of understanding the ML test practices, we examined
the different types of tests/ testing methods that are implemented in the ML development
phases, and how they are used to verify the various ML properties. Testing method is the
classification of various testing activities into categories (black or white-box), each aiming
to validate the Application Under Test (AUT) for a defined set of test objective. Like in
traditional software systems, the ML engineers may utilize numerous testing methods, such
as Unit tests, Integration tests, or Manual tests, throughout the development process [2]
to ensure that the ML software system can operate successfully in multiple conditions and
across different platforms. Moreover, we examined how the testing strategies, test properties,
and testing methods are being used (composition) across different ML software systems and
across the ML properties.

1.2 Release Engineering Topics

In this part, we conduct a large-scale empirical study of release engineering related posts on
Stack Overflow.

Release engineering deals with all activities in between regular development and delivery of
a software product to the end user. Through a series of phases such as code integration
from the development branches, build & compilation, package, testing, and signing of the
product for release, release engineers transform developers’ source code into a product ready
for users’ consumption [14–16]. Releasing complex traditional or ML software systems with
hundreds to thousands of users can be challenging and requires skills that are not always well
mastered by developers and engineers. In fact, release engineers must implement continuous
delivery and deployment practices and must be knowledgeable about specialised technologies
and tools that support activities like continuous integration & source control management,

3

testing, cloud provisioning, configuration management, application deployment, release or-
chestration [17]. It is therefore not surprising to see an increase of the prevalence of discussions
about release engineering practices and tools on Q&A online developer forums, such as Stack
Overflow.

By applying topic modeling [18] to understand the discussion topics of release engineers and
identify the most important challenges that they face. We find that (i) developers discuss
on a broader range of 38 release engineering topics covering all the six phases of modern
release engineering, (ii) the topics Merge Conflict, Branching & Remote Upstream are more
popular, while topics Code review, Web deployment, MobileApp Debugging & Deployment,
Continuous Deployment are less popular yet more complicated, (iii) - Particularly, the release
engineering topic “security” is both popular and difficult according to data collected from
StackOverflow.

1.3 Thesis Overview

In this thesis, we report three empirical studies. First, we perform the fine-grained empirical
study on ML testing practices in the wild to identify the ML properties being tested, the
testing strategies follow, and their implementation throughout the ML workflow. Secondly,
using the projects selected in the first empirical study, we further examine the different
testing methods that ML engineers implement during the development process of ML software
systems. Third, we conduct a large-scale empirical study of release engineering posts on Stack
Overflow and apply topic modeling to understand the discussion topics of release engineers
and identify the most important challenges they face.

In the following, we detailed the three empirical studies:

1. Studying the practice of Testing ML Software Application in the wild: First, we system-
atically summarized the different testing strategies (e.g., Oracle Approximation), the
ML test properties (e.g., Correctness, Robustness, Efficiency, Bias and Fairness)

Then, we conducted the study using a mixture of qualitative and quantitative analysis.
Specifically, we extracted the test files and the corresponding test cases of nine open
source ML systems hosted on GitHub, and following an open coding procedure we
manually examined the testing strategies proposed in the existing research literature
that were implemented, as well as the tested properties with the aim to understand
how the test are being operationized in the delivery of Machine Learning.

Our findings show that: 1) Fault-injection, Oracle Approximation, State transition,

4

Value Range analysis, and Decision & Logical conditional checks are five commonly
used testing strategies used by engineers throughout ML workflow. 2) We identify 20
ML properties that engineers frequently test in an ML workflow, including Security &
Privacy, Consistency, Functional Correctness, Robustness and Feature importance. 3)
The testing strategies such as Fault-injection (i.e., Null Reference detection, Module im-
port error), Oracle Approximation (i.e., Absolute Relative Tolerance, Error bounding),
Negative Test, Value Range Analysis are used across different ML workflow activities.
Similarly, the ML properties such as Consistency, Completeness, or Efficiency are being
tested across multiple ML workflow activities compared to other ML properties. Fi-
nally, we compare how the testing strategies and ML properties are used across project
and then examine how the testing strategies are used to verify different ML proper-
ties across the studied ML software systems. We found that at least two (2) testing
strategies are used to verify a single ML property (as observed for at least 80% of the
identified ML properties).

2. Studying the Types of Test in ML Development Phases: In this second empirical study,
we used the same dataset collected in the first empirical study above but now focused
on understanding the testing methods implemented by ML engineers. We first system-
atically summarized the different types of test/ testing methods (e.g., Unit, Integration,
Manual/ Exploratory Test) from the Test Pyramid for ML software systems introduced
by Sato et al. [2]. Then we analysed the types of test used in the studied Ml software
systems. We identified a total of 11 different types of tests, out of which only six are
included in the Test Pyramid of ML software system. The newly observed types of
tests are : Regression Test, Sanity test, Periodic Validation and Verification, Thread
test, and Blob test. This finding suggests that the current Test Pyramid of ML based
software system proposed by Sato et al. is incomplete and should be updated. We
also observed that the following ML properties are tested at different levels on the Test
Pyramid of ML (from the unit level to the system level): Consistency, Completeness,
Correctness, Validity, and Data Distribution.

3. Studying the Release Engineering Topics using StackOverflow: By using the Latent
Dirichlet allocation (LDA) [18] technique, we group and label StackOverflow posts into
38 topics, from a total of 260, 023 release engineering questions and answers posted in
a period of 11 years; i.e., from 2008 to 2019.

Then, we analyze the popularity of release engineering topics using 3 well-known met-
rics, and find the most popular topics to be: Merge Conflict, Branching & Remote
Upstream, and Feature Expansion.

5

Also, we identified the topics that are challenging for the release engineers using a set
of 2 well-known metrics. We find that topics MobileApp Debug & Deployment, Contin-
uous Deployment and Docker are among the most difficult, suggesting that novel tools
and techniques may be needed to support release engineering teams performing these
activities. Also, we found that the topic Software Testing has the highest percentage of
questions asked in the CI/CD phase of release engineering process, potentially indicate
the challenge in the software testing practice.

Moreover we examined the correlation between the popularity and difficulty of release
engineering topics and found that topic Security is both popular and difficult, topics
Merge Conflict, Branching & Remote Upstream, Feature Expansion are among the most
popular, while topics MobileApp Debug & Deployment, Continuous Deployment, and
Docker are among the most difficult.

Finally, we grouped the questions asked by release engineers into How?, Why? and
What? categories. We found that release engineers frequently ask about how? to do
things; often seeking clarifications and explanations (i.e., what?), and less frequently
questioning (i.e., why?) certain aspects of release engineering practices, techniques, and
tools. The high percentage of questions in the category How? suggests that release
engineers need support to create working solutions. Our dataset is available at [19]

1.4 Thesis Contributions

This thesis make the following main research contributions:

• To the best of our knowledge, this is the first empirical study that examines the adoption
of research advances in software testing of ML software systems by the industries,
specifically by examining the testing strategies, the test properties, and the testing
methods adopted in the field.

• For the testing strategies, we highlighted nine major categories of the testing strategies
used by ML engineers, among which only the Oracle Approximation has been empiri-
cally studied. We reported eight newly derived testing strategies from practices, which
are: Fault Injection, Negative Test, State Transition, Value Range Analysis, Instance
and Type Checks, Decision and Logical condition, Membership Testing, and Swarming
testing.

• For the testing properties, we derived a total of 20 different ML properties that the ML
engineers commonly test. Among them, only five of the derived ML properties have

6

been listed by the previous research work (i.e., Correctness, Completeness, Robustness,
Efficiency and Bias and Fairness) [20].

• We summarized 11 different types of tests, out of which five are not included in the
Test Pyramid of ML software systems. These newly identified test types are: Regression
Test, Sanity test, Periodic Validation and Verification, Thread test, and Blob test.

• We provided a comparison of the testing strategies, the testing properties, and testing
methods used across the studied projects to identify common or inconsistent practices
in their existing testing practices. We also compared how the testing techniques are
used to verify each testing property, across the studied ML software systems.

• We highlighted some challenges and proposed new research directions for the research
community. ML practitioners can also leverage our findings to learn about different
testing strategies, properties to test, and testing methods that can be implemented to
improve the reliability of their next ML software system.

• For the release engineering topics, we reported a total of 38 release engineering topics
covering all the six phases of modern release engineering.

• We identified the most prevalent release engineering topics and topics that are chal-
lenging for the release engineers and the topics that are both popular and challenging
to find answers on StackOverflow. Also, we identified the types of release engineering
questions asked by release engineers.

• We highlight a set of implications of the release engineering topics derived in this thesis
to the researchers, the practitioners, and the educators.

1.5 Thesis Implication

Overall, the findings presented in this thesis provide the following actionable implications:

ML engineers can use our presented taxonomy to learn about the existing ML testing strate-
gies that they can implement in their ML workflow, especially the most frequently used
testing strategies. Our results can also guide them on how to test different ML properties.
Also, we recommend that ML and release engineering teams take into consideration the dif-
ficult release engineering topics when distributing works between the project team members.
Release activities related to Security, Docker, Virtualization, Code Review and Continuous
deployment are more difficult and they should be assigned to the more experienced team

7

members. Whereas the tasks related to code integration (with the exception of code re-
view), could be assigned to even a less experienced team members. Moreover, we found that
Software Testing is the most asked questions (highest percentage) in the category CI/CD of
release engineering. This can potentially indicate that Software Testing is a challenge when
automating the delivery process of ML and traditional software.

Researchers can build on our work to further investigate the effectiveness of different ML
testing strategies, and develop quality checking mechanisms for ML software pipelines. We
also, encourage researchers to tackle the top 10 difficult releng topics that we have identified,
i.e., MobileApp Debug & Deployment, Code Review, Docker, Continuous Deployment, Virtu-
alization, Web deployment, Build Error Debug, Web UI Testing, Build System Performance,
Security and Configuration Management. The Security topic is both difficult and popular.
This calls for more attention on releng security challenges. By infecting a build, malicious
users could distribute their malware to thousand and even millions of users. Researchers
should invest in developing efficient techniques and tools to support release engineers.

Designers of testing tools can develop better tooling support to help ML maintenance team
effectively tests for the 20 common ML properties identified throughout ML development life-
cycle. They can also provide infrastructure to automate the identified tests on the continuous
delivery pipeline of ML systems. Also, novel tools and techniques may be needed to support
release engineering teams performing the activities on the most difficult release engineering
topics MobileApp Debug & Deployment, Continuous Deployment and Docker.

The popularity of release engineering topics Merge Conflict, Branching & Remote Upstream,
and Feature Expansion suggests that despite the many version control systems and source
code management tools that exist, developers still struggle with merge conflicts and branching
issues.

1.6 Thesis organization

Chapter 2 provides all background information of the concept used in this thesis, including
the testing strategies, ML properties, the Test Pyramid for ML, the ML workflow, and
Modern release engineering and corresponding the six major phases.

Chapter 3 details the software engineering research works on ML testing and release engi-
neering. We also noted that only few research works has explored the topics on ML software
testing and release engineering.

Chapter 4 presents the first empirical study examining the the adoption of testing strategies,

8

and ML properties from the literature in the field. In this Chapter we answer our first four
proposed research questions.

In Chapter 5, we present the second empirical study examining the the adoption of types
of test, in the field, and how the test are used to test for different ML properties identified
in Chapter 4. In this Chapter we answer three new proposed research questions.

In Chapter 6, we present the third empirical study on understanding the release engineering
topics, the engineers asks in StackOverflow. We answer five more research questions in this
Chapter.

In Chapter 7, we summarized the all the studies presented in this thesis. We also highlights
our future research directions and conclude the thesis.

9

CHAPTER 2 BACKGROUND

2.1 Testing practices for ML software system

This subsection covers the background information on testing strategy, ML properties, ML
Workflow and the test Pyramid for ML software systems in a continuous delivery pipeline.

2.1.1 Testing Strategies and ML Properties

Testing Strategies are the various techniques or approaches used in ensuring the quality of
ML software systems. ML testing strategies are important to ensure that test activities meet
software quality assurance objectives, and that the best approaches are used to test the be-
havior of ML systems (e.g., Oracle Approximation [12]) or to evaluate the effectiveness of
existing ML test cases (e.g., mutation testing). In the context of ML software system, in
addition to ensuring that the program behaves adequately, they also help ensure that impor-
tant ML properties (i.e., underspecification issues) are not violated during the development
and evolution of the system [13].

ML Properties are requirements that are essential to ensure that the models generalize as
expected in deployment scenarios. A violation of such property often results in instability
and poor model behavior in practice. Testing these properties is not only important for
producing high-quality software systems, but also for regulatory or auditing purposes [21].

2.1.2 Testing in Python and C/C++-based projects:

Here introduces the terminology used throughout this thesis (i.e., test cases, tests, testing
strategies, and testing properties/ ML properties) using examples. Python and C/C++ are
the main programming languages [22] used in ML models and ML software systems, hence
we are focusing on their testing practices.

Python provides a rich support of test packages or frameworks to handle both white-box and
black-box testing. Moreover, it is also possible to write any black-box test in Python, even if
the AUT is not written in Python. Depending on the types of tests, different test frameworks
may be chosen. For example, a basic unit test could be handled by the unittest framework
(i.e., a build-in test framework into Python standard library), but other test frameworks like
pytest may work better for higher-level testing such as using test fixtures [23].

Figure 2.1 shows the example code of a test case in Python that uses the build-in unit test

10

Test functions/
tests

Test case
definition

Oracle Approximation
(Rounding Tolerance)

Value Range Analysis

Data Validity

Consistency

Correctness

Fault Injection
(Value Error)

Code under test

Figure 2.1 The example of a test file in Python that uses unittest testing framework. We
use the different color codes defined as follows:
The dotted orange line is the code under test, dotted green line indicate the test case definition,
dotted gray lines indicate the test functions/ tests, bold gray lines indicate the ML properties
being tested, and the bold light blue color indicate the testing strategies.

framework (unittest). A test case is a collection of unit tests that demonstrates that a
function works as expected under a broad range of conditions (in which that function may
find itself and is expected to work successfully). Usually, a test case considers all possible
kinds of input a function under test is expected to receive from users and therefore contains
the tests (test functions/ methods) representing each expected input situation. According to
Figure 2.1, the name of the test case is ‘CategoryShiftTest’ and it contains five (5)
test functions (i.e., methods/functions containing the word ‘test’) such as ‘test_dense’,
‘test_sparse()’, ‘test_negative ‘test_string()’, and

‘test_coalesce_10_percent()’. For simplicity, we will refer to these functions/meth-
ods defined inside the test cases containing the word ‘test’ as Test functions or Tests inter-

11

changeably throughout this thesis. A test file may contain one or multiple test cases, for
example the following reference [24] contains a test file with three test cases corresponding to
three functions. Also, for the situations where the test functions/methods are independent of
each other (no class defined), e.g., manual testing or integration testing, such as in [25], each
test function is defined a separate test case C/C++ supports multiple unit testing frame-
works. The most popular testing frameworks are Google C++ (gTest) [26] and Boost.Test
(Boost) [27]. Both frameworks have closely related features that allow the creation of test
cases and their organization as test suites that can be registered automatically or manually.
Other features supported by both frameworks include the addition of test fixtures for each
test case, test suite, or globally for all test cases. Test fixtures allow for a consistent initializa-
tion and cleaning of resources during the testing process. They also reduce code duplication
between test cases. Other unit testing frameworks used for C/C++ based software systems
include CppUTest [28], Unity [29].

Test case
definition

Tests/
test functions

Correctness

Oracle Approximation
(Absolute Tolerance)

Figure 2.2 The example of test file in C++ that uses ‘Google Test’ testing framework.
We use the different color codes defined as follows:
The dotted green line indicate the test case definition, dotted gray lines indicate the test
functions/ tests, bold gray lines indicate the ML properties being tested, and the bold light
blue color indicate the testing strategies.

Figure 2.2 shows an example of test case using the gTest framework. Figure 2.2 creates a test
case named ‘Angle’ that contains three (3) unit tests (similarly, for simplicity, we will refer
to them as Test functions or Tests throughout this study) ‘SIN_TABLE’, ‘Angle8’ and
‘Angle16’. TEST is a predefined macro defined in gTest that helps define the test case.

A testing strategy is a technique used to verify that an application or function behaves as

12

expected. A test property is a software requirement (functional and non-functional) that
should be meet to ensure that the software product behaves as expected. In the context of
ML based applications, ML properties are essential to ensure that the models generalize as
expected in deployment scenarios. Figure 2.1 and Figure 2.2 presents an example of test
cases implementing different testing strategies for testing different properties. In this work,
we identify test properties and testing strategies from such test. In Figure 2.1 and Figure 2.2,
we further highlighted the different testing strategies and ML properties being tested using
the colour codes Bold light blue lines and Bold gray lines, respectively. We will describe in
details the labeling procedure we followed to derive the different testing strategies and ML
properties in Step 5 and Step 6 of our methodology (Section ??).

2.1.3 Machine Learning workflow

Figure 2.3 highlights the nine activities of a machine learning workflow to build and deploy
ML software system adopted from Microsoft [1] which is also similar as other companies’
process, such as Google [30] or IBM [31].

Data
Collection

Model
Training

Model
 Evaluation

Model
Deployment

Model
Monitoring

Model
Requirements

Data
Cleaning

Data
Labelling

Feature
Engineering

ML workflow

Figure 2.3 An overview of the machine learning workflow adopted from [1]

• Model Requirements: When constructing a machine learning model, the primary stage
is the models requirements stage. Based on the product and the problem statement,
the decision is made on the appropriate types of models for the problem and features
to implement with machine learning.

• Data collection: This stage follows after the model requirements, where the data from
different data sources are identified and gathered. This data may come from batch
storage software component such as databases, file storage or generated from external
components such as detection components (e.g., camera or LiDAR sensors). Indeed,
most ML training would require a considerably large amount of data to train from and
make meaningful inferences on the new data, making the data collection challenging.

13

• Data cleaning: Once the data is gathered, the next stage (Data cleaning) is to process
or clean the data to remove anomalies that are likely to hinder the training phase. Most
activities common to data science are performed during this step, such as generating
descriptive statistics about the features in the data, the distribution of the number of
values per example.

• Data labeling: Assigns ground truth labels to each data record, such as assigning labels
to a set of images with the objects present in the image. This step is required in most
supervised learning techniques to induce a model.

• Feature engineering: This stage is where the features are being prepared and validated
for training. This stage also include data validation which ensure that properties such
as data schema (e.g., features present in the data, expected type of each feature) are
correct. This step further ensures the quality of the training data. As a ML platform
scales to larger data and runs continuously, there is a strong need for an efficient
component that allows a rigorous inspection for data quality.

• Model Training: The training stage uses the prepared features on different implementa-
tions of algorithms to train ML models. Also, the implemented algorithms are subjected
to hyperparameter tuning to get the best performing ML model. Tests such as veri-
fying the validity of model input parameter, or memory leak error detection may be
performed during this step. The result from this step is a trained ML model.

• Model Evaluation: The trained model is then evaluated on an holdout data set, com-
monly referred to as validation set. This evaluation stage is required to confirm the
model adequacy for deployment; i.e., that it can generalize beyond training data.

• Model Deployment: Once the model is evaluated, the ML Model and entire workflow
are then exported (i.e., meta-data information of the model are written in a file or
data store.), to be reused (imported) in other platforms for scoring and—or making
predictions. Developers may test the exported model against the original model’s per-
formance for consistency. Moreover, the portability of the model may be tested at this
stage, to allow its deployment on different platforms (e.g., a model designed in Python
can be utilized inside an Android app).

• Model Monitoring: The final stage of an ML workflow is monitoring, to ensure that the
ML model is doing what is expected from it in a production environment.

Behold the standard workflow structure; in most cases, there is a need for shared
configuration and utilities to allow for integrating these components in a single platform,

14

ensuring consistency across the workflow. For example, transformations at a serving
time may utilize statistics generated by the data analysis component using a shared
utility.

Throughout this thesis, we will refer to the different stages of the ML workflow described in
Figure 2.3 (including the configuration and utility) as ML workflow activities.

2.1.4 testing methods and Test Pyramid for ML software system

Software Testing method is the classification of various testing activities into categories (black
or white-box), each aiming to validate the Application Under Test (AUT) for a defined
set of test objective. Like in Traditional software systems, the ML engineers may utilize
numerous testing methods (such as Unit tests, Integration tests, or Manual tests) throughout
the development process [2] to ensure the ML application can operate successfully in multiple
conditions and across different platforms.

UI
Tests

Service Tests

Unit Tests

ML
Pipeline

Unit Tests
(Transformations)

Data
Pipeline

Data Validation

Unit Tests
(Transformations, Engineered Features)

Contract Tests

Integration Tests

End-to-End Tests

Exploratory
Tests

Model Bias and Faireness

Model Performance

Figure 2.4 The Test Pyramid for Continuous Delivery of Machine Learning based software
system proposed in [2]

Tests in machine learning-based projects are applied to the following three high-level compo-
nents: data, model, and ML code. Each of these components containing multiple functions.
Sato et al. [2] proposed a revised version of the initial Test Pyramid introduced by Mike
Cohn [32], to help developers of ML software system visualize different layers of testing and

15

estimate the amount of testing effort or frequency required on each layer (i.e., the higher is
the level of a type of test on the Pyramid, the lower should be the number of its instances).
This Test Pyramid shown in Figure 2.4 is composed of the following types of test

• Unit tests: They are in the first level of testing at the bottom of the test pyramid. They
aim to verify the correctness of each functionality once the implementation is complete.
We discuss some examples of unit test cases in the following paragraph.

The data pipeline takes input data through a series of transformation steps to generate
the respective output data. Usually, the input and output data are retrieved or stored
in locations such as: a database system, a stream processing, or a file system.

• Data validation tests: Ensure that input data values are valid and follow the right
format. This is done for example by checking for the null value, checking the shape of
the data or ensuring that input data fall within a specific range. Unit tests can also
be used to check that numeric features are scaled or normalized properly, that missing
values are replaced appropriately, or that features vectors are encoded correctly.

• Services are the functional unit of application or business process, which can be reused
or repeated by any other application or process (i.e., a collection of services that are
part of a single functionality). Service Level Testing includes testing the component
for functionality, interoperability, security, and performance. Unit testing ensures each
service are tested independently.

• Model performance tests: Are used to compare performance metrics (such as loss error,
accuracy score, precision and recall, AUC, ROC and confusion matrix) against a specific
threshold, to validate the quality of a model before its deployment.

• User Interface (UI) tests: Are used to verify the aspects of any software application
that an end-user will interact with. This involves testing any visual elements of the
software system, verifying that they are functioning according to requirements (in terms
of functionality and performance and ensuring they are bug-free).

• Bias in the ML model occurs when there is a systematic prejudice in the ML model for
some set of feature values resulting from wrongful assumptions made during the train-
ing process. Many sources of bias exist, such as sampling bias (i.e., over-represented or
under-represented in a training dataset) or label bias (i.e., when the annotation pro-
cess introduces bias during the creation of the training data). On the other hand, an
ML algorithm is fair if its results are not dependent on some variables, such as those

16

considered sensitive. For example, the characteristics of individuals (such as sexual
orientation, gender, disability, ethnicity) should not correlate with the ML model out-
come. Model bias and Fairness tests are used to ensure that no bias is introduced from
the training data, for example by checking how the model performs on a specific data
slice.

• Contract test: Is a testing method for checking the interaction between two separate
systems, such as two microservices for an API provider and a client. It captures and
stores the communication exchanged between each service in a contract, and the stored
interaction is used to verify that both parties adhere to it. Compared to other closely
related approaches (such as Schema testing, Compatibility testing [33]), in the Contract
test, the two systems can be tested independently from each other and the contract is
autogenerated using code.

• Integration tests: Aim to ensure that small combinations of different units (usually two
units) behave as expected and testing that they coherently work together.

• The end-to-end test: Is a type black-box testing type that targets the entire soft-
ware product from start to finish, ensuring that the application behaves as expected.
Through simulating real users’ scenarios, this type of test checks whether all integrated
components can work together as expected.

• Exploratory tests: Are tests performed on the fly (i.e., test cases are not created in
advance), whereby the test cases are designed and executed simultaneously, and the
results observed are used to design the next test.

For simplicity, in this thesis we will use the term test types or testing methods interchangeably
to refer to the test described in Figure 2.4.

2.2 Modern Release Engineering

Release engineering is the process of bringing a high-quality software release product from the
individual code contributions of developers to the end-user. This involves a myriad of tasks
that need to be performed from beginning to finish by an organization’s release engineers (i.e.,
the individuals responsible for developing, operating, maintaining an organization’s release
infrastructure) [16]. A modern release engineering pipeline consists of six (6) major phases
discussed in the following paragraphs.

17

Integration: This first phase of the release engineering pipeline consists of two main ac-
tivities: branching and merging is where the source code changes from different devel-
opers branches (development branches) are moved to a central project repository (master
branch) [34]. The key goal of any software organization is to bring high-quality code changes
as fast as possible to the central repository without affecting code quality [35]. Software
development teams usually rely on Version Control Systems (VCSs) such as Git or Subver-
sion to store the subsequent revisions of each manually created and maintained file. The
project branches are created from some parent branch, such as a master branch, to allow
the development team to record a chronological sequence of code changes (“commits”) on
their individual branch. The changes are made visible to the rest of the team after the
merging—for example, code changes related to fixing a bug or a proposed new feature.

Continuous Integration (CI): This phase of release engineering consists of activities build-
ing and Testing. CI is the process of continuously polling the VCS for new developers’ com-
mits or merges, verifying and compiling them on dedicated build machines, and running the
regressions test [36, 37], to ensure that the new code change do not bring any regressions to
the existing source code.

Build System: This is the set of build specification files used by the Continous Integration
tools (and software engineers) to generate the necessary software deliverables such as binaries,
libraries, or packages from the software source code. In addition, some build system further
automates many other activities, such as test execution and deployment [38].

Infrastructure-as-Code: The term “infrastructure” (or “environment”) refers to either a
cloud, a server, container, or virtual machine on which a new software version is deployed for
testing or even for production. Previously, the deployment team has to manually configure a
server or a virtual machine in line with the deployment demand or whenever a new version of
a software deliverable is available. The infrastructure-as-code is the most recent innovation
in release engineering [39] where the correct environment based specification is generated
automatically using a dedicated programming language such as Ansible, Puppet, CFEngine,
Chef, and Salt.

Deployment: In this phase, the tested deliverables for the new release are staged, waiting
to be released [39, 40]. For example, in the context of web applications, deployment would
mean pushing ML software systems deliverables across a network to the right directory on
a web server. In contrast, deployment of a mobile application may include uploading an
application’s binary to the app store to be ready for release phase (below).

Release: This final phase of a modern release engineering pipeline makes the deployed

18

releases available to the end-user [40]. This phase is followed relatively faster once the de-
ployment phase is complete. With the aid of modern release engineering tools available, this
step has become as simple as clicking a button to make a new release version visible to the
user, for example, releasing a mobile app in the app store. Moreover, some releasing mech-
anisms allow fine-grained access to software based on the user subscription level. Different
system users may access different variants of the software functionality, e.g., a premium user
may have early access to the new release before it is visible to the other users or may access
a “deluxe” version of the software.

19

CHAPTER 3 A COMPREHENSIVE REVIEW OF SOFTWARE
ENGINEERING STUDIES

3.1 Software Engineering Studies on Testing practices for ML software system

This subsection discuss the related works on testing practices for ML software systems.

Braiek and Khomh [41] described the main sources of faults occurring during the development
process of ML based systems, from data preparation to the deployment of models in produc-
tion. Then, they reviewed testing techniques proposed in the literature to help detect these
faults both at the implementation and model levels, describing the context in which they can
be applied and their anticipated outcome. Finally, they highlighted gaps in the literature
related to testing of ML programs and suggest some future research directions. Zhang et
al. [20] presented a comprehensive review of ML testing research, covering testing properties
(such as correctness, robustness, and fairness), testing components (i.e., data, learning pro-
gram, and framework), testing workflows (i.e., test generation and test evaluation), and some
application scenarios (e.g., autonomous driving, machine translation). They defined ML test-
ing as “any activity designed to reveal machine learning bugs” and ML bugs as any flaw in a
machine learning item that leads to an inconsistency between the existing and the required
conditions. They also analyzed research trends, ML testing challenges, and discussed some
avenues for future researches. In this thesis, we examine how the testing properties and the
strategies discussed in their literature review are adopted in practice. Masuda et al. [42] inves-
tigated challenges in ensuring the software quality of ML services available through APIs on
the cloud (i.e., ML-as-a-services). They observe that ML-as-a-services products lack rigorous
quality evaluations, and that there are no specialized techniques adapted to the specificity of
this type of ML software system. Further, they highlighted and discussed problems related to
the deployment of ML models in real-world situations. They also discussed about adapting
well-known software engineering methodologies to ML applications. Nikanjam A. et al [43]
proposed NeuraLint for detecting a fault in DL software systems. Their fault detection ap-
proach was built on top of meta-modeling and graph transformations to cover up to 23 rules
to detect flaws and design issues in the generated models (i.e., instances of the meta-model).
They benchmarked their solution on both synthesized and real-world DL programs extracted
from Stack Overflow posts and GitHub repositories and found 64 design inefficiencies and
flaws with a 100% precision and 70.5%.

Among the ML testing strategies discussed in the literature, Oracle Approximation is the
strategy that recently received an attention [12]. Bias and Fairness are the testing properties

20

that received an attention and was studied empirically in details [44].

• Oracle Approximation: Many reasons may require ML engineers to use Oracle approxi-
mations in ML software system. For example, the implementation results in the ML software
system may slightly differ in each test run due to randomness. Also, ML engineers may
find it hard to define the exact value for a test involving floating-point numbers, thereby
allowing a considerable difference between the computed results and the expected outcomes.
Nejadgholi et al. [12] examined oracle approximation practices in DL libraries. Specifically,
they investigated the prevalence of oracle approximations in the test cases of DL libraries
and found that up to 25% of all the assertions use oracle approximations. The identified
Oracle Approximation techniques include: Absolute Relative Tolerance, Absolute Tolerance,
Rounding Tolerance and Error Bounding. Then, they studied the diversity of test oracles
and thresholds used in oracle approximations and found that oracles used in oracle approx-
imation are mainly derived through computation. Finally, they examined the intent behind
code changes in oracle approximation, and reported some maintenance challenges faced by
DL engineers when using oracle approximation.

• Bias and Fairness: ML software system in addition to being correct and robust should be
fair and without bias. Recently, Galhotra et al. [44] proposed a metric-based testing approach
for measuring fairness in machine learning software systems. The approach measures the
fraction of inputs for which changing specific characteristics causes the output to change,
by relying on causality-based discrimination measures. Using these metrics, automatic test
suites are generated to allow for the detection of any form of discrimination in the ML
models under test. The test cases modify training data inputs that are related to a sensitive
attribute aiming at verifying if the modification causes a change in the outcome. Also, for
a given sensitive attribute (SA), a fairness test validates the model under test by altering
the value of SA for any input and verifying that the output remains unchanged. Using the
proposed fairness test they examined the fairness of 20 real-world ML software systems (12
of these ML software systems were designed with fairness in mind) and observed that even
when fairness is a design goal, developers can easily introduce discrimination in software.

3.2 Software Engineering Studies on Release Engineering

This subsection discuss the related works on testing practices for ML software systems.

Generally speaking, release engineering remains one of the least studied areas in software
engineering. Here we discuss some relevant release engineering works. We also discuss some
works that used topic modeling.

21

(1) Release Engineering: Adams and McIntosh [16] summarized releng activities into
six major phases, and outlined some research direction for the community. Wright and
Perry [45] conducted semi-structured interviews with release engineers to understand why
release process faults and failures occur and how companies recover from them, and how
they can be foretold, and avoided. Castelluccio et al. [46] examined patch uplift operations in
rapid release pipelines and formulate recommendations for improving their reliability. Khomh
et al. [47] analyzed rapid release practices at Mozilla and found that despite the benefits of
speeding up the delivery of new features to users, shorter release cycles can negatively impact
software quality. Karvonen et al. [48] performed a systematic literature review to understand
the different impacts (both direct and indirect) of agile release engineering (ARE) practices
and how the empirical research has studied them. Specifically, they used search keys rapid
release, continuous integration, continuous delivery, and continuous deployment to search
for the different research works on ARE. They found that ARE practices can create shorter
lead times and better communication within and between development teams. In addition,
they reported different challenges and drawbacks of ARE in change management, software
quality assurance, and stakeholder acceptance. Kerzazi [49] performed an empirical study to
determine and compare the main tasks of release and DevOps engineers, globally and across
countries, by analyzing the online job postings. They indicated that the automation step
is one of the most important activities across the three roles, as articulated in job posting
description data. The release engineer role combines the top activities of the DevOps and
more traditional build engineer roles.

(2) Topic Modeling: Mehdi et al. [50] conduct a study to understand what big data devel-
opers discuss in StackOverflow. They used topic modeling techniques to identify 28 big data
topics, and analyzed their popularity and difficulty. Anton et al. [51] used latent Dirichlet
allocation (LDA) to analyze posts related to software development in StackOverflow. They
compared their relationships and trends over time, to gain insights about the development
community. Rosen and Shihab [52] used latent Dirichlet allocation (LDA) to summarized
mobile-app related discussions in StackOverflow. They further determined the popular and
challenging mobile-related issues, explored issues specific to the platform, and investigated
the types of questions (e.g., what, how, or why) that mobile developers ask.

22

CHAPTER 4 STUDYING THE PRACTICES OF TESTING MACHINE
LEARNING SOFTWARE IN THE WILD

4.1 Introduction

The increasing adoption of Machine Learning (ML) and Deep Learning (DL) in many software
systems, including safety-critical software systems (e.g., autonomous driving [3, 4], medical
software systems [5]) raises concerns about their reliability and trustworthiness. Ensuring
the quality of these software systems is yet an open challenge for the research community.
The main reason behind the difficulty to ensure quality in ML software systems is the shift in
the development paradigm induced by ML. Contrary to traditional software systems, where
the engineers have to manually formulate the rules that govern the behavior of the software
system as program code, in ML the algorithm automatically formulates the rules from the
data. This paradigm makes it difficult to reason about the behavior of software systems with
ML components, resulting in software systems that are intrinsically challenging to test and
verify. A defect in an ML software system may come from its training data, program code,
execution environment, or even third-party frameworks. A Few research advances in quality
assurance on ML systems recently have been adapting different concepts from traditional
software testing (i.e., software not using ML), such as evaluating their effectiveness (e.g.,
mutation testing [8,9]) and new techniques to verify the security or privacy of the ML system
(e.g., Spoofing attacks in autonomous systems [10,11]), to help improve the reliability of ML
based software systems. Little is known about the current practices on testing ML software
systems. On the other hand, it is unclear if there are new unique testing techniques originated
from the practice.

Therefore, in this chapter, we present the first empirical study that examined testing strate-
gies used by ML engineers throughout the ML workflow. We define testing strategies as the
various techniques or approaches used in ensuring the quality of ML systems. ML testing
strategies are important to ensure that test activities meet software quality assurance objec-
tives, and that the best approaches are used to test the behavior of ML systems (e.g., Oracle
Approximation [12]) or to evaluate the effectiveness of existing ML test cases (e.g., mutation
testing). In the context of ML software system, in addition to ensuring that the program
behaves adequately, they also help ensure that important ML properties (i.e., underspecifi-
cation issues) are not violated during the development and evolution of the system [13]. We
manually analyse the test code contents of nine ML software systems from six (6) different
application domains (including Autonomous driving, ML toolkit, NLP/ Voice recognition,

23

Intelligent computing and Distributed ML) by following an open coding procedure to derive
a taxonomy of the ML testing strategies used by ML engineers. Secondly, we examine the
specific ML properties that engineers commonly test throughout the ML workflow. ML prop-
erties are requirements that are essential to ensure that the models generalize as expected
in deployment scenarios. A violation of such property often results in instability and poor
model behavior in practice. Testing these properties is not only important for producing
high-quality software systems, but also for regulatory or auditing purposes [21]. Then, we
examine the composition (in percentage) of the testing strategies and ML properties across
the projects and how the testing strategies are used to verify different ML properties. Specif-
ically, in this chapter, we study the following four research questions:

RQ1 What are the common testing strategies used in an ML workflow?

Through a manual analysis of ML test cases following an open coding procedure, we
derived a taxonomy of nine major categories of test strategies highly dominated by
Fault Injection (19.22%) followed by State Transition (18.59%), Value Range Analysis
(17.20%), Oracle Approximation (16.79%), and Swarming testing (0.53%). Among the
identified testing strategies, only the Oracle Approximation has been empirically stud-
ied. The newly derived testing strategies from practices are: Fault Injection, Negative
Test, State Transition, Value Range Analysis, Instance and Type Checks, Decision and
Logical condition, Membership Testing, and Swarming testing.

Overall, we found that a high proportion of testing activities take place during model
training (32.68%) followed by feature engineering (13.9%) activities of the ML workflow.

Moreover, the testing strategies are used across at least 50% of different ML workflow
activities include Fault Injection (Value Error, Null Reference, Type Error), Oracle
Approximation (Absolute Relative Tolerance and Error Bounding), Decision and Logical
Condition, and State Transition. Finally, we examined the testing strategies that are
used to test only the ML code in the studied systems, and identified the following six
testing strategies (derived from three main categories): Fault Injection (Value Error,
Type Error, and Memory Error), Oracle Approximation (Absolute Relative Tolerance,
Rounding Tolerance), and Membership Testing.

RQ2 What are the specific ML properties tested in an ML workflow?

We manually classified the tested ML properties, following an open coding procedure,
and identified 20 commonly tested ML properties in ML workflows. Among these prop-
erties, we have: Functional Correctness, Consistency, Data Distribution, Data relation,

24

Efficiency, Data validity, Security, and Feature importance. Some of the identified ML
properties such as Uncertainty, Security & Privacy, Concurrency, and Model Bias and
Fairness are tested in fewer (≤ 50%) specific ML workflow activities. In contrast, the
ML properties Consistency, Completeness, Correctness, Data Validity, and Robustness
are tested in most (≥ 80%) ML workflow activities. Notably, we categorized the ML
properties and highlighted the ML properties such as Correctness, Robustness, or Ef-
ficiency which have been studied in the software engineering literature and the ML
properties that are newly identified, such as Data Distribution, Feature Importance,
Data Uniqueness and Timeliness.

RQ3 Are there any testing strategies, and ML properties not being tested in some projects?

We examined whether the ML testing strategies, and ML properties identified in RQ1,
and RQ2 are consistently tested across multiple ML software systems. We found that
there is a non-uniform use of different testing strategies within and across the studied
ML software systems. The testing strategies consistently used in at least 80% of the
studied ML software systems include: Absolute Relative Tolerance (Oracle Approxi-
mation), Error bounding (Oracle Approximation), Instance and Type Checks, Negative
Test, State Transition, Value Range Analysis, and Value Error (Fault Injection).

For the ML properties, we found that only about 20% to 30% of the ML test proper-
ties such as Correctness, Consistency, Completeness, Data Distribution, Data Validity,
and Efficiency are consistently being tested across at least 90% different ML software
systems. In contrast, the ML test properties Bias and Fairness, Compatibility and
Portability, Security and Privacy, Data Timeliness and Uncertainty are not tested con-
sistently in most (about 80%) of the studied ML software systems.

RQ4 Are testing strategies consistently used in verifying different ML properties?

We examine the percentage of the testing strategies verifying a given ML property
across the studied ML software systems. We found that at least two (2) testing strate-
gies are used to verify a single ML property (as observed for at least 80% of the identified
ML properties). The most tested ML properties across multiple testing strategies (spe-
cific to ML software testing) are: Completeness, Correctness and Data Validity. In
particular, the testing strategies commonly used to test for Data Validity are: Fault
Injection (Value Error and Type Error), and Membership Testing. The testing strate-
gies, Absolute Relative Tolerance, and Rounding Tolerance are used commonly to test
Completeness and Correctness. Similarly, the most frequently used ML specific testing
strategies, which are used to verify the ML properties Efficiency, and Feature Impor-

25

tance, are Memory Error, and Absolute Relative Tolerance.

Overall, our findings provide actionable implications for three groups of audiences: (1) ML
engineers can use our presented taxonomy to learn about the existing ML testing strategies
that they can implement in their ML workflow, especially the most frequently used testing
strategies. Our results can also guide them on how to test different ML properties. (2)
Researchers can build on our work to further investigate the effectiveness of different ML
testing strategies, and develop quality checking mechanisms for ML software pipelines. (3)
Designers of testing tools can develop better tooling support to help ML maintenance team
effectively tests for the 20 common identified ML properties throughout ML workflow. In
summary, we make the following main contributions:

• To the best of our knowledge, this is the first empirical study that examines the adoption
of research advances in software testing of ML software systems by the industries,
specifically by examining the testing strategies and the test properties adopted in the
field.

• For the testing strategies, we highlighted nine major categories of the testing strategies
used by ML engineers, among which only the Oracle Approximation has been empiri-
cally studied. We reported eight newly derived testing strategies from practices, which
are: Fault Injection, Negative Test, State Transition, Value Range Analysis, Instance
and Type Checks, Decision and Logical condition, Membership testing, and Swarming
testing.

• For the testing properties, we derived a total of 20 different ML properties that the ML
engineers commonly test. Among them, only five of the derived ML properties have
been listed by the previous research work (i.e., Correctness, Completeness, Robustness,
Efficiency and Bias and Fairness) [20].

• We provided a comparison of the testing strategies, and ML properties tested across
the studied ML software systems to identify common or inconsistent practices in their
existing testing practices.

• We compared how the testing strategies are used to verify each ML property, across
the studied ML software systems.

• We highlighted some challenges and proposed new research directions for the research
community. ML practitioners can also leverage our findings to learn about different

26

testing strategies, and the properties to test to improve the reliability of their next ML
software system.

Chapter organization. Section 4.2 describes the eight major steps of our methodology.
Section 4.3 presents the results of our analysis, answering our research questions. Section 4.4
discusses the results of our study. Section 4.5 explains the possible threats to the validity of
this work, while Section 4.6 summaries this chapter.

4.2 Methodology

This section presents the methodology we followed to conduct this study. We used a sequen-
tial mixed-methods [53] comprising of both qualitative and quantitative analysis to answer
our proposed research questions RQ1 through RQ4. Figure 4.1 shows an overview of our
methodology. In the following we describe each step in details.

Select ML
software projects

Extract test file
from latest project

release version

Randomly sample
the test cases

Map the test cases
to the corresponding
ML workflow activity

Manaually label
Testing Strategies

(Open Coding)

Manually label
ML Test Properties

(Open Coding)

Compare
Testing strategies
 and ML properties

 across Projects

Compare
Testing strategies

 across ML Properties

1 2 3 4 5 6 7 8

Data Analysis (Qualitative and Quantitative)Data Collection and Preparation

RQ1 RQ2 RQ3 RQ4

Figure 4.1 An overview of our study design/ methodology

1 Select ML software systems:

To select ML software systems for our study, we first generated a set of relevant keywords for
searching GitHub. We queried GitHub using the keywords, and filtered the resulting set of
repositories using the inclusion/ exclusion criteria described bellow. Specifically, we proceed
as follows.

(i) Generate Search Keywords (Tml):

This step aims to identify a rich set of keywords (topics) allowing us to capture a broad
range of domains for the ML software systems hosted on GitHub. To generate the search
keywords, by using the search API [54] provided by GitHub, we first searched through
GitHub topics with the keywords “machine-learning” and “deep-learning”. Topics in
GitHub are sets of labels assigned to repositories to allow searching and exploring

27

through the GitHub repositories basing on the technology, the type, or category. Using
these initial keywords returned a set of repositories which we then manually summa-
rized into twelve (12) major tag categories (Tml) by looking at co-occurring tags includ-
ing ‘machine-learning’, ‘deep-learning’, ‘deep-neural-network’, ‘reinforcement-learning,
‘artificial-intelligence’, ‘computer-vision’, ‘image-processing, ‘neural-network, ‘image-
classification’, ‘convolutional-neural-networks’, ‘object-detection’ and ‘machine-intelligence’.

(ii) Extract Machine Learning Repositories Using Tml: Using the list of keywords obtained
in the previous step, we queried the GitHub API [55], searching for repositories that:
1) contain at least one of the keywords in Tml (case insensitive) either in the repository
name, descriptions, or project README file; 2) are mainline software systems (i.e., not
a forked repository); 3) the README or description is written in English (to allow us
to obtain more details about the project); 4) are not archived repositories. This initial
search returned a total of 506 unique repositories.

(iii) Apply inclusion/exclusion criteria: We applied the following inclusion/exclusion criteria
to retain only mature ML software systems for our study: 1) We considered only
repositories that had recorded at least 100 commits, 10 GitHub issues or pull requests,
10 contributors/ project engineers, and have been forked at least twice (to reduce
the chance of selecting student’s class projects). This criteria follows best practices
established by previous studies [56–58]. 2) We retained only ML software systems that
have been released at least twice (to allow us to later study the evolution of tests in
the selected ML software systems) and have been active for at least one year (i.e.,
the active period is computed as the difference between the date of last update and
the creation date of the project). This step removes 412 projects, and thus 94 ML
repositories remain. 3) We manually filtered projects to retain only those where tests
are written in either Python, C/C++ programming languages, which left us with nine
ML software systems.

(iv) Final List of Machine Learning Repositories: Table 4.1 provides descriptive statistics
about the nine retained ML software systems. These ML software systems are of varying
size, of different types (i.e., AutoML frameworks, Toolkits, and ML applications), cover
different domains (i.e., Autonomous driving, Intelligent computing, or Distributed ML),
and has been stared more than 4, 000 times (the popularity of the selected ML software
system [59]).

2 Extraction of test files from the latest release of software systems:

28

Table 4.1 List of studied Machine learning software systems and their charac-
teristics. Com: Number of commits, Stars: Number of Stars, Language: The dominant
programming language and their composition, Samp: The random sample size of the test
cases based on 95% confidence and a 5% confidence interval (refer to following step), Release:
The release version studied, Testing Framework: The unit testing framework

ML System Com Stars Language Samp Release Domain
Testing
Frame-
work

Project Descriptions

1 apollo 17,536 17,650 C/C++(83.7%),
Python(5.1%) 206 v6.0.0 Autonomous

driving
gTest,
unittest

A high performance, flexible architecture autonomous
driving platform for the development, testing, and de-
ployment of Autonomous Vehicles. Apollo contains 28
ML models that are trained based on various deep learn-
ing frameworks (e.g., Caffe, Paddle, and PyTorch).

2 tpot 2,368 8,120 Python
(99.4%) 141 v0.11.7 Data sci-

ence

numpy,
unittest,
pytest

A Tree-based workflow Optimization Tool (Tpot) is
a Python-based automated ML tool that uses genetic
programming for optimizing machine learning work-
flows [60–62].

3 ray 7,895 15,700

Python
(61.3%),
C/C++
(26.7%)

159 ray-1.1.0 Distributed
ML

numpy,
unittest,
pytest,
Ray

An open-source framework for building distributed ap-
plications. Ray is packaged with a scalable reinforce-
ment learning library, scalable Hyperparameter Tuning,
distributed training wrappers, and scalable and pro-
grammable Serving

4 nni 2,023 9,500 Python
(67.5%) 90 v2.0 ML toolkit

numpy,
unittest,
pytest

An open-source AutoML toolkit for automate machine
learning lifecycle, including feature engineering, neu-
ral architecture search, model compression and hyper-
parameter tuning.

5 autokeras 1,250 7,920 Python
(99.3%) 181 1.0.12 ML toolkit

numpy,
unittest,
pytest

A Python based Automated Machine Learning (Au-
toML) system based on deep learning, neural architec-
ture search (NAS), which aims to search for the best
neural network architecture for the given learning task
and dataset [63].

6 auto-sklearn 2,454 5,410 Python
(99.6%) 162 v0.12.0 ML toolkit numpy,

unittest

A Python based automated machine learning with
scikit-learn from algorithm selection and hyperparam-
eter tuning. It leverages recent advantages in Bayesian
optimization, meta-learning and ensemble construction

7 automl 6,24 4,210 Python
(99.9%) 100 1.1 ML toolkit

numpy,
unittest,
pytest

A repository for Google Brain AutoML containing a list
of AutoML related models and libraries for building and
deploying a custom machine learning models for image,
video, text, and tabular data.

8 nupic 6,625 6,187 Python
(97.7%) 270 1.0.5 Intelligent

computing

numpy,
unittest,
gTest

Numenta Platform for Intelligent Computing is an im-
plementation of Hierarchical Temporal Memory (HTM),
a theory of intelligence based strictly on the neuroscience
of the neocortex. The HTM uses time-based continuous
learning algorithms to store and recall spatial and tem-
poral patterns.

9 DeepSpeech 3,329 16,165

C/C++
(68.1%),
Python
(21.4%)

124 v0.9.3 NLP/Voice
recognition

Boost,
gLog

An embedded (offline, on-device) open source speech
recognition engine which can run in real time on de-
vices ranging from a Raspberry Pi 4 to high power GPU
servers. At its core, DeepSpeech uses a trained recurrent
neural network (RNN) consisting of 5 layers of hidden
units to ingests speech spectrograms and generates En-
glish text transcriptions.

This study aims to understand the testing practices applied in ML software systems by ana-
lyzing the test-related code. Hence, in this step, we identified all tests related source files from
the latest release of each ML software system as follows: First, we identified the latest release
version (Rn) of each selected ML software system (from which we need to extract the tests’
related code) using Git tags REST API of the form: https://api.github.com/repos/
{owner}/{repo}/tags (e.g., https://api.github.com/repos/numenta/nupic/
tags for Nupic software system). Git releases represent the different snapshots of a project
by marking a specific point in time of the repository’s history using Git tags 1. In this study,
we considered only the latest stable release version (i.e., not pre-release versions) of each
studied ML software system, to ensure that we analyze fully tested versions. Hence, when-
ever the latest release version Rn of a project is a pre-release (i.e., contain the word ‘alpha’
on release name indicating alpha release version), we select the previous stable version of the
project. We do not consider the alpha release because usually, an alpha release may indicate

1https://git-scm.com/book/en/v2/Git-Basics-Tagging

https://github.com/ApolloAuto/apollo
https://github.com/EpistasisLab/tpot
https://github.com/ray-project/ray
https://github.com/microsoft/nni
https://github.com/keras-team/autokeras
https://github.com/automl/auto-sklearn
https://github.com/google/automl
https://github.com/numenta/nupic
https://github.com/mozilla/DeepSpeech
https://api.github.com/repos/numenta/nupic/tags
https://api.github.com/repos/numenta/nupic/tags
https://git-scm.com/book/en/v2/Git-Basics-Tagging

29

that the current version is unstable and may not contain all of the planned features for the
final version. The latest release for the studied ML software systems (at the time of this
study) are listed in column ‘Release’ of Table 4.1.

After identifying the tags of the latest release Rn and the corresponding tagged source code in
the target projects, we manually downloaded this source code, for further processing locally.
We followed prior studies (e.g., [64, 65]) and utilize the naming convention to identify test
files. Specifically, we extracted all the files of the local copy of the target projects versions
Rn that contain the word ‘test’ either at the beginning or end of their file names. We used a
spreadsheet software to store source code file information such as the file name, file path, and
other related meta-data. We further assigned each of the file a sequential unique identifier
(Fid), starting from the value 1, to help us easily refer to each file later during the manual
labeling and the rest of the analysis.

3 Randomly sample the test cases:

In this step, first, we manually extracted all test cases and their corresponding test functions
defined inside the test files while referring to the project documentation. For example, for
the test using python unit testing frameworks, the test functions contain the word ‘test’
appended to the name of the function (for automatic test runner), while tests in google test
use the macro TEST() to define the test or test fixtures. Then, for each project, we randomly
selected a sample of test cases using a 95% confidence level and a 5% confidence interval.
This resulted into a total sample of 1,450 test cases (Ts). The distribution of the sample
sizes of test cases obtained for each of the 9 studied projects is shown in column ‘Samples’
of Table 4.1.

4 Map the test cases to the corresponding ML workflow activity:

As part of the goal of this study is to understand how the different testing practices expand
across the ML workflow, the first two authors manually mapped all the test cases (Ts) to the
corresponding ML workflow activities (e.g., Data Cleaning, Feature Engineering) illustrated
in Figure 2.3. To map a test case to an activity of the ML workflow, the authors used
information such as the name of the test file, the incode comments (i.e., comments left inside
the test source code describing what the test is about) and official documentation related to
the code under test (to get familiar with what the test cases are about). They then assigned
the ML workflow activity name (i.e., mapping) to the test case manually. Each decision was
discussed between the two authors until a consensus was reached before a label was assigned.

5 Label the testing strategies implemented to test different ML properties:

30

Tests strategies are the various techniques or approaches used to test an application, in order
to ensure that its behavior matches the specification. In this part, we specifically focused
on forming the taxonomy of categories and sub-categories of testing strategies used in ML
software systems. Four individuals consisting of the first two authors of this study and two
additional researchers (a graduate student and a research professional with a PhD degree)
was involved in the construction of the taxonomy. All the participants have strong knowledge
in machine learning and software testing. Also, the participants used the research literature
on testing strategies discussed in Section 3, during the preparation steps and when assigning
labels. To generate the taxonomy, first, the documents, each containing randomly sampled
test cases selected from the total samples Ts(1, 450) of the test cases, were distributed to
the labeling team. Each individual then constructed a taxonomy of categories and sub-
categories of testing strategies, following the open coding procedure [66], by analyzing the
test file contents in a bottom-up process as described below.

The participants were provided with the cloned of the studied ML software systems release
version Rn together with a spreadsheet document containing the name of sampled test cases,
the corresponding test file name, Fid, and the complete path of the file corresponding to the
source code files in Rn. They then read through the test source codes of the target ML soft-
ware systems and refer to the official documentation to be familiar with code implementation
before assigning short sentences as initial labels, to indicate the test strategy. Specifically,
our approach to derive the complete set of commonly used test strategies is divided into two
steps:

(i) Examine the structure and content of the test code; the algorithm being tested, control
statements, logical statements, loop and error-handling techniques, and other run-time
options. For instance, the test ‘test_coalesce_10_percent’ (line 27 to 34) in
Figure 2.1 compares each element of the transformed target data Y using a looping
statement and approximates them with the expected value [10, 0, 30, 30, 30].

(ii) Identify and extract the assertions API used within the test cases; to help identify
categories and sub-categories of testing techniques based on the extracted assertions as
described in the following paragraph.

Test assertions are statements within the test functions through which desired program
specifications are checked against actual program behavior. As such, assertions repre-
sent the core part of test functions that evaluate the program’s internal state. Most
unit testing frameworks provide multiple assertion functions to compare different types
of actual-vs-expected variables [67]. Assessing which assertions are used the most can

31

help understand what is being tested. In this step of our analysis, we categorized the
commonly used assertions to derive the tests strategies in ML software systems.

First, we identify the test functions that are used in the studied ML software systems to
express assertions. For example the test functions ‘test_dense()’, ‘test_sparse()’,
‘test_negative()’, ‘test_string()’, and ‘test_coalesce_10_percent()’
in Figure 2.1. We only considered the test functions within the randomly selected
samples described in step 3 above. Then, we extracted assertions by finding the
usages within the identified test functions. In particular, for every test functions, we
manually extracted all the lines representing the assertion statement (e.g., For the
example shown Figure 2.2, we would extract the assertions in lines 3, 4 for test func-
tion SIN_TABLE, lines 8,9,10,11 for test function ‘Angle8’, and lines 15, 17, 18 for
test function Angle16). In Python, assertions are expressed in two ways: 1) assert
keyword, which is then followed by a Boolean expression; and 2) using customized asser-
tion APIs, e.g., internally defined by each Python project, the Python unittest built-in
functions, and assertion APIs provided by NumPy, i.e., a commonly used library in
Python that supports computation on arrays and matrices. The most popular unit
testing frameworks for C++ are Boost.Test (Boost), and Google C++ (gTest). Both
have similar features; for example, in Boost, engineers can organize test cases into test
suites that could be registered automatically or manually. Moreover, they both al-
low a broader number of checkers/assertions such as Exceptions: Throws/Not throws,
Equal, Not Equal, Greater, Less, the Equality checking for collections & bits, explicit
Fail/Success, Floating-point numbers comparison, including control of Closeness/Ap-
proximation of numbers. To extract the assertions statement, we followed a combined
approach of both manual and automated technique that include first reading the of-
ficial documentation of the target ML software systems and understanding the code
structure to initiate regular expression queries such as assert*, EXPECT*, BOOST*
or CHECK*/ ACHECK* while continuously examining the query results. The four
participants confirmed that all the assertions are extracted and are correctly mapped
to the respective test functions. Manual analysis allowed us to identified rarely used
assertion APIs that could not be identified using an automatic process. For example,
some projects define a custom assertion API instead of using the standard assertion
API provided by the testing framework (e.g., SLOPPY_CHECK_CLOSE defined in Deep-
Speech project instead of using the standard BOOST_CHECK_CLOSE provided by the
Boost framework, due to reasons such as types matching problem). Our approach to
extract the assertion APIs is similar to the following previous work [12]. Leveraging
the extracted information, the team proceeded to forming the categories of the related

32

assertions statements separately before the general group discussion.

Using Figure 2.1 to illustrate the labeling steps described above. We identified testing
strategies from such test by proceeding as follows. First, we followed the path to the
code under test specified in Line 1, to understand the content of the code being tested.
Next, we examine the structure and content of the test code; test data generation, control
statement, logical statement, loop, error-handling technique, run-time options, and asser-
tion API choices, following a top-down or bottom-up procedure. For instance, the test
‘test_coalesce_10_percent’ (line 27 to 34) compares each element of the trans-
formed target data Y using a looping statement and approximates them with the expected
value [10, 0, 30, 30, 30]. The assertion API ‘assert_array_almost_equal’, provided
by NumPy [68], at line 32 approximates the two values with the default of 7 decimal places 2,
an example of Oracle Approximation of sub-category Rounding Tolerance testing strategy.
Note that the approximation assertions API used in line 17 and line 18 of Figure 2.2 test
case (i.e., ‘EXPECT_NEAR’) instead approximates the result using the absolute range (i.e.,
1e− 4). We referred to this sub-category of Oracle Approximation as Absolute Tolerance.

Also, the test (i.e., test_coalesce_10_percent) at the same time analyses the trans-
formed target Y elements expecting the test to pass within the range of value using the loop
statement at line 30. We therefore referred to this kind of testing strategy as Value Range
Analysis.

Next, the team proceeded to generate a hierarchical taxonomy of test strategies by grouping
related labels into categories. The process for grouping is iterative, where they continuously
go back and forth between groups of categories to refine the taxonomy. Also, a test function
may belong to either one or multiple testing strategies. All conflicts were discussed and
resolved by introducing a new person, a practitioner with extensive research experience in
machine learning. In Table A.1 and Table A.2 in the appendix, we show the representation
of the selected test strategies derived from this analysis. The results of this analysis answers
our RQ1 and are discussed in Section 4.3.1.

6 Label the ML Properties being tested:

ML properties are requirements that should be satisfied to ensure that a model behaves as
expected. A violation of such property often results into poorly performing and unstable
models. These ML properties are tested throughout the ML workflow to ensure that the
generated models meet expected requirements. To categorize ML test properties, we followed

2https://het.as.utexas.edu/HET/Software/Numpy/reference/generated/numpy.
testing.assert_almost_equal.html

https://het.as.utexas.edu/HET/Software/Numpy/reference/generated/numpy.testing.assert_almost_equal.html
https://het.as.utexas.edu/HET/Software/Numpy/reference/generated/numpy.testing.assert_almost_equal.html

33

the same labeling procedure discussed in step 5 , only now focusing on analyzing the test
properties and classifying the requirements being tested into functional and non-functional
requirements. The labeling team used the test properties reviewed by Zhang et al. [20] (i.e.,
Correctness, Model Relevance, Robustness, Security, Efficiency, Fairness, Interpretability,
and Privacy), during the preparation steps and when assigning labels. To derive the labels,
the labeling team focused on understanding the code under test based on the following three
dimensions:

1. Understanding the problem domain, by analyzing the test input data, the process, and the
output, by continuously referring to the official documentation related to the code under test.
2. Examining the algorithm being tested and scrutinizing it for any imprecision. This helped
understand how the testing data set are constructed. These two initial steps were important
to understand the algorithms being tested. For example, they allowed understanding what
kind of inputs the algorithms expect and what different outputs should be expected from the
algorithms. 3. Examining the oracle comparison and the run-time options. This step helped
to understand the specific point in the test cases at which the engineers verify the test results
and how they permute the order of the input data.

Using one or a combination of the above three dimensions, the labeling team members were
able to understand the ML properties being tested. Then, leveraging the ISO 25010 Soft-
ware and Data Quality standard3 and the ISO/IEC TR 29119-11:2020 Software and systems
engineering — Software testing standard (Part 11: Guidelines on the testing of AI-based
systems)4, they assigned initial labels to each identified property.

For instance, in Figure 2.1, to understand what ML properties are being tested, in the test
function ‘test_dense’ (line 5 to 8), which verifies the correctness of the implemented
function ‘fit_transform’ by checking that the returned transformed data Y has all
the components of input X successfully incremented by 3. The property being tested is
Correctness. Test ‘test_sparse()’, in addition to functional correctness (line 14) also
verifies the consistency of the transformed data (line 16 to 18) against the original data. It
also verifies the validity of data format (line 16). We referred to these two ML properties
being tested as Consistency and Validity. Other test scenario related to Consistency could
be an test oracle executed inside a loop statement without changing the test input or the
oracle value.

After this initial labeling step, they grouped the labels into categories to form the final
taxonomy of ML test properties. During the grouping step, the team followed an iterative

3https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
4https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:29119:-11:ed-1:v1:en

34

process by going back and forth between categories while refining the taxonomy. The team
discussed and resolved all the conflicts by introducing a new practitioner with extensive
research experience in software engineering and machine learning. The results of this step
answers our RQ2 and are discussed in the Section 4.3.2.

7 Compare Testing strategies and ML properties across Projects:

This step aims to understand how the identified testing strategies, and ML properties, from
Step 5 , and Step 6 respectively, are being implemented across the different studied ML
software systems. We hope to shed more light on how developers choose testing strategies and
implement tests, while working on different ML software systems. Additionally, we aim to
understand if there is any ML property which is examined in different ML software systems.
To this end, first, we compared the composition of the test strategies and ML properties
tested in the studied ML software systems as follows. We computed the percentage of tests
cases corresponding to each testing strategies {t1, t2, t3, ...tn} for a given ML software system
as:

T(Proportion of unique testing strategy) = ti ∗ 100
tN

(4.1)

Where: ti: Is the total number of test cases corresponding to a single test strategy in a
given ML software system, and tN is the total number of test cases in the given ML software
system.

Similarly, we independently compute the proportion of tests aimed at verifying each of the
ML test properties in the target ML software system, following the same steps: For each ML
test properties {p1, p2, p3, ..., pn} derived in step6, we identified and counted all unique test
cases corresponding to each of them in the target ML software system and computed the
percentage of test case aimed at verifying each of the ML test properties as:

P(Proportion of test cases forML test property) = pi ∗ 100
pN

(4.2)

Where: pi: Is the total number of test cases corresponding to a single test property in a given
project, and pN is the total number of test cases verifying the identified ML properties in a
given ML software system.

The results of T and M were used to generate Figure 4.3 and Figure 4.4 respectively. We
will discuss the results for this step in Section 4.3.3 answering our RQ3.

8 Compare Testing strategies used across ML Properties:

35

We examined the various testing strategies that are used to verify each of the ML proper-
ties (identified in Step 6) in the ML software systems, as follows: For every tests cases
{tp0, tp1, tp1, ..., tpi, } corresponding to both ML properties and testing strategies in a given
ML software system, we computed their percentage proportion as:

TP (Proportion of test cases for ML Property and Testing Strategies) = tpi ∗ 100
tpN

(4.3)

Where: tpi: Is the total number of test cases corresponding to a single testing strategy and
ML property in a given project, and tpN is the total number of test cases in the given ML
software system. The result for TP is shown in Table 4.4 and will discuss the results of this
step in Section 4.3.3 answering RQ4.

We share our replication package in [69].

4.3 Results

In this section, we present the results of our analysis, answering the proposed research ques-
tions.

4.3.1 RQ1: What are the testing strategies used across the ML workflow?

This subsection report the results for testing strategies broken down into two parts: 1. the
types of testing strategies and their break downs, and 2. mapping the testing strategies to
the ML workflow.

Figure 4.2 presents the nine (9) high-level categories of test strategies found in the studied
ML systems (at Step 5 of our analysis methodology). For each strategy, we computed and
presented the average proportion of tests (T) corresponding to each testing strategy over all
the studied ML software systems as: T (Average percentage of testing strategy) = 1

N
(Ti).

Where N (N = 9) is the total number of studied ML projects, and Ti is the percentage of the
each test strategy in a single ML software system. The values of T is shown in Figure 4.2.
For example, the T values for Value error, Null Reference Detection, State Transition, Value
Range Analysis and Absolute Relative Tolerance are 5.96%, 4.44%, 18.59, 17.20% and 7.14%
respectively, as shown in Figure 4.2.

The example code for each of the testing strategy is highlighted in the column ‘Code Example/

36

assertion API’ of Table 4.2. In the following, we describe each category and sub-category of
the obtained taxonomy in details, providing examples of test scenarios.

Testing Strategy

Fault Injection
(19.22%)

Value Error

(5.96%)

Oracle Approximation
(16.79%)

Null Reference
Detection
(4.44%)

Runtime Error
and Exceptions

(2.77%)

File Operation
Error

(1.69%)

Type Error

(1.43%)

Lookup Error

(1.00%)

Programming
Error

(0.56%)

Module Import
Error

(0.68%)

Memory Error

(0.61%)

Absolute Relative
Tolerence
(7.14%)

Error bounding

(3.34%)

Rounding
Tolerence
(6.31%)

State Transition

(18.59%)

Decision & Logical
Conditions

(6.27%)

Instance and
Type Checks

(12.53%)

Negative Test

(12.66%)

Membership
Testing

 (3.49%)

Unimplemented
Function
(0.11%)

Value Range
Analysis
(17.20%)

Swarming Test

(0.53%)

Figure 4.2 Overview of the common testing strategies found in the studied ML Systems. The
nine (9) high-level categories of the testing strategies are highlighted in light gray color code,
while the sub-categories are shown in white boxes.

• Fault Injection Testing: The test focuses on identifying an error in the ML systems
source codes by making changes on certain source code statements to check if the test cases
can find errors in the source code. This test evaluates how the system responds and recovers
from error conditions, that can occur in a software application; maintaining a normal flow of
execution. As shown in Figure 4.2, our analysis indicates that, on average, 19.22% of the test
cases across the studied ML software systems belongs to this category. The goal of Fault-
Injection testing is to ensure test case quality regarding the robustness of the application
such that it should fail the modified source code. According to the Figure 4.2, we uncover
ten (10) Fault-injection techniques that ML engineers followed in the studied ML systems,
including Value Error, Null-pointer, Type Error, File Operation Error Lookup Error, Module
Import Error, Memory Error, Programming Error, Unimplemented Function, Runtime and
Exceptions, and Negative tests. In the following, we explain each of these techniques.

37

1 x=range(0,10,2)

2 for i in x:

3 assert i%2 == 0

Listing 4.1 original code

1 x=range(1,10,2)

2 for i in x:

3 assert i%2 == 0

Listing 4.2 modified line 1

(i) Value Error : In the test, the modification is made by introducing the inappropriate
value to a given function. Example of value error is shown in Listing 4.1 and Listing
4.2. Considering the code under test in Listing 4.1 that expects the input list x to be
all even numbers; the corresponding mutant was created in Listing 4.2 by modifying x
starting value 0 replaced with 1 (i.e., x = range(1, 10, 2)). This modification (mutated
source code) will make the assertion (line 3) to fail due to Value error 1 introduced in
the input x. The Value Error Fault injection tests dominates (highest percentage) in
the model training related test cases (38.67%) as shown in Table 4.2.

(ii) Null Reference: This error targets the operations on a specific object considered as
null or calling for some method on the null object (i.e., a pointer or reference trying
to access an invalid object). Usually, NULL is used (in most high-level language,
e.g., Java, C/C++) to indicate a problem in the program that the ML engineers
need to be aware of. In Python, the singleton None is used to represent the NULL
object. As indicated in Table 4.2, the example of assertion API for testing for the
None reference in Python include: assertIsNone(indices) (unittest), assert
statement is None (pytest) or checking that a given object is not NULL refer-
ence: assertIsNotNone(x). The highest percentage of Fault-Injection tests related
to Null Reference is observed during the model training (31.14%), shown in Table 4.2.

(iii) Type Error : Unlike the Value Error, the target program under test is instead injected
with an inappropriate type to invoke the Type error, indicating that the operation on
the attempted object is not supported. The test of this category dominates with an
average of 1.26% of the test cases in the studied ML software systems, according to
our analysis in Figure 4.2. An example of this Fault-Injection includes passing a wrong
argument to a function (like a transformation function) expecting a matrix array but
receiving unsupported data of type dictionary or set, resulting in a Type Error. On the
other hand, passing arguments with the wrong value (e.g., a one-dimensional array when
expecting a two-dimensional array) results in a Value Error. According to Table 4.2,
the highest percentage of Type error (Fault-Injection) is observed during Data Cleaning
(50.83%) activity of the ML workflow.

38

(iv) Memory Error : This fault detection strategy targets memory usage related errors that
can affect application stability and correctness, such as memory access errors (occur
when a read/ write instruction references unallocated or deallocated memory), memory
leak (the allocated memory is not released), and memory corruptions. Other examples
of memory errors in C/C++ broadly classified as Heap Memory Errors and Stack
Memory Errors [70] include missing allocation (freeing memory which has been freed
already), mismatched allocation/ deallocation, cross stack access (a thread try to access
stack memory of a different thread), uninitialized memory access. Python adopts the
memory management architecture similar to the C language (i.e., malloc() function).
In rare cases, Python may raise OutofMemoryError when the interpreter entirely
runs out of memory, allowing it to be catch; enabling a recovery from it. The ML
engineers, therefore, may catch out of memory errors within their script (as except
MemoryError or assertRaises(MemoryError)); however, in some cases, Mem-
oryError will result in an unrecoverable crash. Moreover, Python provides a cross-
platform library called psutil 5 (process and system utilities) that allows developers to
retrieve the information on running processes and system utilization (memory, disks,
CPU, network). Solutions that depends on the psutil module, such as a memory-profiler
(the example code is shown in Table 4.2) have been proposed to help monitor the mem-
ory usage of a process and perform a line-by-line analysis of memory consumption for
python programs.

(v) Programming Error: This category represents a specific fault injection technique used
to identify the incorrect operation of the program or code under test. Specifically, we
used this category for errors such as 1) code logic errors that are due to mistakes in the
program statements’ sequence, such as using the wrong formula or function. The errors
of this category may compile successfully but instead produces inaccurate results. 2)
Syntax error: this error is a mistake in the programming language rules or a violation of
the rules governing the language structure. Moreover, this category includes checking
for assertion errors to indicate that something in the code under test should never have
happened. This fault injection strategy allows devising test cases to ensure that the
program’s state, inputs, and outputs are correct.

(vi) File Operation Error: This category of fault injection is used to detect issues with files
operations, e.g., when reading or creating files. Some of the issues tested during file
operations include: invalid filename, invalid directory name specification, permission
right for creating files, disk error, end of file error, or file schema error (i.e., problems

5https://pypi.org/project/psutil/

https://pypi.org/project/psutil/

39

with the file structure, order, or it content, e.g., an invalid character preventing reading
the file). This category of fault injection is mostly used (high percentage) in test
cases related to Data collection and storage activity (41.83%) followed by utility and
configuration files (21.97%), according to our results presented in Table 4.2.

(vii) Lookup error: This category concerns faults due to an invalid or incorrect index or key
specification in a given sequence or a dictionary.

(viii) Module Import error: This category concerns the fault raised when the code under the
test can not successfully import the specified module, typically due to a problem, such
as an invalid or incorrect path.

(ix) Negative testing: This test category focuses on how the application under test can
gracefully handle invalid inputs. Note that we presented Negative test as an indepen-
dent category (although it belongs to the Fault-Injection testing strategy) due to the
high percentage (12.66%) of tests of this category, as shown in Figure 4.2. Negative
test checks whether the software application behaves as expected with a negative or
unwanted data inputs. An example code of negative assertion test is shown in Ta-
ble A.2a from the Appendix. The purpose of negative testing is to ensure that the
application does not crash and continues normally when given invalid data inputs. In
negative testing, exceptions are expected, which indicates that the application handles
improper data input behavior correctly. Moreover, negative test cases can detect more
defects in the software application compared to positive tests [71]. This testing strategy
dominates in four major ML workflow activities, i.e., Model Training (22.28%), Feature
Engineering (18.85%), Data collection (15.7%), Deployment (11.9%), according to our
results presented in Table 4.2.

(x) Runtime error and Exceptions: This category presents the error detection and exception-
handling during program execution that does not fall in any other Fault Injection testing
categories presented. An example of this category is testing for the timeout error(such
as socket timeout when a network client hanged while trying to make a request to a
server). In Tpot, a prediction or a model training function is set to throw a Runtime
error whenever some required parameters for pipeline optimization was not specified,
before calling a training or prediction function.

Table 4.2 show the composition of the test for each of the testing strategies in the different
ML workflow activities, calculated as follows: For each testing strategy, we identified and
counted the number of unique test cases corresponding to each of the ML workflow activities

40

Table 4.2 The list of common Testing Strategies and their percentage composition
across the ML Workflow. The highlighted cells in yellow indicate the highest value of
the percentage test proportional Tc for each testing strategies. Due to space constrians, the
following terms are abbreviated:
Data: Data Collection, Clean: Data Cleaning, Label: Data Labelling, Feat: Feature Engineer-
ing, Train: Model training related activities including model fit, prediction, hyper-parameter
tuning, Eval: Model Evaluation and Post Processing, Deploy: Model Deployment activities
including Model inspection, model update, pickling and pipeline export, Moni: Monitoring
including Model Monitoring and Inspection, Config: Share configurations and Utility file or
frameworks used across ML workflow activities

Testing Strategy Data Clean Label Feat Train Eval Deploy Moni Config Code Example/ assertion api ML specific

Fa
ult

-In
jec

tio
n

Value Error 6.4 24.2 5.89 7.8 38.67 7.45 5.25 3.02 1.31
1 # raises on invalid range
2 scaler=MinMaxScaler(feature_range=(2,1))
3 assertRaises(ValueError,scaler.fit,data)

Null Reference 20.63 5.65 5.2 8.74 31.14 10.01 1.56 5.65 11.42

1 assert tpot_obj._memory is None
2 assert_equal(tpot_obj._fitted_imputer, None)
3 assertIsNone(fs.getNextRecordDict())

1 EXPECT_EQ(nullptr, obstacle_ptr103);

Type Error 7.21 50.83 0 7.15 8.65 0 21.3 4.86 0

1 x = np.array([[['unknown']]])
2 with pytest.raises(TypeError) as info:
3 x = input_node.transform(x) #unsupported input x

1 EXPECT_FALSE(JsonUtil::GetString(json_obj, "int", value))// Value is
not string

Memory Error 57.83 0 8.46 0 22.29 0 11.42 0 0

1 def test_memory:
2 device = "CUDA_VISIBLE_DEVICES=0 "
3 script = "setsid python -m memory_profiler benchmark_test.py "
4 for name in LIBSVM_DATA:
5 command = device + script + "--pipeline_name " + pipeline_name

+ " --name " + name + " --object " + test_object + " >" +log_name +
" 2>&1 &"

6 os.system(command)

Module Import Error 0 0 0 6.06 22.22 0 32.33 0 39.4

Lookup Error 15.56 4.1 32.3 18.07 12.46 0 0 0 17.5
1 def testGetOutOfBounds:
2 assertRaises(IndexError, patternMachine.get, *args)

File Operation Error 41.83 0 0 10.63 8.04 0 17.52 0 21.97
1 BOOST_CHECK_THROW(f.ReadLine('\0'), util::EndOfFileException);

Programming Error 0 0 7.21 39.38 19.23 21.89 0 12.3 0
1 # Test that a float radius raises an assertion error
2 with self.assertRaises(AssertionError):
3 encoder.encode((coordinate, float(radius)))

UnImplemented Function 0 0 0 0 100 0 0 0 0

Negative Test 15.7 7.9 5.64 18.34 22.28 5.44 11.9 3.2 9.6
1 assertTrue(a != b)
2 EXPECT_FALSE(edges_[3] < edges_[4])

Runtime error and Exception 3.16 6.23 1.86 0 18.85 15.45 23.86 11.57 20.39
1 pool.submit(lambda a, v: a.f.remote(v), 0)
2 with pytest.raises(TimeoutError):
3 pool.get_next_unordered(timeout=0.1)

Or
ac
le

Ap
pr
ox

im
ati

on
[12

]

Absolute Relative Tolerence 3.11 2.28 8.52 24.43 43.05 16.8 1.82 0 0
1 assertAllClose(keras_class_out[i - 3], legacy_class_out[i], rtol=1e-4,

atol=1e-4)

Error Bounding 4.62 7.45 1.54 6.66 45.31 15.59 3.3 6.6 8.94
1 EXPECT_LE(box.area(), min_area + 1e-5)

Rounding Tolerance 0 4.37 17.17 16.93 43.7 12.03 0.64 5.16 0
1 assertAlmostEqual(result['actualValues'][0], 34.7, places=5)

Decision & Logical Condition 11.28 4.29 1.64 22.01 36.05 3.7 4.18 4.22 12.63

1 # Assert that pick_two_individuals_ eligible_for_crossover
2 # picks the correct pair of nodes
3 # to perform crossover with
4 def test_pick_two_individuals_ eligible_for_crossover:
5 assert ((str(pick1) == str(ind1) and str(pick2) == str(ind2)) or str

(pick1) == str(ind2) and str(pick2) == str(ind1))

1 assertTrue(all(map(lambda x: isinstance(x, int_type if is_int else
float_type), results)))

[72] State Transition 11.16 5.5 4.36 16.5 27.12 11.02 9.49 7.67 7.18
1 EXPECT_FALSE(environment_features.has_ego_lane())
2 environment_features.SetEgoLane("1-1", 1.0)
3 EXPECT_TRUE(environment_features.has_ego_lane())

Instance and Type Checks 5.02 16.04 12.57 22.03 27.94 8.94 1.59 2.38 3.49
1 assertIsInstance(transform, np.ndarray)

[73, 74] Value Range Analysis 9.84 13.31 0.54 22.08 30.41 11.5 2.13 4.16 6.03

1 results = [c for c in clock_range]
2 assertTrue(all(map(lambda x: expected_min <= x <= expected_max, results

)))
3 assertTrue(0 <= b1 and b1 < 1000)

Membership testing 0 6.81 6.18 23.55 42.38 1.94 14.64 4.48 0

1 def testNeighbors0Radius(self):
2 neighbors = self.encoder._neighbors(np.array([100, 200, 300]), 0).

tolist()
3 self.assertIn([100, 200, 300], neighbors)

[75] Swarming Test 0 0 23.08 7.69 53.85 7.19 0.50 7.69 0 Used in random testing to improve test cases’ diversity to enhance test coverage and
fault detection. The example test is found in the link 6

AVERAGE 10.67 7.83 7.11 13.9 32.68 7.45 8.14 4.15 8.15

41

presented in Figure 2.3 for every ML software system in which the test exists at least once.
Next, we computed the percentage of tests for each testing strategies {tc1, tc2, tc3, ...tcn} in a
single ML software system, as follows:

Tci(Composition of testing strategy in a ML workflow activity) = tci ∗ 100
tcN

(4.4)

Where tcN : is the total number of unique test cases belonging to the ML workflow activity
in a single ML software system. The results of Tci are shown in Table 4.2 representing
the proportion of testing strategies for each ML workflow activity. For example, the test
Absolute Relative Tolerance dominates (i.e., highest percentage proportion) within the ML
model training activity with Tci = 43.05% compared to its percentage proportion in other
ML workflow activities, shown in Table 4.2.

• Oracle Approximation

Here the output is allowed to accept a value within a specified ranges, unlike the equality
checks commonly used in traditional software testing. As can be seen in Figure 4.2, 18.18%
of the test cases in the studied ML systems, used at least one oracle approximation. We
further grouped the oracle approximation into three main categories adopted from the related
work [12].

(i) Absolute and Relative Tolerance: this test expresses the range of accepted oracles by
using absolute and/or relative thresholds. Whether the assertions using these APIs pass
or not depends on the result of assert abs(res− oracle) < aV al + rV al ∗ abs(oracle),
where the variable res is the result from the code under test, aV al is absolute tolerance,
and rV al is relative tolerance. Some assertions API approximate the code under test
by considering only the absolute range/ tolerance instead of using the combination of
absolute and relative tolerance, represented as: assert abs(res− oracle) < aV al. We,
therefore, use the category name Absolute and Relative Tolerance to refer to both types
of Oracle Approximation throughout this chapter.

(ii) Rounding Tolerance: This oracle approximation uses a significant decimal digit to round
between the resulting value of code under test and its closeness with the expected
described as: assert abs(oracle − res) < 1.5 ∗ 10 ∗ ∗(−dp). The variables res is value
of the code under test, oracle is the expected oracle, and dp variable is used to specify
the number of significant digits in res.

(iii) Error Bounding: In this category of Oracle Approximation, the first step is to cal-
culate the difference between the two values (i.e., the code under test and expected

42

value) instead of directly comparing variables res and oracle, then asserts whether the
difference (i.e., error) is smaller than a threshold as follows: assert error < threshold.

We highlight assertion APIs that are most commonly used for expressing Oracle Approxima-
tions in our studied ML software systems, in Table A.2b from the Appendix.

• State Transition: this testing strategy aims to analyze the behavior of an application
through changes in input conditions that cause state changes or output changes in the code
under test [72]. This category is the second most dominating with an average of 18.24% of
the test cases in the studied ML systems according to our results from Figure 4.2. Also,
State Transition testing strategy is observed in all the activities of ML workflow, according
to Table 4.2.

• Value Range Analysis: This testing strategy similar to an interval analysis [73,74] is a
static analysis technique used to infer the set of values that a variable may take at a given
point during the execution of a program. This category of testing strategy includes array
and loop bounds checking, array-based data dependence testing, pointer analysis, feasible
path analysis, and loop timing analysis, among others presented in the appendix’ Table A.1.
This category is the third most (17.20%) commonly used testing strategy by ML engineers
according to our results from Figure 4.2. Table 4.2 further shows that the Value Range
analysis testing strategy is used in all the activities of ML workflow, with the highest usage
happening during model training activity.

• Instance and Type Checks: This test strategy aims to verify if the object argument
under test is an instance or a subclass, or if the type of the argument matches with the
specified class argument. An example of this category includes verifying if a transformation
function returned a data of valid type. The tests of this testing strategy was observed in all
activities of ML workflow in the order Model training (27.94%), Feature engineering (22.03%),
Data cleaning (16.04%), and Data Labeling (12.57%) related test cases.

•Membership testing: This testing strategy checks if a specific value is contained within
a collection of items or sequences (i.e., a list, a set, a dictionary, or a tuple). Usually, the time
complexity when checking for a specific value depends on the type of the target collection
(or data type) [76, 77]. In Appendix, Table A.2, we highlighted the example of the Mem-
bership Testing, including the assertion API in Python that uses the build-in Python-based
membership testing operator called ‘in’ [76]. We observed tests corresponding to Member-
ship Testing during the Model training (42.38%), Feature Engineering (23.55%), Deployment
(14.64%) and activities of ML workflow. Also, we label this testing strategy as ML specific
because we didn’t observe the test cases corresponding to this testing strategy in the non-ML

43

source code (i.e., not in Configuration and utility related test source code) of the studied ML
software systems.

• Decision and Logical Condition: This testing strategy uses conditional expressions
to test the possible outcomes of a program’s decisions and ensure that the different points
of entry or subroutine of the program are verified at least once. The test strategy helps to
validate the branches in the program under test, making sure that no branch leads to an
abnormal behavior of the software application.

• Swarming testing: This testing strategy is performed to improve test cases’ diversity to
enhance test coverage and fault detection during random testing [75]. Swarming testing does
not follow the general practice of potentially including all features in every test case. Instead,
a large “swarm” of randomly created configurations, each containing only specific features
(omitting some features), is used, with the configurations accepting similar resources. We
observed Swarm tests only in the Nupic project 7 and most of the test (high percentage)
are done for model training related activity as shown in Table 4.2.

We derived a taxonomy of nine (9) major categories of test strategies that ML en-
gineers use to find software bugs. These strategies are: Fault-injection and Negative
Tests, Oracle Approximation, State transition, Value Range Analysis, Instance and
Type Checks, and Decision & Logical conditional checks. Among these testing strate-
gies only Oracle Approximation has been studied in the previous work [12]. The eight
newly identified testing strategies not empirically studied by the previous works are:
Membership Testing, Fault Injection (e.g., Value Error, Type Error, Memory Error),
Swarming testing, Value Range Analysis, State Transition, Instance and Type Checks.
On average, the most dominating test strategy is Fault Injection (19.22%) followed by
State Transition (18.59%), Value Range Analysis (17.20%), and Oracle Approximation
(16.79%).
Six (6) of the identified test strategies i.e., Fault Injection (Value Error, Type Error, and
Memory Error), Oracle Approximation (Absolute Relative Tolerance, and Rounding
Tolerance), and Membership Testing were observed only in test cases specific to ML
source-code (ML specific test strategies).

Table 4.2 shows the composition of each testing strategy broken down in different activities
of the ML workflow. The represented average percentage values of unique test cases in the
respective ML workflow activities across the studied ML software systems computed as Tci

7https://github.com/numenta/nupic/tree/master/tests/swarming

https://github.com/numenta/nupic/tree/master/tests/swarming

44

in Equation 4.4. Overall we observe that there is a non-negligible proportion of testing
strategies along the ML workflow. The majority of testing is happening during ML training
(32.68%), followed by the Feature engineering (13.9%) activity. In Table 4.2, we further
highlighted the table cells where the testing strategies demonstrate the highest percentage
value of test cases in the ML workflow activity. For example, Type Error Fault-Injection test
cases dominates during the Data cleaning activity (50.83%) followed by Deployment activity
(21.3%) of the ML workflow. In contrast, File Operation Error test cases (such as file schema,
read/ write operation test cases) are highly dominating (41.83%) in the Data collection and
storage related code. The dominating test strategies during ML training and data preparation
phases include Fault Injection (i.e., Lookup error, Value Error, Null Reference detection,
Unimplemented Function, Programming Error and Memory Error), oracle approximation
(Error-bounding, and Absolute Relative Tolerance), Decision & Logical conditional test and
sub component checks.

ML engineers employ different testing strategies during the creation of ML models. A
high proportion of testing activities happens during model training (32.68%) followed
by feature engineering (13.9%) activities. Testing strategies such as Fault Injection
(Value Error, Null Reference, Type Error), Oracle Approximation (Absolute Relative
Tolerance and Error Bounding), Decision and Logical Condition, and State Transition
are among the most common testing strategies used across at least 50% of different
ML workflow activities.

4.3.2 RQ2: What are the specific ML properties tested in a ML workflow?

This subsection details the results of ML properties (derived in Step 6 of our methodology)
broken down into: 1. identification of ML properties, and 2. mapping to ML properties to
the ML workflow.

Table 4.3 presents the main ML properties identified during our data analysis, classified as
both high-level and low-level functional and non-functional requirements. Table 4.3 also
shows how the properties are tested throughout the different phases of the ML workflow.
We also provide examples of test scenarios to highlight how the ML properties were tested.
Note that, the ML properties presented are not strictly independent of each other, when
given the features that facilitate their measurement. Yet, their violations result in different
manifestations of the behaviors of an ML system.

• Consistency: A specification is consistent to the extent that its provisions do not

45

Table 4.3 The list of common ML Tests Properties and their percentage compo-
sition across the ML Workflow. Data: Data Collection, Clean: Data Cleaning, Label:
Data Labelling, Feat: Feature Engineering, Train: Model training related activities including
model fit, prediction, hyper-parameter tuning, Eval: Model Evaluation and Post Processing,
Deploy: Model Deployment activities including Model inspection, model update, pickling
and pipeline export, Moni: Monitoring including Model Monitoring and Inspection, Config:
Share configurations and Utility file or frameworks used across ML workflow activities, C&R:
Category and Related works

C&R Test Properties Data Clean Label Feat Train Eval Deploy Moni Config Example of test scenarios and/or related dimension from
studied systems separated by commas

1

C
or
re
ct
ne

ss
[2
0,

78
,7
9]

Consistency 5.07 10.8 9.84 22.78 32.46 4.6 5.69 3.22 5.55
The representations of the same information across multiple datasets,
multiple prediction, read/write, data migration, the consistent result
across programming languages (compatibility).

2 Completeness 8.01 10.16 6.84 20.46 27.89 7.88 9.21 2.33 7.22 Functional test, data input/ output sets, range of tolerance, tests
across data dimensions and data ordering

3 Correctness 6.42 9.42 9.2 20.93 34.53 7.25 5.25 2.36 4.64 Functional correctness (input and expected output), accuracy & pre-
cision, consistency & completeness

4 Data Validity 10.2 13.88 8.27 17.89 30.32 5.03 5.63 2.52 6.27 Data syntax conformance (i.e., format, range, type)

5 Data Migration Loss & Corruption 30.35 2.53 3.19 32.98 2.53 0 6.84 4.31 17.26 Data channel buffer, copying data, data segmentation and data con-
sistency

6 [20,80] Robustness 0 0 9.75 22.84 53.5 6.61 4.4 0 2.9

Robustness in feature processing, classification algorithm, exporting
invalid pipeline, read/write configuration dictionary, robustness given
conditions valid input, invalid input and random input data, noise
robustness in HTM spatial pooler (Nupic project)

7 [20, 44,
81] Bias & Fairness 0 0 0 0 53.79 46.21 0 0 0 Model evaluation, mask pruning, probability thresholds (remove un-

likely predictions likelihood thresholds), classification fairness

8 Scalability 16.15 8.07 1.9 6.64 53.06 0 3.18 9.3 1.69
Hyper-parameter search, model training efficiency, batch processing,
Deep neural network morphism, parallel computing and distributed
machine learning.

9 [82, 83] Compatibility & Portability 12.97 0 8.64 42.25 12.24 0 7.32 3.35 13.23
On-device machine learning inference, Backwards compatibility test,
environment variables and different computing environment, identical
functionality of python and C++ implementation of same algorithm.

10 [20] Efficiency 32.04 2.25 1.92 2.64 24.89 2.21 6.75 17.2 10.11
Performance, Training efficiency, data storage, Time behavior, API
calls, computing resource usage, Neural network slimming & level
pruning

11 Data Uniqueness 29.6 13.84 15.5 7.18 24.44 4.29 0 0 5.15
Only new records accepted, item measured against itself or its coun-
terpart, scenario model prediction (e.g., estimate the lane change),
sensor fusion

12 Timeliness 28.08 8.02 0 19.22 15.2 24.06 0 5.41 0 The time difference between data captured and the event being cap-
tured, Object detection, catch speed, extraction of point cloud feature

13 Data Relation 5.89 7.98 22.1 40.31 22.02 0 0 0 1.7

Attribute relation File Format (ARFF), Feature meta-learning and
feature set selection, performing crossover of two parent nodes to gen-
erate new offspring in genetic algorithms, data encoding like scalar
encoder and geospatial coordinate (e.g checking closeness) in Nupic
project, data segmentation

14 Uncertainty 9.99 0 0 9.99 80.01 0 0 0 0 Evidence theory or Dempster–Shafer theory (DST), information filter

15 Concurrency & Parallelism 0 0 0 0 57.04 0 28.26 0 14.7 Producer/consumer queue (pcqueue), concurrent queue, thread pool,
parallel training and parallel prediction

16 Anomaly 2.92 2.15 0 1.63 58.04 27.42 0 0 7.83
Training anomaly (i.e., unreliable training behaviors), prediction
& classification region, spike frequency, distribution estimation &
anomaly likelihoods

17 Feature Importance 2.7 0 89.52 2.12 4.26 1.4 0 0 0
Data balancing, features selection and classification error rate, neural
network layers Transformation, Features importance estimation for
Neural Network Pruning [84]

18 Data Distribution 10.27 7.92 11.7 22.56 34.1 5.85 1.08 4.14 2.39
Data analysis, transformed data output, prediction distribution, data
completeness and anomaly, data distribution (skew, normal distribu-
tion) and data distribution overlap

19

Se
cu
ri
ty

[2
0]

Data Integration & Integrity 4.77 0 0 71.38 0 23.85 0 0 0 Data aggregation, data and feature fusion, efficient object detection,
spatial dimension reduction

20 Security & Privacy 27.4 72.6 0 0 0 0 0 0 0 Data visitation, data migration/ transmission, secure matrix, data
encapsulation

AVERAGE 12.09 8.24 9.44 18.43 30.65 8.1 5.23 2.63 5.18

46

conflict with each other or with governing specifications or objectives [78]. Therefore,
some properties that influence the consistency are non-interferential, boundedness, re-
versibility, and liveness, i.e., (1) every operation that negatively affects the behaviour
of other operations should be identified, (2) resources should have a finite capacity, (3)
the operation should retain its initial state again, and (4) every operation is enabled
in execution. As shown in Table 4.3, tests for consistency are spread across all major
phases of the ML workflow; from data collection, storage, preparation to ML deploy-
ment as observed in our analysis. Further, we highlighted in Table 4.3 the areas where
consistency was observed in the ML test cases, including the model prediction, read
and write operations, and data migration.

In Listing 4.3 we illustrate three test case scenarios related to testing for consistency
during data preparation and model training. They are extracted from the studied
ML software systems (Autokeras, Auto-sklearn and Nupic). The first scenario
(i.e., function test_consistency_1()) checks for consistency during prediction,
where similar code was executed two times without any modification, and the re-
sults are expected to remain consistent. In the second test scenario (i.e., function
test_pca_default()), the transformation function was executed ten (10) times,
and the two results are compared against each other for consistency. Finally, in the
third test scenario, read/ write tests the code for encoding data using adaptive scaler
encoder in Nupic. A proto encoder was written into a temporary file and then read
back into a new proto. The resulting proto was then used to encode the new data,
which was then compared with the default encoder to verify consistency.

• Completeness: The completeness of a specification concerns the extent to which all
its parts are present and each part is fully developed [78]. We considered a test to
be about completeness if at least one of the following criteria was satisfied by the test
during our manual labelling: 1) For a program code with multiple functions, there is at
least one test for each function of the program. 2) For a program accepting a different
set of inputs, the tests are structured as: different classes of input/ output data were
classified and tested independently, at least once, to evaluate the program’s accuracy.
3) Testing for tolerance: the test cases were derived based on the range of permissible
values of a variable to verify that the program understands all of these values and does
not accept any other values. 4) Test cases checking that all intended data component
are available or that there is no missing data or component.

• Correctness: Correctness means the quality of being able to meet the expected need,
satisfactorily [79]. Thereby, having a consistent and complete set of scenarios con-

47

1 # consistency in prediction
2 def test_consistency_1:
3 for i in range(10):
4 assert expected_score == result
5 # consistency in feature preprocessing
6 def test_pca_default(self):
7 t = []
8 for i in range(2):
9 transform, original = _test_prep(PCA)

10 t.append(transform)
11 np.assert_allclose(t[-1],t[-2],rtol=1e-4)
12 # consistency in data preprocessing
13 def testReadWrite(self):
14 originalValue = self._l.encode(1)
15 p1 = AdaptiveScalarEncoderProto.new_message()
16 self._l.write(p1)
17 # write proto and read back into new proto
18 with tempfile.TemporaryFile() as f:
19 proto1.write(f)
20 f.seek(0)
21 p2 = AdaptiveScalarEncoderProto.read(f)
22 encoder = AdaptiveScalarEncoder.read(p2)
23 # ensure the encodings match on new value
24 r1 = self._l.encode(7)
25 r2 = encoder.encode(7)
26 self.assertTrue(numpy.array_equal(r1, r2))

Listing 4.3 Tests examples for consistency extracted from Autokeras and Nupic ML project

tributes to requirements specification correctness. An example of functional correctness
and completeness test (extracted from apollo software system) is shown in Listing
4.4 where the return results of the polynomial function were checked against its specifi-
cation of the form f(x) = 1+2∗x2 +3∗x3 +5∗x5 (i.e., all the four different input values
x = {0, 2, 3, 5} to the function should output the correct values {1.0, 2.0, 3.0, 5.0}, or
inputting invalid values x = {1, 4} should return correct default value 0.0). Also,
reversing the input order should return the correct results values of x.

1 TEST(BaseTest, polynomial_test) {
2 // f(x) = 1 + 2 * x^2 + 3 * x^3 + 5 * x^5
3 Polynomial poly;
4 poly[0] = 1.0;
5 poly[2] = 2.0;
6 poly[3] = 3.0;
7 poly[5] = 5.0;
8 EXPECT_NEAR(poly[0], 1.0, 1e-8);
9 //unknown input 1

10 EXPECT_NEAR(poly[1], 0.0, 1e-8);
11 EXPECT_NEAR(poly[2], 2.0, 1e-8);
12 EXPECT_NEAR(poly[3], 3.0, 1e-8);
13 //unknown input 4
14 EXPECT_NEAR(poly[4], 0.0, 1e-8);
15 EXPECT_NEAR(poly[5], 5.0, 1e-8);
16 EXPECT_NEAR(poly(0.0), 1.0, 1e-6);//reverse
17 EXPECT_NEAR(poly(1.0), 11.0, 1e-6);//reverse
18 }

Listing 4.4 Tests examples for correctness and completeness

• Data Validity: This data quality dimension measures the errors in the data in terms
of how the syntax of the data (i.e., type, format, range) conforms to its definition

https://github.com/ApolloAuto/apollo

48

or the business rule. The related dimension to data validity includes data accuracy,
completeness, and consistency. Therefore, to assign this label we considered if a test
is designed such that for a given dataset, metadata, or documentation; it checks for
the allowed types (e.g., string, integer, floating-point, etc.), the format (e.g., shape or
length, number of digits, etc.), or the range (e.g., minimum, maximum or contained
within a set of allowable values). Examples of this category include verifying the
conformance of data shape or type after the transformation process as follows:

assertEqual(transformation.shape[0], original.shape[0])

• Robustness: Is a validation process consisting of subjecting the system under test
to particular input streams to check if it satisfies some robustness specifications. The
input streams may be either a valid input, and invalid input or random input streams.
Therefore, a robust system should maintain its performance even when there is a change
in input stream or introduction of noise [85]. As shown in Table 4.3, this property is
tested throughout the major phases of the machine learning workflow. We further high-
lighted some of the test case scenarios where robustness testing was observed in the
studied ML software systems, such as during feature preprocessing, training of classifi-
cation algorithms (with robustness testing input datasets), export of the workflow after
successfully training and validation, and checking for the stability of model performance
on addition of noise to input data of the Hierarchical temporal memory (HTM) spatial
pooler algorithm.

• Compatibility and Portability: Compatibility is the ability of two or more compo-
nents or systems to perform their respective functions within a shared environment. In
contrast, Portability concerns the ease of moving components or systems between en-
vironments (software or hardware environments). As shown in Table 4.3, we observed
the tests related to Compatibility and Portability mainly during the model training,
deployment, monitoring activities, and in the configuration and utility related test
files. The example of a compatibility test includes checking for identical functionality
of the same algorithm implemented in different programming languages (e.g., python
and C++) by running similar tests side by side, iteratively with random input data
and monitoring the consistency of the outcome (in Nupic software system). Similarly,
we observed Backward compatibility [83] tests performed by checking that users can
effectively use either the legacy code implementation or the related updated version
shown in Listing 4.5. Testing for the model’s portability was observed during model
exports; by ensuring that the exported model is consumed from different platforms in

https://github.com/numenta/nupic

49

the ML-based production system (e.g., freezing a model designed in Python and general
framework into a portable format to be utilized inside mobile apps).

1 def test_object_id_backward_compatibility(ray_start_shared_local_modes)
:

2 # We've renamed Python's `ObjectID` to `ObjectRef`, and added a
type

3 # alias for backward compatibility.
4 # This test is to make sure legacy code can still use `ObjectID`.
5 # TODO(hchen): once we completely remove Python's `ObjectID`,
6 # this test can be removed as well.
7
8 # Check that these 2 types are the same.
9 assert ray.ObjectID == ray.ObjectRef
10 object_ref = ray.put(1)
11 # Check that users can use either type in `isinstance`
12 assert isinstance(object_ref, ray.ObjectID)
13 assert isinstance(object_ref, ray.ObjectRef)

Listing 4.5 Tests examples for backwards compatibility

• Bias and Fairness: A bias can be defined as a systematic error introduced into
sampling or testing of data by choosing or promoting one outcome over others. Bias
in machine learning is one of the biggest challenges face by industries today. There is
a wide range of different factors that can lead to bias in ML software system, broadly
categorized as: selection bias arising from the recruitment of the study subjects or
differing rates of study participation such as measurement error, information bias, and
the subjects’ cultural background, age, or socioeconomic situation [86] among others.
An unfair algorithm is one which decisions are skewed toward a specific group of people;
on the one hand, a model is considered fair if errors are shared similarly across protected
groups.

While the mitigation of model or data bias and fairness are done in various ways
throughout the machine learning life-cycle such as by addressing the problem of over-
fitting/ under-fitting and feature selection (e.g., removing the sensitive attributes like
gender, sex, race from dataset to achieve fairness). We identified tests about bias
or fairness in the studied ML software system during ML model training, and model
evaluation activities of ML workflow as shown in Table 4.3. An example of such tests
was observed in the code pruning filters and weights when compressing Convolution
Neural Network (CNN) model [87] in the nni software system.

• Data Uniqueness: This ML property measures unnecessary duplication in or across
the ML software system within a particular field, record, or data set [88], by discrete
measures of repeatable data items within or comparison with the counterpart in differ-
ent data set that complies with the exact business rules or information specifications.

https://github.com/Microsoft/nni

50

An example of a Data uniqueness test case is shown in Listing 4.6. The test ensures
that there is no duplicate entry into the object table by first checking if the object
already exists before adding the object with a similar identity to the object table.

1 def testInvalidObjectTableAdd(self):
2 # Check that Redis returns an error when RAY.OBJECT_TABLE_ADD
3 # adds an object ID that is already present.
4 self.redis.execute_command("RAY.OBJECT_TABLE_ADD", "object_id1", 1,

"hash1", "manager_id1")
5 response = self.redis.execute_command("RAY.OBJECT_TABLE_LOOKUP", "

object_id1")
6 self.assertEqual(set(response), {b"manager_id1"})
7 with self.assertRaises(redis.ResponseError):
8 self.redis.execute_command("RAY.OBJECT_TABLE_ADD","object_id1",

1, "hash2", "manager_id2")

Listing 4.6 Tests examples for data uniqueness

• Data Timeliness: This property measures the degree to which the information/data
is up-to-date and made available within the acceptable timeline, time frame, or dura-
tion. The main dimensions for measuring the Data timeliness proposed in the literature
are currency, volatility, and Timeliness [88–91]. Listing 4.7 illustrate the example of
test scenario that checks for the outdated object detected using Rada sensor extracted
from Apollo ML system.

1 TEST(ContiRadarIDExpansionSkipOutdatedObjectsTest,
skip_outdated_objects_test) {

2 ContiRadarIDExpansion id_expansion;
3 ContiRadar raw_obstacles;
4 auto *sensor_header = raw_obstacles.mutable_header();
5 sensor_header->set_timestamp_sec(0.0);
6 sensor_header->set_radar_timestamp(0.0 * 1e9);
7 ContiRadarObs *radar_obs = raw_obstacles.add_contiobs();
8 radar_obs->set_meas_state(static_cast<int>(ContiMeasState::CONTI_NEW)

);
9 auto *header = radar_obs->mutable_header();
10 header->set_timestamp_sec(0.0);
11 header->set_radar_timestamp(0.0 * 1e9);
12 id_expansion.SkipOutdatedObjects(&raw_obstacles);
13 EXPECT_EQ(raw_obstacles.contiobs_size(), 1);
14
15 sensor_header->set_timestamp_sec(0.7);
16 sensor_header->set_radar_timestamp(0.7 * 1e9);
17 ContiRadarObs *radar_obs2 = raw_obstacles.add_contiobs();
18 radar_obs2->set_obstacle_id(0);
19 radar_obs2->set_meas_state(static_cast<int>(ContiMeasState::CONTI_NEW

))
20 auto *header2 = radar_obs->mutable_header();
21 header2->set_timestamp_sec(0.7);
22 header2->set_radar_timestamp(0.7 * 1e9);
23 id_expansion.SkipOutdatedObjects(&raw_obstacles);
24 EXPECT_EQ(raw_obstacles.contiobs_size(), 1);

Listing 4.7 Tests examples for Timeliness

• Feature importance: This ML property measures the weight or score of the input
features during feature selection of a predictive model, indicating the relative impor-
tance of the individual features when making a prediction. This ML property help to
reduces the number of input features while providing more insights about the data set

51

by indicating which features are most relevant or least relevant to the target or the
model in general. Indeed, there are various techniques and models for measuring the
feature importance, such as using model coefficients or permutation testing [92]. We
identify the test related to feature importance, such as during structural pruning of
neural network that uses the first-order Taylor expansions [93] to estimate the contri-
bution of a neuron (filter) to the final loss, and iteratively removed those with smaller
scores [84].

ML Engineers test at least (20) different ML properties in ML workflow. These ML
properties include: Functional Correctness, Consistency, Data Distribution, Data rela-
tion, Efficiency, Data validity, Security, and Feature importance. Among these ML test
properties, only six (i.e., Correctness, Bias & Fairness, Compatibility, Efficiency and
Security) has been studied in the previous works. Also, we could not identify test cases
for the ML property Interpretability and Model Reliability mentioned in the previous
work [20].
Comparing the tested properties within the ML workflow, we found that some of the
identified ML properties, i.e., Uncertainty, Security & Privacy, Concurrency & Paral-
lelism, and Model Bias & Fairness are tested in less than half (≤ 50%) of ML work-
flow activities. In contrast, the ML properties Consistency, Completeness, Correctness,
Data Validity, Efficiency, and Data Distribution are tested in a large majority (≥ 80%)
of ML workflow activities.

4.3.3 RQ3: Are testing strategies and ML properties used consistently across
different projects?

In the first two research questions, we highlighted the testing strategies, and the ML prop-
erties that ML engineers test throughout the ML workflow. This section will examine the
composition (in percentage) of the testing strategies and ML properties across the studied
ML software projects.

Figure 4.3 presents a visual comparison of test cases distributions for the identified testing
strategies, across the studied ML software projects. Our analysis shows a non-uniform pro-
portional use of testing strategies, i.e., there is a general high deviation between the most
dominating test strategies and the least dominating test strategies, within the studied ML
software projects. As shown in Figure 4.3, testing strategies such as Absolute Relative Tol-
erance (Oracle Approximation), Error bounding (Oracle Approximation), Instance and Type

52

Nupic

Apollo

nni

google.automl

DeepSpeech

Ray

tpot

auto.sklearn

autokeras

Abs
olu

te
 R

ela
tiv

e
To

l (
OA)

Dec
isi

on
 a

nd
 L

og
ica

l C
on

dit
ion

Erro
r B

ou
nd

ing
 (O

A)

File
 O

pe
ra

tio
n

Erro
r (

F−I
)

In
sta

nc
e

an
d

Ty
pe

 ch
ec

ks

Lo
ok

up
 E

rro
r (

F−I
)

M
em

or
y E

rro
r (

F−I
)

M
od

ule
 Im

po
rt

Erro
r (

F−I
)

Neg
at

ive
 A

ss
er

tio
n

Te
st

Null
 R

efe
re

nc
e

(F
−I

)

Pro
gr

am
m

ing
 E

rro
r (

F−I
)

Rou
nd

ing
 To

len
ce

 (O
A)

Run
tim

e
an

d
Exc

ep
tio

n
(F

−I
)

Sta
te

 Tr
an

sit
ion

Sub
 C

om
po

ne
nt

 C
he

ck
s

Ty
pe

 E
rro

r (
F−I

)

Unim
ple

m
en

te
d

Fun
cti

on
 (F

−I
)

Valu
e

Erro
r (

F−I
)

Valu
e

Ran
ge

 A
na

lys
is

Composition (%)

30

20

10

0

KEY:

Tol: Tolerance

OA: Oracle
Approximation

F-I: Fault Injection

Testing Strategies

M
L

 S
of

tw
ar

e
pr

oj
ec

ts

Figure 4.3 The composition of the testing strategies across the studied ML software projects.
We used the three (3) Keys: Tol for Tolerance, OA for Oracle Approximation, and F-I for
Fault Injection testing.

Checks, Negative Test, State Transition, Value Range Analysis, and Value Error (Fault In-
jection) are among the most commonly used testing strategies; these testing strategies are
consistently used in at least 80% of the studied ML software projects. For example, the pro-
portion of the State Transition tests ranges from 9% to 27% of all the test cases across the
studied ML software project. The proportion of Value Range Analysis tests ranges from 5.8%
to 27% and the proportion of Absolute Relative Tolerance tests ranges from 1% to 30% across
the studied ML software projects. In contrast, testing strategies such as Rounding Tolerance
(Oracle approximation) and Fault Injection (i.e., File Operation error, Lookup Error, Mem-
ory Error, Module Import Error and Type Error) are not observed in some of the studied
ML software projects, suggesting that test strategies are currently being used inconsistently
in the field.

53

There is a non-uniform use of different testing strategies within and across the studied
ML software projects. The testing strategies consistently used in at least 80% of the
studied ML software projects are: Absolute Relative Tolerance (Oracle Approximation),
Error bounding (Oracle Approximation) , Instance and Type Checks, Negative Test,
State Transition, Value Range Analysis, Decision & Logical Condition, Sub Component
Checks, and Value Error (Fault Injection).

DeepSpeech

Ray

nni

Apollo

Nupic

autokeras

tpot

google_automl

auto_sklearn

Ano
m

aly

Bias
 a

nd
 F

air
ne

ss

Com
pa

tib
ilit

y a
nd

 P
or

ta
bil

ity

Com
ple

te
ne

ss

Con
cu

rre
nc

y a
nd

 P
ar

all
eli

sm

Con
sis

te
nc

y

Cor
re

ctn
es

s

Dat
a

Dist
rib

ut
ion

Dat
a

In
te

gr
at

ion
 In

te
gr

ity

Dat
a

M
igr

at
ion

 L
os

s a
nd

 C
or

ru
pt

ion

Dat
a

Rela
tio

n

Dat
a

Res
to

ra
tio

n
an

d
Rec

ov
er

y

Dat
a

Uniq
ue

ne
ss

Dat
a

Vali
dit

y

Effic
ien

cy

Fe
at

ur
es

 Im
po

rta
nc

e

Rob
us

tn
es

s

Sca
lab

ilit
y

Sec
ur

ity
 a

nd
 P

riv
ac

y

Tim
eli

ne
ss

Unc
er

ta
int

y

Composition (%)

30

20

10

0

ML Test Properties

M
L

 S
of

tw
ar

e
Pr

oj
ec

ts

Figure 4.4 The composition of ML properties across the studied ML software projects

Figure 4.4 compares the ML properties being tested across the studied ML software projects.
According to Figure 4.4, only about 20% to 30% of the ML properties such as Correctness,
Consistency, Completeness, Data Distribution, Data Validity, and Efficiency are consistently
being tested across at least 90% of the studied ML software projects. In contrast, we find that
the ML properties Bias and Fairness, Compatibility and Portability, Security and Privacy,
Data Timeliness and Uncertainty are not tested consistently in about 80% of the studied ML
software projects; according to Figure 4.4. For instance, the test about Security & Privacy
was only found in only two of the studied ML software projects apollo and microsoft/
nni with only 0.9% and 2.2% of the test cases respectively. In the apollo project, we

https://github.com/ApolloAuto/apollo
https://github.com/microsoft/nni
https://github.com/microsoft/nni

54

observed test cases about Security & Privacy that are checking the data access management
to protect the privacy and confidentially of data storage and ensuring that only the data
allocated to a given channel is fetched by a user. In microsoft/nni, Security & Privacy
test cases include a protocol test that verifies the correctness of the encryption function and
ensures that the data is consistent between the two communication endpoints. Usually, data
sets are encrypted to protect against potential interceptions of communications by a third
party during a data transfer, which could violate the confidentiality and the privacy of the
data.

Only about 20% to 30% of the ML properties such as Correctness, Consistency, Com-
pleteness, Data Distribution, Data Validity, and Efficiency are consistently tested
across at least 90% of the studied ML software projects. In contrast, the ML prop-
erties Bias and Fairness, Compatibility and Portability, Security and Privacy, Data
Timeliness and Uncertainty are not tested consistently in about 80% of the studied
ML software projects.

4.3.4 RQ4: How are testing strategies used in verifying different ML Proper-
ties?

In this part of our results, we discuss how the identified ML properties are tested by different
ML testing strategies across the studied ML software systems.

Table 4.4 show the percentage number of tests corresponding to both testing strategies and
ML properties (TP) in the studied ML software systems (computed in Equation 4.3 presented
in Step8 of our methodology). For example, the 13.38% of tests in Tpot (P2) software
system corresponding to Value Error testing strategy are consequently used to verify the ML
property Data Validity. In comparison, only 0.7% of the tests corresponding to Value Error
testing strategy in Tpot software system are used to verify the ML property Completeness.
Table 4.4 can also be used to identify different testing strategies that are used to verify each
of the ML properties in the studied software systems. For example, at least 70% of the
different testing strategies that we identified are used to verify the ML property Consistency
according to the first row of Table 4.4. In contrast, the only testing strategies used to verify
the ML property Bias and Fairness are Decision and Logical Condition and Instance and
Type Checks. Similarly, only testing Decision and Logical Condition strategy is used to test
the ML property Compatibility and Portability.

The highlighted columns (in light gray) in Table 4.4 correspond to the seven (7) testing
strategies specific to ML software systems. Further, for each of the six (6) ML specific

55

Table 4.4 The percentage number of testing strategies aiming to verify the ML
test properties in the ML software project. The highlighted values (in yellow) are the
highest percentage of testing strategies (only for ML specific, refer to column ‘ML specific’ in
Table 4.2) across the ML properties for each projects. For example, in about (55%) projects
(i.e., Apollo, tpot, Ray, Autokeras, and Nupic) the testing strategy Value Error has the
highest percentage of test verifying the ML property Data Validity.
Due to space constraints, we use the following abbreviations for various testing strategies:
Value: Value Error, Type:Type Error, Runtime: Runtime Error and Exception, Memory:
Memory Error, Module: Module Import Error, Lookup: Lookup Error, AbsoluteRT : Absolute
Relative Tolerance, EB: Error Bounding, RoundingT : Rounding Tolerance, Logical: Decision
and Logical Condition, State: State Transition, ValueRange: Value Range Analysis, Member :
Membership Testing
P1: Apollo, P2: Tpot, P3: Ray, P4: Nni, P5: Autokeras, P6: Auto-sklearn, P7: Automl, P8:
Nupic, P9: DeepSpeech

Fault Injection Oracle Approximation

Cat ML Properties Value Type Runtime Memory Lookup AbsoluteRT EB RoundingT Logical State ValueRange Member

1

C
or
re
ct
ne

ss

Consistency P5 : 0.55%, P6 :
1.22% P3 : 1.66% − − P9 : 0.81%

P1 : 1.85%,
P2 : 2.82%,
P7 : 7.0%, P9 :
0.81%

P8 : 0.37% P6 : 12.2%, P8 :
2.2%

P3 : 0.62%, P6 :
1.83%, P8 : 0.37%,
P9 : 0.81%

P1 : 0.93%, P2 :
0.7%, P5 : 1.1%,
P6 : 3.05%, P7 :
3.0%, P8 : 2.2%,
P9 : 4.03%

P5 : 1.1%, P6 :
1.83%, P7 : 5.0%,
P8 : 1.47%

P1 : 0.46%,
P5 : 1.1%, P6 :
0.61%

2 Completeness

P1 : 1.39%,
P2 : 0.7%,
P4 : 1.11% ,
P6 : 1.22%,
P8 : 0.73%

P2 : 0.7%
P1 : 0.46%,
P2 : 0.7%, P4 :
1.11%

− P8 : 0.73%

P1 : 5.56% ,
P2 : 2.11%,
P3 : 1.25% ,
P7 : 8.0%

P1 : 0.46%

P3 : 0.62%,
P4 : 1.11% ,
P6 : 2.44%,
P8 : 1.1%

P1 : 0.46%, P8 :
0.73%

P1 : 4.17%, P2 :
1.41%, P3 : 2.5%,
P5 : 0.55%, P6 :
6.0%, P8 : 1.47%,
P9 : 0.81%

P1 : 0.46%, P2 :
0.7%, P3 : 0.62%,
P4 : 3.33%, P5 :
2.76%, P6 : 0.61%,
P7 : 5.0%, P8 :
4.4%, P9 : 2.42%

P1 : 0.46%,
P6 : 0.61%, P7 :
1.0%

3 Correctness
P1 : 1.39%,
P2 : 4.93%, P8 :
0.37%

P2 : 2.11%
P2 : 0.7%,
P6 : 1.0%,
P8 : 0.37%

− −

P1 : 2.31%,
P2 : 4.93% ,
P3 : 0.62%,
P6 : 0.61%,
P7 : 13.0% ,
P8 : 0.37%,
P9 : 3.23%

P3 : 0.62%, P6 :
0.61%

P6 : 14.63%
P8 : 0.73%

P1 : 0.93%, P2 :
0.7%, P6 : 1.22%,
P7 : 1.0%, P9 :
0.81%

P1 : 3.24%, P2 :
1.41%, P3 : 1.25%,
P5 : 2.21%, P6 :
3.66%, P8 : 2.56%,
P9 : 4.03%

P1 : 1.39%, P2 :
2.82%, P5 : 2.76%,
P6 : 7.93%, P7 :
3.0%, P8 : 5.49%,
P9 : 2.42%

P2 : 2.11% ,
P5 : 1.1%,
P6 : 1.22%,
P7 : 1.0%,
P8 : 0.37%

4 Data Validity

P1 : 3.7% ,
P2 : 13.38%
P3 : 1.88% ,
P5 : 6.08% ,
P6 : 1.22%,
P8 : 2.93%

P2 : 1.41%,
P4 : 1.11% ,
P5 : 1.66% ,
P8 : 0.37%

P1 : 0.93%,
P2 : 2.11%, P7 :
2.0%, P8 : 1.1%

P1 : 0.93% P1 : 1.85%, P8 :
1.1%

P1 : 1.39%,
P6 : 0.61%,
P7 : 1.0%, P9 :
0.81%

P1 : 0.46%, P3 :
0.62%

P3 : 0.62%,
P6 : 3.05%, P9 :
0.81%

P1 : 0.93%, P2 :
0.7%, P3 : 0.62%,
P8 : 0.37%, P9 :
0.81%

P1 : 4.63%, P2 :
2.82%, P3 : 0.62%,
P4 : 1.11%, P6 :
4.88%, P7 : 6.0%,
P8 : 1.83%, P9 :
2.42%

P1 : 0.93%, P2 :
0.7%, P3 : 1.25%,
P4 : 1.11%, P5 :
0.55%, P6 : 2.44%,
P7 : 3.0%, P8 :
1.47%, P9 : 9.68%

P1 : 1.39% ,
P2 : 0.7%,
P4 : 1.11%,
P6 : 0.61%,
P7 : 3.0%

5 Data Migration Loss & Corruption − − − − − P1 : 0.46% − − P3 : 0.62% P3 : 1.25% P8 : 0.37% −

6 Robustness P6 : 0.61% P2 : 0.7% P2 : 0.7% − − P7 : 1.0% − P6 : 2.44% P2 : 0.7% P2 : 0.7% P1 : 0.46%, P6 :
1.0% −

7 Bias and Fairness − − − − − − − − P4 : 1.11% − − −

8 Scalability − − P3 : 0.62%, P4 :
1.11% − − P7 : 1.0% − − P4 : 1.11%

P2 : 0.7%, P4 :
1.11%, P5 : 0.55%,
P6 : 1.22%, P8 :
0.37%, P9 : 0.81%

P3 : 0.62% P6 : 0.61%

9 Compatibility & Portability − − − − − − − − P3 : 0.62% − − −

10 Efficiency P2 : 2.11% −

P2 : 0.7%, P3 :
1.88%, P4 :
1.11%, P5 :
0.55%

P3 : 0.62% ,
P6 : 0.61% P1 : 0.46% P1 : 0.46%

P3 : 1.25%,
P4 : 1.11%,
P6 : 0.61%, P8 :
0.37%

− P1 : 0.46%, P4 :
3.33%

P3 : 0.62%, P6 :
0.61%, P8 : 0.37%

P3 : 0.62%, P4 :
1.11% −

11 Data Uniqueness P3 : 0.62% − − − P9 : 2.42% − − − − P1 : 0.46%, P3 :
0.62% P3 : 0.62% −

12 Timeliness − − P3 : 0.62% − − − P1 : 0.46% − P3 : 0.62% P1 : 0.93% − −

13 Data Relation − − − − − P3 : 0.62% − P8 : 0.73%, P9 :
0.81% P9 : 0.81%, P3 : 0.62%, P8 :

0.73% P8 : 0.73% −

14 Concurrency & Parallelism P2 : 0.7% − P3 : 0.62% − − − − − − P1 : 0.93% P9 : 0.81%, −

15 Anomaly P1 : 0.46%, P8 :
2.2% − P3 : 0.62% − − P7 : 4.0%, P8 :

0.37%

P1 : 1.85%,
P4 : 1.11%, P8 :
2.2%

− − P1 : 6.02%, P8 :
2.56%

P1 : 0.93%, P4 :
3.33%, P8 : 1.47% −

16 Feature Importance − − − − − P6 : 1.83% − P6 : 6.1% −
P1 : 0.46%, P6 :
0.61%, P8 : 0.37%,
P9 : 0.81%

P4 : 1.11% −

17 Data Distribution
P1 : 0.46%,
P5 : 1.1%, P3 :
0.62%

− P1 : 0.46%, P8 :
0.37% − − P1 : 0.46%, P7 :

8.0%
P8 : 0.37%, P9 :
0.81%

P6 : 1.22%,
P8 : 0.73%, P9 :
0.81%

P1 : 0.46%, P3 :
0.62%, P9 : 0.81%

P1 : 3.24%, P7 :
1.0%, P8 : 1.83%,
P9 : 1.61%

P1 : 0.93%, P3 :
0.62%, P4 : 4.44%,
P5 : 1.1%, P6 :
2.0%, P8 : 1.47%,
P9 : 2.42%

P4 : 1.11%

56

testing strategies, we highlighted (in yellow) the tests verifying specific ML properties with
highest percentage values in the ML software systems. For example, in Table 4.4, we observe
that the highest percentage of tests (in the five ML software systems : Apollo, Tpot,
Ray, autokeras, and Nupic) correspond to the Value Error testing strategy verifying
the ML property Data Validity. Also, the highest percentages of tests in the Tpot project,
correspond to the testing strategies Type Error, Absolute Relative Tolerance and Membership
testing, which are aimed at verifying the ML property Correctness, as shown in row 3 of
Table 4.4.

In general, more than one testing strategies are used to verify a single ML property, as
observed in at least 80% of the identified ML properties.
Among the testing strategies specific to ML software systems: 1. The most tested ML
properties (by multiple testing strategies specific to ML software testing) are Complete-
ness, Correctness and Data Validity. 2. The testing strategies commonly used to test
for Data Validity are : Fault Injection (Value Error, and Type Error), and Membership
testing. 3. The testing strategies Absolute Relative Tolerance, and Rounding Tolerance
are used commonly to test ML properties Completeness and Correctness. 4. Finally,
the ML specific testing strategies (commonly used to verify the ML properties Effi-
ciency, and Feature Importance) are : Memory Error, and Absolute Relative Tolerance
respectively.

4.4 Discussion and Implications

In RQ1, we investigated the ML testing strategies used in practice and derived a taxonomy
of nine (9) major categories shown in Figure 4.2. Table 4.2 maps the testing strategies to
the ML workflow activities where they were implemented. Overall, we observed that the
majority of testing activities happens during model training and data oriented activities of
ML workflow. This is not surprising since the majority of under-specification issues are related
to poor data quality and inadequate model configurations and tuning. We have identified 20
ML properties (see Table 4.3) that were tested during the development process of the studied
ML-based software systems. Among these 20 properties, only Consistency, Completeness,
Correctness, Data Validity, Efficiency and Data Distribution are more frequently tested by
ML engineers across the ML workflow. Critical ML properties such as Uncertainty, Security
& Privacy, Concurrency, and Model Bias and Fairness were tested in less than half of the
studied projects and the ML workflow activities. This result suggests that testing for these
critical properties is not yet mainstream. This situation could be attributed to a lack of

57

automated testing tool and–or efficient techniques targeting these specific ML properties.
There may also be a lack of awareness in the software development community about the
importance of testing for these ML properties.

In Figure 4.3, and Figure 4.4, we compared the testing strategies, and ML properties across
our studied ML software systems, with the aim to identify potential differences and–or incon-
sistencies in the application of testing techniques in the field. Our results reveal that only few
testing strategies are consistently used in different ML software systems, i.e., Absolute Rel-
ative Tolerance (Oracle Approximation), Error bounding (Oracle Approximation) , Instance
and Type Checks, Negative Test, State Transition, Value Range Analysis, Decision & Logical
Condition, Membership Testing, and Value Error (Fault Injection). For the ML properties,
we found only about 20% to 30% of the ML properties such as Correctness, Consistency,
Completeness, Data Distribution, Data Validity, and Efficiency are consistently tested across
at least in 90% of the studied ML software systems. The ML properties Bias and Fairness,
Compatibility and Portability, Security and Privacy, Data Timeliness and Uncertainty are
not consistently tested in about 80% of the studied ML software systems.

In Table 4.4 we found that, at least two (2) testing strategies are used to verify a single
ML property, as observed in at least 80% of the identified ML properties. Also, we found
that the commonly (highest percentage) used testing strategies specific to ML software are
aimed at verifying the ML properties: Completeness, Correctness and Data Validity. These
strategies are: Value Error, Type Error, Absolute Relative Tolerance, Rounding Tolerance
and Membership Testing. Table 4.4 also shows that the testing strategies commonly used
to test for ML property Data Validity are: Fault Injection (Value Error, Type Error), and
Membership Testing. The testing strategies Absolute Relative Tolerance, and Rounding Tol-
erance are used commonly to verify ML properties Completeness and Correctness. Similarly,
the ML specific testing strategies commonly used to verify the ML properties Efficiency, and
Feature Importance are: Memory Error, and Absolute Relative Tolerance.

As this study reveals the testing practices of ML engineers, many open questions remain:

1. The effectiveness of the identified test strategies is still unclear. Therefore, further
studies need to examine the efficiency of these testing strategies at detecting bugs in
ML software systems, especially the strategies that are most frequently used by ML
engineering teams. Understanding the efficiency of these testing practices is important
to help engineering teams select the most adequate testing strategies for their ML
software systems.

2. It is also important to understand how the studied tests are maintained and evolved

58

through out the ML software development life-cycle. Our analysis highlighted the
proportion of tests in the studied projects and the ML workflow activities where the
tests are being implemented. However, it is not clear how the tests evolve during the ML
software development life-cycle. We still don’t know when ML engineers first introduced
the studied tests and how their testing strategies may have changed overtime.

3. Our analysis showed that some critical ML properties such as Security and Privacy,
Data Uniqueness, Timeliness or Scalability are not consistently tested across different
ML software systems. This may be an indication that the topics in these areas have
not been fully explored. Few recent works [10,11,94] have started exploring Security &
Privacy in ML software systems, to help prevent attacks on autonomous systems (e.g.,
in Apollo software system), such as the LiDAR spoofing attacks [10,11]. Scalability is
another big concern for any real-world ML software system. ML software system should
scale during model training to learn on large datasets (usually gigabytes or terabytes)
(for example, training a deep learning model from an online image corpus). On the
other hand, an ML software system in a production environment is usually required to
give the predictions in a few milliseconds from the crunch of new data. To satisfy these
constraints, researchers and ML engineers are opting for building more and more larger
ML models, using more computation power and adding more training data [95,96], in an
effort to reach a scalable ML. In addition, other concepts such as distributed Machine
learning [97] are being adapted by ML engineers (e.g., in ML software systems such as
the Ray) to allow scaling to larger data input sizes, improving performance as well as
increasing the model accuracy. The Nupic software system introduces an algorithm-
based approach to solve performance and scalability problems in deep learning using
neuroscience principles through sparsity [98].

From the analysis presented in this thesis, we make the following suggestions to researchers
and ML engineers.

• To Researchers: Our study provides the first empirical study of ML testing practices,
highlighting the testing strategies used in ML workflows and the specific ML properties tested
by ML engineers. Future works can build on our finding of 20 common ML properties, to
develop novel testing techniques and better tool support to help ML engineers test for these
identified ML properties. We also invite more studies on the evaluation of the effectiveness
of the identified ML testing strategies in future. The end goal is to standardize and auto-
mate testing strategies and properties for ML software systems, similar as to the traditional
software systems.

59

• To ML engineers: We recommend that ML engineers use our presented taxonomy, to
learn about the existing ML testing strategies, and implement them in their ML workflow,
especially the most used testing strategies such as Absolute Relative Tolerance (Oracle Ap-
proximation), Error bounding (Oracle Approximation), Instance and Type Checks, Negative
Test, State Transition, Value Range Analysis, Decision & Logical Condition, Membership
Testing, and Value Error (Fault Injection). We also encourage ML maintenance teams to
test for our identified ML properties in their ML software systems in order to ensure their
systems’ trustworthiness. They can use our results summarized in Table 4.4 to know what
testing strategies they can use to test for the specific ML property. For instance, they can test
for ML property Data Validity using at least two testing strategies like Fault Injection (Value
Error, and Type Error) testing strategies, similarly test for the ML properties Correctness
and Completeness, they can use the Oracle Approximation (Absolute Relative Tolerance, and
Rounding Tolerance), Value Range Analysis, among others.

• To Tool Designers: They can develop better tooling support to help ML maintenance
team effectively tests for the 20 common identified ML properties throughout ML develop-
ment life-cycle.

4.5 Threats to Validity

In this section, we discuss the threats that could affect the validity of our results.

Internal Validity threats concern our selection of subject systems, and analysis method.
We have selected ML-based software systems where tests are written in either Python,
C/C++ programming languages. To extract the relevant test cases, test function, and the
assertions, we followed an interactive process. First, analyzing the code base of all the test
files while referring to the official documentation of the studied projects. This step was per-
formed manually by researchers with extensive ML expertise. Yet, it is still possible that we
may have missed some test cases and–or assertions that are rarely used in ML-based projects
and hence harder to recognize. However, we believe that this threat should have a minor
impact on our analysis and the results presented in this study.

External Validity threats concern the possibility to generalize our results. First, we
studied only nine open-source ML-based software systems hosted in GitHub. Although these
projects are selected from different domains such as AutoML frameworks, ML applications,
and autonomous systems, it is still possible that we may have missed some important aspects
of the testing practices of ML-based software systems. Also, the selected projects do not cover
all domains of ML-based software systems. In the future, we plan to expand our study to

60

cover more ML-based software systems to further validate our results. Second, the focus
of this study is ML-based software systems programmed in either Python and or C/C++.
Therefore our findings may not generalize to ML-based software systems written in other
programming languages. We also plan to expand our study in the future to include other
programming languages, such as the Java or GO. Also, when analyzing the different testing
strategies in ML systems, we limited our analysis to fewer cases, such as categorizing the
assertions and error-handling techniques, while mainly relying on the documentation and
the relevant literature. Generally, identifying all the different test strategies would require
more manual analysis efforts and a complete understanding of the relevant implementation
of the studied systems. We plan to expand the scope of this study to cover all these different
aspects in the future. We also plan to conduct some qualitative studies involving the original
developers of the studied systems.

Reliability validity threats concern the possibility of replicating this study. Every result
obtained through empirical studies is threatened by potential bias from data sets. To mitigate
these threats we chose to conduct manual analysis in this study, leverage up to five different
participants with extensive ML expertise. We also provide in the thesis, all the necessary
details required to replicate our study. The source code repositories of the studied projects
are publicly available to obtain the same data. In addition, we provide a replication package
in [69], containing the list of the studied ML software systems and their source codes for the
selected project’s versions, and the data containing the analysis for each of our four research
questions (both in raw and processed form).

Construct to validity: We based our categorization on the international standards like
the ISO 25010 Software and Data Quality standard8 and the ISO/IEC TR 29119-11:2020
Software and systems engineering — Software testing standard (Part 11: Guidelines on the
testing of AI-based systems)9, while we categorize and track with the hope of standardize
things, and how to count and measure say one test, or one strategy, or ML property and
double check with the peers.

4.6 Summary

This Chapter presents the first fine-grained empirical study of ML testing practices. Specif-
ically, we answer four research questions. First, we examine different ML testing strategies
implemented in ML workflows deployed in the field. We derived a total of nine (9) main
categories of ML testing strategies used in the ML workflow and 19 sub-categories, out of

8https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
9https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:29119:-11:ed-1:v1:en

61

which seven testing strategies are ML specific. We find than on average, most testing is
associated with Model Training (32.68%), followed by Feature engineering activities of the
ML workflow. Second, we studied the specific ML properties that are tested in a ML work-
flow and identified 20 commonly tested ML properties that ML engineers commonly test.
We find that some of the identified ML properties, i.e., Uncertainty, Security & Privacy,
Concurrency, and Model Bias and Fairness are tested in less than half (≤ 50%) of ML work-
flow activities. In contrast, the ML properties Consistency, Completeness, Correctness, Data
Validity, Robustness and Data Distribution are tested in a large majority (≥ 80%) of ML
workflow activities. Third, we compared the testing strategies, and ML properties across our
studied ML software systems, to identify any potential differences and–or inconsistencies in
the application of testing techniques in the field. We showed that, there is a non-uniform use
of different testing strategies and ML properties within and across the studied ML software
systems. Moreover, we found that, at least 80% of the studied ML projects consistently use
the testing strategies: Absolute Relative Tolerance (Oracle Approximation), Error bounding
(Oracle Approximation), Instance and Type Checks, Negative Test, State Transition, Value
Range Analysis, Decision & Logical Condition, Membership Testing, and Value Error (Fault
Injection). For the ML properties, we found only about 20% to 30% of the ML properties
such as Correctness, Consistency, Completeness, Data Distribution, Data Validity, and Ef-
ficiency are consistently tested across at least in 90% of the studied ML software systems.
Finally, by examining the testing strategies used across the ML properties, we observed that
at least two (2) testing strategies are used to verify a single ML property, as observed in at
least 80% of the identified ML properties.

We encourage researchers, to build on our finding of 20 common ML properties to develop
novel testing techniques and better tool support to help ML engineers tests for these iden-
tified properties. We also invite more studies on the evaluation of the effectiveness of the
identified ML testing strategies in future. We recommend that ML engineers use our pre-
sented taxonomy, to learn about the existing ML testing strategies, and implement them in
their ML workflow, especially the most used testing strategies such as Absolute Relative Tol-
erance (Oracle Approximation), Error bounding (Oracle Approximation), Instance and Type
Checks, Negative Test, State Transition, Value Range Analysis, Decision & Logical Condition,
Membership Testing, and Value Error (Fault Injection). We also encourage ML maintenance
teams to test for our identified ML properties in their projects in order to ensure their sys-
tems’ trustworthiness.

62

CHAPTER 5 STUDYING THE TYPES OF TEST/ TESTING METHODS
in AN ML WORKFLOW

5.1 Introduction

In Chapter 4, we discussed the different testing strategies and the ML properties that ML
engineers test throughout the ML workflow activities. This part of our study expands on
the analysis reported in Chapter 4, now empirically investigating how the ML engineers
implement different types of tests or testing methods during the development and delivery
process of ML software systems. Software Testing method is the classification of various
testing activities into categories (black or white-box), each aiming to validate the System
Under Test (SUT) for a defined set of test objective. Earlier in the background Chapter 2
in Figure 2.4, we introduced and discussed the various stages of test, such as Unit tests,
Integration tests, or Manual tests during the delivery process of ML software system proposed
in [2]. We now aim to understand how ML engineers operationalize the tests described in
the test Pyramid from Figure 2.4 during the development of their ML software system.
Specifically in this Chapter, we study the following three research questions:

RQ1 What are the test types and methods used in an ML workflow?

We manually examined different types of tests used in the studied ML software systems
and classified them using the Test Pyramid of delivery process for Machine Learning
based software system introduced by Sato et al. [2]. We identified a total of 11 different
types of tests, out of which only six are included in the Test Pyramid of ML software
system. The newly observed types of tests are : Regression Test, Sanity test, Periodic
Validation and Verification, Thread test, and Blob test. This finding suggests that
the current Test Pyramid of ML based software system proposed by Sato et al. is
incomplete and should be updated. Also, the test type Contract Test described in
this Test Pyramid were not implemented by any of our studied projects; suggesting
potential gaps in the current ML testing practices in the field. For each type of test, we
identified the testing strategies implemented by engineers to operationalize the test and
created a mapping. This mapping can serve as a guideline for ML engineers seeking to
implement different types of tests in their ML software delivery pipeline.

RQ2 Are testing methods used consistently across projects?

We examined whether the testing methods identified in RQ1 is consistently tested
across multiple ML software systems. We found that the composition of the testing

63

methods varies across the studied ML software systems (ranging from zero to 16%),
except for Unit Test which takes the highest percentage of tests ranging between 68%
to 91%.

RQ3 How are ML properties being tested along different testing levels (testing methods)?

We examined ML properties tested using different testing methods across the ML soft-
ware systems and observed that the following ML properties are tested at different
levels on the Test Pyramid of ML (from the unit level to the system level): Consis-
tency, Completeness, Correctness, Validity, and Data Distribution.

In summary, we make the following main contributions:

• This study expand the findings presented in Chapter 4, by further taking the initial
step to empirically study the testing methods adopted in the field.

• We summarized 11 different types of tests, out of which five are not included in the
Test Pyramid of ML software systems. These newly identified test types are: Regression
Test, Sanity test, Periodic Validation and Verification, Thread test, and Blob test.

• We provided a comparison of the testing methods across different ML software systems.
Also, we provided comparison on how ML properties are tested at different testing levels
(testing methods).

• We highlighted some challenges and proposed new research directions for the research
community. ML practitioners can also leverage our findings to learn about different
testing methods that can be implemented to improve the reliability of their next ML
software system.

Chapter organization. Section 5.2 describes the three major steps of our methodology.
Section 5.3 presents the results of our analysis, answering our research questions. Section 5.4
discusses the results of our study. Finally, in Section 5.5 we provide the summary this
chapter.

5.2 Methodology

The main focus of this study is to understanding the different testing methods that ML
engineers implement in the testing phases for their ML software system. In the following,
we describe the three major steps we followed to study the testing methods used by ML
engineers.

64

1 Categorization of testing types/ methods in the Test Pyramid for ML:

This step used the selected ML software systems and the test files extracted in Chapter 4 of
this thesis (refer to Step 1 until Step 4 of methodology Section 4.2 in Chapter 4). We
now focused on identifying the types of test the ML engineers implements throughout the
development of ML software system.

Software Testing types/testing methods are testing activities (black-box or white-box) that
aim to validate an System Under Test (SUT) for a defined set of test objectives. Following the
open coding procedure, the authors classified the different testing activities used in the studied
ML projects as follows: For every sampled test file contained in the spreadsheet, the authors
first read through the corresponding source code while using the official documentation as
reference, to familiarize themselves with what the test activities are about. Specifically, the
authors focused on the following three main dimensions: 1) understanding the overall goal
and achievement of the test file when executed (test objective), 2) the different tests strategies
used, as described in Section 4.3.1 (of Chapter 4) and 3) the test deliverables. Note that, in
most cases, the test types such as integration tests, unit tests, regression tests, swarming are
already labeled (for some ML software systems e.g., Nupic, autokeras) by the developers
via folder’s and file’s names (i.e., the meaning of folders/files names revealing the type of tests
they contain; in these cases, the authors would directly use the name as the label. Also, in the
cases where the test type is not specified in the test folder name, the labeling team examined
the tests following the three dimensions described above, to ensure that the correct labels
are assigned to the tests. For example, a test containing multiple print statements instead of
assertion would most likely be assigned a label as manual/static test. All disagreements that
occurred during the labeling process were discussed and resolved before the final labels were
assigned. A practitioner with extensive research experience in software testing was involved
in the discussions whenever there was a disagreement. A consensus was reach on all the
labels. The results of this analysis answers our RQ1 and are discussed in Section 5.3.1.

2 Compare the testing methods across the ML software systems:

This step aims to understand how the identified types of tests/ testing methods from Step
1 is being implemented across the different studied ML software systems. We hope to
shed more light on how developers choose different types of test/ testing methods during the
development phases of ML software systems.

We computed the proportion of tests corresponding to each of the identified types of test
(testing methods) in the target ML software system, following the same steps (i.e., similar to
Step 7 of Section 4.2 for Chapter 4): For each testing methods {m1,m2,m3, ...,mn} derived

65

in Step 1 , we identified and counted all unique test cases corresponding to each of them in
the target ML software system and computed the percentage of test cases implemented in
each of the testing methods as:

M(Proportion of test cases in each test method) = mi ∗ 100
mN

(5.1)

Where: mi: Is the total number of test cases corresponding to a single test method in a given
project, and mN is the total number of test cases for all the identified testing methods in a
given ML software system.

The results M was used to generate Figure 5.1. We will discuss the results of this step in
Section 5.3.2 answering RQ2.

3 Compare the testing methods across the ML properties:

This step aims aim to understand if there is any ML property which is examined using
different types of tests.

We computed the testing methods used to verify a given ML properties in the ML software
systems, as follows: For every tests cases {mp0,mp1,mp1, ...,mpi, } corresponding to both ML
properties and testing method in a given ML software system, we computed their percentage
proportion as:

MP (Proportion of test cases for ML Property and test method) = mpi ∗ 100
mpN

(5.2)

Where: mpi: Is the total number of test cases corresponding to a single test method and
ML property in a given project, and mpN is the total number of test cases in the given ML
software system.

The results of this step (MP is shown in Table 5.2. We will discuss the results of this step
in Section 5.3.3 answering RQ3.

5.3 Results

In this section, we present the results of our analysis, answering the three proposed research
questions.

66

5.3.1 RQ1: What are the software testing methods used in an ML workflow?

We have presented the different testing strategies and the ML properties that ML engineers
test in ML workflows. Earlier in Figure 2.4 we discussed the various stages of test during the
delivery process of ML software system proposed in [2]. In this research question, we aim to
understand how ML engineers operationalize the tests described in the test Pyramid from
Figure 2.4 during the development of their ML software system. Notably, we examine the
test types/ methods used across the ML workflow in the studied ML software systems.

Table 5.1 show the list of 11 test types/methods used by the ML engineers of the studied
ML software systems; derived in Step 7 of our methodology. The presentation of the tests
in Table 5.1 follows the layers of the Test Pyramid; with Unit test at the bottom (i.e., last
row) and Experimental test at the top (i.e., first row). We highlighted rows corresponding to
tests that we found in the studied ML software systems but which are not mentioned in the
Test Pyramid of ML software system proposed by Sato et al. [2]. The newly observed types
of tests are: Regression testing, Sanity testing, Periodic Validation and Verification, Thread
testing, and Blob testing. In the following, we describe each of these newly observed tests in
more details.

• Regression Testing: This type of tests are used to verify that a previous modification or
code change has not adversely affected existing features. The test involves the partial
or full selection and execution of already executed test cases to ensure that existing
functionalities still work as expected after a change. We observed Regression testing in
only three (3) of the studied ML projects (33%) (i.e., DeepSpeech, ray and nupic

software systems) with an average of 1.43% of the total test cases in the target ML
software systems. In the nupic project, a regression benchmark test 1 is executed
every time a change is made to ensure that changes don’t degrade prediction accuracy,
through a set of standard experiments with thresholds for the prediction metrics. For
example, limiting the permutations number may cause this test to fail if it results in
lower accuracy.

• Sanity Testing: This test is part of regression testing. It aims to check the stability
of new functionality or code changes in an existing build, to ensure for example that
bugs are fixed and that no new issues are introduced as a result of these changes. The
Sanity test focuses specifically on the build to ensure that the proposed functional-
ity works close to or as expected. The build is rejected when the test fails, to save

1https://github.com/numenta/nupic/blob/master/tests/regression/run_opf_
benchmarks_test.py

https://github.com/mozilla/DeepSpeech
https://github.com/ray-project/ray
https://github.com/numenta/nupic
https://github.com/numenta/nupic/blob/master/tests/regression/run_opf_benchmarks_test.py
https://github.com/numenta/nupic/blob/master/tests/regression/run_opf_benchmarks_test.py

67

Table 5.1 The list of 11 Test types/ test methods, and their corresponding test
categories, arranged basing on the level of the test (from bottom to top) during
the continuous delivery of ML software system. Data: Data Collection, Clean: Data
Cleaning, Label: Data Labelling, Feat: Feature Engineering, Train: Model training related
activities including model fit, prediction, hyper-parameter tuning, Eval: Model Evaluation
and Post Processing, Deploy: Model Deployment activities including Model inspection, model
update, pickling and pipeline export, Moni: Monitoring including Model Monitoring and In-
spection, Config: Share configurations and Utility file or frameworks used across ML workflow
activities, Cat: The test category, proj: percentage number of projects with the test method.

Cat Test methods proj Data Clean Label Feat Train Eval Deploy Moni Config Example of test scenarios and/or related dimen-
sion from studied systems separated by commas

11

B
la
ck
-B

ox

Manual/ Exploratory test 89% 3.84 9.51 4.22 5.98 20.58 4.99 24.73 3.56 22.6

Explore the application for unexpected behaviors (using
the human creativity to hunt possible hidden bugs). The
use of print statement instead of assertions to verify the
test outcome

10 Performance/ blob Test 67% 4.49 0 3.95 7.41 17.95 0 2.59 54.64 8.98

The system’s stability and responsiveness under various
workload, computation overhead during Binary Large
Object (BLOB) operations (i.e., reshape, read/write,
test header such as Canonical Axis Index or offset or
Legacy shape, source pointer CPU/ GPU or mutable
CPU/ GPU data) in apollo, Memory allocation, Time
complexity.

9 Compatibility Test 47% 12.97 0 8.64 42.25 12.24 0 7.32 3.35 13.23
System’s compatibility with the running environment,
identical functionality of algorithm in different language,
backward compatibility.

8

W
hi
te
-
or

B
la
ck
-B

ox

End-to-End Test 11% 0 0 0 0 99.19 0 0.81 0 0

Testing for application dependencies to ensure that all
integrated components can work together, end to end
test for the compute function of HTM spatial pooler al-
gorithm in Nupic without any mocking, Testing plumb-
ing: create a random ’dataset’, trains the network and
then runs inference to ensures the correct classification.

7 Periodic Validation 22% 0 0 0 13.66 20.72 0 65.63 0 0 Frequently checking the program requirements, auto-
mated model retraining and continuous learning.

6 API Test 33% 0 0 0 0 62.76 0 0 33.55 3.69

Verifying the results or behaviour produced during
the sequence of API calls, observed in the test cases
for the studied ML software systems: Nupic, Ray,
autokeras

5 Integration Test 33% 0 7.32 0 0 68.25 0 0 9.7 14.72 Testing the combinations of different units or modules
to ensures they can work together as expected.

4 Thread testing 22% 0 0 0 0 0 0 74.16 0 25.84
Verifying the key functional capabilities of specific task,
concurrent queue Testing, thread pool test, workers
threads, performance analysis

3

W
hi
te
-B

ox Regression Test 33% 19.25 0 0 51.87 28.88 0 0 0 0

Test that a previous modification or code change has not
adversely affected existing feature. For example validat-
ing that that the model predictions don’t change after
modification (i.e., a checkpoint such that changes that
affect prediction results will cause the test to fail).

2 Sanity Test 0.09 (11%) 0 0 0 0 100 0 0 0 0

Test the stability of new functionality or code changes
in an existing build such as in Finite State Transducer
(FST) [99] algorithms implementation in Deepspeech
project

1 Unit Test 100% 10.43 10.86 8.41 17.95 30.69 5.95 6.22 2.05 7.43
Tests for individual components such as newly devel-
oped module, mostly contained within a test folder ‘unit
tests’.

AVERAGE 4.25 2.31 4.03 12.23 42.93 1.62 15.05 9.55 8.04

https://github.com/ApolloAuto/apollo/blob/master/modules/perception/base/blob_test.cc
https://github.com/numenta/nupic/blob/master/tests/unit/nupic/algorithms/spatial_pooler_compute_test.py
https://github.com/numenta/nupic/blob/master/tests/unit/nupic/algorithms/spatial_pooler_py_api_test.py
https://github.com/ray-project/ray/blob/master/python/ray/tests/test_basic.py
https://github.com/keras-team/autokeras/blob/master/tests/integration_tests/task_api_test.py
https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/third_party/openfst-1.6.7/src/test/algo_test.h

68

the cost and time for more rigorous testing. We observed Sanity test cases in only
DeepSpeech software system. The example of the Regression and Sanity test cases
in the DeepSpeech include the test for various Finite State Transducer (FST) algo-
rithms2 that allow for mapping between two sets of symbols and generates a set of
relations.

• Periodic Validation and Verification: This test periodically or frequently checks the
program under test to confirm that the requirement has been fulfilled effectively and
that the program achieves its intended purpose given the objective evidence. This type
of test happens during automated model retraining and continuous learning. The test
ensures that models are retrained with the most recent available data based on a given
frequency or other conditions.

• API Testing: API Testing aims to check the functionality, performance, reliability,
and security of the programming interfaces [100]. In API Testing, the software is used
to send calls to the API, the output is collected and the system’s response is analyzed.
We observed test cases related to API testing in three (3) of the studied ML software
system (i.e., Autokeras, Nupic and Ray). The highest percentage of API test is
observed in model training related test cases (62.76%).

• Thread Testing: This is an incremental software testing procedure (also called thread
interaction test) performed during software system integration, to verify the key func-
tional capabilities of a specific thread/task. Thread testing is usually conducted at
the early stage of the Integration testing phase [101]. Thread testing operations are
classified as either (i) single thread testing where only one application transaction is
verified at a given time or (ii) multi-thread testing when multiple concurrently active
transactions are verified at a time. We observed this type of test in two (2) of the stud-
ied ML software systems: Apollo, and Deepspeech software systems, accounting
for an average of 0.53% of the total number of test cases. An example code of thread
testing is shown in Listing 5.1. This example is extracted from the Apollo software
system. In DeepSpeech a single threaded test case is used to verify the creation of
thread safe producer-consumer queue.

• Performance/ Blob Testing: Performance Testing aims to check whether the software
under test meets certain performance requirements such as stability, reliability, speed,
response time, scalability, and resource consumption.

2https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/
third_party/openfst-1.6.7/src/test/algo_test.h

https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/third_party/openfst-1.6.7/src/test/algo_test.h
https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/third_party/openfst-1.6.7/src/test/algo_test.h

69

1 TEST(TestThread, Test) {
2 MyThread my_thread;
3 EXPECT_EQ(my_thread.get_value(), 0);
4 my_thread.set_thread_name("my_thread");
5 EXPECT_EQ(my_thread.get_thread_name(), "my_thread");
6
7 my_thread.Start();
8 my_thread.Join();
9 EXPECT_EQ(my_thread.get_value(), 100);
10 EXPECT_FALSE(my_thread.IsAlive());
11 MyThread my_thread2;
12 my_thread2.Start();
13 EXPECT_TRUE(my_thread2.IsAlive());
14 my_thread2.Join();
15 EXPECT_EQ(my_thread2.tid(), 0);
16
17 MyThread my_thread3;
18 my_thread3.set_joinable(false);
19 my_thread3.Start();
20 my_thread3.set_joinable(false);
21 EXPECT_TRUE(my_thread3.IsAlive());
22 std::this_thread::sleep_for(std::chrono::milliseconds(100));
23 EXPECT_FALSE(my_thread3.IsAlive());
24 }

Listing 5.1 Thread Testing example code extracted from Apollo project

The ML engineers should consider including the above newly derived testing methods in
the reference Test Pyramid for ML. For the regression test, they may utilise the different
regression test selection techniques summarized by Graves, T.L. et al. [102] and make it as
one of the required step [103, 104] during the development and testing phases of their ML
software system.

We identified a total of 11 different types of tests, out of which only six (6) are included
in the Test Pyramid of the delivery process of ML software system proposed by Sato et
al [2]. The newly observed types of tests are: Regression testing, Sanity testing, Periodic
Validation and Verification, Thread testing, and Performance/ Blob testing. Also, the
test type Contract test described in the proposed Test Pyramid were not implemented
by any of our studied ML software systems; suggesting gaps in the current ML testing
practices in the field.

5.3.2 RQ2: Are testing methods used consistently across projects?

Figure 5.1 (5.1a and 5.1b) compares the usage of identified testing methods across the
studied ML software systems. Figure 5.1a summarizes the total number of tests constituting
each of the testing methods. Overall, the level of adoption of the identified testing methods
varies dramatically across the studied ML software systems (ranging from zero to 16%),
except for Unit Test which takes the highest percentage of tests ranging between 68% to
91%. Moreover, only Unit Test and Manual/ Exploratory testing methods are observed in all
the studied nine ML software systems. The testing methods such as End to End and Thread

70

Blob Test Manual Test

 API Test Periodic Validation End to End Compatibility

 Unit Test Regression Thread Test Integration

P1 P2 P3 P4 P6 P8 P1P2P3P4P5P6P7P8P9

P3 P5 P8 P2 P4 P8 P8 P3 P4 P7 P8 P9

P1P2P3P4P5P6P7P8P9 P3 P8 P9 P1 P9 P4 P5 P8
0

2

4

0.0

2.5

5.0

7.5

10.0

12.5

0

1

2

3

0.0

0.3

0.6

0.9

0

5

10

15

0

1

2

3

0

5

10

15

20

0

25

50

75

0.0

2.5

5.0

7.5

10.0

0

2

4

6

C
om

po
si

tio
n

(%
)

Key
P1

P2

P3

P4

P5

P6

P7

P8

P9Key Descriptions

P1: Apollo
P2: tpot
P3: Ray
P4: nni
P5: Autokeras
P6: Auto-sklearn
P7: google-automl
P8: Nupic
P9: DeepSpeech

ML Software Projects

(a) The bar plot comparison of the testing methods composition across the
studied ML software systems.

autokeras

Ray

DeepSpeech

nni

tpot

google.automl

auto.sklearn

Apollo

Nupic

01
 U

nit
 Te

st

02
 S

an
ity

 Te
st

03
 R

eg
re

ss
ion

04
 T

hr
ea

d
Te

st

05
 In

te
gr

at
ion

 Te
st

06
 A

PI T
es

t

07
 P

er
iod

ic
Vali

da
tio

n

08
 E

nd
 to

 E
nd

09
 C

om
pa

tib
ilit

y T
es

t

Blob
/ P

er
for

m
an

ce

M
an

ua
l/ E

xp
lor

at
or

y

Composition (%)

75

50

25

0

M
L

 S
of

tw
ar

e
Pr

oj
ec

ts

Test Methods

(b) The tabular comparison of the testing methods composition across the
studied ML software systems

Figure 5.1 Comparing the percentage composition of test types/ methods across the studied
ML software systems.

71

testing are implemented in fewer (≤ 22%) of the studied ML software systems. This can
indicate that few ML software systems are thoroughly tested during software development.
Also, the non-uniform composition of the testing methods along the proposed test levels can
potentially indicate that ML engineers do not follow the proposed Test Pyramid for ML
software system, but instead only focus on the testing methods that related to their project’s
goals, or that the proposed Test Pyramid for ML software is inaccurate and needs to be
revised. For example, according to our analysis in Figure 5.1, the median test composition of
theManual/ Exploratory test and Blob/ Performance tests are 5.48% and 4.82%, respectively,
representing the second and third highest composition after the unit test, compared to fewer
percentage of tests methods such as Ends to End testing (1.03%). Similarly, at the software
system level, Nupic software system which implements most (81%) of the identified testing
methods has more Unit Test (74.65%) followed by the order Blob/ Performance Test (6.69%),
Manual/ Exploratory (5.63%), Integration Test (5.28%), API Test (4.23%), Compatibility
Test (1.41%).

Similarly, for the regression test, Among three studied ML software systems implements Re-
gression Test (i.e., Ray, Nupic, and DeepSpeech), the DeepSpeechML software systems
has the highest percentage of of test cases corresponding to Regression Test (16.1%), accord-
ing to Figure 5.1a. To highlight the example of the test case corresponding to Regression test,
in DeepSpeech ML software system (a speech recognition system)) an automated test 3 is
set to re-run 25 times for every update to check that no regression is introduced for the var-
ious algorithms implementing the weighted finite-state transducers (FST) 4, such as lexical/
alphabetical ordering algorithm. The overall testing methods implemented in DeepSpeech
ML software system are in the order: Unit Test (80%), Regression Test (16.1), Compatibility
Test (12.1%), Manual Test/ Exploratory Test (7.3%) Sanity test (0.8%), and Thread Test
(0..8%), as shown in Figure 5.1.

3https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/
third_party/openfst-1.6.7/src/test/algo_test.cc

4www.openfst.org

https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/third_party/openfst-1.6.7/src/test/algo_test.cc
https://github.com/mozilla/DeepSpeech/blob/master/native_client/ctcdecode/third_party/openfst-1.6.7/src/test/algo_test.cc
www.openfst.org

72

The composition of the identified testing methods varies dramatically (ranging from
zero to 16%) across the studied ML software systems, except for Unit Test which takes
the highest percentage of tests ranging between 68% to 91%. Only the testing methods
Unit Test and Manual/ Exploratory are implemented in each of the nine studied ML
software systems. Our findings potentially indicate that, 1. the ML software systems
are not thoroughly tested during the development phases, 2. ML engineers do not
follow the proposed Test Pyramid for ML software system [2], or 3. the proposed Test
Pyramid for ML software system [2] is inaccurate and should be revised.

5.3.3 RQ3: How are ML properties being tested along different testing levels?

Table 5.2 presents the composition of test methods used to verify each of the identified ML
properties. All the identified ML properties are verified by using Unit Test methods in at least
one of the studied ML software systems, as shown in Table 5.2 (column ‘Unit Test’). Also
(according to column ‘Unit Test’ in Table 5.2), 55% of the studied projects has the highest
percentage of unit test methods verifying the ML property Correctness, and the remaining
44% of the studied ML software systems uses the highest percentage of unit tests method for
verifying the ML property Data Validity.

Overall, the ML properties Consistency, Completeness, Correctness, Validity and Data Dis-
tribution are continuously tested at different test levels (test methods), across different ML
software systems. In contrast, the ML properties such as Robustness, Scalability, Efficiency,
Feature Importance and Security are tested only at some testing level (on the Pyramid) for
different ML software systems. Moreover, the test dominance (i.e., the highest composition
of the test) targeting specific ML properties varies across ML software systems for different
test methods. For example, according to Table 5.2, among the ML software systems that im-
plements Integration tests (i.e., Nupic, Autokeras, and nni), the Nupic software system
has the highest composition (2.2%) of Integration tests used to test for the ML property Data
Distribution. The Integration test cases related to Data Distributions in the Nupic software
system include the tests that check the occurrence of the predicted results returned by the
Sensor Data Record (SDR) classifier 5 against the expected records of sensors data; each
containing multiple class labels. In contrast, the Autosklearn software system shares the
same highest percentage number (3.31%) of Integration tests used to verify the ML properties
Data Validity and Correctness. Similarly, the nni software system uses the same percentage

5https://github.com/numenta/nupic/blob/master/src/nupic/algorithms/sdr_
classifier.py

https://github.com/numenta/nupic/blob/master/src/nupic/algorithms/sdr_classifier.py
https://github.com/numenta/nupic/blob/master/src/nupic/algorithms/sdr_classifier.py

73

Table 5.2 The percentage number of testing strategies aiming to verify the ML
properties in the studied ML software project. The highlighted values (in yellow)
indicate the composition of tests corresponding to test method with the highest value across
ML properties, for each projects. P1: Apollo, P2: Tpot, P3: Ray, P4: Nni, P5: Autokeras,
P6: Auto-sklearn, P7: Automl, P8: Nupic, P9: DeepSpeech

Cat ML Test Properties Unit Test Regression & Sanity Integration Test API Test End-to-end Test blob/ Performance Manual/ Ex-
ploratory Visual summary of the analysis

1

C
or
re
ct
ne
ss

Consistency

P1 : 12.5%, P2 : 26.06%,
P3 : 14.38%, P4 : 10.0%,
P5 : 38.67%, P6 :
35.37%, P7 : 15.0%, P8 :
22.34%, P9 : 17.74%

P8 : 0.37% , P9 : 7.26% P4 : 1.11%, P5 : 2.21%,
P8 : 1.1% P5 : 5.52%, P8 : 4.4% P8 : 0.37%,

P1 : 0.46%, P2 : 0.7%,
P3 : 0.62%, P6 : 1.83%,
P8 : 1.1%

P1 : 0.46%, P4 : 1.11%,
P6 : 0.61%, P7 : 4.0%,
P8 : 0.73%,

01 Unit Test 02 Regression 03 Integration & API 04 End to end 05 blob Test 06 Exploratory

P1P2P3P4P5P6P7P8P9 P8 P9 P4 P5 P8 P8 P1 P2 P3 P6 P8 P1 P4 P6 P7 P8

0

10

20

30

40

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

2 Completeness

P1 : 34.26%, P2 :
23.94%, P3 : 15.0%,
P4 : 24.44%, P5 :
17.68%,P6 : 10.98%,
P7 : 43.0%, P8 : 28.57%,
P9 : 16.13%

P9 : 5.65% P3 : 0.62%, P4 : 1.11%,
P5 : 1.1%, P8 : 0.73%, P5 : 1.1%, P8 : 0.37%, P2 : 1.41%, P3 : 0.62%,

P7 : 3.0%, P8 : 0.73%,
P8 : 0.37%, P1 : 0.46%,
P4 : 1.11%, P9 : 2.42%

01 Unit Test 02 Regression 03 Integration & API 04 End to end 05 blob Test 06 Exploratory

P1P2P3P4P5P6P7P8P9 P9 P3 P4 P5 P8 P8 P2 P3 P8 P1 P4 P7 P8 P9

0

10

20

30

40

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

3 Correctness

P1 : 53.24% ,
P2 : 57.04% ,
P3 : 14.38%,
P4 : 35.56%, P5 :
50.28%, P6 : 55.49% ,
P7 : 65.0% ,
P8 : 49.08% ,
P9 : 26.61%

P9 : 5.65% P4 : 1.11%, P5 : 3.31%,
P8 : 1.83% P3 : 0.62%, P5 : 6.08% P8 : 1.10% P1 : 0.46%, P3 : 0.62%,

P6 : 2.44% , P8 : 3.3%

P1 : 0.93%, P2 : 0.7%,
P4 : 2.22%, P6 : 1.83% ,
P7 : 5.0%, P8 : 0.37%

01 Unit Test 02 Regression 03 Integration & API 04 End to end 05 blob Test 06 Exploratory

P1P2P3P4P5P6P7P8P9 P9 P3 P4 P5 P8 P8 P1 P3 P6 P8 P1P2P4P6P7P8

0

20

40

60

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

4 Validity

P1 : 48.15%, P2 : 49.3%,
P3 : 30.62% ,
P4 : 37.78% ,
P5 : 53.04% ,
P6 : 44.51%,
P7 : 37.0%, P8 : 18.32%,
P9 : 42.74%

P9 : 8.06% P4 : 1.11%, P5 : 3.31%,
P8 : 1.47% P3 : 0.62%, P5 : 6.63% P8 : 0.37%, P1 : 0.93% , P2 : 2.11%,

P3 : 1.88% , P8 : 1.1%

P1 : 0.93%, P4 : 3.33% ,
P7 : 9.0% , P8 : 0.37%,
P9 : 0.81%

01 Unit Test 02 Regression 03 Integration & API 04 End to end 05 blob Test 06 Exploratory

P1P2P3P4P5P6P7P8P9 P9 P3 P4 P5 P8 P8 P1 P2 P3 P8 P1 P4 P7 P8 P9

0

20

40

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

5 Data Migration Loss & Corruption P1 : 1.39%, P3 : 6.25%,
P8 : 1.1%, P9 : 0.81% P9 : 3.23% P1 : 0.46%,

01 Unit Test 02 Regression 05 blob Test

P1 P3 P8 P9 P9 P1

0

2

4

6

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P3

P8

P9

6 Robustness

P1 : 0.46%, P2 : 3.52%,
P4 : 4.44%, P5 : 1.66%,
P6 : 15.24%, P7 : 3.0%,
P8 : 0.73%, P9 : 3.23%

P8 : 0.73%, P8 : 0.37%,

01 Unit Test 02 Integration & API 06 Exploratory

P1 P2 P4 P5 P6 P7 P8 P9 P8 P8

0

5

10

15

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P4

P5

P6

P7

P8

P9

7 Bias & Fairness P1 : 0.93%, P4 : 5.56%,
P8 : 0.73%

8 Scalability

P1 : 1.39%, P2 : 2.82%,
P3 : 6.25%, P4 : 12.22%,
P5 : 1.1%, P6 : 0.61%,
P7 : 2.0%, P8 : 1.47%,
P9 : 1.61%

P4 : 1.11% P2 : 2.82% , P3 : 0.62%,
P6 : 1.22%

01 Unit Test 02 Integration & API 05 blob Test

P1P2P3P4P5P6P7P8P9 P4 P2 P3 P6

0.0

2.5

5.0

7.5

10.0

12.5

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

9 Compatibility & Portability P3 : 0.62%, P4 : 1.11%,
P8 : 1.1%, P9 : 10.48% P9 : 0.81%, P3 : 0.62%, P4 : 1.11% P7 : 1.0%, P8 : 0.37%

01 Unit Test 02 Regression 05 blob Test 06 Exploratory

P3 P4 P8 P9 P9 P3 P4 P7 P8

0.0

2.5

5.0

7.5

10.0

ML software project

Tes
t co

mp
osi

tion
 (%

) Project

P3

P4

P7

P8

P9

10 Efficiency

P1 : 5.56%, P2 : 4.93%,
P3 : 21.25%, P4 : 4.44%,
P5 : 1.66%, P6 : 1.22%,
P7 : 3.0%, P8 : 2.56%,
P9 : 6.45%

P9 : 1.61% P4 : 1.11%, P8 : 0.73%
P1 : 1.85%, P2 : 2.82%,
P3 : 2.5%, P4 : 2.22%,
P6 : 1.83%, P8 : 4.4%

P3 : 0.62%, P4 : 3.33%,
P6 : 0.61%, P8 : 0.37%

01 Unit Test 02 Regression 03 Integration & API 05 blob Test 06 Exploratory

P1P2P3P4P5P6P7P8P9 P9 P4 P8 P1 P2 P3 P4 P6 P8 P3 P4 P6 P8

0

5

10

15

20

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

11 Data Uniqueness
P1 : 4.17%, P3 : 8.12%,
P4 : 5.56%, P5 : 0.55%,
P9 : 2.42%

P1 : 0.46%,

12 Timeliness P1 : 8.8%, P8 : 0.73% P3 : 0.62%, P3 : 0.62%,

13 Data Relation

P1 : 6.94%, P2 : 3.52%,
P3 : 0.62%, P4 : 1.11%,
P5 : 2.21%, P6 : 1.83%,
P8 : 4.76%, P9 : 0.81%

P9 : 4.84%, P8 : 0.73%, P1 : 0.46%,

14 Concurrency & Parallelism P2 : 1.41%, P3 : 0.62%,
P4 : 1.11%

15 Anomaly
P1 : 5.56%, P4 : 4.44%,
P6 : 0.61%, P7 : 4.0%,
P8 : 8.42%

P9 : 0.81% P1 : 1.85% , P7 : 1.0%,
P9 : 0.81%

01 Unit Test 02 Regression 06 Exploratory

P1 P4 P6 P7 P8 P9 P1 P7 P9

0

2

4

6

8

ML software project

Tes
t co

mp
osi

tion
 (%

) Project

P1

P4

P6

P7

P8

P9

16 Feature Importance
P1 : 0.46%, P2 : 3.52%,
P4 : 1.11%, P5 : 0.55%,
P6 : 14.63%, P9 : 2.42%

P6 : 0.61%, P8 : 0.73%,

01 Unit Test 06 Exploratory

P1 P2 P4 P5 P6 P9 P6 P8

0

5

10

15

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P4

P5

P6

P8

P9

17 Data Distribution

P1 : 28.7%, P2 : 1.41%,
P3 : 15.62%, P4 :
15.56%, P5 : 7.18%, P6 :
13.41%, P7 : 24.0%, P8 :
24.54%, P9 : 23.39%

P9 : 4.84%, P8 : 2.2% P3 : 0.62%, P8 : 0.37% P8 : 0.37%, P1 : 0.46%, P8 : 2.2% P7 : 1.0%, P9 : 0.81%,

01 Unit Test 02 Regression 03 Integration & API 04 End to end 05 blob Test 06 Exploratory

P1P2P3P4P5P6P7P8P9 P9 P3 P8 P8 P1 P8 P7 P9

0

10

20

30

ML software project

Tes
t co

mp
osi

tion
 (%

)

Project

P1

P2

P3

P4

P5

P6

P7

P8

P9

74

of Integration Tests (1.11%) to verify the ML properties Consistency, Completeness, Cor-
rectness, and scalability. The test method API test show the highest percentage of usage
in testing the ML properties Consistency and Data Validity for the ML software systems
Autokeras and Nupic.

ML engineers implement multiple tests at different testing levels (test methods) to
verify the ML properties Consistency, Completeness, Correctness, Validity, and Data
Distribution. Moreover, about 75% of ML properties (such as Robustness, Feature
Importance, Efficiency, Anomaly, and Scalability) are tested using less than half (≤
50%) of the identified test methods.

5.4 Discussion and Implications

In RQ1, we examined how ML engineers operationalize the tests described in the Test
Pyramid of ML software system proposed by Sato et al. [2]. Our results presented in Table 5.1
show that Contract test described in the proposed Test Pyramid were not implemented in
any of the studied projects. Moreover, we uncover five (5) new types of test (or testing
methods) not included in the Test Pyramid of ML software systems proposed by Sato et
al. [2], i.e., Regression Testing, Sanity testing, Periodic Validation and Verification, Thread
testing, and Blob test. Moreover, we highlighted the percentage composition of each of the
identified testing methods across the ML workflow in Table 5.1. ML engineering teams
should consider including these testing methods (adapted from traditional software testing)
into their reference Test Pyramid of ML software system.

For RQ2, we compared the tests methods across our studied ML software systems, with
the aim to identify potential differences and–or inconsistencies in the application of testing
techniques in the field. We showed that the most used testing method in the studied projects
is Unit Testing, accounting between 68% to 91% of all the test cases across the studied
ML software systems. In contrast, the proportion of adoption of the other testing methods
vary dramatically from zero to 16% across the studied ML software systems. This finding
may indicate that ML software systems may not be currently tested thoroughly during the
different phases of their development life cycle.

In Table 5.2 we show that ML engineers implement multiple tests at different testing lev-
els (testing methods) to verify the ML properties Consistency, Completeness, Correctness,
Validity, and Data Distribution.

From the analysis presented in this paper, we make the following suggestions to the ML

75

engineering teams to consider including the testing techniques such as Regression Testing,
Sanity testing, Periodic Validation and Verification, Thread testing, and Performance/ Blob
test (adapted from traditional software testing) into their reference Test Pyramid of Con-
tinuous Delivery for ML software system (CD4ML). Also many of the selected ML software
systems have no tests, so they need to learn from this and implement more tests.

5.5 Summary

This chapter is an extended part of the study presented earlier in Chapter 4, presenting the
first fine-grained empirical study of ML testing practices. Specifically, in this Chapter, we
answer three research questions. First, we examined the types of testing (test types/ testing
methods) described in the Test Pyramid of ML proposed by Sato et al. [2]. We uncover 5 new
types of testing not included in the Test Pyramid, i.e., Regression Testing, Sanity testing,
Periodic Validation and Verification, Thread testing, and Performance/Blob test. In contrast,
the Contract test described in the proposed Test Pyramid were not implemented in any of the
studied projects. Then, we examined the composition of the testing methods and find that
Unit Testing is the most used testing method in the studied projects, accounting for between
68% to 91% of all the test cases in a given ML software system. In contrast, the proportion of
adoption of the other testing methods vary dramatically from zero to 16% across the studied
ML software systems. We recommend that ML engineering teams consider including testing
techniques such as Swarming Test, Regression Testing, Sanity testing, Periodic Validation and
Verification, Thread testing, and Performance/ Blob test (adapted from traditional software
testing) into their reference Test Pyramid of ML.

76

CHAPTER 6 STUDYING RELEASE ENGINEERING CHALLENGES
USING STACKOVERFLOW

6.1 Introduction

Due to the market pressure, software industries are continuously required to deliver high-
quality software products to the end-users faster. Unlike a few years ago, when software
companies could work for months or even years on a release, many software companies now
have only a limited time (e.g., a few weeks, days, or even hours) to ship their latest features to
end users [6]. For instance, Google Chrome [105], Mozilla Firefox [106] and Facebook Mobile
app have reduced their release “cycle time” to between two to six weeks, while Facebook web
releases new features (1-2 times) a day [7].

Release engineering deals with all activities in between regular development and delivery
of a software product to the end user. Through a series of phases such as code integra-
tion from the development branches, build & compilation, package, testing, and signing of
the product for release, release engineers transform developers’ source code into a product
ready for users’ consumption [14–16]. Releasing complex ML and traditional software sys-
tems with hundreds to thousands of users can be challenging and requires skills that are
not always well mastered by ML engineers and release engineers. In fact, release engineers
must implement continuous delivery and deployment practices and must be knowledgeable
about specialised technologies and tools that support activities like continuous integration &
source control management, testing, cloud provisioning, configuration management, applica-
tion deployment, release orchestration [17]. It is therefore not surprising to see an increase
of the prevalence of discussions about release engineering practices and tools on Q&A online
developer forums, such as Stack Overflow. Stack Overflow is the most popular Q&A forums
for software development. As of May 2020, it has recorded more than 19 million questions
and 29 million answers. ML engineers or release engineers turn to Stack Overflow to seek an-
swers from their peers about issues that they face when using different software development
technologies. For example, in the Stack Overflow post ID 26440324, a developer asked about
“Automated build on Docker Hub” as follows: (1) I have created an account on Bitbucket
which is attached to a repository (no team, no group, just a user on a prepository). (2) In
Docker Hub, I tried to link to Bitbucket via button + Add Repository / “Automated Build".
(3) I get logged in alright, but it says “No repos available”. That is strange as I can see the
repository when logged into Bitbucket with this specific user. I have created this Bitbucket

77

user for the sole purpose of being able to see that repository.1. This question received an
answer only after over half a year. Which may be a signal that the issue faced by this en-
gineer is either rare and–or difficult to resolve or not interesting enough to Stack Overflow
users. An analysis of release engineering Q&A discussions on Stack Overflow can provide
insights about the prevalence, popularity, and difficulty of various release engineering topics
and guide the research community towards developing better techniques and tools to sup-
port release engineers. Therefore, in this chapter, we present a large-scale empirical study of
release engineering related posts on Stack Overflow and apply topic modeling [18] to under-
stand the discussion topics of release engineers and identify the most important challenges
that they face. Instead of studying release engineering for ML applications only, we focused
on the release engineering in the general software domain, as releasing engineering of ML
applications still lack sufficient data and lessons learnt from general software applications
can provide insights for releasing ML applications. In particular, we answer the following
five research questions.

RQ1 What topics are discussed around Release Engineering?

The goal of this research question is to identify the main issues experienced by release
engineers when producing software. By using the Latent Dirichlet allocation (LDA) [18]
technique, we group and label StackOverflow posts into 38 topics, from a total of
260, 023 release engineering questions and answers posted in a period of 11 years; i.e.,
from 2008 to 2019.

RQ2 What topics are popular among the release engineers?

The goal of this question is to identify the most prevalent release engineering topics on
Stack Overflow. We analyze the popularity of release engineering topics using 3 well-
known metrics, and find the most popular topics to be: Merge Conflict, Branching &
Remote Upstream, and Feature Expansion. This result suggests that despite the many
version control systems and source code management tools that exist, developers still
struggle with merge conflicts and branching issues. Moreover, we found that the topic
Software Testing has the highest percentage of questions asked in the CI/CD phase
of release engineering process, can potentially indicate the challenge in the software
testing practice.

RQ3 What topics are more and less difficult to find answers?

The goal of this question is to identify the topics that may be challenging for the release
engineers. Using a set of 2 well-known metrics, we find that topics MobileApp Debug

1https://stackoverflow.com/questions/26440324/docker-hub-automated-build-linked-to-bitbucket

https://stackoverflow.com/questions/26440324/docker-hub-automated-build-linked-to-bitbucket

78

& Deployment, Continuous Deployment and Docker are among the most difficult, sug-
gesting that novel tools and techniques may be needed to support release engineering
teams performing these activities.

RQ4 How do topic popularity and difficulties correlate?

Through this question we want to understand if popular release engineering topics are
difficult to address.

Results show that the topic Security is both popular and difficult, topics Merge Con-
flict, Branching & Remote Upstream, Feature Expansion are among the most popular,
while topics MobileApp Debug & Deployment, Continuous Deployment, and Docker are
among the most difficult. Release engineers must prevent malwares from infecting their
products to be released and patch vulnerabilities quickly before they can be exploited
by malicious users. This result suggests that release engineers may be struggling with
these critical activities. More research, training, and investments are required to better
support security management activities.

RQ5 What types of questions do release engineers ask in StackOverflow?

This research question aims to deepened our understanding of questions asked by release
engineers. We aim to understand for example why they choose StackOverflow over other
sources of information, such as official documentations.

By grouping the questions asked by release engineers into How?, Why? and What?
categories, we find that release engineers frequently ask about how? to do things; often
seeking clarifications and explanations (i.e., what?), and less frequently questioning
(i.e., why?) certain aspects of release engineering practices, techniques, and tools. The
high percentage of questions in the category How? suggests that release engineers need
support to create working solutions. Our dataset is available at [19]

The remainder of this Chapter is organised as follows. In Section 6.2, we describe
the steps followed in our analysis. In Section 6.3, we discuss the results of our analysis.
Section 6.4, we discuss the implications of our findings for the software research community,
practitioners and educators. Finally, we summarise the chapter in Section 6.6.

6.2 Methodology

This section summarizes the steps we took to analyze StackOverflow questions and answers,
and answer our research questions RQ1–RQ5.

79

Download
Stackoverflow
Dataset (P0)

Develop Release
Engineering (Releng)

 Tag-set (T)

Identify Releng
Question & Answers (P)

from P0
Preprocess the P

Model and Label
The Releng Topic

(Using LDA)

Identify Releng
Popular Topics

Identify Releng
Difficult Topics

Correlation of
Releng Popular/
Difficult Topics

1 2 3 4 5 6 7 8

Data Analysis (Qualitative and Quantitative)Data Collection and Preparation

RQ1 RQ2 RQ3 RQ4

Identify the
Questions Type
For the Releng

Topics

9

RQ5

Figure 6.1 Overview of our data analysis process.

1 Download StackOverflow Dataset (P0): In this first step, we used SOTorrent [107]
to download the set of StackOverflow posts P0, which contains both questions and answers
and their metadata. The dataset P0’s metadata includes title, body, tags, creation date,
views, identifier, question or answer type, title and favorite counts, score, and the identifier
of the accepted answer of a post if the post is a question with accepted answers. A question
can have at least one tag and a maximum of five tags. An answer to a question is an accepted
answer if the developer who posted the question marked it as accepted.

The dataset P0 is based on the official StackOverflow data dump released on 2019-09-042.
The dataset P0 has a total 45,919,817 questions and answers for all the post made from
September 2008 to September 2019 by 4, 479, 628 developer participants of StackOverflow.
Among these posts, 18, 154, 493 and 27, 765, 324 are questions and answers, respectively. In
total, 9, 531, 288 (34%) of these answers are marked as accepted answers.

2 Develop Release Engineering (Releng) tag-set (T): To extract releng posts from
the huge sets of posts using tags, we need a way of identifying the set of tags T used by
developers when posting releng questions in StackOverflow. This tag set T is then used to
identify and extract only the releng related Questions & Answers from our initial dataset P0.
To develop T , we defined the initial releng tag set Ti

3 based on modern release engineering
process described in the previous work [15,16] as follows:

(1) Ti include tags for the major phases of releng process, i.e., tags “Integration", “Continu-
ous Integration", “Build System", “Infrastructure-as-Code", “Deployment" and “Release" [16].
Note that some tag naming was changed to match the naming in StackOverflow (e.g., Conti-
nous Integration changed to continuous-integration) after manually searching the tops posts
tagged with the suggested tag name. (2) Identify and extract from the initial dataset P0

all questions Q whose tags match those in Ti. (3) We extract the tags of questions in Q

to construct a larger candidate tags set Ti2. (4) Lastly, we select only the tags t relevant
2https://archive.org/details/stackexchange
3https://drive.google.com/open?id=1upZfJ19d8cWGRJ-1Jbmbdg8ROSCsRMIu

https://archive.org/details/stackexchange
https://drive.google.com/open?id=1upZfJ19d8cWGRJ-1Jbmbdg8ROSCsRMIu

80

to releng, using two sets of heuristics µ and ν, measuring respectively, the significance and
relevance of a tag for a topic. These heuristics were also used in previous works [50,108]. We
removed tags that did not meet these criteria as follows.

〈significance〉 µ = No. of questionswith tag t inQ

No. of questionswith tag t in P0
(6.1)

〈relevance〉 ν = No. of questionswith tag t inQ

No. of questions inQ
(6.2)

We set thresholds limits and for every selected tag t, we considered the tag to be significantly
relevant to releng if its µ and ν values are greater than or equal to our thresholds. To identify
optimal threshold values for µ and ν, we iteratively experimented with values from intervals
0.05−0.35 and 0.005−0.035, respectively. During this experimentation, the authors assessed
the quality of the extracted posts and discussed among them until reaching a consensus on
the best candidate set. Finally, the optimal threshold values derived for µ and ν was used to
select our final tag-sets and extract the studied posts. To illustrate further, we constructed
from the initial tag-set Ti2: {Tint}, {Tci}, {Tbs}, {TIaC}, {Tdep}, {Trel} presenting all the six
major phases of releng of integration, Continuous Integration, Build System, Infrastructure-
as-Code, Deployment and Release, respectively. • Tint for example includes the major tags
related to branching and merging of code changes between the developer branches and the
main project branch, within a distributed version system.

We found that the optimal threshold values of µ = 0.3 and ν = 0.010 allow finding signifi-
cantly relevant tags for tagset Tint, Tci and TIaC , while the threshold values of µ = 0.2 and
ν = 0.005 allow finding significantly relevant tagsets for Tbs, Tdep and Trel. The threshold
values pairs of µ = 0.2 and ν = 0.005 are consistent with previous works [50, 108, 109].
Finally, we have a complete tagset T with a total of 64 tags, a union of selected Ti2, i.e,
T = Tint ∪ Tci ∪ Tbs ∪ TIaC ∪ Tdep ∪ Trel. T is shown in Table 6.1 in light gray background.
Note that some generic tags like continuous-integration, build, deployment also exist in our fi-
nal tag sets T . Those are important to identify the possible releng posts that could have been
left out, allowing us to cover a wide range. Also, some selected tags t may have the signifi-
cant and relevant values that are within our threshold limit and yet was manually removed.
The manual analysis was particularly done to discover tags that are much broader than just
release engineering. Tags which were manually removed include among others ‘environment-
variables’, ‘transactions’, ‘merge’, ‘release’4. Additionally, the use of tag set T does not
prevent releng post with other tags that may not necessary be part of the set. For example

4https://drive.google.com/open?id=1s_ujZJZZ3YKuBAn4CWm_WR0tQsv10bxq

https://drive.google.com/open?id=1s_ujZJZZ3YKuBAn4CWm_WR0tQsv10bxq

81

a tag ‘msbuild’ may return a post with tag like ‘build-tool’. The approach described in step
2 to develop the tag set T has been used by many other previous studies [50,52,109,110].

3 Identify and Extract Releng Questions & Answers (P): Since StackOverflow
is a general questions and answers website for engineering challenges, we now use the tag
set T generated in step 2 to extract only the releng posts (questions and answers) P , to be
used for the main goal of this study. To do that, we consider a post as related to releng if its
tag belongs to T . Applying this extraction criteria, we initially identified a total of 184, 830
questions and 196, 299 answers. From the extracted answers, 75, 193(38.3%) are marked as
accepted. To construct P , we included only questions and the accepted answers, following
the recommendation from other previous studies [50, 51, 108, 109]. This give us a final set
with a total of 260, 023 questions and answers, where 184, 830(71.0%) are questions and the
rest 75, 193(29.0%) are accepted answers.

4 Preprocess Releng posts P : This step, prepare our final posts P for the subsequent
analysis of forming clusters of the posts. For every question, we first joined its title and body
text to create one final body text. The extracted post text contains the HTML tags (for
example, to present a paragraph, code snippet, URL, among others), so our first step was to
clean those tags. We therefore remove all possible HTML tags which we could identify, such
as 〈p〉〈/p〉 and 〈a〉〈/a〉, and code snippets surrounded by 〈code〉〈/code〉. We then further clean
the words identify as stopwords [111] such as numbers, ‘a’, ‘the’ and ‘is’, punctuation marks
and non-alphabetical characters, as identified by MALLET’s list-of-stopwords 5. Finally, we
used Porter stemmer [112] to reduce words to their stemmed representations. For example
‘programmer’ was reduced to ‘program’, ‘configuration’, ‘configure’ and ‘configured’ all were
reduced to ‘configr’.

5 Model and Label Releng Topics: This step aims to extract the releng topics from
the final set of prepossessed questions and answers P . To do that, we build topic models on
P using the MALLET [113] toolkit implementing the Gibbs sampling algorithms [114] for
latent Dirichlet allocation LDA [18]. LDA is a state of the art, widely adopted topic modeling
technique, which models a topic as a set of frequently co-occurring words to approximate real-
world situations [50]. Further, LDA is probabilistic. The posts are categorized into K topics
after I iterations grouping. A topic is a vector of word probabilities, and a document is a
vector of topic probabilities. A topic with the highest proportion value is the most dominant
topic.

To improve the quality of the text during classification, we choose uni-gram and bi-grams
5https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.

txt

https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.txt
https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.txt

82

Table 6.1 The Selected significantly relevant tag-sets (in light gray) for 6 releng phases.

〈µ, ν〉 Tint: Tags set for releng Integration # of
tags

〈0.3, 0.015〉 branching-and-merging, branching-strategy, merging-data,
manifest-merging, git, branch, version-control, git-branch,
feature-branch

9

〈0.3, 0.010〉 branching-and-merging, branching-strategy, merging-data,
manifest-merging, git, branch, version-control, git-branch,
feature-branch, svn, merge, mercurial, git-merge, github

13

〈µ, ν〉 Tci: Tags set for releng Continuous Integration # of
tags

〈0.3, 0.015〉 continuous-integration, continuous-delivery, azure-devops,
continuous-deployment, gitlab, integration-testing, circleci,
travis-ci, bitbucket, automated-tests, tfsbuild, jenkins

12

〈0.3, 0.010〉 continuous-integration, continuous-delivery, azure-devops,
continuous-deployment, bamboo, gitlab, integration-testing, cir-
cleci, travis-ci, tfvc, bitbucket, automated-tests, tfs2013, tfsbuild,
jenkins

15

〈µ, ν〉 Tbs: Tags set for releng Build System # of
tags

〈0.2, 0.010〉 build,msbuild,build.gradle,phonegap-build,tfsbuild,build-
process,build-automation

7

〈0.2, 0.005〉 build, msbuild, interface-builder, build.gradle, flash-builder,
phonegap-build, tfsbuild, build-process, scenebuilder, build-
automation

10

(0.2,0.005) build, msbuild,interface-builder, build.gradle, flash-builder,
c++builder, phonegap-build, tfsbuild, build-process, query-
builder, stringbuilder, scenebuilder, build-automation, process-
builder, powerbuilder

15

〈µ, ν〉 TIaC : Tags set for releng Infrastructure-as-code # of
tags

〈0.3, 0.015〉 ansible, chef, puppet, ansible-playbook, chef-recipe, salt-stack,
salt,ansible-inventory, cookbook, test-kitchen

9

〈0.3, 0.010〉 ansible, chef,puppet, ansible-playbook, chef-recipe, salt-stack,salt,
chef-solo, knife, ansible-inventory, cookbook, test-kitchen, ter-
raform

13

〈µ, ν〉 Tdep: Tags set for releng Deployment # of
tags

〈0.2, 0.010〉 deployment,azure-devops,web-deployment,development-
environment,environment,devops,production-environment

7

〈0.2, 0.005〉 deployment, environment-variables, azure-devops, web-
deployment, development-environment, environment, devops,
production-environment, production, setup-deployment, azure-
pipelines

11

〈µ, ν〉 Trel: tags set for releng Release # of
tags

〈0.2, 0.010〉 release,rollback,maven-release-plugin,autorelease,release-
management

5

〈0.2, 0.005〉 rollback, maven-release-plugin, autorelease, release-management,
nsautoreleasepool, ms-release-management, release-mode,azure-
pipelines-release-pipeline,transactions

8

83

following the previous studies that has shown that transformations such as bi-gram improve
the quality [115]. Additionally, the number of topics K and the iterations grouping I are
parameters set by user as a way to control the granularity of the discovered topics [51]. To
help us discover the right number of topics K, we experimented with varying values of K
ranging from 5 to 60 in increments of 5, and I varying from 500 to 3, 000 with increments of
500. We aim to capture a broad range of topics within our dataset while keeping them distinct
from each other. Our experiment with K = 40 topics and I = 1, 000 returned meaningful
releng topics of medium level of granularity. The topics numberK and the iteration I settings
is consistent with other previous studies [51,52,116] that used StackOverflow posts.

After generating these LDA topics grouping, the next steps were to manually assign a label
to all the 40 returned topics groupings (i.e., the output of running MALLET). First, the doc-
uments were shared among the labeling team (the first and the second author of this study).
Each document in a group contains the corresponding probabilistic value scores and the top
30 keywords extracted from common, occurring words in the group of documents. Intuitively,
the higher the probability value of a document, the higher its contribution to that topic’s
words, and hence its impact on assigning the topic label. To provide the right labels, we
sort the documents by the dominant probability values from highest to lowest and randomly
read through the top 15 to 20 documents representing each group. We used that information
together with the top 30 keywords to assign a topic name to each group. During the topic
labeling, the authors discussed and assigned labels after having a common agreement. The
first author is a graduate student with many years of experience in software development, the
second and third authors are both professors with extensive research experience in releng.
Our final list of releng topics has a total of 38 topics and provides the answers to our RQ1.
Table 6.2 shows the results of our topic label. The topic 9 and 21 were merged into one topic.
Topics 38 and 39 were also merged because of their similarity.

6 Identify Releng Popular Topics: This step aims to show the topics obtained in
the previous steps that may be more popular among release engineers. To determine the
popularity of a topic, we used three metrics adapted from previous works, as follows: average
number of views [50,52,110,117,118], average total number of questions marked as favourite
by users [50, 110, 117, 119], and the average question scores [50, 110, 117–119]. Intuitively, a
more popular topic is the one that has the higher number of views, favorites, and a higher
score. The results of this step is shown in Table 6.3 to answer RQ2.

7 Identify Difficulty of Releng Topics: At this step we measure the difficulty of
each topic to showcase how challenging they may be to release engineers and call for more
attention. To measure the difficulty of a releng topic, we used two (2) known metrics adapted

84

from previous works. The percentage of questions of a topic that have no accepted answers
[50,52,108,110], and the average of median time needed by the questions of a topic to receive
an accepted answer [50, 52, 110]. Intuitively, a more difficult topic is the one having fewer
accepted answers received after a long amount of waiting time. The analysis of this Step
corresponds to our research question RQ3. Table 6.4 shows the difficulty of releng topics.

8 - Determine the correlation of Popular and Difficult Releng Topics: This
step identify the correlation between the difficult and the popular releng topics (if any). We
used Kendall correlation tests to measure these correlations, since it is considered more stable
(since it is less sensitive to outliers). We investigated 6 correlations between the 3 popularity
metrics and the 2 difficulty metrics for the releng topics discussed in step 6 and step 7. The
results of this step is shown in Table 6.5 and answers RQ4.

9 Determine the Types of Questions in the Topics: To identify the types of
questions asked by release engineers on StackOverflow, we used a qualitative coding on a sta-
tistically significant random sample of releng questions. We chose for every high-level topic’s
category shown in Figure 6.2, a random sample. We chose a sample size corresponding to a
95% confidence level and a 5% confidence interval. In total, our random sample has 2, 646
questions distributed as: Integration, CI/CD, IaC, Build System, Deployment, release, gen-
eral topics: = 381, 382, 378, 381, 378, 370, 376, respectively. During the coding process, the
authors assigned a category to each question using the following labels : ‘How?’, ‘Why?’,
and ‘What?’. The labels are defined as follows. (1) A How? type of question seeks better
ways to achieve a result. These type of questions ask for guides on how something can be
done or the ways to set up an environment. For example “how to build and run a console
application within the build and have it write output files to the output directory of another
project?". (2) A Why? type of question examines the reason, or the cause, or the purpose
for an occurrence. Developers may ask for reasons why their proposed solution failed to
work or why they have an error. An example includes “Mercury Quick Test Pro and Vir-
tual machines: Works from one client machine but not another,... If I access this virtual
machine using another machine (using Remote Desktop), the script starts fine, but stops
halfway through...Has anyone had this problem before, or have any idea why the behaviour
is different between the two machines?". (3) Finally, the What? type of question aims to
get the information related to something (e.g., a clarification).For example, “Exactly what is
integration testing - compared with unit?"

During our coding, to get the full sense of what a selected post is about, we directly read
through the post from StackOverflow using the ID of the post. We then repeatedly go
through the posts line per line before assigning the label as either How, Why or What

85

defined above. For the posts where we identify more than one type of question such as
How? and Why?, we discuss further to identify the most dominant theme and use it. We
follow the coding approach used by Treude et al. [120], whereby for their case, they defined
the types into 10, i.e., “how-to, discrepancy, environment, error, decision help, conceptual,
review, non-functional, novice, and noise". In this case, they were interested in the nature of
the question; unlike our case, where we are interested in the general concept. For example,
a question which could be decision help, conceptual, non-functional fall under the What?
category in our study. Finally, we label the questions that are not identified under any of
the above categories, as others. The results of this step is shown in Figure 6.5 and answers
RQ5.

6.3 Results

6.3.1 RQ1: What topics are discussed around Release Engineering?

Table 6.2 shows the topic name, the category, and the top 10 words for releng topics that
release engineers discuss in StackOverflow. As explained in step 5 of our methodology, topics
No. 9 is merged with No. 21 into a single topic Build Failure, while topic No. 38 is merged
with No. 39 into the topic Merge Conflict.

As one can see in Table 6.2, there is a broad range of 38 releng topics that release engineers
ask. These topics span across all phrases of releng. We present the topics both at a higher
and lower level of granularity. For example, topics Merge Conflict, Web Deployment, Web
UI Testing, Ansible are fine-grained whereas topics Software Testing, Security are coarse-
grained. In Figure 6.2, we give a visual presentation of the releng topics. For each category
and topic, we indicate the percentage of questions asked, arranging them from the highest
in the left, to the lowest in the right. The percentage score for a topic indicates how much
the topic dominates among others. Summing these scores gives a total percentage for the
category. Figure 6.2 was constructed by repeatedly arranging similar topics into groups. We
combined the two phases of ‘release’ and ‘production’ due to the fewer topics discovered
relating to them.

We can see that, the most dominating topics by category are “Continuous Integration/ Con-
tinuous Deployment (CI/CD) (21.9%)", followed by “Build System (19.9%)", then “Inte-
gration (18.3%)", “General Topics/ Different Environment (12.6%)", “Deployment (11.1%)",
“Infrastructure-as-Code (IaC) (11.0%)" and finally “Release (5.2%)". This may suggest that
many IT companies are adapting to CI/CD practice, yet they still find it challenging. Hence
maybe a reason for its questions dominating among the rest. Figure 6.2 also shows that

86

Table 6.2 Release Engineering Topic Label, Category, and their top 10 stemmed words sep-
arated by a commas

No Topic_Name Category Topic Words

0 Build Performance Build issue, time, problem, fix, start, happen, solve, stop, wait, long, day,
close, bug, minute, hour, finish

1 Environment Variables Build set, environment, variable, configuration, default, property, setting,
define, global, override, configure

2 Team Foundation CI/CD version, source, check, control, late, tfs, system, support, update,
upgrade, tool, team_foundation

3 Revision Specifier Integration multiple, number, specific, single, time, revision, separate, date,
give, mercurial, current, part

4 Dependenc Management Build project, dependency, library, include, main, jar, ant, share, maven,
external

5 Security Diff. Environ-
ment

user, access, key, private, account, public, password, permission,
credential, login, username, security

6 Web UI Testing Continuous Inte-
gration

page, open, click, show, select, link, view, element, display, browser,
text, button, puppeteer, form

7 Ansible IaC task, ansible, list, host, module, playbook, template, group, vari-
able, role, define, condition

8 File Transforms Deployment file, content, ignore, include, modify, exclude, xml, replace, rename,
edit, filename

9* BuildError Debug Build find, follow, type, search, give, resolve, information, miss, problem,
documentation

10 Web Deployment CD & Deploy-
ment

server, application, deploy, web, deployment, publish, site, azure,
website, setup

11 Virtualization Deployment run, machine, window, start, setup, locally, slave, virtual, running,
successfully, computer, runner

12 Experience with VCS Integration tag, svn, system, tool, large, time, subversion, lot, big, small, good,
free, easy, people

13 Locate Move around Files Diff. Environ-
ment

folder, copy, directory, path, delete, file, root, location, structure,
move, workspace

14 Team & Project Management Distributed De-
velopment

team, production, developer, development, code, dev, good, man-
age, live, product, work

15 Feature Expansion Dev. Environ-
ment

change, make, apply, back, modify, switch, original, edit, state,
modification, detect

16 Decision Support around Releg. Asking for
Guides

base, good, approach, common, easy, handle, component, provide,
simple, require

17 Software Testing Continuous Inte-
gration

test, integration, unit, testing, automate, write, case, selenium, con-
tinuous, result

18 Docker CD and Deploy-
ment

service, image, docker, instance, server, container, connect, start,
host, connection

19 Code Review Distributed De-
velopment

request, pull, send, post, email, status, url, comment, receive, ac-
tion, event

20 Continuous Integration Continuous Inte-
gration

build, agent, vst, definition, building, teamcity, tfs, successful, bam-
boo, drop

21* BuildError Build error, fail, follow, message, exception, throw, unable, failure, occur,
log

22 Documentation Diff. Environ-
ment

question, answer, understand, bit, read, point, thing, explain, dif-
ference, similar

23 Continuous Deployment CI/CD job, jenkin, pipeline, plugin, trigger, parameter, configure, pass,
groovy, slave, schedule

24 Msbuild Buld System solution, studio, project, visual, msbuild, reference, target, assem-
bly, framework, core, nuget, dll

25 Rollback Release transaction, rollback, follow, error, call, state, row, insert, work,
execute, set, fail, run, record, minion

26 Text Formatting Diff. Environ-
ment

case, order, level, note, end, match, rail, block, rule, top, part,
simply, fact, space, side, pattern

27 Code Compilation Build code, generate, compile, report, include, tool, source, link, coverage,
binary, static, result, compiler, cmake

28 Tool Customization Build System add, option, custom, remove, import, edit, enable, follow, exten-
sion, section

29 Artifact Management Release release, step, download, stage, artifact, debug, azure_devop, follow,
mode

30 PowerShell IaC script, execute, process, run, write, program, command, powershell,
execution, bash

31 Work Items Distributed
Team

work, fine, problem, item, thing, idea, make, correctly, perfectly,
properly

32 Creational Design Pattern Diff. Environ-
ment

call, method, return, function, object, load, code, pass, memory,
array

33 Update Rules Prod Environ-
ment

create, update, exist, automatically, check, manually, auto, empty,
automatic, follow

34 MobileApp Debug & Deployment Development
and Release

android, app, problem, application, phonegap, device, find, sup-
port, platform, show

35 Branching & Remote Upstream Branching &
Merging

repository, push, local, remote, repo, clone, pull, fork, git, bit-
bucket, origin, fetch, submodule, locally,

36 Command Line Interface CD, Build command, line, output, follow, log, show, result, console, print, give

37 Configuration Management IaC package, instal, install, chef, client, resource, puppet, cookbook,
attribute, installation

38**Merge Conflict Integration branch, merge, master, feature, conflict, develop, trunk, rebase,
back, delete

39**GitRevert CodeChanges Integration commit, history, point, git, tree, make, parent, back, current, index,
patch, changeset, head,

CI=Continuous Integration, CD=Continuous Delivery,
IaC=Infrastructure-as-Code

87

CI/CD(21.9%)

Build(19.8%)

Integration(18.3%)

Diff Environment(12.6%)

Deployment(11.1%)

IaC(11.0%)

Release(5.2%)

Testing (5.2%)

MobileApp Debug
& Publication(3.8%)

Continous
Deployment
(3.7%)

Web UI Testing
(3.6%)

Continuous
Integration
(3.3%)

Team
Foundation
Server
(2.3%)

Build Failure
(4.9%)

Msbuild(4.3%)

Dependency
Management
(3.6%)

Code
Compilation
(2.4%)

Environment
Variable
(2.2%)

Build
Performance
(1.5%)

Tool Customi
(0.9%)

Branching
$ Remove
Upstream
(4.7%)

Merge Conflict
(4.4%)

Code Review(2.5%)

Ex
pe

ri
en

ce
w

it
h

D
V
C
S
(1

.8
%

)

Team
Management
(1.8%)

Fe
at

ur
e

Ex
pa

ns
io

n
(1

.2
%

)

Revision
Specifier
(1%)

Work
Items(0.9%)

Security
(3.9%)

locate/move
Files(2.4%)

Command
Line
Interface
(1.9%)

Creational
Design
Pattern(1.9%)

D
oc

um
en

ta
ti
on

(1
.2

%
)

Decision
Support
(0.7%)

Text
Formatting
(0.6%)

Web
deployment
(3.6%)

Docker(3.2%)

File
Transforms
(2.7%)

Virtualization
(1.6%)

Ansible
(4.4%)

Powershell(2.3%)

Rollback(2.8%) Artifact
Management
(1.7%) U

pd
at

e
R
ul

es
(0

.7
%

)

0

5

10

15

20

%ge qtns

Configuration
Management
(4.3%)

Figure 6.2 Percentage of questions asked in Release Engineering Topics

the topic Software Testing is dominating in CI/CD category, while Build Failure dominates
in the Build System category. Branching & Remote Upstream dominates in the Integration
category, Security dominates across the different environment, Web Deployment dominates
in Deployment, and Rollback dominates in the Release category.

Release Engineers ask about a broad range of 38 topics, where most of the questions
are related to Continuous Integration/Continuous Deployment (CI/CD) (21.9%). Only
few questions ask about Release (5.2%) in StackOverflow.

To illustrate and give meaning to the topics above, we discuss them further by referring to
their questions, for the topics identified as most dominating.

Software Testing: Figures 6.2 and 6.3 show that the topic Software Testing is the most
dominating in the CI/CD category; representing 5.2% of questions that release engineers ask
in StackOverflow. According to our dataset, the most viewed Software Testing question in
StackOverflow is the question with identifier (Qid: 5357601) “What’s the difference between
unit tests and integration tests?[duplicate]... Are there different names for these tests? Like
some people calling unit tests functional tests, etc?". This question is the most viewed with
222K, fourth most marked favourites and most scores (in our CI/CD category), and is a
duplicate of question Qid: 10752. Software Testing questions about “Spring MockMVC" like
“How to test a spring controller method by using MockMvc?", questions on “automation test

88

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Text Formating
Update Rules

Decision Support
Tool Customization

Work Items
Revision Specifier

Documentation
Feature Expansion
Build Performance

Virtualization
Artifact Management
Experience with VCS

Team Management
Creational Design Pattern
Command Line Interface
Environment Variables

Powershell
Team Foundation
Code Compilation

Locate Move around Files
Code Review

File Tranforms
Rollback
Docker

Continous Integration
Dependency Management

Web UI Testing
Web Deployment

Continous Deployment
Mobile Deployment

Security
Configuration Management

Msbuild
Ansible

Merge Conflict
Branching & Remote Upstream

Build Failure
Software Testing

0.6
0.7
0.7

0.9
0.9
1

1.2
1.2

1.5
1.6
1.7
1.8
1.8
1.9
1.9

2.2
2.3
2.3
2.4
2.4
2.5

2.7
2.8

3.2
3.3

3.6
3.6
3.6
3.7
3.8
3.9

4.3
4.3
4.4
4.4

4.7
4.9

5.2

%ge Number of questions

R
el
ea
se

En
gi
ne

er
in
g
to
pi
cs

Figure 6.3 Topics and percentage number of their questions.

for IOS" like Qid: 20730917, 402389 “Setting up appium for iOS app test automation" may
be due to poor documentation. While Software Testing is the most important contributor
to quality assurance of the software product and must be performed at different stages of
software development. Our study only gives a general view of the area that is challenging to
release engineers, understanding the exact challenges in software testing call for future study.
Other releng topics that may be interesting to investigate more in the future (in CI/CD
category), according to our analysis are "MobileApp Deployment", "Web UI Testing".

Build Failure:- Figures 6.2 and 6.3 shows that the topic Build Failure is the most domi-
nating in the Build System category and the second most dominating releng question (4.9%)
in StackOverflow. Examples of questions related to Build Failure include Qid: 6383953
“We have a situation where our builds have stopped executing in a stable manner. At a
rate of about one every three we receive either TF215096 or TF215097 errors & the Build
fails. If we then restart the Build controller, it works again - until next time...Server logs
provide with little info, at least we ’ve found nothing that helps us resolve the situation.

89

Various searches in the Net were also not productive...", Qid: 41570435 “Could not find
com.android.tools.build:gradle:3.0.0-alpha1 in circle ci ... update the gradle plugin to the lat-
est :... and this error occured..".Despite the abundant research that examined the causes of
build failures, their automatic resolution, and proposed best practices [121–123], our results
show that release engineers frequently seek help about Build Failure; which may suggest that
they still struggle to obtain working solutions. Hence, more effort is needed to improve build
systems, in particular, according to our findings shown on Figure 6.2 and Figure 6.3, more
attention should be given to “MsBuild", “Dependency Management", “Code compilation",
“Environment Variables" and “Build Performance"

Branching & Remote Upstream: Figures 6.2 and 6.3 show that Branching & Remote
Upstream is the most dominating topic in the Integration phase category. It is the third
most dominating topic (4.7%) that release engineers discuss on StackOverflow. This topic
is about challenges in setting up repository branches and keeping them in sync. The most
viewed question on this topic is (Qid: 2765421) : “...I want to be able to do the following: 1)
Create a local branch based on some other (remote or local) branch...2) Push the local branch
to the remote repository (publish), but make it trackable so git pull and git push will work
immediately... I know about –set-upstream in Git 1.7, but that is a post-creation action. I
want to find a way to make a similar change when pushing the branch to the remote reposi-
tory.". The question is the most viewed (3.4m) in the topic Branching & Remote Upstream.
It took an average of 9,480 hours to receive the right answers, and the second highest scores
after question Qid: 6591213 which is asking about changing branch name. Other examples
of questions on this topic includes Qid: 8345141 “Keep histories in sync between local and
remote mercurial repositories... The problem is then that the personal server-side clone is
totally out of sync with the local repository because it was not rebased. We aren’t using proper
branches, so merge+rebase and transplant/graft seem to not be what we would use to get the
repositories back in sync...".

Ansible:- is a lightweight general-purpose tool for automating the configuration of appli-
cation deployment, cloud provisioning, and intra-service orchestration, among others [124].
Figures 6.2 and 6.3 show that the topic Ansible has the highest number of questions (4.3%)
in IaC category and the fourth most number of releng questions in StackOverflow.

The most viewed questions about Ansible include Qid: 32627624 “Ansible: how to run task on
other host inside one playbook? ... Is it possible to include one playbook in another? ...", and
Qid: 31152102 “Is it a good idea to make Ansible and Rundeck work together, or using either
one is enough? ... Seems both Ansible and Rundeck can be used to do configuration/manage-
ment/deployment work, maybe in a different way So my questions are: ... If they can be used

90

together, what’s the best practice?... ". The large number of questions about Ansible suggests
that it may not be as easy to understand and use as reported in the literature [124]. According
to our findings, other important topics related to the IaC category include Configuration
Management and Powershell.

Security:- According to Figures 6.2 and 6.3, the topic Security is the most dominating topic
in Topic across different Environment and eighth most dominating (3.9%) releng topic on
StackOverflow. An example of question posted in StackOverflow about Security is Qid:
56081795 “how to restrict pipeline deployment by user?..right now, my pipeline works but
anyone can trigger a deploy to any environment... the only thing I found is to block the en-
tire project via user management, but it’s not quite what I want to achieve... what I want to
achieve is to have: User1 and User2 be able to deploy to production, but User3 can’t trigger
a Prod deployment, or at least group them and allow Group A to deploy and Group B to not
deploy to Prod". There are other security questions related to ‘automating the code signing
and server certificate’, i.e., Qid: 22431526, 35821245, 23534429. Other general topics that
cross between different environment in our findings, in order of dominance, include Locate/
Move around Files, Command Line Interface, Creational Design Pattern, Documentation,
Decision Support, and Text Formatting.

Web Deployment:- Figures 6.2 and 6.3 show that Web Deployment is the most dominating
topic in the Deployment category and the 11th most discussed releng topic (3.6%) on Stack-
Overflow. An example of Web Deployment question is Qid: 49726235 which complain about
a ‘lack of tools’: “Web-based complex data-center automation tool..After evaluating existent
tools like Ansible Tower, rundeck and others, it seems that no tool can fulfill the needed require-
ments. We have complex data-center servers, cluster of DB and web servers, the data-center
has a lot of client-systems, +100, and other tools like solr, redis, kafka... deployed there across
the physical servers, not to mention that the same data-center servers have different accounts,
linux users, (QA,stag,production..etc), for now the meta-data about these environments along-
side their web-apps, source code to be used, servers of the cluster are all defined on xml and
there is a bash scriptsreads from that XML that operated manually to run any operation/task
(like checkout the source, build, deploy, start, stop... and other customized operations)....And
if this is not the right place, can you please point out where cat I ask such question?...". This
question did not receive a right answer after two years and have not attracted many views.
Other posts include Qid: 51619 “How to set up Git bare HTTP-available repository on IIS",
Qid: 47539115 “How to GitLab Shared Runners deploy to server", Qid: 33446277 “Deploy-
ing the same site N times". ”Troubleshooting Web Management Services" Qid: 56559488,
56233303, 44929985, 54100188, 44573433, 37665540, 34457183, “Installing application in the

91

remote server" Qid: 33012702, 37221920, 54975830, “Web application and windows services"
Qid: 1789316, 9590422, 29808512 among others. Finally, other important topics in the De-
ployment category according to our findings include “Docker", “File Transformation" and
“Virtualization".

Software Testing, Build Failure, Branching & Remote Upstream, Merge Conflict, Web
Deployment, Ansible & Configuration Management, Security and Rollback are the top
9 releng topics discussed. They cover all releng phases. The Software Testing has the
most asked questions and Text Formatting is least discussed topic on StackOverflow.

6.3.2 RQ2: What topics are popular among the release engineers?

Table 6.3 shows the results of our releng topic’s popularity. The popularity of topics is
measured as explained in step 6 of our analysis, and sorted by average total of views from
the highest to the lowest. Intuitively, a more popular topic is one having more views, with
more questions marked as favorites and receiving higher scores [50,108–110,118]. According to
Table 6.3, the topic Merge Conflict has the highest average number of views, average number
of favorite questions, and average number of scores. In contrast, topic Web Deployment
has the lowest average number of views, sixth least favorites, and least scores. Also, topic
Creational Design Pattern is the second least viewed, the least marked as favorite and the
second least score.

“Merge Conflict", “Repositories Structure & Remote Upstream", “Feature Expansion"
of Integration category are among the most popular releng topics, while Web Deploy-
ment and Creational Design Pattern are amongst the least popular topics.

6.3.3 RQ3: How do topic popularity and difficulties correlate?

Table 6.4 shows the difficulties of the releng topics, which is measured as described in step 7
of our data analysis. Table 6.4 is sorted in the order from the highest percentage number of
questions without accepted answers.

“..., a topic with higher percentage of its questions not receiving accepted answers or taking
longer time to receive accepted answers is more difficult" [109]. According to Table 6.4, topic
MobileApp Debug & Deployment has the highest percentage of questions without accepted
answers, and is in eighth position in terms of time required to receive an accepted answer.
Continuous Deployment has the third-highest percentage number of questions with no ac-

92

Table 6.3 Releng Topics Popularity

Topic_Name Avg. Views Avg. Favourites Avg. Scores

Merge Conflict 9166.72 5.5 17.74

Branching & Remote Upstream 7618.43 3.6 10.83

Feature Expansion 6913.07 3.53 12.18

Security 5077.71 1.85 5.95

File Transforms 4988.98 3.00 10.03

Experience with VCS 4705.83 3.67 10.04

Locate Move around Files 4452.63 1.48 5.31

Team Foundation 4293.11 2.27 7.32

Tool Customization 4226.45 1.46 5.12

Update Rules 3957.25 1.87 6.32

Documentation 3892.68 2.41 6.23

Command Line Interface 3542.88 1.13 4.34

Web UI Testing 3365.99 1.28 4.78

Continuous Deployment 3066.3 0.71 2.9

Build Failure 3064.18 0.82 3.54

Environment Variables 3048.08 0.7 2.92

Text Formatting 3014.6 2.42 5.91

Msbuild 2937.23 1.05 4.36

Build Performance 2769.02 1.02 4.52

Configuration Management 2720.93 1.05 4.27

Code Review 2676.75 1.23 4.94

Dependenc Management 2649.33 0.95 3.42

PowerShell 2512.86 0.59 2.34

Revision Specifier 2452.26 1.25 4.58

Work Items 2444.42 1.00 3.61

Decision Support around Releg. 2377.9 1.67 5.22

Virtualization 2334.51 0.66 2.56

Rollback 2319.14 1.03 3.21

Artifact Management 2309.59 0.81 3.13

Docker 2254.28 0.87 2.94

Code Compilation 2222.25 2.84 3.39

Team & Project Management 2031.85 1.66 4.19

Ansible 2031.2 0.88 3.25

MobileApp Debug & Deployment 1923.66 1.01 3.32

Continuous Integration 1829.94 0.7 2.79

Software Testing 1749.85 0.93 2.99

Creational Design Pattern 1489.96 0.52 2.04

Web Deployment 1363.5 0.7 2.03

releng Topics 3894.43 1.87 6.10

Table 6.4 Releng Topics Difficulty

Topic_Name % No acc. Ansers Hrs to acc. Answers

MobileApp Debug & Deployment 59.66 6.00

Continuous Deployment 59.09 9.00

Docker 59.09 6.00

Virtualization 58.58 9.00

Web Deployment 56.97 9.00

Build Failure 56.5 5.00

Code Compilation 55.78 9.00

PowerShell 54.76 3.00

Software Testing 54.2 7.00

Build Performance 53.74 4.00

Artifact Management 53.48 4.00

Code Review 53.35 4.00

Web UI Testing 52.42 4.00

Environment Variables 51.99 3.00

Command Line Interface 51.21 3.00

Dependenc Management 50.96 2.00

Update Rules 50.51 2.00

Security 50.44 4.00

Rollback 50.28 1.00

Configuration Management 49.61 4.50

Tool Customization 49.46 1.00

Decision Support around Releg. 48.92 2.00

Work Items 48.5 3.00

Locate Move around Files 47.84 1.00

Continuous Integration 47.74 11.00

Creational Design Pattern 47.32 0.00

Text Formatting 46.77 1.00

Ansible 46.33 6.00

File Transforms 45.52 1.00

Team & Project Management 43.9 1.00

Msbuild 43.39 8.00

Revision Specifier 43.01 3.00

Branching & Remote Upstream 41.61 0.00

Documentation 41.08 1.00

Feature Expansion 40.24 0.00

Experience with VCS 40.21 1.00

Team Foundation 39.73 1.00

Merge Conflict 39.12 0.00

releng Topics 49.82 3.00

93

cepted answers, and the third-highest average median time needed to receive an accepted
answer. In contrast, topic Merge Conflict has the least percentage of questions with no
accepted answers and the least amount of hours waited to receive accepted answers.

MobileApp Debug & Deployment:- Table 6.4 shows MobileApp Debug & Deployment
having the highest percentage of non-accepted answers (59.66% higher than the rest of the
releng topics in StackOverflow). This may signal that it is difficult for release engineers to
find answers related to MobileApp Debug & Deployment and therefore that it is a difficult
topic. If we analyze question Qid: 11934125 which is about “Automated testing of Hybrid
apps" : “If I want to perform automated testing of a PhoneGap app (for now, only on iOS),
what options do I have (if any)?, I had also looked at using Jasmine with the Jasmine-jQuery
plugin for much the same thing but it requires duplicating the app HTML (and the over-
head of keeping the two in sync etc)". This question despite being popular did not receive
a clear answer after more than seven years. The question was asked more than once (
Qid: 18739352) in StackOverflow. This situation may tell us (i) Mobile app developers are
migrating from native apps to hybrid mobile development apps, due to its numerous benefits
such as simplicity, portability, cross-platform support, reusing web development knowledge
and cheap development processes [125, 126] among others. However, it seems that (2) they
still lack efficient tools (e.g., for automation tests) to help in the migration and development
of hybrid app.

Continuous Deployment:- Similarly, Table 6.4 shows that Continuous Deployment related
questions are difficult to answer, with the percentage of questions with no accepted answers
being 59.09%. An example of Continuous Deployment question that took a very long time
(4 years) to get an acceptable answer is Qid: 31806108: “Is there any method or plugins
available to retrieve deleted Jenkins job? I have mistakenly deleted one job from Jenkins. So
please give a suggestion to undo the delete". However, this difficult question was viewed over
20k times between August 2015 and January 2019.

“MobileApp Debug & Deployment" and “Continuous Deployment" are among the most
difficult releng topics.

6.3.4 RQ4: How do topic popularity and difficulties correlate?

Our analysis indicates that topics such asMerge Conflict, Branching & Remote Upstream and
Feature Expansion [127] are more popular in Table 6.3, but the least difficult in Table 6.4.
These results inspired us to investigate the correlations between popular and challenging

94

Table 6.5 Correlations of releng topics popularity/difficulty.

coefficient / p-value Avg. views Avg. Favourites Avg. Scores

% w/o acc. answer -0.338/0.002 -0.460/4e-05 -0.492/1e-05

hrs to acc. answer 0.042/0.708 0.046/0.681 0.053/0.637

Branching &
Remote upstream

Security

MobileApp
Deployment

Docker

Figure 6.4 Comparison of releng topics by popularity & difficulty

topics. As explained in step 8 of our analysis approach, we investigate the relationship
using Kendall correlation by measuring the six correlations against the three popularity
and two difficulty metrics of releng. Table 6.5 show the correlation measurement results of
our analysis. The results in Table 6.5 shows a statistical negative correlation between the
popularity and difficulty of releng topics even at 80% confident level. We further discuss the

95

tradeoff between popularity and difficulty in Section 6.4.

There is a statistically significant negative correlation between the popularity and
difficulty of releng topics.

Our results, however, do not imply that difficulty and popularity topics in StackOverflow
are always negatively correlated. For example, Bagherzadeh and Khatchadourian [50] found
that big data topics in StackOverflow are not negatively correlated. Similarly, the topic of
general mobile development which is found to be popular by Barua et al. [51] is also seen as
difficult by Rosen and Shihab [52].

6.3.5 RQ5: What types of questions do release engineers ask in StackOver-
flow?

0 20 40 60 80 100

General
Release

Deployment
IaC

Build
CI/CD

Integration

Percentage No. of question’s posts (2271)

T
op

ic
C

at
eg

or
y

how?(1338)
why?(427)
what?(462)
others?(44)

Figure 6.5 Distributions of questions type in Releng topics category

Figure 6.5 shows the distributions of question types for the studied releng topic’s category.
We performed a Chi-squared test and found that there is no statistically significant difference
between the types of questions across the topic’s categories with a p− value < 0.05. Overall,
as shown in Figure 6.5, the most prevalent type (58.9 %) of questions is “How", followed by
“What" (20.3 %) and “Why" (18.8 %) for all releng categories. This result shows that release
engineers are looking for more specific help to their problems, concepts, and errors. The high
percentage of “How?′′ questions in our results is consistent with the findings by Rosen and
Shihab [52].

The majority of “how?′′ questions are related to ‘Deployment’ (63.42%). The category IaC
and Build has more “why′′ questions (26.84% and 25.33%, respectively), implying that better
tools to help debugging could be most useful to improve releng pipelines, for example, Qid:
32871956 asks “Why Aren’t My Chef Normal Attributes Persisted?”. The topic category
Integration shows the most “what′′ questions (26.58%); meaning that developers need some
guidelines, documentation, and other useful information, to guide them in the integration
phase of releng, for example, Qid: 17466933 asks “What is the Git branching strategy with

96

agile process?”.

Overall, the most prevalent type of questions is “How” (58.9 %), followed by “what”
(20.3 %) and then “Why” (18.8 %), for all releng categories.

6.4 Discussion and Implications

So far in this Chapter, we have highlighted the different releng issues that are discussed in
StackOverflow, pointed out the most popular and difficult topics, and finally, the types of
questions that releng engineers ask. In this section, we summarise and discuss the impactful
issues and their implications for the researchers, practitioners, and educators.

Impactful Topics:- Although all the topics presented in this study are important in their
specific area. We particularly summarized the releng popular and difficult topics, which we
believe should be given more attention by researchers and practitioners. Figure 6.4 shows
the popular topics in the y-axis as a measure of average views and the difficult topics in
the x-axis as a percentage of questions with no accepted answers, and further divided into
four quadrants showing more clearly, the relative popularity and difficulty of the issues. As
can be seen in the top right quadrant, the topic Security is found to be both popular and
difficult. This is therefore an important direction of research. Other topics we believe that
need more attention as shown in Figure 6.4, include Merge Conflict, MobileApp Deployment,
Virtualization, Continuous Deployment, Debugging, Code Review, Web Deployment, File
Transforms, Docker, Web UI Testing. Identifying the actual problems related to each of
these topics is out of the scope of this study and we call for more investigations by the
research community. We also found that many developers are looking for the right solutions
for the problems at hand (shown by the high number of “How” questions), concepts (“what”
questions), and errors (“why” questions). This suggests the need for a general effort from
both researchers, tool builders, or practitioner, and the educators.

To Researchers:- The empirical results of our study provide general views about the trends
in releng; highlighting both the popular and challenging releng issues that are being discussed.
We encourage researchers to tackle the top 10 difficult releng topics that we have identified,
i.e., MobileApp Debug & Deployment, Code Review, Docker, Continuous Deployment, Virtu-
alization, Web deployment, Build Error Debug, Web UI Testing, Build System Performance,
Security and Configuration Management. According to Figure 6.4, the Security topic is both
difficult and popular. We also found in Chapter 4 that Security & Privacy as one of the
ML properties not consistently tested potentially indicate the challenge this area. This calls

97

for more attention on releng security challenges. By infecting a build, malicious users could
distribute their malware to thousand and even millions of users. Researchers should invest
in developing efficient techniques and tools to support release engineers.

To Practitioners:- According to our findings, we recommend the team lead to always
take the difficult topics in to consideration when they are distributing works between the
project team members. Release activities related to Security, Docker, Virtualization, Code
Review and Continuous deployment are more difficult and they should be assigned to the
more experienced team members. Whereas the tasks related to code integration (with the
exception of code review), could be assigned to even a less experienced team members. For
the high percentage of the topic “Software Testing” in the CI/CD release engineering phase,
the ML practitioners can also use the results on ML software testing practices in Chapter 4
and Chapter 5 to learn about the various testing strategies and the test methods.

To Educators:- Release engineering topics with higher percentage of questions on Stack-
Overflow such as “Software Testing", “Branching & Remote Upstream" and “Merge Conflict”
should be better covered by training and course materials. Educators should also pay a par-
ticular attention to “Security” issues and ensure that challenges related to security in releng
pipelines are covered in course materials.

6.5 Threats to validity

To identify and extract the releng related posts in StackOverflow, we entirely relied on the
selected releng tags, which is a threat. Our analysis may have missed to identify some
releng posts. To mitigate this threat, we adapted methodologies used by many previous
studies [50,52,109,110]. We are confident that this resulted in a significantly relevant releng
tag set. Another threat is due to manual labeling, where we read the questions posts to
appropriately map them to the topics. There is no tool that we could use to perform this
task automatically. We further minimized this threat by both relating the topics keywords
and randomly selecting at least 15 questions in the order of highest probability value to
the category, and relating them to the user-defined tags. This approach has also been used
by many previous works [50, 109, 117]. Another possible threat could be when choosing the
optimal number of topics K and iterations value I. We, therefore, followed a well-defined
technique adapted from [50–52, 117] together with multiple experiments to ensure that we
identify reasonable K and I values. Also, LDA a probabilistic method may lead to random
posts for the topics (to some extent), which is a threat. To mitigate this threat, we compared
the returned 40 topics for the potential difference by running our final model at least four

98

times; in all, we did not find a significant difference. Also, considering StackOverflow for
understanding releng topics may be a threat. However, given the enormous popularity of
Stack Overflow and the large number of release engineers using it, we believe that this
threat is minimal. Nevertheless, future investigations with other crowed-source platforms are
desirable to make our findings more generic.

6.6 Summary

This empirical study presents the results of a large-scale study conducted using StackOver-
flow, to understand what release engineers ask about and identify the questions that are the
most challenging during the six major phases of the release engineering process. We have
identified popular and difficult topics and examined the relationship between them. We have
categorized the questions that release engineers asked into three types (i.e., “How?”, “Why?′′,
“What?′′). These results can be extended to identify what is being asked for any topic.Finally,
we have discussed our findings and formulated recommendations for researchers, practition-
ers, and educators teaching release engineering. Researchers can also apply our approach in
a similar way to help them get data and information related to their study.

99

CHAPTER 7 CONCLUSION

In this chapter, we provide the summarise our findings and conclude the thesis. And discuss
our future works.

7.1 Summary

This thesis presents empirical studies on the practices of testing ML software systems and
modern release engineering topics. In Chapter 4, we presented the first part of our empirical
studies. We provided the first fine-grained empirical study that studies the adoption of ML
testing in practices by analyzing the testing strategies and ML properties for the ML software
systems. First, we examine different ML testing strategies implemented in ML workflows de-
ployed in the field. We derived a total of nine (9) main categories of ML testing strategies
used in the ML workflow, out of which six testing strategies are marked as ML specific (i.e.,
testing strategies for only ML related code). We find than on average, most testing is asso-
ciated with Model Training (32.68%), followed by Feature engineering activities of the ML
workflow. Second, we studied the specific ML properties that are tested in a ML workflow
and identified 20 ML properties that ML engineers commonly test. We find that some of the
identified ML properties, i.e., Uncertainty, Security & Privacy, Concurrency, and Model Bias
and Fairness are tested in less than half (≤ 50%) of ML workflow activities. In contrast, the
ML properties Consistency, Completeness, Correctness, Data Validity, Robustness and Data
Distribution are tested in a large majority (≥ 80%) of ML workflow activities. Third, we
compared the testing strategies, and ML properties, across our studied ML software systems,
to identify any potential differences and–or inconsistencies in the application of testing tech-
niques in the field. We showed that, there is a non-uniform use of different testing strategies
and ML properties within and across the studied ML software systems. We find that, at
least 80% of the studied ML projects consistently use the testing strategies: Absolute Rel-
ative Tolerance (Oracle Approximation), Error bounding (Oracle Approximation), Instance
and Type Checks, Negative Test, State Transition, Value Range Analysis, Decision & Logical
Condition, Membership Testing, and Value Error (Fault Injection). For the ML properties,
we found only about 20% to 30% of the ML properties such as Correctness, Consistency,
Completeness, Data Distribution, Data Validity, and Efficiency are consistently tested across
at least in 90% of the studied ML software systems. The ML properties Bias and Fairness,
Compatibility and Portability, Security and Privacy, Data Timeliness and Uncertainty are
not consistently tested in about 80% of the studied ML software systems. Fourth, by exam-

100

ining the testing strategies used across the ML properties, we observed that at least two (2)
testing strategies are used to verify a single ML property, as observed in at least 80% of the
identified ML properties.

In Chapter 5, we study the adoption of testing methods throughout the development phases
of ML software systems. Specifically we focused on three main aspects. First, we examined
the types of testing (test types/ methods) described in the Test Pyramid of ML proposed
by Sato et al. [2]. We uncover 5 new types of testing not included in this Test Pyramid,
i.e., Regression Testing, Sanity testing, Periodic Validation and Verification, Thread testing,
and Performance/Blob test. In contrast, the Contract test and Service test described in the
proposed Test Pyramid were not implemented in any of the studied projects. Secondly, we
examined the composition of the testing methods across projects and found that Unit Testing
is the most used testing method in the studied projects, accounting for between 68% to 91% of
all the test cases in a given ML software system. In contrast, the proportion of adoption of the
other testing methods varies dramatically from zero to 16% across the studied ML software
systems, potentially indicating that ML software systems are not currently tested thoroughly
during the different phases of their development life cycle. Finally, we compared the testing
methods verifying a given ML properties and showed that ML engineers implement multiple
tests at different testing levels (testing methods) to verify the ML properties Consistency,
Completeness, Correctness, Validity, and Data Distribution.

In Chapter 6, we studied the release engineering topics to understand what questions are
asked during release and deployment of the traditional and ML software systems and iden-
tify the questions that are the most challenging during the six major phases of the release
engineering process. We identified popular and difficult topics and examined the relationship
between them. Also, we have categorized the questions that ML and release engineers asked
into three types (i.e., “How?”, “Why?′′, “What?′′). These results can be extended to identify
what is being asked for any topic.

We encourage researchers, to build on our finding of 20 common ML properties to develop
novel testing techniques and better tool support to help ML engineers tests for these iden-
tified properties. We also invite more studies on the evaluation of the effectiveness of the
identified ML testing strategies in future. We recommend that ML engineers use our pre-
sented taxonomy, to learn about the existing ML testing strategies, and implement them
in their ML workflow, especially the most used testing strategies such as Absolute Rela-
tive Tolerance (Oracle Approximation), Error bounding (Oracle Approximation), Instance
and Type Checks, Negative Test, State Transition, Value Range Analysis, Decision & Logical
Condition, Membership Testing, and Value Error (Fault Injection). We also encourage ML

101

maintenance teams to test for our identified ML properties in their projects in order to ensure
their systems’ trustworthiness. Finally, we recommend that ML engineering teams consider
including testing techniques such as Swarming Test, Regression Testing, Sanity testing, Peri-
odic Validation and Verification, Thread testing, and Performance/ Blob test (adapted from
traditional software testing) into their reference Test Pyramid of ML. Finally, we urge the
searchers, practitioners, and educators to explore further and use the release engineering
topics discussed in Chapter 6 in their respective field. Also, we encourage the researchers
our apply our approach to extract topics in StackOverflow in a similar way to help them get
data and information related to their study.

7.2 Future Works

As this thesis report the testing practice used by the ML engineers in securing the quality
of their ML software systems and the challenges they may face during their release engi-
neers process. In the following, we highlight some of the potential future research directions
resulting from the contributions of these empirical studies.

• We have explored and highlighted eight new testing strategies, six new test types/
testing methods, 20 ML properties, and 35 release engineering topics. It is, therefore,
a new research direction for researchers in the future to explore these areas in detail.

• Evolution of the test practices: In future we hope to study how the studied tests are
maintained and evolved through out the ML software development life-cycle. We still
don’t know when ML engineers first introduced the studied tests and how their testing
strategies may have changed overtime.

• The efficiency of these testing practices: To evaluate the efficiency of the identified
ML testing practice in future will help the ML engineers to choose the most adequate
testing strategies for their ML software systems.

• We also invite more future works to explore the ML properties (such as Security and
Privacy, Data Uniqueness, Timeliness or Scalability) which are not consistently used
across the projects.

7.3 Authors remarks

It is worth noted that part of this study was peer-reviewed and published at the IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). Also, the other part

102

of this work is currently under the review process at the ACM Transactions on Software En-
gineering and Methodology (TOSEM) journal. Once again, the authors wish to exceptionally
thank prof. Foutse, for his overall supervision of these studies, and inviting other external
professionals consisting of both ML practitioners and researchers with extensive research ex-
perience in empirical software engineering, ML software testing and release engineering; to
review and provide insightful comments throughout these studies, that greatly improved the
results reported in this thesis.

103

REFERENCES

[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann, “Software engineering for machine learning: A case study,” in
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2019, pp. 291–300.

[2] “Continuous delivery for machine learning,” https://martinfowler.com/articles/cd4ml.
html, 2019.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for
direct perception in autonomous driving,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 2722–2730.

[4] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of
deep learning systems,” in proceedings of the 26th Symposium on Operating Systems
Principles, 2017, pp. 1–18.

[5] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in
medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.

[6] HP Application Handbook. (2012) Shorten release cycles by bringing developers to
application lifecycle management. [Online]. Available: http://bit.ly/x5PdXl

[7] C. 2014. (2015) Moving to mobile: The challenges of moving from web to mobile
releases,” keynote at releng 2014. [Online]. Available: https://www.youtube.com/
watch?v=Nffzkkdq7GM

[8] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao
et al., “Deepmutation: Mutation testing of deep learning systems,” in 2018 IEEE 29th
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2018,
pp. 100–111.

[9] D. Cheng, C. Cao, C. Xu, and X. Ma, “Manifesting bugs in machine learning code: An
explorative study with mutation testing,” in 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS). IEEE, 2018, pp. 313–324.

https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
http://bit.ly/x5PdXl
https://www. youtube.com/watch?v=Nffzkkdq7GM
https://www. youtube.com/watch?v=Nffzkkdq7GM

104

[10] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial optical chan-
nel exploits against lidars for automotive applications,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp. 445–467.

[11] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M.
Mao, “Adversarial sensor attack on lidar-based perception in autonomous driving,” in
Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2267–2281.

[12] M. Nejadgholi and J. Yang, “A study of oracle approximations in testing deep learning
libraries,” in 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 785–796.

[13] A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen,
J. Deaton, J. Eisenstein, M. D. Hoffman et al., “Underspecification presents challenges
for credibility in modern machine learning,” arXiv preprint arXiv:2011.03395, 2020.

[14] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan, “An
empirical study of build maintenance effort,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 141–150. [Online]. Available:
https://doi.org/10.1145/1985793.1985813

[15] B. Adams, S. Bellomo, C. Bird, T. Marshall-Keim, F. Khomh, and K. Moir, “The
practice and future of release engineering: A roundtable with three release engineers,”
IEEE Software, vol. 32, no. 2, pp. 42–49, 2015.

[16] B. Adams and S. McIntosh, “Modern release engineering in a nutshell – why researchers
should care,” in 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), vol. 5. IEEE, 2016, pp. 78–90.

[17] XebiaLabs. (2015) Periodic table of devops tools. [Online]. Available: https:
//xebialabs.com/periodic-table-of-devops-tools/

[18] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn.
Res., vol. 3, no. null, p. 993–1022, Mar. 2003.

[19] M. Openja, “Release engineering posts,” Aug. 2020, – A Large-Scale Study using
StackOverflow –. [Online]. Available: https://doi.org/10.5281/zenodo.3980266

https://doi.org/10.1145/1985793.1985813
https://xebialabs.com/periodic-table-of-devops-tools/
https://xebialabs.com/periodic-table-of-devops-tools/
https://doi.org/10.5281/zenodo.3980266

105

[20] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing: Survey,
landscapes and horizons,” IEEE Transactions on Software Engineering, 2020.

[21] M. Fink, “The eu artificial intelligence act and access to justice,” EU Law Live, 2021.

[22] V. Christina, “What is the best programming language
for machine learning?” https://towardsdatascience.com/
what-is-the-best-programming-language-for-machine-learning-a745c156d6b7, 2017.

[23] Pytest, “Pytest, about fixtures,” https://docs.pytest.org/en/latest/explanation/
fixtures.html, 2021.

[24] a.-s. automl, “test metrics,” https://github.com/automl/auto-sklearn/blob/master/
test/test_metric/test_metrics.py, 2021.

[25] ——, “test automl,” https://github.com/automl/auto-sklearn/blob/master/test/test_
automl/test_automl.py, 2021.

[26] Googletest, “Googletest primer,” http://google.github.io/googletest/primer.html,
2021.

[27] R. Gennadiy and E. Raffi, “Boost c++ libraries,” https://www.boost.org/, 2020.

[28] cpputest, “Cpputest: Cpputest unit testing and mocking framework for c/c++,” https:
//cpputest.github.io/, 2021.

[29] V. Mark, K. Mike, and W. Greg, “Unity unit testing for c (especially embedded soft-
ware),” http://www.throwtheswitch.org/unity, 2015.

[30] C. Google, “Mlops: Continuous delivery and automation
pipelines in machine learning,” https://cloud.google.com/architecture/
mlops-continuous-delivery-and-automation-pipelines-in-machine-learning, 2021.

[31] IBM, “The machine learning development and operations,” https://
ibm-cloud-architecture.github.io/refarch-data-ai-analytics/methodology/MLops/,
2020.

[32] C. Mike, “The forgotten layer of the test automation pyramid,” https://www.
mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid,
2009.

[33] B. C. Society, “Glossary of terms used in software testing (version 6.3),” http://www.
testingstandards.co.uk/bs_7925-1_online.htm, 1998.

https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://docs.pytest.org/en/latest/explanation/fixtures.html
https://docs.pytest.org/en/latest/explanation/fixtures.html
https://github.com/automl/auto-sklearn/blob/master/test/test_metric/test_metrics.py
https://github.com/automl/auto-sklearn/blob/master/test/test_metric/test_metrics.py
https://github.com/automl/auto-sklearn/blob/master/test/test_automl/test_automl.py
https://github.com/automl/auto-sklearn/blob/master/test/test_automl/test_automl.py
http://google.github.io/googletest/primer.html
https://www.boost.org/
https://cpputest.github.io/
https://cpputest.github.io/
http://www.throwtheswitch.org/unity
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://ibm-cloud-architecture.github.io/refarch-data-ai-analytics/methodology/MLops/
https://ibm-cloud-architecture.github.io/refarch-data-ai-analytics/methodology/MLops/
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
http://www.testingstandards.co.uk/bs_7925-1_online.htm
http://www.testingstandards.co.uk/bs_7925-1_online.htm

106

[34] S. P. Berczuk, S. Berczuk, and B. Appleton, Software configuration management pat-
terns: effective teamwork, practical integration. Addison-Wesley Professional, 2003.

[35] E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching strategies on soft-
ware quality,” in Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement, 2012, pp. 301–310.

[36] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007.

[37] D. Ståhl and J. Bosch, “Modeling continuous integration practice differences in industry
software development,” Journal of Systems and Software, vol. 87, pp. 48–59, 2014.

[38] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski, “Evolution of the
linux kernel variability model,” in International Conference on Software Product Lines.
Springer, 2010, pp. 136–150.

[39] J. Humble and D. Farley, Continuous delivery: reliable software releases through build,
test, and deployment automation. Pearson Education, 2010.

[40] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspective. Addison-
Wesley Professional, 2015.

[41] H. B. Braiek and F. Khomh, “On testing machine learning programs,” Journal
of Systems and Software, vol. 164, p. 110542, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220300248

[42] S. Masuda, K. Ono, T. Yasue, and N. Hosokawa, “A survey of software quality for
machine learning applications,” in 2018 IEEE International conference on software
testing, verification and validation workshops (ICSTW). IEEE, 2018, pp. 279–284.

[43] A. Nikanjam, H. B. Braiek, M. M. Morovati, and F. Khomh, “Automatic fault
detection for deep learning programs using graph transformations,” arXiv preprint
arXiv:2105.08095, 2021.

[44] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software for discrim-
ination,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 498–510.

[45] H. K. Wright and D. E. Perry, “Release engineering practices and pitfalls,” in 2012
34th International Conference on Software Engineering (ICSE), 2012, pp. 1281–1284.

https://www.sciencedirect.com/science/article/pii/S0164121220300248

107

[46] M. Castelluccio, L. An, and F. Khomh, “An empirical study of patch uplift in rapid
release development pipelines,” Empirical Software Engineering, vol. 24, no. 5, pp.
3008–3044, 2019. [Online]. Available: https://doi.org/10.1007/s10664-018-9665-y

[47] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding the impact
of rapid releases on software quality - the case of firefox,” Empirical Software
Engineering, vol. 20, no. 2, pp. 336–373, 2015. [Online]. Available: https:
//doi.org/10.1007/s10664-014-9308-x

[48] T. Karvonen, W. Behutiye, M. Oivo, and P. Kuvaja, “Systematic literature review on
the impacts of agile release engineering practices,” Information and software technology,
vol. 86, pp. 87–100, 2017.

[49] N. Kerzazi and B. Adams, “Who needs release and devops engineers, and why?”
in Proceedings of the International Workshop on Continuous Software Evolution and
Delivery, ser. CSED ’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 77–83. [Online]. Available: https://doi.org/10.1145/2896941.2896957

[50] M. Bagherzadeh and R. Khatchadourian, “Going big: A large-scale study on what
big data developers ask,” in In Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
’19. City University of New York (CUNY): ACM, 2019. [Online]. Available:
https://academicworks.cuny.edu/hc_pubs/524/

[51] A. Barua, S. Thomas, and A. Hassan, “What are developers talking about? an analysis
of topics and trends in stack overflow,” in Empir Software Eng 19. "-": Springer Link,
2014, p. 619–654. [Online]. Available: https://doi.org/10.1007/s10664-012-9231-y

[52] C. Rosen and E. Shihab, “What are mobile developers asking about? a large scale
study using stack overflow,” Empirical Software Engineering, pp. 1–32, 01 2015.

[53] N. V. Ivankova, J. W. Creswell, and S. L. Stick, “Using mixed-methods sequential
explanatory design: From theory to practice,” Field methods, vol. 18, no. 1, pp. 3–20,
2006.

[54] I. GitHub, “The github search api lets you to search for the specific item efficiently.”
https://docs.github.com/en/rest/reference/search, 2021.

[55] (2021) Github rest api. [Online]. Available: https://developer.github.com/v3/

https://doi.org/10.1007/s10664-018-9665-y
https://doi.org/10.1007/s10664-014-9308-x
https://doi.org/10.1007/s10664-014-9308-x
https://doi.org/10.1145/2896941.2896957
https://academicworks.cuny.edu/hc_pubs/524/
https://doi.org/10.1007/s10664-012-9231-y
https://docs.github.com/en/rest/reference/search
https://developer.github.com/v3/

108

[56] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for engineered
software projects,” Empirical Software Engineering, vol. 22, no. 6, pp. 3219–3253, 2017.

[57] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-based vari-
ability management in the android ecosystem,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2018, pp. 625–634.

[58] J. Businge, M. Openja, D. Kavaler, E. Bainomugisha, F. Khomh, and V. Filkov,
“Studying android app popularity by cross-linking github and google play store,” in
2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2019, pp. 287–297.

[59] StackExchange, ““github stars” is a very useful metric. but for
what?” https://opensource.stackexchange.com/questions/5110/
github-stars-is-a-very-useful-metric-but-for-what, 2017.

[60] T. T. Le, W. Fu, and J. H. Moore, “Scaling tree-based automated machine learning
to biomedical big data with a feature set selector,” Bioinformatics, vol. 36, no. 1, pp.
250–256, 2020.

[61] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. Kidd, and
J. H. Moore, Applications of Evolutionary Computation: 19th European Conference,
EvoApplications 2016, Porto, Portugal, March 30 – April 1, 2016, Proceedings,
Part I. Springer International Publishing, 2016, ch. Automating Biomedical Data
Science Through Tree-Based Pipeline Optimization, pp. 123–137. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-31204-0_9

[62] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference 2016, ser.
GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485–492. [Online]. Available:
http://doi.acm.org/10.1145/2908812.2908918

[63] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture search sys-
tem,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2019, pp. 1946–1956.

[64] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“On the distribution of test smells in open source android applications: An exploratory

https://opensource.stackexchange.com/questions/5110/github-stars-is-a-very-useful-metric-but-for-what
https://opensource.stackexchange.com/questions/5110/github-stars-is-a-very-useful-metric-but-for-what
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://doi.acm.org/10.1145/2908812.2908918

109

study,” in Proceedings of the 29th Annual International Conference on Computer Sci-
ence and Software Engineering, ser. CASCON ’19. USA: IBM Corp., 2019, p. 193–202.

[65] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen, “Mining software
repositories to study co-evolution of production amp; test code,” in 2008 1st Interna-
tional Conference on Software Testing, Verification, and Validation, 2008, pp. 220–229.

[66] C. B. Seaman, “Qualitative methods in empirical studies of software engineering,” IEEE
Transactions on software engineering, vol. 25, no. 4, pp. 557–572, 1999.

[67] J. Lawrence, S. Clarke, M. Burnett, and G. Rothermel, “How well do professional devel-
opers test with code coverage visualizations? an empirical study,” in 2005 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC’05). IEEE,
2005, pp. 53–60.

[68] NumPy, “Numpy: The fundamental package for scientific computing with python,”
https://numpy.org/, 2021.

[69] “Tosem-2021-replication,” https://github.com/openjamoses/
TOSEM-2021-Replication, 2021.

[70] N. Gv, “Memory errors in c++,” https://www.cprogramming.com/tutorial/memory_
debugging_parallel_inspector.html, 2019.

[71] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of negative testing
on tdd: An industrial experiment,” in Agile Processes in Software Engineering and Ex-
treme Programming, H. Baumeister and B. Weber, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 91–105.

[72] K. Ilgun, R. Kemmerer, and P. Porras, “State transition analysis: a rule-based intrusion
detection approach,” IEEE Transactions on Software Engineering, vol. 21, no. 3, pp.
181–199, 1995.

[73] W. H. Harrison, “Compiler analysis of the value ranges for variables,” IEEE
Trans. Softw. Eng., vol. 3, no. 3, p. 243–250, May 1977. [Online]. Available:
https://doi.org/10.1109/TSE.1977.231133

[74] R. E. Moore, Interval analysis. Prentice-Hall Englewood Cliffs, 1966, vol. 4.

[75] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing,” in Proceedings
of the 2012 International Symposium on Software Testing and Analysis, ser. ISSTA

https://numpy.org/
https://github.com/openjamoses/TOSEM-2021-Replication
https://github.com/openjamoses/TOSEM-2021-Replication
https://www.cprogramming.com/tutorial/memory_debugging_parallel_inspector.html
https://www.cprogramming.com/tutorial/memory_debugging_parallel_inspector.html
https://doi.org/10.1109/TSE.1977.231133

110

2012. New York, NY, USA: Association for Computing Machinery, 2012, p. 78–88.
[Online]. Available: https://doi.org/10.1145/2338965.2336763

[76] W. Sebastian, “Membership testing,” https://switowski.com/blog/
membership-testing, 2021.

[77] ICS-33, “Complexity of python operations,” https://www.ics.uci.edu/~pattis/ICS-33/
lectures/complexitypython.txt, 2021.

[78] B. W. Boehm, “Verifying and validating software requirements and design specifica-
tions,” IEEE software, vol. 1, no. 1, p. 75, 1984.

[79] M. Glinz, “Improving the quality of requirements with scenarios,” in Proceedings of the
second world congress on software quality, vol. 9, 2000, pp. 55–60.

[80] Y. Belinkov and Y. Bisk, “Synthetic and natural noise both break neural machine
translation,” arXiv preprint arXiv:1711.02173, 2017.

[81] V. Prabhakaran, B. Hutchinson, and M. Mitchell, “Perturbation sensitivity analysis to
detect unintended model biases,” arXiv preprint arXiv:1910.04210, 2019.

[82] M. Srivastava, B. Nushi, E. Kamar, S. Shah, and E. Horvitz, “An empirical analysis
of backward compatibility in machine learning systems,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ser.
KDD ’20. New York, NY, USA: Association for Computing Machinery, 2020, p.
3272–3280. [Online]. Available: https://doi.org/10.1145/3394486.3403379

[83] G. Bansal, B. Nushi, E. Kamar, D. S. Weld, W. S. Lasecki, and E. Horvitz, “Updates in
human-ai teams: Understanding and addressing the performance/compatibility trade-
off,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 2429–2437.

[84] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation for
neural network pruning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 11 264–11 272.

[85] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with
mixed integer programming,” arXiv preprint arXiv:1711.07356, 2017.

[86] G. P. Hammer, J.-B. d. Prel, and M. Blettner, “Avoiding Bias in Observational
Studies,” Dtsch Arztebl International, vol. 106, no. 41, pp. 664–668, 2009. [Online].
Available: https://www.aerzteblatt.de/int/article.asp?id=66288

https://doi.org/10.1145/2338965.2336763
https://switowski.com/blog/membership-testing
https://switowski.com/blog/membership-testing
https://www.ics.uci.edu/~pattis/ICS-33/lectures/complexitypython.txt
https://www.ics.uci.edu/~pattis/ICS-33/lectures/complexitypython.txt
https://doi.org/10.1145/3394486.3403379
https://www.aerzteblatt.de/int/article.asp?id=66288

111

[87] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolu-
tional networks through network slimming,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2736–2744.

[88] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino, “Methodologies for data
quality assessment and improvement,” ACM computing surveys (CSUR), vol. 41, no. 3,
pp. 1–52, 2009.

[89] L. Liu and L. Chi, “Evolutional data quality: A theory-specific view.” in ICIQ, 2002,
pp. 292–304.

[90] M. W. Bovee, “Information quality: A conceptual framework and empirical validation,”
Ph.D. dissertation, University of Kansas, 2004.

[91] M. Scannapieco and T. Catarci, “Data quality under a computer science perspective,”
Archivi & Computer, vol. 2, pp. 1–15, 2002.

[92] F. Pesarin and L. Salmaso, “The permutation testing approach: a review,” Statistica,
vol. 70, no. 4, pp. 481–509, 2010.

[93] W. J. Vetter, “Matrix calculus operations and taylor expansions,” SIAM review, vol. 15,
no. 2, pp. 352–369, 1973.

[94] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles
sensors: Experiments on camera and lidar,” Black Hat Europe, vol. 11, no. 2015, p.
995, 2015.

[95] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits
of deep learning,” arXiv preprint arXiv:2007.05558, 2020.

[96] R. Nishant, M. Kennedy, and J. Corbett, “Artificial intelligence for sustainability:
Challenges, opportunities, and a research agenda,” International Journal of Informa-
tion Management, vol. 53, p. 102104, 2020.

[97] A. Galakatos, A. Crotty, and T. Kraska, Distributed Machine Learning. New
York, NY: Springer New York, 2018, pp. 1196–1201. [Online]. Available:
https://doi.org/10.1007/978-1-4614-8265-9_80647

[98] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks,”
arXiv preprint arXiv:2102.00554, 2021.

https://doi.org/10.1007/978-1-4614-8265-9_80647

112

[99] E. Roche and Y. Schabes, Finite-state language processing. MIT press, 1997.

[100] Isha, A. Sharma, and M. Revathi, “Automated api testing,” in 2018 3rd International
Conference on Inventive Computation Technologies (ICICT), 2018, pp. 788–791.

[101] P. C. Jorgensen, Software testing: a craftsman’s approach. Auerbach Publications,
2013.

[102] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An empirical
study of regression test selection techniques,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 10, no. 2, pp. 184–208, 2001.

[103] L. Baresi and M. Pezze, “An introduction to software testing,” Electronic Notes in
Theoretical Computer Science, vol. 148, no. 1, pp. 89–111, 2006.

[104] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ml test score: A rubric
for ml production readiness and technical debt reduction,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 1123–1132.

[105] S. Shankland. (2010) Google ethos speeds up chrome release cycle. [Online]. Available:
https://www.cnet.com/news/google-ethos-speeds-up-chrome-release-cycle/

[106] ——. (2011) Rapid-release firefox meets corporate backlash. [Online]. Available:
http://cnet.co/ktBsUU

[107] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “Sotorrent: Reconstructing
and analyzing the evolution of stack overflow posts,” in Proceedings of the 15th
International Conference on Mining Software Repositories, ser. MSR ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 319–330. [Online].
Available: https://doi.org/10.1145/3196398.3196430

[108] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and answer
questions on the web? (nier track),” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 804–807. [Online]. Available:
https://doi.org/10.1145/1985793.1985907

[109] S. Ahmed and M. Bagherzadeh, “What do concurrency developers ask about? a
large-scale study using stack overflow,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ser.

https://www.cnet.com/news/google-ethos-speeds-up-chrome-release-cycle/
http://cnet.co/ktBsUU
https://doi.org/10.1145/3196398.3196430
https://doi.org/10.1145/1985793.1985907

113

ESEM ’18. New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3239235.3239524

[110] X.-L. Yang, D. Lo, X. Xia, Z. Wan, and J.-L. Sun, “What security questions do devel-
opers ask? a large-scale study of stack overflow posts,” Journal of Computer Science
and Technology, vol. 31, pp. 910–924, 09 2016.

[111] H. Joshi, J. Pareek, R. Patel, and K. Chauhan, “To stop or not to stop — experiments
on stopword elimination for information retrieval of gujarati text documents,” in 2012
Nirma University International Conference on Engineering (NUiCONE), 2012, pp. 1–4.

[112] K. Sparck Jones and P. Willett, Eds., Readings in Information Retrieval. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[113] A. K. McCallum, A Machine Learning for Language Toolkit, 2002. [Online]. Available:
http://mallet.cs.umass.edu

[114] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. PAMI-6, no. 6, pp. 721–741, 1984.

[115] C.-M. Tan, Y.-F. Wang, and C.-D. Lee, “The use of bigrams to enhance text catego-
rization,” Inf Process Manag, vol. 38, no. 4, pp. 529–546, 2002.

[116] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia, “How
to effectively use topic models for software engineering tasks? an approach based on
genetic algorithms,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. IEEE Press, 2013, p. 522–531.

[117] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by web
developers,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: Association for Computing
Machinery, 2014, p. 112–121. [Online]. Available: https://doi.org/10.1145/2597073.
2597083

[118] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops: Why
do java developers struggle with cryptography apis?” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 935–946. [Online]. Available:
https://doi.org/10.1145/2884781.2884790

https://doi.org/10.1145/3239235.3239524
http://mallet.cs.umass.edu
https://doi.org/10.1145/2597073.2597083
https://doi.org/10.1145/2597073.2597083
https://doi.org/10.1145/2884781.2884790

114

[119] G. Pinto, W. Torres, and F. Castor, “A study on the most popular questions about
concurrent programming,” in Proceedings of the 6th Workshop on Evaluation and
Usability of Programming Languages and Tools, ser. PLATEAU 2015. New York,
NY, USA: Association for Computing Machinery, 2015, p. 39–46. [Online]. Available:
https://doi.org/10.1145/2846680.2846687

[120] C. Treude, O. Barzilay, and M. Storey, “How do programmers ask and answer ques-
tions on the web?: Nier track,” in 2011 33rd International Conference on Software
Engineering (ICSE), 2011, pp. 804–807.

[121] S. Mcintosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan, “A large-scale
empirical study of the relationship between build technology and build maintenance,”
Empirical Softw. Engg., vol. 20, no. 6, p. 1587–1633, Dec. 2015. [Online]. Available:
https://doi.org/10.1007/s10664-014-9324-x

[122] F. Hassan, “Tackling build failures in continuous integration,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Nov 2019, pp.
1242–1245.

[123] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break? an em-
pirical study,” in 2014 IEEE International Conference on Software Maintenance and
Evolution, 2014, pp. 41–50.

[124] RedHat Ansible. (2020) Ansiblefest 2020 virtual experience. [Online]. Available:
https://www.ansible.com/

[125] Native, “Web or hybrid mobile-app development. white paper,” in IBM Corporation.
Document Number: WSW14182USEN, no. WSW14182USEN, April 2012.

[126] I. Malavolta, “Beyond native apps: Web technologies to the rescue! (keynote),” in
Proceedings of the 1st International Workshop on Mobile Development, ser. Mobile!
2016. New York, NY, USA: Association for Computing Machinery, 2016, p. 1–2.
[Online]. Available: https://doi.org/10.1145/3001854.3001863

[127] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-based vari-
ability management in the android ecosystem,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 625–634.

https://doi.org/10.1145/2846680.2846687
https://doi.org/10.1007/s10664-014-9324-x
https://www.ansible.com/
https://doi.org/10.1145/3001854.3001863

115

APPENDIX A ASSERTION API AND EXAMPLE CODE
REPRESENTING THE TEST STRATEGIES

Table A.1 API code example for expressing Value Range analysis and Decision & Logical
Condition Test

Strategy Test scenarios and Assertion Framework

Va
lu
e
R
an

ge
A
na

ly
sis

Interval Analysis (i.e., [a, b] = {x ∈ R : a 6
x 6 b}) ***

assertTrue(0 ≤ a and b ≤ n) unnittest

assertTrue(0 ≤ b4 ≤ n) unittest

assertion inside loop statement ***

value-range datatype assertion eg as-
sert*list*, assert*set*, assert*dict*, as-
sert*turple*

unittest

D
ec
isi
on

&
Lo

gi
ca
l

C
on

di
tio

n Control flows (statement, branch or path) ***

Conditional assertions eg EX-
PECT_TRUE(a exp b && x exp y) ***

Check IsValidRowCol e.g row ≥ 0 && row <
rows && col ≥ 0 && col < cols deepspeech

116

Table A.2 Assertion API example code expressing the selected testing strategies

(a) The API code example for expressing Negative Test, Instance Checks
and Sub component test strategies

Strategy Assertion API Framework

N
eg
at
iv
e
Te

st

assertNot∗∗ python

assertFalse(statement), assert not
(statement) unittest, pytest

assert_not_equal(statement) numpy

assertTrue(a != b), assert a != b unittest, pytest

ASSERT(a != b) C/C++

CHECK(!statement), CHECK(a
!= b) gLog

RAY_CHECK(a != b) Ray

ACHECK(!statement) C/C++

**_NE(a, b) gTest

**_FALSE(statement) gTest

In
st
an

ce
an

d
Ty

pe
Ch

ec
ks

assertIsInstance(a,b) python

**equal(a.astype(datatype),
typeid(a)) numpy

**equal(a.dtype, typeid(a)) unittest

**equal(type(a), typeid(a)) unittest

assert a.dstype == typeid(a) pytest

assert **_type(a) == typeid(a) nupic, apollo

_EQ(a::Instance(), in-
stance(a)) apollo

_EQ(a::Type(), typeid(a)) gTest

EXPECT_**(→type, typeid(a)) apollo

CHECK(a**::Type() ==
typeid(a)) gLog

M
em

be
rs
hi
p
Te

st
in
g

assertIn(a, A) unittest

assert a in A pytest

CHECK(Subset(A, B)); gLog

EXPECT_TRUE(A.has**(a)); apollo

**TRUE(a, indexof(a)); gtest, unittest

assert a == indexof(a)); pytest

Checking Sub Component using
loop statement (e.g., in a List,
Set, dictionary)

*

(b) The API code example for expressing Oracle approximation

Strategy Assertion API Framework

Or
ac
le

Ap
pr
ox

i-
ma

tio
n

Ab
so
lut

eR
ela

tiv
e

To
ler

an
ce
/A

bs
olu

te
To

ler
an

ce

assert_allclose(result, expect,
rVal,aVal) numpy

assert allclose(result, expect,
rVal,aVal) numpy

assertTrue(isclose(result, expect,
rVal,aVal)) numpy

assert isclose(result, expect,
rVal,aVal) numpy

assert
torch.all(torch.isclose(result,
expect, rVal))

torch

assert torch.allclose(result, ex-
pect, rVal) torch

assert math.isclose(result, expect,
aVal) python

assertAllClose(result, expect,
rVal,aVal) numpy

assertAllCloseAccordingToType(result,
expect, aVal) numpy

SLOPPY_CHECK_CLOSE(result,
expect, rVal,aVal) deepspeech

BOOST_CHECK_CLOSE((result,
expect, rVal,aVal) Boost

EXPECT_NEAR(result, expect,
aVal) gTest

ASSERT_NEAR(result, expect,
aVal) gTest

Ro
un

din
gT

ole
ra
nc

e

assert_almost_equal(result, ex-
pect, dp) numpy

assertAlmostEquals(result, ex-
pect, dp) unittest

assertAlmostEqual(result, ex-
pect, dp) unittest

assertListAlmostEqual(result,
expect) unittest

assert_array_almost_equal(result,
expect, dp) numpy

ApproxEqual(result, expect, dp) deepspeech

CHECK(ApproxEqual(result, ex-
pect, dp)) deepspeech

EXPECT_TRUE(almost_equal(result,
expect, dp)) gTest

Er
ro
rB

ou
nd

ing

assertTrue(x < y) numpy

assertLess(x,y) numpy

assertLessEqual(x,y) numpy

assert_array_less(x,y) numpy

EXPECT_LT(x,y), AS-
SERT_LT(x,y) gTest

EXPECT_TRUE(EXPECT_LT(x,y)),
AS-
SERT_TRUE(ASSERT_LT(x,y))

gTest

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Practice of Testing ML software systems
	1.2 Release Engineering Topics
	1.3 Thesis Overview
	1.4 Thesis Contributions
	1.5 Thesis Implication
	1.6 Thesis organization

	2 BACKGROUND
	2.1 Testing practices for ML software system
	2.1.1 Testing Strategies and ML Properties
	2.1.2 Testing in Python and C/C++-based projects:
	2.1.3 Machine Learning workflow
	2.1.4 testing methods and Test Pyramid for ML software system

	2.2 Modern Release Engineering

	3 A COMPREHENSIVE REVIEW OF SOFTWARE ENGINEERING STUDIES
	3.1 Software Engineering Studies on Testing practices for ML software system
	3.2 Software Engineering Studies on Release Engineering

	4 STUDYING THE PRACTICES OF TESTING MACHINE LEARNING SOFTWARE IN THE WILD
	4.1 Introduction
	4.2 Methodology
	4.3 Results
	4.3.1 RQ1: What are the testing strategies used across the ML workflow?
	4.3.2 RQ2: What are the specific ML properties tested in a ML workflow?
	4.3.3 RQ3: Are testing strategies and ML properties used consistently across different projects?
	4.3.4 RQ4: How are testing strategies used in verifying different ML Properties?

	4.4 Discussion and Implications
	4.5 Threats to Validity
	4.6 Summary

	5 STUDYING THE TYPES OF TEST/ TESTING METHODS in AN ML WORKFLOW
	5.1 Introduction
	5.2 Methodology
	5.3 Results
	5.3.1 RQ1: What are the software testing methods used in an ML workflow?
	5.3.2 RQ2: Are testing methods used consistently across projects?
	5.3.3 RQ3: How are ML properties being tested along different testing levels?

	5.4 Discussion and Implications
	5.5 Summary

	6 STUDYING RELEASE ENGINEERING CHALLENGES USING STACKOVERFLOW
	6.1 Introduction
	6.2 Methodology
	6.3 Results
	6.3.1 RQ1: What topics are discussed around Release Engineering?
	6.3.2 RQ2: What topics are popular among the release engineers?
	6.3.3 RQ3: How do topic popularity and difficulties correlate?
	6.3.4 RQ4: How do topic popularity and difficulties correlate?
	6.3.5 RQ5: What types of questions do release engineers ask in StackOverflow?

	6.4 Discussion and Implications
	6.5 Threats to validity
	6.6 Summary

	7 CONCLUSION
	7.1 Summary
	7.2 Future Works
	7.3 Authors remarks

	REFERENCES
	APPENDICES

