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RÉSUMÉ

L’optimisation topologique (OT) est un outil numérique puissant pour le design conceptuel,
visant à déterminer les dispositions optimales de matériaux pour obtenir des structures rigides
et légères. L’intégration complète d’un critère de prévention du flambage dans cette technique
ouvrirait de nouvelles perspectives d’application dans l’industrie aérospatiale.

Dans ce travail, les méthodes d’OT implicites et explicites qui considèrent, respectivement,
comme variables de conception les propriétés des éléments du maillage ou un ensemble de
paramètres contrôlant la géométrie des composants ont été étudiées. Ce travail de recherche
vise à améliorer une procédure existante basée sur l’OT pour la conception de panneaux
raidis, dans laquelle la position des raidisseurs, les connexions et la courbure de leur axe sont
déterminées en utilisant l’OT. Les défis de l’optimisation des configurations de raidisseurs
ont été identifiés comme étant l’imposition d’une géométrie appropriée pour obtenir des
composants manufacturables et le besoin d’un compromis entre la précision du modèle et la
capacité d’explorer de grands espaces de conception.

La méthode Ground Structure (GSM), bien connue pour son efficacité quant à la conception
de treillis et de châssis, a été reformulée pour une nouvelle application dans ce contexte
en utilisant une structure de base construite avec des éléments de plaques et de poutres.
Dans la conception basée sur la souplesse minimale de panneaux pressurisés, la GSM a
démontré sa capacité à utiliser des maillages à faible coût de calcul et à fournir des descriptions
explicites des composants.Une réduction du poids a été obtenue, mais l’ajout des contraintes
de sollicitation dans les critères d’optimisation dans les développements futurs est nécessaire.

La difficulté rencontrée dans l’utilisation de SIMP et GSM pour obtenir des dispositions
bien définis lors qu’on considère le flambage nous a conduit à nous concentrer sur l’approche
MMC (Moving Morphable Components). Dans cette méthode explicite, toutes les exigences
géométriques sont facilement imposées et le nombre de variables peut être réduit pour utiliser
des techniques d’optimisation globale. L’identification de la disposition des raidisseurs est
formulée comme un problème de disposition de deux propriétés de rigidité équivalentes sur
un maillage de plaques fixes. Cette approche avait été conçue pour une optimisation basée
sur la rigidité, mais ici un critère de stabilité est considéré et des composants curvilignes
sont utilisés pour représenter les parcours des raidisseurs avec une grande flexibilité. Après
avoir validé le modèle simplifié pour l’analyse de flambage linéaire, la conception pour le
coefficient de charge de flambage maximal est résolue à l’aide de l’algorithme Particle Swarm
Optimization. Il a été ansi confirmé que les raidisseurs parallèles et équidistants sont optimaux
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pour les panneaux principalement chargés en compression, mais il a également été montré
que les configurations curvilignes peuvent conduire à une réduction du poids dans le cas
de panneaux avec des raidisseurs ayant une interruption à mi-panneau ou des charges de
cisaillement élevées.

Mots clés : Optimisation topologique, panneaux raidis, disposition des raidisseurs, flambage,
Ground Structure, Moving Morphable Components
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ABSTRACT

Topology Optimization (TO) is a powerful numerical tool for conceptual structural design,
aiming at determining stiff and lightweight material layouts. Full integration of a buckling
prevention criterion into this technique would open up new applications perspectives in the
aerospace industry.

This work studied implicit and explicit TO methods, which respectively consider as design
variables the properties of the mesh elements or a set of parameters controlling the com-
ponents’ geometry. This research aimed at improving an existing TO-based procedure for
stiffened panels design, in which stiffeners’ position, connections, and axis path are deter-
mined by using TO. The challenges in stiffeners layout optimization were identified as being
the need for imposing the appropriate geometry to obtain manufacturable components and
the need for a balance between model accuracy and the ability to explore large design spaces.

The Ground Structure Method (GSM), well known for truss and frame design, has been
reformulated for a new application in this context by using a ground structure built with
plate and beam elements. In minimum compliance design of pressurized stiffened panels,
GSM has demonstrated the ability to use low-cost meshes and provide explicit component
descriptions. In the example of a rectangular bulkhead, weight reduction was achieved, but
the addition of stress constraints in future developments is further needed.

The difficulty presented by SIMP and GSM in obtaining clear layouts when considering
buckling shifted the focus to the Moving Morphable Components (MMC) approach. Within
this explicit method any geometric requirement is easily imposed, and the number of variables
can be reduced to use global optimization techniques. The stiffeners’ layout identification is
formulated as a problem of arranging two equivalent stiffness properties on a fixed plate mesh.
This approach was designed for stiffness-based optimization, but here a stability criterion is
considered and curvilinear components are used to represent general patterns with great
flexibility. After validating the simplified model for linear buckling analysis, the design for
maximum buckling load factor is solved using the Particle Swarm Optimization algorithm.
It was confirmed that parallel and equidistant stiffeners are optimal for panel mainly loaded
in compression, but it was also shown that curvilinear configurations can lead to weight
reduction in case of panels with run-out stiffeners or high shear loads.

Keywords: Topology Optimization, Stiffened Panels, Stiffeners layout, Buckling, Ground
Structure, Moving Morphable Components
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CHAPTER 1 INTRODUCTION

1.1 Context and motivations

Nature clearly shows that one of the main characteristics of bird bone structure is light-
ness, as this minimizes energy consumption [1]. Similarly, in the aerospace industry, it is
considered that the best design is the one that guarantees the required performance at the
minimum weight. This philosophy has always been one of the aviation industry core beliefs,
as aircraft fuel is the most significant and variable component of direct operating costs in
aircraft lifecycle.
In 2008, Airbus reported that fuel accounted for approximately 28% of the total operat-
ing cost for a typical A320 family operator [2]. Moreover, in the current context of global
warming concerns, reducing greenhouse gas emissions, proportional to fuel consumption, is
a compelling societal challenge.
ICAO estimated in 2016 that the aviation sector accounts for about two percent of the world’s
annual CO2 emissions [3]. In addition, due to its pivotal role in the world contemporary econ-
omy, the growth of the aviation sector is expected to experience a three-fold increase between
2000 and 2050 in terms of passengers [4].

In this context, manufacturing more sustainable aircraft is a highly valuable goal and mul-
tidisciplinary subject, ranging from new forms of electric propulsion to trade-offs between
structural weight minimization and drag minimization.
This research work is aligned to this trend and focuses on the structural weight minimization
problem. It started from the interest of the GAOSYM (Groupe d’Analyse et Optimisation de
Systèmes Mécaniques) research group of Polytechnique Montréal and its industrial partner
Stelia North America to develop new design processes that can reduce the design cycle time
and improve the performance of stiffened panels assemblies. Finally, as a continuation of a
previously traced research path, the main objective and methodological choices are sketched
out from the beginning and built upon the experience gained by the research team [5,6].
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1.2 Definitions and basic concepts

The conventional design process of a structural component starts from an initial concept,
based on industrial knowledge and experience, which goes through several iterations of im-
provements and validation until requirements are met and target performances reached. Such
a procedure generates systems regardless of whether they are optima.

But in the last decades, a revolution in computer technology and numerical computations
has enhanced analysis and optimization speed and precision, and the search for optimal
designs has become an essential requirement in the industry. Today the design of a system
is usually formulated as a problem of optimization, in which a measure of performance is
to be optimized while satisfying all constraints [7]. This is defined as the "Optimum design
process", opposed to the conventional design process, as illustrated in Fig.1.1.

Figure 1.1 (a) Conventional design procedure VS (b) Optimum design procedure [7]

In most applications, projects are interdisciplinary environments which consider the interac-
tion between various disciplines. However, it is still advised to use a break down strategy to
face several sub-problems which can be treated independently. In the following, the structural
design sub-problem is addressed, posed as an optimum design problem.

Many numerical methods have been developed and used for lightweight structure design.
Fig.1.2 shows the three main FEM-based optimization methods developed to reduce the
mass of structural components [8]:
- Size optimization, that determines optimal properties of the elements in the mesh;
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- Shape optimization, that determines optimal coordinates of the nodes on the boundary;
- Topology Optimization (TO), introduced in 1988 by Bendsøe and Kikuchi [9], that deter-
mines the optimal material layout within a specified domain.

Topology optimization is generally used early in the design process to inspire engineers to
create innovative structures. Size and shape optimization are used in the preliminary and
detailed design phase using low to high-fidelity structural models

Figure 1.2 Three categories of structural optimization [8]

TO is a powerful tool for least-weight design, capable to be a creative partner in the concep-
tual phase of a design process. In a nutshell, TO allows to redistribute the material layout
within a given design domain and to reveal the optimal load carrying path, for specified
objectives, constraints, and boundary conditions [10].
Unlike other techniques, TO can support the design process at stages where the structural
configuration is not yet determined and optimize the structure from a global perspective.
The interest for this technique has increased greatly for aircraft structural design, even if the
process integrating it is still not mature enough to constitute a mainstream practice [11].

Aircraft structures are characterized by an extensive use of stiffened panels, which are metallic
or composite thin sheets, composing the "skin", reinforced by beam-columns elements, named
"stiffeners" or "stringers"(see Fig.1.3). This kind of assembly is employed in aircraft and space-
vehicles, as well as ship and off-shore constructions, because of their efficient balance between
structural efficiency, ease of manufacturing, installation and maintenance [12].

The design of these structures can be carried out using a two-phase process. First, the



4

Figure 1.3 Stiffened panels in aircraft structures - (a) fuselage and (b) wing-box sections. [13]

stiffening layout, as seen from the top of the panel, must be sketched. This consists of
selecting number, placement, orientation and connections of the set of stringers attached
to the plate. Second, the characteristics of the panel cross-section must be defined: plate
thicknesses, types and cross-sectional sizes of stiffeners.

Since size and shape optimization can only reduce mass of an a priori chosen stiffeners layout
(e.g. orthogrid or equispaced longitudinal stiffeners), then there is no doubt that TO may
have a role in innovative designs of stiffened panels assemblies. It can address the problem of
finding the optimal stiffening layout with a higher level of conceptual freedom, considering
that new competitive manufacturing processes continue to appear today.

However, many challenges exist from modelling, analysis and optimization point of views. A
crucial point is related to ensuring that a proper stiffener geometry is obtained from the TO
problem. Constraints on "manufacturability" must be added to constraints on the structural
responses, and thus limiting the set of acceptable solutions.
Then another open challenge in the context of TO is the full integration of buckling in the
optimization criteria [10, 14].

Buckling is a critical condition corresponding to a sudden increase in mechanical strain which
occurs when the initial equilibrium loses its stability under an increasing load. It is a major
concern in slender members and thin-walled elements, where membrane forces are converted
in bending strain because of solid’s imperfections [15]. Usually, the bending stiffness of these
type of components is orders of magnitude smaller than their membrane stiffness. For this
reason, the membrane-to-bending energy conversion results in critical conditions that occur
at levels of loading lower than the elastic material limit.

Considering a finite elements based optimization, the Linearized Buckling Analysis (LBA)
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is the simplest way to include the critical load estimation in the responses (objectives and
constraints). In the LBA an eigen-value problem is formulated on the structure discretized
by means of the finite element scheme. Among the eigen-values, the minimum positive one
is the significant value for the analysis, also said the fundamental Buckling Load Factors
(BLF), because it represents the scalar multiplier for the applied load to have the critical
load. When the critical load is reached, new equilibrium configurations, alternative to the one
provided by the static analysis, become possible. This appearance of multiple equilibrium is
also referred as "bifurcation" [15].
However such a value may or may not be associated to failure of a stiffened panel assembly,
which presents multiple buckling mechanisms, represented in Fig.1.4:
(1) the skin can buckle locally in the un-stiffened portion between two stiffeners (a bay);
(2) the cross section of a stiffener can buckle with a width band of possible wavelengths;
(3) the stiffeners can buckle as whole column-like modes or torsional modes;

Figure 1.4 Different buckling modes for a compression stiffened panels depending on the
relative bending stiffness of the U-stiffeners, showed by a parametric study in [16].

The nature of the fundamental buckling mode depends on many controlling parameters: type
of loads, geometry, contact conditions, and relative size of the interacting components [16].
In aeronautical metallic stiffened panel, usually the stiffeners are relatively stiff compared to
the thin skin, and the first type of buckling mechanisms is the most frequent. This kind of
buckling does not lead to catastrophic failure, thanks to a redistribution of stresses from the
buckled sheet to the attached columns. Indeed, experiments have shown that further weight
savings are possible by allowing the panel to move into this post-buckling state [12, 17,18].

While on one hand the LBA is easily incorporated into an optimization routine, on the other
hand the estimation of final failure for a reinforced panel may not be fully addressed by these
approaches. This is why, despite recent literature [14, 19] shows important developments
towards the integration of the linearized buckling constraint in the topology optimization,
there is still a gap between the academic research and the practical engineering application.
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In addition to academic, also industrial research is very active in this field. The work con-
ducted at Airbus UK [11] identified the full integration of buckling criteria as the main road
block towards the performance improvement of TO-based designs in aerospace application.
In the Airbus A380 wing leading edge rib design, a two-phase design process was developed.
This can be considered as the most advanced TO procedure for aerospace applications [10].

Finite element-based topology and size optimization are performed sequentially:
— In the first phase, TO defines the structural members layout based on a stiffness

criteria, i.e. minimum compliance for a given material volume.
— In the second phase, after the identification of discrete structural members, the re-

sulting frame is sized with stress and buckling criteria for minimal mass.
Although the study case was successful, the authors underlined how post-processing TO
results has been a manual operation, which required engineers judgement to adjust the ge-
ometry and add features to stabilize the design in buckling before passing to final sizing.

An overview of the two-phase Topology Optimization design process is given in Fig.1.5.
It is emphasized that the transition between the two phases is done through a heuristic
interpretation of the layout suggested by TO and a manual re-construction of the model
used for optimal sizing.

Figure 1.5 Two-phase procedure for Topology Optimization based design from [11]. The
heuristic transition (interpretation) in between the phases is underlined in the flow-chart.
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1.3 Problematic

Merging the concepts introduced above, some challenges to solve for a practical application of
the two-phase procedure to preliminary design of stiffened panels are identified and discussed
in this section.

There is still a lot of research effort required to make TO robust with regards to boundary
conditions, and to lower computational needs for large scale applications. But here, special
attention is given to the specific aspects of this application, which are:

(1) Controlling the proper geometry of the stiffeners
Innovative layouts can be further analysed and successively manufactured, only if the resul-
tant material distribution maintains a clear description of each stiffener. That is, topological
features can be extracted easily and without ambiguity. This can be done either by imposing
"manufacturing" (geometric) constraints or by automating the interpretation task.
In the traditional density-based SIMP method these constraints can be very complex to
formulate, because of the implicit nature of the topological variables. In the same way, sys-
tematic procedures for the extraction of explicit geometric information from a pixel-based
density distribution [6, 20] is another on-going research topic in the field.

(2) Integrating the linearized buckling criteria in the layout optimization
Typical material distributions obtained from the compliance-based TO look alike trusses/frames,
hence the idea to exploit the technique for the stiffening layout of thin plates. The optimal
layout for compliance efficiently stiffens the sheet, but it does not consider the second func-
tion of stiffeners to provide stability to the skin.
Flat plates carry the loads in their plane but their buckling mechanism consists in an out of
plane deflection. Then the linear strain energy for in plane loads is not linked to the buckling
resistance.
Moreover, in metallic stiffened panels, the failure comes beyond the onset of the skin buckling,
because the attached columns can continue to carry additional load beyond that level [12].
The fundamental BLF may not be associated with the panel final collapse, and the linearized
buckling criteria cannot be an exhaustive tool to estimate the final failure.
For this reason, it is needed to limit the scope of the linearized buckling criteria to skin
buckling prevention only. Last but not least, by adding buckling criteria the optimization
problem becomes non-convex and navigating the design space using gradient-based solvers
in the SIMP method becomes further difficult.
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1.4 Research Objectives

This research work aims at developing a design procedure for stiffened panels based on
topology optimization that can be used in industrial practice.
For this reason, the methodological choice is inspired by the TO-based design procedure by
sequential steps shown above, since it proved to be easily deployable in industry, as well as
capable of reducing the weight of many structural components.
However, in order to allow its application for the design of stiffened panels, it is necessary to
solve the problematic issues related to this specific case.

The main objective (MO), consisting of the development of such a new procedure, is decom-
posed into sub-objectives (Soi) of narrower scope, which address these issues one at a time.
Formally, the SOi are expressed as necessary steps to achieve the MO.

(MO) Develop a design procedure based on Topology Optimization (TO) applicable to
the design of stiffened panels.

(SO1) Formulate an explicit description of the stiffener layout to automate interpretation
of the TO results.

(SO2) Integrate the stability criterion in the layout optimization to increase the skin
buckling resistance.

To achieve the main objective, various approaches will be selected from the literature, based
on their potential to meet the two sub-objectives, and will be reformulated in order to inte-
grate them into a design procedure for stiffened panels.

The first sub-objective motivates the search for methods in which the geometry is explicitly
controlled, allowing an automatic interpretation of TO results, as well as the imposition of
any manufacturing constraint. S01 is therefore related to the definition of the optimization
variables. Meanwhile, the second asks to consider the main function of the stiffeners, that of
increasing the stability of the thin sheet, when optimizing their layout. S02 is instead related
to the definition of optimization criteria.

Finally, this introduction to the objectives and their origin related to the limitations of the
state of the art is summarized in the diagram of Fig.1.6.
By reading the diagram from right to left, one moves from the initial situation, in which the
problem is present, to the ideal situation attainable through the achievement of the research
objectives. Instead, by following the direction of the branches, one can read the cause-and-
effect relationships between various key elements, contained in the nodes of the graph.
A letter and an operator are associated with each of these relationships. The letter indicates
how the relationship was determined: i.e. deduced from an assumption [A], from consid-
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erations in accordance with the literature [L], or from the experience gained in conducting
the work [E]. Meanwhile, the operators indicate how the increase (+) or decrease (-) in the
quantity/quality of each element is related to each other.

The basic assumption is that the use of TO in the design of aircraft components will reduce
the structural mass, and consequently the fuel consumption, that is needed to lower aircraft
costs and environmental impact. To do this, it is necessary to address the issues that prevent
the application of the technique in stiffened panel design.
Therefore, the focus of the research is on the achievement of the two sub-objectives, which
would ideally increase the benefits due to the use of the procedure and decrease the effort
required of the designer to conduct it.
To monitor the progress towards these two ideal outcomes, some measurable indicators are
defined: (1) the number of design variables, which determines the numerical computational
cost; (2) the time to complete a design cycle, which depends on the ease of automation of the
procedure, and determines the total time to arrive to the target design by means of multiple
design cycles; (3) the performance-to-weight ratio of the structure (e.g. specific strength),
which is actually what it is sought to be increased by using the TO.
These indicators are related to how complex the problem to be solved is, how much time and
efforts are spent to solve it, and how beneficial the solution obtained is.

Figure 1.6 Reference diagram - A graph to visualize the effects of progress in achieving
research objectives on solving the initial problem and achieving ideal outcomes
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1.5 Thesis Outline

This first chapter introduced the key concepts, problematic, and research objectives that
guide the work conducted in the rest of this thesis, which is structured as follows:

Chapter 2 conducts a critical literature review. A selection of some approaches to be further
investigated in this work is made and previous applications of topology optimization for
plate/shell stiffening are reviewed. Some issues occurring in structural optimization with
eigenvalue criteria are discussed, as well as strengths and weaknesses of the optimization
solvers which can be used. Finally, the results of the review are summarized and the desired
contribution of the research work is stated.

Chapter 3 presents an original application of the Ground Structure Topology Optimization
approach for the compliance-based stiffened panel design. A MATLAB code has been imple-
mented to test the use of this approach for the stiffeners layout identification. The method
is presented and compared to alternative approaches. The design of a pressurized stiffened
panel representing an aircraft bulkhead is carried out using the two-phase design procedure.
A final section shows the possibility to use the method for general geometries and loads by
exemplifying a rib reinforcement layout conceptual design.

In Chapter 4, the Moving Morphable Component approach is adapted to the layout op-
timization problem for maximum linearized buckling load factor. Curvilinear components
described by explicit topological variables are used to represents the stiffeners on a simplified
panel model. Two approaches to optimize the geometrical parameters of the stiffeners paths
are formulated and their MATLAB implementation is described. The first is based on select-
ing the best configuration after a parametric study. The second one use the Particle Swarm
Optimization algorithm in order to find optimal set of stiffeners parameters for maximum
BLF under volume constraints.
Some parametric studies discuss the effects of spacing and curvature of stiffeners in simple
load cases, then two case studies are performed using the two-phase design procedure for
upper wing skin panels.

Finally, Chapter 5 summarizes the work done. Limitations of the current implementations
are pointed out, and from there some recommendations for future research are given.
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CHAPTER 2 LITERATURE REVIEW

This chapter firstly presents an overview on topology optimization and its traditional ap-
proaches proposed in literature. A brief introduction to local and global optimization al-
gorithms focuses on presenting the advantages and disadvantages of these two families of
methods in the context of traditional topology optimization, but also in the problem ad-
dressed by this work: the layout optimization of the stiffeners reinforcing and stabilizing thin
plates. Then it reviews past research works conducted on the optimal stiffening of plate using
the SIMP method in the 2-phase procedure, and two application of the more recent MMC
approach in this context.
The linearized buckling analysis is also introduced, and principal issues of structural opti-
mization with buckling criteria are discussed.
A final subsection introduces the two main developments of this work and explains their links
with the research objectives. The limitations of the consulted literature are also emphasized.

2.1 Basic concepts and Methods of Topology Optimization

Before entering different formulations, the general Topology Optimization (TO) problem
is presented. To give a simple idea of the aim of this technique it is worth quoting Ole
Sigmund [21], who transcribes the mathematical problem into the following fundamental
design question: “How to place material within a prescribed design domain in order to
obtain the best structural performance?”.
This problem can be mathematically stated in this general form:

min
x

f(x)
s.t.

∫
Ω ρ(x) dΩ− Vmax ≤ 0
gi(x) ≤ 0 i = 1 . . .m
xvoid ≤ x ≤ xsolid

(2.1)

Where f is the objective function, ρ represent the material density, Vmax defines the upper
bound for the material volume to be placed in the domain Ω, gi are the m constraints on the
structural responses ( e.g. stress, displacement, or critical buckling load) and the vector of
design variables x determines the spatial material/void distribution.
Different ways to define the topological variables xi and their relations with structural ge-
ometry and responses represent the differences between the different approaches.
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2.1.1 The Ground Structure Method (GSM)

The Ground structure method (GSM) is the first of the list. Its basic idea was anticipated
in an early work of Dorn et al. [22], but it is still relevant and re-proposed constantly in new
forms due to the advantages derived from the direct use of discrete structural elements, such
as beams and bars.
In this method the domain is discretized in a grid of nodal points connected by the so-called
ground structure: i.e. the mesh collecting all the candidate structural members.
The problem of identifying the optimized material distributions is recast in the form of a sizing
optimization [8] by allowing the elements to become structural or vanishing members. This
is done by considering the cross-sectional areas of the 1-D elements as the continuous design
variables. At the end of the optimization, members with low cross-sectional area (below a
prescribed threshold) are removed from the design domain to obtain the final layout.
This process is exampled in Fig.2.1, for the classical MBB beam 2D TO-problem [8].

Figure 2.1 Ground Structure (GS) Method - The design domain (a) is discretized in the
initial GS (b) which is iteratively optimized (c) to obtain the final design (d)

Since it does not require the use of advanced finite elements for the analysis, it is the easiest
method to implement and results to be cheap for large-scale structures where a coarse mesh
can be used, as demonstrated by many application in bridges and buildings design [23].
This methods is largely used to optimize trusses (bars with pinned connections) and frame
structures (beams with moment-resisting connections), while its application in stiffened panel
design is still unexplored [24].
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2.1.2 The Solid Isotropic Method with Penalization (SIMP)

The SIMP, can be considered as the standard method in TO. It has widely spread and
implemented in several FEA software, due to its compatibility to any kind of finite element.

In this method, the design space is discretized by means of continuous finite elements, such
as solids (for 3D domains) or plane quadrilateral elements (for 2D domains).
Each element of the mesh is associated with a scalar optimization variable xe, called "density",
which ranges from "0 to 1", to indicate the presence of "void" or "full material" in the portion
of the domain occupied by the e-th element.
The optimization algorithm seeks to optimize the element-wise density distribution in order
to maximize a certain objective function, e.g. the stiffness of the structure, for a prescribed
maximum volume of material. This process is exampled in Fig.2.2.

Figure 2.2 The SIMP Method - The design domain (a) is meshed (b), ρe distribution is
iteratively optimized (c) and the final material layout is obtained (d)

The analysis model is then based on the heuristic assumption that the mechanical properties
of the mesh are interpolated between the "void" and the "full material" properties according
to the value assumed by the density in each finite element [8]. The use of a simple power-law
interpolation for the Young Modulus, efficiently characterizes the elemental stiffness matrix
Ke = Ke(xe) of a given linear elastic isotropic material, with Eq.2.2:

Ke = (Emin + xpe (E0 − Emin)) K0 (2.2)

where K0 is the stiffness matrix of any kind of finite element with unitary Young modulus,
E0 and Emin are the moduli of solid and void, xe is the density variable of the eth element
and p is an integer called the penalization factor.
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The penalization of intermediate values relaxes the binary 0-1 problem, and it is obtained for
p > 1, because while the volume (cost) remains proportional to the density xe, the stiffness
(the objective) becomes less than proportional (for xe ∈ [0, 1]).
Numerical problems appearing in the SIMP method, regarding the ill-ponesedness of the
problem and the non-uniqueness of the solution are categorized and discussed in [25]:

1. Checkerboard refers to formation of regions of alternating solid and void elements
ordered in a checkerboard like fashion in the final solution, which unrealistically over-
estimate the model stiffness;

2. Mesh dependence invalidates the concept of FE convergence. Even in simple prob-
lems, mesh-refinement may not result in a more clear description of the same optimal
structure, but can lead to topologically different solutions.

3. Local minima refers to the problem of obtaining different solutions to the same
discretized problem when choosing different starting guesses.

Some prevention techniques developed over time have partially overcome these issues [25]:
•Mesh independent filtering mitigates (1) and (2) by averaging design variables (densi-
ties) or design sensitivities of each element over the element’s direct neighbors.
•Continuation techniques try to avoid less efficient local minima, at least in the minimum
compliance problem. For p = 1 the problem is convex, but the global optimum would like
to present large grey regions [8]. For p ≥ 3 grey regions disappear from the final solution,
but the problem has more local minima. The continuation consists in gradually increasing p
while the optimization is advancing. In this way, TO evolution to a black and white design
is enforced, while the chances to descent to the best minimum are increased.
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2.1.3 The Moving Morphable Components (MMC) Method

The MMC is the most recent TO method, proposed by Guo and Zhang [26] in 2014.
Its main novelty over traditional approaches is the use of design variables that explicitly
describe the optimal material distribution.

In above mentioned implicit TO methods, the optimization algorithm finds the density or
cross-sectional area distribution, and gives the optimal topology of the structure as a set of
elements "filled with material". For example, in the SIMP, the optimal material distribution
is described by a 0− 1 "pixel-based" representation.
In contrast, in the MMC method, the algorithm optimizes a set of parameters controlling the
geometry of the structure, and gives the final topology description by means of an explicit
analytical function constructed with the optimal parameters.

The structure is decomposed in a set of components that can change position, length, thick-
ness, orientation, as well as merge each other, in order to reach an optimal topology [26]. This
approach is depicted in Fig.2.3, for a 2D example in which each component is a rectangular
member with linearly varying thickness.

Figure 2.3 The MMC Method - The design domain (a) is meshed and a set of component is
mapped over it (b), geometric variables of each components are iteratively optimized (c) and
the final material layout is obtained by the superimposition of solid members (d)

The set of parameters di describing the ith-component, as depicted in Fig.2.3, groups the
coordinates of the center point (x(c)

i , y
(c)
i ), the thickness at both ends t(a)

i , t
(b)
i , the length

Li, and the angle between its mid-line and the global horizontal axis θi. Collecting the
parameters of all the N components, the complete design vector d is defined:

d = {d1, ...,dN} (2.3)
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The parameters in di map the portion Ωi, over the coordinates (XΩi , YΩi) occupied by the
i-th solid component, in the following way:XΩi

YΩi

 =

x
(c)
i

y
(c)
i

+
 cos(θi) sin(θi)
− sin(θi) cos(θi)

ξη
 (2.4)

Where: ξ ∈ [−Li;LI ] and η ∈ [−f(ξ); f(ξ)] with f(ξ) = tmini + ,tmaxi −,tmini

Li
ξ.

By looking at this description, the main differences between implicit and explicit represen-
tations can be caught. The link between the geometry of each component and its design
variables is made explicit by a function having as the image the spatial coordinates of the
points belonging to the solid member and as the argument a set of design variables.

Such a function cannot be defined in the SIMP method, where the solid region ΩS is de-
fined as the portion of the design domain where the density is over a certain threshold.
Mathematically this is expressed as an implicit relation in Eq.2.5, for a 2D domain.

ΩS = {X, Y : xe(X, Y )− ε ≥ 0} (2.5)

where X, Y are the spatial coordinates, xe is the elemental density and ε is a numerical value
near to 1. It can be seen that the mathematical condition for which a point in the domain
belongs to the solid is an implicit function of the density.

In contrast, within the MMC framework, defining the geometry of each component of the
structure from its design variables vector di, leads to an explicit function, as showed in Eq.2.4.

Finally, to define the finite element model, a projection-scheme is needed to map the proper-
ties of the solid region over a fixed mesh. This is done by means of a Topology Description
Function (TDF), which depends on the explicit parameters contained in the design vector
considering all the components d and on the spatial coordinates (X, Y ).
The TDF identifies the solid region using a level-set method [26]:

Φ(d, X, Y ) ≥ 0, if (X, Y ) ∈ Solid

Φ(d, X, Y ) < 0, if (X, Y ) ∈ V oid
(2.6)

It can be remarked that this passages comes back to describe the structure in an implicit
way, but this description is used only in the analysis model, while the explicit information
desired for post-processing are still available due to the nature of the design variables.
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Finally the material properties for each element (Young Module Ee) are interpolated using
the value of the TDF at its nodes. This is referred as the Ersatz material model [26], exampled
here for a 4-nodded 2D-element, where the Heaviside function H is used:

Ee = E

4

4∑
i=1

H(Φ(xi, yi)) (2.7)

This method receives a great interest because:

1. It is easy to couple with Computer-Aided-Design (CAD) modeling systems, where
geometries are described by parametric entities like NURBS curves and surfaces [27].

2. In the SIMP method it is difficult to have precise control over the geometric charac-
teristics (i.e. min/max number/size/curvature of members). While by using explicit
design variables this control is done automatically when the set of parameters and
side constraints are defined.

3. Finally, the computational burden of the optimization can be reduced, since the num-
ber of design variables can be decoupled from the number of elements in the analysis
model.

However, this decoupling comes at a cost. Implicit methods can efficiently use gradient-based
optimizers in problems with smooth structural responses. While the use of the highly non-
linear projection scheme makes the MMC method always have nonconvex objective functions
and constraints. So it suffers more from the existence of multiple local minima even in the
compliance problem with the volume constraint.
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2.2 Gradient-based and Global Optimization Methods in TO

The success of TO has roots in the possibility to become a finite elements based optimization.
Avoiding re-meshing operations and using gradient-based solvers maintain practical running
time and feasible amount of computational resources even if the number of the design variables
is immense w.r.t to other kinds of optimization. However, there is no restriction on the type
of algorithm to be used to solve the problem. Non Gradient based Topology Optimization
(NGTO), which encompass Genetic Algorithms, Simulated annealing, Particle Swarms etc.,
are commonly seen in the literature as reported in the survey of [28]. Depending on the nature
of the problem, the various optimization methods exhibit advantages and disadvantages.

2.2.1 Gradient-based Solvers using Sequential Convex Programming

Gradient based optimizers are extremely efficient in the classical TO problem of minimum
compliance under volume constraint, or in problem with smooth objective and constraints
functions. Since mass, stiffness and stress-stiffness matrices are assembled by linear operators,
their derivatives are reduced at the element level, and the use of the adjoint method avoids
the derivatives of the displacement to be computed [8].
Iterative algorithms are used which solve a series of convex sub-problems built using gradient
information, such as the Method of Moving Asymptotes (MMA) [29]. Typically the sub-
problems are solved using the primal-dual interior-point approach [30], which is numerically
convenient in TO because "If the primal problem has n variable and m constraints, the dual
problem will have m variable and n constraints" [7].
The number of constraints can be maintained low by aggregating sets of responses (e.g.
element stresses) with the use of the KS-function [31] or the p-norm function [32].
Another high-performing method for large scale programming problems is the Interior Point
Method [33], based on a series of barrier sub-problems in which a linear approximation of
the KKT condition is solved at each step.

The major limitation for gradient based solvers is in the exploration capability in case of
multi-modal objectives or constraint functions. SIMP and GSM methods are supposed to
start from an uniform material distribution and are required to end in a clear material/void
layout. This is hard to obtain when considering design dependent constraints. For example,
when the buckling constraint is added, large “grey” regions or shapeless agglomerates of
material in portion affected by local modes are likely to appear.

On the other hand, the price for solving the 0-1 binary TO problem with a combinatorial
process is NC = 2Ne , i.e. a number of combinations NC exponentially growing with the



19

number elements Ne in the mesh [34]. Also evolutionary algorithms, which are designed for
dealing with discrete problems, have poor performance in terms of running time and optimal
objective value when the number of value is very high [28]. As a consequence, there is no
doubt that implicit methods require the use of gradient-based solvers.

2.2.2 Global Optimization Methods and the Particle Swarm Optimization (PSO)
Algorithm

In the context of explicit TO methods, the potential of non gradient-based approaches can
be re-evaluated. Provided that the problem is formulated with a minimal number of design
variables, all the advantages of global optimization techniques could be exploited.
First of all, 0-order methods do not require gradients, hence they are easy to implement.
But this is not the main concerns since a finite-difference based sensitivity analysis has
computational cost growing linearly with the number of variables.
The main advantage of global optimization techniques is indeed the possibility to avoid
local minima and to be able to explore the whole design space. This is important for the
practical purpose of TO: that is exploring promising solutions at a conceptual level, rather
than locating the optimal design point with high precision.

The MMC approach could leverage the use of global search techniques, as the number of
variables can be kept as low as desired. As shown in the work of Guo et al. [35], the use
of curvilinear shape members can reduce the length of the design vector to a few tens of
variables.

A survey of global optimization techniques suitable for problems with continuous variables
reveals that the Particle Swarm Optimization Algorithm (PSOA) of Kennedy, Eberhart and
Shi [36–38] could be efficiently coupled with the MMC approach, because of the similarity of
the latter to a shape optimization problem.
Fourie and Groenwold [39] showed that in the sizing of a 25-bar truss and the shaping of
a torque arm with 7 parameters, the PSOA outperformed two different genetic algorithms,
and showed a number of function evaluations to reach the final design comparable with the
ones of a Sequential Quadratic Programming (SQP) algorithm.
Finally in the context of the optimum design of curvilinear stiffeners layout, the work of
Mulani et al. [40] has already demonstrated the PSOA applicability for this problem.

The PSOA is a derivative-free population-based method which mimics social behaviors of
bird flocking and fish schooling, which adjust their physical movement to avoid predators,
seek food and mates [36]. As in genetic algorithms, a population of individuals exists. The
progression toward better solutions is driven by both cognitive and social mechanisms [38].
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In the sense that each particle in the swarm updates its position using its own flight expe-
rience and that of its companions. This biology-inspired strategy is based on the paradigm
that social sharing of information among members offers an evolutionary advantage [36].
Finally, a factor of randomness and a personal inertia are added along to the swarm intelli-
gence. These two terms are fundamental to limit the dependence on the initial positions of
the swarm and to avoid stagnation in local minima.

All these principles are merged in the simple updating scheme of the PSOA:

xi(t+ 1) = xi(t) + ∆xi(t)
∆xi(t) = w ∆xi(t− 1) + c1 r1

(
pi(t)− xi(t)

)
+ c2 r2

(
g(t)− xi(t)

) (2.8)

Where: xi and ∆xi are the ith particle’s position and step (or "design change") vectors;
the non dimensional time (t) represents the current iteration; r1 and r2 are two uniformly
distributed random scalars (ri ∈ [0, 1]); w, c1 and c2 are respectively the inertia, the cognitive
and social coefficients [38]. The dimensional units of the Eq.2.8 depend on the units of the
design variables, while all coefficients are non-dimensional weights.

The design points (particles) update is given by a weighted sum of three vectors:
•The previous step ∆xi(t− 1);
•The difference between the personal best and the current position pi(t)− xi(t), where the
personal best is the position in which the ith particle found the best value of the objective
function up to iteration t;
•The difference between the global best and the current position g(t) − xi(t), where the
global best is the location of the best value of the objective function found by the entire
swarm up to iteration t;

A common practice is to set c1 and c2 to 2, such that statistically half of the particles exceed
their target and half undershoot it [41]. While, the inertia parameter w is progressively
decreased (from 1.4 to 0) as the optimization proceeds, such that the search is global at first
and becomes increasingly local as xi, pi and g get closer [41].
As in all global optimisation techniques, there is no mathematical proof of convergence to
the absolute global minimum. However, the probability to approach it increases with the
size of the swarm and the time slot allowed for the search.

According to [38] the PSOA has been found to be robust and fast in solving highly-nonlinear
and multi-modal problems, like the stiffeners layout optimization considering buckling.
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2.3 Topology Optimization Applications for Stiffened Panels Design

The use of TO for plate stiffening was first suggested by Afonso et al. [42], who proposed
that the placement of stiffeners could be interpreted from the optimal density distribution ob-
tained with the SIMP method. This idea has been further developed to derive the two-phase
procedure described in Chapter 1, in which optimal stiffeners positing is defined by means
of a TO, and successively a sizing optimization considering stress and buckling constraints is
performed on the interpreted panel model where standardized stiffeners are added [5, 11].
Many application of SIMP TO in aircraft structure, can be found in the survey [10], where
also its use for stiffened panel design cases is discussed.
In little scale examples, the design space is modeled as a box of solid elements, see Fig.2.4(a)
from [43], in which the lowest 2-3 layers representing the thin plate are imposed to be a passive
region. One large scale example of application includes the model of an entire front fuselage
of a commercial jet aircraft, see Fig..2.4(b) from [44]. In this case, the model includes only
the skin made of shell elements and reinforcements are not modeled. The optimized density
distribution on shell elements, obtained with the SIMP method implemented in Optistruct 1,
is proposed to be considered as a suggestion for redesigning the airframe.

Figure 2.4 Stiffened panel application of TO: (a) A square simply supported plates modeled
with solid elements, from [43]. (b) A front fuselage skin modeled with shell elements, from [44]

To model skin-stringers using two different properties this work used a two-thickness shell
model, depicted in Fig.2.5 from [45], in which the properties of each element are interpolated

1. the structural analysis and optimization solver used Altair Hyperworks
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between those of an element with a core thickness T0 and those of an element with a higher
total thickness T which simulates the ribbed portions.
This can be modeled in the following way:

Ke(xe) = KT0 + (xpe) (KT −KT0) (2.9)

WhereKe is the elemental stiffness matrices, interpolated betweenKT0 andKT , the stiffness
matrices of an element with the core thickness or the total thickness respectively, according
to the value of xe, which is the density of the e-th finite element. The interpolation is a poly-
nomial law with exponent p, a integer number greater than one that penalizes intermediate
densities [21], as done in the classical SIMP method.

Figure 2.5 Two thickness plates TO [46] - Where the density goes to 1.0, the total thickness
is assigned to the element, while where it goes to 0.0 just the core thickness is retained.

All the publications mentioned so far, do not consider buckling during the TO phase, and
they miss discussion about weights saving w.r.t. to traditional designs. Still, they underline
that clarity and simplicity of layouts, as well as low computational cost of the optimization,
are difficult to maintain when practical structural constraints are added to the minimum
compliance problem.

Alternative to the use of SIMP, few recent articles propose the MMC approach to address
this challenge. In the following, two works belonging to this framework has been reviewed.
Zhang [47] optimized 3D rib-stiffened plate structures discretized by solid bi-linear finite
elements. The buckling constraint is considered, but only in a simple load case with one
single-point concentrated force, which is not characteristic of a real plate loading. In addition,
the use of solid elements for large stiffened panel assemblies makes the computational cost of
the problem out of proportion to be solved on a personal computer.
Of course, the need for computational power does not daunt future prospective of TO. In a
work of the TopOpt Group [1] an entire aircraft semi-wing model has been optimized, using a
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huge discretization including more than one billion voxels. However in that case, the massive
amount of computational resources was provided by a supercomputer, which runned for 5
days on 8,000 CPUs to solve the linear compliance problem. These resources are out of the
ones available in this project.

In the perspective of using lighter finite elements models, a second work on the MMC ap-
proach applied for the design of stiffened panels [48], uses an equivalent stiffness method
(ESM) to smear the stiffeners’ properties into the plate mesh.
In order to replace the original stiffened panel by a clean plate model with the same stiffness,
equivalent properties are derived from the original geometry using the classical lamination
theory. Once the properties are obtained, "the problem of stiffeners layout optimization can
be considered as a TO problem for two kinds of materials with different mechanical proper-
ties" [48]. That is, the optimization is asked to determine the distribution of two material
phases in a design domain by setting the parameters of the TDF, the characteristic function
of the MMC method, which maps the subdivision of the domain by the law defined in Eq.2.6,
as shown in Fig.2.6.
However, in this case the panels are optimized for minimal compliance without considering
neither buckling nor stress constraints.

Figure 2.6 An MMC approach for TO of stiffened panels whew the a geometric model (b) is
simplified in an equivalent stiffness model (b), from [48].



24

2.4 Structural Optimization with Buckling Criterion

Outside of the compliance minimization problem, when dealing with slender members and
thin walled structures, the requirement that must be addressed first for consistent lightweight
design is the stability under compressive loading. That is, it is necessary to ensure that the
critical load of the structure is greater than the load to be sustained.

2.4.1 Linearized Buckling Analysis

The critical load is derived from the LBA, which is an eigenvalue problem, whose non banal
solutions are the eigenpairs (λi,ϕi) representing respectively the BLFs and the associated
buckling modes. One way to derive the eigenvalues problem is to include the works done
by the initial stress σ0 for the nonlinear part of the displacements gradient εNL in the total
potential energy of the structure. By introducing the finite elements scheme, the stress
stiffness matrix Kσ is obtained [15]:

1
2

∫
Ω
{εNL}T{σ0}dΩ = 1

2 {u}
T [Kσ(u)]{u} (2.10)

This matrix depends on the stress level in the pre-buckling (linear equilibrium) solution u and
represents the stiffening/softening effect, due to tension/compression axial stress, generating
the loss of stability of the equilibrium. According to the bifurcation theory the linearity is
maintained up to the critical load and it can be stated that:

Kσ(u) = Kσ(λu0) = λ Kσ(u0) (2.11)

By referring to the state 0 (reference condition) as the equilibrium point found by the linear
static analysis, the eigen-problem comes up when searching for new equilibrium conditions
u = u0 +ϕ alternative to the reference one:

[K + λKσ(u0)]ϕ = 0, ϕ 6= {0} (2.12)

Considering proportionality between the applied load and the static solution, Eq. 2.13 gives
the physical meaning of the first positive eigenvalue. The fundamental BLF is the scalar
multiplier for the load f applied in the static analysis, to obtain the critical load fcr:

f cr = λ1f (2.13)
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2.4.2 Issues in Topology Optimizations with Linearized Buckling Criterion

TO considering buckling is an active research subject because of both the importance of
the stability in the design of many structural elements and the several issues hampering
the optimization process [14, 49]. Here the main issues of an eigenvalue optimization are
discussed, together with some strategies proposed to overcome mathematical pitfalls.

Eigenvalue multiplicity - When dealing with eigenvalues in gradient-based optimizations,
it is recommended to considered a set of firsts eigenvalues instead of a single one in the
constraint/object functions. This because it is likely that at the optimum point more than
one buckling modes become actives, as exampled by Seyranian et al. [50] in the optimization
for the maximum BLF of a clamped-clamped column of variable cross section.

Figure 2.7 Bimodal fundamental buckling load factor of Clamped-clamped column with op-
timal cross-sectional area distribution [50]

In case of multiple eigenvalues, the adjoint sensitivity equation does not give univocal value
for the derivatives of repeated eigenvalues (see [51] for further details), because eigenvec-
tors of the repeated eigenvalues are not unique. To overcome the lack of differentiability of
multiple eigenvalues, the strategy adopted in many works [14,52,53] is to use the KS aggre-
gation function [31], which gives a smooth and differentiable approximation of the minimum
eigenvalue even at design points where λ1 is not [54].

Mode switching - Mode switching is typical of assemblies with interacting components (e.g.
stiffened panel) [55], where during the optimization "the order" of the buckling mechanism
may change and create a non-smooth progression of the fundamental BLF.
Referring to the Fig.2.8, a possible mode switching mechanism for a size optimization of
blade stiffeners reinforcing a flat panel in compression is discussed.
For relatively weak stiffeners and a thick plate, mode (a) consisting in a global plate buckling
is likely to happen. Increasing the moment of inertia of the stiffeners leads to a passage
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Figure 2.8 Mode switching in stiffened panel size optimization, from [55]

from mode (a) to mode (b), where there is local buckling of the plate between the stiffeners.
Again, from mode (b) is possible to pass to mode (c), when the height of the web is increased
too much. Such a switching between modes can cause slowness or loss of convergence [55]
because it can it affects the smoothness of the buckling factor trend.

Artificial buckling modes - An issue hampering TO with eigenvalue objective/constraint
is the appearance of "artificial modes" in the regions of voiding elements: e.g. low density
regions in SIMP TO, or very thin bar/beam in Ground Structure TO [14, 49]. In these
regions, the ratio stiffness over mass (for vibrations problem) or elastic stiffness over stress
stiffness (for buckling), tends to zero. As a consequence, localized non-physical buckling
modes associated to numerically small eigenvalues appear, and this prevents the search for
real stability indicators.

Figure 2.9 Artificial buckling modes appearing in quasi-void regions are underlined in the red
band. From comparison to the "real" column, modes in the green band are considered real

An exemplification of this phenomenon is shown in Fig.2.9, in which the linearized buckling
analysis is conducted for two models representing a column in compression. The cross-
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sectional area distribution in the Ground Structure (GS) model recreates the same column
as the clean model (Column). It is observed that the presence of infinitesimal areas in the
GS model, although outside the main load path, results in localized buckling mechanisms
that do not have a corresponding mode in the Column model.

Bendsoe and Sigmund [8] suggested to adopt different interpolations for elastic and stiffness
matrix such that the Rayleigh coefficient remains finite in the vanishing density areas. Or,
as suggested by Gao [49], the pseudo-modes can be identified, by measuring if the most of
deformation energy is associated quasi-void regions, and then ignored.

2.4.3 State-of-art in Buckling-based Topology Optimization

There is a large literature on TO considering buckling for 2-3D truss design [56–60], and recent
works have remarkably pushed ahead the knowledge frontier of SIMP topology optimization
considering buckling for continuum solid, within 2D plane-stress finite element formulations
[14, 19]. However, the class of problems studied always goes backs to truss-like structure
design, but using 2D continuum models.

Instead, very few works have been found that address the problem of maximizing the fun-
damental buckling load of plates/shell models. A paper from Pedersen [61] introduced the
prestress in topology optimization, for the first time, according to the author knowledge. The
optimization is formulated for maximum fundamental eigenfrequency of flat Mindlin plates
with a given membrane pre-stress. After that, Townsend et al. [62] proposed a TO-level set
method for the reinforcement of plates subjected to buckling, where the strategy adopted
to prevent spurious buckling modes is conceptually equivalent to the use of two different
interpolation schemes for K and Kσ as proposed for the SIMP buckling methods [8].In this
work optimization of both plate with holes and two-thickness flat plate without holes were
addressed, since in many application placing holes in plates/shell structures in not possible.

Then this review has been able to identify one more works considering buckling in TO
of plate/shell models, by Chin and Kennedy (2016) [52] which used a density method to
incorporate the buckling constraints in a wing-box portion optimization. Although a practical
design case is addressed, the paper does not discuss the extraction of the final layout after
performing topology optimization, mainly because discrete 0-1 layouts are not obtained.
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2.5 Literature Review Conclusions

In this section, two knowledge gaps highlighted by the literature review have been identified
and from these, the research work carried out in the following two chapters is planned.
Furthermore, by analyzing the advantages and disadvantages of the two families of numerical
optimization algorithms, local and global techniques, it is possible to identify the appropriate
choice of the solver for each TO method.

(1) The comparison between the methods reviewed in Sect. 2.1. and the TO applications in
Sect. 2.3 showed that the Ground Structure Method has a certain potential both in reducing
the computational cost of the analysis model and in achieving a more explicit description of
optimized stiffeners layout.
The computational cost of the analysis model is decreased because, using beam elements,
only the degrees of freedom associated with translations and rotations of points along the
beam axis are considered. Furthermore, in this type of representation, the coordinates of the
end points of each element are known and the beam axis is considered as a segment joining
the two points. With this information, one can explicitly represent any approximate layout
by means of polygonal chains. This may simplify the interpretation task for the designer in
a 2-phase design process.
The method could efficiently use a gradient-based optimizer, therefore a formulation which
uses a mixed plates-beams ground structure could be investigated as a low-computational
cost alternative to the SIMP method in the context of optimal plate stiffening (compliance
problem).

(2) In Sect. 2.3-4, the weaknesses of the SIMP method in the stiffeners’ layout optimization
has been underlined. The large number of design variables becomes an issues in highly non
linear problem, where gradient based solver are less efficient to navigate the design space and
reveal clearly defined (hence manufacturable) layouts. To increase the chances of success in
this problem, the design space should be reduced by minimizing the number of variables and
the geometry of the stiffeners should be controlled explicitly.
This gave rise to the idea of implementing an MMC approach for the layout optimization
problem, aiming to integrate the buckling criterion, maintain a low number of the design
variable to use global optimization techniques, and provide an explicit final geometry which
could be automatically extracted in order to complete the 2-phase design process.
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CHAPTER 3 Generating Concepts for Optimal Stiffening Layout of Plates
using Ground Structure Topology Optimization

In this chapter an original formulation of the Ground Structure Method (GSM) is proposed
to address the problem of finding the optimal stiffening layout for plane pressurized stiffened
panels. The GSM is well-known in the literature for trusses and frames design [23,63], but its
application in the context of stiffened panels has not been investigated yet. The numerical
framework to solve the topology optimization (TO) is implemented in MATLAB.
The proposed approach uses an inexpensive yet suitable finite element model to represent
these types of structural assemblies. In addition, the use of beam elements to represent the
layout of the stiffeners simplifies the interpretation of the topology optimization results. A
comparison with SIMP and MMC methods highlights the potential of this approach.
A practical engineering problem is also addressed to demonstrate the feasibility of this formu-
lation in a two level TO-procedure: the design of a rectangular bulkhead subject to differential
pressure.
Finally, the possibility of extending the formulation to generic stiffened panel assemblies is
briefly presented by using the method to explore some conceptual layout for a wing-box rib.
The content of this chapter has been submitted and accepted for ICTAM 2021 congress in
Milano. The extended abstract accepted by the jury for the congress presentation can be
found in the Appendix A.

3.1 The Ground Structure Method using a Hybrid Plates-Beams Model

Identifying a discrete set of stiffeners using a continuous solid mesh has the major drawback
that the size of the starting mesh depends on stiffeners’ cross-sectional dimensions. In the
optic of applications to large structures one could easily realize that the continuous solid
models can be computationally expensive for a TO.
The potential of a Ground Structure TO method, which uses a mesh made of plates and
beams, comes from two basic considerations:

1. A combination of plate elements and beams is a very cheap and accurate way to
model large structures made of stiffened plates. Structural idealizations of this type
are commonly used in the industry for global wing finite elements model used for
preliminary size purposes [12,13,64];

2. The GSM has been found to be an easy-to-implement formulation which can deal
with the structural members of interest in aircraft constructions. Provided that a
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clear stiffeners distribution can be obtained after the removal of members members
with low cross-sectional areas, the model contains explicit information on the final
layout of the reinforcement.

3.1.1 Design Space Modeling Hyphotesis

A ground structure constitutes a dense set of structural members which connect the nodal
points discretizing the domain and constitute the candidates for the final topology.
The construction of the ground structure is the main task of the designer when using this
approach. Its definition sets the domain discretization for the analysis as well as the design
space for the optimization.
Zegard and Paulino (2014) [23] efficiently implemented the generation of arbitrary ground
structures composed by bar elements. They also provided educational codes for building
2D and 3D ground structures with arbitrary level of connectivity, automatic removal of
overlapping members, and the possibility to non-design spaces in the domain.
An adaptation of these algorithms for the automatic placement of beams elements on a plate
mesh has been developed and used in this work. Building the ground structure requires the
following steps, shown in Fig.3.1.

Figure 3.1 Construction of the plates-beams Ground Structure - Steps for automatic meshing
of the mixed plate-beams model (1-3). Different levels of connectivity between nodes (a-b).

(1) Place nodal points in the domain, e.g. as a 2-D grid of regularly spaced points (Fig.3.1.1).
(2) Connect this grid by using plates elements. This results in a thin plate model, which is
referred to as the fixed part of the ground structure or the plates ground structure (Fig.3.1.2).
(3) Superimpose a dense mesh of beams on the model. This is the variable part of the ground
structure, and it connects each node to its neighbors according to the level of connectivity.
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Connections between nodes contained in adjacent elements belong to the first level (Lvl1), as
in Fig.3.1.3. Some connections can be skipped, as in Fig.3.1.(a)). Or conversely, connections
can also be extended to the nodes of the elements immediately attached to those considered
in the first level (Lvl2), as in Fig.3.1.(b).

To simplify the optimization model, the offset of the stiffeners from the plates mid-plane
has been neglected. This eccentricity must be considered for accurate deflection and stress
evaluation, but does not affect the main load path, which is sought in the conceptual design
of the layout.

3.1.2 Stiffeners Idealization

The possible geometries that can be represented increase as the number of members in the
ground structure increases. Since using more than one variables per member does not lead
to additional layout possibilities, it is preferable to keep only one variable per member.
Changizi and Jalalpour [63], proposed to map cross-sectional properties of practical beam
sections used in civil engineering by performing a regression analysis of the data from de-
sign manuals. In their work all the coefficients of the beam element stiffness matrix are
expressed as polynomial functions of the value of the cross sectional area. For simple sec-
tions, a straightforward reduction to one independent variable can be achieved by keeping
fixed proportions between various widths, heights and thicknesses. This was also adopted in
the present work for rectangular sections (blade stiffeners).

When considering a pressurized plate, the bending/torsional stiffness ratio of the beam ele-
ments can have a significant effect on TO results. This effect is investigated in the current
work by varying the parameter k, representing the high/width ratio of the rectangular sec-
tion. For blade stiffeners, the stiffness coefficients could easily be written in an analytical
form, since the second moment of inertia and the torsional constant are proportional to the
square of the design variable (area), as described in Fig.3.2. The latter can be written in
terms of the coefficient β(k), whose empirical values could be found in [65].

Figure 3.2 Stiffeners properties parametrized on the cross-sectional area
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The effect of the height/width ratio parameter on these geometric properties is reported in
Tab.3.1. It could be noticed that as the parameter k increases, the bending efficiency of the
sections increases, while the torsion constant decreases. Consequently, high or low values
of k will be used in the numerical examples to model more efficient sections in bending or
torsion, respectively.

Table 3.1 Effect of the value of k on the properties of the rectangular section

k = h
w

I = 1
12ka

2 J = β(k)
k
a2 EI

GJ

1 1
12a

2 0.141a2 1.5721
3 1

4a
2 0.088a2 7.5568

5 5
12a

2 0.058a2 19.1092

3.1.3 Optimization Problem Formulation

In the model used here, Euler-Bernoulli beams are coupled with Discrete Quadrilateral Kirch-
hoff plates [15]. Metallic structures are considered, so an isotropic material model is used for
both the elements type in the linear static analysis.
A compliance-based formulation for the optimization problem, can be written as follows:

find {x} = {x1, x2, ..., xNb}
minx c(x) = fTu(x)
s.t. K(x)u(x) = f

lTx− vmax ≤ 0
amin ≤ x ≤ amax

(3.1)

where lowercase letters symbolize scalar quantities, bold lowercase are vectors and uppercase
letters are matrices. The vector x contains the design variables (the cross-sectional areas of
each beam element), Nb is the number of beams composing the variable ground structure; c is
the structural compliance 1; f and u are the load and nodal displacement vectors expressed
in the global reference system. l is the vector of beams lengths and vmax is the estimated
maximum volume of material allowed for the reinforcement. Finally, amin and amax are
vectors that contain the lower and upper bounds for the design variables.

1. Compliance represents the integral of the strain energy in the structure. This measure is inversely
proportional to stiffness, since the higher the value, the more the structure deforms under the prescribed
load. The TO formulation for minimum compliance, which seeks the stiffest structure, is widely used in
the conceptual phase as a structural layout identification criterion, since it can improve structural integrity
through a convex programming problem.
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Finite Elements Model for the Bending Problem In this paragraph, the finite ele-
ment model for the linear elastic bending problem of flat panels subjected to lateral loads is
developed in detail.
Let consider the skin panel laying in the xy plan, and the straight axis of each beam element
placed on this surface. If the panel is subjected only to lateral loads the significant Degrees
Of Freedoms (DOFs) are vertical displacements w and out-of-plan rotations θx and θy, as
remarked in Fig. 3.3, since they are decoupled from in the in plane displacements for these
elements kinematics assumptions.

Figure 3.3 DOFs for the bending problem

The part of the ground structure representing the skin, modelled by plate elements, can be
considered a “passive region” of the optimization model, because elemental stiffness matrices
for the plates do not depend on the design variables.
Since in Kirchhoff hypotheses bending and axial behaviors are uncoupled for isotropic (and
orthotropic) plates, the deformation energy for the problem considered on a single plate
reads:

U = 1
2

∫
Ω

(Db w)T [D](Db w) dΩ (3.2)

where:
Db = {− ∂2

∂x2 , − ∂2

∂y2 , − ∂2

∂x∂y
}T

[D] = Et3p
12(1−ν2)


1 ν 0
ν 1 0
0 0 1

2(1− ν)

 (3.3)

with E being the Young Modulus, tp the plate thickness and ν the Poisson’s ratio.
In Eq.3.2, w represents the continuous transverse displacement fields, and the kinematic
assumption of the Kirchhoff theory [66] have been used to link the rotations θx and θy to the
partial derivatives of w.
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Introducing a finite element approximation with the use of a non-conforming Hermite inter-
polation functions [66], 4-nodded plate elements consider as degrees of freedom the vertical
translation w and its partial derivatives with respect to x and y, w/x and w/y, for each node
(subscript i = 1...4):

ueP = {w1, w2, w3, w4, w/x1, w/x2, w/x3, w/x4, w/y1, wy2, w/y3, w/y4}T (3.4)

The coefficients of the interpolation functions Ni are defined according to Hermite shape
functions [66], so the local stiffness matrix for a plate element can be expressed as:

[KeP ]12×12 =
∫ .1

−1

∫ .1

−1
[B]T [D][B] det(J) dξ dη (3.5)

with: [B] = Db[N ] and J being the Jacobian matrix of the transformation from natural to
physical coordinates. The integration can be done by selecting a Gauss integration scheme,
and the inverse of the Jacobian matrix J−1 needs to be numerically evaluated at Gauss points
for the computation of the shape functions derivatives w.r.t. the physical coordinates .

The "active" part of GS, which depends from the design variables, is composed by Euler-
Bernoulli beams, whose shape functions are Hermitian for the vertical displacement and
linear for the torsional rotation. Then each beam elements has the following DOFs:

ueB = {w1, w2, θb1, θb2, θt1, θt2}T (3.6)

Using subscripts “b” and “t” for bending and torsion submatrix, the elemental stiffness
matrix, analytically available [66], for a beam element is:

[K]eB =
[Kb]4×4 04×2

02×4 [Kt]2×2

 (3.7)

To assemble the ground structure explained earlier, compatibility can be applied to the nodes
by equating the displacements of the nodal points for the elements connected to the same
nodes. It should be mentioned that this is a weak compatibility condition, since the equality
of nodal displacements does not imply that the displacements in the beams and plates are
equivalent along the segments shared between the nodes. Strong compatibility is verified
if triangular plate elements are used, or if this method is reformulated with isoparametric
rectangular Mindlin plates (4 nodes) coupled to Timoshenko beams (2 nodes), since both use
linear shape functions.
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The global displacements vector is organised as follows:

u = {u1, ...ui, ...un}T , where : ui = {wi, θxi, θyi}T (3.8)

Thus, beams (B) and plates (P ) contributions to the panel stiffness matrix are respectively:

KB = ∑NB
i=1[Ωi]T [T (αi)]TKeBi [T (αi)][Ωi]

KP = ∑NP
i=1[Ωi]T [P ]TKePi [P ][Ωi]

(3.9)

where the transformation matrices T (αi) and P , defined as in Fig.3.4, and the location
matrix Ωi are needed to complete the assembly of the global stiffness matrix. The matrices
T (αi), with αi being the angle by which the ith-beam is inclined to global x-axis, and P ,
transform the stiffness matrices of individual beams and plates respectively from local to
global coordinates. While, the location matrices Ωi perform the operation of positioning the
contributions of individual elements into the global matrices.

Figure 3.4 Globalization of local stiffness matrices - [66]

After completing the global assembly of beams and plates, the total stiffness matrix results
in the linear superposition of the two contributions:

K(x) = KB(x) +KP (3.10)

where it should be noted that the dependence on design variables is contained only in the
contribution from the beam elements.
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Load Vector In the following examples, two types of loads are applied to the plate: pres-
sure loads and concentrated lateral loads. In case of concentrated loads, the generalized
force variable is energetically conjugated with the correspondent displacements. In case of
pressure loads, the generalized force vector is considered acting on the plates elements, hence
it is introduced through the plates interpolation functions:

f e =
∫ 1

−1

∫ 1

−1
pNT det(J) dξ, dη (3.11)

Sensitivity Analysis Since the equilibrium is written in the reference condition, loads can
be considered design independent, thus the sensitivity of structural compliance can be writ-
ten using the adjoint method, where the derivatives of the displacement are not calculated
explicitly [8] :

∂c

∂xe
= −uT ∂K

∂xe
u = −uT ∂KB

∂xe
u = −

Nb∑
e=1
ue

T ∂[K]eB
∂xe

ue (3.12)

ue referred to the elemental (e-th beam) nodes displacements vector, and to obtain the
derivative of the elemental stiffness [K]eB, it is only needed to replace each properties with
the relative property sensitivity w.r.t. to the cross sectional area inside the stiffness matrix
expression:

∂[K]eB
∂xe

=
∂[Kb]4×4

∂xe
04×2

02×4
∂[KT ]2×2

∂xe

 (3.13)

where:

∂[Kb]4×4
∂xe

= E ∂Ie
∂xe

L3
e


12 6Le −12 6Le

4L2
e −6Le 2L2

e

12 −6L2
e

sym 4L2
e



∂[Kt]2x2
∂xe

= G ∂Je
∂xe

Le

 1 −1
−1 1


(3.14)

So only the ∂Ie
∂xe

= k
6xe and

∂Je
∂xe

= 2β(k)
k
xe sensitivities needs to be evaluated.

Finally, the sensitivity of the total volume is given by:

V = ∑Nb
e=1 xe

T le = xT l

∂V
∂xe

= le

(3.15)



37

3.2 Implementation flowchart

Based on the FE analysis and sensitivity analysis introduced earlier, the TO problem of Eq.
3.1 can be solved by using any generic gradient-based optimization algorithm.
For example, the Interior Point Method [67], implemented in the MATLAB Optimization
Toolbox, is called in the code provided in Appendix B. Meanwhile, the Method of Moving
Asymptotes (MMA) [30], considered in literature as the standard TO solver, has been used
for the comparison against SIMP and MMC methods reported in Sect.3.3.
The pseudo code of the current implementation is represented in Fig. 3.5, supported with a
visualization of the main steps of the process.

Figure 3.5 (a) Flowchart of the code provided in Appendix B. (b) Illustration of the main
steps based on the numerical example provided in the code.
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Pre-processing operations are carried out in the block referred as "Preliminary operations".
This part includes the definition of the total panel dimensions, material properties and bound-
ary conditions, and it sets the operators needed to assemble the global stiffness matrix. Since
the optimization is performed on a fixed mesh, rotation matrices and collocation indices are
constants during the whole process.

The second block is called "Design Loop" and it is the iterative part of the code. As long
as the stopping condition is not satisfied, the static analysis solution is recalculated, the
sensitivity analysis is repeated the design is updated.
Sensitivity analysis is the calculation of the gradients of the objective function and the con-
straints with respect to the design variables [7]. This information is used to find the direction
of maximum descent of the objective function and thus improve the design at each iteration.
This phase, which is fundamental in case the problem is solved with a gradient-based algo-
rithm, can also be carried out through the approximate calculation of sensitivities using the
method of central finite differences.
In contrast, if a non-gradient based algorithm is used, this step is not present.

In all the examples discussed in this work the stopping criterion considers an upper bound
for the iteration as well as a "StepTolerance". When the solver attempts to make a design
change shorter than a certain threshold, the iterations end.
In the code reported here, this block is coded in the nested function "Compliance" called by
the fmincon MATLAB command.
The use of sparse matrices and vectorized operations, as suggested in [68], increases code
execution speed and reduces the memory required by the software.
Further improvement of the code can be made by vectorizing the sensitivity analysis. How-
ever, the computational time required for the examples discussed in this work remained on
the order of a few minutes. Thus a further increase in code efficiency was not deemed neces-
sary.
The function "GenerateGSBEAMS" is the adaptation of the educational algorithm of Zegard
and Paulino [23] for a ground structure composed of beams elements. The function "getKeP",
providing the elemental stiffness matrices for the plates elements, is adapted from [66].

An example is provided to automatically run the code: the optimization of the stiffeners
layout for a square panel supported on the corners and loaded with a central concentrated
force. The X-shape reinforcement, which bears the load to the supports, is found in 181
iterations.
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3.3 Testing and Comparison on a Benchmark Problem

In this section, the proposed GSM for the design of the reinforcement layout of plates is com-
pared with SIMP and MMC methods in an exemplary test commonly used in the literature
as a benchmark problem for minimum compliance TO of plates in bending [8, 69].

The SIMP and MMC implementations are based on the open source codes of the articles [68]
and [70] respectively. For these, the lines of code concerning the finite elements analysis, given
in the articles for 2D plane stress problems, have been adapted to the problem introduced in
Sect.3.1.3 .

To ease the comparison, a problem is selected where symmetry of the geometry and boundary
conditions ensure that the different methods yields the same optimal topology, which consists
of a central cross armature connected to the centers of the four sides by tapered elements.

The methods are compared quantitatively based on the computational cost of the analysis
model and the rate of convergence of the optimization.
While a qualitative comparison discusses the level of designer involvement for pre-processing
and post-processing operations. These operations consist of:
(1) Design initialization;
(2) Design cycles, to verify the robustness of the solution with respect to perturbations in
optimization parameters, such as the starting guess;
(3) Extraction of the resulting geometry.

The numerical example, described in Fig.3.6, is constructed with a square plate subjected to
multiple out-of-plane forces and clamped on all four sides. The same boundary conditions
are applied on the models of the three different methods.

Figure 3.6 Benchmark problem - A square clamped plate subjected to concentrated out-of-
plane loads. Numerical data used in the comparison.
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The GSM uses a model made of beams and plates, while SIMP and MMC models use the
two-thickness plate model as presented in Sect.2.3 of the literature review.
For a completely neutral comparison, the three algorithms:
- use the same block of code for the FEA of the problem bending of discrete quadrilateral
Kirchoff plates with 3 dofs per node;
- use the same solver for optimization, i.e. the MATLAB cod of the MMA provided by [30].
For GSM and SIMP methods the standard parameters for the MMA suggested in the article
that introduces the solver [30] have been used, while for the MMC method the parameters
suggested by Guo in [70] are selected.

(1) Design initialization The initialization of GSM and SIMP is straightforward, since
it consists in choosing the constant value of the material distribution such as to meet the
constraint. For the MMC method, choosing the number of components, their shape, and
initial parameters is up to the user. As is usually done for simplicity, a uniform grid of
orthogonal components with a constant thickness is assumed.
Thus, it can be seen in Tab.3.2 that the definition of the initial starting guess involves a
gradually increasing number of user choices, moving from SIMP to GSM to MMC.
The last item is the proper mesh size selection. For SIMP and MMC it is necessary to refine
the mesh until it can describe the reinforcement in its short side with at least three/four
elements. While in GSM, the mesh size is decided according to the size of the plate and the
set of reinforcements that the designer wants to include in the design space.

Table 3.2 Designer choices (input)

GSM SIMP MMC
- Mesh size - Mesh size - Mesh size
- Level of connectivity - Density ρi - No. of morphanle components
- Cross-sectional area amax - Components shape parameters {di}

There are no theoretical restrictions on the initial configuration that can be selected. How-
ever, simple initial designs for each method can be defined in the following ways:

starting cross sectional area in GSM [23]: ai = VmaxNb∑Nb
i=1 li

∀i = 1. . . Nb

starting element densities in SIMP [71]: ρi = vf ∀i = 1. . . Ne

starting components width in MMC [26]: ti = vf L2∑Nmc

i=1 li
∀i = 1. . . Nmc

where: Vmax and vf are respectively the maximum volume and volume fraction allowed; L
and li are the total panel length and the ith candidate component length; Nb,Ne and Nmc
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are the number of beams in the GS, the total number of plate elements with variable density
in the SIMP, and the number of morphable component composing the design space of the
MMC method.

Optimization routine For the minimum compliance problem with constrained volume, Ta-
ble 3.3 summarizes the results of the comparison. To determine the optimization convergence,
the step tolerance on the minimum current design update was selected as: tol = 1e− 04.

Table 3.3 Summary of the comparison GSM vs SIMP vs MMC

GSM SIMP MMC
Design
variables

di = {ai} di = {ρi} dMCi =
{x0, y0, L, t1, t2, sinθ}

g1 V ≤ 2.5L2 mm3 vf ≤ 0.15 vf ≤ 0.15
Side
constraints

ai ∈ [10−3; 1000]mm2 ρi ∈ [0; 1] (x0i, y0i, L) ∈ [0;L]
(t1, t2) ∈ [0;L/10]
sinθ ∈ [−1; 1]

No. of design
variables

1332 10000 192

No. of Plate
(P) and Beam
(B) elements

324 P + 1332 B 10000 P 10000 P

No. of DOFs 1083 30603 30603
Iterations
to converge

389 83 248

Time per
iteration [s]

0.97 0.56 2.16

From Table 3.3 it can be seen that SIMP has the least iterations. MMC maintains the
lowest number of design variables. The least computationally intensive finite element model
is within the GSM.
Additionally, it is noted that SIMP is also the fastest in terms of time per iteration considering
the average time taken in the first 10 iterations. GSM loses a portion of time to recalculate
the beams local stiffness matrices at each iteration, whereas the MMC formulation uses finite
difference calculations for the sensitivity of the topology description function.

A graphical summary of the comparison is presented in Fig.3.7 and Fig.3.8, where graphs
of the optimization history and progression to the optimal design for the three methods are
shown respectively.
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Figure 3.7 Comparison GSM vs SIMP vs MMC: The values of the compliance normalized on
the optimum value (left axis), and the volume constraint violation (right axis) are plotted
against the current iteration for each method.

Figure 3.8 Comparison GSM vs SIMP vs MMC: Plot of initial, intermediate (iter=40) and
final layout for each method.
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(2) Design cycles and use of different parameters In a practical design, the above
optimization problem cannot be expected to be run only once. Depending on the complexity
of the problem, the user usually has to try multiple initial starting designs or optimization
parameters to arrive to a satisfying layout.
The level of dependence of the results on this type of inputs, causes a certain level of involve-
ment of the final user in carrying out the procedure, which ideally should be kept as minimal
as possible.
In this regard it was noted that GSM and SIMP are much more user friendly than MMC.
It was also noted the strong oscillatory behavior of the MMC method. The result shown in
the Fig.3.6 is the most efficient among the tests performed. Changing the number of mor-
phable components or their initial arrangement radically changes the convergence history.
For example, starting from a grid of orthogonal components 0-90° needs about 600 iterations
to find the layout in the figure. In some cases the optimization for the MMC method has
caught up the imposed limit of 1000 iterations, and presented incoherent disconnections of
the components in the final design. On the other hand, SIMP when used with typical filter
radius values (between 2 and 6 times the mesh size) does not result in topology changes, for
a fixed mesh and p = 3.

In this particular case, different initial values of the starting guess reinforcement volume do
not result in topology changes for GSM. The only parameter that plays a role in the final
design using GSM is the discretization choice: mesh size and level of connection. Mesh
dependency, a typical feature of topology optimisation [8], is shown in Fig.3.9.

Figure 3.9 Mesh Dependency test

It is observed that going from a mesh of 12× 12 plates to a 18× 18 one radically changes the
resultant topology. However, in this particular case the solution has moved towards a better
value of the objective function.
Refining the starting ground structure has expanded the design space and increased the
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Table 3.4 Result for the mesh dependency test

Test 1 2 3 4
No. of plate elements in the mesh 6× 6 12× 12 18× 18 30× 30
No. of beam elements in the final design 20 40 60 100
No. of stiffeners in the final design 12 12 16 16
Max area in the optimum design a∗max[mm2] 1000 1000 1000 1000
Min area in the optimum design a∗min[mm2] 468.8 230.5 209.5 201.5
Optimal compliance value c∗[Nmm] 17.9 17.2 15.1 14.8
No. of iteration to converge 202 274 389 502

possibility of finding better layouts. In this case the 30 × 30 mesh includes all the possible
designs of the 6× 6 mesh: i.e. the new refined mesh is "embedded" in the old one. Thus, the
possible solutions of the refined mesh include all those of the old mesh.
Finally, the examples showed that with mesh refinement the number of steps required for
convergence also increases, due to larger design space.

(3) Final layout extraction Interpreting the layout of the stiffeners is another important
operation in the practical use of these tools, so that one can move on to models with higher
fidelity of representation for more advanced stages of the design.
Assuming a clear topology is obtained for each method, the SIMP approach is the only one
that needs an additional tool to extract the final geometry.
GSM clearly defines any kind of piece-wise linear layout by defining skeletons and connections
(ends of each reinforcement) uniquely.
MMC is the one that provides the geometric information most explicitly. The starting com-
ponents merge and intersect, but starting from the solution x∗, the geometry is automatically
rebuildable in a CAD software.
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Lessons learned By summing up the experience gained in these tests, a typical character-
istic of the structural optimization subject has been encountered: there is no method which
performs better than the competitors on every single aspect.
Table 3.5 synthesizes main strengths and weaknesses for each method. Some observations
on the expected ideal application, based on remarked advantages, as well as possible ways to
mitigate drawbacks for each method are also reported.

Table 3.5 Strengths-Weaknesses underlined

GSM SIMP MMC
STRENGTH Low-cost finite ele-

ment model. Good
physical representa-
tion.

Rapid convergence.
Simple pre-processing.

Possibility to limit the
number of variables.

Suitable applica-
tions

Large structures us-
ing beam-like struc-
tural elements.

Structures that do
not have special
concerns regarding
manufacturability.

Structures that do
have special concerns
regarding manufac-
turability.

WEAKNESS Design freedom de-
pending on the initial
GS.
Iterative recalculation
of local stiffness matri-
ces.

Poor control on geo-
metrical features

Optimization problem
always non-convex
High dependence on
the starting guess

Possible im-
provements

Making GS con-
struction smarter by
leveraging informa-
tion from BCs.
Use of an interpola-
tion scheme to avoid
local stiffness matrices
recalculation

Addition of manufac-
turing constraints
Computer-vision sup-
port for the interpre-
tation of the results

Use of a continuation
strategy (following the
example of the one ex-
plained for the SIMP
method in Sect.2.1.2)
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3.4 Conceptual Design of a Simplified Pressure Bulkhead

In this section, the use of the GSM is tested in a two-level procedure for a TO-based design
of a flat pressure bulkhead.
Even if this kind of structures also sustain in-plane loading coming from connections with
fuselage airframe, the out of plane loading (pressure) is dominant and can be isolated for
preliminary sizing purpose [12].

The problem of reinforcing a rectangular panel has been chosen, because this simple domain
allows to carry out an easy and fast comparison with the semi-analytical formulas contained
in handbooks.
Focus can be kept on the procedure, rather than a particular geometry. For a conventional
configuration, the design usually consists of N equals stiffeners with a constant pitch, which
is a simple and low cost solution. For this layout, the design variables are the number of
stiffeners (related to the pitch), the type and dimensions of stiffeners cross sections.
Topology optimization is asked to propose different configurations, which after optimal sizing
reveals if there is a considerable impact in terms of weight reduction. It is recalled that
conceptual stiffeners layouts are found by minimizing the compliance for a given material
volume.

The baseline of Fig.3.10, extracted by a rapid parametric study (discussed in Sect.3.5) is
considered for an initial estimation of the geometrical dimensions of the reinforcement. These
information are used to set the volume upper bound and the variable side constraints in the
optimization problem. I-beam are considered because of their bending efficiency, but in the
topology optimization problem they are modeled as blade stiffeners.

Figure 3.10 Simplified Rectangular Bulkhead - Baseline

The properties of a typical aeronautical aluminum alloy (Al7075) and the sizes of the domain
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Table 3.6 Baseline Design

Baseline Design
Skin thickness [mm] 2.25

No. of stiffeners ( pitch [mm] ) 9 ( 125 )
Pressure [MPa] 0.083

Young Modulus [GPa] 71.7
Material density [ Kg

mm3 ] 2.8 ∗ 10−6

Long side [mm] 2500
Short side [mm] 1250

Stiffeners Cross-sectional Area [mm2] ≈ 450
Total Stiffeners Volume [mm3] 5 ∗ 106

are reported in the table 3.6. The numerical value of 0.083 Mpa is estimated considering a
1.5 Safety Factor above the limit pressure of 0.055 Mpa, which is the flight pressurization
profile of a typical civil aircraft as per FAR 25 specifications [72].
For front bulkheads which separate nose radome and cockpit, flat stiffness panels are usually
adopted because the lack of space prevents the use of more efficient hemispherical shells [12].

The design domain, the GS used as starting guess and the boundary conditions are showed
in Fig.3.11.

Figure 3.11 Design Space: The ground structure

The skin is discretized with a mesh of 40x24 rectangular elements. The connection between
the bulkhead and the fuselage airframe is modeled by constraining all displacements at some
equidistant points. The ground structure presents the modular repetition of the portion
highlighted in Fig.3.11. The starting guess has an initial uniform area distribution which
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satisfy the constraints without slack, and the design space consists in 1984 stiffener’s segments
candidates.

The optimization problem of 3.1 is solved, and the results are summarized in Fig.3.12 and
the corresponding Tab.3.13. The TO suggested layouts (k3 and k5) are compared with the
a parallel stiffeners layout (EP) and an orthogonal grid stiffeners layout (OG) in terms of
compliance. All the layout are iso-volume, and the high/widht ratio for stiffeners’ section,
k = 3 is used for all the cases, except for concept k5.

Figure 3.12 Two conventional layouts: Ortho-grid (OG) and equispace parallel (EP). Two
TO suggested layout (k3) for k = 3 and (k5) for k = 5

Table 3.7 Compliance values for Conventional and TO-suggested layouts

OG EP k3 k5
Max plate deflection [mm] 13.54 8.66 13.37 7.02

Optimal compliance value c∗ [Nmm] 1.40e+ 06 1.08e+ 06 9.10e+ 05 6.83e+ 05

It is found that novel configurations, depicted in Fig. 3.13, do have better compliance value:
i.e. the integral of their deformation over the entire domain has been decreased, indicating
that new solutions are stiffer.

For novel configurations, it is observed that straight stiffeners are placed in the middle.
However their axis-wise stiffness distribution is non-constant at the optimum design. A
qualitatively same axis-wise area distribution is found in the 2 novel layouts. A physical
justification for this distribution can be given by examining the “bending” diagram of an
un-stiffened panel subjected to uniform pressure (Fig. 3.14).
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Figure 3.13 Summary of the optimization: Results, history and formulation.

Figure 3.14 Interpretation of mechanical features suggested by TO in the optimal layouts.
A direct correlation is present between the cross-sectional area distribution in the optimal
layout (a) and the bending moment diagram of the un-stiffened panel subjected to uniform
pressure (b), sketched using empirical coefficients [12].
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Along the short sides the biggest reinforcements grow in the middle (for the same reasons),
while very near the corners there is no need of additional material.
In between these regions, the optimal distribution seems to depends on the ratio bend-
ing/torsion efficiency of the beam elements, which grows for a bigger k. Dependency from
the initial ground structure is pronounced in this zone, especially from the level of connec-
tivity which enlarge possible beams’ orientations.

The choice of boundary conditions has an important impact on the solution, since the posi-
tioning of the concentrated supports fixes the starting point from which the stiffeners branch
off towards the centre of the panel.It is worth mentioning two main effects of the boundary
conditions on the TO results, depending on whether the constraint is: (1) Simply supported
or clamped and (2) concentrated or distributed loading.

Figure 3.15 Supports are applied to the long sides of the panel at equally spaced locations,
and a clamping condition is applied along the entire length of the long sides (a). The impact
of these two different conditions on the stiffeners attached to the long/short sides of the panel
can be seen in the resulting layout (b) , in terms of spacing and tapering.

The example in Fig.3.15, showed both the effects on the optimal reinforcement layout:
(1) As opposed to clamping, the simply support causes the bending moment to be maximum
at the center of the panel and zero along the constrained sides. This results in placing larger
sections in the middle of the panel and smaller section near the support.
(2) By imposing a “distributed constraint” all along the sides, the number of stiffeners in-
creases, since the "main load path" that the TO must reveal is less concentrated.
In conclusion, the example have demonstrated that GSM results showed to be mechanically
efficients in term of compliance. The physical interpretation of the features suggested by TO
can be easily found by looking at the initial stress distribution in the un-stiffened panel.
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However, stress concentrations at stiffeners connections (and interruptions) cannot be con-
sidered within this formulation. This turns out to drastically reduce the efficiency of the
layout when moving to final sizing, as is discussed later.

Finally, by comparing the discussed results with the ones obtained with SIMP Method [5]
and MMC [48] in similar test cases, the competitiveness of the GS-Method for the minimum
compliance design of this kind of structure is further validated: similar features are suggested
regardless of the method, but the finite element model adopted by the GSM formulation is
is much lighter and therefore very promising for large size models.

3.5 Baseline Estimation

Before moving on to the sizing of the various concepts obtained, the reference model used
so far for total volume estimation is introduced. This baseline consists of a flat rectangular
"thin plate" and N equispaced stiffeners. As shown in Fig.3.10, this configuration considers
the following design variables: the constant skin thickness of the panel tsk, the I-section total
height h and width h, and two independent thicknesses for the web tw and the flanges tf .
Assuming that the bending stiffness of the beams is orders of magnitude greater than adjacent
portions of the panel, an initial guess for skins and stiffeners size can be found by using the
criteria given in Table 3.8.

Table 3.8 Initial estimation of the Baseline Design

Parametric study. For N=[5:15] find {tsk, tf , tw, h, w} s.t. :
Objective min M M = ρ∗ (Ly+ (Lx+N(Htw + 2Wtf )))
g1: Plate deformation (cen-
ter) [mm]

wsk ≤ 5tsk * wsk = 0.00126 ∗ (p( Lx
N+1)4) ∗ Et3sk

12(1−ν2)

g2: Stiffeners deformation
(midspan) [mm]

wst ≤ tsk wst = qL4
x

384EI , q = p Lx
N+1

g3: Stiffeners maximum ax-
ial stress (at root) [Mpa]

σmax ≤ 300 ** σmax = qL2
yh

24I

g4: Stiffeners max shear
stress (at root) [Mpa]

τmax ≤
√

3 300 τmax = qLyQ
16twI , Q = wh2−w(h− 2tf )2 +

tw(h− 2tf )2

g5: Stiffeners’ web critical
stress [Mpa]

σmax ≤ σcr,web σcr,web = 21.6 ∗ E( tw
h

)2

*According to [12], “thin plates”, deflection in thin plates encountered in metallic airframe structure
are limited to not overcome δ/t < 5. ** Since fatigue is not considered, a reduction of the of the
aluminium ultimate strength (575MPa) is applied.

To make a coarse initial estimation, a decoupling between the components is assumed, so that
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the classic beam theory (for stiffeners) and classic plate theory with empirical coefficients (for
panel bays), taken from chapter 7 of the practical handbook for airframe design of Niu [12], are
used to set design criteria. With these analytical formulas, a parametric study is performed,
and reported in Fig.3.16, to see the optimal design for different numbers of stiffeners.

Figure 3.16 Results of the analytical parametric study

The study shows that from 9 stiffeners onwards the optimal mass is on a plateau Fig.3.16(a).
The configuration with 9 stiffeners is then taken as the baseline, and its dimensions can be
extracted from graph fig.3.16(b). The graph in Fig.3.16(c), on the other hand, shows the
trend of the Lagrange multipliers at the optimal point for increasing values of N.
The magnitude of the Lagrange multipliers (at the solution) reveals useful information about
the effect of each constraint on the optimal objective function value:
- The constraint on the max skin deflection results to be associated with the largest Lagrange
multiplier. This means that it has the greatest importance on the value of the optimal panel
mass. By augmenting the number of stiffeners, the bays dimensions are reduced and the
constraint gradually loses importance because the skin portion became thinner. However it
results to be active until 14 stringers are placed.
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- Constraints on maximal bending and web buckling became inactive as the skin panel is split
in more portions. However beams dimension reach a plateau because the stiffness constraint
(middle beam point deflection ) takes place. Finally from the variables trends, we can observe
that some design variables are blocked by their side constraints. In particular, the thickness
and the width of the stiffeners flanges tends to the lower allowable value, because their impact
the bending stiffness is little w.r.t to the impact of the stiffeners height. This constrained
are relaxed for the finite element optimization, but not so much because of manufacturing
limitations.

With this information, a finite element model of the baseline is modeled in Hypermesh FEA.
The model is clamped along the four side and a normal pressure is applied using PLOAD4
card on the un-stiffened side of the skin. The I-stiffeners are modeled using CQUAD4 for
the web and CBAR for the flanges. The results of the analysis are reported in Fig. 3.17. As
expected, the final element analysis reveals to have higher stresses and displacements w.r.t.
to simplified analytical formulas, where empirical coefficients assumed the connection with
stiffeners to be a perfect clamping for the plates. The sizes of finite element model of Fig.
3.17 are assumed used from now on as a initial values for new concepts size optimization.

Figure 3.17 Analysis of the Baseline Design
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3.6 Optimal sizing of suggested concept

New concepts suggested by TO are modeled and resized via a size optimization. At this
stage, the optimization variables are the cross-sectional dimensions of the stiffeners, whose
topology is now determined. It is assumed that all stiffeners have an I-section, and the three-
dimensional panel is modeled using the following types of finite elements:
- PSHELLs, contained in the XY plane, to represent the skin;
- PSHELLs, positioned orthogonally to the XY plane, to represent the web of stiffeners;
- CBARs with rectangular section to represent the stiffeners flanges.

The panel is loaded with a uniform pressure of 0.083 Mpa, considered as per Tab.3.6, and it
is clamped all along the four sides.
Then, for each stiffeners, the sizing variables are the width W and thickness t of each flange
(independent for upper and lower flanges) and the web thickness tweb.
Finally, according to the optimal cross-sectional area distributions of Fig.3.13(a), stiffeners
with variable cross-sectional area are considered, since the TO suggests that they can give
more stiffness to the panel for a given amount of mass, compared to stiffeners with constant
cross-sections. The web height is allowed to vary linearly between the endpoint values, H
and h, these latter added to the vector of variables of the ith-stiffener di.

The definition of the variables for the single stiffener is presented in Fig.3.18(a), and the
different colors used for different stiffeners, in Fig.3.18(b), indicate the subdivision of layouts
K3 and K5 (from Fig.3.13) into different groups of components for which the cross-sectional
sizes are considered equal.

Figure 3.18 Size Optimization - (a) Definition of the ith-stiffener’s variables. (b) Subdivision
of stiffeners into groups with the same design variables.

Consequently, each concept is associated with a vector of design variables d that contains
as many di as the different groups of stiffeners identified by the designer. In this exercise,
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this division follows the symmetries of the structure and an arbitrary classification based
on the different stiffeners placement. Final designs are then found by solving the problem
in Eq.3.16, aiming at minimizing the total mass of the panel while meeting the mechanical
requirements discussed in Tab.3.8. Constraints are imposed on the maximum skin deflection
g1, the maximum Von Mises stress g2 (strength requirement for ductile materials), and the
minimum BLF g3 (linearized stability requirement). Thus, the problem is defined as follows:

min Mass

s.t. g1 : wmax ≤ 12.5mm
g2 : σVMmax ≤ 300Mpa

g3 : λ1 ≥ 1
d ≤ d ≤ d

(3.16)

The initial starting guess takes the dimensions considered in the baseline of Fig.3.17, and the
range in Tab.3.9 is considered for the different design variables.

Table 3.9 Size optimization variables, side constraints and baseline values

Variable lower bound baseline value upper bound
H[mm] 50 125 150
h[mm] 50 125 150
Wup[mm] 25 40 60
Wlow[mm] 25 40 60
tup[mm] 1.25 2 4
tlow[mm] 1.25 2 4
tweb[mm] 1.25 2 4
tski[mm] 1.25 2.25 4

In the sections 3.6.1 and 3.6.2, the results of the optimization and the analysis of the final
design are reported for concept K3 and K5 respectively.
For each optimization, the progression of the objective function is presented, along with
the maximum constraint violation and the values of the design variables for each iteration
(Fig.3.19-3.20 for concept K3 and Fig.3.22-3.23 for K5). The analyses of the final designs
(Fig.3.21 for concept K3 and Fig.3.24 for K5), show the values of the structural responses
considered among the optimization criteria: deflection, stress in shell and bar elements, and
fundamental buckling mode with its BLF. Observing the numerical values, it is confirmed
that all the constraints are satisfied in the final design (feasible solution), and it is also
noted that all the constraints are active at the optimum point. Consequently, they are well
formulated and all play an active role in determining the optimal sizes.
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3.6.1 Results for concept k3

Figure 3.19 Optimization history and evolution of flanges design variables

Figure 3.20 Optimal thickness and height distribution (variation w.r.t to baseline 125mm)
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Figure 3.21 Linear static and Linear Buckling Analysis of the optimal design - The results
show that all constraints (buckling, stress, and deflection) are active at the optimal design
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3.6.2 Results for concept k5

Figure 3.22 Optimization history and evolution of flanges design variables

Figure 3.23 Final thickness and height distribution (variation w.r.t to baseline 125mm)
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Figure 3.24 Linear static and Linear Buckling Analysis of the optimal design - The results
show that all constraints (buckling, stress, and deflection) are active at the optimal design
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3.6.3 Discussion on the Optimal Sizing of TO-based Concepts

For a fair comparison, the mass of the TO-based designs is compared with that of the tradi-
tional configuration in Tab.3.10, after the latter is also optimized according to the problem
3.16.

Table 3.10 TO-Based concepts VS optimized Baseline stiffened panel

Concept Optimized-
Baseline

Optimized-k3 optimized-k5

Mass [Kg] 29.7 29.2 30.1

A marginal gain of the 1, 7% is reached by the k3 configuration. However, it is worth noting
the increase in complexity brought by this design:
- Stiffeners with variable height axis-wise;
- 5 different groups of stiffeners: the k3 design has 32 independent design variables for the
stiffeners and 3 (thicknesses) for the skin. In contrast, the traditional design considered a
skin with constant thickness and only 5 design variables for all equals stiffeners.

The result is on the one hand disappointing due to the poor weight gain in the face of a much
more complex design, but on the other hand, the procedure has proven applicable to generic
piece-linear reinforcement layouts.
The interpretation effort to go from the GS-model to the final sizing model is minimal, thanks
to the explicit information available on the ends coordinates of each stiffener axis. This
possibility of generalization is a potential strength point for the TO-based design process,
which could have more important weight gains for more complicated geometries, where the
simplicity of traditional design could be less efficient.

Finally, it is important to discuss why the k5 concept showed a poor final result, when it
was the stiffest concept in the GSM model. In this concept, only one independent thickness
was used for the whole skin. The design suffered from the stiffeners run-outs placed in the
corners. Stiffeners interruptions bring high stress concentrations because of the discontinuity
in the stiffness of the model. The skin remain thick and prevents the mass to lower below
the baseline threshold.
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3.7 Conclusions on the GSM for Pressurized Stiffened Panel Design

In this chapter, a new methodology based on the Ground Structure TO has been developed
for the design of pressurized stiffened panels.
The basic idea of the approach is to create the design space for reinforcing the plate mesh by
overlaying a dense network of beam elements over the entire panel surface. The TO reveals
which elements are most important in the initial set of candidates by optimizing the cross-
sectional area of each beam and removing from the final design the elements that have been
thinned below a certain threshold. In the cases studied, the layout optimization criterion
was that of maximum structural stiffness (minimum compliance) with a constraint on the
maximum stiffeners volume.
The minimum compliance problem can be effectively applied in the layout design of pressur-
ized panels, since in this case the main function of the stiffeners is to provide the transverse
support that minimizes skin deformation. Through a comparison with other TO methods,
it was shown that the GSM is advantageous in terms of computational cost of the analysis
model, since it can represent stiffeners layout with a great geometrical freedom even with
coarse meshes. Furthermore, the ease of extracting the optimal layout was increased com-
pared to the SIMP method, since the geometry is explicitly described by the coordinates of
the end points of each beam element.
From this information, panel models in which the stiffener geometry is represented with higher
fidelity are automatically reconstructed. With the extracted models, the design procedure
can then be concluded by minimizing the panel mass while meeting the design requirements
( maximum stress, minimum critical buckling load and maximum deformation).

The procedure has been shown to achieve mass gains, even if small, compared to conventional
layouts for a rectangular bulkhead design example. However, for more complex geometries
and non-uniform loads, straight and evenly spaced stiffener configurations would be less
competitive and TO-based layouts may show greater advantages.
The lack of consideration of stress concentrations appears to be the main weakness of the
formulation for minimum compliance. This is because thin joints and interruptions in the
stiffeners layout are advantageous in term of global compliance, but are ineffective in the
final sizing when considering stress requirements.

The method can be extended to any panel geometry and general loads. This flexibility is
demonstrated by an example in Appendix C, in which the conceptual design of an airfoil rib
is carried out. However, to complete this extension, it is necessary to incorporate stress and
buckling criteria into the layout optimization. The latter is not negligible, especially in the
optimal placement of stiffeners for in-plane loaded panels.
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3.8 Limits of the GSM for In-Plane Loaded Panels and the Transition to the
MMC Method

In the case of transverse loads, the reinforcement’s main function is to minimize skin deflection
by increasing the bending stiffness of the assembly. In this case, the minimum compliance
problem addresses the main design requirement, and is easily solved by using gradient-based
algorithms [8]. However, stiffened panels are also used to carry compressive and shear loads.
For in-plane loads, the problem for minimum compliance is not particularly significant, since,
in this case, the main function of the stiffeners is to increase the critical buckling load of the
thin panels by acting as supports limiting the free length of skin deflection [12].

The use of linearized buckling analysis, discussed in Sect.2.4.1, is the simplest method to
estimate the critical buckling load by extracting the first positive eigenvalue (BLF) and
including it among the optimization criteria, as an objective function or constraint.
This inclusion makes the optimization problem nonconvex, i.e., it has multiple local minima.
Gradient-based algorithms converge to the local minimum closest to the initial starting guess
[7], and this makes the problem highly dependent on the boundary conditions and the starting
point of the optimization.

Moreover, another problem is related to the definition of the design space. In GSM (and
SIMP), each design variable can take a continuous set of values between the extremes of the
specified range, i.e., between amin and amax (0 and 1 in the case of SIMP). These values are
considered as acceptable, but one then tries to penalize their presence in the final design.
This because easy-to-interpret designs are those where one can clearly identify the elements
to be removed and those to be kept.
Penalty strategies for buckling-based optimization are still being researched [73], and an
efficient one has not been identified for the present work. Designs with numerous beam
elements having intermediate values of cross sectional area tend to appear as results of TO
with buckling criteria and can be highly complex to interpret and produce (see Fig.3.25).

In conclusion, in the GSM method, it is difficult to guarantee a priory that the TO results
meet the following acceptability requirements:
1. The optimal area distribution is entirely clustered around the values of amin and amax;
2. The paths of the stiffeners are clearly defined;
3. After the removal step, there are no stiffeners disconnected from the rest of the layout.

For the minimum compliance problem, these requirements are often met, though not imposed,
due to the convex nature of the design space. However, for highly nonlinear design spaces,
imposing them becomes necessary. Since these requirements, not directly related to the
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Figure 3.25 Distributions of the design variable within the design space in the GSM - Initial
distribution (a), a clearly interpretable amin - amax distribution (b), and a hard-to-interpret
distribution (c) with several beams of intermediate area

optimization variables, are difficult to enforce in the GSM method, it was decided to change
the strategy and test a formulation that can guarantee them a priory.

From this point on, the focus shifts to the MMC method, identified as a promising alternative
for 3 reasons:
(1) it uses geometric parameters as design variables, ensuring the absence of ambiguity in
the interpretation;
(2) the shape of the stiffeners can be parameterized with some a priori assumptions, allowing,
for example, a definition of the axes and connections between components;
(3) the complexity of the problem can be limited as needed by limiting the number of struc-
tural components and/or free parameters.

Reducing the complexity of the design space is considered to be of great value both from the
point of view of the designer, who defines the problem, and the computer, which solves it.
The designer can define what information to selectively search for and impose requirements
from the beginning. While, the use of a small number of variables simplifies the problem
from a computational point of view and opens up the possibility of using global optimization
algorithms, which are more likely to succeed in non-convex programming problems.
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CHAPTER 4 A Moving Morphable Component based Curvilinear Stiffeners
Layout Optimization considering Buckling

In this chapter, a new methodology based on the Moving Morphable Component (MMC)
approach is proposed for the optimization of the geometrical parameters of curvilinear stiff-
eners reinforcing a thin sheet.
Each morphable component gives the explicit geometric description of one stiffener through
a finite set of parameters. The explicit curves used in the work consider linear, quadratic or
Hermite shape functions. The skin and stiffeners are modeled as plates with different stiffness
properties, derived locally through an equivalent stiffness method based on the First-order
Shear Deformation laminated plate Theory (FSDT).
The stiffeners layout optimization is then formulated as a problem of assigning the equiva-
lent properties to the elements of a fixed plates mesh, using a projection scheme based on a
level-set Topology Description Function (TDF).
The stiffeners has a fixed cross section during the layout optimisation and are assumed stiff
enough to force the buckling to onset locally on the skin, as done in common aeronautical
application. After estimating that the low-fidelity model can approximate the displacement
field with error less than 4% and the buckling load factor with error less than 11%, some
parametric studies are performed to see if conventional layouts for simple test cases can be
identified as optimal layouts.
Finally the model is cast in the Particle Swarm Optimization framework to solve the funda-
mental Buckling Load Factor (BLF) global maximization problem. Some practical examples
are shown to demonstrate the potential of the procedure in the design of wing skin panels.

4.1 New Design Tools for the New Philosophy of Unitized Structures

Classical configurations employ straight stiffening members riveted to thin panels, as this
solution facilitates the fabrication and design process [12].
The individual components are manufactured separately and then assembled by riveting. As
for sizing, a wide range of experimental data collected in hand-books provide semi-analytical
formulas that are easily implemented in digital spreadsheets [12,64].
In this context, the "layout" of the reinforcement is assumed a priory and described by
one parameter: the number of parallel stiffeners. A requirement on stringers minimum
bending stiffness is obtained to promote local instability appearing first on the portion of
the skin between them [74]. Then the cross sectional dimensions of the stiffeners are sized to
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sustain additional loading after the skin buckling onset, according to Euler-Johnson failure
prediction [12,64]. Since skin and sections size variables are coupled in ensuring stability and
strength requirements, the sizing is usually done in an iterative procedure where the current
estimation is improved until all the requirements are satisfied.

However, new manufacturing techniques suitable for aluminum and titanium alloys, including
Friction Stir Welding (FSW) [75] and Electron Beam Free Form Fabrication (EBF3) [76],
challenge classical configurations reducing material waste and weight associated to the riveted
joints. A new philosophy of "unitized structures" is sought, i.e. monolithic reinforced panels
where reinforcements and skin are physically integrated [77]. As manufacturing limitations
are loosening, new optimization methodologies for the design of unitized stiffened panels with
curvilinear stiffeners become possible [40,78].

In order to fill this gap with the tools of topology optimization, it is necessary to:
(1) balance computational cost and representation fidelity of the finite element analysis;
(2) use global optimization techniques to navigate the design space being highly non-linear
due to the presence of a buckling criteria.

The simplification of the finite element model can be achieved by approximating the stiff-
ened panel with a clear plate that uses equivalent stiffness properties to incorporate the
reinforcement [79–82]. The reduction in the number of design variables, necessary for global
optimization techniques, can be done without losing freedom of representation through the
use of morphable components with curvilinear paths [35].

The major foreseen strength of the unitized panels is that there is no restriction on the
reinforcement layout geometry. Accordingly, this work focuses on the layout optimization
phase where this freedom of configuration is leveraged to highlight new design solutions.
This phase is then integrated in a sequential design procedure sketched in Fig. 4.1.

The process starts with an initial sizing of a baseline, which can be a panel with straight evenly
spaced stiffeners satisfying the design requirements. When estimating baseline dimensions,
analytical tools can be used, following conventional design criteria and ensuring that buckling
occurs on the skin first [74]. Subsequently, a sequential process to optimize the design
focuses firstly on the stiffeners’ layout and finally on the cross-sectional sizing. The layout
optimization aims at maximizing the skin buckling critical load for a given volume of the
reinforcement. At this level, model complexity is kept low to prioritize freedom of exploration
over accuracy of the analysis. For this task, an MMC approach using an equivalent plate
model was selected in this work. Finally, when the stiffener arrangement has been determined,
a size optimization that aims to minimize the total panel mass while satisfying the stress and
stability constraints concludes the design. For this last step, the complete panel geometry is



66

Figure 4.1 A sequential design procedure for unitized panels with curvilinear stiffeners - the
complexity of the model increases as more design features are determined. Starting from a
traditional layout, a first step aims to improve the skin buckling resistance by optimizing the
path of stiffeners. Finally, on a fixed layout, a size optimization determines the final design.

modeled to obtain more accurate structural responses.

It should be noted that for metallic panels, the onset of skin buckling may not coincide with
panel collapse, as the stiffeners continue to support additional loads [12, 18]. Consequently
aircraft regulations allows the onset of panel buckling in metallic panels before limit loads.
However, there are some exceptions, such as upper wing panels in commercial aircraft, panels
in supersonic vehicles or composite panels [12].

4.2 AnMMC approach for Optimizing the Layout of Integral Panels with Curvi-
linear Stiffeners

In this section an original approach based on the MMC framework is presented as a tool to
optimize the stiffeners’ paths of compression-shear stiffened panel for the maximum BLF,
calculated using the Linear Buckling Analysis.
Two strategies are possible to search for improvement in a baseline design with a fixed num-
ber of stiffeners by allowing generic location and curvilinear path for each reinforcement.
By means of parametric studies or global optimization techniques, potential beneficial effects
of shape variations and topological changes can be explored.
The rest of the chapter is organised as follows:
(4.2.1) The explicit definition of the TDF which maps the geometry of the reinforcement on
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the base plate mesh is explained;
(4.2.2) An equivalent stiffness model in which the sheet-stiffeners panel is replaced by a clear
plate with approximate equivalent properties is proposed;
(4.2.3) The finite element formulation for linear static and buckling analysis are reported;
(4.2.4) The use of the model to perform parametric studies is discussed, as a practical way
to evaluate the effects on few meaningful parameters of interest on the structural responses;
(4.2.5) A Particle Swarm Optimization (PSO) for BLF maximization with an upper volume
constraint is formulated within the current framework.
(4.3) The Matlab implementation is discussed and the flowchart of the code reported in the
Appendix E is briefly explained.
(4.4) Some numerical examples of parametric studies and layout optimization for representa-
tive panel portions of an upper skin wing-box are carried out, demonstrating that this design
procedure for unitized panels can reduce the mass of structural components in practical ap-
plications.
(4.5) A conclusion summarizing the novel aspects of this work and the lesson learned ends
this chapter.

4.2.1 Explicit Parametrization and Projection of Curvilinear Stiffeners on a
Fixed Plate Mesh

The Moving Morphable components approach proposed by Guo et al. [26], is adopted here
to control explicitly the shape of the stiffeners reinforcing the thin sheet.
The explicit topology description function for curvilinear components [35] is adapted to one
component-stiffeners placed on flat panels. The components have a constant width wi and a
polynomial mid-curve yi = f(x′), with x′ ∈ [0, Li] being the first axis of the local ith-stiffener
system of coordinates (see Fig.4.2).
Each stiffener composing the layout is then represented by the component’s TDF Φi(x, y),
described by the component design vector Di and expressed in the stiffener’s coordinates
(x′, y′) as:

Φi = min(Φ(1)
i (x′, y′, Di),Φ(2)

i (x′, y′, Di))
where :
Φ(1)
i = (wi/2)2 − (y′i − f(x′))2

Φ(2)
i = x′(Li − x′)2

(4.1)
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Φ(1)
i and Φ(2)

i can be evaluated on the global coordinate system by means of the following
coordinate transformation:x

′

y′

 =
 cos(θi) sin(θi)
− sin(θi) cos(θi)

x− x0i

y − y0i

 (4.2)

where (x0i,y0i) is the origin of the component local system and θi is the angle between the
global x and local x′ axes. In this way, the component design vector reads:

Di = {x0i, y0i, θi, Li, {cik}T}T (4.3)

Where the coefficients cik (k = 1. . . n+ 1) characterize the polynomial shape f(x′).

Table 4.1 describes the shapes used in this in work, which are also depicted in Fig.4.2. The
local stiffener’s system is centered in its starting point. The terms and x0i, y0i and θi provide
global translation and inclination with respect to the panel’s system. Then depending on the
shape function f considered, the end points coordinates and slopes can be controlled. Each
component’s TDF Φi(x, y) defines the region occupied by the ith-stiffener according to the
following rule:

Φi(x, y)


≥ 0, if (x, y) ∈ ith− stiffener interior

= 0, if (x, y) ∈ ith− stiffener boundary

< 0, otherwise

(4.4)

If N stiffeners are placed on the panel, then the union of the reinforcement regions is straight-
forward to obtain by means of the following operation:

Φ(x, y) = max(Φ1, ...,Φi, ...,ΦN) (4.5)

where Φ(x, y) is the total TDF whose 0-level contour identifies all the stiffeners boundaries.

Finally, to complete the projection on a fixed mesh of finite elements discretizing the domain,
the numerical relaxed Heaviside function is introduced to map the whole region where integral
stiffeners are added to the base skin:

H(x, y) = 1
2(1 + tanh(β Φ(x, y))) (4.6)

with β ∈ [1,∞). This function equals the unit value where the total TDF is positive and the
zero value where the total TDF is negative.
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Table 4.1 Polynomial curves for skeleton description

Order Polynomial function Coefficients
1st f I(x′) = hI

L
x′ {cik} = {hI}

2nd f II(x′) = 4hII
L

(x′ − x′2

L
) {cik} = {hII}

3rd f III(x′) = hIII

L2 (−2x′3 + 3Lx′2) {cik} = {hIII}

Hermite
(3rd) H(x′) =

{
1 x’ x′2 x′3

} 
1 0 0 0
0 0 1 0
− 3
L2

3
L2 − 2

L
− 1
L

2
L3 − 2

L3
1
L2 − 1

L



y′0
θ′0
y′1
θ′1

 {cik} =


y′0
θ′0
y′1
θ′1



Figure 4.2 Polynomial curves for path description - definition of coefficients in Tab.4.1
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As an example, the projection of 2 stiffeners on a rectangular panel, with a mesh 100x100 is
depicted in Fig.4.3, where the related shape parameters of each component are reported:

Figure 4.3 Example of the projection scheme on a square panel with two stiffeners
(a) The interior of the reinforcement region. (b) Plot of H(x,y) over the domain. (c) The
coefficients composing the component design vectors Di

4.2.2 Basic Idea of the 2-layer Laminate Plate model with Equivalent stiffness
properties for metallic panel with integral reinforcement

Here an equivalent stiffness model in which the stiffened panel is reduced to a clear panel
with two approximate equivalent properties is proposed.
Introducing such a model aims at reducing the complexity of finite element model and allow
to perform parametric studies or optimization of the stiffeners layout on a fixed mesh.

Equivalent stiffness methods for composite and metallic stiffened panels have been studied to
develop low-fidelity model for reasonable accuracy and high computing speed in the context
of flutter-analysis for wing-box structure [82], dynamic response of plate [80] and buckling
resistance estimation of grid stiffened plates [81]. The general idea of these method is to
determine the extensional, coupling and bending matrices associated with the stiffeners with
respect to plate’s mid-plane strains and curvatures of the skin.
In this way, stiffener’s force and moment contributions can be superimposed directly with
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those of of the base plate, obtaining the the equivalent stiffness matrices of the whole panel.

The idea of using equivalent stiffness methods to formulate a 2-material TO is proposed in the
work of Sun [48], for the minimum compliance design of composite stiffened panel modeled
with the Classical Laminate Plate theory (CLPT). In this work the effect of transverse
shear is also considered, by assuming the First order Shear Deformation Theory (FSDT) for
Laminated Plates [83]. The load-deformation relation in the matrix form reads:


N

M

Q

 =


Aeq Beq 03×2

Beq Deq 03×2

02×3 02×3 A(s)
eq



ε

k

γ

 (4.7)

Where the in-plane strain ε, curvature k and transversal shear strain γ vectors are linked
to the internal membrane forces N , moments M and transverse shear forces Q vectors by
means of the equivalent tensile Aeq, coupling Beq, bending Deq and shear A(s)

eq stiffness
matrices. These matrices depend on the spatial coordinates through the total TDF, and
they are defined by the following interpolation scheme:



[Aeq] = [A](1) +H(Φ(x, y))[A](2)

[Beq] = [B](1) +H(Φ(x, y))[B](2)

[Deq] = [D](1) +H(Φ(x, y))[D](2)

[A(s)
eq ] = [A(s)](1) +H(Φ(x, y))[A(s)](2)

. (4.8)

Superscript (1) and (2) refer to the matrices characterizing the "skin" lamina and the super-
imposed integral "stiffeners lamina" respectively, as depicted in Fig.4.4.

Figure 4.4 The 2-Layer Model with Equivalent Stiffness Properties



72

Models with arbitrary integral stiffeners layout are approximated as a laminate whose me-
chanical properties depends on the total TDF Φ(x, y).
According to the FSDPT the state of tension inside each lamina can be described as a plane-
stress state with the addition of the transverse shear stresses (only σzz = 0) [83]. In case of
metallic material, the linear constitutive relations are expressed for an isotropic homogeneous
lamina as:

{σ} = [Q]{ε} =


σxx

σyy

τxy

 = E
1−ν2


1 ν 0
ν 1 0
0 0 1−ν

2



εxx

εyy

γxy

 (4.9)

{τ z} = [Qs]{γz} =

τzxτzy
 = G

1 0
0 1

γzxγzy
 (4.10)

Because of the use of the Heaviside projections, here the hypothesis of homogeneity assumed
is not maintained in the stringers layer. Therefore, stress recovery is performed only in the
skin layer. In particular, membrane stresses evaluated at the skin middle plane are needed
to evaluate skin buckling. The calculation of the stiffness matrices is characterized for each
layer starting from the relations for a generic isotropic lamina:



[A](k) = [Q](k)(zk − zk−1)

[B](k) = 1
2 [Q](k)(z2

k − z2
k−1)

[D](k) = 1
3 [Q](k)(z3

k − z3
k−1)

[A(s)](k) = Ks[Qs]k(zk − zk−1)

. (4.11)

Where Ks is the shear factor, introduced to correct the energetic contribution from the shear
strains assumed constant along the thickness. The z-coordinates are normal to the panel
plane, as in Fig. 4.5.

By these assumptions, contribution (1) and (2) to the equivalent stiffness properties are
explicitly calculated:



[A](1) = ts[Q]

[B](1) = [0]3x3

[D](1) = t3s
12 [Q]

[A(s)](1) = Ksts[Qs]

.



[A](2) = hr[Q]

[B](2) = ehr[Q]

[D](2) = 1
3

(
(e+ h/2)3 − (e− h/2)3

)
[Q]

[A(s)](2) = Kshr[Qs]

. (4.12)

Where e is the stiffener eccentricity, ts the skin thickness and hr the height of the blade
integral stiffener.
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Figure 4.5 2-Layer Laminate model

In common applications e = ts/2+hr/2 , and for metallic rectangular section the shear factor
is Ks = 5/6. Calculation of the shear factor for general laminate can be found in [83].

It is worth noting the effect of eccentricity on the membrane-bending coupling, expressed in
the resultant matrix [Beq]. Here the eccentricity is defined as the distance of the centroid of
the rectangular blade stiffeners from the plate midplane. This effect plays a beneficial role for
rectilinear and parallel stiffeners, because it augments the section’s second moment of area,
meanwhile it may or may not augment stability in case of curvilinear stiffeners, depending
on the level of the coupling.
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4.2.3 Finite Elements Formulation of Static and Linear Buckling Analysis

Since the model is reduced to an equivalent plate, the kinematics of the FSDT follows the
Mindlin-Reissner assumptions [83]. The physical meaning of the displacement parameters
{d} = {u0, v0, w0, θx, θy}T , which are the unknowns to be determined in the FE problem, is
explained in Fig.4.6.

Figure 4.6 Definition of global coordinate system and plate displacement field in the FSDT

The form of the displacement field in each point of the plate is:

{dp} =


u(x, y, z)
v(x, y, z)
w(x, y, z)

 =


u0(x, y)
v0(x, y)
w0(x, y)

+ z


1 0
0 1
0 0


θx(x, y)
θy(x, y)

 (4.13)

where u0, v0, w0 denote displacements of a point on the plane z = 0, and it should be remarked
that if (βx, βy) denote the physical rotation about x and y axis, following the hand rule, then:

θx = −βy , θy = βx. (4.14)

This notation, taken from [83], may be confusing to some but it is extensively used in liter-
ature, because:
(1) it binds the displacements along x and y axes (i.e. u and v) to the parameters with
subscripts x and y respectively (as ∂u

∂z
= θx and ∂v

∂z
= θy);

(2) leads to include all parameters as a contribution with a positive sign ("+") in the dis-
placement relations of Eq.4.13.

The strain components, used in Eq.4.7, which depend linearly on the thickness coordinate,
are described as follows:
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{ε} = {ε0}+ z{k} =


εxx

εyy

γxy

 =


ε0xx

ε0yy

γ0
xy

+ z


kxx

kyy

kxy

 =


∂u0

∂x
+ 1

2
∂w0

∂x
)2

∂v0

∂y
+ 1

2(∂w0

∂y
)2

∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂x
∂w0

∂y

+ z


∂θx
∂x
∂θy
∂y

∂θx
∂y

+ ∂θy
∂x



{γ} =

γxzγyz
 =


∂w0

∂x
+ θx

∂w0

∂y
+ θy


(4.15)

At this point the displacement field can be interpolated using iso-parametric finite element
formulation. Here the bi-linear Q4 plates elements are considered: see [67] for the definition
of the shape functions Ni. The displacement parameters in the interior of each element are
independently interpolated from degrees of freedom assigned to elements nodal points:

{d} =
[
N
]
{u(e)} (4.16)

where [N ][5x20] collects the shape functions and u(e) collects the elemental nodal DOFs u(e)
ni

in the following way:
u(e) = {u(e)

n1 ,u
(e)
n2 ,u

(e)
n3 ,u

(e)
n4}T

u(e)
ni = {ui, vi, wi, θxi, θyi}T

(4.17)

The elemental strain-displacement matrices Bm,Bb and Bs are derived by including the
finite element approximation in (4.15), which reads in matrix form:

{ε} =


∂
∂x

0 0 0 0
0 ∂

∂y
0 0 0

∂
∂y

∂
∂x

0 0 0

d = [Dm]d = [DmN]u(e) = [B(e)
m ]u(e)

{k} =


0 0 0 ∂

∂x
0

0 0 0 0 ∂
∂y

0 0 0 ∂
∂y

∂
∂x

d = [Db]d = [DbN]u(e) = [B(e)
b ]u(e)

{γ} =
0 0 ∂

∂x
1 0

0 0 ∂
∂y

0 1

d = [Ds]d = [DsN]u(e) = [B(e)
s ]u(e)

(4.18)
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The element stiffness matrix is then defined by using the equivalent properties of Eq.(4.8):

K(e)
eq =

∫
Ωe

{
[B(e)

m ]T [Aeq][B(e)
m ] + [B(e)

b ]T [Beq][B(e)
m ] +

[B(e)
m ]T [Beq][B(e)

b ] + [B(e)
b ]T [Deq][B(e)

b ] + [B(e)
s ]T [A(s)

eq ][B(e)
s ]
}
dΩe

(4.19)

Integrals are computed by Gauss quadrature. The stiffness integral is solved by considering
2×2 Gauss points for the bending contribution, and 1 point for the shear contribution [67].

To carry the element wise integration, it is proposed to obtain constant values for the equiv-
alent stiffness coefficients inside each element by adapting the Ersatz material model [26] to
this formulation.
Matrices [Aeq], [Beq], [Deq] and [A(s)

eq ] are expressed for the generic coordinates (x, y) according
to the Heaviside projection in Eq.(4.8). The coefficients of the equivalent properties can be
evaluated at each nodal point, and then be averaged over each element. For instance, the
equivalent tensile stiffness matrix for element (e) is given by:

[Aeq](e) = 1
4

4∑
i=1

[Aeq(x(e)
i , y

(e)
i )] (4.20)

where (x(e)
i , y

(e)
i ) are the coordinates of ith-node associated to element e.

By considering a regular grid of rectangular elements, the assembled stiffness matrix reads:

K =
Ne∑
e=1

[Ω(e)]TK(e)
eq [Ω(e)] (4.21)

Where Ω(e) is a symbolic matrix operator which carries out the sorting operation of the
generalized displacement vector u = {u(1), ...,u(e), ...,u(Ne)}, needed to complete the assembly
process.

Defining F as the load vector, the linear static equilibrium equation finally reads:

Ku = f (4.22)

The loss of uniqueness of the reference equilibrium determined by the linear elastic equilib-
rium, can be predicted by means of the linearized buckling analysis.
Non linear strains are linearized in the vicinity of the elastic equilibrium configuration and
their contribution to the total potential energy is considered. Then, by searching for new equi-
librium conditions u = u0 + ϕ alternative to the reference one, the following eigen-problem
is derived:
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[K + λKσ(u0)]ϕ = 0, ϕ 6= 0 (4.23)

where it is remarked that the stress stiffness matrix Kσ(u0) depends on the pre-buckling
(linear equilibrium) solution through the stresses. This matrix is assembled in the same way
as the elastic stiffness matrix, from the elemental K(e)

σ , which is defined as follows [15]:

K(e)
σ =

∫
Ωe

[G]T [S0][G]dΩe (4.24)

where G[10x20] is the deformation gradient having the following structure:

G =



∇N⊗
[
1 0 0 0 0

]
∇N⊗

[
0 1 0 0 0

]
∇N⊗

[
0 0 1 0 0

]
∇N⊗

[
0 0 0 1 0

]
∇N⊗

[
0 0 0 0 1

]


∇N =

N1/x N2/x N3/x N4/x

N1/y N2/y N3/y N4/y

 (4.25)

and S0 is a banded matrix which rearrange the membrane stresses σ0
xx, σ

0
yy, τ

0
xy as follows:

S0 =



tsσ
0 02×2 02×2 02×2 02×2

02×2 tsσ
0 02×2 02×2 02×2

02×2 02×2 tsσ
0 02×2 02×2

02×2 02×2 02×2
t3s
12σ

0 02×2

02×2 02×2 02×2 02×2
t3s
12σ

0


σ0 =

σ0
xx τ 0

xy

τ 0
xy σ0

yy

 (4.26)

One notes that membrane stresses are recovered using the isotropic lamina constitutive rela-
tions of Eq.(4.9) and considering the strains from Eq.(4.15) evaluated at the reference plane
(z = 0). With the adopted discretization, the stress is computed in the centroid of each
element, which is the stress super-convergent point for Q4 bilinear elements [15].

For a further discussion of the MATLAB implementation of the linear buckling analysis,
please refer to the work Ferrari and Sigmund’s [84] on the use of vector operations to assemble
the matrices K and Kσ. The exclusive use of vector operations reduces the computational
burden of the analysis set-up, due to the elimination of large "for" cycles which are inefficient
in terms of execution time and memory allocation. The procedure is used here to accelerate
the optimization, and one can refer to appendix F for details on the rules to organize the
elemental stress stiffness matrix of a Mindlin Plate in a vector form.
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4.2.4 Parametric studies for BLF maximization

Arbitrary changes in the geometry, as well as topology, of the stiffeners layout can be managed
by the adopted TDF and the reduced complexity of the model can be exploited in many way.

A first application can be for parametric studies, in which the designer aims at observing the
variation of the response of the model for prescribed changes in the stiffeners geometry. In
particular, here the focus is on determining how the critical buckling load is affected by the
position, the orientation and/or the curvature of the stringers paths.

For the considered panels with integrally curvilinear blade-stiffeners, let the geometry of a
panel be described by a set of parameter which can be listed in the following panel design
vector D.

{D} = {D0, {Dx}} (4.27)

where the parameters in D0 are considered frozen, because there is no possibility or no
interest in varying its component, while parameters in Dx are considered as variables.

Let a certain range for the values of Dx components be identified for the investigation,
and a matrix of sample points with different parameters be defined. Then, by running the
predefined set of runs and collecting the corresponding model responses, the trend of the
observed value can be identified over the explored interval by fitting the data.

A study of this type can be represented in the block scheme of Fig.4.7:

Figure 4.7 Parametric study procedure
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4.2.5 Particle Swarm Optimization formulation for BLF maximization

The critical load of the stiffened panel is a function of skin thickness, stiffeners sizes, and
stiffeners locations. The latter is the main factor in splitting the skin in more bays hence
determining the free length of the skin buckling waves.
To simplify the problem, here it is assumed that stiffeners sizes are frozen while optimizing
their locations, because for stiffeners with very high bending stiffness the critical load is
mainly driven by skin thickness and bays dimensions [74].
Since the problem has multiple local maximum points, the optimization of the curvilinear
stiffeners paths needs for the use of global optimization techniques [40].

Global derivative-free optimization techniques, are computationally expensive if compared
to gradient based techniques. However, the adopted model allows maintaining a minimum
number of design variables for the optimization problem, which can be run in parallel com-
puting mode to further reduce the computational time. In the following the equivalent panel
model is cast in a Particle Swarm Optimization (PSO) [36–38] problem.

Optimization Formulation The optimization goal is to maximize the fundamental BLF
of a panel with a given number of stiffeners over a set of parameters which controls the
stiffeners positioning and their skeleton. A maximum total volume for the set of stiffeners
is imposed. The optimization uses a simplified model and has to be considered a tool for
new concepts generation for the stiffening layout, which are subsequently sized for minimum
mass and the complete set of design constraints.
The design variables of the problem are the parameters defining the TDF of the model,
as described in Sect.4.3.1, when the Hermite shape function is selected to describe each
curvilinear stiffener’s path.
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The mathematical problem can be stated as in Eq.4.28:

find {Dx} = {Dx1,Dx2, ...,DxN}
minDx µ1 = 1

λ1

s.t. g1 : V/Vmax − 1 ≤ 0
g01 : K(Dx)u(Dx) = f

g02 : [Kσ(Dx,u) + µK]ϕ = 0
Dx ≤Dx ≤Dx

(4.28)

Where:
- Dxi is a subset of Di (see Eq.4.3), excluding non-variable parameters D0i (see Eq.4.27);
- λ1 is the fundamental (minimum positive) eigenvalue identifying the BLF;
- the total volume is calculated as V = hr

∫∫
Ω H(Φ(x, y, )) dx dy , where Ω is the panel domain.

- g0i are constraints implicitly forced when calculating the objective function;
- Dx and Dx are respectively the lower and upper bound values for the design variables.

An example of definition of the vector of design variables is reported in Fig.4.8.

Figure 4.8 Example of extraction of the design variables vector Dx from the total design
vector D defining the TDF of a 3-stiffeners panel. Note that the generic Hermite shape is
reduced to linear segment for stiffeners 1 and 2.
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4.3 Matlab Implementation Flowcharts

Based on the FE modelling and analysis described earlier, the implementation to set-up the
PSO problem of Eq.4.28 or to perform a parametric study is here described.
In the Appendix E, the MATLAB code which follows the PSO flowchart reported in Fig.4.9 is
provided. The flowchart for parametric studies is easily obtained by extracting the objective
function evaluation cycle from the optimization solver and redefining it according to the
matrix of experiments.

In Fig.4.9, the yellow path characterizes the PSO pseudo code, while the green path is related
to the parametric study pseudo code. The grey modules are operations contained in both
processes and the blue module represents the nested function which is called iteratively to
perform the model update and the FEA.

The "Pre-processing operations" block carries out all the operations performed only once
when running the code. The "Set Physical Properties" part defines the domain dimensions
and properties that determine the equivalent stiffnesses (i.e., skin thickness, height, and
eccentricity of the integral reinforcement). The calculation of equivalent matrices is done in
"the Generate Ksk and Kr" part. In "Define Baseline design and variables" definition of D
and Dx is explicited.

The "PSO Initialization" consists of:
(1) setting the size of the swarm and the initial positions of the particles, which can also be
done randomly ;
(2) define the inputs for the built-in MATLAB optimization toolbox: the objective nested
function, the limit number of iterations, and the bounds for Dx.

In this implementation the volume constraint is included using a barrier method [7], which
penalizes the objective function in the unfeasible region of the design space. In the flowchart
of Fig.4.9 the operations implemented to evaluate the objective function for each particle
(namely the operation "Opt1") are listed following the order of execution.

The alternative pseudo code following the block scheme of Fig.4.7, iteratively evaluates the
objective function according to a set of design point selected for the investigation. After
storing the structural responses, the best design is extracted from the trend obtained by data
fitting.
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Figure 4.9 Flowchart of the code given in Appendix E for PSO-Optimization of stiffeners
path parameters (yellow path), and the alternative one for Parametric Study (green path).
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4.4 Results and Discussion

Firstly, the accuracy of the simplified model is estimated by performing some simple test
cases. The comparison between the model (analysed in MATLAB) and a reference model
(analysed in Optistruct) is reported in Appendix D.
The static solution has an estimated error below 4% for the displacement directly related to
the load applied. Coupling between membrane and bending response is captured with an
error below 11% on the displacement. The stress field is recovered only for the skin mid plane,
as it is used for linearized buckling analysis. Relative error on the fundamental eigenvalue
λ1 is below 12% for the worst case tested. As the aim of the study is to capture the trend of
structural responses in a simplified model, the obtained results are reasonable accurate.

4.4.1 Parametric Study 1: Panel under Uniform Compression - Stiffeners Spac-
ing and Curvature Effects

In the first example a rectangular panel with two stiffeners with quadratic path (f II of
Tab.4.1) is considered. The dimensions of the panel and the cross-sectional size assumed for
the 2-layer model are summarized in the Fig.4.10. Rotations and out-of-plane displacements
are constrained on the four sides and an uniform load per unit length is applied. Since the
load is unitary, the BLF represents the values of the critical load per unit length.

Figure 4.10 Parametric Study 1: uniform compression panel - Geometry of the model used
to investigate the effect of stiffeners curvature on the fundamental BLF
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As sketched in the Fig.4.10, the geometry is maintained symmetric with respect to the axes
x = 100mm and y = 200mm, passing through the centre of the panel.

The effect of the two independent parameters {Dx} = {hII , s} on the fundamental BLF are
then observed. The parameters represents respectively:
- s: the distance of stiffeners endpoints from the mid-line position of stiffeners in the evenly-
spaced configuration.
- hII : maximum y-deviation of the quadratic path.

The results of the study are reported in Fig. 4.11, where it is shown that the maximum
critical load is achieved with the traditional evenly-spaced straight stiffeners configuration,
obtained for s = 0 and hII = 0.

Figure 4.11 Results of Parametric Study 1 - Optimal spacing for fixed curvatures (ia) and
skin buckling mode of the optimal configurations (ib)
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However, it can be remarked that curvilinear stiffeners can performs better than straight ones
if the stiffeners spacing is imposed to be different from the the evenly-spaced configuration.
Another consideration is that the optimal set of parameters follows approximately the rule:
hII + s = 0.
This confirms the theoretical expectations. The curvilinear path induces the maximum com-
pression state to be in the middle (for hII < 0) or in the laterals bays (for hII > 0). According
to this, the spacing between the stiffeners changes to counteract this effect by minimizing
the buckling free length (maximum width) of the critical skin portions.

4.4.2 Parametric Study 2: Panel under Linear Compression – Effect of the
stiffeners y-position

On a panel with same stiffeners cross section and same total dimensions of the previous exam-
ple, a second study has been performed to find the optimal disposition of straights stiffeners
in case of uniaxial compression of variable magnitude.
The applied load per unit length varies linearly with the y-coordinate: Nx = 1 + y

2L .
In this case the vector of variable parameters is {Dx} = {s, ds}, where s is the bottom stiff-
ener y-position and ds is the positive increment given to the y-position of the upper stiffener.
Fig.4.12.(a) introduces these parameters and reports the optimal stiffeners disposition.

Figure 4.12 Parametric Study 2: Parameters s and ds controlling stiffeners y-positions (a)
Optimal disposition and corresponding buckling mode (b-c)

Among the parameter range of s ∈ [0, 2L] and ds ∈ [0, 2L − s], the optimal position for
the stiffeners is y1 = 146.67mm and y2 = 291.43mm. As expected, the reinforcements are
slightly biased to the top of the panel, where compression is highest.
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4.4.3 Parametric study 3: Panel under pure shear – stiffeners pitch and curva-
ture effects

A third example illustrates the mechanical behavior of a squared pure shear panel. The
cross sectional area of the blade stiffeners is the same as the previous example and the panel
dimensions are 400x400 mm. The panel is subjected to unitary shear load per unit length.
For the unstiffened panel, the principal stress directions are inclined±45◦ degrees with respect
to global system axes. Therefore, the effect of spacing and curvature of two reinforcements
aligned along this direction are studied and results are reported in Fig.4.13.

Figure 4.13 Parametric Study 3: Diagonal stiffeners spacing and curvatures (a) effect on the
BLF of a pure shear panel (b); optimal configuration (c) and relative buckling mode (d)

The curvilinear path of the two stiffeners is obtained using the component design vectors as
follows:

D1 = {0, y01,−π
4 ,

y01
cos π4

, hII}
D2 = {L− y01, L,−π

4 ,
y01

cos π4
, hII}

(4.29)

As expected, straight components are more efficient and the optimal placement divides the
diagonal into three equal segments.
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4.4.4 PSO Problem 1: Panel with Run-Out Stiffener

A practical application for the optimization of curvilinear stiffeners path in the upper skin
of an aircraft wing-box can be the case of panels with run-out stiffeners.
Due to the reduction in the wing cross-section, there may be portions of skin where one or
more stiffeners are interrupted. Stiffeners can be interrupted at the ribs, but this may result
in large portions of unstiffened skin that have low critical stress.
Extending the stiffeners into the next bay for a small stretch is cost-effective in terms of
weight compared to the alternative of increasing the panel thickness.

A wing upper skin portion is modeled by a simplified rectangular flat panel with two stiffeners,
one of which runs-out in the middle of the skin. Figure 4.14 presents the geometry and
the boundary conditions of the test case. The connections of the skin to ribs and spars is
modeled as simple supports. The long sides are also constrained in y-direction and x-rotation,
to simulate the stiffness contribution of the adjacent components. A distributed load with
total magnitude of 90KN is applied on one short side, while the other is restrained in the
x-direction.

Figure 4.14 Upper skin panel with run-out stiffener - (a) example from a wingbox GFEM;
(b) geometry and boundary conditions of the test case for PSO of the curvilinear paths

Starting from the baseline reported in Tab.4.2, the optimization problem of 4.28 is solved.
The aim is determining if for the same volume of reinforcement curvilinear paths of the
stiffeners lead to higher critical load. Using Hermite curves for the stiffeners paths, the design
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component vectors are given as in Fig.4.15(a),where the parameters extracted to compose
the layout optimization design variables are highlighted in red. The problem formulation
and the initial positions assumed for the swarm particles are reported in Fig.4.15(b). The
problem is solved using a swarm of three particles.

Figure 4.15 PSO problem formulation - (a) design variables (highlighted in red) from the
component design vectors; (b) summary of the optimization and initial particles’ positions

Table 4.2 Properties and sizes of the baseline panel with run-out stiffener

Parameter Symbol Value
Panel Length [mm] L 400
Panel Width [mm] W 300
Skin thickness [mm] ts 400

Stiffener Spacing [mm] s 100
Stiffener width [mm] w 5
Stiffener height [mm] hr 25

Run-out Stiffener Length [mm] Lro 250
Applied axial Load [KN] P 90

Load per unit length [N/mm] N,x 300
Density (Al7075) [Kg/mm3] ρ 2.81e− 06

Young Modulus (Al7075) [GPa] E 71.7
Yielding Stress (Al7075) [MPa] Fcy 503

Baseline Performance
Mass [Kg] m 1.24

Reinforcement volume [mm3] V0 81250
BLF (2-Layer Model) λ1 0.93
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The results of the optimization are summarized in Fig.4.16, where the history of the current
global best position is plotted and the final optimal layout is reported. The optimized layout
presents a curvilinear shape for the long stiffener, whose end point have been displaced
towards the unstiffened panel portion to augment the critical load. The length of the run-out
stiffener has decreased, since the curvilinear stiffener has increased its volume.

Figure 4.16 Results of the layout optimization. History of the best BLF (a) and of the
current best position among the swarm (b); best curvilinear reinforcement layout found in
the optimization (c)

Once the layout is fixed, a size optimization which consider the whole set of design constraints
can complete the preliminary design procedure. This second phase is carried out in Optistruct
on a model where the complete geometry of the panel is reconstructed.

The size optimization problem is performed for both the configurations (straight and curvi-
linear). The design variables, defined as in Fig.4.17, are now the cross sectional dimensions
of the stiffeners, whose layout is now fixed. The design for minimum mass is searched, with
bounds on the maximum Von Mises stress and the minimum fundamental buckling load fac-
tor. Here the upper bound for the stress is taken as the 60% of material yield limit. Side
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constraints and initial values for the design variables are summarized in Tab.4.3.

The size optimization problem is stated in Eq.4.30:

find {x} = {tsk, tstr1, tstr2, h1, h2, dt}
minx mass

s.t. g01 : σVMmax ≤ 300Mpa

g02 : λ1 ≥ 1
x ≤ x ≤ x

(4.30)

Figure 4.17 Panel with Run-Out - Design Variable for the size optimization

Table 4.3 Size optimization side constraints considering manufacturing limitations

x x x0 x
tsk[mm] 1.5 3 5
tstr1[mm] 2.5 5 8
tstr2[mm] 2.5 5 8
h1[mm] 15 25 35
h2[mm] 15 2 35
dt[mm] 0 0 10

The results of the optimization are summarized in Tab.4.4. They can show a further decrease
in total mass of the panel brought by the curvilinear configuration (−11.02%). The final
designs are driven by the buckling constraint, while the stress constraint is not active in none
of them.

Table 4.4 Optimum designs - Panel with run out

Configuration Optimum Design x∗ [mm] Panel mass [Kg]
Straight {3.16, 2.50, 2.50, 23.47, 22.17,−4.315} 1.18
Curvilinear {2.69, 2.50, 2.50, 29.19, 15.01,−0.33} 1.05
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Figure 4.18 Panel with Run-Out - Size optimization of the rectilinear configuration. Opti-
mization history and analysis of the final configuration

Figure 4.19 Panel with Run-Out - Size optimization of the curvilinear configuration. Opti-
mization history and analysis of the final configuration
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4.4.5 PSO Problem 2: Panel with variable compression and superimposed shear

This second example considers as baseline a representative panel portion of the upper skin
of an aircraft wingbox with four straight equispaced stiffeners. The panel dimensions are
400x600mm, the stiffeners pitch is 120mm, and the skin is 2mm thick. The stiffeners cross
sectional height and width are respectively h = 26mm and w = 6mm. The material proper-
ties of a generic Al7075 alloy are taken as reported in Tab.4.2 of the previous examples.

The baseline geometry is sketched in Fig.4.20(a) which also summarizes the choice of the
boundary conditions. They ideally recreate a portion of the skin which is attached on the
ribs along the y-sides and to the spar caps along the x-sides. Four loading conditions are
considered: linearly variable compression and constant shear loads per unit length are super-
imposed as summarized in Fig.4.20(b), according to the coefficients defined in Eq.4.31:

rc = NF
xx

NR
xx

rs = Nxy
Nav
xx

(4.31)

Figure 4.20 Panel with variable compression and superimposed shear

The average compression Nav
xx is maintained constant in the four test cases.

The layout optimization problem of Eq.4.28 is solved for each load case independently. The
design variables are defined as the perturbations from the baseline of the curvature and
endpoint y-coordinates, as illustrated in Fig.4.21(a). Two variables for each stiffener are
considered, and their effects on the i-th stiffeners design vector are remarked in Fig.4.21(b),
where their bounds are reported as well. Stiffeners paths are defined with the Hermite poly-
nomial function of Tab.4.1, as in the previous example.
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Figure 4.21 Design variables definitions (a) and optimization constraints (b)

In all the optimizations a swarm of five particles is used, whose initial positions are given in
Tab.4.5 and depicted in Fig.4.22. The first particle initial position coincides with the baseline
design, while for the rest of the swarm initial positions represent configurations with different
end-points or curvature perturbations.

Table 4.5 Initial particles positions for the layout optimizations

P1 x
(0)
1 = {0mm, 0◦, 0mm, 0◦, 0mm, 0◦, 0mm, 0◦}

P2 x
(0)
2 = {20mm, 0◦, 20mm, 0◦, 20mm, 0◦, 20mm, 0◦}

P3 x
(0)
3 = {−20mm, 0◦,−20mm, 0◦,−20mm, 0◦,−20mm, 0◦}

P4 x
(0)
4 = {0mm, 0◦, 0mm, 10◦, 0mm, 20◦, 0mm, 30◦}

P5 x
(0)
5 = {0mm,−30◦, 0mm,−20◦, 0mm,−10◦, 0mm, 0◦}

Figure 4.22 Initial Particles positions
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The results of the four optimizations are summarized in Tab.4.6, and Figs.4.23 to 4.26 report
the optimization history and the final design for each load case.

Figure 4.23 Layout optimization results for load case A

Figure 4.24 Layout optimization results for load case B
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Figure 4.25 Layout optimization results for load case C

Figure 4.26 Layout optimization results for load case D
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Table 4.6 Summary of the layout optimizations for the load cases A-D

Load CASE BLF [λ1] Volume [mm3] Stopping condition
A 1.16 2.496e+ 05 21 stall iterations
B 1.10 2.516e+ 05 Max iter reached (100)
C 1.10 2.520e+ 05 Max iter reached (100)
D 1.03 2.558e+ 05 Max iter reached (100)

One can observe that in the case of uniform compression, the optimization stops after 21
stall iterations. The baseline design was among the initial swarm positions, and the solver
found no better solutions.
In case B and C, shear loading is added with two different directions. The best initial
positions are respectively the third and the second particles, which are slightly inclined along
the principal tension directions of the shear loading. The trend of the endpoint variations
changes sign accordingly to the shear direction.

However, in the design of a real aircraft component more than one load case should be
considered, since the structure is subjected to multiple loading conditions during its life.
Thus, the following sizing of one concept aims to only demonstrate the feasibility of the
procedure, which needs to be extended to consider multiple loading conditions both in layout
and size optimizations.

Focusing on LOAD CASE D, the optimal layout for this particular test case is reconstructed in
a FEA software (here Altair Hypermesh). Starting from ten sample points along each curve,
shown Fig.4.27(a), curvilinear paths are constructed with a smooth spline interpolation, and
the panel is remodeled as showed in Fig.4.27(b).

Figure 4.27 Panel with optimal curvilinear layout for LOAD CASE D : (a) Reconstruction
stiffeners paths from a set of sample points (b) Variables for final sizing
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Since the goal is to see if the beneficial effects on total panel weight are primarily due to
curvilinear paths, the number of dimension variables considered for the final optimization is
kept to a minimum: one uniform skin thickness , as well as identical thickness and height for
all the stiffeners.
Thus, the baseline and the suggested layout are sized according to the following problem:

find {x} = {tsk, tstr, h}
minx mass

s.t. g01 : σVMmax ≤ 300Mpa

g02 : λ1 ≥ 1
x ≤ x ≤ x

(4.32)

The same side constraints of Tab.4.3 are considered for the design variables.
The results of the optimization are reported in Fig.4.28 and Fig.4.29, for the configuration
with straight stiffener and the configuration with curvilinear stiffener respectively.

As shown in Tab.4.7, a further decrease in total mass of the panel brought by the curvilinear
configuration (−5.77%).

Table 4.7 Optimum designs - Panel with four stiffeners LOAD CASE D

Configuration Optimum Design x∗ [mm] Panel mass [Kg]
Straight {2.21, 4.05, 19.75} 1.852
Curvilinear {2.24, 2.50, 20.16} 1.745

Also in this case, the final designs are driven by the buckling constraint, while the stress
constraint is not active. By considering panels with smaller spacing between stiffeners the
stress constraints may play an active role, as the buckling constraint is less stringent.
Most of the weight saving comes from the thinner stiffeners of the curvilinear configuration,
which have reduced their mass of 0.128Kg compared to the baseline stiffeners layout.

In conclusion this example demonstrated that for some load cases a curvilinear stiffener lay-
outs may have beneficial effects on mass of a panel whose design is skin buckling driven.
However in a real sizing case post-buckling behaviour has to be considered for failure assess-
ment. Finally, the straight configuration is confirmed to be the best for load cases where
compression is predominant. It is remarked, that load case D has investigated a loading
condition where the shear was higher than the average compression load.
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Figure 4.28 PSO: Panel with 4 stiffeners - Size optimization of the rectilinear configuration
for load case D. Optimization history and analysis of the final configuration.

Figure 4.29 PSO: Panel with 4 stiffeners - Size optimization of the curvilinear configuration
for load case D. Optimization history and analysis of the final configuration.
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4.5 Conclusions on the MMC-based Stiffeners Layout Optimization

In this chapter, a new methodology based on the MMC approach has been developed for the
design of stiffened panels subjected to buckling under compressive and shear loads.

The basic idea is to optimize the geometric parameters describing the path of the curvilinear
blade stiffeners, by means of a simplified finite element model which reduce the computational
cost of the optimization while maintaining a great flexibility in geometric representation.
The accuracy of structural responses is of minor importance during conceptual exploration.
By lowering it, the layout optimisation is reduced to the problem of assigning two mechanical
properties to a mesh of plates. Thanks to this simplification, the mesh is fixed and the to
update the model it is only needed to re-evaluate the TDF used to map the regions where
the reinforcement adds stiffness to the panel skin.

In thin-walled structures, stiffeners have both the task of carrying axial loads and providing
support to the thin skin, which is prone to buckling for low stress levels. Therefore, integration
of buckling in the layout optimization is obtained by adopting the criterion of maximum
fundamental BLF with a constraint on the maximum available stiffeners volume.

Compared to the implicit methods (GSM and SIMP), this method offers two main advantages
when used within a two-phase design procedure:
- the explicit description of components allows automatic transition to models used for size
optimization and ensures satisfaction of any manufacturing constraints;
- the use of a minimal number of design variables allows the use of global optimization
techniques to address problems with non-linear objective functions and constraints.

In the numerical examples addressed, it was confirmed that for panels loaded mainly in
compression, the optimal configurations are those with parallel and evenly spaced stiffeners.
However, it was also revealed that curvilinear configurations can lead to mass reduction in
case of panels with local geometric discontinuities (run-outs) or under high shear loading.
Even if topological changes (i.e. stiffeners intersection) are not advantageous for the cases
studied, the increase of freedom in the stiffeners geometry can be used effectively to place,
orient and curve the reinforcement in order to increase the maximum critical load of the
panel.

To further develop the procedure it would be necessary to integrate the possibility to consider
multiple load cases simultaneously when optimizing the layout. As well as, an extension of
the method to 3D curved surfaces would open wide application perspectives for fuselage or
wing box panels considered on a larger scale.
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CHAPTER 5 DISCUSSION

The main objective (MO) of this research work was to develop a design procedure based on
Topology Optimization (TO) applicable to the design of stiffened panels. In this procedure,
TO is performed to obtain an optimal concept of the stiffener layout, which is interpreted
and then sized to minimize mass considering the complete set of design requirements.
To achieve the main objective, two narrower sub-objectives have been identified that address
also the following challenges:
- Formulate an explicit description of the stiffener layout to automate interpretation of the
TO results (S01);
- Integrate the stability criterion in the layout optimization to increase the skin buckling
resistance (S02);

Based on a review of the literature in the field of topology optimization and its applications
to the design of stiffened panels, two methods were selected for further investigation and
reformulation in order to meet the research objectives.

5.1 Summary of works

Generating Concepts for Optimal Stiffening Layout of Plates using Ground Struc-
ture Topology Optimization
The works reviewed in the literature proposed to interpret the stiffeners geometry from the
density distribution of SIMP TO. This approach has been found unnecessarily computa-
tionally expensive because of the need of a rather fine mesh (hence a very high number of
variables) to obtain stiffeners-like members using a continuous finite element mesh. Stiffeners
can be easily represented with beam structural elements, as is commonly done in the pre-
liminary design of wing structures. Hence, the idea of an extension of the Ground Structure
Method (GSM) to mixed plate-beam models was derived.

The proposed formulation for the GSM applicable in the context of pressurized stiffened
panel design constitutes an original extension of the classical method.
This formulation can be adopted in the two-phase design procedure, bringing the following
advantages:
(1) The computational cost of the analysis model is reduced, since beams elements are used
to represents the stiffeners.
(2) The effort in extracting the final layout is reduced. After removal of the vanishing
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members, the resulting ground structure can explictly describe any piecewise linear layout
because the coordinates of the endpoints for each beam are available.

The feasibility of the design procedure has been demonstrated through a practical study
case, and the content of this chapter has been submitted and accepted for a short article and
poster presentation at the ICTAM2021 Congress in Milano.

A Moving Morphable Component based Curvilinear Stiffeners Layout Optimiza-
tion considering Buckling
With the extended GSM, a more explicit representation of the stiffener layout was obtained
compared to the SIMP method. However, to perform more complete explorations of non-
convex design spaces, it is essential to decrease the number of design variables and use global
optimization techniques. This motivates shifting the attention on the MMC approach. In
this explicit TO method, the geometry of the members is directly controlled by a vector of
parameters, whose length is independent from the number of elements in the mesh.

By introducing a simplified panel model, the identification of the stiffeners layout was re-
duced to a problem of arranging two equivalent stiffness properties on a fixed plate mesh.
The problem of maximizing the fundamental BLF with a constraint on maximum stiffeners’
volume is then addressed using the Particle Swarm Optimization algorithm.

A few simple test cases were conducted to estimate the accuracy of the model, and some
parametric studies verified that the theoretical expectations of the optimal layout were met
for simple loads.
Finally, the layout optimization was applied in two practical examples: the designs of a
panel with a run-out stiffener and the design of a panel under combined compression and
shear loads. It was confirmed that parallel and equidistant stiffeners are optimal for panel
mainly loaded in compression, but it was also shown that curvilinear configurations can lead
to weight reduction in case of panels with run-out stiffeners or high shear loads.

Compared to the computational frameworks found in the literature to solve the optimization
of curvilinear stiffeners layout, the one developed here brings the following advantages:
(1) The use of a fixed mesh, on which the stiffness properties are recursively re-mapped dur-
ing the optimization, saves computational time and coding efforts.
(2) General stiffener layouts can be modeled by using a limited number of design variables,
hence limiting the cost of global optimization algorithms.
(3) The control over components’ geometry is made explicit, by imposing stiffeners’ axis
shape functions and proper bounds for the parameters to optimize.
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5.2 General Discussion on the Achievement of Research Objectives

The reformulation of the GSM has been a first step toward understanding the main difficulties
of addressing the stiffeners layout optimization.
To obtain clearly defined layouts, certain rules must be imposed on the final solution:
- each element of the design space must be considered either in or out of the final design;
- stiffeners’ axis path must be interpreted without ambiguity;
- segments disconnected from both supports and other members must be disregarded;

When using an implicit TO method, there is no guarantee that all these rules are satisfied a
priory. It is unlikely to violate them when considering simple problems, such as the minimum
compliance design of a structure loaded and supported in concentrated points. But the prob-
lems considered here are not of this type. Indeed, in the specific case of aircraft structures,
the loads applied to stiffened panels are usually modelled as forces distributed along their
sides or surface pressure. Similarly, supports affect entire sides of a panel.

An MMC approach for optimizing stiffener layouts can meet the requirements of including
only acceptable geometries in the possible solutions. In this way, performing conceptual
design becomes more practical and the result of each optimization can be automatically
interpreted in a stiffener layout.

It has been demonstrated that the methodology developed in Chapter 4 is a practical proce-
dure for the design of stiffened panels, which fulfils the objectives of this research. The use
of geometric parameters which describes explicitly the stiffeners layout (S01) as the design
variables allows automatic interpretation of the optimization results and an easy control of
the structural features. Essential conditions for manufacturability can be imposed by choos-
ing appropriate shape functions for the axis of the stiffeners and the desired intervals for the
design. The number of variables is reduced by at least two orders of magnitude compared to
implicit methods, and this allows the use of global optimization techniques which are ideal
when considering non-linear criteria such as buckling (SO2). Global search allows a more
complete exploration of the design space, which is essential in the conceptual design phase.

In conclusion, the contribution of this thesis to the field of topological optimization is twofold.
First, the GSM method has been extended to the design for minimum compliance of pres-
surized stiffened panels through the use of a mixed plate-beam model. Second, an original
formulation of the MMC approach is defined for buckling-driven design of stiffened panels
subjected to compression-shear loads. The latter, embedded within a two-step procedure, has
been shown to provide configurations that achieve the desired performance while reducing
component weight, as compared to traditionally designed panels.
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5.3 Recommendations on the Use of Various Topology Optimization Approaches

Based on the experience gained from the implementation and use of three different TO
approaches, here some useful recommendations are provided regarding the proper selection
of each of the methods depending on the particular type of problem and application.

The SIMP method is implemented in many FEM software due to the generality of its formu-
lation and its applicability to any type of finite elements. Pre-processing and optimization
solution are very easy to implement, while it is very limited in terms of post-processing.
The results, presented as a distribution of material "pixels" (or "voxels" in the 3D case), must
be analyzed by means of additional interpretation tools to allow the continuation of the de-
sign process. Automating the interpretation can be difficult in the SIMP method, when the
results present a certain level of geometrical complexity: e.g. a large number of elements of
intermediate density or organic distributions presenting microstructures.
The computational cost of the SIMP method is the highest of the analyzed methods due to
the large number of variables. It is recommended for use in small and medium-scale compo-
nent designs that do not have special requirements in the manufacturing process.
The full potential of the SIMP method is expressed when there is maximum freedom in the
shapes that can be adopted. Unfortunately, the design case of reinforced panels does not fall
into this category. Panels are often assembled from precisely shaped individual components
into large structures. Consequently, it is not advisable to address this design case with the
SIMP method.

The GSM method is based on the use of beam elements to construct the design space.
Therefore, it is not applicable to all types of finite elements. However, due to the simplicity of
the analysis model, it is the method with the lowest computational cost among those tested.
The construction of the design space and the initialization of the process are easy to imple-
ment. Automatic processes for building Ground Structure have been developed for 2D and
3D domains, based on polygonal and polyhedral meshes.
Its application is recommended for large structural assemblies, where it is convenient to use
a model composed of beam elements. In addition to the well-known applications in civil
engineering, e.g. frames of bridge and buildings, the potential in the context of pressurised
stiffened panels has been demonstrated in this work. The method is also valuable for the
easy extraction of the resulting layout. The extraction can be automated, and the available
layout information is explicit and complete to reconstruct any layout composed with polyg-
onal chains.
Its main limitation is that obtaining clear "amin - amax layouts" (recalling Fig.3.25), easy to
interpret, is questioned when considering non-convex programming problems.
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The MMC method is based on the use of geometric parameters as design variables.
This method needs a manual initialization by the user, since it is necessary to establish from
the beginning some assumptions about the shape of the structural components: e.g., the
number of basic components and their parameterization.
The definition of the design variables must also be done meticulously, to reasonably limit the
design space. However, once shape requirements are imposed downstream of the optimization,
it is possible to address problems that are more complex than the simple design for maximum
stiffness. By limiting the complexity of the design space, in the examples addressed in this
thesis, buckling driven optimizations have been addressed in practical computation time and
with satisfactory results.
The use of global optimization algorithms makes it particularly suitable for application in the
field of stiffened panels subject to buckling. Moreover, the explicit design variables makes the
method particularly suitable for the design of structures that have shape or manufacturability
requirements. These types of requirements are easily imposed a priori when formulating the
optimization problem in the MMC approach.
Theoretically, the number of morphable components and free parameters can be raised as
desired. However, it is suggested to limit the design space, so that the problem is tackled with
global optimization algorithms. As a result of the experiments conducted when comparing
the various methods, in Sect.3.3, we do not recommend the use of gradient-based algorithms
for this method. The nonlinear nature of the Topology Description Function (TDF) makes
each problem nonconvex, and consequently not suitable to be solved by local optimization
techniques.

5.4 Limitations of Current Implementations

The two revisited TO methods has been implemented in MATLAB and they are only a proof
of concept of proposed improvements. As a consequence, the first limitation of the current
implementations is the lack of demonstrative examples where complex geometries and loads
are used. In order to demonstrate their full potential, an optimization framework that can
interface with commercial geometry modeling and finite element analysis packages should be
built.
Then, some limitations related to each individual work are discussed in the following section:

GSM: The presented algorithm adopted Euler-Bernoulli beams and Discrete Kirchhoff quadri-
lateral elements because high accuracy on the displacements and complex geometries were
out of the scope of a first implementation. To exploit the full potential of the method, a
more complete finite element formulation has to be used.
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As remarked in the study case, the stress constraint has to be added in the layout optimization
phase. The compliance is a global indicator of the deformation which does not take into
account stress concentrations. Stiffeners run-outs or relatively small junctions between them
are likely to appear in the solution. These features need to be re-engineered in the following
phases of the design.

When adding the buckling constraint, layouts with a lot of intermediate beams tend to appear
as the result of the optimization. Beams with little cross section give a consistent stability
contribution even if they add few stiffness. Thus, on one hand the use of a gradient based
optimizer is needed because of the great number of design variables, but on the other, it is not
likely that a lot of member are going to be removed from the starting ground structure. The
solver gets stuck in local minima before the great portion of the ground structure vanishes.
The results are ’feasible’ because they satisfy the mechanical constraints but may be difficult
to manufacture, and therefore not suitable for an automatic and practical design procedure.

MMC: To avoid time consumption and unsuccessful efforts, the optimization problem has to
be formulated such that only clearly defined layouts (according to above mentioned rules) are
included in the possible solutions. Then the numerical method will select the ones acceptable
in terms of structural responses.

The parametric study approach is robust and allows the desired exploration to be performed
easily. However, its drawback is that a large computational effort is required to evaluate a
sufficient number of discrete design points as soon as the number of variables increases. A
strategy based on global optimization techniques, like the Particle Swarm Optimization used
here, is more suitable for practical problems with more design variables. The computational
burden of such methods is greater than that of gradient-based optimization approaches, but
in the current trend of growing computer powers this should be a minor concern.

The main limit of the current implementation is that it can only be applied to the layout
optimization of flat panels. In order to open up new perspectives of use for fuselage panels
or three-dimensional assemblies of wing-box panels, it would be necessary to extend the
procedure to curved surfaces oriented generically in space. The use of shell elements can
meet the first requirement, while for the second it is necessary to define a transformation
between local and global coordinates that uses the normal vector of each surface to define
the rotation matrix.

Finally it is worth noting that during the layout optimization phase the number of stiffeners
is fixed. However, it is possible to repeat the layout optimization for several values of the
number of stiffeners and select the configuration that leads to the lowest total weight.
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5.5 Future Research

Overcoming the above discussed limits of the implementation is a first task for future devel-
opment. In addition, some ideas for future research are noted as follows:

GSM: The method is based on the idea of using the cross sectional area of each beam as
a topological variable. This implies that local stiffness matrices are recalculated at each it-
eration. An interpolation strategy (like in the SIMP) could be developed for the GSM to
streamline this step.
The model adopted in this work used stiffeners with rectangular cross-sectional area and
prescribed height-to-width ratio. As proposed by [63], a possible way to adopt cross-sections
of common engineering practice in the GSM can be the use of polynomial interpolations to
express the stiffness matrix coefficients as a function of the cross sectional area. This can be
done by performing a regression analysis based on data provided by a design manual.
The construction of the starting ground structure is a major step in the process which de-
termines the set of candidate reinforcements, hence the design space. In this work the auto-
matic connection of each node to its neighbors, according to a certain level of connectivity,
was adopted. However, making the GS construction smarter by exploiting information from
the boundary conditions of the problem can effectively reduce the design space, by excluding
candidates with less potential from the start.

MMC: A way to consider I or Z cross-sections in the equivalent stiffness method is proposed
in [82]. One could easily define the expression for the reference frame along the parametric
stiffener axis, but then the equivalent properties become design dependent, i.e. should be
recalculated iteratively during the optimization.
A sensitivity analysis for the problem could be carried out to formulate a gradient-based
approach, or to improve the global search by continuing the optimization with a local solver
which operates after the global one stops. To do this, the topology description function
gradients could be calculated analytically or by means of central finite differences [26].
It has been shown manually that the transition to the size optimization model requires a
precise sequence of operations that can be automated for any curvilinear layout. Starting
from the solution of the layout optimization problem, one has all the required information to
retrace the curves of the stiffeners axes, and then construct the complete model of the panel
by extruding the surfaces in the direction normal to the skin. This can be implemented in
an automatic process within the software chosen to conduct the final sizing.
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CHAPTER 6 CONCLUSION

In this research work, the main Topology Optimization (TO) approaches have been studied
in order to develop a new design methodology for stiffened panels.

The difficulties of the standard TO method, i.e. the SIMP method, in the conceptual op-
timization of non-free-form structures, having components with special geometrical require-
ments, were highlighted. In addition, it was pointed out that the current literature lacks
a thorough understanding of TO strengths and weaknesses when applied in the optimal
reinforcement of panels subjected to buckling.

Among the implicit methods, which use the properties of the finite elements mesh as the op-
timization variables, the Ground Structure Method (GSM) was selected, since it is capable
of using a design space composed of beam elements.
Mixed plates-beams models are commonly used for the preliminary sizing of large stiffened
panels assemblies, e.g. wing-box structures, because of their low computational cost. Hence,
the idea of an extension of the GSM to mixed plate-beam models was derived.
In this method, a network of beam elements is placed on the plate mesh and the cross sec-
tional area distribution is optimized. By removing the beams with small area in the final
design, the optimal layout of the stiffeners is then obtained. In the design for minimum
compliance, the GSM has been shown to be capable of revealing the main path of the loads,
and to outperform the SIMP method in terms of mesh with low computational cost and ease
of interpretation of the resulting layout.
However, the inclusion of stress and buckling constraints remains the critical point of methods
with implicit variables and large design spaces. For these methods, the high number of vari-
ables forces the use of gradient-based optimisation techniques, which have limited exploration
capabilities when considering highly non-linear objective functions and constraints.

In order to obtain a direct control of the component geometry and to reduce the number of
variables so that global optimization techniques can be used, the Moving Morphable Com-
ponent (MMC) method was chosen to tackle the problem.
In this explicit method, a set of geometric parameters constitutes the vector of design vari-
ables, and this guarantees the imposition of any geometric requirements and manufacturing
constraints.
A model with equivalent mechanical properties has been proposed to reduce the layout opti-
misation to the problem of arranging two different stiffness properties on a fixed plate mesh,
which differentiate the zones with and without reinforcement.
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By decreasing the complexity of the model, only the essential information for layout op-
timization is retained, i.e. the shape functions of the stiffeners’ path. This is ideal in a
two-stage design procedure, where first the stiffeners’ layout information is obtained and
then the various components are sized.

In the case of in-plane loaded panels, it has been shown that changes in topology, (i.e. stiff-
eners intersections) are not particularly advantageous. However, the augmented geometric
freedom is exploited to achieve optimal layout with non-uniform positioning, general orien-
tation and curvilinear axes of the stiffeners. In fact, when it is necessary to interrupt the
stiffeners or when high shear loads are applied, curvilinear configurations can lead to a re-
duction in the total panel mass compared to the evenly spaced rectilinear stiffeners’ layout.
In the first design example, the mass of the panel with a run-out stiffener was reduced by
11% through the use of a curvilinear member. Similarly in the example, the optimum con-
figuration suggested for the case with superimposed compression and shear loads resulted in
a 6% reduction of the panel mass.

The layout optimisation through the MMC approach assumes a rather different aspect than
a pure TO. The optimal layout is obtained by reshaping the chosen set of components, rather
than trying to derive them from a blind starting guess.
Based on the experience gained in this work, we conclude that using TO without any initial
assumptions is not practical for the design of complex assemblies, because the tool is ill-
conditioned and still needs the validation of the designer’s judgment and experience.
It is advantageous to set some rules about the possible layouts to evaluate and use knowledge
of the problem to guide the exploration of new designs. The designer who formulates the
optimization problem must be careful to include in the design space only those solutions with
clearly identifiable stiffener paths, then the optimization software will deliver the designs with
the best structural performance.
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Summary: The Ground Structure method is well-known in the literature for trusses and frames Topology Optimization, but its use in 

the design of stiffened panel has not been explored. In this work, an original reformulation of the method is proposed. Since beam 

elements are directly used as the set of candidate reinforcements, this approach ensures an explicit description of the final stiffener's 

geometry. This eliminates the need for interpreting the resultant material distribution or for imposing any geometric constraint to force 

the optimization towards manufacturability. The proposed reformulation has been implemented in MATLAB, tested on a benchmark 

problem and its potential as a design tool is demonstrated on the compliance-based topology optimization of the stiffeners layout of a 

simplified pressure bulkhead. The optimized design complies with those obtained by using SIMP and MMC methods. 

 

INTRODUCTION 

 

   Stiffened panels are commonly used in aircraft structures for their high performance/weight ratio. The design process 

of such assemblies starts with an a priori choice on the reinforcement configuration (e.g. ortho-grid), mainly based on 

industrial experience. The use of Topology Optimization (TO) [1] can support this starting phase using a mathematical 

approach to enhance mechanical properties of stiffened panels from a global point of view. 

   Early research works proposed to roughly identify rib position optimizing thickness distribution of plates elements [2]. 

Methodologies based on the use of the SIMP method [3,4], propose to identify the stiffeners layout from the interpretation 

of high-density regions resulting from the TO. These approaches need the addition of geometric constraints to obtain 

manufacturable stiffener-like components, and post-processing procedures for the interpretation task [5]. To overcome 

these issues, new formulations based on the use of topological variables that explicitly control the geometry of the final 

structure rather than the mechanical properties of the starting mesh have been proposed. Belonging to this category, the 

MMC approach [6] has been recently applied to composite stiffened panels, where stiffeners are embedded in the plate 

model using equivalent stiffness method [7]. A major drawback of this method is the need of a very fine mesh to describe 

the stringers’ features. The mesh size has to be at least smaller than the stringer’s section width. This renders the use of 

such a model computationally expensive for large-scale applications. 

  The idea of a Ground Structure TO, which uses a mesh made of plates and beams comes from two basic considerations: 

(1) This modelling strategy is computationally inexpensive and is commonly used in the industry for FEM analysis of 

large structures composed of stiffened plates, as well as for preliminary sizing of wingbox components. [8] 

(2) The Ground Structure method is an easy-to-implement formulation which can deal with the structural members of 

interest in aircraft constructions. After the removal of vanishing members, the output of the TO contains explicit 

information on the final geometry without the need for interpretation. 

 

METHODOLOGY 

 

   For the proposed formulation, a simple model made of Euler-Bernoulli beams coupled with discrete quadrilateral 

Kirchhoff plates with isotropic linear elastic material properties is used. In first approximation, one can consider that the 

two structural elements lie in the same plane and are connected to same nodal grid. Alternatively, to increase the accuracy 

of the analysis, the nodal points defining the beams must be offset and connected to the plate using rigid connections. 

Mechanical deformation of the stiffened panel under lateral loads is obtained from a linear static analysis. 

   An adaptation of the ground structure generation algorithm proposed by [9] is used to automatically superimpose a 

dense mesh of beam elements on a plate model, with an arbitrary level of connectivity. In the proposed method the 

topological design variables are the cross-sectional area of each beam elements composing the stiffeners, while the plates 

properties are kept constant. 

 
Figure 1. Ground Structure generation with arbitrary level of connectivity. 

   The formulation of the minimum compliance problem and the pseudo code of the algorithm are summarized in fig.2(a) 

and fig.2(b). The optimization problem is solved using the Interior Point Method implemented in the MATLAB 

Optimization Toolbox [10]. Load and nodal displacement vectors 𝒇, 𝒖 are expressed in the global reference system. 

Vector 𝒍 contains all beam lengths and 𝑣𝑚𝑎𝑥  is the maximum volume allowed for the reinforcement. A benchmark 

problem faced to test the algorithm is also shown in fig.2(c).  
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Figure 2. Overview of the method: (a) optimization formulation; (b) pseudo code implemented in MATLAB;  

(c) a benchmark problem test 

    

A PRACTICAL ENGINEERING APPLICATION 

 

   A practical engineering problem is addressed to validate the procedure: the design of a flat pressure bulkhead subject 

to differential pressure (0.1 𝑀𝑃𝐴). Contour supports are located at equispaced points and simulate a riveting connection. 

The mechanical properties of Al2024-T4 are used, and geometric parameters are given as follows. A mesh of 40x24 

rectangular element discretizes the design domain where 𝐿 = 2500 𝑚𝑚. This leads to an initial GS of 1984 members. 

The skin thickness is 1.25𝑚𝑚, the interval for cross-sectional areas is 𝑎𝑖 ∈ [10−5, 103]𝑚𝑚, and 𝑣𝑚𝑎𝑥 cannot exceed 

5.625 ∙ 106 𝑚𝑚3. The obtained optimized layout in fig.3 can be compared to those in [4,7]. 

 
Figure 3. Starting GS and the optimized Stiffeners layout for a flat pressurized bulkhead. 

 

CONCLUSIONS 

In this work, a novel reformulation of the ground structure topology optimization is applied to the design of stiffeners 

layout for pressurized panels. The novelty of the method lies in the hybrid use of plates and beams elements to construct 

the ground structure, and in the context of application, never explored by the traditional method according to the authors’ 

knowledge [11]. Numerical results indicate that the method can provide a clear stiffener layout for the compliance 

problem with volume constraints. The structure obtained is sound and one note the lesser involvement of designer during 

the post-processing procedure and particularly the TO interpretation. Inclusion of stress and buckling criteria, as well as 

a more complete finite element formulation are promising to be considered in future works. 
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------------------- PrOp1 - Set Physical Properties -------------------- 

E = 71700;                                                                  %Young Modulus [Mpa] 

nu = 0.3;                                                                   %Poisson 

rho = 2.81e-06;                                                             %Material density [Kg 

mm^-3] 

t = 1.25;                                                                   %Plate thickness [mm] 

k_h_w = 3;                                                                  %h/w ratio 

Lx = 1000; Ly=1000;%example_square_plate                                    %Plate Dimensions 

[mm] 

--------------------- PrOp2 - Discretize Domain ------------------------ 

Nx=10; Ny=Nx;%example_square_plate                                          %Mesh 

[X,Y,Z] = meshgrid(linspace(0,Lx,Nx+1),linspace(0,Ly,Ny+1),0);              %Discretize space 

NODE = [reshape(X,numel(X),1) reshape(Y,numel(Y),1) reshape(Z,numel(Z),1)]; %Panel Nodes 

Coordinates 

nodenrs = reshape(1:(1+Nx)*(1+Ny),1+Ny,1+Nx);                               %Nodes Matrix 

Nn = (Nx+1)*(Ny+1); GDof = 3*Nn;                                            %No. of nodes & DOFs 

Np = Nx*Ny;                                                                 %No. of plates 

elements 

----------- PrOp3 - Generate base mesh(PLATEs GS) & K_GSP    ----------- 

PLATES = zeros(Np,4); temp=0; 

for i=1:Ny, for j=1:Nx 

        temp = temp+1; 

        n1 = (i-1)*(Ny+1)+j; n2 = i*(Ny+1)+j; 

        PLATES(temp,:) = [n1 n2 n2+1 n1+1];                                 %Plates Nodes Global 

indices 

end, end 

xe = NODE(PLATES(1,:),[1:2]); % for regular mesh this can be used for all   %Elements extremes 

k_P = get_KeP(E,nu,t,xe);                                                   %Elem Kmatrix Plates 

12x12 

edofVec = reshape(3*nodenrs(1:end-1,1:end-1)+1,Nx*Ny,1); 

edofMatP = repmat(edofVec,1,12)+... 

           repmat([-3,-2,-1,3*Ny+[0,1,2,3,4,5],0,1,2],Nx*Ny,1);             %Global indices 

Plates DOFs 

iK_P = reshape(kron(edofMatP,ones(12,1))',144*Nx*Ny,1); 

jK_P = reshape(kron(edofMatP,ones(1,12))',144*Nx*Ny,1);                     %Indices for K_GSp 

assembly 

sK_P = reshape(k_P(:)*ones(Np,1)',144*Np,1) ; 

K_GSP = sparse(iK_P,jK_P,sK_P); K_GSP = (K_GSP+K_GSP')/2;                   %Assemble stiffness 

matrix 

clear iK_P jK_P sK_P X Y Z edofVec xe k_P 
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APPENDIX B GSM FOR STIFFENED PANELS - MATLAB CODE

This appendix reports the main code written for the work presented in Chapter 3. The full
archive of the scripts can be found in the online repository https://github.com/mariocapo/
Thesis_TopOptStiffenedPanels_GSM , where the nested functions are provided.

https://github.com/mariocapo/Thesis_TopOptStiffenedPanels_GSM
https://github.com/mariocapo/Thesis_TopOptStiffenedPanels_GSM


--------------------- PrOp4 - Generate BEAMs GS ------------------------ 

Lvl=1;                                                                      %GS Level of 

connectivity 

[BEAMS] = GenerateGSBEAMS(NODE,PLATES,Lvl,0.999);                           %Generate GS 

(Zegard&Paulino,2014) 

Nb = size(BEAMS,1);                                                         %No. of beams 

elements 

l = sqrt(((NODE(BEAMS(:,2),1))-(NODE(BEAMS(:,1),1))).^2 + ... 

    (NODE(BEAMS(:,2),2)-(NODE(BEAMS(:,1),2))).^2);                          %vector of beams 

lengths 

--------------------- PrOp5 Set BCs ------------------------------------ 

fixedNode = [ 1 ; Ny+1 ; Nx*(Ny+1)+1;  (Nx+1)*(Ny+1) ];                     % Index of clamped 

nodes 

fixedDof = unique([3*fixedNode-2; 3*fixedNode-1; 3*fixedNode]);             % Constrained Dofs 

freeDof = setdiff([1:GDof]',fixedDof);                                      % Unknowns Dofs 

loadedNode = round(Ny/2+1)+round(Nx/2)*(Ny+1); % central node in the ex.    % Index of loaded 

nodes 

F = sparse([],[],[],GDof,1,size(loadedNode,1)); 

F(3*loadedNode-2) = -1000;                                                  % Load Vector 

--------------------- Prop6 preparate K_GSB assembly ------------------- 

edofMatB = [3*BEAMS(:,1)-2,3*BEAMS(:,1)-1,3*BEAMS(:,1),... 

            3*BEAMS(:,2)-2,3*BEAMS(:,2)-1,3*BEAMS(:,2)];                    %Global indices Beams 

DOFs 

T_i = zeros(6,6,Nb); 

for i = 1:Nb 

cost = (NODE(BEAMS(i,2),1)-NODE(BEAMS(i,1),1))/l(i); 

sint = (NODE(BEAMS(i,2),2)-NODE(BEAMS(i,1),2))/l(i); 

temp = [1 0 0; 0 sint -cost; 0 cost sint]; 

y = zeros(3); 

T = [temp y;y temp]; 

T_i(:,:,i) = T;                                                             % 

TransformationMatrix T_i 

end 

--------------------- PrOp7 Initialize design -------------------------- 

V0= Lx*Ly;                                                                  %GSB starting Volume 

lm = sum(l)/Nb; 

x0 = V0/(Nb*lm)*ones(Nb,1);                                                 %GSB starting areas 

V=0.8Vmax 

Cutoff = 0.01;                                                              %threshold A/Amax for 

plot 

%PlotGroundStructure(NODE(:,[1:2]),BEAMS,x0,Cutoff,1);                      

%PlotGS(Zegard&Paulino,2014) 
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------- PrOp8 Set constraints & Initialize Optimization----------------- 

Vmax = 1.25*Lx*Ly;                                                          %Upper bound for GSB 

volume 

xmin = x0./x0 * 1e-03; xmax= x0./x0 *1e03;                                  %Side constraints 

x=x0;                                                                       %Design variables 

maxit=300;                                                                  %Maximum No. of 

iterations 

---------- Re-Design Loop by means of MATLAB fmincon ------------------- 

objective=@(xx) Compliance(xx,l,T_i,E,nu,k_h_w,edofMatB,K_GSP,GDof,freeDof,F); 

options = optimoptions(@fmincon,... 

'Display','iter','Algorithm','interior-point',... 

'SpecifyObjectiveGradient',true,'MaxIterations',maxit,... 

'PlotFcn',{@optimplotx,... 

    @optimplotfval,@optimplotfirstorderopt}); 

[xcompl,fvalcompl] = fmincon(objective,x,l',Vmax,[],[],xmin,xmax,[],options); 

------------------ FD1 Final Design Extraction ------------------------- 

Plot_stiffnedpanel3D(NODE,BEAMS,xcompl,PLATES,0.1,6)                        

%PlotGS(Zegard&Paulino,2014) 

---------------------- FD2 Final Plots --------------------------------- 

final_mass = rho*(Lx*Ly*t + xcompl'*l)                                      %Final mass 

[~,~,U]=Compliance(xcompl,l,T_i,E,nu,k_h_w,edofMatB,K_GSP,GDof,freeDof,F);  %Linear static 

Analysis 

figure; hold on; view(45,45); colormap(jet); set(gcf,'color','w'); 

title('Deformation'); colorbar; 

for k = 1:Np 

    patch(NODE(PLATES(k,:),1),... 

    NODE(PLATES(k,:),2),... 

    U(edofMatP(k,1:3:10),1),... 

    U(edofMatP(k,1:3:10),1)); 

end                                                                         %Plot deformed Plate 

Function called by fmincon 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This functions perform Static Analysys, and provides Sensitivity Analysis 

% for MATLAB fmincon 

function [C,dC,U]=Compliance(xx,l,T_i,E,nu,k_h_w,edofMatB,K_GSP,GDof,freeDof,F) 
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--------------------- RL1 Linear Analysis ------------------------------ 

Nb=length(l); 

K_eB_local= zeros(6,6,Nb); K_GSB = sparse(GDof,GDof); U = zeros(GDof,1);    %Initialization 

for i = 1:Nb                                                                %ASSEMBLY GSB 

    K_eB_local(:,:,i) = T_i(:,:,i)'*get_KeB(l(i),xx(i),E,nu,k_h_w)*T_i(:,:,i); 

    K_GSB(edofMatB(i,:),edofMatB(i,:)) = K_GSB(edofMatB(i,:),edofMatB(i,:)) + K_eB_local(:,:,i); 

end 

K = K_GSP + K_GSB ; % Panel Stiffness Matrix = Plates + Beams 

U(freeDof) = K(freeDof,freeDof)\F(freeDof);                                 %Static Displacements 

-------------- RL2 Obj f & SENSITIVITY ANALYSIS ------------------------ 

C = F(freeDof)'*U(freeDof);                                                 %Compliance 

dC=zeros(Nb,1); 

for i=1:Nb 

U_loc = T_i(:,:,i)*U(edofMatB(i,:)); 

dC(i) = - U_loc'*get_dKeB_dx(l(i),xx(i),E,nu,k_h_w)*U_loc;                  %Compliance 

sensitivities 

end  

end 
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APPENDIX C GSM EXTENSION TO DIFFERENT PROBLEMS

The proposed reformulation of the Ground Structure Method was developed in detail for
models of reinforced panels subjected to out-of-plane loading. The FEM thus considered as
DOFs the displacements normal to the panel plane and the two rotations with respect to the
axes in the plane.
However, the formulation is easily extensible to the "in plane" problem, which considers two
displacements in the plane and the rotation about the normal axis, or in general to the
complete 3D formulation, which involves 6 DOFs for each node.

In the design of pressurized panels, the stiffeners layout has the main function of providing
bending supports to the thin sheet. For this task the classical TO formulation for minimum
compliance is ideal. In the design of panels loaded primarily in the plane, on the other
hand, the reinforcement must perform the function of stabilising the thin sheet, in addition
to helping carry the load. Since the same formulation of problem 3.1 is maintained in the
this paragraph, the examples only aim at demonstrating that the GSM, like other topology
optimisation methods, can effectively show the "main load path" by aligning the reinforce-
ments accordingly. However, since buckling and stress are not included in the design criteria,
they are only preliminary studies to demonstrate the flexibility of the method to generic
geometries and loads.

C.0.1 Concepts Generation for a Rib Panel Reinforcement

The example considers a panel with the shape of the aerodynamic profile NACA 2412, taken
as archetype of a generic aeronautical rib. This assembly transfers the aerodynamic forces
from skin-stringers through clips and shear ties to the spars, and it is composed of a thin
panel reinforced by stiffeners (namely rib chords,caps or uprights) [12].
Light rib’s main function in the wing-box assembly is to maintain the shape of the profile
"rigid" in its plane (within a certain limit of distortion). The rib also acts as a support for
the stringers by limiting their effective length as a beam-column [12].
There are also heavier ribs particularly conceived to collect large concentrated loads coming
from landing gear, engine pylons or control surfaces hinges [12].

The loads that a rib must resist are [13]:
- in-plane shear, applied from the shear ties connections with spars and skins;
- in plane compression, transferred by stringers clips from pressure applied on adjacent skin
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portion and rib crushing generated by bending flexion of the wing.
- additionally, there can be span wise compression/tension due to the wing section Poisson
effect, or lateral pressure if the rib has a secondary functions of composing a fuel tank.

The following illustrative model considers only in-plane effects. The GS finite elements are
then plates, for which only membrane response is considered, and beams, with in-plane
displacements and the rotation actives.
The hypotheses are made that forces are applied in concentrated point where connection with
skin-stiffeners should be located and that the panel is clamped on the four corners, where is
ideally attached to the spars.

Figure C.1 Rib Panel with NACA2412 profile. Plates Mesh and BCs: in red concentrated
shear forces and in yellow compression ones.

Figure C.2 Rib Panel with NACA2412 profiles. Different Beams Ground Structure: Lvl of
connectivity 1 and 2.

Three ideal static load cases are considered:
- one with only compression loads applied (yellow arrows in Fig.C.1);
- one with only shear loads (red arrows in Fig.C.1 );
- one with a compression/shear load ratio (C)/(S) = 0.5.

Load magnitude estimation is arbitrary, since a real dimensioning of the concepts is out the
example’s scope.
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A summary of the numerical parameters used in the example is given in table C.1, then
different conceptual layouts obtained for each load case and for different choices of the initial
ground structure are reported.

Table C.1 Numerical example for the concept generation of Rib reinforcements

Chord length [mm] 3250 Material Properties as Tab. 3.6
Panel mesh 22x4 Thickness as Tab. 3.6
No. of Beam LvL1 378 No. of Beam LvL2 586
Vmax[mm3] 106 Range for A[mm2] ∈ [10−3; 10+3]

Load multiplier for each test case
Force magnitude Compression(C) Pure Shear(S) Mixed (CS)
1[KN ] (C)=1 (S)=0 (C)=0 (S)=1 (C)=1 (S)=2
Beams on the boundary are set to not belong to design space. Aboundary = 500mm2

Figure C.3 Rib Panel with NACA 2412 profile. Conceptual layout exploration

By examining the results in Fig.C.3, it can be said that by using a denser ground structure
(Lvl2) a better value of the objective function is generally obtained. This occurs due to the
larger number of candidates, hence more freedom in revealing the final layout. However, this
is associated with slower convergence due to the larger design space. The results plotted in
Fig.C.3 cut out the vanishing beams with Ai ≤ 100mm2.
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APPENDIX D NUMERICAL VALIDATION OF THE SIMPLIFIED
MODEL WITH EQUIVALENT STIFFNESS PROPERTIES

In the following the results obtained using the 2-Layer Model are compared against the one
obtained by using the commercial solver Optistruct [46] for some test cases.
The analyses conducted in the software are referred as “reference”: in these models the stiff-
eners geometry is modelled with shell elements oriented perpendicular to the skin midplane.
QUAD4 e TRIA3 linear PSHELL elements compose the mesh of the skin.

For a square panel with one curvilinear stiffener, whose features are presented in fig.D.1, two
static load cases have been tested to conduct the comparison: the out-of-plane response is
tested by loading the model with uniform normal pressure, while for the in-plane response a
uniform uniaxial compression line load is applied in the skin midplane, as detailed in Fig.D.2.

Figure D.1 Square Panel with one curvilinear stiffener for numerical validation

Figure D.2 Two Load Cases for Numerical Validation - Boundary conditions and global
displacements notation
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For a proper representation of the stringers, the mesh of the equivalent model has to be refined
to have at least 2-3 elements in the stiffeners width. The same mesh size of 2mm is adopted
on both the models. The properties of a generic aluminium alloy are used: E = 71.7GPa for
the young modulus, ν = 0.33 for the Poisson coefficient.

Bending Analysis For the load case 1, the plate is clamped and subjected to uniform
upward pressure. The transverse displacement field are plotted in Fig.D.3, where it can be
noticed that the relative error on the maximum displacement is 3.55%. Moreover, the accor-
dance between the membrane stresses fields (plotted in Fig.D.4) proves that the mechanical
behaviour of the panel under bending load is well approximated.

Uniform x-compression case For the load case 2, the plate is simply-supported and
subjected to uniform load per unit length along the x global axis. The error on the maximum
x-displacement is below the 1%, while error on the out of plane maximum displacement is
about 4, 2%.
For a panel with a curvilinear and eccentric stiffener the in-plane forces are coupled with
the bending deformation as can be seen in Fig.D.5 where the out-of-plane displacement w
is of the same order of magnitude of the in plane displacements. The membrane stresses
fields are plotted in Fig.D.6: far from the stiffeners the stresses in the skin are very accurate.
Regarding the reinforced zone it is underlined that the model taken as reference has elements
in the xy plane for the skin, and elements orthogonal to the plane for the stiffeners. In the
equivalent model the stiffeners is integrated in the skin elements. For this reason in this
region the stress values assume an intermediate value between those of skin and stiffeners in
the reference model.

Linear Buckling Analysis: Uniform x-compression The accuracy of the simplified
model for the estimation of the fundamental buckling load factor by means of the linear
buckling analysis is also estimated for this baseline panel. An unitary x-compression load
per unit length is applied on the panel clamped (DOFs 2345) along all the side. This means
that the numerical value of the eigenvalue coincides with the critical load per unit length.
The analysis is performed for two different parameter of hII , which adjusts the curvature of
the stiffener as shown in figure 4.2. For the curvilinear stiffener configuration ( hII = 50mm )
and for a rectilinear one ( hII = 0mm ), figures D.7 and D.8 respectively show the comparison
with models of same geometry analysed in Optistruct (reference). From the comparisons,
the estimation for the fundamental buckling load factor results to be in the order of 11% at
worst.
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Figure D.3 Bending Analysis : deformation plots. "wref " refers to the model analysed in
Optistruct, while w2LM refers to the 2-layer model

Figure D.4 Bending Analysis: Membrane stresses Plots.
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Figure D.5 Compression loading Analysis: deformation plots. "wref " refers to the model
analysed in Optistruct, while w2LM refers to the 2-layer model

Figure D.6 Compression loading Analysis: Membrane stresses Plots. "ref"(model in
Optistruct),"2LM"(the 2-layer model)
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Figure D.7 Linear Buckling Analysis comparison: Buckling load factor and first two eigen-
modes for a panel with curvilinear stiffener under uniform compression. "ref" refers to the
model analysed in Optistruct, while 2LM refers to the 2-layer model

Figure D.8 Linear Buckling Analysis comparison: Buckling load factor and first two eigen-
modes for a panel with rectilinear stiffener stiffener under uniform compression. "ref" refers
to the model analysed in Optistruct, while 2LM refers to the 2-layer model



 

 

 

 

 

 

 

 

PrOp(1) Set Physical Properties 

E = 71700; nu=0.33;                                                         % Material Properties 

ts=2;                                                                       % Plate Thickness 

hr=26; w0=6; e=hr/2+ts/2; %height,width,eccentricity                        % Reinforcement 

section sizes 

Lx = 400 ; Ly =600;                                                         % Panel Dimension 

rho = 2.81e-06;                                                             % Material Density 

PrOp(2) Discretize Domain 

nelx = 200; nely=300; 

M=[nely+1,nelx+1]; nEl = nelx*nely ;                                        % number of elements 

Ex=Lx/nelx;                                                                 % element x-length 

Ey=Ly/nely;                                                                 % element y-length 

elNrs = reshape(1:nEl,nely,nelx);                                           % element numbering 

[X,Y] = meshgrid(Ex*[0:nelx],Ey*[0:nely]);                                  % nodal points grid 

PrOp (3) Generate base mesh and collocation matrices 

NODE = [reshape(X,numel(X),1) reshape(Y,numel(Y),1)];                       % nodal coordinates 

PLATES = zeros(nEl,4);                                                      % Plates Nodes Global 

indices 

temp=0; 

for i=1:nelx, for j=1:nely 

        temp = temp+1; 

        n1 = (i-1)*(nely+1)+j; n2 = i*(nely+1)+j; 

        nn = [n1 n2 n2+1 n1+1]; 

        PLATES(temp,:) = nn ; 

end, end 

nodeNrs = int32(reshape(1:(1+nely)*(1+nelx),1+nely,1+nelx));                % node numbering 

cMat = reshape(5*nodeNrs(1:end-1,1:end-1)+1,nEl,1)+... 

int32([-5,-4,-3,-2,-1,5*nely+[0,1,2,3,4,5,6,7,8,9],0,1,2,3,4]);% 

nDof = (1+nely)*(1+nelx)*5;                                                 % total number of 

DOFs 

[sI,sII]=deal([]); 

for j = 1:20 % build assembly indices for the lower symmetric part of K 

sI = cat(2,sI,j:20) ; 
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APPENDIX E MMC FOR STIFFENERS LAYOUT OPTIMIZATION -
MATLAB CODE

This appendix reports the main code written for the stiffeners Layout Optimization of
Sect.4.4.5. The full archive of the scripts can be found in the online repository https:
//github.com/mariocapo/Thesis_TopOptStiffenedPanels_MMC , where the nested func-
tions are provided.

https://github.com/mariocapo/Thesis_TopOptStiffenedPanels_MMC
https://github.com/mariocapo/Thesis_TopOptStiffenedPanels_MMC


sII = cat(2,sII,repmat(j,1,20-j+1)); 

end 

[iK,jK] = deal(cMat(:,sI)',cMat(:,sII)'); 

Iar=sort([iK(:),jK(:)],2,'descend');                                        % indices for K 

assembly 

PrOp (4) Generate elemental Ke_sk and Ke_r 

[AMat_sk,BMat_sk,DMat_sk,SMat_sk,AMat_r,BMat_r,DMat_r,SMat_r,Q_mat] = 

LoadDefRelations(E,nu,e,ts,hr); 

xe=[-Ex/2,-Ey/2;Ex/2,-Ey/2;Ex/2,Ey/2;-Ex/2,Ey/2];                           % dimensions of the 

elements 

[Ke_sk0] = BasicKe_lamina(AMat_sk,BMat_sk,DMat_sk,SMat_sk,xe);              % Skin contrib to 

Stiff Matrix 

mask = tril(true(size(Ke_sk0))); 

Ke_sk = Ke_sk0(mask);                                                       % lower tringular 

part 

[Ke_r0] = BasicKe_lamina(AMat_r,BMat_r,DMat_r,SMat_r,xe);                   % Skin contrib to 

Stiff Matrix 

mask = tril(true(size(Ke_r0))); 

Ke_r = Ke_r0(mask);                                                         % lower tringular 

part 

PrOp (5) Set BCs 

[fixed,~]=BCs(nodeNrs,nelx,nely,'Panel_4str');                              % Essential BCs 

free = setdiff(1:nDof,fixed); 

[F] = ForceVector_generic(nDof,nEl,nely,nelx,Ey,Ly,xe,cMat,'D');            % Natural BCs 

PrOp (6) Define Baseline Design 

Nmc=4;                                                                      % No. of components 

xA = [0 0 0 0]';                                                            % start-point coord x 

yA = 120*[1 2 3 4]';                                                        % start-point coord y 

thA = [0 0 0 0]';                                                           % start-point 

inclination 

xB = [Lx Lx Lx Lx]';                                                        % end-point coord x 

yB = yA;                                                                    % end-point coord y 

thB = [0 0 0 0]';                                                           % end-point 

inclination 

ww = [w0/2 w0/2 w0/2 w0/2]';                                                % component half 

width 

d_base = [xA,yA,thA,xB,yB,thB,ww];                                          % Baseline design [ 

Nmc x Nd_per_mc] 

Np_per_mc = size(d_base,2); 

OptInit(1) Initialize Swarm initial Matrix 

npars = 5 ;                                                                 %No of particles in 

the initial swarm 
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% d_base = [xA,yA,thA,xB,yB,thB,ww] 

VarIndices = [2,3,5,6]';                                                    % parameters selected 

for D_x 

nvars = Nmc*length(VarIndices)/2;                                           % total length of D_x 

% Determine initial position of Particle Pi i=1:npars 

d=zeros(length(d_base),Nmc,npars); 

%P1 

d(:,:,1) = d_base' ; 

%P2 

d(:,:,2) = d_base' ; 

temp = [20*[1 1 1 1];zeros(1,4);-20*[1 1 1 1];zeros(1,4)]; 

d(VarIndices,:,2) = d_base(:,VarIndices)'+temp ; 

%P3 

d(:,:,3) = d_base' ; 

temp =  [-20*[1 1 1 1];zeros(1,4);20*[1 1 1 1];zeros(1,4)]; 

d(VarIndices,:,3) = d_base(:,VarIndices)'+temp ; 

%P4 

d(:,:,4) = d_base' ; 

temp =  [zeros(1,4);10*pi/180*[0 1 2 3];zeros(1,4);-10*pi/180*[0 1 2 3]]; 

d(VarIndices,:,4)= d_base(:,VarIndices)'+temp ; 

%P5 

d(:,:,5) = d_base' ; 

temp =  [zeros(1,4);-10*pi/180*[3 2 1 0];zeros(1,4);10*pi/180*[3 2 1 0]]; 

d(VarIndices,:,5)= d_base(:,VarIndices)'+temp ; 

% 'InitialSwarmMatrix' = size npars x nvar , where each row represents one particle 

VarIndices = VarIndices(1:2); 

xy0 = reshape(d(VarIndices,:,:),nvars,npars,1)'; 

xy0_base = d_base(:,VarIndices)'; xy0_base = xy0_base(:)'; 

xy0 = xy0 - repmat(xy0_base,npars,1);                                       % 

'InitialSwarmMatrix' 

See initial particles initial position x0_pi 

Phi=cell(Nmc,1); 

v0 = zeros(Nmc,1); 

v0tot = zeros(npars,1); 

for j=1:npars; 

    for i=1:Nmc 

    Phi{i}=tPhi(d(:,i,j)',X(:),Y(:),'Hermite'); 

    v0(i) = stiffener_volume(hr,d(:,i,j)',X(:),Y(:),'Hermite'); 

    end 

%Union of components 

    tempPhi_max=Phi{1}; 

    for i=2:size(d,2) 

        tempPhi_max=max(tempPhi_max,Phi{i}); 

    end 

v0tot(j) = sum(v0); 

subplot(1,npars,j); 

Phi_max=reshape(tempPhi_max,nely+1,nelx+1); 

contourf(reshape(X,M), reshape(Y,M), Phi_max,[0,0]); 

set(gca,'Color',[0 0.4470 0.7410]); colormap(hot);set(gcf,'Color','w'); 
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axis equal;axis([0 Lx 0 Ly]);pause(1e-6); 

end 

OptInit(2) PSO Parameters and Inputs 

%[dx0;dy0;dth0;dxend;dyend;dthend] 

v_max=2.75e05; 

delta_angle = 30*pi/180; delta_y = 20; 

deltalow = repmat([-delta_y;-delta_angle],1,Nmc); 

deltaup = repmat([delta_y;delta_angle],1,Nmc); 

lb = reshape(+deltalow,nvars,1); %lower side constraint 

ub = reshape(+deltaup,nvars,1); %upper side constraint 

maxIt= 100; %max iteration for the PSO 

fun=@(xy) CurvStiffMMC_Buckl_volconstr(xy,d_base,VarIndices,Nmc,X,Y,M,Ex,... 

PLATES,Ke_sk,Ke_r,Iar,nDof,free,F,cMat,E,ts,iK,jK,xe,'Hermite',hr,v_max);   %objective function 

subcall 

PSO Optimization 

[xsol,fval,historybestx,historybestfval] = runPSO(xy0,fun,maxIt,npars,nvars,lb,ub); 

Final Design Extraction 

d_best = d_base;delta = [xsol(1:2:end)',xsol(2:2:end)'];                    % Reconstruction 

d_best(:,VarIndices)=d_best(:,VarIndices)+delta;                            % of D_i from the 

d_best(:,VarIndices+3)=d_best(:,VarIndices+3)-delta;                        % PSO solution 

Plot final configuration 

Phi=cell(Nmc,1); 

v0_best = zeros(Nmc,1); 

    for i=1:Nmc 

    Phi{i}=tPhi(d_best(i,:),X(:),Y(:),'Hermite'); 

    v0_best(i) = stiffener_volume(hr,d_best(i,:),X(:),Y(:),'Hermite'); 

    end 

%Union of components 

    tempPhi_max=Phi{1}; 

    for i=2:size(d_best,1) 

        tempPhi_max=max(tempPhi_max,Phi{i}); 

    end 

Phi_max=reshape(tempPhi_max,nely+1,nelx+1); 

contourf(reshape(X,M), reshape(Y,M), Phi_max,[0,0]); 

set(gca,'Color',[0 0.4470 0.7410]); colormap(hot);set(gcf,'Color','w'); 

axis equal;axis([0 Lx 0 Ly]);pause(1e-6); 

% Final mass 

v_besttot = sum(v0_best); 

mass_best_reinforcement = v_besttot*rho; 

mass_best = rho*(ts*Lx*Ly + mass_best_reinforcement); 

Published with MATLAB® R2020a 
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APPENDIX F VECTORIZED SET-UP OF THE STRESS STIFFNESS
MATRIX FOR MINDLIN PLATES

Large sparse and symmetric matrices can be assembled in a computational efficient way by
using the algorithm of [85], implemented in the MATLAB built-in function "sparse" [67].
The coefficients of each elemental stress stiffness matrix, ordered column-wise, are collocated
in a global vector according to their indices in the global system.
Three vectors are needed to carry out the assembly operation: the vector {vK low

σ } containing
the unique coefficients of the (lower) symmetric part of the stress stiffness matrix, and two
vectors containing the indices for positioning each coefficient {iK low

σ } and {jK low
σ } in the

global matrix. The "sparse" function call to obtain the elastic stiffness matrix reads:

K(low)
σ = sparse({iK low

σ }, {jK low
σ }, {vK low

σ })
Kσ = K(low)

σ +K(low)
σ

T − diag[K(low)
σ ]

where the second line recovers the full symmetric matrix from the lower triangular.

Based on the work of Ferrari and Sigmund [84], a vectorized set-up of the stress stiffness
matrix for iso-parametric Mindlin plate elements is developed here to speed up the LBA.
The integrand of Eq.4.24 can be expanded, presenting the following structure:

[G]T [S0][G] =


z11[Tz] sym

z21[Tz] z22[Tz]
z31[Tz] z32[Tz] z33[Tz]
z41[Tz] z41[Tz] z43[Tz] z44[Tz]

 (F.1)

where the ten coefficients zik (i, k = 1...4) depend on the membrane stresses components and
the products between the shape functions gradient components [84] as follows:

zik = σ0
xxNi/xNk/x + σ0

yyNi/yNk/y + τ 0
xy(Ni/yNk/x +Ni/xNk/y) (F.2)

while the coefficients resulting from the integration in the thickness direction, are organized
in the diagonal matrix Tz. Along the diagonal of this matrix, only the first (tz(a)) and the
third coefficients (tz(b)) are independent, as highlighted in the following expression of Tz:
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[Tz] =



ts 0 0 0 0
0 ts 0 0 0
0 0 ts 0 0
0 0 0 t3s

12 0
0 0 0 0 t3s

12


=



tz(a) 0 0 0 0
0 tz(a1) 0 0 0
0 0 tz(a2) 0 0
0 0 0 tz(b) 0
0 0 0 0 tz(b1)


(F.3)

Consequently, in the matrix product of Eq.F.1 only 20 coefficients are independent out of
210 ones. If the coefficient of z are ordered in a vector, by taking their position colomun-wise
from F.1, a vector z = {z11, z21, z31, ..., z44} of size 1x10 is obtained.
These coefficient are multiplied either by tz(a) or tz(b) in the integrand of Eq.F.1. Then
for each element we can obtain the vectorized form of the lower triangular elemental stress
stiffness, namely {vK(e)

σlow
}, by listing {tz(a)z} and {tz(b)z} in the right order.

Table F.1 expresses the indices to map the coefficients ziktz(a) in the elemental stress stiffness
matrix K(e)

σ , and in its lower triangular part reorganized in a vector, namely {vK(e)
σlow
}.

Table F.1 Position of the ziktz(a) coefficients in the elemental stress stiffness matrix and in
its vectorized form

Array position of ziktz(a)

K(e)
σ {(1, 1); (6, 1); (11, 1); (16, 1); (6, 6); (6, 11); (6, 16); (11, 11); (11, 16); (16, 16)}

{vK(e)
σlow
} {(1); (6); (11); (16); (91); (96); (101); (156); (161); (196)}

Once the position of ziktz(a) are identified, the other elements are positioned by sliding down
along the diagonal of sub-matrices zik[Tz]. That is, two copies of ziktz(a) are positioned by
sliding 1 and 2 positions. Then ziktz(b) is positioned by sliding 3 position, and 4 for its copy.
This indexing is reported in Table F.2.

Table F.2 Position of the zik[tz] components in the elemental stress stiffness matrix and in
its vectorized form

coefficient
zik[tz]

position
in K(e)

σ

position
in {vK(e)

σlow
}

ziktz(a) (i,j)ziktz(a) (iv)ziktz(a)

ziktz(a1) (i,j)ziktz(a1) = (i, j)ziktz(a) + (1, 1) (iv)ziktz(a1) = (iv)ziktz(a) + 21− jziktz(a1) + 1
ziktz(a2) (i,j)ziktz(a2) = (i, j)ziktz(a)] + (2, 2) (iv)ziktz(a2) = (iv)ziktz(a1) + 21− jziktz(a2) + 1
ziktz(b) (i,j)ziktz(b) = (i, j)ziktz(a)] + (3, 3) (iv)ziktz(b) = (iv)ziktz(a2) + 21− jziktz(b) + 1
ziktz(b1) (i,j)ziktz(b1) = (i, j)ziktz(a)] + (4, 4) (iv)ziktz(b1) = (iv)ziktz(b) + 21− jziktz(b1) + 1
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