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RÉSUMÉ

De nombreux systèmes cyber-physiques modernes intègrent des technologies de vision par

ordinateur, des capteurs complexes, et des logiciels de contrôle avancés, leur permettant

d'interagir de manière autonome avec l'environnement. Les exemples incluent les essaims de

drones, les véhicules autonomes, les robots autonomes, etc. Tester de tels systèmes pose de

nombreux dé�s : non seulement les entrées du système doivent être variées, mais également

l'environnement doit être pris en compte. De nombreux outils ont été développés pour tester

les modèles de tels systèmes pour les entrées possibles falsi�ant leurs exigences. Cependant,

ils ne sont pas directement applicables aux systèmes cyber-physiques autonomes, car les

entrées pour de tels systèmes sont générées à partir d'environnements virtuels.

Dans ce travail, nous proposons AmbieGen, un cadriciel pour la generation de scénarios

de test dé�ant, pour les systèmes cyber-physiques autonomes. Les scénarios représentent

un environnement dans lequel un agent autonome navigue. Ce cadriciel est applicable à la

génération de di�érents types d'environnements.

Pour générer les scénarios de test, nous utilisons l'algorithme NSGA-II avec deux objectifs.

Le premier objectif évalue l'écart du comportement du système observé par rapport à son

comportement attendu. Le deuxième objectif vise a maximiser la diversité des cas de test,

calculée comme une distance de Jaccard avec un cas de test de référence. Pour guider le

premier objectif, nous utilisons un modèle de système simpli�é plutôt que le modèle complet.

Le modèle complet est utilisé pour exécuter le système dans un environnement de simulation

et peut prendre un temps considérable à exécuter (plusieurs minutes pour un scénario). Le

modèle de système simpli�é est dérivé du modèle complet et peut être utilisé pour obtenir

une approximation des résultats à partir du modèle complet sans exécuter la simulation.

Nous évaluons AmbieGen sur trois cas de génération de scénarios: un thermostat intelligent,

un système d'évitement d'obstacles robotique, et un système d'aide au maintien dans la voie

pour les véhicules. Pour toutes les études de cas, notre approche surpasse les approches

existantes avec le code disponible en ligne en détection de défauts et autres métriques telles

que la diversité des défauts révélés et la proportion de scénarios valides.

AmbieGen a pu trouver des scénarios, révélant des défaillances pour les trois agents au-

tonomes considérés dans nos études de cas. Nous avons comparé trois con�gurations d'AmbieGen:

basée sur un algorithme génétique à objectif unique, à objectif multple et sur recherche aléa-

toire. Les con�gurations à objectif unique et à objectif multiple surpassent la recherche

aléatoire. La con�guration à objectif multiple peut trouver les individus de même niveau de
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qualité que l'objectif unique, produisant plus des scénarios uniques, pour le même budget de

temps. Notre cadriciel peut être utilisé pour générer des environnements virtuels de di�érents

types et complexité et révéler les défauts du système au début de l'étape de la conception.
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ABSTRACT

Many modern cyber-physical systems incorporate computer vision technologies, complex sen-

sors and advanced control software, allowing them to interact with the environment au-

tonomously. Examples include drone swarms, self-driving vehicles, autonomous robots, etc.

Testing such systems poses numerous challenges: not only should the system inputs be varied,

but also the surrounding environment should be accounted for. A number of tools have been

developed to test the system model for the possible inputs falsifying its requirements. How-

ever, they are not directly applicable to autonomous and vision based cyber-physical systems,

as the inputs to their models are generated while operating in a virtual environment.

In this work, we aim to design a search-based framework, named AmbieGen, for generating

diverse fault-revealing test scenarios for vision-based and autonomous cyber-physical sys-

tems. The scenarios represent an environment in which an autonomous agent navigates. The

framework is applicable to generating di�erent types of environments.

To generate the test scenarios, we leverage the NSGA-II algorithm with two objectives. The

�rst objective evaluates the deviation of the observed system's behaviour from its expected

behaviour. The second objective is maximization of the test case diversity, calculated as

a Jaccard distance with a reference test case. To guide the �rst objective we are using a

simpli�ed system model rather than the full model. The full model is used to run the system

in the simulation environment and can take substantial time to execute (several minutes for

one scenario). The simpli�ed system model is derived from the full model and can be used

to get an approximation of the results obtained from the full model without running the

simulation.

We evaluate AmbieGen on three scenario generation case studies, namely a smart-thermostat,

a robot obstacle avoidance system, and a vehicle lane-keeping assist system. For all the case

studies, our approach outperforms the available baselines in fault revealing and several other

metrics such as the diversity of the revealed faults and the proportion of valid test scenarios.

AmbieGen could �nd scenarios, revealing failures for all the three autonomous agents consid-

ered in our case studies. We compared three con�gurations of AmbieGen: based on a single

objective genetic algorithm, multi-objective, and random search. Both single and multi ob-

jective con�gurations outperform the random search. Multi objective con�guration can �nd

the individuals of the same quality as the single objective, producing more unique test sce-

narios in the same time budget. Our framework can be used to generate virtual environments

of di�erent types and complexity and reveal the system's faults early in the design stage.
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CHAPTER 1 INTRODUCTION

1.1 Context and Motivation

One of the rapidly developing families of cyber-physical systems (CPS) are autonomous and

vision based CPS. Examples include drone swarms, self driving cars, cave or underwater

exploring robots. Typically, in the CPS development process the systems are validated and

veri�ed according to the V-model approach [1]. Prior to running the tests on a real system,

the V-model includes model-in-the-loop and software-in-the-loop testing stages. In these

stages the simulations of the system are run in a virtual environment. The goal is to model

the real environment e�ect on CPS(s) and generate test scenarios violating some critical

properties of CPS. However, during these simulations, engineers often lack tool support

for generating the scenarios [2]. For particular applications there exist content generation

techniques, like a Kruskal's algorithm for maze generation [3] or pre-con�gured scenarios,

like the virtual worlds used in computer games [4]. However, they do not always provide

the needed scenario complexity and oftentimes the scenarios have to be designed manually.

Consider an autonomous robotic system, that should navigate to a goal destination in an

environment with obstacles. The robots interact with the physical world via sensors and

actuators in a feedback loop, avoiding the obstacles and searching the goal destination.

Test scenario for such system includes virtual environment, obstacle positions, moving and

unexpected obstacles, changing terrain structure and environmental conditions. Manually

designing all the possible scenarios in the virtual environment is a tedious task.

1.2 Research objectives

The high level goal of our study is to design a search-based framework for generating diver-

si�ed fault-revealing test scenarios for vision-based and autonomous cyber-physical systems.

The framework should be applicable to generating di�erent types of environments. It should

aid the researchers in creating the test environments automatically optimizing them in order

to reveal the system faults more e�ectively. It includes such sub-objectives as:

1. De�nition of the �tness functions, scenario encoding and search operators allowing to

represent and evolve di�erent types of environments for autonomous CPS systems;

2. Selection of a search strategy allowing to �nd more fault revealing and diversi�ed test

scenarios given a certain time budget. In our work we are considering random, single
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(GA), and multi objective (NSGA-II) search algorithms.

1.3 Thesis overview

We develop a prototype of a search based framework, further referred to as �AmbieGen�,

to automatically generate test scenarios for cyber-physical systems. In the literature, typi-

cally one objective, accounting for the scenario fault revealing power [5], or two objectives,

accounting for fault revealing power and diversity [6], are used. To evaluate the contri-

bution of adding the �rst and the second objectives, we consider three con�gurations of

AmbieGen: based on random search, single-objective genetic algorithm (AmbieGen SO) and

multi-objective genetic algorithm NSGA-II (AmnbieGen MO). Preliminary results con�rm

that using the two objectives, maximizing both: scenario fault revealing power and diversity,

allows to �nd more unique fault revealing scenarios given the same time budget. To calculate

the �rst objective, maximizing the fault revealing power, we are using the simpli�ed system

model, derived from the full model of the system, as suggested by Menghi et al. [7]. This

allows to reduce the computational and time resources needed to produce the test scenarios.

The full model is used to execute the scenarios in the simulation environment and is usually

computationally expensive. The simpli�ed model doesn't require the simulator to run and

provides the approximated outputs of the full model in the reduced amount of time.

We evaluate our approach on three test generation case studies. In the case studies we are

testing autonomous agents with control algorithms of di�erent complexity. In the �rst case

study, the goal is to generate the temperature schedule and a combination of environmental

conditions, so that a smart-thermostat agent, using a simple PID controller, cannot follow

the schedule with expected precision. For the second case study, the aim is to design a

navigation map with obstacles for an autonomous robot, maximizing the di�culty for the

robot to reach the goal. The autonomous robot is using a nearness diagram control technique

for navigation [8]. For the third, the task is to create a virtual road, that forces the self-

driving car model to drive o� its lane without creating invalid roads. The car uses a Deep

Neural Network (DNN) model to infer the control signals from the images of the surrounding

environment. AmbieGen could reveal on average 14 failures in two hours and 40 failures

in 5 hours for the self-driving car model. It also revealed 9 failures in two hours for the

autonomous robot model. Given the same evaluation budget, in all the problems, multi-

objective and single-objective con�gurations of AmbieGen produced �tter solutions with a

large e�ect size, in comparison to the random search. Multi-objective con�guration allows

to produce more diverse scenarios with medium to large e�ect size in comparison to single-

objective, �nding the solutions of the same or similar quality.
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1.4 Thesis contributions

This thesis presents the following contributions:

1. We design a prototype of a search-based framework for generating customized environ-

ments for testing autonomous and vision based CPS.

2. We propose a novel technique for generating the virtual roads and robot navigation

maps.

Researchers and practitioners can leverage AmbieGen to automatically generate scenarios for

autonomous CPS that will be further passed to the simulators to run tests on the full CPS

models.

The code for replication of all of our experiments is available at [9].

1.5 Novelty of the work and main achievements

A number of frameworks exist for generating test scenarios for testing perceptive components

of autonomous cyber-physical systems. They generate the static images of the environment

to test the DNN model controlling the system. However, to test the perceptive as well as

the control part of the system, dynamic scenarios, where the environment is changing in

time should be used. To the best of our knowledge, no framework exists for generating

dynamic scenarios for testing di�erent types of autonomous cyber-physical systems. Existing

frameworks are �ne tuned for testing a speci�c autonomous CPS.

The novelty of our work, is in designing a framework that can be used to generate virtual

environments and dynamic scenarios for di�erent types of autonomous CPS. It leverages

evolutionary search algorithm, where the scenario representation and search operators can

be customized to evolve di�erent virtual environments. In this work we demonstrate how the

framework prototype can be applied to generate test scenarios for thee di�erent autonomous

CPS and reveal failures.

Earlier studies in the thesis were published/submitted as follows:

1. A Search-Based Framework for Automatic Generation of Testing Environments for

Cyber-Physical Systems

Humeniuk, D., Antoniol, G. and Khomh, F., Submitted to the Information and Software

Technology, July 2021.
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2. SWAT tool at the SBST 2021 Tool Competition

Humeniuk, D., Antoniol, G. and Khomh, F., In Proceedings of the IEEE/ACM 14th

International Workshop on Search-Based Software Testing (SBST) (pp. 42-43), May

2021.

3. Data Driven Testing of Cyber Physical Systems

Humeniuk, D., Antoniol, G. and Khomh, F., In Proceedings of the IEEE/ACM 14th

International Workshop on Search-Based Software Testing (SBST) (pp. 16-20), May

2021.

4. Double Cycle Hybrid Testing of Hybrid Distributed IoT System

Zid, C., Humeniuk, D., Khomh, F. and Antoniol, G., In Proceedings of the IEEE/ACM

42nd International Conference on Software Engineering Workshops (pp. 529-532), June

2020.

1.6 Thesis plan

The remainder of the thesis is organized as follows. In Chapter 2 we present the core concepts

of genetic algorithms and their applications. Chapter 3 discusses the related works in the

domain of CPS testing. In Chapter 4, we formalize the problem of scenario generation and

provide the description of the AmbieGen framework. Chapter 5 describes the test generation

case studies used to evaluate our approach. In Chapter 6 we formulate the research questions

and our evaluation methodology. The same chapter reports our results and answers to

research questions. We also discuss the results and the main challenges of this study. The

possible threats to the validity of our results are described in Chapter 7. Chapter 8 concludes

the thesis and discusses some avenues for future works.



5

CHAPTER 2 BACKGROUND

2.1 Search based optimization algorithms

Many activities in software engineering can be stated as optimization problems. The domain

that aims to formulate software engineering problems as search problems is known as Search-

based Software Engineering (SBSE). The evolutionary search algorithms are one of the most

commonly used SBSE tools. Their main advantage is the possibility to perform a global

search by sampling many points in the search space at once [10].

Applying an evolutionary SBSE to a software engineering problem requires three main com-

ponents [11]:

1. a solution representation;

2. a mechanism for making changes to that solution;

3. means of measuring the solution's quality.

The representation encodes candidate solutions to the problem in the form of binary/integer

vectors, tree, graph, string, etc. The search operators de�ne how the solutions are varied

in order to e�ectively explore the search space. The �tness function evaluates how good a

candidate solution is.

Our study relates to automatic test scenario generation, where the evolutionary search tech-

niques, most notably the genetic algorithms, are typically used [12]. In the next subsection

we discuss in a more detail the key concepts of single and multi-objective genetic algorithms.

2.1.1 Genetic algorithms

Genetic Algorithms (GA's) are general purpose stochastic search and optimization algo-

rithms, based on genetic and evolutionary principles [13]. The basic idea is to start with

a set of individuals (candidate solutions) representing initial population, usually generated

randomly from the allowable range of values. Each individual is encoded in a dedicated form,

such as a bitstring, and is called a chromosome. Chromosome is composed by genes. Each

individual is evaluated and assigned a �tness value. Some of the individuals are selected

for mating. The search is continued until a stopping criterion is satis�ed or the number of

iterations exceeds a speci�ed limit. Three genetic operators are used to evolve the solutions:

selection, crossover, and mutation.
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Selection. Selection is an operator that gives solutions with higher �tness a higher probability

of contributing to one or more children in the succeeding generation. The intuition is to give

better individuals more opportunities to produce o�springs. One of the commonly used

selection operators is tournament selection [14]: a small subset of individuals is chosen at

random, and then the bestn individuals in this set are selected for the mating. The selection

pressure can be adjusted by controlling the size of the subset used. Another commonly

used technique is a proportional-based selection, also known as a roulette wheel selection,

where the probability of choosing an individual depends directly on its �tness.Crossover

operator. The crossover operator is used to exchange characteristics of candidate solutions

among themselves. In our approach we are using a one-point crossover, illustrated in Fig. 2.1.

We can see how the parent chromosomes are exchanged genest i to produce the o�springs.

Other types of crossover include multi point crossover and uniform crossover, however, they

are only applicable to �xed size individuals.

Figure 2.1 One point crossover operator

Mutation operator. The mutation operator has been introduced to prevent convergence to

local optima; it randomly modi�es an individual's genome (e.g., by �ipping some of its bits,

if the genome is represented by a bitstring) [15].

Crossover and mutation are performed with probabilitypcrossand pmut respectively, where

pmut < pcross. The rates at which mutation and crossover are applied are an implementation

decision.

After the new o�spring have been created via the genetic operators the two populations of

parents and children must be merged to create a new population [13]. The abbreviation

(� + � ) denotes an evolutionary search that generates� o�spring from � parents and selects

the � best individuals from the � + � individuals (parents and o�spring) in total. The

selection process is performed by one of several general techniques including: (1) the best

� solutions are retained to become the parents for the next generation (elitist), or (2)� of

the best solutions are statistically retained (tournament), or (3) proportional-based selection.

Other approaches include insertion of the children in place of the least �ttest individuals in
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the population. The least �t individuals can be selected with one of the techniques described

above, such as tournament or roulette wheel selection.

It is natural that during initial population generation, crossover or mutation invalid individ-

uals will be produced. Two strategies can be adopted: a repair strategy, when the invalid

individual is modi�ed i.e �repaired� to become valid or a penalty strategy, when infeasible

individuals are rejected. The latter is more simple and e�cient. In our study we adopt the

penalization strategy.

Finally, there are two types of algorithms depending on the number of o�springs produced:

steady stateand generational GA. In steady state GA, one or two o�-springs are generated

in each iteration and they replace one or two individuals from the population. A steady

state GA is also known as Incremental GA. In a generational GA,n o�springs are generated,

wheren is the population size, and the entire population is replaced by the new one at the

end of the iteration.

2.1.2 Single objective genetic algorithms

The single objective algorithm includes the steps described above. It evaluates the individuals

considering only one �tness function value. It pseudo-code, as presented in [13], is shown

below:

Algorithm 1 GA

1: procedure Single objective GA

2: Initialize population P

3: # T - a termination criterion

4: while not (T) do

5: Evaluate objectiveF values over populationP

6: Select individuals for mating fromP ! P0

7: Recombination, mutation of individuals in P0 ! P00

8: Evaluate �tness values of childrenP00

9: Construct new population(P0 [ P00) ! P000from parents and o�springs

10: Select the �ttest individuals from P000of the size ofP, P000! P

11: end while

12: end procedure
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2.1.3 Multi objective genetic algorithms

Evolutionary algorithms seem particularly suitable to solve multiobjective optimization prob-

lems, because they deal simultaneously with a set of possible solutions. This allows to �nd

several members of the Pareto optimal set in a single �run� of the algorithm. Under Pareto

optimality, one solution is better than another if it is better according to at least one of the

individual �tness functions and no worse according to all of the others. The use of Pareto op-

timality is an alternative to simply aggregating �tness using a weighted sum of the n �tness

functions. When searching for solutions to a problem using Pareto optimality, the search

yields a set of solutions that are non dominated. That is, each member of the non-dominated

set is no worse than any of the others in the set, but also cannot be said to be better.

One is the most popular MOEA is the non-dominated sorting algorithm-II (NSGA-II). It

builds a population of competing individuals, ranks and sorts each individual according to

nondomination level, applies Evolutionary Operations (EVOPs) to create new pool of o�-

spring, and then combines the parents and o�spring before partitioning the new combined

pool into fronts. The NSGA-II then assigns a crowding distance to each member. The crowd-

ing distance value of a particular individual is the average distance to its two neighboring

individuals in the Pareto front. It uses the crowding distance in its selection operator to keep

a diverse front by making sure each member stays a crowding distance apart. This keeps

the population diverse and helps the algorithm to explore the �tness landscape. The pseudo

code for NSGA-II presented by Coello et al., [16] is shown below.
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Algorithm 2 NSGA-II

1: procedure NSGA-II algorithm

2: Initialize population P

3: Evaluate objectiveF values over population

4: Assign rank based on Pareto dominance

5: Assign crowding distance

6: # T - a termination criterion

7: while not (T) do

8: Select individuals for mating fromP ! P0

9: Recombination, mutation of individuals in P0 ! P00

10: Evaluate objecive values of childrenP00

11: Rank (P0 [ P00) ! P000based on Pareto Dominance

12: Assign crowding distance

13: # remove or repair infeasible or dominated individuals

14: ReduceP000! P

15: end while

16: end procedure

2.1.4 Statistical testing

In the order to compare two search based algorithms, Algorithm A and Algorithm B, we

should perform statistical testing to ensure that Algorithm A outperforms, or not, Algorithm

B with a certain con�dence. Search based algorithms are highly randomized, therefore it is

advised to perform at least 30 runs before comparing the two algorithms [17]. Typically, in

the experimental sciences, the level of acceptable error is chosen to be either 1% or 5%. This

is the chance of making a so-called �Type I� error, leading to concluding that some Algorithm

A id better than Algorithm B when, in fact, it is not. The statistical test will result in a

p-value. The p-value is the chance that a Type I error has occurred. To obtain the p-value,

SBSE researchers often use non-parametric statistical tests that make fewer assumptions

about the distribution of the data. In our study we used a common non-parametric Mann-

Whitney U-test. In addition to assessing whether an algorithm is statistically better than

another, it is crucial to assess the magnitude of the improvement. To analyze such property,

e�ect size measures are needed [17]. For the e�ect size, we are using the non-parametric

measure such as Cli�'s delta (d). The magnitude is assessed using the thresholds provided

in [18] , i.e. [d] < 0.147 �negligible�, [d] < 0.33 �small�, [d] < 0.474 �medium�, otherwise

�large�.
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2.2 Model-Based design of Cyber-Physical systems

Model-Based Development is a widely employed development technique in industry for CPS

design [19]. In Fig.2.2 you can see a diagram of a traditionally used V-model design cycle.

The left side of the �V� identi�es steps that lead to code generation, including system speci-

�cation and detailed software design. The right side of the V focuses on the veri�cation and

validation of steps cited on the left side, including software and system integration. After im-

Figure 2.2 The traditional V-model design cycle

plementing the model according to the established requirements, comes the veri�cation part

of Model-Based Design approach, where the model-in-the-loop (MIL), software-in-the-loop

(SIL), processor-in-the-loop (PIL) and hardware-in-the-loop (HIL) testing is performed [20].

First, a model of the actual hardware (also named plant) in developed in a simulation en-

vironment. Then the controller model is created and veri�ed on the plant plant model i.e.

assuring the contoller works correctly with the hardware model. This step is called Model-in-

Loop (MIL) and the controller logic is tested with the simulated model of the plant. Once the

model is veri�ed (i.e., MIL in the previous step is successful), the next stage is SIL testing,

where the controller model is replaced by a corresponding software code. The next step is

Processor-In-Loop (PIL) testing. In this step, the controller code is uploaded into an embed-

ded processor board and run a close loop simulation with the simulated plant (hardware).

This step will help identify if the processor is capable of running the developed control logic

code. Once the plant model has been veri�ed using PIL, the plant model can be replaced

with the original hardware. This step is known as HIL testing and it helps to identify issues

related to the communication channels.

Our test scenario generation approach can be leveraged by researchers and practitioners in the

MIL, SIL and PIL testing stages, when the scenarios are run in the simulation environment.
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CHAPTER 3 LITERATURE REVIEW

The cyber-physical systems are developed using a model-based design approach [1]: after

establishing the requirements of the system, model-in-the-loop testing is performed. In this

step, models of the hardware part and the controller are created and tested in the simulation

environment. One of the limitations of the simulation platforms is that they don't provide

clear guidance to engineers as to which test scenarios should be selected for simulation.

Therefore a number of approaches were developed to generate the testing scenarios.

3.1 General approaches for cyber-physical systems testing

In the classical approach, the exhaustive exploration of the state-space of the model is per-

formed [21]. It uses the abstract model, created strictly according to the system requirements,

to generate the test cases for the model of the system under test (SUT). If the outputs of

the SUT model and abstract model are di�erent, the fault in the SUT is revealed. As the

system models get more complex, the search space becomes infeasible. More recently, fal-

si�cation based approaches have been proposed verifying whether the model meets speci�c

requirements, speci�ed in a temporal logic notation such as metric temporal logic (MTL) or

signal temporal logic (STL). The Upaal-tool performs the statistical model checking (SMC)

of the MTL or STL of a given model [22]. The core idea of SMC is to monitor some simula-

tions of the system, and then compute the probability along with con�dence intervals that

a speci�c requirement holds for the SUT. A number of tools were developed that instead

of calculating the probability that a system satis�es the property with a certain con�dence,

compute the worst expected system behaviour as a quantitative value, called robustness.

Examples of such tools are S-Taliro [23], Breach [24] and ARIsTEO [7]. Di�erently from

others, ARIsTEO propose to apply falsi�cation testing to the surrogate i.e. approximated

model of the SUT, that closely mimics its behaviour but is signi�cantly cheaper to execute.

Arrieta et al., [25] proposed a search based approach, that doesn't use the system model .

Authors de�ne three cost e�ectiveness measures to guide search towards generating optimal

test cases: requirements coverage, test case similarity (e�ectiveness) and test execution time

(cost). The common disadvantage of the mentioned approaches is that they search for a

combination of fault revealing control inputs, not relating the real world to the models under

test.

Testing autonomous systems requires more sophisticated scenarios, where the search is per-

formed over the surrounding environment, rather than the system control inputs. A number
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of approaches has been proposed for testing vision-based vehicle driving systems and robotic

systems accounting for interaction with the environment.

3.2 Autonomous cyber-physical systems testing

Autonomous cyber-physical systems rely on complex planning and control algorithms, in-

cluding modern machine learning methods such as deep neural networks to control their

interactions with the physical world. Testing of such intelligent cyber-physical systems is

a challenge due to the huge state space associated with high-resolution visual and sensor

inputs [26]. We divide the research works for testing autonomous CPS in two groups: au-

tonomous driving systems testing, including testing of self-driving vehicles and driving assist

systems, and autonomous robotic system testing, including autonomous robots, robot swarms

and drones.

3.2.1 Autonomous driving system testing

Static scenario encoding. Undoubtedly, the scenarios for testing such systems should be

as realistic as possible. Zhang et al. [27] develop a framework for automatic generation of

large amounts of accurate driving scenes to test the DNN-based autonomous driving systems.

Deep-Road delivers driving scenes with various weather conditions (including those with

rather extreme conditions) by applying the Generative Adversarial Networks (GANs) along

with the corresponding real-world weather scenes.

To have even more control over the generated results, Fremont et al. propose SCENIC [28],

a programming language for scenario speci�cation and scene generation. Authors represent

the environment as a scene i.e. con�guration of objects in space (including dynamic agents,

such as vehicles) along with the distribution of their features. It allows, for instance, to put

distributions on the time of day and the weather conditions during the scene. Examples of

the scenarios generated with SCENIC are shown in Fig. 3.1. We can see three cars on a

road in di�erent times of the day. Further, Dreossi et al [29] develop a toolkit for the design

and analysis of arti�cial intelligence-based systems, named VERIFAI. It creates a scenario

with the SCENIC language and then uses Bayesian optimization sampling to �nd small

perturbations of the initial scene (generated by SCENIC) which cause the vehicle to violate

the speci�cation. Perturbations are performed over the initial positions and orientations of

all objects, the cruising speed and reaction time of the vehicle. It allows to perform a better

search over the possible scenarios, than the SCENIC itself, however the initial scenario to be

optimized should still be provided by the developer.
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(a) Scenario with three cars on a road in daylight (b) Scenario with three cars on a road at night

Figure 3.1 Examples of the scenarios generated with SCENIC

Both Deep-Road and SCENIC can be leveraged to improve the training datasets for the ML

based autonomous driving systems by adding some rare scenarios to it. Moreover, once one

scenario is created, it can be easily augmented by changing environmental conditions, time of

the day, etc. However, these frameworks don't provide enough guidance as to what scenarios

should be added to retrain the model. Furthermore, they only test the perceptive part of the

system, and not the whole system, which also includes the driving controllers. In the next

section we discuss the approaches that generate dynamic scenarios for testing the CPS as a

closed loop system, having perceptive and control components.

Dynamic scenario encoding. Altho� et al., develop a CommonRoad project, which in-

cludes a number of scenarios to benchmark the autonomous systems [30]. The scenarios are

speci�ed in an XML �le, which is composed of 1) a formal representation of the road network,

2) static and dynamic obstacles, and 3) the planning problem of the ego vehicle(s). However,

at the current stage, most of the scenarios should be handcrafted and no optimization is used

to improve them.

Nalic et al. [31] implement a framework for automated scenario generation, based on a realistic

tra�c model built using measured data from a real world test road. Tra�c con�guration,

driving behaviour and driver models can be edited using the MATLAB GUI connected to

the VISSIM simulator [32]. During testing the vehicle models are sent repeatedly through

the virtual motorway sections, which is updated with the continuously produced random

scenarios. In 4542 kilometres the vehicle travelled in simulation 26 collisions and 378 near-

collisions were found.

Both frameworks provide the possibility to implement the dynamic scenarios and reveal

system faults, however they don't guide the developer towards the fault revealing scenarios

to be selected and executed in the �rst place.

Mullins et al. [33] indicate that more information about the system is gained by testing in
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regions where critical decisions must be made by the autonomous system. According to

the authors, it is ine�ective to test the system in regions where performance is constant

and known. They use the Gaussian processes to drive the search towards yet unexplored

regions of the input space. In addition, they group the scenarios by performance using

unsupervised clustering techniques and sort them by the e�ectiveness at diagnosing changes

in the autonomous system's behaviour.

Abdessalem et al. in [2] use a multi-objective search to obtain test scenarios for Advanced

Driver Assistance System (ADAS), speci�cally the Automated Emergency Braking (AEB)

system, helping avoid collisions with pedestrians. They implement an NSGA-II based search

with three objectives: minimizing the distance to the pedestrian, minimizing acute warning

area and the time to collision. To mitigate the computation cost of executing physics-based

simulations, they use the simpli�ed models of ADAS built with neural networks (NN). The

search is performed over the properties of the vehicle and the pedestrian. More speci�cally,

the test input is de�ned as a vector, where the speed of the car, position, orientation and speed

of the pedestrian are speci�ed. The following NSGA-II con�guration was used: crossover rate

of 0.9, mutation rate of 0.5 and the population size of 10, duration of the experiment - 150 min.

In [34] authors continue their work, proposing a new learnable evolutionary algorithm, which

combines NSGA-II and decision tree classi�cation models. Results show that this algorithm

generates 78% more distinct, critical test scenarios compared to NSGA-II. Both static and

dynamic environmental parameters of the system are varied, such as the weather conditions

(snow, fog, rain), road type (curved, straight, ramped), the pedestrian location. They de�ne

an ADAS scenario as a tuple containing the static variables (precipitation, fogginess, road

shape, visibility range), dynamic variables (vehicle and pedestrian location), allowable ranges

for the variables and constraints. The �rst �tness function computes the minimum distance

between the pedestrian and the �eld of view of the vehicle, and the second that computes

the speed of the car at the time of collision. The following NSGA-II con�guration was

used: population size of 100, mutation rate of 0.11, the crossover rate of 0.6, duration of the

experiment - 24 hours. The simulations were run in a commercial PreScan simulator [35].

Gambi et al., [5] develop a tool to generate the road con�guration to test car Lane Keeping

Assist System (LKAS). It combines procedural content generation with a single-objective

search based technique. The test road is represented by road segments, which are obtained

by applying a�ne transformations to points of the initial road segment. The road network

is represented by a graph, in which edges model road segments and nodes model either road

intersections (internal nodes) or intersections between roads and map boundaries (source

and destination nodes). The scenario represents a navigation path between randomly cho-

sen source and destination nodes. The randomly selected navigation paths are evolved by
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applying mutation and crossover operators. Road network mutation randomly replaces road

segments in a road, "join" crossover operator recombines road segments from parent roads to

form new roads, and "merge" crossover operator recombines roads in parent road networks

to form new road networks. The �tness function maximizes the distance of ego-car from the

center of the road lane. Intuitively, the tests which cause the ego-car to drive away from the

lane center might contain road segments which stress the self-driving car software more. To

improve the e�ciency of test generation and promote scenario diversity, AsFault identi�es

and �lters out similar tests before executing them. AsFault computes the similarity between

tests by means of the Jaccard Index of their road segments. Given tests T1 and T2 their

similarity is de�ned as:

similarity (T1; T2) =
[CT1 \ CT2 ]
[CT1 [ CT2 ]

(3.1)

whereCTi refers to sequences of consecutive road segments of a given size. Value closer to 1

corresponds to a high similarity between tests. The following genetic algorithm con�guration

was used: mutation rate 0.05, crossover rate 0.5, population size - 25 and evaluation budget

- 24 hours. Every scenario is evaluated using a self driving car model in the BeamNg simu-

lation environment. After one hour of execution AsFault detected on average 30.1 failures,

increasing to an average number of 42.1 after 3 hours, and then stabilizing to an average

amount of 47.5 failures after 24 hours. We surmise that the small increase after 3 hours of

execution, comparing to 1 hour, is due to the convergence of the algorithm to a local maxi-

mum. Possibly, periodic repopulation of the algorithm could increase the number of revealed

faults, however this point is not discussed in the paper.

Tonella et al., address the idea of repopulation in their work [36]. They use a multi-objective

search to test the car LKAS system by generating virtual roads. They use two �tness func-

tions, one maximizing the car deviation of the car from the lane center, as in [5], and the

second maximizing the diversity. The di�erence between two virtual roads is calculated using

a weighted Levenshtein distance [37]. The virtual roads are saved in an SVG format, which

is an XML-based image format that can represent shapes as the combination of cubic and

quadratic Bézier curves. The mutation operator randomly chooses a start point, an end point

or a control point of the road shape and applies a displacement to it in the two-dimensional

space. To prevent the algorithm from getting stuck in a local optima, authors de�ne a repop-

ulation operator. It replacesn of the most dominated individuals in the current population

with individuals newly generated from the seeds. For evaluation, authors used 12 individuals

in initial population and 100 generations of time budget. Authors report the e�ectiveness of

the approach for exploring the behaviour frontiers of the system, however don't report the

number of revealed faults (car going out of the lane) for a given a time budget.
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In both previous works authors indicate the importance to promote the diversity. Loiacono

et al., propose novel metrics to promote the diversity to generate tracks for a high-end

racing games [38]. In particular, they describe the diversity of a track in terms of its shape

(i.e., the number and the assortments of turns and straights it contains), and in terms of

driving experience it provides (i.e., the range of speeds achievable while driving on the track).

They de�ne two �tness functions: the entropy of the track's curvature and entropy of speed

pro�les. A track is represented as a set of control points that the track has to cover; the

track is generated as a sequence of Bezier curves connecting the control points. However, the

main goal of the search is to make the tracks more interesting to the gamers and not reveal

the failures.

In the following subsection we discuss the dynamic scenario generation techniques dedicated

to testing autonomous robotic systems.

3.2.2 Autonomous robotic systems testing

Arnold et al. [39] designed a tool to produce navigation maps to test autonomous robot

control algorithms. They use the a procedural content generation technique to randomly

generate 2-D maps with obstacles and then select the ones, that correspond to a de�ned set

of unwanted behaviours, such as stalling or colliding with a wall. More speci�cally, to generate

an environment their tool �rst creates a 2D noise map using a Perlin noise process [40]. Then

two �lters are applied: a pixelisation �lter to make the noise more granular and a thresholding

�lter to convert the noise into binary occupied/unoccupied. The experiments were conducted

in the Player/Stage simulation environment [41], evaluating 500 unique maps with Pioneer

3-AT robot. Authors provide analysis of the several revealed high-risk scenarios.

Sotiropoulos et al. [42] generate navigation maps of di�erent di�culty levels. A map is

characterized by its size, its percentage of obstruction (due to objects), and its degree of

smoothness (resulting from the ground local deformations). The inputs to robot navigation

testing are a world instance and a navigation mission in this world, de�ned by a starting

position and a target arrival position. Depending on the collision events and timeouts (when

robot fails to reach the goal in the time budget) three levels of di�culty are assigned to a

scenario: easy, challenging and very di�cult. According to the study, the size of obstacles is

one of the most important factors to control the di�culty level.

Even though the algorithms speci�ed above may reveal system faults, they achieve it ran-

domly, which might take more time and produce less e�ective scenarios comparing to the

search based techniques. We further discuss the works leveraging evolutionary search algo-

rithms to improve the e�ectiveness of the test scenarios.
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Ashlock et al., [43] apply a single objective genetic algorithm to generate grid robot path

planning problems. A path planning problem (PPP) for a grid robot is speci�ed by the

size of the grid, the position of obstructions within the environment, and an initial and goal

position for the grid robot. This study uses a cellular [44] representation for PPPs. In a

cellular representation, directions for constructing an object of interest are evolved, rather

than parts of the object directly. The cellular representation for a PPP is constructed of a

set with four parameters(x; y; l; t ), called descriptor. A single descriptor speci�es a group of

obstructions laid out according to a simple rule. It speci�es obstacle starting position(x; y),

the maximum number of obstacle blocksl and t the type or pattern of the descriptor (type

of the obstacle). Six types of single descriptors were used in this study, such as obstacle

above/below/left/right of the current positing, zig-zag obstacle. A PPP is made of 4 - 50

single descriptors. A PPP has a maximum number of obstructions that are permitted. The

single descriptors are processed in the order they appear in the PPP's chromosome. In order

to evolve PPPs the variation operators are applied. Namely a two point crossover of the list

of descriptors, treating single descriptors as atomic objects, and a mutation operator. With

equal probability the mutation operator changes the values in descriptors by adding/removing

obstacles, changing the obstacle type, etc. Algorithm was evaluated using one of the three

�tness functions: maximizing the number of turns, maximizing number of forward moves,

and maximizing the total moves (turn left, turn right or advance). The disadvantage of

this approach is that only produces simplistic 2-D scenarios not integrated with a robotic

simulator.

Nguyen et al., propose an approach to generate scenarios to test an autonomous robotic

cleaner agent [45]. The agent needs to collect all the objects, not bumping into obstacles

and keeping the charge level higher than 10 %. The arti�cial environment is de�ned as a

square area,A. In the areaA there can be obstacles, dustbins, waste, and charging stations.

Di�erent locations of the objects pose di�erent levels of di�culty in which the cleaner agent

must operate. The test scenario (and a chromosome) is encoded as a matrixA of sizeRxR

cells, whereR is a resolution. Objects such as obstacles, waste, bins, charging stations are

placed into cells. A cell containing an object is denoted by 1, while a content�free cell is

denoted by 0. As a �tness function, they minimize the distance to obstacles encountered

during the operation of the agent. The simulations are performed in JADEX simulation

environment [46]. Their experiments con�rm that evolutionary testing, guided by �tness

functions derived from soft-goals, outperforms random testing given the same time budget.

Zou et al., [47] target testing the con�ict resolution algorithms for unmanned rotary wing

aircrafts (helicopters, multi-copters, drones). The environment in the simulations is a 3-D

cuboid �ight area. An unmanned aerial vehicle (UAV) is placed in this environment and is
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given a navigation task i.e. go from the start location to goal location. The goal is to �nd

such positions of other UAVs (the intruders) that the target UAV collides with one or several

of them. In total 7 parameters are varied to describe the intruder and perform the search.

The search is performed using the NSGA-II algorithm with two objectives: �rst minimizing

the distance between the UAV and intruder UAV and second minimizing the number of UAVs

involved in collision. When smaller number of UAVs cause the collision it constitutes simpler

counterexamples to correct operation of the resolution algorithm. The NSGA-II algorithm

was set to evolve for 20 generations, each generation having a population of 5,000, evaluation

100,000 scenarios in one run. To the experiments the MASON simulator was used [48]. The

results show that the proposed method can �nd encounters meeting the two objectives more

e�ciently than the random search based approach.

Considering the discussed approaches for autonomous CPS testing, we can see that frame-

works already exist to test the autonomous agents DNN models allowing to generate realistic

images of the scenarios. However, these scenarios are static and only test the perceptive part

of the system. Search based tools have been developed to generate dynamic scenarios for

di�erent types of autonomous systems, such as: car breaking, lane keeping assist system,

UAVs, autonomous robots. However, the proposed evolutionary search algorithms have dif-

ferent scenario representation (such as graphs, tuples, SVG �les) and search operators that

are �ne tuned to testing a particular autonomous system. Redesigning the solution encoding

and search operators for each new scenario generation task is tedious. Our vision is that there

should be standardized frameworks for generating dynamic scenarios for di�erent systems,

similar to frameworks, where only static scenarios are generated. In our work we aim to

design a search based testing framework for generating dynamic scenarios for autonomous

CPS with customizable scenario encoding and search operators. It could be used by other

researches and practitioners as a guidance to design the virtual environments for their testing

tasks.

3.3 Chapter summary

Testing autonomous systems requires varying the environment where the system operates

and not only its inputs. The approaches to generate static images of the scenes can be used

to test the perception part of autonomous system. However, to test the system completely,

including its driving controllers, dynamic scenarios should be developed. Evolutionary search

is used in majority of the works to generate the fault revealing dynamic scenarios and out-

performs the random search. During the search it is important to promote the fault revealing

power of the scenarios as well as their diversity. In our study we present an approach that
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uses a standardized environment representation, selection and mutation operators for gener-

ating di�erent types of environment. As a �tness function, we are using both scenario fault

revealing power and diversity.
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CHAPTER 4 AMBIEGEN: SEARCH BASED FRAMEWORK FOR

VIRTUAL TEST ENVIRONMENT GENERATION

In this chapter we formulate the problem of the scenario generation as a search problem

and present the genetic algorithm con�guration used by AmbieGen. We also discuss some

implementation details of AmbieGen.

4.1 Problem formulation

The test scenario generation problem can be formulated as follows: given the parameters

that describe the environment for a cyber-physical system, generate such an environment,

that forces the system to falsify the requirements. For example, to test a self-driving vehicle

we should consider such parameters as the road type and size, the location of other vehicles

or pedestrians, the driving weather conditions, etc. Evidently, one of the most important

requirements would be the collision avoidance. Generating such scenarios manually is an ex-

tremely time consuming task: the engineers would need to list the precise positions positions

and heading directions of the moving objects, specify di�erent types of environmental con-

ditions, etc. Therefore it is preferable to generate such scenarios automatically. To control

their quality, optimization techniques should be used.

4.1.1 Scenario representation

In this subsection we formalize the de�nition of the test scenarios. A cyber-physical system

is a reactive system, consisting of a collection of computing devices interacting with the

environment via inputs and outputs [49].

We propose to encode the test casesTC as a matrix of sizeMxN , such as shown in Table

4.1, where M is the number of elementsE i constituting the environment and N, the number

of attributes describing each elementA i . Therefore, each column describes a particular part

of the environment. The attributes, i.e. rows provide more details about the environment

part e.g. they can represent the location, size and type of the obstacle in a particular space.

Each attribute has its allowable range[AnMIN ; AnMAX ]. Finally, the test scenarios can have

restrictions R, which limit the scenario lengthM or particular combinations of attributes.

We provide examples of application of this representation to generate di�erent environments

in the chapter 5.

With such representation it's easy to implement the crossover and mutation operators as well
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Table 4.1 ScenarioTC representation

E1 E2 E3 ... En

A1h1 A1h2 A1h3 ... A1hi

A2h1 A2h2 A2h3 ... A2hi

Anh 1 Anh 2 Anh 3 ... Anhi

as generate the initial population. To perform the crossover, we can simply exchange the

columns of the individuals. To perform mutation, we can change the values in the cells.

4.1.2 Search objectives de�nition

The main goal is to �nd scenarios producing system faults. At the same time, the scenarios

should be diverse, uncovering di�erent types of faults. From our experience, using only one

objective results in producing many similar test cases in the last generation. Therefore we

suggest adopting a multi-objective algorithm, where one of the objectives is accounting for the

diversity of the test cases. The idea of adding a second objective for diversity was addressed

in the novelty search research works, such as [50] as well as test scenario generation tools [6].

To estimate the fault revealing power' of the test case we compute the di�erence between

the expectedB(TC) and observed system behaviourBo(TC) after executing the test case:

' (TC) = � (B (TC); Bo(TC)); (4.1)

where� is a developer de�ned function for computing the deviation between the expected and

observed system behaviour andTC is the test scenario speci�cation. The expected behaviour

B(TC) is typically de�ned in the system requirements or formulated by the developers e.g.

�the car should not deviate from the lane center more than 1 meter�. The observed behaviour

corresponds to the model under test (MUT) outputs after scenario execution. However, the

models of autonomous systems are rather complex and take long time to execute in the

simulators i.e. up to several minutes for one scenario. Moreover, executing the full models

in the simulation environments requires additional system resources such as a GPU and high

amount of RAM. Therefore we suggest estimating the observed behaviourBo(TC) using

the approximated (surrogate) system models. Such models can be built based on the grey-

box modelling approach [51], where model structure is chosen from system knowledge and

parameters are selected to match sampled data. When little knowledge is available about

the model, system identi�cation techniques [52] can be used, where the modelled system is

considered as a black box.
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To estimate the variability � of the test case we compute the Jaccard distance between it

and a reference test case:

� (TC; TCref ) = 1 �
TC \ TCref

TC [ TCref
; (4.2)

whereTC [ TCref corresponds to the total number of unique inputs in both test cases and

TC \ TCref to the number of inputs with similar or unique attributes.

Finally, we de�ne our search objectives:

maximize : (' (TC); � (TC; TCref ))

subject to : C1(TC) = ' (TC) � � > 0;

where C1 is a constraint for the minimum value of the �rst objective, � is the developer

de�ned threshold to identify the test cases as having a risk of producing a failure. This

constraint is introduced to avoid producing test cases with low fault revealing power.

In our study we consider two con�gurations of our approach: AmbieGen MO, decribed above

and AmbieGen SO based on a single objective genetic algorithm (GA) withF1 as a �tness

function.

4.2 AmbieGen description

To perform the search we are using evolutionary search algorithms NSGA2 and GA [16],

which have proven to be e�ective at similar tasks [25, 34]. Below, We present the GA and

NSGA2 con�gurations used in AmbieGen.

4.2.1 Genetic algorithm con�guration

We implemented the AmbieGen MO and AmbieGen SO using a python Pymoo frame-

work [53]. The framework provides the possibility to de�ne custom solution representations,

crossover and mutation operators.

Solution representation. Each individual in the population corresponds to a test case.

Individuals can have a variable number of genes i.e. environment elements depending on the

application. We suggest representing the the test scenario matrix as a dictionary, as shown

below:

{ "E1" : { "A1 : " A1 , "A2" : A2 ,

"An" : An } , " Ei " : { . . . } } ,
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where "Ei" corresponds to the element of the environment that is described.

Algorithm 3 Test case generation algorithm

Input: - population sizePs

- crossover rateCr

- mutation rate M r

- number of o�springs N

- termination criteria T

- �tness functions F1, F2

- constraints C

Output: a set of critical scenariosCS = ( TC1; TC2; TCi ), represented by the Pareto optimal

solutions found by the algorithm

1: procedure NSGA2 scenario generation (P; Cr ; M r ; N )

2: # Generate an initial population set P randomly or using a Markov chain

3: population �  PopulationSampling(Ps)

4: Evaluate(�; F 1; F2)

5: #while termination criteria is not reached

6: while not (T) do

7: # select o�springs for crossover and mutation

8: of fsprings Q  BinaryTournament (N; � )

9: children �  OnePointCrossover(Q; Cr )

10: children �  Mutation (�; M r )

11: # add o�springs to the population

12: population �  � + �

13: Evaluate(�; F 1; F2)

14: # update the population by selecting topPs

15: individuals from the old population and o�springs

16: population �  UpdatePopulation(Ps)

17: end while

18: return CS

19: end procedure

Initial test case generation. The search begins by generating the initial test cases. One

of the options is to randomly assign valuesA ij to environmental attributes A i from their

allowable ranges [A ijMIN , A ijMAX ]. When some distribution of attribute values is known
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to produce better test cases, from both semantical and fault-revealing point of view, we

suggest using the Markov chain to assign the values. For example, when generating the road

segments, the road consisting of only the straight segments is very unlikely to produce faults.

Such cases can be avoided by assigning values with the Markov chain.

Fitness evaluation. We use two �tness functions to evaluate each individual:F1, corre-

sponding to the function in (4.1) andF2 corresponding to (4.2).

F1 is calculated after executing the test case with a surrogate modelM of the system. This

function is problem speci�c and should be proportional to the unwanted behaviour of the

system. For example, for evaluation of a self-driving car test case we can compute the

maximum deviation from the road lane center, where bigger deviation is likely to produce

more faults.

In our implementation we computeF2 as the Jaccard distance between the individual and

its parent, which acts as a reference test case. The intuition is to promote the modi�cations

done to the test cases. However, a di�erent reference test case can be used, such as the closest

individual from the Pareto optimal solutions.

As the Pymoo framework minimizes the �tness functions, in our implementation we multiply

F1 and F2 actual values by (-1).

Mating selection. To select the individuals for crossover and mutation the binary tour-

nament selection is used, which is implemented by default in Pymoo.N individuals are

selected, producingN new individuals after crossover and mutations.

Crossover operators. We are using a one point crossover operator, which is one of the

commonly used operators for variable-length solution representation. It exchanges the envi-

ronment elementsE i between two di�erent test cases.

Mutation operators. We de�ne three mutation operators:

ˆ exchange operator: two states of a chromosome are randomly selected and exchanged

the positions;

ˆ change of variable operator: a state in a chromosome is randomly selected, then for one

of the state variables (temperature, duration, model) value is changed according to its

type and maximum as well as minimum values.

ˆ scramble operator: a number of states in a chromosome is selected, then their positions

in the chromosome are randomly exchanged.

Individual insertion. To insert the individuals the � + � approach is employed [54]. The
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idea is to merge the population and o�springs together, and then from the merged set, select

the best possible non-dominated solutions of the population size.

4.2.2 Software implementation

In this subsection we provide more details about the software implementation of AmbieGen.

As mentioned earlier, we use the Pymoo framework, which provides the key components for

implementation of single and multi objective evolutionary algorithms. The key components

of AmbieGen are summarized in Fig. 4.1. We implemented customized modules for creating

initial population (MySampling), crossover (MyCrossover), mutation (MyMutation) and the

solution representation. �Solution� is an object containing all information about the solution:

its �tness, novelty and corresponding scenario. Initial encoding of the scenario is the matrix

TC, containing a high-level description of the environment. With such representation it's

easy to implement the search operators by simply exchanging the matrix columns and cell

values. To evaluate its �tness it �rst needs to be converted to the environment con�guration

for the approximated model (�TC to environment� module). For example, the scenarios

for the smart-thermostat should be converted to a list of temperatures to follow. Then an

approximated model is used to execute the scenario and the �tness function is calculated

based on the execution results (�Fitness function� module). Approximated model can be

created either from real data or from the full model data. Another possibility is to use

already implemented simpli�ed models of cyber-physical systems, such as those available at

python robotics project [55].

Overall, to generate the scenarios the developer needs to provide the list of attributes and

their allowable ranges, an implementation of the �TC to environment� and ��tness function�

modules. The AmbieGen will integrate the modules and implement the initial population

generation, crossover and mutation operators.

Figure 4.1 AmbieGen software implementation structure

Moreover, it's simple to control the level of complexity needed for the environment. By
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adding more attributes, the complexity can be increased. The limitation is the possibility

of the simulator to interpret more complex environment con�gurations, such as the terrain

type, the weather conditions, etc.

4.3 Chapter summary

In this chapter we propose the key components needed to implement the evolutionary search

algorithm: the encoding of the individuals, implementation of the crossover and mutation

operators. We also de�ne two �tness functions, accounting for the scenario fault revealing

power, as the deviation of the observed system behaviour from the expected, and diversity,

as the Jaccard index between the scenarios. Finally, we describe some details of the imple-

mentation of our framework. We provide examples of application of AmbieGen to generation

of scenarios for three di�erent autonomous CPS the chapter 5.
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CHAPTER 5 TEST SCENARIO GENERATION CASE STUDIES

In this section we demonstrate how AmbieGen can be applied to three di�erent types of

environment. We consider the following test generation case studies: a smart-thermostat,

robot obstacle avoidance system and vehicle lane-keeping assist system. In every case study

the autonomous agent controller has a di�erent level of complexity: simple PID controller for

the thermostat, a robot controller based on the nearness diagram navigation approach [8] and

a deep neural network based controller for the vehicle. We evaluate AmbieGen by comparing

the results obtained with random search for all the three problems. For the last case study

we also compare our results with state-of-the art approach, presented at SBST2021 tool

competition 1.

5.1 Wireless thermostat case study

Nowadays, home automation becomes more and more popular. Automatic temperature con-

trol systems are one of the most commonly used. Such systems consist of a controller,

temperature sensor and a heating element. The controller goal is to keep the room temper-

ature according to the programmed schedule. The simplest solution is to send �ON� and

�OFF� commands to the heater, when the temperature needs to be increased or decreased.

More sophisticated thermostats implement PID controllers to achieve smoother operation.

Testing the controllers in the simulators for di�erent temperature schedules is necessary in

order to ensure their precision and reveal the possible limitations. In this study, the test

generation goal is to create scenarios accounting for the scheduled temperature as well as

environmental conditions.

System under test description

In our case study we consider a simple wireless thermostat system. It consists of of one

room with a heater, sensor and controller and is part of a larger system, described in a

more detail in [56]. The room dimensions are approximately 2.5 mÖ 4 m and the height

is about 2.6 m. The heating element is a Steelpro 1.5 Kw electronic convector2, which is

controlled via a wireless Z-wave protocol based switch. The temperature is measured by a

Aeotec MultiSensor 6 device3, placed at about 2.2 m from the �oor. The controller is a

1https://sbst21.github.io/tools/
22https://www.stelpro.com
3https://aeotec.com/z-wave-sensor

https://sbst21.github.io/tools/
2https://www.stelpro.com
https://aeotec.com/z-wave-sensor
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Raspberry Pi 3B running Z-wave.me with a RaZberry 44 daughter card acting as Z-wave

network controller. The Raspberry Pi has a user de�ned schedule of temperature levels; it

reads the thermometer measured values and if needed (according to the schedule and required

temperature) it switches on (o� ) the heating.

The data for the room temperature was collected for the period from December 2019 to May

2020. To collected the data we created a python script to parse the system log �les. From the

data, we could observe 7 patterns of temperature dynamics after ON/OFF commands of the

thermostat. As an example, in the Fig. 5.1 you can see that the temperature decreases with

di�erent rates, which depends on such factors as indoor and outdoor temperature, humidity,

etc. We represent di�erent temperature dynamics patterns with di�erent thermostat models.

(a) Slower decreasing temperature pattern (b) Faster decreasing temperature pattern

Figure 5.1 Di�erent temperature dynamics patterns

The goal of the search is to �nd the schedule and the corresponding thermostat operating

mode, when the error of following the schedule is more than 1 degree.

The case study description is summarized in the table 5.1 and described in a more detail in

the following paragraphs.

Problem representation

For this problem we de�ne three high-level input attributes: A1 the goal temperature value,

A2 the duration of this temperature and the thermostat operation modeA3, corresponding

to one of the identi�ed patterns. The allowable ranges for the variables are shown in the

Table 5.2. We de�ne two restrictionsR1 and R2 for the test scenarios. ForR1, the duration

of the scheduleT cannot exceed 24 hours:

nX

i =1

A2i < T; T = 24 (5.1)

4https://z-wave.me/products/razberry

https://z-wave.me/products/razberry
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Table 5.1 Summary of the smart thermostat case study parameters

The problem
Find a schedule and environmental conditions combination,
where the smart thermostat cannot follow the schedule with
a given precision.

Environment
element

One part of the temperature schedule with the goal tem-
perature, duration of the given temperature and thermostat
operation mode speci�ed.

Test case re-
strictions

Total schedule duration less than 24 hours, temperature can-
not change faster than 5 degrees per hour.

Fitness
function F1

Maximize the root mean square error between the scheduled
and simulated temperature.

Table 5.2 Attributes to generate scenarios for the smart thermostat case study

A1; temperature; T � A2; duration; min A3; operation mode
[16, 17,...,25], [60, 75,..., 240] [1, 2,..., 7 ]

For R2, the temperature cannot change too sharply i.e. more than 5 degrees between two

inputs:

A1h i � A1h i +1 < 5; i 2 [0; m]; (5.2)

wherem is the number of inputs in the test case.

Fitness function de�nition

To calculate one of the �tness functions we need to create a surrogate i.e simpli�ed model

of the system. To this end, we extracted the data from the experimental measurements and

selected the series of data points, corresponding to behaviour of the thermostat after �switch

on� and �switch o�� commands in di�erent thermostat operation modes. The next challenge

is to select the model structure. In our case it is possible to build a �rst-principles model, as

the heating and cooling of a closed space is guided by physical laws, such as Newton Law of

cooling [57]. The law has an exponential nature, therefore our model structure is based on

increasing and decreasing exponential function.

We propose the following time-discreet model structure for theM 1 ("on") mode:

Y = kon1 � (1 � e� kon 2 � t i ) + T0 (5.3)
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and for the M 2 ("o�") mode:

Y = kof f 1 � (e� kof f 2 � t i ) + T0 � kof f 1 (5.4)

Here kon1, kon2, kof f 1, kof f 2 are the unique coe�cients de�ning the model behaviour in a

particular environment. T0 - is the starting temperature and t i - the discreet time step

value, Y - the output temperature. We keep the coe�cients in a table, such as table 5.3,

where coe�cients for the three models are shown . As an example, in Fig. 5.2 you can see

how the model 1 with the coe�cients from the table, �ts the data from real measurements.

One model includes two equations describing behaviour in �on� and �o�� modes. In total,

we identi�ed 7 models having di�erent coe�cients in the equations, corresponding to the

thermostat operating in di�erent environmental conditions.

Table 5.3 Smart thermostat simpli�ed model coe�cients

Model kon1 kon2 kof f 1 kof f 2

1 7.7 0.11887928 5.6 0.02929884
2 7.9 0.11180434 5.2 0.04803319
3 6 0.14704908 4.8 0.1203876

Figure 5.2 Model (red points) �tting the experimental data (blue points)

To obtain the coe�cients, we �t the experimental data by a curve with minimal deviation.

We used python SciPy library, namelycurve_ f it function from Optimize class, which is

based on non-linear least squares method [58]. The average root mean square error between

original and approximated data did not exceed 0.5 degrees.

Finally, to calculate the �rst �tness function we execute the test scenarioTC using the

surrogate model. We obtain the output values of the room temperature set by the thermostat

Y and calculate the root-mean square error betweenY and the temperature values de�ned
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in the scheduleS:

F1therm =

vu
u
t

nX

i =1

(Yi � Si )2

n
; (5.5)

wheren is the number of datapoints in the output. For the test cases that don't satisfy the

requirements (5.1) and (5.2) we set theF1therm to 0.

We calculate the second �tness function,F2therm according to (4.2). In order to prevent

obtaining the test cases with low fault revealing power, we also add a search constraint

Ctherm :

Ctherm : jF1therm j � 1:5 > 0; (5.6)

AmbieGen con�guration

We used the following GA (AmbieGen SO) and NSGA-II (AmbieGen MO) con�gurations for

the smart thermostat problem: population size: 250, number of generations: 200, mutation

rate: 0.4, crossover rate: 1, algorithm type: generational, number of evaluations: 50 000.

We are using a high mutation rate, as from our experience, it allowed to converge to better

solutions faster. In our implementation a� + � insertion approach is used, where only the

best individuals from previous generation and o�springs are inserted to the next generation.

In the generational GA the number of o�springs inserted in the population is equal to the

population size. The average time to run 50000 evaluations was 136.691 sec for GA and

123.665 sec for NSGA2.

Scenario generation

Finally, we discuss an example of the produced scenarios. In Fig.5.3a you can see a scenario

with a low �tness value of 0.76 degrees, indicating that the temperature deviates from the

schedule 0.76 degrees on average. On the contrary, in Fig.5.3b the scenario produced by

AmbieGen search has a higher �tness of 2.4 degrees. Clearly, this scenario is more likely to

be unacceptable to the user, comparing to the �rst one.

5.2 Autonomous robot case study

The autonomous robotic systems are used in many domains: from everyday tasks such as

room cleaning to critical missions such as navigation to harsh environments. For every

application, we need to have a high con�dence that their behaviour will be safe. Running the

simulations of the system in various virtual environments can uncover the possible failures
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(a) Randomly produced scenario (b) Search produced scenario

Figure 5.3 Examples of scenarios for the smart thermostat

of the robot in the early design stage.

In this case study we consider an autonomous mobile robot, navigating in a space with

obstacles. The robot has to reach the goal location, relying only on its range sensors and

the planning algorithm. The goal is to generate the environment, i.e., a room with obstacles

that forces the robot to fail. Similar test generation problems were addressed by [42], [39].

In [39] the navigation maps are created using the procedural content generation technique.

Then robots are assigned a randomized route to follow. The test scenario is an environment

populated with robots, obstructions, and mission allocations. Sotiropoulos et al. characterize

a map by its size, percentage of obstruction (due to objects), and its degree of smoothness

(resulting from the ground local deformations). The robot is given a navigation mission,

de�ned by a starting position and a target arrival position, situated in the map boundaries.

Both approaches only consider the random generation.

System under test description

We ran the simulations in the Player/Stage simulation environment (see Fig. 5.4), which

is one of the most commonly used in the robotics �eld [41]. We also considered using such

simulators as Gazebo5, MORSE6, and Argos7. One of the advantages of Player/Stage for our

study was the possibility to load the automatically generated environment con�guration �les

as well as the big number of implemented models and controllers. For Gazebo and MORSE

the environments have to be manually created in a dedicated 3D design tool. For Argos, the

maps can be generated automatically, however the number of implementation examples is

limited. One of them, which includes a planning algorithm implementation, is dedicated to

robot swarms, which we plan to explore more in the future [59].

5http://gazebosim.org/
6https://github.com/morse-simulator/morse
7https://www.argos-sim.info/

http://gazebosim.org/
https://github.com/morse-simulator/morse
https://www.argos-sim.info/
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For simulations we used a Pioneer 3-AT mobile robot8 model provided by the Player/Stage

simulator. The robot is equipped with a SICK LMS200 laser with the sensing range of 10

meters, it has four wheels and is capable of speeds of up to 0.8m/s. One of the planning

algorithms provided by the simulator is using the nearness diagram (ND) navigation method.

This is a reactive navigation method, where the motion commands are computed based

on the robot sensor data. The method computes the optimal motion command to avoid

collisions while moving the robot toward a given goal location. Before the robot mission

starts, it runs the A* planning algorithm to obtain the route towards the goal. Then it

uses its ND algorithm for navigation. To increase the challenge for the robot we applied the

Ramer�Douglas�Peucker algorithm9 to reduce the number of waypoints in the created route.

Our objective is to �nd environments, when the navigation algorithm fails and the robot

doesn't reach the goal, getting stuck during the navigation. The scenario is represented by

a bitmap, where the location of obstacles is speci�ed, as well as by a set of waypoints for

the robot to follow. Failures are detected by a daemon script that continuously monitors the

simulation environment.

The case study parameters are summarized in table 5.4 and described in more detail in the

following paragraphs.

Table 5.4 Summary of the autonomous robot case study parameters

The problem
Generate a navigation map with obstacles, that a robot can-
not complete without collisions.

Environment
element

One part of the map, where obstacle type, obstacle size and
position are speci�ed.

Test case re-
strictions

Obstacles cannot block completely the path from the start to
the goal position.

Fitness
function F1

Maximize the length of the robot path from the start to the
goal position.

Problem representation

In this scenario generation case study the environment is represented by a map with obstacles.

We de�ne the map size to be 50 x 50 m. Each environment partE i corresponds to a space

of the size 1 x 50 m. In total there are 50E i elements, therefore the scenario matrix sizeM

is �xed and is equal to 50. We de�ne three attributes describing the environment:A1, the

8https://www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-datasheet.pdf
9https://rdp.readthedocs.io/en/latest/
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(a) A perspective view in the simulation environ-
ment (b) A top view in the simulation environment,

with the robot navigating in the environment us-
ing the laser range sensors (blue)

Figure 5.4 Player/Stage simulation environment for autonomous robots

type of the obstacle,A2 position of the obstacle andA3 the size of the obstacle. This gives

the sizeN of the scenario matrix of 3. The values for the attributes are speci�ed in Table

5.5. We use two types of obstacles - vertical and horizontal walls. The size - is the total

obstacle length in meters. The position - is the obstacle center location in the elementE i .

We distribute the obstacles by assigning to each row the position of the obstacle center.

We de�ne two restrictions. First, R1: only one obstacle per elementE i . Second,R2: the

obstacles cannot cover completely or intersect with the initial and target robot location

points.

Table 5.5 Attributes to generate scenarios for the autonomous robot case study

A1; obstacle type A2; obstacle size A3; obstacle position
[horizontal, vertical] [5,6, ..., 15] [1, 2, ..., 50 ]

Fitness function de�nition

The intelligent robotic systems are typically equipped with a planning algorithm that builds

a path to the goal location as the robot moves through the environment. The trajectory is

adjusted as the new obstacles are discovered by the robot.

In the simpli�ed case, the robot knows about the location of all the obstacles in advance.

Therefore, as the robot approximated model we are using the Python robotics implementation
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of A* planning algorithm [55], which creates the route given the map, start and destination

location. We have selected the A* because it is a deterministic algorithm and always �nds

a route, if it exists. The disadvantage is that the computations take longer time, than for

non-deterministic planning algorithms such as RRT*.

The �rst �tness function, F1robot , maximizes the distance the robot would have to travel to

�nd the goal. For the test cases that don't meet the requirements,F1robot is set to 0. The

second �tness function is calculated according to (4.2).

AmbieGen con�guration

We used the following GA (AmbieGen SO) and NSGA2 (AmbieGen MO) con�gurations:

population size: 100, number of generations: 400, mutation rate: 0.4, crossover rate: 1,

algorithm type: steady state with 50 o�springs, number of evaluations: 20 000.

For this problem we used a smaller number of o�springs to run more generations for the same

time budget. The A* algorithm implementation was computationally expensive to execute.

The average time to run 20000 evaluations was 2727.2 sec for AmbieGen SO and 2394.9 sec

for AmbieGen MO.

Scenario generation

In Fig.5.5 we show examples of the generated scenarios, i.e., rooms with obstacles obtained

by random generation Fig. 5.5a and with AbmieGen Fig. 5.5b. In Fig. 5.5a the length

of the robot path towards the goal is 78.76 meters, while in the Fig. 5.5a - it is 202.36

meters. Evidently, the second scenario poses a more challenging navigation environment for

the robot, than the �rst scenario. The video demonstration of the fault revealed for the robot

model in the Player/Stage environment can be found via the link:https://figshare.com/

s/7208f6d5ce19e1476474.

Next we describe our navigation map generation approach in a more detail.

Approach description. The virtual map is represented by aPxP matrix, where P is the

resolution. In our case study we chose to have two obstacle types: vertical and horizontal

wall. The width of the wall corresponds to the map resolution. Each row of the map contains

P cells. We distribute the obstacles by assigning to each row the position of the obstacle

center, selected from the range[1; P � 1]. Given the location of the centers we build the

obstacles, removing the parts that are going out of the map bounds. Another limitation

is that obstacles cannot instersect or block the start of or the target location of the robot.

Appart from obstacles, it's possible to assign the terrain types, the initial location of dynamic
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(a) Random scenario (b) Search produced scenario

Figure 5.5 Examples obtained robot navigation maps

objects, such as other robots. Moreover, di�erent types of obstacles can be used.

5.3 Lane keeping assist system case study

Self-driving cars have a perspective of becoming a part of our lives in the near future. These

systems are safety-critical and should be well tested to avoid unwanted consequences. Run-

ning the simulations in the virtual environments can reveal the possible faults of their control

algorithms.

In this case study we generate the virtual roads to test car Lane Keeping Assist System

(LKAS). The goal is to generate the roads that force the ego-car, i.e., the test subject,

to drive o� its lane without creating invalid roads. A number of tools were suggested for

automatic generation of virtual roads, such as DeepJanus [36] and AsFault [5]. This year,

four tools, such as Frenetic, Deeper, Swat, and GA-Bézier were presented at the SBST2021

tool competition [60]. The SWAT tool is the submission of the random generator based

implementation of our approach for virtual road generation.

System under test description

For simulating the car and the environment, we used the simulation pipeline initially pro-

vided by [36] and adapted for the SBST2021 tool competition. This environment uses the

BeamNG.tech driving simulator [61], a freely available research-oriented version of the com-

mercial game BeamNG.drive (see Fig. 5.6). The test subject is the builtin driving agent,
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BeamNG.AI. This driving agent is omniscient, i.e., it knows the geometry of the whole road

and utilizes a complex optimization process to plan trajectories that drive the ego-car as

close as possible to the speed limit while keeping the vehicle inside the lane. The car con-

troller adopts a behavioural re�ex approach, i.e., the deep learning component (DL) learns a

direct mapping from the sensor camera input to the steering angle value to be passed to the

actuators [62].

Figure 5.6 The screenshot from a BeamNG simulation environment

The case study parameters are summarized in table 5.6 and described in a more detail in the

following paragraphs.

Table 5.6 Summary of the lane keeping assist system case study parameters

The problem
Generate a valid road with a trajectory that forces the car to
go out of the lane.

Environment
element

One road section, where the road type, its length or curvature
angle are speci�ed.

Test case re-
strictions

The road cannot go out of the map bounds, cannot intersect
or be too sharp.

Fitness
function F1

Maximize the deviation of the car from the road lane center.

Problem representation

In this case study, the test scenario is a �at road surrounded by plain green grass with the

�xed weather conditions: sunny clear day. The road layout (i.e., number and width of lanes)

is �xed and consists of two lanes.
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Each environment elementE i corresponds to one road section. To describe the road section

we de�ne three attributes: the type of the roadA1: going straight, turning right and turning

left. A2: the length of the straight road segment, andA3: the angle of the turn of the curved

segment. The attributes representation is shown in Table 5.7. The test scenario contains 3

rows (N = 3) and a variable number of columnsM , depending on how many road segments

�t in a map. In our scenarios and at SBST competition, the map size was 200 x 200 m.

Table 5.7 Attributes to generate scenarios for the vehicle LKAS system case study

A1; road type A2; straight road length A3; road turn angle
["straight", [5, 6, ..., 50] [5, 10,..., 85 ]
"turn left",

"turn right"]

The test cases have the following limitations: the roads can't be too sharp, can't intersect

and shouldn't go out of the map bounds. Examples of valid and invalid roads are shown in

Fig. 5.7.

Figure 5.7 Examples of valid (a) and invalid roads: (b) - out of bounds, (c) - too sharp, (d)
- intersecting

Fitness function de�nition

To calculate the test scenario �tness we need to create the simpli�ed model of the car.

Similarly to the thermostat problem, we built the car model from the �rst principles as the

car movement can be described by a well known car kinematic model [63]. To describe the

car movement we use the equations from [49], see Fig.5.8. To keep the car close to the lane

center we adopt Stanley control [64].
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Figure 5.8 The simpli�ed car model parameters

In the equations (5.7 - 5.10) below,x; y - are the current coordinates of the car on the map,�

is the angle between car direction and a reference plane,� and � - constants, corresponding

to velocity value, d - the distance of the car from the closest point on the road. Whend is

smaller than a certain thresholde, the car goes straight, whend is larger than e - the car

turns either left or right. The turn angle is adopted depending on the car speed and the

deviation from the road lane center.

Therefore we have the following �ne-tunable parameters:k, � , � and the initial speed� 0.

In order to �ne tune the parameters, we created a dataset with the road points and the

corresponding car model pathS recorded by the simulator while executing the scenarios.

Then we compared the outputs of our model with the simulated car path using such metric

as a "Hausdor� distance". A similar metric, Frechet distance, was used in [65] to compare

the similarity between roads. The goal was to minimize the Hausdor� distance. To perform

the optimization we use the sci-py Nelder-Mead algorithm implementation. However, other

optimization algorithms can be used, such as genetic algorithms. The set of the parameters

that indicated the lowest average Hausdor� distance of 13.74 is shown in Table 5.8.

Table 5.8 Autonomous vehicle simpli�ed model coe�cients

� 0 k � �
7 3.5 0.3 0.1
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_x = � � cos� (5.7)

_y = � � sin� (5.8)

_� =

8
>>>><

>>>>:

tan� 1( k
� (t ) ) if d < � e

� tan� 1( k
� (t ) ) if d > e

0 if � e � d � e

(5.9)

_� =

8
><

>:

� � if d < � e; d > e

� if � e � d � e
(5.10)

Figure 5.9 The simpli�ed and full car model trajectory given the same road points

In Fig.5.9 you can see how the surrogate (blue points) and the full model (green points)

follow the interpolated road points (yellow). The Hausdor� distance between the two roads

is 5.153.

Finally, as the �tness function F1veh we maximized the biggest deviationd from the lane

center reached while executing the test case, as in [5] and [6]. The second �tness function

was calculated according to (4.2). For all the invalid test scenarios theF1veh was set to 0.

AmbieGen con�guration

We used the following GA and NSGA-II con�gurations: population size: 500, number of

generations: 200, mutation rate: 0.4, crossover rate: 1, algorithm type: generational, number

of evaluations: 100 000.

We are using a higher population size, rather than the bigger number of generations, as from
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our experience, with bigger population the results were more consistent across di�erent runs.

The average time to run 100000 evaluations was 1522.405 sec for GA and 1380.66 sec for

NSGA2.

Scenario creation

(a) Scenario forcing the car to drive o� the
lane

(b) Scenario forcing the car to drive o� the
lane

Figure 5.10 Examples of fault revealing scenarios for vehicle lane keeping assist system

In Fig. 5.10 we show examples of the generated test cases, that forced the car to go out

of the lane. The golden points correspond to the road lane center, the blue points - to the

surrogate model path, green points - the full model path. When the virtual car went out of

the lane bounds, the simulation recording stopped, therefore we see the full model path only

for the part of the road. The video demonstration of the failure, when the car model is going

out of the lane bounds during execution of one of our scenarios can be found via the link:

https://figshare.com/s/b4a096f0a66e0abbe7b1 .

Below we describe in a more detail our virtual road generation approach.

Approach description. In the current case study, the scenario is represented as a �at road

surrounded by green grass. The environmental conditions and the road layout are �xed and

prede�ned: sunny day and a two lane road. Our goal is to produce a sequence of points,

de�ning a road lane center. It will be further interpolated with cubic splines to obtain

the �nal road geometry. A diagram, showing our road generation process is shown in Fig.

5.11. The road generation starts from the initial vector� 1, placed in the middle of the

map. From our experience, initial placing in the middle of the map, produced better results

than at the borders or random location. To create the road pointsp1 � p7, we then apply

a�ne transformations to the initial vector � 1, according to the road types speci�ed in the
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generated scenario, i.e., �straight N meters�, �turn right/left N degrees�. We use three types

Figure 5.11 The road points (black) generated after applying a�ne transformations to the
initial vector � 1

of transformations:

ˆ parallel transition, corresponding to road going straight;

ˆ clockwise rotation, corresponding to road turning right;

ˆ anticlockwise rotation, corresponding to road turning left.

For example, to obtain � 2 we moved the� 1 parallelly N meters (�straight N meters�). To

obtain � 3 we rotated � 2 N degrees anticlockwise (�turn leftN degrees�).

The sequences of transformations were generated automatically, using the Markov chain

with three states: �straight�, �turn right� and �turn left�. The designed Markov chain with

the probabilities for changing states is shown in Fig.5.12. We �ne-tuned the probabilities

empirically, so that on average, longer loads are produced. Adjusting the probabilities of

transition allowed to avoid generating useless test scenarios, such as completely straight

roads. To each state the value is then randomly assigned from the list of accepted values.

The next challenge is to construct valid roads from the given sequences of road sections,

i.e. vector transformations. Examples of performing �left turn15 degrees�, �right turn 15

degrees� and �straight N meters� transforms to a vector are shown in Fig.5.13.

Parallel transition is performed by moving the vector byN points in the orthogonal direction.

To perform the rotation, it's important to correctly select the rotation axis, which can be

located next to the vector start or end point. The choice depends on the direction in which

the vector moves along the map. For a left turn, the vector is always rotated anti-clockwise

around the axis, for the right turn - clockwise.
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Figure 5.12 Markov chain for generating virtual roads

Figure 5.13 Left turn (a), right turn ( b) and parallel transforms (c)

To select the rotation axis, our initial strategy was to infer the direction of the movement

from the location of the previous vector. This approach, however, produced a relatively high

number of invalid roads. The strategy that worked well and that we selected for our approach

is illustrated in the �gures 5.14 - 5.15, where a left turn is performed and vector is moving

from position A to B. The idea is that �rst we select the axis position arbitrary. If it produces

a valid transformation - we keep it, otherwise we select another position.

In Fig. 5.14, �rstly, the rotation axis is selected to be on the vector end side (b). We do

a small perturbation by rotating this vector anti-clockwise (clockwise for right turn) for a

small angle value (2 degrees). The rotated vector appears inside the polygon de�ned by the

current and previous vectors, which is an invalid position. Therefore, the location of rotation

axis is changed to be at the vector start side. Then the rotation is performed using the new

axis location (a). The intuition is that the new vector position should not intersect with the

path de�ned by previous vectors. The road generation stops, when the road vector goes out

of the road map bounds. The same steps apply to the transformation in Fig.5.15.

The implementation of this approach is openly available [66]. We submitted it to the
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Figure 5.14 Correct choice of the axis (a) and incorrect choice of the axis (b)

Figure 5.15 Correct choice of the axis (a) and incorrect choice of the axis (b)

SBST2021 tool competition under the name �SWAT�. It achieved the highest ratio of the

validly generated scenarios i.e. 95 % among other four tools. However, it only used random

generation and revealed low number of failures comparing to the best results.

Below we also present other approaches described in the literature for virtual road genera-

tion. Related works. In the literature a number of approaches were presented to generate

the virtual roads. They are using Beizer curves [65], Frenet frames [67], Catmull-Rom cubic

splines [6], lanelets [68] and polylines [5]. The advantage of our approach is the possibil-

ity to encode, along with the virtual road speci�cation, a more detailed description of the

environment, such as the terrain/surface type of a particular road segment, as well as the

position of static/dynamic objects on it. These descriptions can be evolved by the search al-

gorithm together with the combination of road segments, allowing to produce more complex

environments.
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5.4 Chapter summary

In this chapter we present a more detailed description of the case studies we used to evaluate

AmbieGen, namely a smart-thermostat, autonomous robot and a vehicle lane keeping assist

system. For each of the systems we created a simpli�ed model to calculate the �rst �tness

function, accounting for the scenario fault revealing power. We also present the examples

of the scenarios generated by AmbieGen and a more detailed description of the approach to

generate them.
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CHAPTER 6 EMPIRICAL EVALUATIONS

In this chapter we formulate our research questions and evaluation methods. We then present

the main results of our evaluations and answers to research questions. In the end, we discuss

the results.

6.1 Research questions

We evaluate our approach using the three test case generation case studies described above.

For each of the case studies we answer the following research questions.

RQ1. (Comparing random, single-objective and multi-objective search) . Con-

sidering the single and multi objective versions of AmbieGen as well as the random search,

which con�guration produces the test scenarios with the higher fault revealing power values

given the same time budget?

Motivation: Firstly we would like to know if the use of evolutionary search is bene�cial

and allows to produce better solutions, than simple random search. Next, we want to know

if adding additional �tness function for diversity allows to �nd better solutions. We expect

AmbieGen MO to produce at least as good solutions as AmbieGen SO. Previous works on

novelty search [69], [50] have shown that adding a �tness function for diversity may increase

the convergence speed.

Experiment design: We give the same time budget to all the three algorithms in terms of

number of evaluations and compare the averageF1 �tness function value of the best solutions

found. We repeat the measurements 30 times.

RQ2. (Comparing diversity of the solutions found by the single-objective and

multi-objective search). To what extent the diversity of the solutions found by the multi

objective AmbieGen con�guration is higher than the diversity of the single objective con�gu-

ration solutions?

Motivation: This research question is aimed to quantify the di�erence between diversity of

the solutions produced by AmbieGen So and AmbieGen MO. We expect the AmbieGen MO

to produce more diverse scenarios.

Experiment design: Given the same time budget, we compare the average diversity of the

best 5 solutions found by the single-objective algorithm and the average diversity of the Pareto

optimal solutions found by the multi-objective algorithm. We repeat each measurement 30
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times.

For the autonomous robot and lane keeping assistant case study we also answer the following

question:

RQ3. (Comparing our AmbieGen with the available baselines) To what extent does

our approach perform better in generating test scenarios for the full model in comparison with

the available baselines?

Motivation: This research question is aimed to quantify the e�ectiveness of AmbieGen in

the number of revealed failures for the full models used in simulations.

Experiment design:

Autonomous robot case study.To the best of our knowledge, there are no available test

generation baselines for the autonomous robot system. Therefore we compare the generated

scenarios with the random search by giving the same time budget of two hours and executing

the generated environments in the robotic simulator. We repeat the experiment 30 times.

Lane keeping assist system.For the lane keeping assist system, we compare AmbieGen with

the open-source approach that showed the best results in the SBST2021 tool competition [60],

i.e. Frenetic tool [67]. In the competition the same test evaluation pipeline was provided

to all the participants. It allowed to compare the generated test cases for the number of

faults revealed (forcing the ego-car to go out of the lane), the diversity of the revealed faults

and the proportion of the valid test cases. We perform the same 2 hour experiment as in

the competition, averaging the results over 30 runs. We further perform additional 5 hour

experiment to compare AmbieGen and Frenetic.

For all the research questions, to con�rm the statistical signi�cance of the results we per-

formed a two-tailed non-parametric Mann-Whitney U test and measured the e�ect size using

the non-parametric measure such as Cli�'s delta (d). The magnitude is assessed using the

thresholds provided in [18] , i.e. [d] < 0.147 �negligible�, [d] < 0.33 �small�, [d] < 0.474

�medium�, otherwise �large�.

We ran all the experiments on the PC running Microsoft Windows 10 Home and featuring

a quad-core AMD Ryzen 7 4800HS CPU @ 2.90 GHz, 16 GB of Memory, and an NVidia

GeForce GTX 1660 GPU @ 6GB.

6.2 Results

RQ1.(Comparing random, single-objective, and multi-objective search) In the Fig.

6.1, Fig. 6.2, and Fig. 6.3, we present the best �tness value found over generations by
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Random search (green boxplots), AmbieGen SO (red boxplots) and AmbieGen MO (blue

boxplots) averaged over 30 runs for the three problems. We considered the �tness function

accounting for the fault revealing power and described in Equation (4.1).

We compare the �tness function values found after the allowed number of evaluations with a

two-tailed non-parametric Mann-Whitney U test. The obtained p-values and e�ect sizes of

the problems are shown in the Tables 6.1, 6.2, and 6.3, respectively.

Thermostat case study.From Fig. 6.1 we can see that on average random search (yellow)

converges to values of -1.608, while AmbieGen SO (red) and AmbieGen MO (blue) �nd

the solutions with twice higher �tness value of -3. Statistical tests con�rm that AmbieGen

outperforms the random search with p < 0.01. We can observe that on average the SO

converges faster than MO, however, the di�erence between the converged values is negligible.

Table 6.1 Results of two-tailed non-parametric Mann-Whitney U test and Cli�'s delta e�ect
sizes for the smart thermostat case study

SO (GA) MO (NSGA2) Random
SO (GA)

MO (NSGA2) p = 0:378
0:133; negligible

Random p < 0:01 p < 0:01
1; large 1; large

Figure 6.1 Best �tness function value over evaluations for the thermostat case study

Autonomous robot case study.After 20000 evaluations, on average, random search produced

solutions with the highest �tness value of -158.89. AmbieGen outperforms the random search,
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with the SO con�guration producing 42 % �tter solutions of -278.2 and the MO con�guration

producing solutions of -251.6 �tness value. Given the same time budget, AmbieGen SO

produces almost 10 % �tter solutions than AmbieGen MO.

Table 6.2 Results of two-tailed non-parametric Mann-Whitney U test and the Cli�'s delta
values for the autonomous robot case study

SO (GA) MO (NSGA2) Random
SO (GA)

MO (NSGA2) p < 0:01
0:772; large

Random p < 0:01 p < 0:01
1; large 0:978; large

Figure 6.2 Best �tness function value over evaluations for the autonomous robot case study

Lane keeping assistant case study.In 100000 evaluations random search produced scenarios

with the average highest �tness of -9. AmbieGen MO and SO produced almost 50 % �tter

solutions of -17 and -16, respectively. There was no statistical di�erence between the best

solutions of SO and MO.

Overall, We can see that for all the problems, AmbieGen �nds on average from 40 % to 50

% better solutions, than the random search. AmbieGen SO and AmbieGen MO show no

statistical di�erence in the produced solutions for the thermostat and lane keeping assistance

problem. For the autonomous robot problem, the AmbieGen SO produces better solutions

with a large e�ect size given 20000 evaluations.

RQ1 summary. AmbieGen SO produced scenarios with highest fault revealing power for the
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Table 6.3 Results of two-tailed non-parametric Mann-Whitney U test and the Cli�'s delta
values for lane keeping assistant case study

SO (GA) MO (NSGA2) Random
SO (GA)

MO (NSGA2) p = 0:175
0:215; small

Random p < 0:01 p < 0:01
0:877; large 0:886; large

Figure 6.3 Best �tness function value over evaluations for the lane keeping assistant case
study

autonomous robot case study. For the thermostat and LKAS case studies the di�erence in the

solution �tness of AmbieGen SO and MO was negligible. Ovrerall, AmbieGen outperforms

the random search with "large" e�ect size in all case studies.

RQ2.(Comparing diversity of the solutions found by the single-objective and

multi-objective search). In Fig. 6.4, Fig.6.5, and Fig. 6.6, we compare how diverse are

the produced solutions by AmbieGen SO and AmbieGen MO.

For SO, we select 10 �ttest individuals and compute the diversity according to (4.2) between

each pair of individuals. We report the average value. For NSGA2, we compute the diversity

(4.2) between each pair of Pareto optimal solutions. The size of the Pareto front was 7

individuals on average. All the solutions in the Pareto front have a fault revealing (F1) �tness

function value higher than a certain fault-revealing threshold, established by the developer.

For all the problems, the two-tailed non-parametric Mann-Whitney U test con�rmed that
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AmbieGen MO produces more diverse solutions, than AmbieGen SO. For the smart ther-

mostat problem, the MO scenarios are more diverse with a p-value smaller than 0.01 and a

"large" e�ect size of 0.852. For the autonomous robot problem, AmbieGen MO scenarios are

more diverse with a p-value smaller and a "large" e�ect size of 1. For the lane keeping assist

system, MO scenarios are more diverse with a p-value of 0.0109 (p � 0:05) and a "medium"

e�ect size of 0.383.

Figure 6.4 Diversity of the test cases in the last generation for the thermostat case study

Figure 6.5 Diversity of the test cases in the last generation for the autonomous robot case
study

RQ2 summary. In all the considered problems AmbieGen MO produced more diverse test

cases: with "large" e�ect size for thermostat and robot case study and "medium" e�ect size

for the LKAS case study.

RQ1, RQ2 summary. AmbieGen MO can �nd scenarios of the same quality as AmbieGen

SO and better scenarios with a large e�ect size than the random search. Moreover, AmbieGen

MO produces a more diverse set of scenarios, than AmbieGen SO. Overall, we recommend

using the AmbieGen MO con�guration.

RQ3. (Comparing AmbieGen with the available baselines)
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Figure 6.6 Diversity of the test cases in the last generation for the lane keeping assistant case
study

Autonomous robot case study . In this subsection we compare the number of faults

revealed by the NSGA2 con�guration of AmbieGen (AmbieGen MO) and the random search.

We created a scenario evaluation pipeline, where �rstly a two hour budget is given to produce

the scenarios. Then all the scenarios are passed to the simulator and executed. The daemon

script monitors the execution and reports a failure when the robot stalls and doesn't reach a

goal. We repeated the experiment 30 times in both con�gurations. You can see the average

number of failures detected in Fig. 6.7. AmbieGen produced on average 9 failures in two

hours, in comparison to the 2 failures of random search. AmbieGen outperforms the random

search with a p-value less than 0.01 and a large e�ect size of 1.

Figure 6.7 Number of faults revealed for the autonomous robot

Lane keeping assist system case study . In this subsection we report results of evaluating

AmbieGen MO (AmbieGen) and the Frenetic tool (Frenetic). In addition we evaluate the

random search (RS) con�guration of AmbieGen and the AmbieGen MO con�guration based

on the full model (Full).

For AmbieGen we used a simpli�ed con�guration for virtual road generation, where only,
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5100 evaluations are performed (population size 100, number of generations 200, number of

o�springs - 25) in order to produce more test scenarios given a limited time budget. We gave

the same time budget (5090 evaluations) for the random search to produce the solutions.

Finally, for the full model we used a con�guration previously suggested by Gambi et al. [5]

for Asfault tool, that also uses the full model to guide the search. In this con�guration the

population size is 25, number of o�springs is 4 and the number of generations is limited by

the time budget, i.e, two hours.

Approaches were evaluated using the SBST2021 code pipeline [6], that integrates the test

generators with the BeamNG simulator by validating, executing, and evaluating the gener-

ated test cases. We executed the SBST21 2 hour experiment, where the fault is revealed

when 0.85 percent of the car area goes out of the lane. Also, the driving agent travels up to

70 Km/h.

The test cases are compared in terms of the number of faults Fig. 6.8, the diversity of

the faults Fig. 6.9, and the proportion of the valid test cases Fig.6.10. The corresponding

statistical test and e�ect size measures (Cli�'s delta) are shown in the Tables 6.4, 6.5 and

6.6.

Figure 6.8 The number of revealed faults in 2h experiment

Table 6.4 Mann-Whitney test p value and Cli�'s delta for the number of faults

AmbieGen Frenetic Full
F renetic p = 0:917 - -

0:0166; negligible
Full p < 0:01 p < 0:01 -

0:996; large 0:991; large
RS p < 0:01 p < 0:01 p < 0:01

0:653; large 0:578; large 0:951; large

In terms of the number of the revealed faults both, AmbieGen and Frenetic, statistically
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outperform the random search and the full model based search. Out of 30 runs, on average,

AmbieGen and Frenetic produce almost equal amount of faults, i.e., 14.

Figure 6.9 The diversity of the revealed faults in 2h experiment

Table 6.5 Mann-Whitney test p value and Cli�'s delta for the fault sparsity

AmbieGen Frenetic Full
F renetic p = 0:897 - -

0:020; negligible
Full p = 0:0889 p = 0:0998 -

0:3238; small 0:315; small
RS p = 0:912 p = 0:794 p = 0:147

0:018; negligible 0:042; negligible 0:285; small

Concerning the diversity of the revealed faults, all the approaches have similar performance

and don't show a statistically signi�cant di�erence.

Figure 6.10 The proportion of the valid test cases in the 2h experiment

Another important factor was the proportion of valid test cases out of all the cases produced.

From Table 6.6 we see that AmbieGen produces a statistically bigger proportion of the
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Table 6.6 Mann-Whitney test p value and Cli�'s delta for the proportion of valid cases

AmbieGen Frenetic
F renetic p < 0:01 -

1; large
RS p < 0:01 p = 0:011

0:997; large 0:386; medium

Table 6.7 Number of total, valid and invalid test cases in 2h experiment

TCs V alid Invalid
AmbieGen 150 137:8 12:23
F renetic 190:3 136:46 53:83

RS 86:53 65:32 21:21

valid test cases, than Frenetic and random search. For the full model, the invalid scenarios

were assigned the �tness value of 0 and not submitted for evaluation. In Table 6.7 we also

indicate the average number of the total produced test cases as well as the number of invalid

and valid test cases. For the full number, initially the 25 individuals were produced that

were later evolved by the search operators. SBST2021 code pipeline evaluates the test cases

procedurally, i.e., as soon as the valid test case is produced it is executed. The new test case

can only be produced, when the execution of the previous one stops. The scenario execution

time depends on the generated road length, i.e., the longer the road, the more time the

car will spend in the simulation. Therefore, we don't evaluate the approaches by the total

number of the produced scenarios, as it depends not only on the e�ciency of the algorithm,

but also on the duration of the generated scenarios. The random search generates the lowest

number of solutions as it only provides one solution after 5090 evaluations. AmbieGen, on

the contrary, provides around 7 solutions on average, corresponding to the search Pareto

front after 5090 evaluations.

Finally, we conducted additional 5 hour experiment to compare the approaches with the

highest number of revealed faults from the 2 hour experiment i.e. AmbieGen and Frenetic

(30 runs of 5 hours for each tool). The boxplots for the number of revealed faults, their

diversity and the proportion of valid to total generated test scenarios is shown in Fig. 6.11,

Fig. 6.12 and Fig. 6.13 respectively.

On average AmbieGen revealed 40 faults, comparing to 35 of Frenetic (p value of 0.001 and

�large� e�ect size of 0.48). The average diversity for AmbieGen was 29.95 with negligible

di�erence from Frenetic - 29.18 (p value = 0.488, �negligible� e�ect size of 0.104). For
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Figure 6.11 The number of revealed faults in 5h experiment

Figure 6.12 The diversity of the revealed faults in 5h experiment

Figure 6.13 The proportion of the valid test cases in 5h experiment

AmbieGen 0.922 of generated scenarios were valid, for Frenetic - 0.766 ( p < 0.001, �large�

e�ect size of 0.99). Overall, in 5 hour budget AmbieGen reveals 5 more faults, than Frenetic,

with the faults being of similar diversity. AmbieGen produces a bigger proportion of valid
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scenarios.

Table 6.8 Number of total, valid and invalid test cases in 5h experiment

TCs V alid Invalid
AmbieGen 377:8 348:36 29:49
F renetic 422:75 324:21 98:54

RQ3 summary. AmbieGen reveals 9 failures in two hours, in comparison, random search

could reveal only 2 failures for the robot case study. Both AmbieGen and state of the art

Frenetic tool revealed 14 failures in two hours. In 5 hour budget, AmbieGen revealed on

average 40 failures, compared to 35 of Frenetic. The revealed faults have similarly high

diversity for both tools. AmbieGen outperforms Frenetic in the proportion of the valid

generated scenarios and the number of revealed faults in 5 hour budget. AmbieGen also

outperforms the random search and the full model con�guration in the number of revealed

faults.

6.3 Discussion

Evolutionary algorithms for scenario generation. Evolutionary algorithms were proven

to be e�ective, comparing to random generation, to create virtual environments for testing

automotive systems in previous works such as [5], [36], [2]. The implementation of such

algorithms to generate environments is rather challenging as the customized solution repre-

sentation and search operators need to be developed.

In our work we apply the evolutionary search for environment generation to such domains

as smart-homes, autonomous robots and autonomous vehicles. This work is the �rst stage

in designing a framework for generating virtual environments, AmbieGen. We consider the

complete virtual environment to be composed of separate elements. Each element is de-

scribed with a �xed number of attributes. During the search we recombine the elements as

well as their attributes. One of the advantages of such representation is the simplicity of

implementation of initial population generation, crossover and mutation search operators.

Therefore the developer only needs to consider a high level description of the problem and

not concentrate on the design of search operators and solution representation. By adding

more attributes, the scenario complexity can be increased. For the smart-thermostat, for ex-

ample, we can add such attributes as the humidity inside the room and temperature outside

the room for each time period. For the autonomous robot - the terrain type and indicate the

presence of other robots. For the car, for each road section we can indicate the terrain type,
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the road ramp slope, the location of the other vehicles, etc.

Overall, our study con�rms the e�ectiveness of search based approaches for environment

generation. Our framework is aimed to reduce the e�ort of the developers of evolutionary al-

gorithms to test the autonomous CPS. We provide the structure of the solution representation

and search operators, which can be applied to generation of di�erent types of environments.

We provide examples of generating smart-thermostat schedules, maps with obstacles and

virtual roads with search algorithm implementation based on Pymoo framework.

Using simpli�ed system models. We explore the possibility to use the approximated

system models, rather than the full models to compute the �tness function. Evidently,

full models can detect failures with a higher precision, however they are more expensive to

execute in terms of resources and time budget. For instance, the recommended requirements

for running BeamNg simulator are 16 GB RAM, Nvidia GeForce GTX 970 videocard and

Intel Core i7-6700 3.4Ghz processor or better. Our evaluations have shown that the full model

failures can be detected by an approximated model. Moreover, given the same time budget

the search guided be the approximated model may reveal more faults, than when guided by

the full model. We advocate for the development of more precise simpli�ed CPS models and

making them open source, so that they can be easily used by researchers to calculate the

search �tness functions. The possibility to use the surrogate models was �rst suggested by [7],

however it was used only to generate the CPS inputs. In [2] the approximated models were

used to generate the environments, however no comparison with the full model con�guration

was provided.

In conclusion, we advocate for creation of open source approximated and full models of CPS.

Moreover, it is important to establish more test evaluation pipelines and baselines, similar to

LKAS system for other domains of CPS. Finally, we surmise that the CPS simulators should

provide a possibility to create environment from con�guration �les or an API to automate

the design of environments.

6.4 Chapter summary

In this chapter we presented our research questions as well as the results of our experiments.

Overall, we recommend using the multi-objective con�guration of AmbieGen, AmbieGen

MO, as it can �nd scenarios of the same quality as AmbieGen SO and better scenarios with

a large e�ect size than the random search. Moreover, AmbieGen MO produces more diverse

scenarios from �large� to �medium� size, than the single-objective con�guration. Finally, we

present the comparison with existing baselines. Comparing with the Frenetic tool AmbieGen
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revealed the same amount of failures in two-hour time budget and 12.5 % more failures in 5

hours. Our approach also outperforms the random search and the full model based search in

the number of revealed failures.

We discussing our results we advocate for the development of more precise simpli�ed CPS

models and making them open source, so that they can be easily used by researchers to calcu-

late the search �tness functions. Moreover, it is important to establish more test evaluation

pipelines and baselines, similar to LKAS system test evaluation pipeline, used in SBST2021

competition, for other domains of CPS.
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CHAPTER 7 THREATS TO VALIDITY

In this chapter we discuss the possible threats to the validity of our study as well as our

strategies for mitigating them.

Internal validity. To minimize the threats to internal validity, relating to experimental

errors and biases, whenever available, we used standardized frameworks for development and

evaluation. We implemented all the evolutionary search algorithms (GA and NSGA2) using

a standartd Python Pymoo framework. To evaluate the scenarios for the LKAS case study

we used a standardized test pipeline used for SBST2021 workshop tool competition. For

autonomous robot case study we created a customized test evaluation

pipeline, which is based on the open source Player/Stage robotic simulator. It provides

implementations of the widely used robotic models, such as Pioneer 3-AT, and planning

algorithms. This simulator was previously used by researchers to conduct similar evaluations,

as in [39].

Conclusion validity. Conclusion validity is related to random variations and inappropriate

use of statistics. To mitigate it, we followed the guidelines in [17] for search-based algorithm

evaluation. We ran each evaluation at least 30 times and ensured the statistical signi�cance

of the results by using a two-tailed non-parametric Mann-Whitney U test and Cli�'s delta.

Construct validity. Construct validity is related to the degree to which an evaluation

measures what it claims. To compare the test generation algorithms we gave the same time

budget to all the algorithms to produce the solutions. For all the algorithms we evaluated the

best �tness found, accounting for the scenario fault revealing power. To compare the tools

in terms of number of revealed faults we gave each tool the same time budget to produce the

scenarios. To measure the diversity of the test scenarios we used a standard metric such as

Jaccard distance, previously used in other studies to compare the di�erence between the test

cases. The exact implementation of this metric is, however, case study speci�c and thus can

introduce some additional bias. Furthermore, the results produced by AmbieGen depend

on the implementation of the approximated model. Presumably, higher quality surrogate

models can produce more failures of the full model and improve the AmbieGen performance.

External validity. External validity relates to generalizability of our results. We demon-

strated how our framework can be applied to generate environments for three di�erent au-

tonomous cyber-physical agents. However, we only considered a limited number of test

subjects and limited levels of environment complexity. Therefore more problems should be

addressed with di�erent agents and higher environment complexity to make de�nitive con-
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clusions about generalizability of AmbieGen. Nonetheless, our evaluations demonstrated

that AmbieGen was e�ective in revealing unwanted behaviours for all the three considered

autonomous CPS agents.
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CHAPTER 8 CONCLUSION

8.1 Summary

In this thesis we presented AmbieGen, a framework for generating virtual environments

for testing autonomous cyber-physical systems. It leverages evolutionary search guided by

the approximated model of system. We applied it to generating scenarios for the smart-

thermostat, autonomous robotic system and vehicle lane keeping assist system. Given the

same time budget, AmbieGen could generate on average twice �tter solutions, than random

search. Moreover, AmbieGen was e�ective at detecting faults of the full model. In two

hours it could �nd 9 failures of the Pioneer 3-AT mobile robot in the Player/Stage simulator,

comparing to only two failures found by random search. For the full model of the vehicle,

equipped with lane keeping assist system, AmbieGen found 14 failures on average, the same as

the state of the art baseline - Frenetic. Random search only found 8 failures on average. In 5

hour budget AmbienGen produced on average 12.5% more failures than Frenetic. AmbieGen

also outperformed the Frenetic in the number of valid generated scenarios with a large e�ect

size.

Comparing the two proposed con�gurations of AmbieGen, the single objective (AmbieGen

SO) and multi objective (AmbieGen MO), AmbieGen SO may �nd �tter solutions than Am-

bieGen MO given the same time budget. In two hours, for the autonomous robot case study,

AmbieGen So found 10 % �tter soloutins than AmbieGen MO. For the other case studies

the di�erence in the best found solutions �tness was insigni�cant. Overall, we recommend

using the multi objective con�guration of AmbieGen, AmbieGen MO, as it always produced

a more diverse set of solutions with medium to large e�ect size and on average could �nd

almost as �t solutions as AmbieGen SO.

8.2 Discussion

In this work we design a prototype of a framework for automatic scenario generation for

autonomous cyber-physical systems. We evaluated our framework generating three di�erent

types of virutal environments: environmental conditions for a smart thermostat along with

a temperature schedule to follow, a map with obstacles for an autonomous robot and virtual

roads for a vehicle LKAS system. For each case study, we used the same scenario represen-

tation, as well as the crossover and mutation operators. Currently each case study had to be

con�gured manually, with minimal changes to the genetic algorithm implementation. In the
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future, when using such framework the researchers and practitioners would have to provide

the system model and only the high level information about the system virtual environment.

The framework will automatically modify the search algorithm con�guration and generate

the test scenarios. This is our vision of full functionality of the framework, that we plan to

implement in the future work.

Challenges. The challenging part of AmbieGen implementation is in evaluating the test

scenario �tness. It consists of two stages: �rst is to convert the high level description matrix

TC to the environment con�guration. For the smart thermostat we needed to convert theTC

matrix to the list of temperatures to follow, for an autonomous robot - to the coordinates

of obstacles in a map, which was rather simple. For the LKAS case study we needed to

transform the TC matrix to a set of 2D coordinates, that will produce valid roads after cubic

spline approximation. This conversion was more complex and we developed a new technique

leveraging a�ne transformations to vectors. Next challenge was to create an approximated

model. For the autonomous robot we used an implementation provided by Python Robotics

project. For the LKAS, we implemented the model from scratch. The available open source

implementations were rather time consuming to execute. We also created the model from

the real data for the thermostat case study as we didn't �nd any open source full models.

Finally, it was challenging to �nd baselines and pipelines to evaluate the produced scenarios.

For the autonomous robot, we implemented a simple test evaluation pipeline, based on the

Player/Stage simulator. More advanced simulators require the manual creation of the sce-

narios in the 3D design tools. Fortunately, for the LKAS case study we could use the test

evaluation pipeline provided by the SBST2021 competition.

8.3 Limitations of the proposed approach

1. In our study we aim to develop a framework for automatic generation of testing scenar-

ios, however the developer stills needs to provide some components such as simpli�ed

system model, the �tness function as well as the code to translate the encoded scenario

for search algorithm into the input parameters for the simulator.

2. Theoretically, our framework allows encoding complex environments, including di�erent

terrain types, various dynamic and static objects, environmental conditions. The prac-

tical implementation of more complex scenarios and their e�ectiveness will be explored

in our future works.
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8.4 Future research

We plan to continue the research in four directions. First is creating more complex environ-

ments, taking into account the weather, environmental conditions and the moving obstacles

such as other robots or cars. We also plan to expand the scenario generation to other CPS,

such as drone and robot swarms. Secondly, we will explore the possibility to create more pre-

cise surrogate model using the system identi�cation techniques, including neural networks

and NARIMAX models. Thirdly, it is important to have the pipelines for evaluating the

generated scenarios. We plan to improve our evaluation pipeline for autonomous robots by

using more sophisticated simulators such as Argos and Gazebo and more complex models of

robots. We will also work on developing pipelines dedicated to other types of CPS Finally,

we plan to implement AmbieGen as a python framework with an API for generating virtual

environments and make it open source.
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