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RÉSUMÉ 

Les organismes de transport en commun doivent étudier les habitudes de déplacement afin 

d'élaborer des stratégies et des plans plus conformes aux habitudes d'utilisation de leur réseau. De 

nombreuses études ont été réalisées sur le comportement des passagers pour aider les autorités de 

transport à mieux comprendre leurs services. En facilitant la collecte des données, les systèmes de 

paiement par cartes à puce a rendu possible l’exploration de ces précieuses données sur les 

déplacements. Pour reconnaître les comportements de déplacement, des méthodes de clustering 

sont utilisées. En regroupant les passagers ayant le comportement le plus similaire dans un même 

cluster, nous pouvons alors adapter les stratégies de transport en fonction de ces groupes plutôt que 

les appliquer à tous les usagers . Les données des cartes à puce ayant des caractéristiques de séries 

temporelles, le développement de la méthode la plus appropriée pour traiter ces séquences 

permettra d'obtenir un processus de segmentation plus précis et pertinent.  

Le choix d'une mesure de distance appropriée, ainsi que de la méthode elle-même, est crucial dans 

les algorithmes de clustering de séries temporelles. Dans les études précédentes sur les données 

des cartes à puce, les distances euclidiennes et Manhattan sont le plus souvent utilisées avec les 

méthodes de clustering. Cependant, toutes deux ignorent les caractéristiques des séquences et les 

comparent dans leurs calculs comme des données statiques, sans tenir compte de leur ordre ou de 

leurs corrélations. Certains auteurs ont tenté de résoudre ce problème dans leurs recherches. En 

proposant une méthode de projection pour transférer les données de séries temporelles vers des 

espaces tridimensionnels et en appliquant ensuite des techniques de clustering (Ghaemi et al., 2017) 

ou en choisissant la distance de corrélation croisée (CCD) comme mesure de distance plus 

appropriée pour la comparaison de séries temporelles (He et al., 2018). Cependant, comme ils ont 

utilisé le clustering hiérarchique avec CCD, ils ont été obligés d’utiliser une stratégie 

d'échantillonnage en raison de la limitation du clustering hiérarchique avec de grands ensembles 

de données. La mesure de distance dynamic time warping (DTW) est une autre distance appropriée 

pour la comparaison de séries temporelles, mais elle souffre d'une complexité temporelle. 

L'objectif de cette étude est de combler cette lacune. Pour ce faire, un nouveau clustering k-shape 

avec une mesure de distance basée sur la forme (SBD) est testé et appliqué pour la première fois 

aux données des cartes à puce dans les transports publics. Cette méthode a été proposée par 
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Paparrizos and Gravano (2017) pour le regroupement de séries temporelles.  Elle est précise, 

efficace et rapide. Nous développons un cadre de comparaison entre les résultats de cette nouvelle 

méthode, le DTW et les mesures de Distances Euclidiennes (ED) sur le même ensemble de données 

afin d'explorer leurs avantages et leurs inconvénients. Ce faisant, nous utilisons le regroupement 

k-means ainsi que les distances DTW et ED pour avoir une comparaison significative entre les

performances des mesures de distance. Nous appelons nos trois méthodes DTW, SBD et ED. 

Notre cadre de comparaison comporte trois critères, mais avant cela, nous avons utilisé le résultat 

de DTW comme vérité de base pour construire une comparaison plus structurée. Tout d'abord, 

DTW est comparé à SBD et ED sur la base de la distance moyenne entre les centroïdes des clusters. 

Celui dont la distance est la plus courte est donc considéré comme le plus compatible avec DTW. 

Deuxièmement, la comparaison est basée sur deux indices externes de validation des clusters : 

l'indice Rand ajusté (ARI) et l'indice de variation de l'information (VI). Plus l'ARI est élevé, plus 

les deux approches sont en accord. Un VI plus faible, en revanche, indique que les deux techniques 

sont plus identiques. Enfin, en plus des mesures statistiques, nous comparons les approches en 

fonction des modèles qu'elles ont identifiés et de la distribution de leurs clusters sur chaque jour, 

ainsi que de la distribution des produits tarifaires. 

En outre, comme le type de vecteurs, ainsi que la méthode, ont un impact significatif sur les 

résultats finaux, nous utilisons trois types de profils différents pour comparer les performances des 

méthodes. Les données d'entrée de nos trois approches sont des vecteurs carte-jour (utilisateur-

jour), arrêt-jour et itinéraire-jour, et nous pouvons voir si la comparaison est restée la même lorsque 

les vecteurs ont changé. Ces vecteurs sont basés sur le temps d'embarquement, c'est-à-dire le 

moment où les passagers effectuent une transaction lorsqu'ils utilisent les transports publics au 

quotidien. Les données de cette étude proviennent du Réseau de transport de la Capitale (RTC), 

une agence de transport qui offre des services de transport en commun à Québec, et ont été 

recueillies sur le réseau d'autobus pendant un mois, en février 2019. 

Les résultats de cette recherche contribuent non seulement à la littérature croissante sur les données 

des cartes à puce, mais confirment également que la distance euclidienne, malgré sa popularité, ne 

fonctionne pas bien dans la reconnaissance de modèles bien définis lorsqu'il s'agit de données de 

séries temporelles. En outre, bien que le clustering k-means avec la distance DTW soit une 

approche appropriée pour la segmentation des séries temporelles, il souffre de sa complexité 
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temporelle. Le clustering K-shape avec SBD est une méthode puissante de reconnaissance des 

formes, qui a été testée pour la première fois pour le clustering de données de cartes à puce. 

Cependant, elle ne prend pas en compte le décalage temporel, ce qui pourrait avoir pour 

conséquence de mettre des séries temporelles de même forme dans le même groupe alors qu'elles 

pourraient avoir un décalage temporel. Il a cependant produit des résultats compétitifs dans la 

création de clusters de routes lorsque le décalage temporel était moindre. 

Dans l'ensemble, cette constatation démontre qu'il n'existe pas de solution unique au problème du 

regroupement des séries chronologiques. Chaque méthode présente des avantages et des 

inconvénients qui doivent être examinés en fonction du type et du volume de données, du type de 

distorsions imposées aux données, de l'objectif de l'étude et de la durée d'application de la méthode. 

SBD est une nouvelle méthode de regroupement de séries temporelles qui a été introduite dans 

cette thèse et qui peut être utilisée pour une variété d'objectifs dans le domaine du transport, comme 

l'étude des fluctuations. Elle peut également être réglée pour être contrainte au décalage temporel 

ou même combinée avec d'autres méthodes. 
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ABSTRACT 

Transit agencies need to investigate travel patterns in order to develop strategies and plans that are 

more in line with usage patterns. There has been a lot of study done on passenger behaviour to help 

transportation authorities gain a better understanding of their services. By facilitating data 

collection, smart card system has made these studies more possible to explore valuable detailed 

travel data. For recognizing travel behaviour, clustering methods are used. By grouping passengers 

with the most similar behaviour in the same cluster, we can then adapt the transport strategies based 

on these groups rather than a large number of individuals. Since smart card data has the 

characteristics of time-series, developing the most suitable method to handle these sequences will 

results in more accurate segmentation process.  

Choosing a proper distance measure, as well as the method itself, is crucial in time-series clustering 

algorithms. In previous studies of smart card data, Euclidean and Manhattan distances are most 

often used with clustering methods. However, both of them ignore the characteristics of sequences 

and compare them in their calculations as static data without considering their order or correlations. 

Some authors have tried to address this problem in their research. By proposing a projection method 

to transfer time-series data to three dimensional spaces and then applying clustering techniques 

(Ghaemi et al., 2017) or by choosing Cross Correlation Distance (CCD) as a more suitable distance 

measure for time-series comparison (He et al., 2018). However, since they used hierarchical 

clustering with CCD, they were forced to plan a sampling strategy due to the limitation of 

hierarchical clustering with large dataset. DTW distance measure is another suitable distance for 

time-series comparison, but it suffers from time complexity.  

The purpose of this investigation is to address this gap. To do this, a novel k-shape clustering with 

Shape-Based Distance measure (SBD) is tested and applied to smart card data in public transit for 

the first time. This method has been proposed by Paparrizos et al. (2017) for time-series clustering, 

which is accurate, efficient, and very fast with large dataset. We develop a comparison framework 

among the results of this novel method, DTW, and Euclidean distance (ED) on the same dataset in 

order to explore their advantages and drawbacks. In doing so, since k-shape clustering is based on 

k-means principles, we used k-means clustering along with DTW as a suitable distance metric for

time-series, and ED as a most used distance in the literature, to have a meaningful comparison 



ix 

between distance measures’ performance. For simplicity, we call our three methods as DTW, SBD, 

and ED.  

Our comparison framework has three criteria, and in order to build a more structured comparison 

we used DTW result as the ground truth. First, DTW is compared with SBD and ED based on the 

average distance between cluster centroids. The one with the shortest distance was therefore 

considered the most compatible with DTW. Secondly, the comparison is based on two cluster 

validations external indices: Adjusted Rand Index (ARI) and Variation of Information (VI) index. 

The higher the ARI, the closer the two approaches agree. Less VI, on the other hand, indicates that 

two techniques are more identical. Finally, in addition to statistical measurements, we compared 

the three approaches based on the usage patterns of their resulted clusters. 

Furthermore, because the type of vectors, as well as the method, has a significant impact on the 

final outcomes, we employed three different types of profiles with different time-shifting patterns 

to compare the performance of the methods. The input data for our three approaches were card-day 

(user-day), stop-day, and route-day vectors, and we can see whether the comparison remained the 

same when the vectors changed. These vectors are based on the boarding time, which is when 

passengers make a transaction when using public transportation on a daily basis. The data for this 

study came from the Réseau de transport de la Capitale (RTC), a transportation agency that offers 

transit services in Québec City and was gathered from the bus network over one month in February 

2019. 

Results of this research not only contribute to the growing literature on smart card data, but also 

confirm that ED in spite of its popularity does not work well in recognition of well-defined patterns 

when it comes to time-series data. Besides, although k-means clustering with DTW distance is a 

proper approach for time-series segmentation, it suffers from the time complexity. K-shape 

clustering with SBD is a powerful method in pattern recognition, which was tested for the first time 

for smart card data clustering, however, it does not take into account time shifting which could 

result in putting time-series of the same shape in the same group while they might have a time 

difference. It however, produced competitive results in the creation of route clusters when the 

shifting in time was less. On the other hand, the application time of this method was faster than 

DTW impressively.   
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Overall, this finding demonstrates that there is no one-size-fits-all solution to the time-series 

clustering problem. Each method has advantages and disadvantages that should be examined based 

on the type and the volume of data, the type of distortions imposed to the data, the study goal, and 

the length of time used by the method application. SBD is a novel time-series clustering method 

which was introduced in this thesis that might be used for a variety of objectives in the 

transportation area, such as investigating the travel patterns based on fluctuations. It can also be 

tuned to be constrained for time-shifting or even combined with other methods. 
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INTRODUCTION 

1.1 Problem Statement 

Nowadays, the opportunity of gathering a huge amount of data using multiple sources, such as 

internet searches or smart cards (Jain, 2010), offers a reliable and easier way to collect data without 

human intervention or effort. The growing use of smart cards in several fields enables studies from 

various viewpoints to examine this vast amount of data in order to improve the overall system's 

performance (Kim et al., 2017).  

Although public transportation agencies initially adopted the Integrated Smart Card Fare Collection 

System (ISFCS) as an automated payment system, it is now regarded as the major source for 

collecting valuable data generated when passengers use their transportation cards (Pelletier et al., 

2011). In transportation research, understanding passenger mobility patterns from this data allows 

to segment a population of people by the same characteristics in the same groups that we might 

find valuable to action upon. In other words, it can help with day-to-day operations and long-term 

planning for the transportation system, such as route design, urban planning, location-based 

services, network growth, marketing, and so on (Pelletier et al., 2011; Zhao et al., 2008). Regarding 

the fact that, this smart card data contains detailed information such as the time of transaction, its 

location and direction of the route or even most of the time the type of card etc., we can divide this 

information and its subsequent analysis into three main categories: temporal, spatial and 

spatiotemporal types (Ghaemi et al., 2017). In our study, however, the former is our mission, which 

means that we want to propose a method to characterise the temporal pattern of passenger 

behaviour. 

In temporal side of analysis, Agard et al. (2006) showed the use of data mining techniques to 

identify temporal behaviour patterns of passengers. They used clustering method to extract similar 

groups so that there would be the most similarity within the members of the same group and the 

most dissimilarity between members of distinct groups. Hence, the adaptation of services based on 

the needs of these identified groups with the most similar behaviour will be more reasonable and 

applicable instead of considering each individual needs. In temporal clustering, one of the 

challenges is dealing with complicated high dimensional time-series data (Nantes et al., 2016). To 

address this problem, Kim et al. (2017) proposed Principal Component Analysis (PCA) for 
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reducing the number of variables, and they used Euclidean distance measure with k-means 

clustering. However, another challenge is the choice of proper distance measure for comparing 

time-series and despite many metrics are defined for this comparison in the literature such as 

Euclidean, Manhattan, Hamming, etc. none of them can consider the dynamic characteristics of 

temporal vectors. In this regards Ghaemi et al. (2017) in an attempt to deal with this issue, proposed 

a novel projection of time-series into three-dimensional clocklike space which could retain the 

temporal distance. He et al. (2018) also proposed to use Cross-correlation distance (CCD) and 

compared it with Dynamic Time Warping (DTW) as two proper distances for time-series 

comparison. They then, applied hierarchical clustering using a sampling procedure trying to cover 

its limitation of working with large dataset. However, the instability and the challenges of sampling 

procedure were the limitation of their study. Finally, they discussed that CCD outperformed DTW 

with their dataset.  

Even though there are lots of research that have been carried out for smart card pattern extraction 

in the field of transportation and they proposed several solutions to deal with the challenges 

working with high dimensional time-series data, it seems there is still a need to select a proper 

distance measure along with a clustering method to tackle these challenges in a better way. 

Paparrizos et al. (2017), proposed a novel algorithm for time-series clustering using k-shape 

clustering with Shape-Based Distance (SBD) measure which is a normalised version of CCD. After 

applying their method on several dataset, they claimed that their method is a parameter-free, fast, 

accurate, and efficient compared with other existing time-series clustering algorithms. Beyond 

doubt, there is not a best distance measure, or a best clustering method resulted in the best well-

defined clusters in all cases, but nevertheless there is always a wise choice with compromising the 

advantages and drawbacks considering the conditions. Therefore, we decided to test the novel SBD 

measure with k-shape clustering on our smart card data as a first attempt of applying this method 

in the field of transportation for pattern recognition.  

According to the literature, combining DTW distance measure with k-means clustering is one of 

the proper choices for time-series clustering problems. On the other hand, k-means clustering with 

Euclidean distance (ED) have been claimed that is not a proper choice for time-series comparison 

despite its popularity. Thus, in our study we perform three clustering methods with three different 

distance measures, and we propose a comparison framework to compare their outcomes revealing 
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their pros and cons while applying to the same dataset. In order to do so, we first consider DTW as 

the ground truth we then compare it with SBD and ED from three perspectives. Firstly, according 

to the average distance measure between clusters centroids, secondly based on two cluster 

validation external metrics and finally based on their clusters pattern.    

Most research works have focused on user segmentation such as all studies discussed so far. There 

is less works have been undertaken aiming station segmentation (Gan et al., 2018; Reades et al., 

2016), or routes grouping. In this study, we analyse temporal pattern of travel not only for users, 

but also for stations and routes aiming to see differences in performances of three methods in 

different scenarios with three types of vectors.    

1.2 Thesis Objectives 

Having in mind the main purpose of characterizing and understanding temporal travel behaviour 

in public transit, in particular analysing smart card data over one month in the bus network, we are 

also pursuing the following sub-objectives: 

- Test and adapt a new approach of k-shape clustering with SBD for time-series analysis in 

public transit in order to obtain more accuracy and less time complexity. 

- Perform k-means clustering with DTW distance metric and k-means clustering with ED.  

- Compare the performance of k-shape with SBD and k-means clustering with ED with k-

means clustering DTW distance measure.  

- Reveal the advantages and disadvantages of the methods in time-series clustering.   

- Explore three different types of objects users, stops and routes. 

1.3 Thesis Structure 

Following our objectives, this thesis is organized in 7 chapters. Chapter 1, holds the introduction, 

comprising existing problems in analysing travel patterns in public transit while a bit referring to 

some previous studies besides our solutions to address these problems then we list our objectives. 

Chapter 2 consists of discussing smart card data, clustering methods specifically k-means 

algorithm, time-series characteristics, distance measures,  averaging technique, cluster validation 
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methods are presented. The previous studies in this field, and their contributions and limitations 

are discussed, afterwards. The details of the procedure of our three methods also present at the end 

of this chapter.   

Chapter 3 provides the steps we follow in our proposed algorithm and how the dataset is prepared 

for the further analysis and comparison. Chapter 4, 5 and 6 are devoted to the analysis of vectors 

of users, stops and routes, separately. In these chapters, the resulted groups from applying our three 

clustering methods characterised and compared with each other.  

Finally, chapter 7 concludes this study by summarizing the main results obtained and highlighting 

the contributions made by performing our suggested framework with respect to three different 

objects of analysis. The limitations of our research are also noted, and future perspectives are then 

provided to enlighten a possible follow-up and take advantages of using k-shape clustering method 

in public transit area with different objectives.   
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 LITERATURE REVIEW 

This chapter provides a review of the relevant literature in order to establish a framework and assess 

prior studies in our research area, allowing for a better understanding of the challenges that exist. 

This state-of-the-art will assist us in identifying gaps. It also reinforces the foundation and 

justification for the methodological approach we propose in this thesis. 

2.1 Smart Card Data in Public Transit 

The data collected using the smart card in public transit has been the target of many studies in 

recent years. The main questions arise here are:  

• How is this data collected using smart card? How is it stored? And what are its 

characteristics? 

• What are the benefits of having this data? How can it be used to improve the system of 

transport? 

To answer these questions, we first present the procedure of data collection and reservation by the 

smart card system showing in Figure 2-1, for more detail explanation please refer to Pelletier et al. 

(2011). 

In addition to the primary goal of using smart cards as a fare collection system, Pelletier et al. 

(2011) categorised the applications of using this data into three groups of operational, tactical, and 

strategic levels in public transportation management. For instance, operational research has been 

conducted with the objective of improving the daily performance of the system. In addition, 

estimation of accessibility (Arbex & Cunha, 2020; Cavallaro & Dianin, 2020) crowding valuation 

(Yap et al., 2018) can be considered in this category. In tactical studies, according to user needs, 

public transport services will be scheduled and customised. In this regard, Seo et al. (2020) 

analyzed overlapping origin-destination pairs between bus stations resulting to help enhance the 

efficiency of transit operation, eventually. Demand estimation and forecasting by identifying public 

transit corridors (Zhang et al., 2018) costumer behaviour analysis (Agard et al., 2006) are also part 

of strategic studies improving long-term planning.  
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Among all these studies, investigating user behaviour in public transit has been great of interest 

and there are many authors that have suggested different tools, methods, and algorithms to help 

better understanding of this main issue. 

Regarding the type of information that be obtained by smart card data, Ghaemi et al. (2017) divided 

the research have investigated user behaviour into three categories: (1) spatial pattern in which the 

focus is on the location of transactions, such as bus stop information, (2) in temporal patterns, 

analysis the time of transactions is taken into account, (3)  spatiotemporal patten as can be gotten 

from its name, it could be considered as a hybrid of the previous two steps or as a stand-alone new 

way to dealing with spatiotemporal behavioural patterns. 

Because the focus of this thesis is on analysing the temporal pattern of user behaviour, which has 

the same characteristics as time-series data, the next section includes a brief definition of time-

series data before digging deeper into the clustering algorithm to deal with this type of data for 

pattern extraction. 

Smart card issuing locations 

Smart card reloading locations Boarding data User data 

Smart card holder Bus with smart card reader + GPS 

SIVT server 

Validation (boarding) 

Planned routes 

and runs for bus 

Boarding data 

Overall planned 

routes and runs 

Reports 

Financial 

transactions 

User information 

+ fare 

User and card 

information 

Figure 2-1: RTC smart card information system (Pelletier et al., 2011) 
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2.2 Time-Series Clustering Algorithms 

Clustering is the most popular data mining method in analysing behaviour in such a way that by 

comparing data points and creating some groups/clusters of them while there is the most similarity 

within data points in the same group and the most dissimilarity with the members of other groups 

(Han & Kamber, 2006). In the literature, various clustering algorithms have been developed for 

static data and there is not a direct method for times-series type of data. Thus, for time-series 

clustering we have to either convert it to static type and use the existing methods directly or the 

method has to be modified to be able to deal with the temporal type of data. Regarding that, Warren 

Liao (2005) divided the clustering methods into two major categories. (1) Raw-based methods; 

directly work with the raw time-series data and they are based on a distance measure for calculating 

(dis) similarity between time-series. (2) Feature/model-based methods; first convert time-series 

data into the selected features for reducing dimension or the number of model parameters and then 

apply clustering. Feature/model-based techniques are more flexible to capture complex patterns 

but on the other hand, raw-based (or distance-based) approaches are simpler and easier to adapt 

(Ghaemi et al., 2017). In this study our focus is on the distance-based clustering methods. 

Agglomerative hierarchical, spectral, density-based, and partitional are the four most popular 

distance-based clustering methods. Partitional clustering includes the two main heuristic well-

known methods, k-means and k-medoids. Since each method expresses homogeneity and 

separation of clusters differently and also they have different computational cost from another, the 

choice of them is a difficult task due to their different effect on the accuracy and efficiency of 

clustering (Paparrizos, 2018). On the other hand, the quality of clustering method and resulted 

clusters not only depends on this choice, but also selecting a compatible distance measure for (dis) 

similarity comparison is another challenging step. Besides, when it comes to temporal data because 

of the sequential characteristics, there are also some distortions and invariances which either need 

to be satisfied with the choice of proper distance measure or to be removed before applying 

clustering (Batista et al., 2013). 

Among hierarchical, spectral, and k-medoids methods, k-means is more efficient and can scale 

linearly with the size of the datasets. Moreover, because it is a simple and efficient algorithm with 

a wide range of applicability, it is known as one of the most influential data mining algorithms of 
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all time (Paparrizos et al., 2017). To understand how k-means clustering works with temporal type 

of data we first define time-series and then we organize some sub-sections as follows: first we 

briefly describe the procedure of k-means algorithm, afterwards, since along with the choice of 

clustering method itself, a suitable distance measure, and a proper averaging method depend on the 

specific characteristics of time-series dataset we work on, we discuss these characteristics in 

separate sub-section called time-series invariances. The final section belongs to the techniques are 

used to evaluate the performance of the clustering method. 

A time-series is a set of observations indexed in time order. To be specific, it is a sequence in which 

every element is resulted of recoding a measurement varying by the time. There are two types of 

time-series, univariate is a series with a single time-dependent variable whereas several 

measurements varying over time make a multivariate time-series (Paparrizos, 2018). In our thesis, 

we work with univariate time-series, hence, we refer it simply as time-series from now on. 

 K-means Clustering for Time-Series 

K-means is a partitional clustering method based on an iterative refinement procedure. For time-

series clustering, k-means starts with k artificial sequences as centres (or centroids), assigns 

sequences to the closest centroids, and produces k groups, then calculates new centres for those 

groups, and this process is repeated until no changes in centroid selection are feasible. The 

algorithm proceeds as follows: 

1. Select an initial k clusters centroid. 

2. Assign each object to its closest cluster centroid which generates a new partition. 

3. Compute the centroid of the new partition. 

4. Repeat steps 2, and 3 until convergence is obtained.  

 Time-Series Invariances    

As pointed out before, when we compare time-series data we need to select a distance measure to 

be able to satisfy invariances resulting in distortion elimination. In this section we review the most 

common invariances. Depending on the case, one or more of these invariances should be addressed 

to gain the better time-series clustering results (Batista et al., 2013; Paparrizos et al., 2017).  



9 

• Scaling and translation invariances: In many cases, regardless of differences in

amplitude (scaling) and offset (translation) of two time-series we still need to consider

them similar in comparison. In simple mathematical way, transforming a sequence �⃗� to

�⃗�′ = 𝑎�⃗� + 𝑏, when 𝑎 and 𝑏 are constant, should keep the similarity of �⃗� to others.

• Shift invariance: When two sequences are similar but differ in phases (global alignment)

or when there are regions of the sequences that are aligned and others are not (local

alignment), in some cases despite these differences considering them similar is still

necessary.

• Uniform scaling invariance: In some cases, due to differences in the length of sequences

the matches will be poor. So, we try to stretch the shorter one or shrink the longer to

have the better comparison.

• Occlusion invariance: When there is missing in some sequences and we still need to

consider them similar, and we ignore the missing parts.

• Complexity invariance: Sometimes sequences have similar shape but different

complexities, based on the application we consider them low or high similar.

Time-Series Distance Measures 

As we mentioned before, when we aim to compare two time-series, we have to calculate the (dis) 

similarity between them. For doing so, converting data to vectors, and then calculating the distance 

between data points in vector space can create a distance matrix. Based on the study of 

Rakthanmanon et al. (2011), the selection of distance measure is so important in capturing inherent 

distortions of sequences. In other words, the more proper selection of distance measure, the more 

satisfied are distortions and the better results are obtained by clustering method. This section 

contains reviewing the most common and popular distance measures.  

Suppose that we have two time-series, �⃗� = (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛) and �⃗� = (𝑦1, … , 𝑦𝑗 , … , 𝑦𝑚) where m 

and n represent their length.    

• Manhattan distance (MD): When 𝑚 = 𝑛, using the following formula will give us the

dissimilarity between them based on MD (Mori et al., 2016):
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 𝑀𝐷(�⃗�, �⃗�) = ∑ |𝑥𝑖 − 𝑦𝑗|𝑚
𝑖,𝑗=1   2-1 

• Euclidean distance (ED): Euclidean is a competitive well-known distance measure which 

computes the dissimilarity between �⃗� and �⃗� (𝑚 = 𝑛), as bellows (Faloutsos et al., 1994): 

 𝐸𝐷(�⃗�, �⃗�) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑚
𝑖=1   2-2 

• Dynamic time warping (DTW): It is a popular and proper adapted distance measure for 

time-series, and it performs elastic alignments. This distance actually tries to find the 

optimum warping curve between sequences under certain constraints (Paparrizos, 2018). 

In a case of 𝑚 = 𝑛, between all two points of these series, ED or MD is calculated and 

create a m-by-m matrix, we call it M. Then, a wrapping path, 𝑊 =  {𝑤1, 𝑤2, … , 𝑤𝑘}, with 

𝑘 ≥ 𝑚, based on the distances in matrix M aligns the elements of �⃗� and �⃗�, such that the 

minimum distance be chosen (Keogh & Ratanamahatana, 2005): 

 𝐷𝑇𝑊(�⃗�, �⃗�) = 𝑚𝑖𝑛√∑ 𝑤𝑖
𝑟
𝑖=1   2-3 

This path can be obtained by dynamic programming, as bellows: 

 

 
𝛾(𝑖, 𝑗) = 𝐸𝐷(𝑖, 𝑗) + 𝑚𝑖𝑛 {

𝛾(𝑖 − 1, 𝑗 − 1)

𝛾(𝑖 − 1, 𝑗)        

𝛾(𝑖, 𝑗 − 1)        

  2-4 

In Figure 2-2, we depicted the procedure followed by DTW between two series �⃗� =

(1, 2, 1, 1, 3, 1, 1, 1), �⃗� = (1, 1, 2, 1, 1, 3, 1, 1). First for creating matrix M, shown in Figure 

2-2 (a), the distance between each element of series is calculated by Equation 2-4. For 

instance, the distance between the fifth element of �⃗�, and the third one of �⃗� computed as 

bellows: 

𝐷(3, 2) = 𝐸𝐷(3,2) + min (𝐷(1, 1), 𝐷(1, 2), 𝐷(3, 1)) 

𝐷(3, 2) = 1 + min(1, 2, 3) 

𝐷(3, 2) = 2 
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Second, the warping path is mapped according to Equation 2-3, Figure 2-2 (b). In some 

cases, there are many possible warping paths which makes the searching cumbersome and 

expensive in time and memory consuming. Hence, for optimising DTW’s performance 

there are some constrains to limit the area of matrix M for mapping wrapping path which is 

called warping window. This method has been called constrained dynamic time wrapping 

(cDTW), and it is more efficient than DTW (Paparrizos, 2018).  

 

There are many types of windows and the most popular one is the Sakoe-Chiba window 

which is visualised in Figure 2-3. 

• Cross-correlation distance (CCD): Cross-correlation is another proper and widely used 

distance measure in comparing time-series data and in contrast to DTW which provides 

Figure 2-2: Similarity computation by DTW between two series 

(�⃗� , �⃗�): (a) matrix M, (b) warping path 

Figure 2-3: Sakoe-Chiba window warping 

(Giorgino, 2009) 
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local alignment as we mentioned before, it compares sequences that differ in phase (global 

alignment).  

To find the similarity between, �⃗� = (𝑥1, … , 𝑥𝑚) and �⃗� = (𝑦1, … , 𝑦𝑚), this method shifts

one of them to find the maximum cross-correlation with another one. If we call this shift, s, 

and slides �⃗� over �⃗� then (Paparrizos et al., 2017): 

�⃗�(𝑠) =  {
(0, … ,0, 𝑥1, 𝑥2, … , 𝑥𝑚−𝑠),          𝑠 ≥ 0
(𝑥1−𝑠, … , 𝑥𝑚−1, 𝑥𝑚, 0, … ,0),     𝑠 < 0

2-5

Considering all possible s between [-m, m], we have the cross-correlation sequence as 

bellows: 

𝐶𝐶𝑤(�⃗�, �⃗�) =  𝑅𝑤−𝑚(�⃗�, �⃗�),  𝑤 ∈  {1,2, … , 2𝑚 − 1} 2-6

Where 𝑅𝑤−𝑚(�⃗�, �⃗�), is as follows:

𝑅𝑘(�⃗�, �⃗�) = {
∑ 𝑥𝑙+𝑘. 𝑦𝑙  𝑘 ≥ 0𝑚−𝑘

𝑙=1

𝑅−𝑘(�⃗�, �⃗�)  𝑘 < 0
2-7

The amount of w which makes the 𝐶𝐶𝑤(�⃗�, �⃗�) maximum will be the objective and based on

that the optimal shift is 𝑠 = 𝑚 − 𝑤. 

Time-Series Averaging Techniques 

Another important part of time-series clustering is the choice of averaging method (prototyping) 

In this regard, since the goal of clustering is having the most similar series in one cluster, there 

should be one sequence representing the most characteristics of other sequences in that given 

cluster. The choice of averaging function is closely related to the choice of distance measure. 

Additionally, when it comes to partitional clustering, because resulting average series are used as 

centroids, this choice will be even more critical. There are several strategies for time-series 

│s│ 

│s│ 
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averaging and the choice of proper one is not easy (Sardá-Espinosa, 2018). In this section we briefly 

review some of the common ones. 

• Mean and median: The arithmetic mean is a common and easiest approach for averaging 

and mostly combined with Euclidean distance to create a competitive combination for k-

mean clustering. However, due to the characteristics of time-series this approach could even 

perturb convergence of a clustering algorithm and give poor result (Petitjean et al., 2011). 

In addition to mean, median is also can be used as the averaging method. 

• Partition around medoids (PAM): Partition around medoids (PAM) is another popular 

approach uses an object in a cluster as a medoid whose average distance to all other objects 

in that cluster is minimal. In some cases, PAM is preferred over mean or median due to its 

originality in the cluster. In other words, since it is chosen from the data points instead of 

artificial creation by arithmetic mean, the structure of time-series does not change. In 

addition, since the data is not altered, precomputing the whole distance matrix once and 

reusing it on each iteration, and even across different number of clusters and random 

repetitions would be possible which indicates another advantage of this method (Sardá-

Espinosa, 2018).  

• DTW barycentre averaging (DBA): This is an iterative global prototyping method which 

starts with an initial average sequence as a centroid and refines it by minimising the distance 

between the average sequence and other sequences in the cluster. Precisely, the distance 

between each element (or coordinate) of the average sequence and all elements of other 

series in the cluster is computed based on DTW and a mean is computed for each centroid 

coordinate. It is necessary to repeat this process several times with a new centroid in a way 

that its elements be closer (under DTW) to the elements it averages. This is iteratively 

repeated until a certain number of iterations are reached, or until convergence is assumed  

(Petitjean et al., 2011; Sardá-Espinosa, 2018) 

 Clustering Validation Techniques 

After performing clustering, it is common to see how well it worked in creation of true clusters. 

There are two types of metrics; Internal and external measures, to assess clustering performance. 
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On the other hand, in some clustering methods in particular partitional type like k-means and k-

medoids, there is a need to specify the number of clusters (or k) when the method is applied. Since 

the correct choice of k relies on the shape and scale of the distribution of data, in the beginning of 

the process it is challenging and ambiguous. Overestimating the number of k, would lead to 

interpretation problems and underestimating might risk generalising our groups. Although 

considering too few number of k cause worse performance than in overestimation (Rodriguez et 

al., 2019), as we mentioned both situations will increase the amount of error in the final results. 

Therefore, detecting the optimal number is a critical choice. There are several methods to address 

this issue, cluster validation internal metrics as we discuss in the following are among the popular 

ones. 

 Internal Metrics 

Internal indices are based on the intrinsic information lies within the data and tries to measure the 

quality of partitions formed by the algorithm. Previous studies have declared that there is no best 

single measure for clustering validation, thus a better way is to use several techniques and 

compared their results to have a more robust output (Arbelaitz, Gurrutxaga, Muguerza, Pérez, et 

al., 2013). Among all, we review three well-known internal cluster validation techniques; Davies-

Bouldin (DB), modified version of Davies-Bouldin (DB*), and Silhouette (Sil).  

Internal validation measures generally reflect (1) cohesion (or intra-cluster distance) which 

calculate the similarity of a data point to all other data in the same cluster, and (2) separation (or 

inter-cluster distance) which is the similarity of data point to other members of other clusters. We 

describe briefly these indices based on the study of  Arbelaitz, Gurrutxaga, Muguerza, Pérez, et al. 

(2013). 

• DB (to be minimised): This index is one of the most used cluster validation indices for 

consistency estimation of the resulted clusters. The lower the DB index value, the better is 

the resulted clusters. For k number of clusters, DB index is obtained by the following 

equation: 

 𝐷𝐵 =  
1

𝑘
 ∑ 𝑚𝑎𝑥 {

𝑆(𝑐𝑘)+𝑆(𝑐𝑙)

𝑑(𝑐�̅�,𝑐�̅�)
}𝑐𝑘∈𝐶   2-8 
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Where 𝑆(𝑐𝑘) =
1

|𝑐𝑘|
∑ 𝑑(𝑥𝑖, 𝑐�̅�)𝑥𝑖∈ 𝑐𝑘

, is the intra-cluster distance of cluster 𝑐𝑘 which is the 

distance of all points of 𝑐𝑘 to the centroid of 𝑐𝑘, and 𝑑(𝑐�̅�, 𝑐�̅�) is the inter-cluster distance 

which is the distance between centroids of clusters 𝑐𝑘 and 𝑐𝑙. 

• DB*(to be minimised): This is the modified version of DB. 

 𝐷𝐵∗ =  
1

𝑘
 ∑

max{𝑆(𝑐𝑘)+𝑆(𝑐𝑙)}

𝑚𝑖𝑛{𝑑(𝑐�̅�,𝑐�̅�)}𝑐𝑘∈𝐶   2-9 

• Sil (to be maximised): This index calculates the cohesion based on the distance between all 

points in the same cluster and the separation based on the nearest neighbour distance. 

If data has been grouped in k clusters, then for data point 𝑥𝑖 in cluster 𝐶𝑘, a(𝑥𝑖) which is the 

mean distance between 𝑥𝑖 and all other data points in the same cluster is calculated as 

below:  

 𝑎(𝑥𝑖) =
1

|𝐶𝑘|−1
∑ 𝑑(𝑥𝑖, 𝑥𝑗)𝑥𝑗𝜖𝑐𝑘

   

And b(𝑥𝑖) which is the mean distance between 𝑥𝑖 and all data points in any other cluster 𝐶𝑙, 

of which 𝑥𝑖 is not a member (𝐶𝑙 ≠ 𝐶𝑘) is calculated by: 

 𝑏(𝑥𝑖) = min
𝑘≠𝑙

{
1

|𝐶𝑙|
∑ 𝑑(𝑥𝑖 , 𝑥𝑗)𝑥𝑗𝜖𝐶𝑙

}   

The cluster with the smallest mean dissimilarity is called the “neighbouring cluster” for 𝑥𝑖 

as it is the next best fit well cluster. With calculating a and b, we can obtain Silhouette value 

by the following equation: 

 𝑆𝑖𝑙 =  
1

𝑁
∑ ∑

𝑏(𝑥𝑖)−𝑎(𝑥𝑖)

𝑚𝑎𝑥{𝑎(𝑥𝑖),𝑏(𝑥𝑖)}𝑥𝑖𝜖𝐶𝑘𝐶𝑘𝜖𝐶   2-10 

The value of Sil index is between -1 and 1, where a high value indicates that the data points 

are well matched to their own clusters and poorly matched to neighbouring clusters. 
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 External Metrics 

External measures are useful when we have information about the correct partitions of a dataset as 

ground truth. We can compare it to our results from applying a clustering method, assuming that 

the more similar the method's partitions are to the ground truth, the better the method. On the other 

hand, using these external measures is also common when we want to compare the results of several 

clustering methods applied to the same dataset. There are several measures, however, in the 

following part, we review the two most prominent ones Adjusted Rand Index (ARI) (Rabbany & 

Zaïane, 2015; Santos & Embrechts, 2009), and Variation of Information (VI) (Meilă, 2007).  

• ARI (to be maximised): This index is based on counting the pairs of objects that two 

clustering methods agree/disagree on. This means that no matter what the individual labels 

are, this index evaluates the set overlap. When it comes to comparison, there are some bias 

in terms of the number of clusters leading to change the results of external indices, ARI 

though tends to be indifferent which considered an advantage of this index (Rodriguez et 

al., 2019). 

Given a set of n data, 𝐷 =  {𝑑1, 𝑑2, … , 𝑑𝑛}, suppose that 𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝐶} and 𝑈 =

 {𝑢1, 𝑢2, … , 𝑢𝑅} represent two different resulted clusters from D such that 𝑈𝑗=1
𝐶 𝑣𝑗 = 𝐷 =

𝑈𝑖=1
𝑅 𝑢𝑖. The contingency table of these partitions is as follows: 

Table 2-1: Contingency table between partitions U and V 

 

 

 

 

 

From this table, we can calculate a and d, which are the number of pairs that are in the 

same/different partitions in U and V. Besides, b and c sum up of those that belong to the 

same/different partitions according to U but are in different same/partitions in V.  

Partitions 
V 

𝑣1 𝑣2 … 𝑣𝐶  Sum 

U 

𝑢1 𝑛11 𝑛12 … 𝑛1𝐶 𝑛1. 

𝑢2 𝑛21 𝑛22 … 𝑛2𝐶 𝑛2. 

… … … … … … 

𝑢𝑅  𝑛𝑅1 𝑛𝑅2 … 𝑛𝑅𝐶 𝑛𝑅. 

Sum 𝑛𝑅. 𝑛𝑅. … 𝑛𝑅𝐶  𝑛 
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Table 2-2: Simplified contingency table between U and V 

Partition V 

U Pair in same group Pair in different group 

Pair in same group a b 

Pair in different group c d 

When 𝑛𝑖𝑗 = |𝑈𝑖 ∩ 𝑉𝑗|, 𝑛𝑖. = ∑ 𝑛𝑖𝑗𝑗  , 𝑛.𝑗 = ∑ 𝑛𝑖𝑗𝑖 , and (𝑛
2
) is the total number of possible 

combinations of pairs in two partitions U and V then for the calculation of a, b, c, and d we 

have:  

𝑎 = ∑ ∑ (𝑛𝑖𝑗

2
)𝐶

𝑗=1
𝑅
𝑖=1  

𝑏 = ∑ (𝑛𝑖.
2

)𝑅
𝑖=1 − 𝑎

𝑐 = ∑ (𝑛.𝑗

2
)𝐶

𝑗=1 − 𝑎

𝑑 = (𝑛
2

) − 𝑎 − 𝑏 − 𝑐 

Therefore, ARI is equal to: 

𝐴𝑅𝐼 =  
(𝑛

2)(𝑎+𝑑)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

(𝑛
2)

2
−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

2-11

• VI (to be minimised): This index is based on entropy. If we call 𝐻(𝐶) as the entropy

associated with clustering 𝐶, then we have:

𝐻(𝐶) = − ∑ 𝑝(𝑘)log 𝑝(𝑘)𝐾
𝑘=1  2-12

When 𝑝(𝑘) =
𝑛𝑘

𝑛
 is the probability that a data point being classified in cluster 𝐶𝑘 while 𝑛𝑘is 

the number of points in this cluster and 𝑛 is the number of total points. Entropy equals to 0, 

means there is only one cluster and then no uncertainty. 

If we call 𝐼(𝐶, 𝐶′) as mutual information between two clustering methods; the information

that one clustering has about the other, we will have: 
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𝐼(𝐶, 𝐶′) = ∑ ∑ 𝑝(𝑘, 𝑘′)𝑙𝑜𝑔
𝑝(𝑘,𝑘′)

𝑝(𝑘)𝑝′(𝑘′)

𝐾′

𝑘′=1
𝐾
𝑘=1 2-13

When 𝑝(𝑘, 𝑘′) =  
(𝐶𝑘∩ 𝐶

𝑘′
′ )

𝑛
 is the probability that a point belongs to 𝐶𝑘 in clustering 𝐶 and

to 𝐶𝑘′
′  in clustering 𝐶′. Having the entropy and mutual information, VI is calculated as

following: 

𝑉𝐼(𝐶, 𝐶′) = [𝐻(𝐶) − 𝐼(𝐶, 𝐶′)] + [𝐻(𝐶′) − 𝐼(𝐶, 𝐶′)] 2-14

 The first and the second part of this equation are called conditional entropies. The first one; 

𝐻(𝐶|𝐶′), measures the amount of information about 𝐶 that we loose, while the second one 

 𝐻(𝐶′|𝐶), measures the information about 𝐶′ that we have to gain, we are going from 

clustering 𝐶 to 𝐶′, these are called joint entropy. Figure 2-4 illustrates the concept and the 

relation between information entropies, mutual information, and variation of information 

more clearly.  

2.3 Time-Series Clustering in Public Transit 

There are many research in the field of transportation with several objectives such as alighting 

location estimation (He & Trépanier, 2015; Trépanier et al., 2007) future trend estimation (Park et 

al., 2008), trip purpose inferences (Lee & Hickman, 2013).  

The most of smart card studies in transportation area are aimed to recognise the travel pattern. 

Agard et al. (2006) used the clustering technique based on the boarding time of transactions to 

𝐼(𝐶, 𝐶′)

𝐻(𝐶) 𝐻(𝐶′) 

𝑯(𝑪|𝑪′) 𝑯(𝑪′|𝑪) 

𝑉𝐼(𝐶, 𝐶′) 

Figure 2-4: Information diagram (Meilă, 2007) 
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identify temporal characteristics of passenger behaviour on weekly basis. Then, they measured 

changes in cluster membership to explore intrapersonal variability in transit usage as the first 

research in this area. Ever since, several studies have been carried out to measure the variability 

and the evolution of cluster composition. Besides measuring the temporal variability by applying 

clustering on boarding time, Morency et al. (2007) investigated spatial variability of transit users 

through the frequency of usage of bus stops. Using smart card data from Montréal, Deschaintres et 

al. (2019) focused on weekly variability in daily travel rate. A week typology is constructed using 

the K-means clustering technique, and each card is then represented as a succession of week 

clusters over 12 months. After that, the sequences are utilised to cluster interpersonal variability 

and measure intrapersonal variability as well. Egu and Bonnel (2020) assessed simultaneously 

interpersonal and intrapersonal day to day variability of user behaviour. They used hierarchical 

clustering with simple matching distance (SMD) for interpersonal variability and intrapersonal 

variability was evaluated with trip-based similarity metric which is the similarity of two days based 

on number of trips and the time and origin of starting the trip. Viallard et al. (2019) used k-means 

clustering observed the evolution of users’ behaviors by experimental of multi-week travel 

patterns. Using Euclidean distance, authors has measured the sequential stability of the cluster’s 

membership over the period of use (Moradi & Trépanier, 2018). 

As pointed out before, the use of clustering for user segmentation allows passengers to be identified 

and grouped into clusters with similar behaviour. This data gathered by smart card, has the 

characteristics of time-series data. Traditional distancing metrics, therefore, are not suitable for this 

dynamic type of data. Some researchers have tried to address this issue by either transferring data 

into static one or modifying the clustering methods to be able to handle time-series. Ghaemi et al. 

(2017) for discovering temporal pattern of public transit users suggested a hierarchical clustering 

algorithm along with the novel projection to reduce the data space into a three-dimensional 

clocklike. In another research, authors used cross-correlation distance (CCD) and dynamic time 

warping (DTW) distance measure as the proper methods for sequence comparison (He et al., 2018). 

However, since they used hierarchical clustering, due to its limitation for large dataset, they forced 

to take samples for applying the methods.  
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2.4 Synthesis 

To have a clear picture of previous research done for smart card data analysis identifying the travel 

behaviour, we present some of the main studies in Table 2-3. As can be seen, in all of these studies, 

the authors either have tried to transfer time-series data to static one to use traditional methods or 

have attempted to use a more appropriate distance metric for time-series comparison. However, a 

sufficient clustering technique that is consistent with sequences has yet to be established.  

Table 2-3: Previous studies in smart card analysis in public transit 

 

Study 
Target 

object 
Vector 

Distance 

measure 

Clustering 

method 

Averaging 

method 
Objective /Contributions 

(He et al., 

2018) 

Card-

day 

Boarding time (binary 

vector) 
CCD and DTW Hierarchical - - 

(Kim et al., 

2017) 

Stop-

day 

Boarding and alighting 

time 
- K-means - 

Investigation of local 

environment effects on human 

behaviour 

(Agard et al., 

2006) 

Card-

week 
- Euclidean K-means - - 

(Ghaemi et 

al., 2017) 

Card-

day 

Boarding time (binary 

vector) 

SCP, CCD, and 

ACD 

(autocorrelation) 

Hierarchical - 
Proposed a semi-circle 

projection (SCP) method 

(Deschaintres 

et al., 2019) 

Card-

week 

7 dispersion indicators 

(number of trips per day) 

and one intensity indicator 

(average number of trips) 

Euclidean K-means - - 

(Viallard et 

al., 2019) 

Card-

week 

Number of trips each day 

of the week 
Euclidean K-means++  - 

The experimental method 

allows the evolution of the 
centres through time, while the 

traditional method considers 

them stationary 

(Egu et al., 

2020) 

Card-

day 

Bording and alighting 

time (binary vectors) 

Simple 

Matching 

Distance (SMD) 

Hierarchical - 

Assessing simultaneously 

interpersonal and intrapersonal 

variability of user behaviour 

(Gan et al., 

2018) 

Stop-

day 

Bording and alighting 

time 
 K-means - 

This study presents one of the 
first attempts of exploring the 

relationship between local 

LCLU and metro ridership 

patterns 

(Chen et al., 

2009) 

Stop-

day 
- Euclidean K-means - 

Investigating whether station 

ridership’s diurnal pattern is 
closely related to the local built 

environment 

(Reades et 

al., 2016) 

Stop-

day 
Bording time - 

PCA + K-

means 
PAM - 

(Agard et al., 

2013) 

Card-

day 

Bording time (binary 

vectors) 
Euclidean K-means - Dimensionality reduction 
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 METHODOLOGY 

In this chapter, we first introduce the dataset, and the transit agency that provided it; Réseau de 

transport de la Capitale (RTC). We then, provide the framework of our research and the steps we 

follow to reach our objectives. Afterwards, the methods we have employed be presented in detail, 

including three objects of analysis; users, stops and routes separately. 

3.1 Dataset presentation 

In this section we present the data and its provider.  

 Réseau de transport de la Capitale (RTC) 

The data of this study has been provided by Réseau de transport de la Capitale (RTC), a transit 

authority offering regular public transit services for 575,000 inhabitants in the greater Quebec City 

area. The RTC has started to use smart card fare collection system since 2010 in its 563-bus 

network.  97% of Quebec City residents live within 800 meters of a bus stop. The map of RTC bus 

network is presented in Appendix B.   

 Dataset Structure 

Table 3-1 is an excerpt from raw dataset transaction. As can be seen, each transaction has some 

properties which we presented with the exact names provided for this study. We then briefly 

describe them in the following part. 

 

Table 3-1: Excerpts from raw smart card dataset 

Id-

val 
Dateoperat Codeligneo Direction 

Stop-

o 

Stop-

d 
Codeod Tempstraje Distanceod Opus-id 

Code-

produ 

28706 
02/01/2019 

00:19:54 
801 Est 1207 1935 21 15 4703 1878149 TB2-G 

30946 
02/01/2019 

00:03:30 
807 Est 1455 2709 11 14 4237 1010684 TLM-E 

30947 
02/01/2019 
00:03:29 

807 Est 1455 2709 11 14 4237 1002188 TB2-E 

34641 
02/01/2019 

00:09:26 
807 Ouest 1394 1424 21 28 8575 1760187 TLM-G 
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• Id-val: Indicating validation ID which represents a unique record for each transaction.

• Dateoperat: This shows the date and time of boarding indicating “day/month/year” and

“hour:minute:second”. The period runs from 2019/02/01 to 2019/02/28 containing 24 hours

of a day.

• Codeligneo: The number of bus lines which are 992 in the RTC's public transport network.

• Direction: Indicating the four directions of east, west, north, south.

• Stop-o/Stop-d: The number of stops, representing the location of boarding/alighting where

the passengers embark on/end the trip. In RTC bus network, there were a total of 4538 stops

at the time of our processing.

• Codeod: It contains thirteen codes (11, 12, 21, …) describing the type of destination. For

more details please refer to the work of He et al. (2015).

• Tempstraje:

• Distanceod: The distance between the starting point and the destination of the same

direction of the same line.

• Opus-id: Representing the card number, which is unique for each passenger and ensures

analysing the travel activity of each individual. However, for confidentiality reasons, we

do not have access to personal data and all transactions are anonymized.

• Code-produ: Containing 44 different types of fares provided by RTC.
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 Summary Statistics on the Dataset 

The dataset contains 3,233,580 smart card transactions were generated by 159,499 cards from 

2019/02/01 to 2019/02/28. As the first step of analysis, plotting could give us a first impression of 

the distribution of our data.  

 

Figure 3-2 illustrates the number of trips per day as well as the peak hours which is around 7:00 in 

the morning and 16:00 in the evening. 

 

Figure 3-1: Hourly distribution per day in one month 

Figure 3-2: Hourly distribution in days of the week 
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3.2 Proposed Algorithm Structure  

Based on what we discussed in Chapter 2, the gaps in previous research, and having in mind the 

aim of this research, which is to propose a suitable clustering approach for behaviour analysis in 

public transportation, we have designed the following steps to enlighten more the path of time-

series data analysis in public transit by exploring a new method and comparing its results   with 

two popular old ones. Therefore, as a usual need for preparation of dataset before applying any 

method, we must first do some preprocessing, which in our case consists of four sub-steps: 

transformation of validations into trips, vector preparation, classification of fare-types, and 

standardization. All the details of these sub-steps are presented separately in the following sections. 

Then, step 2 provides the three clustering methods; k-shape with SBD, k-means with DTW, k-

means with ED distance, we describe the methods as well as how we use the dtwclust package in 

R to implement them. In step 3, we present our comparison framework which includes three 

perspectives. 
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Number of transactions 

24 hours Stop-day 

vectors

Combination of date 

and 

Card/Stop/Route IDs  

Route-day vectors Stop-day vectors Card/User-day vectors 

Figure 3-3: Schematic diagram of proposed algorithm 

Dataset preprocessing 

Vector preparation 

Step 1: 

K-means Clustering with 

DTW + DBA + (window =1)

K-shape clustering with 

SBD + SE 

Resulted clusters 

Determining number of 

clusters 

K-means Clustering with 

ED + Mean  

Applying Three clustering 

algorithms  

Route Clusters 

Stop clusters 

User clusters User clusters 

Stop clusters 

Route Clusters 

Step 2: 

Step 3: 
Comparison of DTW with SBD 

and ED  

Centroid distance 
External metrics 

(ARI, VI) 
Usage time pattern 

Based on k-means (DTW 

+ DBA) 

User clusters 

Stop clusters 

Route Clusters 

Transformation of 

validations into 

trips

Classification of 

fare types 
Standardization 

Using cluster validation 

indices (DB, DB*) and 

Dendrogram 

Selection of optimal number 

of clusters 

Distance calculation (DTW, 

SBD, ED) 

Applying  

three clustering methods 

with 2 to 20 clusters 

Fare types 

Based on k-shape (SBD + 

SE) 
Resulted clusters based 

on k-means (ED + Mean) 
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3.3 Proposed Algorithm Implementation 

To perform our algorithm, we use R programming versions 3.6.1 and 4.0.5, and mainly dtwclust 

package.  

 Step 1-Dataset Preprocessing 

Before any analysis, the smart card data should be preprocessed through some techniques such as 

data cleaning, data transformation, data reduction and, etc. In this study, since one of our objectives 

is extracting the travel behaviour of passengers through the beginning of the trips (boarding time) 

and the database contains some transfers between lines which should not be considered as 

independent trips, we need to apply some rules to distinguish between trips and transfers. In the 

next section, we present the rules we implemented to do so. The other important aspect for analysis 

is categorising the broad range of fare types such as annual, monthly, unlimited weekends, one day 

pass or some special passes offering by RTC to its passengers. Therefore, in section 3.3.1.2, we 

discuss how we categorised these fare types. Vector preparation is another necessary preprocessing 

step we should perform and since the type of vectors as the input of the model will affect the quality 

of the results, it is considered a critical step. In section 3.3.1.3 we present the procedure, we follow 

for creating vectors for three objects of users, stops, and routes.      

 Transformation of Validations into Trips 

Whenever passengers use the bus services by tapping their smart card on the board, a validation is 

created. Regarding the fact that, some passengers might use their card between their origin and 

destination of their trips for changing the bus/line, they also create validations for the transfers. 

Thus, this is hard to distinguish validation as the origin of a trip or as a transfer (a part of the same 

trip). Given the fact that, we aim to analyse the boarding time (origin) of the trips for extracting 

passenger travel behaviour, we applied the following business rules of RTC’s fare policy: (1) the 

first validation of a day is always the beginning of a new trip, (2) two validations that occur within 

90 min and are made in different lines, are considered as part of the same trip (Deschaintres et al., 

2019; Egu et al., 2020). In other words, for further user analysis and segmentation, the validation 

that meets the second rule considered as part of the same trip and will be deleted. The 90 min rule 
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is used in the calculation of the RTC’s revenue allocation stipulating that a single ticket is valid up 

to 90 min from the previous validation. 

 Classification of Fare-Types 

RTC’s product code dictionary consists of 100 different types of fares which we presented in 

Appendix A. However, in the provided database only 44 fare types were used by users. To simplify 

further analysis, we first categorised fare types into 18 groups illustrated in Table 3-2. 

Table 3-2: Fare product classification into 18 groups 

Passenger District Time 

Student Inner city Long-term (1) 

Short-term (2) 

Ticket (3) 

Outskirts Long-term (4) 

Short-term (5) 

Ticket (6) 

Adult Inner city Long-term (7) 

Short-term (8) 

Ticket (9) 

Outskirts Long-term (10) 

Short-term (11) 

Ticket (12) 

Senior Inner city Long-term (13) 

Short-term (14) 

Ticket (15) 

Outskirts Long-term (16) 

Short-term (17) 

Ticket (18) 

 

We first divided products into 3 base categories of passenger, district, and time. The group of 

“Passenger” contains 3 subcategories of student, adult, and senior. The “Student fare” holds the 

age of 6 to 18 and 19 and over, and “Senior fare” contains the age of 65 and over.  

“District” represents 2 groups of inner city and outskirt for the areas covered by RTC’s transport 

services. “Inner city” consists of Québec City area and “outskirt” or “Metropolitain” covers Québec 

City and Lévis according to RTC fare schedule.  
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“Time” represents the different times the passes are valid. The available passes for RTC services 

are annual, monthly, 5 consecutive days, unlimited weekend, one day pass and, etc. We divided 

time into 3 subcategories of long duration, short duration, and tickets. “Long-term” holds the 

annual and monthly passes and other passes are considered in “short-term”.   

After grouping, we calculated the percentage of each fare-type during one month of analysis. As 

can be identified from the , some types of fare have zero or too small portion and around 9% of 

fare types have missing values. Regarding this, we decided to modify 18 groups in order to have 

more clear interpretation in the analysis part. In doing so, the inner and outskirt have merged, 

besides, the ticket groups have considered in short-term category. The resulted 6 groups consisting 

of “Student-long term”, ”Student-short term”, “Adult-long term”, “Adult-short term”, “Senior-long 

term”, “Senior-short term” with their frequencies is shown in Figure 3-5. 

 

Figure 3-4: Fare-type percentage 

Figure 3-5: Fare-types frequencies 
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 Preparation of Vectors 

One of the main steps in clustering is the definition of vector space (Egu et al., 2020). In this study, 

we prepare vectors on 3 objects of card, stop, and route. For showing daily transit usage patterns, 

we decide to create a vector 𝑉𝑛 =  {𝑣1, 𝑣2, … , 𝑣𝑛}, where 𝑛 = 24 stands for 24 hours of a day and 

each 𝑣𝑖, takes the value representing the number of trips at the given hour of 𝑖. To be specific, when 

𝑣8 = 3, it means that between 8:00 and 8:59 the number of trips is equal to 3. In the following 

sections, we discuss in detail the procedure of vector creation for card/user, stop, and route 

separately.  

3.3.1.3.1 Card-day (or User-day)  

We assume that there is an unambiguous relation between users and cards (1 card = 1 user). 

Therefore, we simply refer to card-day as user-day profile. From the dataset with 3,233,580 smart 

card transactions, based on what we discussed in section 3.3.1.1, the total of 2,502,141 trips 

(boarding time) was obtained. Considering all trips for one user in one day as a one vector, a total 

of 1,356,537 user-day profiles (or vectors) was created with the 24 variables (or length) with the 

same interval represented each hour of a day. It means that user 1 in date 1 and user 1 in date 2 

represent two different vectors. To do so, we combined columns of “Opus-id” and “Dateoperat” 

(date part) in one column and named it “idate”. We then, based on column “Dateoperat” (hour 

part), created 24 variables each represent daily hours and the values are the number of trips in the 

corresponding hour. Table 3-3 shows an example of four resulted vectors. For instance, user 

“1000010” had one trip between 11:00 and 11:59, so H11has the value of one.   

  

Table 3-3: Example dataset of user-day 

 

idate 𝐇𝟏 𝐇𝟐 … 𝐇𝟔 𝐇𝟕 … 𝐇𝟏𝟏 𝐇𝟏𝟐 … 𝐇𝟐𝟒 

1000010_2019-02-25 0 0 … 0 0 … 0 0 … 0 

1000010_2019-02-26 0 0 … 0 0 … 1 0 … 1 

1000015_2019-02-01 0 0 … 1 0 … 0 1 … 0 

1000015_2019-02-04 0 0 … 1 0 … 1 0 … 0 

…           
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3.3.1.3.2 Stop-day 

There are 4,106 stops on the RTC bus-network that we aim to group them based on similar 

behaviour based on the number of trips in each hour of a day. For creating stop-day profiles, we 

used all transactions not only the trips. From 3,233,580 smart card transactions, we created 78,639 

stop-day vectors with the length of 24, the same as what we did for user-day vectors. However, 

here instead of column “Opus-id” we used “Stop-o” which illustrates a unique number for each 

stop. From combination of “Stop-o” and “Dateoperat” (date part), we created a new column called 

“sdate”. Table 3-4 shows an example of four stop-day vectors.  

Table 3-4: Example dataset of stop-day 

sdate 𝐇𝟏 𝐇𝟐 … 𝐇𝟕 𝐇𝟖 … 𝐇𝟏𝟐 𝐇𝟏𝟑 … 𝐇𝟐𝟒 

1005_2019-02-27 0 0 … 2 3 … 0 1 … 0 

1005_2019-02-28 0 0 … 1 4 … 0 1 … 1 

1006_2019-02-01 0 0 … 3 0 … 0 1 … 0 

1006_2019-02-02 0 0 … 0 0 … 0 0 … 0 

                …           

3.3.1.3.3 Route-day 

There are 195 lines on the RTC bus-network. For creating route-day vectors, we followed the same 

procedure as previous sections. From 3,233,580 smart card transactions, we created 3,912 route-

day vectors with the length of 24. This time instead of “Opus-id” we combined the columns of 

“Codeligneo” and Dateoperat” (date part), we created a new column what we called “rdate”. 

Table 3-5: Example dataset of route-day 

rdate 𝐇𝟏 𝐇𝟐 … 𝐇𝟕 𝐇𝟖 … 𝐇𝟏𝟓 𝐇𝟏𝟔 … 𝐇𝟐𝟒 

133_2019-02-27 0 0 … 170 70 … 48 143 … 0 

133_2019-02-28 0 0 … 123 79 … 48 148 … 1 

136_2019-02-01 0 0 … 172 72 … 47 134 … 0 

136_2019-02-04 0 0 … 182 76 … 51 127 … 0 

…           

 

 Standardisation of Data 

Data standardisation is often considered as a pre-processing step in cluster analysis. Since in 

creation of clusters a distance is used, this distance can be affected by dimension, scale, and unit 
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of the variables and change the whole results of clustering. Standardisation of raw data by 

converting them into a specific range using a linear transformation such that they have mean zero 

and standard deviation one, not only can create clusters with better quality but also it improves 

clustering accuracy (Mohamad & Usman, 2013).  

There are three methods for data normalisation consisting of Z-score, Min-Max, and Decimal 

scaling. Mohamad et al. (2013) in their study compared the effect of these three normalisation 

methods on the k-means clustering results and they concluded Z-score is the most powerful one 

for improving clustering efficiency and accuracy.  

In our dataset, for analysing stop-day and route-day vectors since the range of variables changes 

between 0 and more than 1000, we use Z-score method to standardise data we then apply clustering 

algorithms. However, in user-day analysis we do not use Z-score due to the small difference in the 

range of variables (0-12). 

Suppose 𝑌 = {𝑋1, 𝑋2, … , 𝑋𝑛} is a d-dimensional raw data set then the data matrix is a 𝑛 × 𝑑 matrix 

as below: 

𝑋1, 𝑋2, … , 𝑋𝑛 = (

𝑎11 ⋯ 𝑎1𝑑

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑑

) 

The Z-score of these data is obtained by: 

 𝑥𝑖𝑗 = 𝑍(𝑥𝑖𝑗) =
𝑥𝑖𝑗−�̅�𝑗

𝜎𝑗
  3-1 

 Step 2-Applying Three Clustering Techniques 

In this section, we first discuss our methods, and how we apply them. Earlier mentioned, one of 

our goals is to test and adapt a novel k-shape clustering method with SBD, on the smart card data 

in public transit as the first attempt. To make a better comparison, we use the k-means clustering 

approach using the DTW and ED distance metrics. In this section, we go through the three methods 

we will be investigating at our research. We then present the techniques we employed for 

determining the optimal number of clusters for both of our proposed clustering methods.  
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 K-shape clustering  

K-shape clustering has built on the same successful k-means principles. It is based on an iterative 

refining technique that is similar to the k-means algorithm (more detail in Section 2.2.1) but differs 

significantly. Unlike k-means, k-Shape uses a different distance metric (SBD), and a different 

approach for centroid computation (SE) that we describe as following. 

3.3.2.1.1 Shape-based distance (SBD) 

Shape-based distance measure (SBD) is a normalised version of cross-correlation distance 

proposed by Paparrizos et al. (2017) to obtain shift-invariance. They used coefficient 

normalisation, 𝑁𝐶𝐶𝑐(�⃗�, �⃗�) =
𝐶𝐶𝑤(�⃗�,�⃗⃗�)

√𝑅0(�⃗�,�⃗�).𝑅0(�⃗⃗�,�⃗⃗�)
, with the resulted values between [-1, 1]. Since it is 

sensitive to scale, authors also recommend z-normalisation of the sequence to have scale invariance 

as well. Once the amount of w in which 𝑁𝐶𝐶𝑐(�⃗�, �⃗�) is maximum is determined, SBD will be 

calculated as follows: 

 𝑆𝐵𝐷(�⃗�, �⃗�) = 1 − max
𝑤

(
𝐶𝐶𝑤(�⃗�,�⃗⃗�)

√𝑅0(�⃗�,�⃗�).𝑅0(�⃗⃗�,�⃗⃗�)
) ,         0 ≤ 𝑆𝐵𝐷 ≤ 2                3-2 

Where 2 reflects the most dissimilarity while 0 indicates perfect similarity between �⃗� and �⃗�.  

(For more detail please refer to Paparrizos et al. (2017)) 

3.3.2.1.2 Shape extraction (SE) 

Shape-extraction is a recently proposed method to calculate time-series prototypes which is a part 

of the novel k-Shape algorithm described in the study of Paparrizos et al. (2017) and it is based on 

SBD. As mentioned before, although the easiest way to capture the average of sequences is 

arithmetic mean, it is not a proper choice for averaging due to its lack of ability to extract all 

characteristics of time-series data. Therefore, Paparrizos et al. (2017) suggested to use the concept 

of optimisation problem; the minimum within-cluster sum of squared distances, which can be 

indicated as bellows. 

 𝑃∗ =  argmin
𝑝

∑ ∑ 𝑑𝑖𝑠𝑡(�⃗�𝑖 , 𝑐𝑗)
2

�⃗�𝑖∈𝑝𝑗

𝑘
𝑗=1                   3-3 
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Where, 𝑃 = {𝑝1, … , 𝑝𝑘} is the number of clusters (partitions), 𝑐𝑗 is the centroid of partition 𝑝𝑗∈ 𝑃, 

𝑋 =  {�⃗�1, … , �⃗�𝑖, … , �⃗�𝑛} is the set of n observations. In other words, the objective is minimising 

distances between each centroid in a partition with all observations in that given partition. 

However, in the case of shape extraction, since shape-based and cross-correlation distance capture 

similarity - rather than dissimilarity - of sequences, Equation 3-3 changes to maximisers and based 

on Equation 3-2 we have: 

�⃗�𝑘
∗ = argmax

�⃗⃗⃗�𝑘

∑ 𝑁𝐶𝐶𝑐(�⃗�𝑖, �⃗�𝑘)2

�⃗�𝑖∈𝑃𝑘

 

 = argmax
�⃗⃗⃗�𝑘

∑ (max
𝑤

𝐶𝐶𝑤(�⃗�,�⃗⃗�)

√𝑅0(�⃗�,�⃗�).𝑅0(�⃗⃗�,�⃗⃗�)
)

2

�⃗�𝑖∈𝑃𝑘
  3-4 

This equation requires the computation of an optimal shift for every �⃗�𝑖 ∈ 𝑃𝑘. We use the previously 

computed centroid as a reference and align all sequences using SBD towards this reference 

sequence according to the context of iterative clustering. Since before the computation of the 

centroids, sequences are already aligned towards a reference sequence, we can omit the 

denominator of Equation 3-4. Then, by combining Equations 2-6 and 2-7, we will have: 

 �⃗�𝑘
∗ = argmax

�⃗⃗⃗�𝑘

∑ (∑ 𝑥𝑖𝑙 . 𝜇𝑘𝑙𝑙∈[1,𝑚] )
2

�⃗�𝑖∈𝑃𝑘
   

For simplicity, this equation can be expressed with vectors and assume that the �⃗�𝑖 sequences have 

already been z-normalised to handle the differences in amplitude. 

 �⃗�𝑘
∗ = argmax�⃗�𝑘

𝑇
.

�⃗⃗⃗�𝑘

∑ (�⃗�𝑖. �⃗�𝑖
𝑇). �⃗�𝑘�⃗�𝑖∈𝑃𝑘

  3-5 

In this equation only �⃗�𝑘 is not z-normalised. To handle the centring, we set �⃗�𝑘 = �⃗�𝑘. 𝑄, where 𝑄 =

𝐼 −
1

𝑚
𝑂, 𝐼 is the identity matrix and 𝑂 is the matrix with all ones. Moreover, for making �⃗�𝑘 to have 

a unit norm, we divide Equation 3-5 by �⃗�𝑘
𝑇 . �⃗�𝑘. Finally, by subtracting S for ∑ (�⃗�𝑖. �⃗�𝑖

𝑇)�⃗�𝑖∈𝑃𝑘
, we 

obtain: 
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�⃗�𝑘
∗ = argmax

�⃗⃗⃗�𝑘

�⃗�𝑘
𝑇 . 𝑄𝑇 . 𝑆. 𝑄. �⃗�𝑘

�⃗�𝑘
𝑇. �⃗�𝑘

 

 �⃗�𝑘
∗ = argmax

�⃗⃗⃗�𝑘

�⃗⃗⃗�𝑘
𝑇.𝑀.�⃗⃗⃗�𝑘

�⃗⃗⃗�𝑘
𝑇.�⃗⃗⃗�𝑘

  3-6 

Where 𝑀 = 𝑄𝑇 . 𝑆. 𝑄. Using the preceding transformations, Equation 3-5 was simplified to the 

optimisation of this equation, which is a well-known problem called maximisation of the Rayleigh 

Quotient (Paparrizos et al., 2017).  

 K-means clustering with DTW and ED distances  

As stated in Section 2.2.1, k-means performs two steps: (1) assignment step, which updates the 

cluster memberships by comparing each time-series based on a distance measure with all centroids 

and assigning each to the closest centroid; (2) refinement step, To reflect the changes in cluster 

memberships in the preceding stage, the cluster centroids are modified using the prototyping 

approach. It repeats these two processes until the cluster membership does not change or the 

maximum number of iterations is reached. 

In this thesis, along with the k-shape clustering with SBD, we also perform k-means clustering 

with DTW distance and DBA prototyping procedure (more detail in Section 2.2.4), and k-means 

clustering with ED and mean as prototyping technique.  

To understand the characteristics and differences of ED and DTW distance measures clearly, we 

compare them based on their alignment procedure. As can be seen from Figure 3-6, the two series 

are pretty similar in shape but slightly differ in phase (time). ED alignment without considering 

this possible variance in time series data, calculates a one-by-one distance between each element 

of sequence whereas DTW calculates a pairwise distance between all elements. Having this 

advantage, it provides more meaningful comparison while considering the possible shift. However, 

without any constraint in time shifting DTW will perform as Figure 3-7 illustrated. It is clear from 

this figure, without considering any restrictions on the warping path, the alignment can get stuck 

in similar features and ignore the difference. DTW’s ability to determine a window size makes it a 

suitable distance measure particularly when the amount of shift (lag) is an important factor in time 

series comparison.        



35 

 

 

 

 

 

Although DTW is the most used and proper similarity measure for comparing sequences, because 

of the lack of a suitable averaging method, its applicability was reduced until Petitjean et al. (2011) 

proposed a global averaging method, called DTW barycentre averaging (DBA). In their study, they 

showed that this method not only covers all drawbacks of previous averaging method under DTW 

Figure 3-7: DTW alignment without 

constraint 

(a)                                                 (b)  

Figure 3-6: Alignment between two series: 

(a) under DTW, (b) under ED 
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space, but also its behaviour is robust and outperforms other techniques. Since then, combining k-

means with DBA which relies heavily on averaging, provides a reliable method for clustering time-

series data using DTW distance measure.  

All in all, we presented in this chapter different distance measures and prototyping techniques while 

emphasising their advantages and disadvantages based on the literature. In the following chapters, 

we will apply our three methods with different distance measures and averaging techniques on 

three different types of vectors to highlight their benefits, specifically on our dataset.       

For the sake of simplicity, we name the three clustering approaches "DTW," which stands for k-

means clustering with DTW distance measure, "SBD," which represents k-shape clustering with 

SBD, and "ED," which refers to k-means clustering with Euclidean distance. 

To apply each of these methods, we only need to change the distances to DTW, SBD, and ED, as 

well as the prototyping methodologies to DBA, SE, and Mean, respectively, and in case of DTW, 

we set 1 for parameter window. Since we use R programing and dtwclust package, all of these 

options are implemented in tsclust function. 

Furthermore, because k-shape clustering is based on k-means and it needs the number of clusters 

as an input, we follow the procedure of determining the optimal number of clusters which has been 

presented in the next section.   

 Determining the optimal number of clusters  

As previously stated, k-means and k-shape require a preceding number for clusters. Cluster 

validation indices are one method for determining this value. In doing so, clustering is used by 

considering different numbers for clusters, these indices are calculated for each result. The number 

of these indices, which are an indicator of purity and well-separated segments, is then used to 

compare the quality of the resulting clusters. The given number of clusters that yield to the better 

resulted indices, would be the best choice as a prior cluster number. In our study, we used internal 

cluster validation indices (CVIs) that was discussed in detail in Section 2.2.5. Nevertheless, along 

with using this method, domain knowledge can play a crucial role.   
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Figure 3-8 illustrates an example of resulted DB and DB* indices considering different numbers 

for clusters (2 to 20). As can be seen, the minimum has been occurred in 5, 9, 13 for both lines 

meaning that by choosing each of them as cluster number considering other conditions, the resulted 

clusters contain more purity and are well separated which indicates the good performance of 

clustering algorithm when choosing 5, 9 or 13 as a prior number for clusters.  

 

Figure 3-9 also shows an example of resulted Sil index. In this index since the maximum amount 

indicates the better result of clustering, the optimal choices are, 10, 9, 11, 6 and 4. 

 

Regarding the fact that, Silhouette index calculates the entire distance matrix between the series in 

the data, which can be prohibitive for methods with random centroid selection techniques, such as  

SE and DBA (Sardá-Espinosa, 2018), we employ a dendrogram approach across 30 centres. The 

prior number of clusters is set to 30 in this two-step procedure, and then the clustering algorithm is 

Figure 3-8: Example of resulted DB and 

DB* indices for 2 to 20 clusters 

Figure 3-9: Example of resulted Sil index 

for 2 to 20 clusters 
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applied to the entire dataset. The 30 centroids are then plotted on a dendrogram. The ideal number 

of clusters is chosen based on this dendrogram (Morency et al., 2017). 

 Figure 3-10, shows an example of the resulted dendrogram has been drawn over 30 vectors as the 

centres of the 30 clusters.  

 

 Step 3-Comparison of Three Clustering Techniques   

Three criteria guided the development of our comparison system. First, the DTW distance between 

the centroids of DTW clusters and the centroids of SBD and ED clusters is calculated. After that, 

we take an average of the resulted distances. The one with the minimum average distance would 

agree more with DTW partitions. 

Second, as we explained in Section 2.2.5.2, the comparison is based on two external measurements. 

Each approach has a larger ARI value, and a lower VI value is more compatible with DTW 

partitions. 

Finally, we compare the clustering methods based on their patterns, rather than solely using 

statistical measurements. This would help us to see the differences in detail and with each cluster 

patterns, portions, and distributions. For the user-day vectors, we also use the difference of the 

methods in fare-type distribution.  

 

  

Figure 3-10: Example of resulted 

dendrogram over 30 centroids 
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 CARD-DAY ANALYSIS  

In this chapter, the three clustering algorithms of DTW, SBD, and ED applying to the user-day 

vector will be presented and compared. We first discuss how we decide on the optimal number of 

clusters for these methods. The resulting clusters are then compared from four perspectives: 

distance between centroids, external measures, usage time, and fare-type. 

4.1 Number of Groups 

As explained in the previous chapter, we used DB and DB* techniques, as well as a dendrogram, 

to discover the optimal number of clusters. Since there is no one-size-fits-all solution in this regard, 

the best strategy is to try out different methods and make a decision based on their agreement.  

For DB and DB*, we applied DTW, SBD, and ED on our dataset with setting the number of clusters 

from 2 to 20. And then, the amounts of DB and DB* corresponding to each cluster number were 

calculated as shown in part (a) from Figure 4-1,Figure 4-2, and Figure 4-3. In part (b) of these 

figures, the dendrogram obtained from 30 cluster centres resulting from DTW, SBD, and ED is 

illustrated.   

Figure 4-1 (a) shows the minimum amounts of DB and DB* when the number of clusters in DTW 

is 6, 19, 9, and 12. Also, Figure 4-1 (b) in the resulted dendrogram, looking top to bottom, we 

observe that the split to 6 clusters causes a significant drop in the amount of error and the biggest 

successive splits occur at 9 and 12 clusters; 12 is also a good choice but a negligible difference in 

comparison to 9. In this case, the number 9, which is neither too big nor too small, appears to be a 

good choice. 

Figure 4-1: Selection of the optimal number of clusters for users under DTW 

by: (a) DB and DB* (b) dendrogram  

(a)                                                                          (b) 
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As illustrated in Figure 4-2 (a), applying SBD for 2 to 20 clusters, the minimum amounts of DB 

and DB* occur in 13, 6, 9, and 19 clusters. Figure 4-2 (b) also displays the resulted dendrogram 

over 30 centroids, and likewise DTW, it seems cutting the dendrogram into 6 and then into 9 

clusters reduce the amount of error noticeably. Although the reduction in error is also visible in 13 

groups, we can ignore this difference and choose 9 as the best number. The same procedure was 

followed for ED, Figure 4-3, and we decided 10 clusters is the best choice. 

 

  

 

 

(a)                                                                            (b) 

Figure 4-2: Selection of the optimal number of clusters for users under SBD 

by: (a) DB and DB*, (b) dendrogram 

Figure 4-3: Selection of the optimal number of clusters for users under ED 

by: (a) DB and DB*, (b) dendrogram 

(a)                                                                            (b) 
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4.2 Comparison of SBD and ED with DTW 

We compare and assess the resulting clusters of applying DTW, SBD, and ED methods from four 

perspectives in this section. First, the comparison is based on the mean distance between the 

clusters’ centroids, then the amount of two external measures is considered, followed by the time 

of usage, and finally, the type of tariff. 

 Based on Distance Between Clusters 

As we emphasised in this study, distance measure is used for calculating (dis)similarity between 

two objects. Thus, one way to compare SBD and ED with DTW is calculating the distance between 

their clusters and see which of them are closer to DTW indicating more agreement. With the aim 

of doing so, there are three approaches: (1) Single linkage; measures the distance between the 

closest members of the clusters, (2) Complete linkage; measures the distance between the most 

distant members, and (3) Centroid comparison; measures the distance between the centers of the 

clusters (Pérez, 2020).We decided to use the third one in our case.  

Figure 4-4 shows the heat map illustrating the distance between the cluster centroids of DTW with 

SBD and ED. The more two centers are closer; the more colour is lighter and shows the better 

choice for matching. To calculate the distance, we used DTW distance measure with window 

equals to 1, and due to the difference in the range of centroids, we standardised them before 

calculating their distance for more meaningful comparison.  

 

 

Figure 4-4: Distance between DTW and: 

(a) SBD, (b) ED, user clusters 

(a)                                                                            (b) 
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The final distance was calculated using the average, producing 3.696 and 3.619 for SBD and ED, 

respectively. Since the distance between DTW and ED is smaller than the one between SBD and 

ED, it can be assumed that the results of DTW and ED are more in agreement. However, it is 

preferable to compare them from other perspectives due to the tiny difference between them.  

 Label Matching 

K-means and k-shape algorithms assign labels to groups randomly, therefore cluster 1 might be 

generated with different patterns in each run. As a result, it is useful to match SBD and ED cluster 

labels with DTW in order to make a more explicit comparison, mainly in a graphical format. As 

stated in the previous part, measuring the distance is one form of comparison.; we thus, matched 

the labels of SBD and ED clusters with DTW using the minimum distance between the centroids 

showing in the heat maps Figure 4-4. 

Table 4-1 and Table 4-2, show the steps we followed to determine the best match according to 

these heat maps. First, we ordered the clusters from the least to the highest distance amount for 

every SBD clusters. We then, detected the clusters are identified as the best matches for more than 

one cluster. For instance, in Table 4-1, DTW cluster 6 has been determined as the best match for 

SBD clusters 3, 4, and 6 (green-coloured). Observing the heat map, we saw the distance between 

DTW cluster 6 from these clusters is 4.56, 4.36, and 4.41, respectively. So, DTW cluster 6 would 

be the best match for SBD cluster 4 with a distance of 4.36. We kept DTW cluster 6 for SBD cluster 

4 and switched SBD clusters 3 and 6 to their second-best matches, and this process was repeated 

until all of the clusters’ matches are unique. 
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Table 4-1: SBD matched labels by distance 

 

 

Table 4-2: ED Matched labels by distance 
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Furthermore, there is another method for matching the labels which is easier to use and more 

straightforward. The function of matchLabels in the R package WGCNA which is not dependent 

on distance but rather it considers the objects are grouped in the clusters based on the contingency 

table. In other words, this function is based on Fisher's exact test to determine if there are non-

random associations between clusters. The resulted matched labels from distance and Fisher’s 

exact test are different. This method unlike the centroid distance which only considers the distance 

between clusters’ centroids, compares them based on the assigned objects that seems a more 

reliable approach. So, we decided to use the labels in Table 4-3 and Table 4-4 for the comparison 

in the following sections. 

Table 4-3: SBD matched labels by Fisher's exact test 

 

 

 

 

Table 4-4: ED matched labels by Fisher's exact test 

 

 

 

 

 Based on External Measurements 

As pointed out in Section 2.2.5.2, ARI calculates the number of data points in the same/different 

resulted groups for comparing two clustering methods and VI consider the non-overlapping parts 

of two methods. Table 4-5 shows the contingency table used for calculating ARI, to avoid 

repetition, we did not present here the contingency table for ED and DTW.  

 

Partition SBD 

DTW 

Matched 

labels 

(Fisher’s 

exact 

test) 

1 2 3 4 5 6 7 8 9 

4 1 2 8 6 5 3 9 7 

Partition ED 

DTW 

Matched 

labels 

(Fisher’s 

exact 

test) 

1 2 3 4 5 6 7 8 9 10 

3 1 5 4 7 6 8 1 2 9 
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Table 4-5: Contingency table between SBD and DTW 

Partition 

DTW 

1 2 3 4 5 6 7 8 9 SUM 

S
B

D
 

1 63647 19714 136776 28449 6597 6 11392 459 66218 333258 

2 19490 17210 4079 1534 6187 4302 3007 5187 8473 69469 

3 11107 3026 14254 1034 7885 767 4064 10161 9041 61339 

4 3979 1963 800 50070 4989 2225 54312 19285 9228 146851 

5 23202 55782 15112 61087 89885 1088 254 38282 22460 307152 

6 3619 1437 14290 3457 2466 3611 86612 1925 1897 119314 

7 3044 1394 7040 31997 2062 1645 144313 3934 5574 201003 

8 13129 2956 3745 1677 6592 1086 854 5117 14278 49434 

9 22373 10748 7167 1252 4531 3557 2544 5583 10962 68717 

SUM 163590 114230 203263 180557 131194 18287 307352 89933 148131 1356537 

 

In this study we mainly use dtwclust package in R, ARI and VI index are implemented in the main 

function of cvi in this package, so we did not use the contingency tables directly. Regarding the 

fact that DTW is a popular most used distance measure for time-series clustering we considered its 

results as a ground truth to compare with the results of novel SBD and ED methods. We also 

calculated ARI and VI based on two results of matched labels we obtained in the previous part to 

see if the amounts of these index depend on the labels. Table 4-6 shows the amount of both ARI 

and VI does not depend on the labels and remains constant in three different label assignment 

scenarios. 

Table 4-6: External measures for SBD and ED 

 

External 

measures 
SBD 

SBD matched 

labels/distance 

SBD matched 

labels/Fisher 
ED 

ED matched 

labels/distance 

ED matched 

labels/Fisher 

ARI 0.184 0.184 0.184 0.099 0.099 0.099 

VI 1.322 1.322 1.322 1.254 1.254 1.254 
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ARI ranges from 0 to 1, while 0 indicating that two clustering approaches are distinct and 1 shows 

they are identical. VI starts at 0 for similar partitions and grows greater as the partitions become 

more dissimilar. The bigger amount of ARI for SBD, in Table 4-6, shows higher agreement 

between SBD and DTW than ED and DTW, whereas the smaller VI for ED challenges this 

conclusion.  

 Based on Usage Time 

The resulted cluster centroid patterns from applying DTW, SBD, and ED are plotted over 24 hours. 

We used the matched labels for SBD and ED resulted from Fisher’s exact test and coloured them 

as same as corresponding DTW cluster labels. For instance, cluster 6 from SBD and cluster 3 from 

ED, are matched with cluster 5 from DTW, all has been coloured in orange. To characterise these 

patterns and to have their portions of the dataset, we plotted the pie charts are shown in Figure 4-5, 

Figure 4-6, and Figure 4-7. 

Figure 4-5: DTW user clusters' patterns 
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Figure 4-6: SBD user clusters' patterns 
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Figure 4-7: ED user clusters' patterns 
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According to Figure 4-5, the patterns of DTW clusters were categorised in four main groups; 

considering the portions in Figure 4-8, for all three methods clusters, the characterisation is as 

follows: 

1. Regular commuters: This category consists of users with the frequent of usage mostly twice 

a day in the morning and in the afternoon. In DTW, clusters 4, 6, 7, and 8 with the 43.95% 

of total users belong to this group. Based on matched clusters, in SBD, clusters 1, 4, 5, and 

9 should be in this category but based on the patterns, cluster 4 does not have the same 

characteristics of this group instead cluster 7 does. Therefore, SBD clusters 1, 5, 7, and 9 

are identified as having the regular pattern with the 44.04% portion of all users. For ED, 

cluster 4, 5, 6, and 7 are in this group based on the matched clusters. However, it is obvious 

from the patterns in Figure 4-7,clusters 4 and 6 are not among this group while cluster 9 

has the same characteristics of this group. So, In ED, clusters 5, 7, and 9 with the total 

portion of 31.87% have this group pattern.  

2. Midday commuters: This group is identified as the users who use public transit mostly 

around the lunch time. In DTW, clusters 1, 2, and 9 are in this category with the 31.4% of 

total users. In SBD, based on matched labels, clusters 2, 3, and 8 belong to this category, 

however, clusters 3 and 8 can hardly be considered as midday commuters. So, the only 

cluster in SBD that have the same characteristics of this group is cluster 2 with the portion 

of 24.57%. Based on matched labels, clusters 2, 8, 9, and 10 from ED are categorised in 

this group, but cluster 2 does not have a well-defined pattern and cluster 9 is in the regular 

group, so for ED, clusters 8 and 10 with 8.06% of users are members of this group.  

Figure 4-8: Clusters' portions: (a) DTW, (b) SBD, (c) ED 

(a)                                             (b)                                              (c) 
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3. Late commuters: This group consists of users with the usage in late evening. In DTW, users 

in cluster 5 are identified as the late commuters with 9.67%. In SBD, cluster 6 is in this 

category according to the matched labels, though based on the patterns, clusters 3, 4, and 8 

are also having the same characteristics of this group. Therefore, the total portion of 36.47% 

users is grouped in this category by SBD method. Cluster 3 is the only cluster from ED is 

identified in this group based on matched labels, but clusters 4 and 6 are also having the 

same pattern of this group with the total portion of 11.12%.    

4. Early bird commuters: In DTW, cluster 3 belongs to this group with 14.98% of all users. In 

SBD, although based on the matched labels cluster 7 should be considered in this group, it 

more has the characteristics of regular commuters than early birds. Based on SBD patterns, 

Figure 4-6, there is no cluster having the same pattern of this group. But ED has cluster 1 

based on matched labels and also the patterns which is among this group of commuters with 

the portion of 6.54%.   

In terms of DTW and SBD comparison, we can observe that the most similar portion of users have 

been segmented in the regular commuter group by both methods. The least similar portions belong 

to late and early bird commuters. This reveals what we expected from the behaviour of SBD method 

in the creation of groups. Because SBD, unlike DTW, does not consider the shift in time and only 

considers the similarity in shape; in cased of significant shift, it could mistakenly assign users with 

the early-bird pattern to the group of late commuters or vice versa. It can, nevertheless, produce 

satisfactory outcomes in the case of slight shift in time, as what it did in the creation of regular and 

midday commuters in our case. 

On the other hand, while ED shaped the groups in all four categories in the same way as DTW did, 

its portions in each of them differ dramatically from those in DTW. ED method also created a non-

well definable pattern in cluster 2 consisting of a noticeable portion of 42.41% of users, which we 

could not place in any of the four categories. 

The daily distribution of these four categories over one month for three methods is shown in Figure 

4-9, Figure 4-10, and Figure 4-11. As can be seen, the distribution of regular commuters is similar 

in three methods. DTW and SBD also have roughly the same distribution in midday group while 

in SBD, late commuters is the dominant group consisting of late and early-bird users. Comparing 
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DTW and ED, we observe that although ED outperformed SBD in terms of creating late and early-

bird groups, its dominant category, identified as non-well definable pattern, includes users from 

both regular and midday patterns, implying that this algorithm may not be effective in recognising 

all patterns in our case. 

 

 

 

Figure 4-9: Distribution of DTW categories over one month 

Figure 4-10: Distribution of SBD categories over one month 
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 Based on Fare-Type 

Figure 4-12 shows the distribution of fare-type revealing that the highest percentage of users 

correspond to “Adult-long-term”, “Student-long-term”, and “Adult-short-term”, respectively no 

matter which day of the week. Also, the lowest percentage belong to “Senior-short-term”, “Senior-

long-term”, and “Student-short-term” respectively on weekdays, however, “Student-short-term” 

and “Senior-long-term” have headed similar frequency on weekends.        

   

 

Figure 4-12: Frequency distribution of fare types by day of the week 

Figure 4-11: Distribution of ED categories over one month 
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According to Figure 4-13, on weekdays the portion of users that have been grouped in DTW cluster 

7 is noticeably more than weekends. Its matched clusters in SBD, cluster 9, and in ED, cluster 5 

follow the same pattern. In addition, based on ,the distribution of each fare-type for DTW cluster 

7 and ED cluster 5, are the same, belonging mostly to “Adult-long-term”, “Adult-short-term”, and 

“Student-long-term” while SBD cluster 9 consist of all types of fares. Moreover, DTW cluster 5 

and its matched ones in SBD and ED, clusters 6 and 3, respectively, have the more portions in 

weekends than weekdays. Again, the distribution of fare types corresponding to these clusters, 

reveals the more compatibility between DTW and ED than DTW and SBD. Likewise, DTW 

clusters 1, 2 and 9 have the more portions on weekends, their matched clusters in SBD, clusters 2, 

3 and 8 have the same distribution for both clusters and fare types based on Figure 4-13 and Figure 

4-14. We also can conclude that for these clusters which having the pattern of more frequency in 

weekends, the portion of senior fare-type besides Adult and student, is considerable. In addition, 

ED clusters 2, 8, and 9, are the same as DTW in fare-type distribution but different in cluster 

distribution.  

 

Figure 4-13: Distribution of clusters by day of the week: 

(a) DTW, (b) SBD, (c) ED 

(b)                                                                        (a)                                                                        (c)                                                                        
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Considering all forms of comparisons, it is clear that neither ED nor SBD approaches completely 

outperformed the other one in the case of user-vector analysis for our dataset. 

  

Figure 4-14: Distribution of fare-type versus clusters: 

(a) DTW, (b) SBD, (c) ED  

(a)                                                                        (b)                                                                        (c)                                                                        
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 STOP-DAY ANALYSIS 

This chapter deals with the analysis of the stop-day vector. To do so, the procedure of choosing the 

optimal number of clusters for three methods of DTW, SBD, and ED will present and then the 

comparison of their resulted partitions based on three perspectives of minimum distance, external 

metrics and usage time will discuss. In this chapter, unlike for user-day vectors, we do not use fare-

type distribution as a comparison criterion and for matching labels, we only use Fisher’s exact test 

technique.    

5.1 Number of Groups 

We determined the optimal number of clusters by applying DTW, SBD, and ED methods 

considering the different clusters from 2 to 20, using DB and DB* indices and dendrogram. Figure 

5-1, Figure 5-2, and Figure 5-3 show the number of these indices corresponding to each cluster 

number and the dendrogram drawn over 30 centroids.  

We can observe from Figure 5-1 (a), for DTW, the minimum amount of DB and DB* occurred in 

9, 7, 6, 14, and 15. From the dendrogram shown in Figure 5-1 (b), it can be seen a considerable 

drop in error has occurred in 6 clusters while from 6 to 7, the decrease in error is not significant; 

however, again in 9, this elimination is noticeable.  

Likewise, for SBD and ED, we followed the same procedure, and we decided to choose the optimal 

number of clusters equals 6 for all three methods. 

 

Figure 5-1: Selection of the optimal number of clusters for stops under DTW 

by: (a) DB and DB*, (b) dendrogram over 30 centroids 

(a)                                                                            (b) 
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5.2 Comparison of SBD and ED with DTW 

In this section, we compare and discuss the resulting clusters of the application of DTW, SBD, and 

ED from three perspectives of distance, external measurements, and usage time. 

 Based on Distance Between Clusters  

As already mentioned in Chapter 4, to calculate the distance between clusters, we used DTW 

distance measure between centroids shown in the heat maps (Figure 5-4). The closer the two centres 

are to each other, the lighter the colour. 

 

Figure 5-2: Selection of the optimal number of clusters for stops under SBD 

by: (a) DB and DB*, (b) dendrogram over 30 centroids 

(a)                                                                            (b) 

(a)                                                                            (b) 

Figure 5-3: Selection of the optimal number of clusters for stops under ED 

by: (a) DB and DB*, (b) dendrogram over 30 centroids 
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Based on Figure 5-4, the average distance between DTW and SBD is 2.998, and between DTW 

and ED is 3.023. The difference between these average distances is obviously insignificant, and 

because these distances are average, they do not provide a true comparison. Therefore, using other 

types of comparisons appears to be inevitable. 

 Label Matching  

As stated in Chapter 4, we explored two methods of minimum distance and Fisher’s exact test for 

obtaining the most similar clusters. In this chapter, however, we just employed Fisher's exact test 

method to match the labels of SBD and ED with DTW. The results are shown in Table 5-1 and 

Table 5-2. 

Table 5-1: Matched labels for SBD clusters based on Fishers' exact test 

 

 

 

 

Partition SBD 

DTW 

Matched 

labels 

(Fisher’s 

exact 

test) 

1 2 3 4 5 6 

6 4 1 5 2 3 

(a)                                                                            (b) 

Figure 5-4: Distance between DTW clusters and: 

(a) SBD clusters, (b) ED clusters 
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Table 5-2: Matched labels for ED clusters based on Fisher's exact test 

 

 

 

 

 Based on External Measurements 

Regarding the last part, we calculate ARI and VI (for more detail) for original SBD and ED clusters 

labels. To prevent repetition, we did not display contingency tables before computing ARI in this 

case. It can be observed from Table 5-3, ED partitions have more agreement with DTW partitions 

than SBD with the more score in ARI (0.329) and lower score in VI (0.868). 

Table 5-3: External measures for SBD and ED 

 

 

 

 Based on Usage Time 

The cluster patterns depicted in Figure 5-5, Figure 5-6, and Figure 5-7, were obtained by applying 

DTW, SBD, and ED to stop-day vectors. We used the same colours for those clusters of SBD and 

ED that were matched with DTW according to Fisher’s exact test for more clarity in comparison. 

Error! Reference source not found.8 also shows the portions of each method clusters.  

Partition ED 

DTW 

Matched 

labels 

(Fisher’s 

exact 

test) 

1 2 3 4 5 6 

4 2 5 3 6 1 

External 

measures 
SBD ED 

ARI 0.076 0.329 

VI 1.232 0.868 
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Figure 5-5: DTW stop clusters' patterns 

Figure 5-6: SBD stop clusters' patterns 
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According to what we observed for DTW patterns in Figure 5-5 and the portions in Figure 5-8, 

these patterns have been characterised in four main groups as follows. SBD And ED clusters have 

been also grouped accordingly.  

1. Stops with regular commuters: DTW cluster 5 containing 11.39 percent of all stops has the 

pattern of usage mostly in the morning and afternoon. Its matched cluster in SBD, cluster 

4, does not have a regular pattern but rather it shows most usage with two peaks both in the 

morning with the percentage of 7.73, less than DTW. Besides, cluster 3 in ED which is the 

(a)                                               (b)                                                 (c) 

Figure 5-7: ED stops clusters’ portions 

Figure 5-8: Clusters' portions: (a) DTW, (b) SBD, (c) ED 
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matched one for DTW cluster 5, has the pattern of all-day-long rather than regular. 

Considering ED cluster 5 in this group with 8.42% is more meaningful.   

2. Stops with all-day-long commuters: In DTW clusters 1 and 3 has this pattern with the total 

of 33.76% of all stops. Their corresponding clusters in SBD are clusters 3 and 6. While 

according to their patterns, only cluster 3 can be included in this group with 6.42%. ED 

clusters 4 and 6 are the matched one with DTW clusters, while only cluster 6 can be 

considered in this category based on its pattern. The other ED cluster according to the 

pattern is cluster 3. Therefore, ED clusters 3 and 6 with the total of 41.59% of stops are in 

this group.      

3. Stops with early-bird commuters: For DTW cluster 4 has this pattern with 31.38%. Its 

matched one in SBD is cluster 2 which has the opposite pattern of this group and should be 

considered in late commuters. Cluster 1 in ED and also cluster 4 are among this category 

with the total percentage of 44.34.  

4. Stops with late commuters: This category consists of DTW clusters 2 and 6 with 23.47%. 

Their matched clusters in SBD are 5 and 1, but based on the patterns, clusters 2 and 6 are 

also among them. So, the total percentage of 85.86 of all stops, have this pattern based on 

SBD. For ED, although clusters 2 and 5 are the matched ones, cluster 2 can be considered 

in this category with 5.65%.  

For better understanding the difference, we plotted the distribution of these four categories for all 

three methods per day over one month in Figure 5-9, Figure 5-10, and Figure 5-11. 
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Figure 5-10: Distribution of SBD categories over one month 

Figure 5-9: Distribution of DTW categories over one month 

Figure 5-11: Distribution of ED categories over one month 
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From these figures, it can be noted that the most significant difference between DTW and SBD 

occurred in the grouping of early birds and late commuters. In a way, late commuters are a 

dominant group and there is no stop with the pattern of early birds based on SBD. This is in line 

with what we concluded in Chapter 4 from SBD method and its ignorance of time-shifting.  

In spite of the fact that, ED outperformed SBD in the case of stop segmentation, and its distribution 

in four categories is more similar to DTW than SBD, its differences in all-day-long, early bird, and 

late commuters with DTW is noticeable.  
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 ROUTE-DAY ANALYSIS 

This chapter aims to analyse, particularly, route-day vectors and compare the results of applying 

three methods of DTW, SBD, and ED. First, the procedure of choosing the optimal number of 

clusters, and then the comparison based on three perspectives of minimum distance, external 

metrics and usage time will discuss, likewise stop-day vectors in previous chapter.    

6.1 Number of Groups 

As clarified in previous chapters, we used DB and DB* indices along with dendrogram to 

determine the prior number of clusters before applying our three methods. Figure 6-1(a), shows the 

minimum amounts of DB and DB* occur when the number of clusters is 3, 4, 5, and 11. In Figure 

6-1(b) we see a considerable drop in error when dendrogram cuts in 5, while moving from 5 to 6 

does not cause a significant decrease in the amount of error. Therefore, five groups seem good 

enough as the prior choice for the number of clusters. Likewise, for SBD and ED, we follow the 

same procedure, and the optimal number of 4 and 5, respectively, is chosen. Figure 6-2 and Figure 

6-3 also confirm this selection.  

  

 

 

 

 

Figure 6-1: Selection of the optimal number of clusters for routes under DTW 

by: (a) DB and DB*, (b) dendrogram over 30 centroids 

(a)                                                                            (b) 
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6.2 Comparison of SBD and ED with DTW 

In this section, we compare and evaluate the resulted clusters from the application of DTW, SBD, 

and ED based on three points of view. First, based on the distance between clusters centroids, and 

since k-means intrinsically produces random labels in each run for a more explicit comparison 

between three resulted partitions, we match SBD and ED clusters labels to DTW labels using 

Fisher’s exact test. Second, calculating the amounts of ARI and VI, and then according to the time 

of using.  

(a)                                                                            (b) 

Figure 6-2: Selection of the optimal number of clusters for routes under SBD 

by: (a) DB and DB*, (b) dendrogram over 30 centroids 

(a)                                                                            (b) Figure 6-3: Selection of the optimal number of clusters for routes under ED 

by: (a) DB and DB*, (b) dendrogram over 30 centroids 

(a)                                                                            (b) 
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 Based on Distance Between Clusters 

Figure 6-4 shows DTW distance measure between (a) DTW clusters and SBD clusters centroids, 

and (b) DTW clusters and ED clusters centroids. According to these heat maps, the fewer two 

clusters are closer; the more colour is darker.  

  

According to these heat maps, we computed the average distance for both DTW-SBD, and DTW-

ED which are 3.29 and 3.11, respectively. However, this slight difference in their average distances 

is negligible, requiring a different method of comparison. 

 Label Matching 

The resulted matched labels according to Fisher’s exact test (for more detail see Appendix) is  

shown in , there is no suitable match for SBD-cluster 4 and ED cluster 2 corresponding to DTW 

clusters. This means that there is no non-random association between each DTW cluster with SBD 

and ED clusters.  

 

 

Table 6-1 and Table 6-2, there is no suitable match for SBD-cluster 4 and ED cluster 2 

corresponding to DTW clusters. This means that there is no non-random association between each 

DTW cluster with SBD and ED clusters.  

Figure 6-4: Distance between DTW-clusters and: 

(a) SBD-clusters, (b) ED-clusters 

(a)                                                                            (b) 



67 

 

 

 

 

Table 6-1: Matched SBD-clusters labels based on Fisher's exact test 

 

 

 

 

Table 6-2: Matched ED-clusters labels based on Fisher's exact test 

 

 

 

 

 Based on External Measurements 

Calculating ARI and VI (for more detail ) for original SBD and ED clusters labels illustrated in 

Table 6-3. From this table, we observe that SBD partitions compared to ED have more agreement 

with DTW partitions with the more score in ARI (0.499) and lower in VI (0.512). 

Table 6-3: External measures for SBD and ED 

 

 

 

 Based on Usage Time 

The resulted clusters’ centroid patterns from applying DTW, SBD, and ED are plotted over 24 

hours of a day in Figure 6-6, Figure 6-5, and Figure 6-7. We used the same colours for those clusters 

Partition SBD 

DTW 

Matched 

labels 

(Fisher’s 

exact 

test) 

1 2 3 4 

4 2 1 - 

Partition ED 

DTW 

Matched 

labels 

(Fisher’s 

exact 

test) 

1 2 3 4 5 

2 - 3 5 4 

External 

measures 
SBD ED 

ARI 0.499 0.457 

VI 0.512 0.603 
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of SBD and ED for more clarity, determined based on Fisher’s exact test. For SBD cluster 4 and 

ED cluster 2 which did not match with DTW clusters we used different colour from DTW. 

Following these figures, we plotted the pie charts and discussed the characteristics of three resulted 

partitions for knowing the percentage occupied by each group. 

Figure 6-6: DTW route clusters' patterns 

Figure 6-5: SBD route clusters' patterns 
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According to the patterns shown in the figures, and considering the pie charts in Figure 6-8, we 

characterised the route clusters in three groups as follows: 

1. Routes with regular commuters: DTW cluster 4 has this pattern of two peaks in the morning 

and afternoon which occupies 44.73% of all the routes. Its matched in SBD, cluster 1, is 

also among this group with the percentage of 35.76%. ED assigned 44.15% of routes to this 

group by the creation of cluster 5.  

(a)                                             (b)                                             (c) 

Figure 6-7: ED route clusters' patterns 

Figure 6-8: Clusters' portions: (a) DTW, (b) SBD, (c) ED 
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2. Routes with all-day-long commuters: DTW created 2 and 3 clusters with this pattern and 

assigned 33.77% of the routes to them. Based on SBD, cluster 2 which is also the matched 

one with DTW cluster 2, and cluster 4 based on its pattern are among this group with 

33.64%. ED with the creation of clusters 1 and 2 assigned 39.96% of routes to this pattern.       

3. Routes with early-bird commuters: based on DTW cluster 5 with 10.22%, based on SBD 

cluster 3 with 30.6%, and based on ED cluster 4 with 9.07% have this pattern.    

4. Routes with late commuters: cluster 1 with 11.27% based on DTW, cluster 3 with 6.83% 

based on ED are with this pattern and in SBD partitions no cluster identified with this 

pattern.  

We also depicted the distribution of the four route groups in Figure 6-9, Figure 6-11, and Figure 

6-10 for more clarity.  As concluded for user-day and stop-day vectors, observing the result of SBD 

for route-day vector, it can be claimed again when it comes to distinguishing a significant shift in 

time such as what we are faced in the creation of early bird and late commuters; SBD treats these 

two different patterns similarly. In other words, for instance, here for the early-bird commuters, 

SBD assigned 30% of the routes to this group which might also contain routes with the late 

commuter pattern. 

 

Figure 6-9: Distribution of DTW categories over one month 



71 

 

 

 

 

 

 

 

 

Figure 6-10: Distribution of ED categories over one month 

Figure 6-11: Distribution of SBD categories over one month 
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 CONCLUSION AND RECOMMENDATIONS 

This study aimed to investigate and test the results of applying a new technique of k-shape 

clustering with SBD on smart card data in public transit for the first time. Furthermore, the method's 

strengths and drawbacks were evaluated and compared to the most often used approaches; k-means 

clustering with DTW and Euclidean distances, in the field of transportation in previous studies. 

This chapter provides an overview of the three techniques and their outcomes to highlight the 

contributions made by this thesis. Some limitations are also stated, as well as suggestions for 

improvements and future explorations. 

7.1 Contributions 

Knowing what type of data, we are dealing with while studying smart card data in public transit 

provides for a more relevant and accurate results and analysis. Since the transactions produced by 

smart cards have the characteristics of time-series, it is critical to choose a method that can handle 

this type of data well. To put it in detail, when it comes to time-series clustering problems, selecting 

a good distance measure which is suitable with the specific variations inherent in sequences is as 

important as the algorithm itself. However, in the field of transportation these variations and 

distortions of time-series data in segmentation process has received less attention resulting in 

selection of Euclidean and Manhattan distances which both ignore the characteristics of sequences 

in their calculation.  

In this study, we used k-shape clustering with the SBD method, which works well in time-series 

comparison, to segment smart card data in public transportation. Moreover, to reveal this method 

benefits and disadvantages, we compared it with the one of the most suitable and popular distance 

measures for time-series comparison; DTW distance measure with k-means clustering. In addition, 

the most commonly used distance measure for clustering smart card data in the transportation 

sector, Euclidean distance with k-means clustering, was used to highlight the methods differences 

even more. Therefore, in one side we had a fast method of SBD which considers mostly the shape 

of sequences in comparison and ignores their differences in time shifting. In other side, the fast 

method of ED which considers shifting in its calculation and might result in a big difference for 

two sequences even if they have the same shape. As a ground truth, we have the slow method of 

DTW which considers both the shape and the shift of time-series while it can be constrained for 
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the maximum shift. This comprehensive examination of three methodologies, each with its own 

set of features, can help to bridge the gap in the literature and pave the way for smart card data 

analysis in transportation research, allowing selecting a method that is more compatible with the 

data's specific characteristics. 

In the comparison section, we looked at two statistical points of view: the distance between cluster 

centroids and external measures, as well as patterns in usage time and fare types in detail. This 

provided us with a better understanding of how the techniques worked and allowed us to compare 

them in greater depth rather than only on the basis of the indices produced. For instance, despite 

ED had better agreement with DTW outcomes than SBD in terms of minimum average distance 

between cluster centroids and VI index in user-day analysis, it performed worse than SBD in 

recognising well-defined patterns.  

Furthermore, not only did we not confine our research to a single technique, but we also did not 

limit it to a single sort of object. We applied our three methods on three types of daily vectors to 

segment users, stops, and routes providing us more opportunity to evaluate how our approaches 

behaved as the vectors changed. SBD based on its characteristics, for example, should perform 

better where there is less shifting, such as in stop and route segmentation. It met our route 

expectations. However, the results in stop clustering were not satisfactory.  

In conclusion, there is not the best method which can perform well in every situation. However, 

we are more likely to get more relevant results if we understand the type of data and its distortions 

while considering the study's goal. When there is a time constraint and a large dataset, for example, 

DTW, despite its high performance, cannot be chosen due to its time complexity. When the goal is 

to recognise the shape of patterns and the temporal shift is minor or not important, SBD 

outperforms the other approaches and is incredibly fast with large datasets. Even though ED it is a 

quick approach, and also performs well, but it is not a wise option for time-series comparison.  

7.2 Limitations 

Each research project has its own set of limitations, and our study is no exception. The first 

limitation in this thesis is regarding to the data and the second one arises from the methodology. 
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In terms of data, we only had access to the boarding times, consequently our research was restricted 

to one kind of vector, though if we had access to alighting time, our comparison would be more 

precise. 

In the preprocessing part, for creating user-day vectors, we transferred several transactions into 

trips based on RTC rules of 90 minutes and the same bus line, whereas some of them might consist 

of the return trip in the same line within 90 minutes which should have been considered as two 

different trips as also pointed out in the study of Deschaintres et al. (2019). Another important 

factor to consider is the limitations in creating vectors. We used 24 hours of the day for separating 

the period of usage while different spaces of the vectors could lead to different outcomes and 

conclusions.  

From the methodological point of view, there is no prior information as the actual clusters in the 

real world. Here we used the results of k-means clustering with DTW distance measure as the 

ground truth to compare with the novel method of k-shape clustering with SBD and k-means 

clustering with Euclidean distance for revealing the reliability of their results in our case; 

nevertheless, the DTW method has its own imperfections in the clustering process.  

Moreover, k-means and k-shape clustering have the drawback of requiring the number of clusters 

to be determined prior to application. There are various strategies for doing so, but there is no one-

size-fits-all solution for every scenario. As a result, different procedures must be used, and the 

findings must be integrated. In addition, we only examined the results of DTW while the parameter 

window equals to 1 which could generate different portions and different comparison results if it 

changed to another amount. 

Furthermore, while comparing vectors, we only took into account differences based on a distance 

measure, neglecting the locations and other local environmental factors such as residential, 

industrial, or commercial areas, population, and ageing index, etc. 

7.3 Perspectives 

Introducing k-shape clustering with SBD to the field of smart-card data clustering in the 

transportation sector opened up several possibilities for future research with different goals. This 

is a precise and efficient time-series clustering approach that works very fast even with big datasets. 
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For instance, in fluctuation analysis, it can produce highly competitive results in the detection of 

very well-defined patterns. Furthermore, in studies such as ours, where time-shifting is required 

for comparison, it is necessary to investigate a way to modify this approach to be constrained for 

time-shifting or perhaps to combine it with another methodology. 

In this thesis, based on the work of Paparrizos and Gravano (2017), we used coefficient 

normalisation of CCD for obtaining SBD, while future studies can explore other way of 

normalisations such as biased estimator, 𝑁𝐶𝐶𝑏, or unbiased estimator, 𝑁𝐶𝐶𝑢, to gain different 

characteristics as a time-series distance measure. According to Equation 2-6 for these 

normalisations we will have:  

𝑁𝐶𝐶𝑏 =
𝐶𝐶𝑤(�⃗�,�⃗⃗�)

𝑚
 , 𝑁𝐶𝐶𝑢 =

𝐶𝐶𝑤(�⃗�,�⃗⃗�)

𝑚−|𝑤−𝑚|
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APPENDIX A   RTC FARE-TYPES 

 

 

  

Table A-1: RTC fare-types 
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APPENDIX B   FISHER’S EXACT TEST  

Fisher's exact test is a statistical significance test used for contingency tables analysis . If we have 

the simplified contingency as bellows, Table B-1, based on the value of p can be computed as 

following: 

 

Partition V 
Sum 

U Pair in same group Pair in different group 

Pair in same group a b a + b 

Pair in different group c d c + d 

Sum a + c b + d a +b + c +d = n 

 

𝑝 =  
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑛!
 

Where p is the probability of non-random association between V and U. 

Table B-1: Contingency table 
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APPENDIX C   RTC NETWORK MAP 

 

Table B-1: Contingency table 

Figure C-1: RTC network map 




